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Lp BOUNDS FOR THE COMMUTATORS

OF SINGULAR INTEGRALS

AND MAXIMAL SINGULAR INTEGRALS

WITH ROUGH KERNELS

YANPING CHEN AND YONG DING

Abstract. The commutator of convolution type Calderon-Zygmund singular

integral operators with rough kernels p.v.
Ω(x)
|x|n are studied. The authors es-

tablished the Lp (1 < p < ∞) boundedness of the commutators of singular
integrals and maximal singular integrals with the kernel condition which is
different from the condition Ω ∈ H1(Sn−1).

1. Introduction

The homogeneous singular integral operator TΩ is defined by

TΩf(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n f(y) dy,

where Ω ∈ L1(Sn−1) satisfies the following conditions:
(a) Ω is homogeneous function of degree zero on Rn \ {0}, i.e.

(1.1) Ω(tx) = Ω(x) for any t > 0 and x ∈ Rn\{0}.
(b) Ω has mean zero on Sn−1, the unit sphere in Rn, i.e.

(1.2)

∫
Sn−1

Ω(x′) dσ(x′) = 0.

For a function b ∈ Lloc(Rn), let A be a linear operator on some measurable
function space. Then the commutator between A and b is defined by [b, A]f(x) :=
b(x)Af(x)−A(bf)(x).

In 1965, Calderón [6] defined a commutator for the Hilbert transform H and a
Lipshitz function b, which is connected closely the Cauchy integral along Lipschitz
curves (see also [7]). Commutators have played an important role in harmonic
analysis and PDE, for example in the theory of nondivergent elliptic equations
with discontinuous coefficients (see [5], [8], [13], [14], [20]). Moreover, there is also an
interesting connection between the nonlinear commutator, considered by Rochberg
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and Weiss in [16], and the Jacobian mapping of vector functions. They have been
applied in the study of nonlinear partial differential equations (see [9], [27]).

In 1976, Coifman, Rochberg and Weiss [16] obtained a characterization of Lp-
boundedness of the commutators [b, Rj ] generated by the Reisz transforms Rj (j =
1, · · · , n, ) and a BMO function b. As an application of this characterization, a
decomposition theorem of the real Hardy space is given in this paper. Moreover,
the authors in [16] proved also that if Ω ∈ Lip(Sn−1), then the commutator [b, TΩ]
for TΩ and a BMO function b is bounded on Lp for 1 < p < ∞, which is defined by

[b, TΩ]f(x) = p.v.

∫
Rn

Ω(x− y)

|x− y|n (b(x)− b(y))f(y)dy.

In the same paper, Coifman, Rochberg and Weiss [16] outlined a different approach,
which is less direct but shows the close relationship between the weighted inequal-
ities of the operator T and the weighted inequalities of the commutator [b, T ]. In
1993, Alvarez, Bagby, Kurtz and Pérez [3] developed the idea of [16] and established
a generalized boundedness criterion for the commutators of linear operators. The
result of Alvarez, Bagby, Kurtz and Pérez (see [3], Theorem 2.13]) can be stated as
follows.

Theorem A ([3]). Let 1 < p < ∞. If a linear operator T is bounded on Lp(w) for
all w ∈ Aq (1 < q < ∞), where Aq denote the weight class of Muckenhoupt, then
for b ∈ BMO, ‖[b, T ]f‖Lp ≤ C‖b‖BMO‖f‖Lp .

Combining Theorem A with the well-known results by Duoandikoetxea [18] on
the weighted Lp boundedness of the rough singular integral TΩ, we know that if Ω ∈
Lq(Sn−1) for some q > 1, then [b, TΩ] is bounded on Lp for 1 < p < ∞. However,
it is not clear up to now whether the operator TΩ with Ω ∈ L1 \

⋃
q>1 L

q(Sn−1)

is bounded on Lp(w) for 1 < p < ∞ and all w ∈ Ar (1 < r < ∞). Hence, if
Ω ∈ L1 \

⋃
q>1 L

q(Sn−1), the Lp boundedness of [b, TΩ] cannot be deduced from
Theorem A.

The purpose of this paper is to give a sufficient condition which contains⋃
q>1 L

q(Sn−1), such that the commutator of convolution operators are bounded

on Lp(Rn) for 1 < p < ∞. This condition was introduced by Grafakos and Stefanov
in [25], which is defined by

(1.3) sup
ξ∈Sn−1

∫
Sn−1

|Ω(y)|
(
log

1

|ξ · y|

)1+α

dσ(y) < ∞,

where α > 0 is a fixed constant. It is well known that⋃
q>1

Lq(Sn−1) ⊂ L log+ L(Sn−1) ⊂ H1(Sn−1).

Let Fα(S
n−1) denote the space of all integrable functions Ω on Sn−1 satisfying

(1.3). The examples in [25] show that there is the following relationship between
Fα(S

n−1) and H1(Sn−1) (the Hardy space on Sn−1):⋃
q>1

Lq(Sn−1) ⊂
⋂
α>0

Fα(S
n−1) � H1(Sn−1) �

⋃
α>0

Fα(S
n−1).

Condition (1.3) above has been considered by many authors in the context of rough
integral operators. One can consult [1], [2], [9], [10], [11], [12], [19], [26] among the
numerous references, for its development and applications.
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Now let us formulate our main results as follows.

Theorem 1. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈
Fα(S

n−1) for some α > 1, then [b, TΩ] extends to a bounded operator from Lp into
itself for α+1

α < p < α+ 1.

Corollary 1. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈⋂
α>1 Fα(S

n−1), then [b, TΩ] extends to a bounded operator from Lp into itself for
1 < p < ∞.

The proof of this result is in Section 4. In the proof of Theorem 1, we have
used the Littlewood-Paley decomposition and interpolation theorem argument to
prove Lp (1 < p < ∞) norm inequalities for the rough commutator [b, TΩ]. These
techniques have been used to prove the Lp (1 < p < ∞) norm inequalities for rough
singular integrals in [25] or [17]. They are very similar in spirit, though not in
detail. In the following, we will point out the difference in the methods used to
prove Lp (1 < p < ∞) norm inequalities for rough commutators and rough singular
integrals.

Let T be a linear operator; we may decompose T =
∑

l∈Z
Tl by using the proper-

ties of Littlewood-Paley functions and Fourier transform, reducing T to a sequence
of composition operators {Tl}l∈Z. Hence, to get the Lp (1 < p < ∞) norm of T , it
suffices to establish the delicate Lp (1 < p < ∞) norm of each Tl with a summation
convergence factor, which can be obtained by interpolating between the delicate
L2 norm of Tl, which has a summation convergent factor, and the Lq (1 < q < ∞)
norm of Tl, for each l ∈ Z.

Let T be a rough singular integral. The delicate L2 norm of each Tl can be ob-
tained by using the Fourier transform, the Plancherel theorem and the Littlewood-
Paley theory. The Lq (1 < q < ∞) norm of each Tl can be obtained by the method
of rotations, the Lq (1 < q < ∞) bounds of the one dimensional case of the Hardy-
Littlewood operator and the Littlewood-Paley theory.

On the other hand, if T is a rough commutator of singular integral, the delicate
L2 norm of each Tl can be obtained by using the L2 norm of the commutators of
Littlewood-Paley operators (see Lemma 3.3) and Lemma 3.4 in Section 3. With
these techniques and lemmas, G. Hu [29] obtained the result in Theorem 1 for
p = 2. Therefore, it reduces the Lp (1 < p < ∞) norm of T to the Lq (1 < q < ∞)
norm of Tl for each l ∈ Z. Unfortunately, since each Tl is generated by a BMO
function and a composition operator, the method of rotations, which deals with
the same problem in rough singular integrals, fails to treat this problem directly.
Hence we need to look for a new idea. We find that the Bony paraproduct is the
key technique to resolve the problem. In particular, it is worth pointing out that
the main method used in this paper indeed gives a new application of the Bony
paraproduct. It is well known that the Bony paraproduct is an important tool in
PDE. However, the idea presented in this paper shows that the Bony paraproduct
is also a powerful tool for handling the integral operators with rough kernels in
harmonic analysis.

It is well known that maximal singular integral operators T ∗
Ω play a key role in

studying the almost everywhere convergence of the singular integral operators. The
mapping properties of the maximal singular integrals with convolution kernels have
been extensively studied (see [17], [25], [32], for example). Therefore, another aim
of this paper is to give the Lp(Rn) boundedness of the maximal commutator [b, T ∗

Ω]
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associated to the singular integral TΩ, which is defined by

[b, T ∗
Ω]f(x) = sup

j∈Z

∣∣∣∣
∫
|x−y|>2j

Ω(x− y)

|x− y|n (b(x)− b(y))f(y) dy

∣∣∣∣.
The following theorem is another main result given in this paper:

Theorem 2. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈
Fα(S

n−1) for some α > 2, then [b, T ∗
Ω] extends to a bounded operator from Lp into

itself for α
α−1 < p < α.

Corollary 2. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈⋂
α>2 Fα(S

n−1), then [b, T ∗
Ω] extends to a bounded operator from Lp into itself for

1 < p < ∞.

One will see that the maximal commutator [b, T ∗
Ω] can be controlled pointwise

by some composition operators of TΩ, M , MΩ and their commutators [b, TΩ], [b,M ]
and [b,MΩ], where M is the standard Hardy-Littlewood maximal operator and MΩ

denotes the maximal operator with rough kernel, which is defined by

MΩf(x) = sup
j∈Z

∣∣∣∣
∫
2j<|x−y|≤2j+1

Ω(x− y)

|x− y|n f(y)dy

∣∣∣∣.
The corresponding commutators [b,M ] and [b,MΩ] are defined by

[b,M ]f(x) = sup
r>0

1

rn

∫
|x−y|<r

|b(x)− b(y)||f(y)| dy

and

[b,MΩ]f(x) = sup
j∈Z

∣∣∣∣
∫

2j<|x−y|<2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n f(y)dy

∣∣∣∣.
We give the following Lp(Rn) boundedness of the commutators [b,MΩ]:

Theorem 3. Let Ω be a function in L1(Sn−1) satisfying (1.1). If Ω ∈ Fα(S
n−1)

for some α > 1, then [b,MΩ] extends to a bounded operator from Lp into itself for
α+1
α < p < α+ 1.

Corollary 3. Let Ω be a function in L1(Sn−1) satisfying (1.1). If

Ω ∈
⋂
α>1

Fα(S
n−1),

then [b,MΩ] extends to a bounded operator from Lp into itself for 1 < p < ∞.

Theorem 3 is actually a direct consequence of the Lp(Rn) boundedness of the
commutator formed by a class of the Littlewood-Paley square operator with rough

kernel and a BMO function. In fact, if Ω̃ = Ω− A
|Sn−1| with A =

∫
Sn−1 Ω(x

′)dσ(x′),

then Ω̃ satisfies (1.2). It is easy to check that

[b,MΩ]f(x) ≤ sup
j∈Z

∣∣∣∣
∫

2j<|x−y|<2j+1

(b(x)− b(y))
Ω̃(x− y)

|x− y|n f(y) dy

∣∣∣∣
+ C[b,M ]f(x)

≤ C([b, g
˜Ω]f(x) + [b,M ]f(x)),(1.4)
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where gΩ and [b, gΩ] denote the Littlewood-Paley square operator and its commu-
tator, which are defined respectively by

gΩf(x) =

( ∑
j∈Z

∣∣∣∣
∫

2j<|x−y|≤2j+1

Ω(x− y)

|x− y|n f(y)dy

∣∣∣∣2
)1/2

and

[b, gΩ]f(x) =

( ∑
j∈Z

∣∣∣∣
∫

2j<|x−y|<2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n f(y)dy

∣∣∣∣2
)1/2

.

Thus, (1.4) shows that Theorem 3 will follow from the Lp(Rn) boundedness of the
commutators [b, gΩ] and [b,M ]. Since the Lp(Rn) boundedness of the latter is well
known (see [23]), we need only give the Lp(Rn) boundedness of the commutator
[b, gΩ], which can be stated as follows.

Theorem 4. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈
Fα(S

n−1) for some α > 1, then [b, gΩ] extends to a bounded operator from Lp into
itself for α+1

α < p < α+ 1.

Corollary 4. Let Ω be a function in L1(Sn−1) satisfying (1.1) and (1.2). If Ω ∈⋂
α>1 Fα(S

n−1), then [b, gΩ] extends to a bounded operator from Lp into itself for
1 < p < ∞.

In fact, Theorem 4 is a corollary of Theorem 1. Write TΩf(x) =
∑

j∈Z
Kj ∗f(x),

where Kj(x) =
Ω(x)
|x|n χ{2j<|x|≤2j+1}. Define Tjf(x) = Kj ∗ f(x); then [b, TΩ]f(x) =∑

j∈Z
[b, Tj ]f(x) and [b, gΩ]f(x) =

( ∑
j∈Z

|[b, Tj ]f(x)|2
)1/2

. Then we get the Lp

boundedness of [b, gΩ] by using Theorem 1, the Rademacher function and Khint-
chine’s inequalities.

This paper is organized as follows. First, in Section 2, we give some important
notation and tools, which will be used in the proofs of the main results. In Section 3,
we give some lemmas which will be used in the proofs of the main results. In
Section 4, we prove Theorem 1 by applying the lemmas in Section 3. Finally, we
prove Theorem 2 by applying Theorem 3 and Theorem 4 in Section 5. Throughout
this paper, the letter “C ” will stand for a positive constant which is independent
of the essential variables and not necessarily the same one in each occurrence.

2. Notation and preliminaries

Let us begin by giving some notation and important tools, which will be used in
the proofs of our main results.

1. Schwartz class and Fourier transform. Denote by S (Rn) and S ′(Rn) the
Schwartz class and the space of tempered distributions, respectively. The nota-
tion “̂” and “∨” denote the Fourier transform and the inverse Fourier transform,
respectively.

2. Smooth decomposition of identity and multipliers. Let ϕ ∈ S (Rn) be a
radial function satisfying 0 ≤ ϕ ≤ 1 with its support in the unit ball and ϕ(ξ) = 1 for

|ξ| ≤ 1
2 . The function ψ(ξ) = ϕ( ξ2 )− ϕ(ξ) ∈ S (Rn) is supported by { 1

2 ≤ |ξ| ≤ 2}
and satisfies the identity

∑
j∈Z

ψ(2−jξ) = 1, for ξ �= 0.
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For j ∈ Z, denote by Δj and Gj the convolution operators whose the symbols

are ψ(2−jξ) and ϕ(2−jξ), respectively. That is, Δj and Gj are defined by Δ̂jf(ξ) =

ψ(2−jξ)f̂(ξ) and Ĝjf(ξ) = ϕ(2−jξ)f̂(ξ) (see [30]). By the Littlewood-Paley theory,
for 1 < p < ∞ and {fj} ∈ Lp(l2), the following vector-valued inequality holds (see
[24], p. 343]):

(2.1)
∥∥∥( ∑

j∈Z

|Δj+kfj |2
)1/2∥∥∥

Lp
≤ C

∥∥∥(∑
j∈Z

|fj |2
)1/2∥∥∥

Lp
, for k ∈ [−10, 10].

3. Homogeneous Triebel-Lizorkin space Ḟ s,q
p (Rn) and Besov space Ḃs,q

p (Rn).
For 0 < p, q ≤ ∞ (p �= ∞) and s ∈ R, the homogeneous Triebel-Lizorkin space

Ḟ s,q
p (Rn) is defined by

Ḟ s,q
p (Rn) =

{
f ∈ S ′(Rn) : ‖f‖Ḟ s,q

p
=

∥∥∥∥
( ∑

j∈Z

2−jsq|Δjf |q
)1/q∥∥∥∥

Lp

< ∞
}

and the homogeneous Besov space Ḃs,q
p (Rn) is defined by

Ḃs,q
p (Rn) =

{
f ∈ S ′(Rn) : ‖f‖Ḃs,q

p
=

( ∑
j∈Z

2−jsq‖Δjf‖qLp

)1/q

< ∞
}
,

where S ′(Rn) denotes the tempered distribution class on Rn.
4. Sequence Carleson measures. A sequence of positive Borel measures {vj}j∈Z

is called a sequence Carleson measure in Rn × Z if there exists a positive constant
C > 0 such that

∑
j≥k vj(B) ≤ C|B| for all k ∈ Z and all Euclidean balls B with

radius 2−k, where |B| is the Lebesgue measure of B. The norm of the sequence
Carleson measure v = {vj}j∈Z is given by

‖v‖ = sup

{
1

|B|
∑
j≥k

vj(B)

}
,

where the supremum is taken over all k ∈ Z and all balls B with radius 2−k.
5. Homogeneous BMO-Triebel-Lizorkin space. For s ∈ R and 1 ≤ q < +∞,

the homogeneous BMO -Triebel-Lizorkin space Ḟ s,q
∞ is the space of all distributions

b for which the sequence {2sjq|Δj(b)(x)|qdx}j∈Z is a Carleson measure (see [21]).

The norm of b in Ḟ s,q
∞ is given by

‖b‖Ḟ s,q
∞

= sup

[
1

|B|
∑
j≥k

∫
B

2sjq|Δj(b)(x)|qdx
] 1

q

,

where the supremum is taken over all k ∈ Z and all balls B with radius 2−k. For
q = +∞, we set Ḟ s,∞

∞ = Ḃs,∞
∞ . Moreover, Ḟ 0,2

∞ = BMO (see [21], [22]).
6. Bony paraproduct and Bony decomposition. The paraproduct of Bony [4]

between two functions f , g is defined by

πf (g) =
∑
j∈Z

(Δjf)(Gj−3g).

At least formally, we have the following Bony decomposition:

(2.2) fg = πf (g) + πg(f) +R(f, g) with R(f, g) =
∑
i∈Z

∑
|k−i|≤2

(Δif)(Δkg).
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3. Lemmas

We first give some lemmas, which will be used in the proof of Theorem 1 and
Theorem 2.

Riesz potential and its inverse. For 0 < τ < n, the Riesz potential Iτ of order

τ is defined on S ′(Rn) by setting Îτf(ξ) = |ξ|−τ f̂(ξ). Another expression of Iτ is

Iτf(x) = γ(τ )

∫
Rn

f(y)

|x− y|n−τ
dy,

where γ(τ ) = 2−τπ−n/2Γ(n−τ
2 )/Γ( τ2 ). Moreover, for 0 < τ < n, the “inverse op-

erator” I−1
τ of Iτ is defined by Î−1

τ f(ξ) = |ξ|τ f̂(ξ), where ∧ denotes the Fourier
transform.

With the notation above, we show the following two facts:

Lemma 3.1. For 0 < τ < 1/2, we have

(3.1) γ(τ ) ≤ Cτ,

where C is independent of τ.

Proof. Applying Stirling’s formula, we have
√
2πxx−1/2e−x ≤ Γ(x) ≤ 2

√
2πxx−1/2e−x for x > 1.

Thus, by the equation sΓ(s) = Γ(s+ 1) for s > 0, we get
(3.2)

Γ(n−τ
2 ) = 2

n−τ Γ(
n−τ
2 + 1) ≤ 2

√
2π

(
n−τ
2 + 1

)(n−τ
2 + 1

2 )

e−
(n−τ)

2 −1 · 2
n−τ ≤ C

and

(3.3) Γ( τ2 ) =
2
τ Γ(

τ
2 + 1) ≥

√
2π

(
τ
2 + 1

)( τ
2+

1
2 )

e−
τ
2−1 · 2

τ ≥ C/τ.

Hence, (3.1) follows from (3.2) and (3.3). Obviously, the constant C in (3.1) is
independent of τ .

Lemma 3.2. For the multiplier Gk (k ∈ Z), b ∈ BMO(Rn), and any fixed 0 < τ <
1/2, we have

(3.4) |Gkb(x)−Gkb(y)| ≤ C
2kτ

τ
|x− y|τ‖b‖BMO,

where C is independent of k and τ.

Proof. Note that Iτ (I
−1
τ f) = f ; we have

Gkb(x) = γ(τ )

∫
Rn

I−1
τ (Gkb)(z)

|x− z|n−τ
dz.

Hence
(3.5)

|Gkb(x)−Gkb(y)| =

∣∣∣∣γ(τ )
∫

Rn

I−1
τ (Gkb)(z)

(
1

|x− z|n−τ
− 1

|y−z|n−τ

)
dz

∣∣∣∣
≤ γ(τ )‖I−1

τ (Gkb)‖L∞

∫
Rn

∣∣∣∣ 1

|x− z|n−τ
− 1

|y−z|n−τ

∣∣∣∣ dz
= γ(τ )‖I−1

τ (Gkb)‖L∞

∫
Rn

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz.
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We first show that

(3.6)

∥∥∥∥ 1

|x− y + ·|n−τ
− 1

| · |n−τ

∥∥∥∥
L1

≤ Cτ−1|x− y|τ .

In fact,∫
Rn

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz
=

∫
|z|≤2|x−y|

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz
+

∫
|z|>2|x−y|

∣∣∣∣ 1

|x− y + z|n−τ
− 1

|z|n−τ

∣∣∣∣ dz
≤

∫
|z|≤3|x−y|

1

|z|n−τ
dz +

∫
|z|≤2|x−y|

1
|z|n−τ dz + C

∫
|z|>2|x−y|

|x− y|
|z|n−τ+1

dz

≤ C
|x− y|τ

τ
,

where C is independent of τ. By (3.5), (3.6) and (3.1), we get

(3.7) |Gkb(x)−Gkb(y)| ≤ C|x− y|τ‖I−1
τ (Gkb)‖L∞ ,

where C is independent of τ. We now estimate ‖I−1
τ (Gkb)‖L∞ . Since GkΔub = 0

for u ≥ k + 1, we have

‖I−1
τ (Gkb)‖L∞ =

∥∥∥∥I−1
τ Gk

( ∑
u∈Z

Δub
)∥∥∥∥

L∞
≤

∑
u≤k+1

∥∥Gk(I
−1
τ Δub)

∥∥
L∞

≤
∑

u≤k+1

∥∥I−1
τ Δub

∥∥
L∞ .(3.8)

Take a radial function ψ̃ ∈ S (Rn) such that supp(ψ̃) ⊂ {1/4 ≤ |x| ≤ 4} and ψ̃ = 1
in {1/2 ≤ |x| ≤ 2}. Then we have

̂I−1
τ Δub(ξ) = 2uτ ψ̃(2−uξ)|2−uξ|τ Δ̂ub(ξ).

Set a function h by ĥ(ξ) = ψ̃(ξ)|ξ|τ . Then

I−1
τ Δub(x) = 2uτ

∫
Rn

2unh(2u(x− y))Δub(y) dy.

So we have

‖I−1
τ Δub‖L∞ ≤ 2uτ‖2unh(2u·)‖L1‖Δub‖L∞ = 2uτ‖h‖L1‖Δub‖L∞ .

Thus, if there exists a constant C > 0, independent of τ, such that

(3.9) ‖h‖L1 ≤ C,

then by (3.7)-(3.8), we have

|Gkb(x)−Gkb(y)| ≤ C|x− y|τ
∑

u≤k+1
2uτ‖Δub‖L∞

≤ C|x− y|τ2kτ supu∈Z
‖Δub‖L∞

∑
u≤k+1

2(u−k)τ .
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Since for some 0 < τ < 1,

∑
u≤k+1

2(u−k)τ =
∞∑

j=−1

2−jτ =
2τ

1− 2−τ
=

22τ

2τ − 1
=

22τ

τ2θτ
<

C

τ
,

for 0 < τ < 1/2,

where C is independent of τ. Using the fact (see [24], p. 615]) that

(3.10) sup
u∈Z

‖Δub‖L∞ ≤ Cn‖b‖BMO,

we have

|Gkb(x)−Gkb(y)| ≤ C |x−y|τ2kτ

τ ‖b‖BMO,

where C is independent of k and τ. Thus, to finish the proof of Lemma 3.2, it
remains to show (3.9). In fact,

‖h‖L1 =

∫
|x|<1

|h(x)|dx+

∫
|x|≥1

|h(x)|dx ≤ Cn

(
‖h‖L2 + ‖| · |nh(·)‖L2

)
:= Cn(I1 + I2).

Since supp(ψ̃) ⊂ {1/4 ≤ |ξ| ≤ 4} and 0 < δ < 1/2, we get

I1 = ‖ψ̃(ξ)|ξ|τ‖L2 ≤ C,

where C is independent of τ. Thus, to get (3.9), we need only verify that I2 ≤ C.
To do this, let us recall some notation about the multi-index. For a multi-index
α = (α1, . . . , αn) ∈ Zn

+, denote ∂αf = ∂α1
1 . . . ∂αn

n f, |α| = α1 + · · · + αn and
xα = xα1

1 . . . xαn
n for x ∈ Rn. By [24, p. 425], we know that

(1 + |ξ|2)n/2 =
∑
|α|≤n

n!

α1! . . . αn!
ξα

ξα

(1 + |ξ|2)n/2

and the function mα(ξ) = ξα

(1+|ξ|2)n/2 is an Lp (1 < p < ∞) multiplier whenever

|α| ≤ n. Hence (
(1 + |ξ|2)n/2h(ξ)

)∨
=

∑
|α|≤n

Cα,n(mα(ξ)ξ
αh(ξ))∨

= C
∑
|α|≤n

Cα,n(mα(ξ)∂̂αȟ(ξ))∨,

where ∨ denotes the inverse Fourier transform. Applying the equation above, we
get

I2 ≤ C‖(1 + |ξ|2)n/2h(ξ)‖L2 = ‖((1 + |ξ|2)n/2h(ξ))∨‖L2

≤ C
∑

|α|≤n
Cα,n‖∂̂αȟ‖L2

= C
∑

|α|≤n
Cα,n‖∂αȟ‖L2 = C

∑
|α|≤n

Cα,n‖∂α(ψ̃(ξ)|ξ|τ )‖L2 .

Notice that

(3.11) ∂α(ψ̃(ξ)|ξ|τ ) =
∑

β≤α
Cβ1

α1
. . . Cβn

αn
(∂βψ̃(ξ))(∂α−β(|ξ|τ )),

where the sum in (3.11) is taken over all multi-indices β with 0 ≤ βj ≤ αj for
all 1 ≤ j ≤ n. Trivial computations show that there exists C > 0, independent of
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τ , such that |∂α−β(|ξ|τ )| ≤ C for 1/4 < |ξ| < 4 and 0 < τ < 1/2. Further, by

ψ̃ ∈ C∞
0 (Rn), then |∂βψ̃(ξ)| ≤ C. So we get |∂α(ψ(ξ)|ξ|τ)| ≤ C. From this we get

I2 ≤
∑

|α|≤n
Cα,n‖∂α(ψ(ξ)|ξ|τ )‖L∞

( ∫
1/4≤|ξ|≤4

dξ

)1/2

≤ C,

where C is dependent only on n, but is independent of τ. This completes the
estimate of (3.9) and Lemma 3.2 follows.

Lemma 3.3 (see [28]). Let φ ∈ S (Rn) be a radial function such that suppφ ⊂
{1/2 ≤ |ξ| ≤ 2} and

∑
l∈Z

φ3(2−lξ) = 1 for |ξ| �= 0. Define the multiplier operator

Sl by Ŝlf(ξ) = φ(2−lξ)f̂(ξ) and S2
l by S2

l f = Sl(Slf). For b ∈ BMO(Rn), denote
by [b, Sl] (respectively, [b, S2

l ]) the commutator of Sl (respectively, S2
l ). Then for

1 < p < ∞ and f ∈ Lp(Rn), we have

(i)

∥∥∥∥
( ∑

l∈Z
|[b, Sl](f)|2

)1/2∥∥∥∥
Lp

≤ C(n, p)‖b‖BMO‖f‖Lp ;

(ii)

∥∥∥∥
( ∑

l∈Z

|[b, S2
l ](f)|2

)1/2∥∥∥∥
Lp

≤ C(n, p)‖b‖BMO‖f‖Lp ;

(iii)

∥∥∥∥∣∣ ∑
l∈Z

[b, Sl](fl)
∣∣∥∥∥∥

Lp

≤ C(n, p)‖b‖BMO

∥∥∥∥
( ∑

l∈Z

|fl|2
)1/2∥∥∥∥

Lp

, {fl} ∈

Lp(l2).

Lemma 3.4 (see [29]). Let mσ ∈ C∞
0 (Rn) (0 < σ < ∞) be a family of multipliers

such that supp(mσ) ⊂ {|ξ| ≤ 2σ}, and for some constants C, 0 < A ≤ 1/2, and
α > 0,

‖mσ‖L∞ ≤ Cmin{Aσ, log−α−1(2 + σ)}, ‖∇mσ‖L∞ ≤ C.

Let Tσ be the multiplier operator defined by

T̂σf(ξ) = mσ(ξ)f̂(ξ).

For b ∈ BMO, denote by [b, Tσ] the commutator of Tσ. Then for any fixed 0 < v <
1, there exists a positive constant C = C(n, v) such that

‖[b, Tσ]f‖L2 ≤ C(Aσ)v log(1/A)‖b‖BMO‖f‖L2 , if σ < 10/
√
A,

‖[b, Tσ]f‖L2 ≤ C log−(α+1)v+1(2 + σ)‖b‖BMO‖f‖L2 , if σ ≥ 10/
√
A.

Similar to the proof of Lemma 3.4, it is easy to get

Lemma 3.5. Let mσ ∈ C∞
0 (Rn) (0 < σ < ∞) be a family of multipliers such that

supp(mσ) ⊂ {|ξ| ≤ 2σ}, and for some constants C, 0 < A ≤ 1/2, and α > 0, j ∈ N,

‖mσ‖L∞ ≤ Cmin{A2−jσ, log−α−1(2 + 2jσ)}, ‖∇mσ‖L∞ ≤ C2j .

Let Tσ be the multiplier operator defined by

T̂σf(ξ) = mσ(ξ)f̂(ξ).

For b ∈ BMO, denote by [b, Tσ] the commutator of Tσ. Then for any fixed 0 < v <
1, there exists a positive constant C = C(n, v), 0 < β < 1, such that

‖[b, Tσ]f‖L2 ≤ C2−βj(Aσ)v log(1/A)‖b‖BMO‖f‖L2 , if σ < 10/
√
A,

‖[b, Tσ]f‖L2 ≤ C log−(α+1)v+1(2 + 2jσ)‖b‖BMO‖f‖L2 , if σ ≥ 10/
√
A.
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Lemma 3.6. For any j ∈ Z, let Kj(x) = Ω(x)
|x|n χ{2j<|x|≤2j+1}(x). Suppose Ω ∈

L1(Sn−1) satisfying (1.1). Then for 1 < p < ∞, the vector-valued inequality∥∥∥∥
( ∑

j∈Z

||Kj | ∗ |fj ||2
)1/2∥∥∥∥

Lp

≤ Cp‖Ω‖L1

∥∥∥∥
( ∑

j∈Z

|fj |2
)1/2∥∥∥∥

Lp

holds for any {fj} in Lp(l2).

Proof. Note that for Ω ∈ L1(Sn−1) and any local integrable function f on Rn, we
have

σ∗(f)(x) := sup
j∈Z

||Kj | ∗ f(x)| ≤ CMΩf(x) for any x ∈ Rn,

where

(3.12) MΩf(x) = sup
r>0

1

rn

∫
|x−y|<r

|Ω(x− y)||f(y)| dy.

By the Lq boundedness of MΩ for all q > 1 with Ω ∈ L1(Sn−1), σ∗ is also a bounded
operator on Lq(Rn) for all q > 1 with Ω ∈ L1(Sn−1). Thus, by applying the lemma
in [17, p.544], we know that, for 1 < p < ∞, the vector-valued inequality (3.12)
holds.

Lemma 3.7. For any j ∈ Z, define the operator Tj by Tjf = Kj ∗f, where Kj(x) =
Ω(x)
|x|n χ{2j<|x|≤2j+1}(x). Denote by [b, Sl−jTjS

2
l−j ] the commutator of Sl−jTjS

2
l−j .

Suppose Ω ∈ L1(Sn−1) satisfying (1.1). Then for any fixed 0 < τ < 1/2, b ∈
BMO(Rn), 1 < p < ∞,

(3.13)

∥∥∥∥ ∑
j∈Z

[b, Sl−jTjS
2
l−j ]f

∥∥∥∥
Lp

≤ C‖b‖BMO max{2
τl

τ
, 2}‖Ω‖L1‖f‖Lp ,

where C is independent of τ and l.

Proof. For any j, l ∈ Z, we may write

[b, Sl−jTjS
2
l−j ]f = [b, Sl−j ](TjS

2
l−jf) + Sl−j [b, Tj ](S

2
l−jf) + Sl−jTj([b, S

2
l−j ]f).

Thus,

(3.14)

∥∥∥∥∑
j∈Z

[b, Sl−jTjS
2
l−j ]f

∥∥∥∥
Lp

≤
∥∥∥ ∑

j∈Z

[b, Sl−j ](TjS
2
l−jf)

∥∥∥
Lp

+
∥∥∥ ∑

j∈Z

Sl−jTj([b, S
2
l−j ]f)

∥∥∥
Lp

+
∥∥∥ ∑

j∈Z

Sl−j [b, Tj ](S
2
l−jf)

∥∥∥
Lp

:= L1 + L2 + L3.

Below we shall estimate Li for i = 1, 2, 3, respectively. For L1, by Lemma 3.3 (iii),
Lemma 3.6 and the Littlewood-Paley theory, we have

L1 ≤ C‖b‖BMO

∥∥∥(∑
j∈Z

|TjS
2
l−jf |2

)1/2∥∥∥
Lp

≤ C‖Ω‖L1‖b‖BMO

∥∥∥( ∑
j∈Z

|S2
j f |2

)1/2∥∥∥
Lp

≤ C‖Ω‖L1‖b‖BMO‖f‖Lp .

Similarly, we have L2 ≤ C‖Ω‖L1‖b‖BMO‖f‖Lp .
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Hence, by (3.14), to show (3.12) it remains to give the estimate of L3. We will
apply the Bony paraproduct to do this. By (2.2), we have

[b, Tj ]S
2
l−jf(x) = b(x)(TjS

2
l−jf)(x)− Tj(bS

2
l−jf)(x)

= [π(TjS2
l−jf)

(b)(x)− Tj(π(S2
l−jf)

(b))(x)]

+[R(b, TjS
2
l−jf)(x)− Tj(R(b, S2

l−jf))(x)]

+[πb(TjS
2
l−jf)(x)− Tj(πb(S

2
l−jf))(x)].

Thus

(3.15)

L3 ≤
∥∥∥ ∑

j∈Z
Sl−j

[
π(TjS2

l−jf)
(b)− Tj(π(S2

l−jf)
(b))

]∥∥∥
Lp

+
∥∥∥ ∑

j∈Z
Sl−j

[
R(b, TjS

2
l−jf)− Tj(R(b, S2

l−jf))
]∥∥∥

Lp

+
∥∥∥ ∑

j∈Z

Sl−j

[
πb(TjS

2
l−jf)− Tj(πb(S

2
l−jf))

]∥∥∥
Lp

:= M1 +M2 +M3.

(a) The estimate of M1. For M1, by ΔiSl−jg = 0 for g ∈ S ′(Rn) when
|i− (l − j)| ≥ 3, we get

(3.16)

π(TjS2
l−jf)

(b)(x)− Tj(π(S2
l−jf)

(b))(x)

=
∑

|i−(l−j)|≤2
{(TjΔiS

2
l−jf)(x)(Gi−3b)(x)− Tj [(ΔiS

2
l−jf)(Gi−3b)](x)}

=
∑

|i−(l−j)|≤2
[Gi−3b, Tj ](ΔiS

2
l−jf)(x).

Note that

[Gi−3b, Tj ](ΔiS
2
l−jf)(x)|

=
∣∣∣ ∫
2j≤|x−y|<2j+1

Ω(x− y)

|x− y|n (Gi−3b(x)−Gi−3b(y))ΔiS
2
l−jf(y)dy

∣∣∣
≤ C

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n |Gi−3b(x)−Gi−3b(y)||ΔiS

2
l−jf(y)|dy.(3.17)

By Lemma 3.2, we have

|[Gi−3b, Tj ]ΔiS
2
l−jf(x)|

≤ C
2iτ

τ
‖b‖BMO

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n |x− y|τ |ΔiS

2
l−jf(y)|dy

≤ C
2(i+j)τ

τ
‖b‖BMO

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n |ΔiS

2
l−jf(y)|dy

= C
2(i+j)τ

τ
‖b‖BMOT|Ω|,j(|ΔiS

2
l−jf |)(x),(3.18)

where

T|Ω|,jf(x) =

∫
2j≤|x−y|<2j+1

|Ω(x− y)|
|x− y|n f(y)dy.
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Then, by (3.16), (3.18) and applying Lemma 3.6, (2.1) and the Littlewood-Paley
theory, we have that, for any fixed 0 < τ < 1/2,
(3.19)

M1 ≤ C
2τl

τ
‖b‖BMO

∑
|k|≤2

∥∥∥( ∑
j∈Z

|T|Ω|,j(|Δl−j+kS
2
l−jf |)|2

)1/2∥∥∥
Lp

≤ C
2τl

τ
‖b‖BMO‖Ω‖L1

∑
|k|≤2

∥∥∥( ∑
j∈Z

|Δj+kS
2
j f |2

)1/2∥∥∥
Lp

≤ C
2τl

τ
‖b‖BMO‖Ω‖L1

∥∥∥( ∑
j∈Z

|Sjf |2
)1/2∥∥∥

Lp

≤ C
2τl

τ
‖b‖BMO‖Ω‖L1‖f‖Lp ,

where C is independent of l and τ.
(b) The estimate of M2. Since |k| ≤ 2, Δi+kSl−jg = 0 for g ∈ S

′
(Rn) when

|i− (l − j)| ≥ 8. Thus

R(b, TjSl−jf)− Tj(R(b, Sl−jf))(x)

=
∑
i∈Z

∑
|k|≤2

(Δib)(x)(TjΔi+kSl−jf)(x)− Tj

( ∑
i∈Z

∑
|k|≤2

(Δib)(Δi+kSl−jf)
)
(x)

=
2∑

k=−2

∑
|i−(l−j)|≤7

(
(Δib)(x)(TjΔi+kSl−jf)(x)− Tj

(
(Δib)(Δi+kSl−jf)

)
(x)

)

=

2∑
k=−2

∑
|i−(l−j)|≤7

[Δib, Tj ](Δi+kSl−jf)(x).

By the equality above and using Lemma 3.6, (2.1), (3.10) and the Littlewood-Paley
theory, we have

M2 ≤ C‖Ω‖L1 sup
i∈Z

‖Δi(b)‖L∞
∑
|k|≤7

∥∥∥( ∑
j∈Z

|Tj,|Ω|(|Δl−j+kSl−jf |)|2
)1/2∥∥∥

Lp

≤ C‖b‖BMO‖Ω‖L1

∥∥∥( ∑
j∈Z

|S2
j f |2

)1/2∥∥∥
Lp

≤ C‖b‖BMO‖Ω‖L1‖f‖Lp .(3.20)

(c) The estimate of M3. Finally, we give the estimate of M3. Note that

Sl−j

(
(Δig)(Gi−3h)

)
= 0 for g, h ∈ S

′
(Rn) if |i− (l − j)| ≥ 5. Thus we get

Sl−j

(
πb(TjSl−jf)− Tj(πb(Sl−jf))

)
= Sl−j

( ∑
i∈Z

(Δib)(Gi−3TjSl−jf)− Tj

(∑
i∈Z

(Δib)(Gi−3Sl−jf)
))

(x)

=
∑

|i−(l−j)|≤4

{
Sl−j

(
(Δib)(Gi−3TjSl−jf)

)
(x)− Sl−jTj

(
(Δib)(Gi−3Sl−jf)

)
(x)

}

=
∑

|i−(l−j)|≤4

Sl−j

(
[Δib, Tj ](Gi−3Sl−jf)

)
.

Applying Proposition 5.1.4 in [24, p. 343], it is easy to see that∥∥∥( ∑
j∈Z

|Gj+kSjfj |2
)1/2∥∥∥

Lp
≤

∥∥∥(∑
j∈Z

|fj |2
)1/2∥∥∥

Lp
for k ∈ [−10, 10].



1598 YANPING CHEN AND YONG DING

Thus, by the Littlewood-Paley theory, Lemma 3.6 and (3.10) we get
(3.21)

M3 ≤ C sup
i∈Z

‖Δi(b)‖L∞
∑
|k|≤4

∥∥∥( ∑
j∈Z

|T|Ω|,j(|Gl−j+k−3Sl−jf |)|2
)1/2∥∥∥

Lp

≤ C‖b‖BMO‖Ω‖L1

∥∥∥(∑
j∈Z

|Sjf |2
)1/2∥∥∥

Lp

≤ C‖b‖BMO‖Ω‖L1‖f‖Lp .

By (3.15), (3.19)-(3.21), we get

L3 ≤ Cmax{2, 2
τl

τ
}‖b‖BMO‖Ω‖L1‖f‖Lp for l ∈ Z.

Combining this with (3.14), we complete the proof of (3.13).

4. Proof of Theorem 1

Let φ ∈ C∞
0 (Rn) be a radial function such that 0 ≤ φ ≤ 1, suppφ ⊂ {1/2 ≤

|ξ| ≤ 2} and ∑
l∈Z

φ3(2−lξ) = 1, |ξ| �= 0.

Define the multiplier operator Sl by

Ŝlf(ξ) = φ(2−lξ)f̂(ξ).

Let Kj(x) =
Ω(x)
|x|n χ{2j<|x|≤2j+1}. Define the operator

Tjf(x) = Kj ∗ f(x) =
∫

2j<|y|≤2j+1

Ω(y)
|y|n f(x− y) dy,

and the multiplier T l
j by T̂ l

jf(ξ) = ̂TjSl−jf(ξ) = φ(2j−lξ)K̂j(ξ)f̂(ξ). With the
notation above, it is easy to see that

[b, TΩ]f(x) =
∑
l∈Z

∑
j∈Z

[b, Sl−jTjS
2
l−j ]f(x)

=
∑
l∈Z

∑
j∈Z

[b, Sl−jT
l
jSl−j ]f(x) :=

∑
l∈Z

Vlf(x),

where Vlf(x) =
∑

j∈Z

[b, Sl−jT
l
jSl−j ]f(x). Then by the Minkowski inequality, we

get

(4.1) ‖[b, TΩ]f‖Lp ≤
∥∥∥∥ ∑[log

√
2]

l=−∞
Vlf

∥∥∥∥
Lp

+

∥∥∥∥ ∑∞

l=[log
√
2]+1

Vlf

∥∥∥∥
Lp

.

Now, we will estimate the two cases respectively.

Case 1. The estimate of

∥∥∥∥ ∑[log
√
2]

l=−∞
Vlf

∥∥∥∥
Lp

.

Since Ω ∈ L1(Sn−1) satisfies (1.1) and (1.2), by a well-known Fourier transform
estimate of Duoandikoetxea and Rubio de Francia (See [17, pp. 551-552]), it is easy
to show that

|K̂j(ξ)| ≤ C‖Ω‖L1 |2jξ|.
A trivial computation gives that

‖∇K̂j‖L∞ ≤ C2j‖Ω‖L1 .
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Set mj(ξ) = K̂j(ξ), m
l
j(ξ) = mj(ξ)φ(2

j−lξ), and recall T l
j by

T̂ l
jf(ξ) = ml

j(ξ)f̂(ξ).

Straightforward computations lead to

‖ml
j(2

−j ·)‖L∞ ≤ C‖Ω‖L12l, ‖∇ml
j(2

−j ·)‖L∞ ≤ C‖Ω‖L1 ,

supp{ml
j(2

−jξ)} ⊂ {|ξ| ≤ 2l+2}.

Let T̃ l
j be the operator defined by

̂̃
T l
jf(ξ) = ml

j(2
−jξ)f̂(ξ).

Denote T l
j;b,1f = [b, T l

j ]f and T l
j;b,0f = T l

jf. Similarly, denote T̃ l
j;b,1f = [b, T̃ l

j ]f and

T̃ l
j;b,0f = T̃ l

jf. Thus via the Plancherel theorem and Lemma 3.4 we state that for

any fixed 0 < v < 1, k ∈ {0, 1},

‖T̃ l
j;b,kf‖L2 ≤ C‖b‖kBMO‖Ω‖L12vl‖f‖L2 , l ≤ [log

√
2].

Dilation-invariance says that

(4.2) ‖T l
j;b,kf‖L2 ≤ C‖b‖kBMO‖Ω‖L12vl‖f‖L2 , l ≤ [log

√
2].

First, we will give the L2 norm estimate of Vlf by using inequality (4.2). Recalling

that Vlf(x) =
∑

j∈Z

[b, Sl−jT
l
jSl−j ]f(x), for any j, l ∈ Z, we may write

[b, Sl−jT
l
jSl−j ]f = [b, Sl−j ](T

l
jSl−jf) + Sl−j [b, T

l
j ](Sl−jf) + Sl−jT

l
j([b, Sl−j ]f).

Thus,
(4.3)

‖Vlf‖L2 ≤
∥∥∥ ∑

j∈Z
[b, Sl−j ](T

l
jSl−jf)

∥∥∥
L2

+
∥∥∥ ∑

j∈Z
Sl−jT

l
j([b, Sl−j ]f)

∥∥∥
L2

+
∥∥∥ ∑

j∈Z

Sl−j [b, T
l
j ](Sl−jf)

∥∥∥
L2

:= Q1 +Q2 +Q3.

For Q1, by Lemma 3.3(iii), (4.2) for k = 0 and the Littlewood-Paley theory, we get

(4.4)

Q1 ≤ C‖b‖BMO

∥∥∥( ∑
j∈Z

|T l
jSl−jf |2

)1/2∥∥∥
L2

≤ C‖b‖BMO2
vl‖Ω‖L1

∥∥∥( ∑
j∈Z

|Sl−jf |2
)1/2∥∥∥

L2

≤ C‖b‖BMO2
vl‖Ω‖L1‖f‖L2 .

For Q2, by the Littlewood-Paley theory, (4.2) for k = 0 and Lemma 3.3(i), we get

(4.5)

Q2 ≤ C
∥∥∥( ∑

j∈Z

|T l
j([b, Sl−j ]f)|2

)1/2∥∥∥
L2

≤ C2vl‖Ω‖L1

∥∥∥( ∑
j∈Z

|[b, Sl−j ]f |2
)1/2∥∥∥

L2

≤ C‖b‖BMO2
vl‖Ω‖L1‖f‖L2 .
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Regarding Q3, by (4.2) for k = 1 and the Littlewood-Paley theory, we have

(4.6)

Q3 ≤ C
∥∥∥( ∑

j∈Z
|[b, T l

j ](Sl−jf)|2
)1/2∥∥∥

L2

≤ C2vl‖Ω‖L1

∥∥∥( ∑
j∈Z

|Sl−jf |2
)1/2∥∥∥

L2

≤ C‖b‖BMO2
vl‖Ω‖L1‖f‖L2 .

Combining (4.4) with (4.5) and (4.6), we have

(4.7) ‖Vlf‖L2 ≤ C‖b‖BMO2
vl‖Ω‖L1‖f‖L2 , l ≤ [log

√
2].

On the other hand, since T l
jf(x) = TjSl−jf(x), then

Vlf(x) =
∑
j∈Z

[b, Sl−jTjS
2
l−j ]f(x).

Applying Lemma 3.7, we get for 1 < p < ∞
(4.8) ‖Vlf‖Lp ≤ C‖b‖BMO‖Ω‖L1‖f‖Lp , l ≤ [log

√
2].

Interpolating between (4.7) and (4.8), there exists a constant 0 < β < 1, such that

(4.9) ‖Vlf‖Lp ≤ C2βvl‖Ω‖L1‖b‖BMO‖f‖Lp , l ≤ [log
√
2].

Then by the Minkowski inequality, we get for 1 < p < ∞

(4.10)

∥∥∥∥ ∑[log
√
2]

l=−∞
Vlf

∥∥∥∥
Lp

≤
∑[log

√
2]

l=−∞
‖Vlf‖Lp

≤ C
∑[log

√
2]

l=−∞
2βvl‖b‖BMO‖Ω‖L1‖f‖Lp

≤ C‖b‖BMO‖Ω‖L1‖f‖Lp .

Case 2. The estimate of

∥∥∥∥ ∑∞

l=1+[log
√
2]
Vlf

∥∥∥∥
Lp

.

Recall that Vlf(x) =
∑

j∈Z
[b, Sl−jTjS

2
l−j ]f(x). We will give the delicate L2

norm of Vlf and the Lp (1 < p < ∞) norm of Vlf respectively. It is easy to see that
if Ω ∈ Fα(S

n−1) for α > 1 satisfies (1.1) and (1.2),

|K̂j(ξ)| ≤ C log−α−1(|2jξ|+ 2), ‖∇K̂j‖L∞ ≤ C2j .

Set mj(ξ) = K̂j(ξ), m
l
j(ξ) = φ(2j−lξ)mj(ξ). Let T l

j be the operator defined by

T̂ l
jf(ξ) = ml

j(ξ)f̂(ξ). Straightforward computations lead to

‖ml
j(2

−j ·)‖L∞ ≤ C log−α−1(2 + 2l), ‖∇ml
j(2

−j ·)‖L∞ ≤ C,

supp{ml
j(2

−jξ)} ⊂ {|ξ| ≤ 2l+2}.
Let T̃ l

j be the operator defined by

̂̃
T l
jf(ξ) = ml

j(2
−jξ)f̂(ξ).

Denote T l
j;b,1f = [b, T l

j ]f and T l
j;b,0f = T l

jf. Similarly, denote T̃ l
j;b,1f = [b, T̃ l

j ]f and

T̃ l
j;b,0f = T̃ l

jf. Thus via the Plancherel theorem and Lemma 3.4 with σ = 2l we

state that for any fixed 0 < v < 1, k ∈ {0, 1},
(4.11) ‖T̃ l

j;b,kf‖L2 ≤ C‖b‖kBMOC log(−α−1)v+1(2 + 2l)‖f‖L2 , l ≥ 1 + [log
√
2].



Lp BOUNDS FOR THE COMMUTATORS OF SINGULAR INTEGRALS 1601

Dilation-invariance says that

(4.12) ‖T l
j;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2 + 2l)‖f‖L2 , l ≥ 1 + [log

√
2].

Applying (4.12), Lemma 3.3 and the Littlewood-Paley theory, similar to the proof
of (4.7), we get

(4.13) ‖Vlf‖L2 ≤ C‖b‖BMO log(−α−1)v+1(2 + 2l)‖f‖L2 , l ≥ 1 + [log
√
2].

On the other hand, by Lemma 3.7, for any fixed 0 < τ < 1/2, 1 < p < ∞,

‖Vlf‖Lp ≤ C‖b‖BMO
2τl

τ
‖Ω‖L1‖f‖Lp , l ≥ 1 + [log

√
2],

where C is independent of τ and l. Take τ = 1/l; we get

‖Vlf‖Lp ≤ Cl‖b‖BMO‖Ω‖L1‖f‖Lp , l ≥ 1 + [log
√
2],

where C is independent of l. This says that for any r satisfying 1 < r < ∞, we have

(4.14) ‖Vlf‖Lr ≤ Cl‖b‖BMO‖f‖Lr , l ≥ 1 + [log
√
2].

Now for any p ≥ 2, we take r sufficient large such that r > p. Using the Riesz-
Thorin interpolation theorem between (4.13) and (4.14), we have that for any l ≥
1 + [log

√
2],

‖Vlf‖Lp ≤ C‖b‖BMOl
1−θ log((−α−1)v+1)θ(2 + 2l)‖f‖Lp ,

where

θ =
2(r − p)

p(r − 2)
.

We can see that if r �→ ∞, then θ goes to 2/p and log((−α−1)v+1)θ(2 + 2l) goes to

log((−α−1)v+1)2/p(2 + 2l). Therefore, we get
(4.15)

‖Vlf‖Lp ≤C‖b‖BMOl
1−2/p log((−α−1)v+1) 2

p (2+2l)‖f‖Lp , l≥1+[log
√
2], p ≥ 2.

Then by the Minkowski inequality, for 2 ≤ p < α+ 1, we get

(4.16)

∥∥∥∥ ∑∞

l=1+[log
√
2]
Vlf

∥∥∥∥
Lp

≤ C‖b‖BMO

∑∞

l=1+[log
√
2]
l1−2/pl((−α−1)v+1) 2

p ‖f‖Lp

≤ C‖b‖BMO‖f‖Lp .

If 1 < p < 2, by duality, we get for p > α+1
α

(4.17)

∥∥∥∥ ∑∞

l=1+[log
√
2]
Vlf

∥∥∥∥
Lp

≤ C‖b‖BMO‖f‖Lp .

Combining (4.16) with (4.17), we get for α+1
α < p < α+ 1,∥∥∥∥ ∑∞

l=1+[log
√
2]
Vlf

∥∥∥∥
Lp

≤ C‖b‖BMO‖f‖Lp .

This completes the proof of Theorem 1.
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5. Proof of Theorem 2

Let α > 2, Kj and the operator Tj be the same as in the proof of Theorem 1.
Define

[b, T s
Ω]f(x) =

∫
|x−y|>2s

(b(x)− b(y))
Ω(x− y)

|x− y|n f(y) dy

=
∑∞

j=s

∫
2j<|x−y|≤2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n f(y) dy

=
∑∞

j=s
[b, Tj ]f(x),

where

(5.1) [b, Tj ]f(x) =

∫
2j≤|x−y|≤2j+1

(b(x)− b(y))
Ω(x− y)

|x− y|n f(y) dy.

So, we get

sup
s>0

|[b, T s
Ω]f(x)| ≤ sup

s∈Z

∣∣∣∣ ∑∞

j=s
[b, Tj ]f(x)

∣∣∣∣.
To prove Theorem 2, it suffices to estimate the Lp norm of sups∈Z

∣∣∣∣ ∑∞

j=s
[b, Tj ]f(x)

∣∣∣∣.
Take a radial Schwartz function Φ such that Φ̂(ξ) = 1 for |ξ| ≤ 1 and Φ̂(ξ) = 0 for

|ξ| > 2, and define Φs by Φ̂s(ξ) = Φ̂(2sξ). Write

∑∞

j=s
[b, Tj ]f(x) =

[
Φs ∗

(
[b, TΩ]f −

∑s−1

j=−∞
[b, Tj ]f

)
(x)

]
+

[∑∞

j=s
[b, Tj ]f(x)− Φs ∗

( ∑∞

j=s
[b, Tj ]f

)
(x)

]
:= Lsf(x) + Jsf(x).

Observed that

Φs ∗
( s−1∑

j=−∞
[b, Tj ]f

)
(x) = [b,Φs ∗

s−1∑
j=−∞

Kj ]f(x)− [b,Ws]

( s−1∑
j=−∞

Tjf

)
(x),

where Ws is a convolution operator with its convolution kernel Φs. Observe that∣∣∣∣Φs ∗
s−1∑

j=−∞
Kj(x)

∣∣∣∣ ≤ C‖Ω‖L12−ns/(1 + |2−sx|n+1)

(see [17]) and
∑s−1

j=−∞
Tjf(x) = TΩf(x)−

∑∞
j=s Tjf(x). It follows that

sup
s∈Z

|Lsf(x)| ≤ CM([b, TΩ]f)(x) + C[b,M ]f(x) + [b,M ](TΩf)(x) + [b,M ](T ∗
Ωf)(x).

Then by Theorem 1, the Lp ( α
α−1 < p < α) boundedness of TΩ, T

∗
Ω with kernel

function Ω ∈ Fα for α > 2 (see [25]) and [b,M ] (see [23]), we get for α
α−1 < p < α,

(5.2) ‖ sup
s∈Z

|Lsf |‖Lp ≤ C‖b‖BMO‖f‖Lp .
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To estimate sups∈Z
|Jsf(x)|, write

∞∑
j=s

[b, Tj ]f(x)− Φs ∗
( ∞∑

j=s

[b, Tj ]f

)
(x) =

∞∑
j=s

[b, Tj ]f(x)− [b,Φs ∗
∞∑
j=s

Kj ]f(x)

+ [b,Ws]

( ∞∑
j=s

Tjf

)
(x).

Thus we get

sup
s∈Z

|Jsf(x)| ≤ sup
s∈Z

∣∣∣ ∞∑
j=s

[b, (δ − Φs) ∗Kj ]f(x)
∣∣∣ + [b,M ](T ∗

Ωf)(x),

where δ is a Dirac mass at the origin. Since α
α−1 < p < α (see [25]),

(5.3) ‖[b,M ](T ∗
Ωf)‖Lp ≤ C‖b‖BMO‖f‖Lp .

Thus, to give the estimate of the Lp norm for the term sups∈Z
|Jsf(x)|, it suffices to

give the estimate of the Lp norm for the term sups∈Z

∣∣∣ ∑∞

j=s
[b, (δ−Φs)∗Kj ]f(x)

∣∣∣.
Note that

sup
s∈Z

∣∣∣ ∑∞

j=s
[b, (δ − Φs) ∗Kj ]f(x)

∣∣∣ ≤
∑∞

j=0
sup
s∈Z

|[b, (δ − Φs) ∗Kj+s]f(x)|.

Let Us,jf(x) = (δ − Φs) ∗Ks+j ∗ f and [b, Us,j ]f(x) = [b, (δ − Φs) ∗Ks+j ]f. Then

(5.4) sup
s∈Z

∣∣∣ ∑∞

j=s
[b, (δ − Φs) ∗Kj ]f(x)

∣∣∣ ≤
∑∞

j=0
sup
s∈Z

|[b, Us,j ]f(x)|.

It is easy to see that

sup
s∈Z

|[b, Us,j ]f(x)|

≤ C sup
s∈Z

|[b, Ts+j ]f(x)|+ C sup
s∈Z

(
Ws|[b, Ts+j ]f |+ C[b,Ws](Ts+jf)

)
(x)

≤ C sup
s∈Z

|[b, Ts+j ]f(x)|+ CM(sup
s∈Z

|[b, Ts+j ]f |)(x) + C[b,M ](MΩf)(x)

≤ C[b,MΩ]f(x) + CM([b,MΩ]f)(x) + C[b,M ](MΩf)(x).

Applying Theorem 3, the Lp (1 < p < ∞) boundedness of M , MΩ with kernel
function Ω ∈ L1(Sn−1) (see [24]) and [b,M ] (see [23]), we have for α

α−1 < p < α,

(5.5)
‖ sup

s∈Z

|[b, Us,j ]f |‖Lp ≤ C(‖[b,MΩ]f‖Lp + ‖b‖BMO‖MΩf‖Lp) ≤ C‖b‖BMO‖f‖Lp .

On the other hand, set

Bs,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ), Bl
s,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ)φ(2

s−lξ).
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Define the operator U l
s,j by Û l

s,jf(ξ) = Ûs,jf(ξ)φ(2
s−lξ), and denote by [b, U l

s,j ] the

commutator of U l
s,j . Then it is clear that

[b, Us,j ]f(x) =
∑
l∈Z

[b, U l
s,jS

2
l−s]f(x).

By the Minkowski inequality, we get

(5.6)

‖ sup
s∈Z

|[b, Us,j ]f |‖L2 ≤
∥∥∥∥
( ∑

s∈Z

|[b, Us,j ]f |2
)1/2∥∥∥∥

L2

≤
∥∥∥∥
( ∑

s∈Z
|
∑

l∈Z
[b, U l

s,jS
2
l−s]f |2

)1/2∥∥∥∥
L2

≤
∑

l∈Z

∥∥∥∥
( ∑

s∈Z
|[b, U l

s,j ]S
2
l−sf |2

)1/2∥∥∥∥
L2

+
∑

l∈Z

∥∥∥∥
( ∑

s∈Z
|U l

s,j [b, S
2
l−s]f |2

)1/2∥∥∥∥
L2

:= I1 + I2.

To complete the proof we will estimate each term separately. Denote U l
s,j;b,1f =

[b, U l
s,j ]f and U l

s,j;b,0f = U l
s,jf. Obviously, if we can prove that for any 0 < v < 1,

k ∈ {0, 1}, there exists a constant 0 < β < 1, such that

(5.7) ‖U l
s,j;b,kf‖L2 ≤ C2−βj‖b‖kBMO2

l‖f‖L2 , for l ≤ [log
√
2]

and
(5.7′)

‖U l
s,j;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2l+j + 2)‖f‖L2 , for l ≥ [log

√
2],+1,

then we may finish the estimate of I1 and I2. We first consider I1. In fact, by (5.7)
and (5.7′) for k = 1 and the Littlewood-Paley theory, we get

I1 ≤
[log

√
2]∑

l=−∞

∥∥∥∥
( ∑

s∈Z

|[b, U l
s,j ]S

2
l−sf |2

)1/2∥∥∥∥
L2

+
∞∑

l=[log
√
2]+1

∥∥∥∥
( ∑

s∈Z

|[b, U l
s,j ]S

2
l−sf |2

)1/2∥∥∥∥
L2

≤ C2−βj‖b‖BMO

( [log
√
2]∑

l=−∞
2l−1

∥∥∥∥
( ∑

s∈Z

|S2
l−sf |2

)1/2∥∥∥∥
L2

)

+ C‖b‖BMO

( ∞∑
l=[log

√
2]+1

log(−α−1)v+1(2l+j + 2)

∥∥∥∥
( ∑

s∈Z

|S2
l−sf |2

)1/2∥∥∥∥
L2

)
.

Since (l + j)2 ≥ l(j + 1), we get

(5.8) I1 ≤ C(j + 1)
(−α−1)v+1

2 ‖b‖BMO‖f‖L2 .
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We will now estimate I2. By (5.7) for k = 0, the Littlewood-Paley theory and
Lemma 3.3 (ii), we get
(5.9)

I2 ≤
∑[log

√
2]

l=−∞

∥∥∥∥
( ∑

s∈Z
|U l

s,j [b, S
2
l−s]f |2

)1/2∥∥∥∥
L2

+
∑∞

l=[log
√
2]+1

∥∥∥∥
( ∑

s∈Z

|U l
s,j [b, S

2
l−s]f |2

)1/2∥∥∥∥
L2

≤ C2−βj

( ∑[log
√
2]

l=−∞
2l−1

∥∥∥∥
( ∑

s∈Z
|[b, S2

l−s]f |2
)1/2∥∥∥∥

L2

)

+C

( ∑∞

l=[log
√
2]+1

log(−α−1)v+1(2l+j + 2)

∥∥∥∥
( ∑

s∈Z
|[b, S2

l−s]f |2
)1/2∥∥∥∥

L2

)
≤ C(j + 1)

(−α−1)v+1
2 ‖b‖BMO‖f‖L2 .

Combining I1 with I2, we get

(5.10) ‖ sup
s∈Z

|[b, Us,j ]f |‖L2 ≤ C(j + 1)
(−α−1)v+1

2 ‖b‖BMO‖f‖L2 .

Interpolating between (5.5) and (5.10), similar to the proof of (4.15), for p ≥ 2, we
get

(5.11) ‖ sup
s∈Z

|[b, Us,j ]f |‖Lp ≤ C(j + 1)
2
p

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp .

Then by (5.4), we get for 2 ≤ p < α,
(5.12)∥∥∥∥ sup

s∈Z

∣∣∣ ∑∞

j=s
[b, (δ − Φs) ∗Kj ]f(x)

∣∣∣∥∥∥∥
Lp

≤
∑∞

j=0
(j + 1)

2
p

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp

≤ C‖b‖BMO‖f‖Lp .

Similarly, for p < 2, we get

(5.13) ‖ sup
s∈Z

|[b, Us,j ]f |‖Lp ≤ C(j + 1)
2
p′

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp .

Then by (5.4), we get for α
α−1 < p < 2,

(5.14)∥∥∥∥ sup
s∈Z

∣∣∣ ∑∞

j=s
[b, (δ − Φs) ∗Kj ]f(x)

∣∣∣∥∥∥∥
Lp

≤
∑∞

j=0
(j + 1)

2
p′

(−α−1)v+1
2 ‖b‖BMO‖f‖Lp

≤ C‖b‖BMO‖f‖Lp .

This completes the proof of Theorem 2. Hence it remains to prove (5.7) and (5.7′).

To this end, define multiplier Ũ l
s,j by

̂̃
U l
s,jf(ξ) = Bl

s,j(2
−sξ)f̂(ξ), and denote by

[b, Ũ l
s,j ] the commutator of Ũ l

s,j . Define Ũ l
s,j;b,1f = [b, Ũ l

s,j ]f and Ũ l
s,j;b,0f = Ũ l

s,jf.
Recall that

Bs,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ), Bl
s,j(ξ) = (1− Φ̂s(ξ))K̂s+j(ξ)φ(2

s−lξ).

It is easy to see that

|Bs,j(ξ)| ≤ C2−j |2sξ| for |2sξ| ≤ 1,

|Bs,j(ξ)| ≤ C log−α−1(|2s+jξ|+ 2) for |2sξ| > 1,

|∇Bs,j(ξ)| ≤ C2s2j .
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Since supp(Bl
s,j(2

−sξ)) ⊂ {ξ : 2l−1 ≤ |ξ| ≤ 2l}, we have the following estimates:

|Bs,j(2
−sξ)| ≤ C2l−j for l ≤ 0,

|Bs,j(2
−sξ)| ≤ C log−α−1(2l+j + 2) for l > 0,

|∇Bl
s,j(2

−sξ)| ≤ C2j .

Applying Lemma 3.5 with σ = 2l, A = 1/2 and the Plancherel theory, there exists
a constant 0 < β < 1, such that for any fixed 0 < v < 1, k ∈ {0, 1},

‖Ũ l
s,j;b,kf‖L2 ≤ C‖b‖kBMO2

−βj2l‖f‖L2 , for l ≤ [log
√
2],

‖Ũ l
s,j;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2l+j + 2)‖f‖L2 , for l ≥ [log

√
2] + 1.

This implies that

‖U l
s,j;b,kf‖L2 ≤ C‖b‖kBMO2

−βj2l‖f‖L2 , for l ≤ [log
√
2],

‖U l
s,j;b,kf‖L2 ≤ C‖b‖kBMO log(−α−1)v+1(2l+j + 2)‖f‖L2 , for l ≥ [log

√
2] + 1,

by dilation invariance. This establishes the proof of (5.7) and (5.7′).
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