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A COCYCLE MODEL FOR TOPOLOGICAL

AND LIE GROUP COHOMOLOGY

FRIEDRICH WAGEMANN AND CHRISTOPH WOCKEL

Abstract. We propose a unified framework in which the different construc-
tions of cohomology groups for topological and Lie groups can all be treated
on an equal footing. In particular, we show that the cohomology of “locally
continuous” cochains (respectively “locally smooth” in the case of Lie groups)
fits into this framework, which provides an easily accessible cocycle model for
topological and Lie group cohomology. We illustrate the use of this unified
framework and the relation between the different models in various applica-
tions. This includes the construction of cohomology classes characterizing the
string group and a direct connection to Lie algebra cohomology.

Introduction

It is a common pattern in mathematics that things that are easy to define are
hard to compute and things that are hard to define come with lots of machinery
to compute them1. On the other hand, mathematics can be very enjoyable if these
different definitions can be shown to yield isomorphic objects. In the present article
we want to promote such a perspective towards topological group cohomology, along
with its specialization to Lie group cohomology.

It has become clear in the last decade that concretely accessible cocycle mod-
els for cohomology theories (understood in a broader sense) are as important as
abstract constructions. Examples for this are differential cohomology theories (co-
cycle models come for instance from (bundle) gerbes, an important concept in
topological and conformal field theory), elliptic cohomology (where cocycle models
are yet conjectural but have nevertheless already been quite influential) and Chas-
Sullivan’s string topology operations (which are subject to certain well behaved
representing cocycles). This article describes an easily accessible cocycle model for
the more complicated to define cohomology theories of topological and Lie groups
[Seg70,Wig73,Del74,Bry00]. The cocycle model is a seemingly obscure mixture of
(abstract) group cohomology, added in a continuity condition only around the iden-
tity. Its smooth analogue has been used in the context of Lie group cohomology and
its relation to Lie algebra cohomology [TW87,WX91,Nee02,Nee04,Nee06,Nee07],
which is where our original motivation stems from. The basic message will be that
all the above concepts of topological and Lie group cohomology coincide for finite-
dimensional Lie groups and coefficients modeled on quasi-complete locally convex
spaces. Beyond finite-dimensional Lie groups all continuous concepts still agree.
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There is a simple notion of topological group cohomology for a topological group
G and a continuous G-module A. It is the cohomology of the complex of continuous
cochains with respect to the usual group differential. This is what we call “glob-
ally continuous” group cohomology and we denote it by Hn

glob,c(G,A). It cannot

encode the topology of G appropriately, for instance H2
glob,c(G,A) only describes

abelian extensions which are topologically trivial bundles. However, in case G is
contractible it will turn out that the more elaborate cohomology groups from above
coincide with Hn

glob,c(G,A). In this sense, the deviation from the above cohomol-
ogy groups from being the globally continuous ones measures the non-triviality of
the topology of G. On the other hand, the comparison between Hn

glob,c(G,A) and
the other cohomology theories for topologically trivial coefficients A will lead to
a comparison theorem between the other cohomology theories. It is this circle of
ideas that the present article is about.

The paper is organized as follows. In the first section we review the construction
and provide the basic facts of what we call locally continuous group cohomology
Hn

loc,c(G,A) (respectively locally smooth cohomology Hn
loc,s(G,A) for G a Lie group

and A a smooth G-module). Since it will become important in the sequel we high-
light in particular that for loop contractible2 coefficients these cohomology groups
coincide with the globally continuous (respectively smooth) cohomology groups
Hn

glob,c(G,A) (respectively Hn
glob,s(G,A)). In the second section we then introduce

what we call simplicial continuous cohomology Hn
simp,c(G,A) and construct a com-

parison morphism Hn
simp,c(G,A) → Hn

loc,c(G,A). The third section explains how
simplicial cohomology may be computed in a way similar to computing sheaf co-
homology via Čech cohomology (the fact that this indeed gives Hn

simp,c(G,A) will

have to wait until the next section).
The first main point of this paper comes in Section 4, where we give the following

axiomatic characterization of what we call a cohomology theory for topological
groups.

Theorem (Comparison Theorem). Let G be a compactly generated3 topological
group and let G-Mod be the category of locally contractible G-modules. Then there
exists, up to isomorphism, exactly one sequence of functors (Hn:G-Mod→Ab)n∈N0

admitting natural long exact sequences for short exact sequences in G-Mod such
that

(1) H0(A) = AG is the invariants functor.
(2) Hn(A) = Hn

glob,c(G,A) for contractible A.

There is one other way of defining cohomology groups Hn
SM(G,A) which is due

to Segal and Mitchison [Seg70]. This construction will turn out to be the one which
is best suited for establishing the Comparison Theorem. However, we then show
that under some mild assumptions (guaranteed for instance by the metrizability
of G) all cohomology theories that we had so far (except the globally continuous)
obey these axioms. The rest of the section in then devoted to showing that almost
all other concepts of cohomology theories for topological groups also fit into this
scheme. This includes the ones considered by Flach in [Fla08], the measurable

2A is called loop-contractible if there exists a contracting homotopy ρ : [0, 1] × A → A such
that ρt : A → A is a group homomorphism for each t ∈ [0, 1].

3In this paper a topological group is compactly generated if its underlying topology is compactly
generated (see the conventions below).
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cohomology of Moore from [Moo76] and the mixture of measurable and locally
continuous cohomology of Khedekar and Rajan from [KR12]. The only exception
that we know not fitting into this scheme is the continuous bounded cohomology
(see [Mon01,Mon06]), which differs from the above concepts by design.

The second main point comes in Section 5, where we exploit the interplay be-
tween the different constructions. For instance, we construct a cohomology class
that deserves to be named string class, and we construct topological crossed mod-
ules associated to third cohomology classes. Moreover, we show how to extract the
purely topological information contained in an element in Hn

loc,c(G,A) by relating
an explicit formula for this with a structure map for the spectral sequence asso-
ciated to Hn

simp,c(G,A). Furthermore, Hn
loc,s(G,A) maps naturally to Lie algebra

cohomology and we use the previous result to identify situations where this map
becomes an isomorphism. Almost none of the consequences mentioned here could
be drawn from one model on its own, so this demonstrates the strength of the
unified framework.

In the last two sections, which are independent from the rest of the paper, we
provide some details on the constructions that we use.

Conventions

Since we will be working in the two different regimes of compactly generated
Hausdorff spaces and infinite-dimensional Lie groups we have to choose the setting
with some care.

Unless further specified, G will throughout be a group in the category kTop of k-
spaces (compactly generated Hausdorff4 spaces, i.e., a subset is closed if and only if
its intersection with each compact set is closed; cf. [Whi78,Mac98] or [Hov99]) and
A will be a (locally contractible) G-module in this category.5 This means that the
multiplication (respectively action) map is continuous with respect to the compactly
generated topology on the product. Note that the topology on the product may be
finer than the product topology, so this may not be a topological group (respectively
module) as defined below. To avoid confusion, we denote the compactly generated
product by X ×k Y (and X×n

k for the n-fold product) and the compactly generated
topology on C(X,Y ) by Ck(X,Y ) for X,Y in kTop.

IfX and Y are arbitrary topological spaces, then we refer to the product topology
by X ×p Y (and X×n

p ). By topological group (respectively topological module) we
shall mean a group (respectively module) in this category, i.e., the multiplication
(respectively action) is continuous for the product topology.

Frequently we will assume, in addition, that G is a (possibly infinite-dimensional)
Lie group and that A is a smooth G-module.6 By this we mean that G is a group
in the category Man of manifolds, modeled on locally convex vector spaces (see
[Ham82,Mil84, Nee06] or [GN13] for the precise setting) and A is a G-module in
this category. This means in particular that the multiplication (respectively action)
map is smooth for the product smooth structure. To avoid confusion we refer to
the product in Man by X ×m Y (and X×n

m).

4More generally, our results remain valid if one only considers weak Hausdorff spaces.
5From the beginning of Section 4 we will need that A is locally contractible.
6This assumption seems to be quite restrictive for either side, but it is the natural playground

on which homotopy theory and (infinite-dimensional) Lie theory interacts.
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Note that we set things up in such a way that the smooth setting is a special-
ization of the topological one, which is in turn a specialization of the compactly
generated one. This is true since smooth maps are in particular continuous and
since the product topology is coarser than the compactly generated one. Note also
that all topological properties on G (except the existence of good covers) that we
will assume are satisfied for metrizable G and all smoothness properties are satisfied
for metrizable and smoothly paracompact G. The existence of good covers (as well
as metrizability and smooth paracompactness) is in turn satisfied for large classes
of infinite-dimensional Lie groups like mapping groups or diffeomorphism groups
[KM97,SW10].

We shall sometimes have to impose topological conditions on the topological
spaces |G| and |A| underlying G and A. We will do so by leisurely adding the
corresponding adjective. For instance, a contractible G-module A is a G-module
such that |A| is contractible.

1. Locally continuous and locally smooth cohomology

One of our main objectives will be the relation of locally continuous and locally
smooth cohomology for topological or Lie groups to other concepts of topological
group cohomology. In this section, we recall the basic notions and properties of
locally continuous and locally smooth cohomology. These concepts already appear
in the work of Tuynman-Wiegerinck [TW87], of Weinstein-Xu [WX91] and have
been popularized recently by Neeb [Nee02, Nee04, Nee06, Nee07]. There has also
appeared a slight variation of this by measurable locally smooth cohomology in
[KR12].

Definition 1.1. For any pointed topological space (X, x) and abelian topological
group A we set

Cloc(X,A) := {f : X → A | f is continuous on some neighborhood of x}.
If, moreover, X is a smooth manifold and A a Lie group, then we set

C∞
loc(X,A) := {f : X → A | f is smooth on some neighborhood of x}.

With this we set Cn
loc,c(G,A) := Cloc(G

×n
k , A), where we choose the identity in

Gn as base-point. We call these functions (by some abuse of language) locally
continuous group cochains. The ordinary group differential

(dgp f)(g0, . . . , gn) = g0.f(g1, . . . , gn)

+
n∑

j=1

(−1)jf(g0, . . . , gj−1gj , . . . , gn) + (−1)n+1f(g0, . . . , gn−1)(1)

turns (Cn
loc,c(G,A), dgp) into a cochain complex. Its cohomology will be denoted

by Hn
loc,c(G,A) and be called the locally continuous group cohomology.

If G is a Lie group and A a smooth G-module, then we also consider the subcom-
plex Cn

loc,s(G,A) := C∞
loc(G

×n
m , A) and call its cohomology Hn

loc,s(G,A) the locally
smooth group cohomology.

These two concepts should not be confused with the continuous local cohomol-
ogy (respectively the smooth local cohomology) of G, which is given by the complex
of germs of continuous (respectively smooth) A-valued functions at the identity
(which is isomorphic to the Lie algebra cohomology for a finite-dimensional Lie
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group G, see Remark 5.14). It is crucial that the cocycles in the locally contin-
uous cohomology actually are extensions of locally defined cocycles and this ex-
tension is extra information they come along with. Note, for instance, that not
all locally defined homomorphisms of a topological group extend to global homo-
morphisms and that not all locally defined 2-cocycles extend to globally defined
cocycles [Smi51a,Smi51b,Est62a,Est62b].

Remark 1.2 (cf. [Nee04, App. E]). Let

(2) A
α−→ B

β−→ C

be a short exact sequence of G-modules in kTop, i.e., the underlying sequence of
abstract abelian groups is exact and β (or equivalently α) has a continuous local
section. The latter is equivalent to demanding that (2) is a locally trivial principal
A-bundle. Then composition with α and β induces a sequence

(3) Cn
loc,c(G,A)

α∗−−→ Cn
loc,c(G,B)

β∗−→ Cn
loc,c(G,C),

which we claim to be a short exact sequence of chain complexes. Injectivity of
α∗ and im(α∗) ⊆ ker(β∗) is clear. Since a local trivialization of the bundle in-
duces a continuous left inverse to α on some neighborhood of ker(β), we also
have ker(β∗) ⊆ im(α∗). To see that β∗ is surjective, we choose a local continu-
ous section σ : U → B which we extend to a global (but not necessarily continuous)
section σ : C → B. Thus if f ∈ Cn

loc,c(G,C), then σ ◦ f ∈ Cn
loc,c(G,B) with

β∗(σ ◦ f) = β ◦σ ◦ f = f and β∗ is surjective. Since (3) is exact, it induces a long
exact sequence

(4) · · · → Hn−1
loc,c(G,C) → Hn

loc,c(G,A) → Hn
loc,c(G,B)

→ Hn
loc,c(G,C) → Hn+1

loc,c(G,A) → · · ·
in the locally continuous cohomology.

If, in addition, G is a Lie group and (2) is a short exact sequence of smooth G-
modules, i.e., a smooth locally trivial principal A-bundle, then the same argument
shows that α∗ and β∗ induce a long exact sequence

· · · → Hn−1
loc,s(G,C) → Hn

loc,s(G,A) → Hn
loc,s(G,B)

→ Hn
loc,s(G,C) → Hn+1

loc,s(G,A) → · · ·
in the locally smooth cohomology.

Remark 1.3. The low-dimensional cohomology groups H0
loc,c(G,A), H1

loc,c(G,A)

and H2
loc,c(G,A) have the usual interpretations. H0

loc,c(G,A) = AG are the G-

invariants of A, H1
loc,c(G,A) (respectively H1

loc,s(G,A)) is the group of equivalence

classes of continuous (respectively smooth) crossed homomorphisms modulo prin-
cipal crossed homomorphisms. If G is connected,7 then H2

loc,c(G,A) (respectively

H2
loc,s(G,A)) is isomorphic to the group of equivalence classes of abelian extensions

(5) A → Ĝ → G

7The requirement on G being connected is a posteriori redundant, since the isomorphism also
follows from the comparison result in Section 4 and [Seg70, §4]. However, the argument given
in [Nee04, Sect. 2] requires connectedness. It would be interesting to have an argument similar
to the one from [Nee04, Sect. 2] (i.e., using only locally continuous group cocycles) also in the
non-connected case (see also the concept of a strongly smooth outer action in [Nee07, Sect. 1.2]).
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which are continuous (respectively smooth) locally trivial principal A-bundles over
G [Nee04, Sect. 2].

Remark 1.4. The cohomology groups Hn
loc,c(G,A) and Hn

loc,s(G,A) are variations

of the globally continuous cohomology groups Hn
glob,c(G,A) and globally smooth

cohomology groups Hn
glob,s(G,A), which are the cohomology groups of the chain

complexes

Cn
glob,c(G,A) := C(G×n

k , A) and Cn
glob,s(G,A) := C∞(G×n

m , A),

endowed with the differential (1). We obviously have

H0
loc,c(G,A) = H0

glob,c(G,A) and H0
loc,s(G,A) = H0

glob,s(G,A).

Since crossed homomorphisms are continuous (respectively smooth) if and only if
they are so on some identity neighborhood (see for example [Nee04, Lemma III.1]),
we also have

H1
loc,c(G,A) = H1

glob,c(G,A) and H1
loc,s(G,A) = H1

glob,s(G,A).

Moreover, the argument from Remark 1.2 also shows that we have a long exact
sequence

· · · → Hn−1
glob,c(G,C) → Hn

glob,c(G,A) → Hn
glob,c(G,B)

→ Hn
glob,c(G,C) → Hn+1

glob,c(G,A) → · · ·

if the exact sequence A
α−→ B

β−→ C has a global continuous section (and respectively

for the globally smooth cohomology if A
α−→ B

β−→ C has a global smooth section).
Now assume that A is contractible (respectively smoothly contractible) and that

G is connected and paracompact (respectively smoothly paracompact). In this
case, the bundle (5) has a global continuous (respectively smooth) section and thus
the extension (5) has a representative in H2

glob,c(G,A) (respectively H2
glob,s(G,A));

cf. [Nee04, Prop. 6.2]. Moreover, the argument in [Nee04, Prop. 6.2] also shows
that two extensions of the form (5) are in this case equivalent if and only if the
representing globally continuous (respectively smooth) cocycles differ by a globally
continuous (respectively smooth) coboundary, and thus the canonical homomor-
phisms

H2
glob,c(G,A) → H2

loc,c(G,A) and H2
glob,s(G,A) → H2

loc,s(G,A)

are isomorphisms in this case.

It will be crucial in the following that the latter observation also holds for a
large class of contractible coefficients in arbitrary dimension (and in the topological
case also for not necessarily paracompact G). For this, recall that A is called loop-
contractible if there exists a contracting homotopy ρ : [0, 1] × A → A such that
ρt : A → A is a group homomorphism for each t ∈ [0, 1]. If A is a Lie group, then it
is called smoothly loop-contractible if ρ is, in addition, smooth. In particular, vector
spaces are smoothly loop-contractible, but in the topological case there exist more
elaborate and important examples (see Section 4).

Proposition 1.5. If A is loop-contractible, and the product topology on all Gn is
compactly generated, then the inclusion Cn

glob,c(G,A) ↪→ Cn
loc,c(G,A) induces an

isomorphism Hn
glob,c(G,A) ∼= Hn

loc,c(G,A).



COCYCLE MODEL FOR TOPOLOGICAL & LIE GROUP COHOMOLOGY 1877

If G is a Lie group such that all G×n
m are smoothly paracompact and A is a

smooth G-module which is smoothly loop-contractible, then Cn
glob,s(G,A) ↪→

Cn
loc,s(G,A) induces an isomorphism Hn

glob,s(G,A) ∼= Hn
loc,s(G,A).

Proof. This is [FW11, Prop. III.6, Prop. IV.6]. �

In the case of discrete A we note that there is no difference between the locally
continuous and locally smooth cohomology groups. This is immediate since con-
tinuous and smooth maps into discrete spaces are both the same thing as constant
maps on connected components.

Lemma 1.6. If G is a Lie group and A is a discrete G-module, then the inclusion
Cn

loc,s(G,A) ↪→ Cn
loc,c(G,A) induces an isomorphism in cohomology Hn

loc,s(G,A) →
Hn

loc,c(G,A).

In the finite-dimensional case, we also note that there is no difference between
the locally continuous and locally smooth cohomology groups.

Proposition 1.7. Let G be a finite-dimensional Lie group, a be a quasi-complete
locally convex space8 on which G acts smoothly, Γ ⊆ a be a discrete submodule
and set A = a/Γ. Then the inclusion Cn

loc,s(G,A) ↪→ Cn
loc,c(G,A) induces an

isomorphism Hn
loc,s(G,A) ∼= Hn

loc,c(G,A).

Proof (cf. [FW11, Cor. V.3]). If Γ = {0}, then this is implied by Proposition 1.5
and [HM62, Thm. 5.1]. The general case then follows from the previous lemma,
the short exact sequence for the coefficient sequence Γ → a → A and the Five
Lemma. �

Remark 1.8. For a topological group G and a topological G-module A there also
exists a variation of the locally continuous group cohomology, which are the co-
homology groups of the cochain complex (Cloc,c(G

×n
p , A), dgp) (note the difference

in the topology that we put on Gn). We denote this by Hn
loc,top(G,A). The same

argument as above yields long exact sequences from short exact sequences of topo-
logical G-modules that are locally trivial principal bundles. Moreover, they coincide
with the corresponding globally continuous cohomology groups Hn

glob,top(G,A) of

(C(G×n
p , A), dgp) if A is loop contractible [FW11, Cor. II.8]. We will very seldom

use these cohomology groups.

2. Simplicial group cohomology

The cohomology groups that we introduce in this section date back to [Wig73,
Sect. 3] and have also been worked with for instance in [Del74,Fri82,Bry00,Con03].
Since the simplicial cohomology groups are defined in terms of sheaves on simplicial
spaces, we first recall some facts about it. The material is largely taken from
[Del74,Fri82] and [Con03].

Definition 2.1. Let X• : Δ
op → Top be a simplicial space, i.e., a collection of

topological spaces (Xk)k∈N0
, together with continuous face maps dik : Xk → Xk−1

8A locally convex space is said to be quasi-complete if each bounded Cauchy net converges.
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for i = 0, . . . , k and continuous degeneracy maps sik : Xk → Xk+1 for i = 0, . . . , k
satisfying the simplicial identities⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dik ◦ d
j
k+1 = dj−1

k ◦ dik+1 if i < j,

dik+1 ◦ s
j
k = sj−1

k−1 ◦ dik if i < j,

dik+1 ◦ s
j
k = idXk

if i = j or i = j + 1,

dik+1 ◦ s
j
k = sjk−1 ◦ d

i−1
k if i > j + 1,

sik+1 ◦ s
j
k = sj+1

k+1 ◦ sik if i ≤ j

(cf. [GJ99]). Then a sheaf E• on X• consists of sheaves Ek of abelian groups on

each space Xk and a collection of morphisms Dk
i : d

i
k
∗
Ek−1 → Ek (for k ≥ 1) and

Sk
i : s

i
k
∗
Ek+1 → Ek, obeying the simplicial identities⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dk
j ◦ d

j
k

∗
Dk+1

i =Dk
i ◦ dik

∗
Dk+1

j−1 if i < j,

Sk+1
j ◦ sjk+1

∗
Dk

i =Di
k+1 ◦ dik+1

∗
Sk+2
j−1 if i < j,

Sk+1
j ◦ sjk+1

∗
Dk

i = idEk if i = j or i = j + 1,

Sk+1
j ◦ sjk+1

∗
Dk

i =Di−1
k+1 ◦ d

i−1
k+1

∗
Sj
k if i > j + 1,

Sk+1
j ◦ sjk

∗
Sk
i =Sk+1

i ◦ sik+1
∗
Sk
j+1 if i ≤ j.

A morphism of sheaves u : E• → F • consists of morphisms uk : Ek → F k compati-
ble with Dk

i and Sk
i (cf. [Del74, 5.1]).

Note that E• is not what one usually would call a simplicial sheaf since the
latter usually refers to a sheaf (on some arbitrary site) with values in simplicial sets
or, equivalently, to a simplicial object in the category of sheaves (again, on some
arbitrary site). However, one can interpret sheaves on X• as sheaves on a certain
site [Del74, 5.1.8], [Con03, Def. 6.1].

Remark 2.2. Sheaves on X• and their morphisms constitute a category Sh(X•).
Since morphisms in Sh(X•) consist of morphisms of sheaves on each Xk, Sh(X•)
has naturally the structure of an abelian category (sums of morphisms, kernels and
cokernels are simply taken space-wise). Moreover, Sh(X•) has enough injectives,
since simplicial sheaves on sites do so [Mil80, Prop. II.1.1, 2nd proof], [Con03, p. 36].

Definition 2.3 ([Del74, 5.1.13.1]). The section functor is the functor

Γ: Sh(X•) → Ab, F • 	→ ker(D1
0 −D1

1),

where D1
i denotes the homomorphism of the groups of global sections Γ(E0) →

Γ(E1), induced from the morphisms of sheaves D1
i : d

i
1
∗
E0 → E1.

Lemma 2.4. The functor Γ is left exact.

Definition 2.5 ([Del74, 5.2.2]). The cohomology groups Hn(X•, E
•) are the right

derived functors of the section functor Γ.

Since injective (or acyclic) resolutions in Sh(X•) are not easily dealt with (cf.
[Con03, p. 36] or the explicit construction in [Fri82, Prop. 2.2]), the groups
Hn(X•, E

•) are notoriously hard to access. However, the following proposition
provides an important link to cohomology groups of the sheaves on each single
space of X•.
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Proposition 2.6 ([Del74, 5.2.3.2], [Fri82, Prop. 2.4]). If E• is a sheaf on X•, then
there is a first quadrant spectral sequence with

(6) Ep,q
1 = Hq

Sh(Xp, E
p) ⇒ Hp+q(X•, E

•).

Remark 2.7. We will need the crucial step from the proof of this proposition, so
we repeat it here. It is the fact that the spectral sequence arises from a double
complex

F •
2

...

Γ(F 0
2 )

d0
2 ��

...

Γ(F 1
2 )

d1
2 ��

...

Γ(F 2
2 ) · · ·

...

F •
1 Γ(F 0

1 )

��

d0
1 �� Γ(F 1

1 )

��

d1
1 �� Γ(F 2

1 ) · · ·

��

F •
0 Γ(F 0

0 )

��

d0
0 �� Γ(F 1

0 )

��

d1
0 �� Γ(F 2

0 )

��

· · ·

X0 X1 X2 · · ·

��

��

��
��
��

��
��

��

��

where each F •
q is a sheaf on X•, Eq → F q

• is an injective resolution in Sh(Xq)
[Con03, Lemma 6.4] and dpq is the alternating sum of morphisms induced from the

Dp
i , respectively for each sheaf F •

q . Now taking the vertical differential first gives
the above form of the E1-term of the spectral sequence.

Corollary 2.8. If E• is a sheaf on X• such that each Ek is acyclic on Xk, then
Hn(X•, E

•) is the cohomology of the Moore complex of the cosimplicial group of
sections of E•. More precisely, it is the cohomology of the complex (Γ(Xk, E

k), d)
with differential given by

dkγ =

k∑
i=0

(−1)iDk
i d

i
k

∗
(γ) for γ ∈ Γ(Xk, E

k).

Proof. The E1-term of the spectral sequence from the previous proposition is con-
centrated in the first column due to the acyclicity of Ek and yields the described
cochain complex. �
Remark 2.9. The simplicial space that we will work with is the classifying space9

BG• associated to G. It is given by setting BGn := G×n
k for n ≥ 1 and BG0 =

pt, and the standard simplicial maps are given by multiplying adjacent elements
(respectively dropping the outermost off) and inserting identities.

On BG• we consider the sheaf A
•
glob,c, given on BGn = Gn as the sheaf of contin-

uous A-valued functions Ac
Gn . We turn this into a sheaf on BG• by introducing the

following morphisms Dn
i and Sn

i . The structure maps on BG• are in this case given
by inclusions and projections. Indeed, the face maps factor through projections

Gn

di
n

��

∼= �� Gn−1×k G
pr

�� Gn−1 .

9The geometric realization of BG• yields a model for the (topological) classifying space of G
[Seg68], whence the name.
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Thus din
∗
Ac

Gn−1(U) = C(din(U), A) and we may set

(Dn
i f)(g0, . . . , gn) =

{
f(din(g0, . . . , gn)) if i > 0,

g0.f(g1, . . . , gn) if i = 0.

Similarly,

sin
∗
Ac

Gn+1(U) = lim−−→
V

C(V,A),

where V ranges through all open neighborhoods of sin(U), has a natural homomor-
phism Sn

i to Ac
Gn(U) = C(U,A), given by precomposition with sin.

If, in addition, G is a Lie group, then we also consider the slightly different
simplicial space BG∞

• with BG∞
n = G×n

m and the same maps. If A is a smooth
G-module, we obtain in the same way the sheaf A•

glob,s on BG∞
• by considering on

each BG∞
n the sheaf As

Gn of smooth A-valued functions (in order to make sense
out of the latter we have to consider BG∞

• instead of BG•).

Definition 2.10. The continuous simplicial group cohomology of G with coeffi-
cients in A is defined to be Hn

simp,c(G,A) := Hn(BG•, A
•
glob,c). If G is a Lie group

and A a smooth G-module, then the smooth simplicial group cohomology of G with
coefficients in A is defined to be Hn

simp,s(G,A) := Hn(BG∞
• , A•

glob,s).

Lemma 2.11. If A
α−→ B

β−→ C is a short exact sequence of G-modules in kTop,
then composition with α and β induces a long exact sequence

· · · → Hn−1
simp,c(G,C) → Hn

simp,c(G,A) → Hn
simp,c(G,B)

→ Hn
simp,c(G,C) → Hn+1

simp,c(G,A) → · · · .

If, moreover, G is a Lie group and A
α−→ B

β−→ C is a short exact sequence of smooth
G-modules, then α and β induce a long exact sequence

· · · → Hn−1
simp,s(G,C) → Hn

simp,s(G,A) → Hn
simp,s(G,B)

→ Hn
simp,s(G,C) → Hn+1

simp,s(G,A) → · · · .

Proof. Since kernels and cokernels of a sheaf E• are simply the kernels and cokernels
of Ek, this follows from the exactness of the sequences of sheaves of continuous
functions Ac → Bc → Cc (and similarly for the smooth case). �

Proposition 2.12. If G×n
k is paracompact for each n ≥ 1 and A is contractible,

then

Hn
simp,c(G,A) ∼= Hn

glob,c(G,A).

If, moreover, G is a Lie group, A is a smoothly contractible10 smooth G-module and
if G×n

m is smoothly paracompact for each n ≥ 1, then

Hn
simp,s(G,A) ∼= Hn

glob,s(G,A).

Proof. In the case of contractible A the sheaves A are soft and thus acyclic on
paracompact spaces [Bre97, Thm. II.9.11]. The first claim thus follows from Corol-
lary 2.8. In the smooth case, the requirements are necessary to have the softness
of the sheaf of smooth A-valued functions on each Gk as well, since we then can

10By this we mean that there exists a contraction of A which is smooth as a map
[0, 1]×m A → A.
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extend sections from closed subsets (cf. (7)) by making use of smooth partitions of
unity. �

Remark 2.13. The requirement on G×n
k to be paracompact for each n ≥ 1 is for

instance fulfilled if G is metrizable, since then G×n
k = G×n

p is so and metrizable
spaces are paracompact. If G is, in addition, a smoothly paracompact Lie group,
then [KM97, Cor. 16.17] shows that G×n

m is also smoothly paracompact.
However, metrizable topological groups are not the most general compactly gen-

erated topological groups that can be of interest. Any G that is a CW-complex has
the property that G×n

k is a CW-complex and thus is in particular paracompact.

We now introduce a second important sheaf on BG•.

Remark 2.14. For an arbitrary pointed topological space (X, x) and an abelian

topological group A, we denote by Aloc,c
X the sheaf

U 	→
{
Cloc(U,A) if x ∈ U,

Map(U,A) if x /∈ U

and call it the locally continuous sheaf on X. If X is a manifold and A an abelian
Lie group, then we similarly set

Aloc,s
X (U) =

{
C∞

loc(U,A) if x ∈ U,

Map(U,A) if x /∈ U.

Obviously, these sheaves have the sheaves of continuous functions A and of smooth
functions As as subsheaves.

As in Remark 2.9, the sheaves Aloc,c
Gk assemble into a sheaf A•

loc,c on BG•. Like-

wise, if G is a Lie group and A is smooth, the sheaves Aloc,s
Gk assemble into a sheaf

A•
loc,s on BG∞

• .

We learned the importance of the following fact from [SP09].

Proposition 2.15. If X is regular, then Aloc,c
X and Aloc,s

X are soft sheaves. In
particular, both these sheaves are acyclic if X is paracompact.

Proof. In order to show that Aloc,c
X is soft we have to show that sections extend

from closed subsets. Let C ⊆ X be closed and

(7) [f ] ∈ Aloc,c
X (C) = lim−−→

U

Aloc,c
X (U)

be a section over C, where the limit runs over all open neighborhoods of C (cf.
[Bre97, Th. II.9.5]). Thus [f ] is represented by some f : U → A for U an open
neighborhood of C. The argument now distinguishes the relative position of the

base-point x which enters the definition of Aloc,c
X with respect to U .

If x ∈ U , then we may extend f arbitrarily to obtain a section on X which
restricts to [f ]. If x /∈ U , then we choose V ⊆ X open with C ⊆ V and x /∈ V

and define f̃ to coincide with f on U ∩ V and to vanish elsewhere. This defines a

section on X restricting to [f ]. This argument works for Aloc,s
X as well. Since soft

sheaves on paracompact spaces are acyclic [Bre97, Thm. II.9.11], this finishes the
proof. �
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Together with Corollary 2.8, this now implies

Corollary 2.16. If G×n
k is paracompact for all n ≥ 1, then

(8) Hn(BG•, A
•
loc,c)

∼= Hn
loc,c(G,A).

If G is a Lie group and G×n
p is paracompact for all n ≥ 1, then

Hn(BG•, A
•
loc,s)

∼= Hn
loc,s(G,A).

Note that the second of the previous assertions does not require each G×n
m to be

smoothly paracompact, plain paracompactness of the underlying topological space
suffices.

Remark 2.17. From the isomorphisms (8) we also obtain natural morphisms

Hn
simp,c(G,A) → Hn

loc,c(G,A) and Hn
simp,s(G,A) → Hn

loc,s(G,A),

induced from the morphisms of sheaves A•
glob,c → A•

loc,c and A•
glob,s → A•

loc,s on
BG• and BG∞

• .

3. Čech cohomology

In this section, we will explain how to compute the cohomology groups introduced
in the previous section in terms of Čech cocycles. This will also serve as a first
touching point to the locally continuous (respectively smooth) cohomology from
the first section in degree 2. The proof that all these cohomology theories are
isomorphic in all degrees (under some technical conditions) will have to wait until
Section 4.

Definition 3.1. Let X• be a semi-simplicial space, i.e., a collection of topological
spaces (Xk)k∈N0

, together with continuous face maps dik : Xk → Xk−1 for i =

0, . . . , k such that dik−1 ◦ d
j
k = dj−1

k−1 ◦ dik if i < j. Then a semi-simplicial cover
(or simply a cover) of X• is a semi-simplicial space U•, together with a morphism
f• : U• → X• of semi-simplicial spaces such that

Uk =
∐
j∈Jk

U j
k

for (U j
k)j∈Jk

an open cover of Xk and fk|Uj
k
is the inclusion U j

k ↪→ Xk. The cover

is called good if each (U j
k)j∈Jk

is a good cover, i.e., all intersections U j0
k ∩ . . . ∩ U jl

k

are contractible.

Remark 3.2. It is easy to construct semi-simplicial covers from covers of the Xk.
In particular, we can construct good covers in the case that each Xk admits good
covers, i.e., each cover has a refinement which is a good cover. Indeed, given an
arbitrary cover (U i)i∈I of X0, denote I by J0 and the cover by (U j

0 )j∈J0
. We then

obtain a cover of X1 by pulling the cover (U j
0 )j∈J0

back along d01, d
1
1, d

2
1 and take a

common refinement (U j
1 )j∈J1

of the three covers. By definition, J1 comes equipped

with maps ε1,2,31 : J1 → J0 such that di1(U
j
1 ) ⊆ U

εi1(j)
0 . We may thus define the face

maps of

U1 :=
∐
j∈J1

U j
1
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to coincide with di1. In this way we then proceed to arbitrary k. In the case that
eachXk admits good covers, we may refine the cover on eachXk before constructing
the cover on Xk+1 and thus obtain a good cover of X•.

The previous construction can be made more canonical in the case that X• =
BG• for a compact Lie group G. In this case, there exists a bi-invariant metric on
G, and we set

r0 := sup{r > 0 | Ue,r is geodesically convex},
where Ug,r denotes the open ball around g ∈ G of radius r > 0. Then (Ug,r0)g∈G is

a good open cover of G. Now the triangle inequality shows that Ug1,r0/2 ·Ug2,r0/2 =
Ug1g2,r0 , which is obviously true for g1 = g2 = e and thus for arbitrary g1 and g2
by the bi-invariance of the metric. Thus (Ug1,r0/2×Ug2,r0/2)(g1,g2)∈G2 gives a cover

of G2 compatible with the face maps di1 : G
2 → G. Likewise,

(Ug1,r0/2
k × . . .× Ugk,r0/2

k

)(g1,...,gk)∈Gk

gives a cover of Gk compatible with the face maps dik : G
k → Gk−1. Since each

cover of Gk consists of geodesically convex open balls in the product metric, this
consequently comprises a canonical good open cover of BG•.

Definition 3.3. Let U• be a cover of the semi-simplicial space X• and E• be a
sheaf on X•.

11 Then the Čech complex associated to U• and E• is the double
complex

Čp,q(U•, E
•) :=

∏
i0,...,iq∈Ip

Ep(Ui0,...,iq ),

where we set, as usual, Ui0,...,iq := Ui0 ∩ . . . ∩ Uiq . The two differentials

dh :=

p∑
i=0

(−1)i+qDp
i ◦ dip

∗
: Čp,q(U•, E

•) → Čp+1,q(U•, E
•)

and

dv := δ̌ : Čp,q(U•, E
•) → Čp,q+1(U•, E

•)

turn Čp,q(U•, E
•) into a double complex. We denote by Ȟn(U•, E

•) the cohomology
of the associated total complex and call it the Čech cohomology of E• with respect
to U•.

Proposition 3.4. Suppose G×n
k is paracompact for each n ≥ 1 and that U• is a

good cover of BG•.
12 If A

α−→ B
β−→ C is a short exact sequence of G-modules in

kTop, then composition with α and β induces a long exact sequence

· · · → Ȟn−1(U•, C
•
glob,c) → Ȟn(U•, A

•
glob,c) → Ȟn(U•, B

•
glob,c)

→ Ȟn(U•, C
•
glob,c) → Ȟn+1(U•, A

•
glob,c) → · · · .

Moreover, for each sheaf E• on BG• there is a first quadrant spectral sequence with

Ep,q
1

∼= Ȟq(|G|×
p
k , Ep) ⇒ Ȟp+q(U•, E

•).

In particular, if A is contractible, then

Ȟn(U•, A
•
glob,c)

∼= Hn
glob,c(G,A).

11Sheaves on semi-simplicial spaces are defined likewise by omitting the degeneracy morphisms.
12We may also interpret BG• as a semi-simplicial space by forgetting the degeneracy maps.
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Proof. Each short exact sequence A → B → C induces a short exact sequence of
the associated double complexes and thus a long exact sequence between the coho-
mologies of the total complexes. The columns of the double complex Čp,q(U•, E

•)
are just the Čech complexes of the sheaf Ep on Gp for the open cover Up. Since the
latter is good by assumption, the cohomology of the columns is isomorphic to the
Čech cohomology of Gp with coefficients in the sheaf A.

If A is contractible, then the sheaf A is soft on each G×n
k and thus acyclic.

Hence the E1-term of the spectral sequence is concentrated in the first column.
Since E0,q

1 = C(Gq, A) and the horizontal differential is just the standard group
differential, this shows the claim. �

Remark 3.5. For a connected topological group G and a topological G-module A we
will now explain how to construct an isomorphism H2

loc,top(G,A) ∼= Ȟ2(U•, A
•
glob,c)

in quite explicit terms (where U• now is a good cover of the semi-simplicial space

(G×n
p)n∈N0

). To a cocycle f ∈ Cloc,c(G×pG,A) with dgp f = 0 we associate
the group A ×f G with underlying set A × G and multiplication (a, g) · (b, h) =
(a+ g.b+ f(g, h), gh). Assuming that U ⊆ G is such that f |U×U is continuous and

V ⊆ U is an open identity neighborhood with V = V −1 and V 2 ⊆ U , there exists
a unique topology on A×f G such that A×V ↪→ A×f G is an open embedding. In
particular, pr2 : A×f G → G is a continuous homomorphism and x 	→ (0, x) defines
a continuous section thereof on V . Consequently, A ×f G → G is a continuous
principal A-bundle.

The topological type of this principal bundle is classified by a Čech cocycle τ (f),
which can be obtained from the system of continuous sections

σg : gV → A×f G, x 	→ (0, g) · σ(g−1x) = (f(g, g−1x), x),

the associated trivializations A × gV � (a, x) 	→ σg(x) · (a, e) = (f(g, g−1x) +

x.a, x) ∈ pr−1
2 (gV ) and is thus given on the cover (gV )g∈G by

τ (f)g1,g2 : g1V ∩ g2V → A, x 	→ f(g2, g
−1
2 x)− f(g1, g

−1
1 x)

= g1.f(g
−1
1 g2, g

−1
2 x)− f(g1, g

−1
1 g2).

The multiplication μ : (A×f G)× (A×f G) → A×f G may be expressed in terms of
these local trivializations (although it might not be a bundle map in the case of non-
trivial coefficients). For this, we pull back the cover (gV )g∈G via the multiplication
to G×G and take a common refinement of this with the cover (gV ×hV )(g,h)∈G×G,
over which the bundle (A×fG)×(A×fG) → G×G trivializes. A direct verification
shows that (Vg,h)(g,h)∈g×G with

Vg,h := {(x, y) ∈ G×G : x ∈ gV, y ∈ hV, xy ∈ ghV }
and the obvious maps does the job. Expressing μ in terms of these local trivializa-
tions, we obtain the representation

((a, x), (b, y)) 	→
(
(xy)−1.

[
f(g, g−1x) + a.x+ x.f(h, h−1y) + xy.b+ f(x, y)

− f(gh, (gh)−1xy)
]
, xy

)
for (x, y) ∈ V(g,h). Since this is a continuous map A2 × V(g,h) → A× Vgh and since
G acts continuously on A it follows that

μ(f)g,h : Vg,h → A, (x, y) 	→ f(g, g−1x)+x.f(h, h−1y)+f(x, y)−f(gh, (gh)−1xy)
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is indeed a continuous map. A straightforward computation with the definitions
of dv, dh from Definition 3.3 and the definitions of Dk

i from Remark 2.9 shows
that dh(τ (f)) = dv(μ(f)) in this case. Moreover, the cocycle identity for f shows
that dh(μ(f)) = 0. Thus (μ(f), τ (v)) comprise a cocycle in the total complex
of Čp,q(U•, E

•) if we extend (gV )g∈G and (Vg,h)(g,h∈G×G) to a cover of BG• as
described in Remark 3.2.

The reverse direction is more elementary. One associates to a cocycle (Φ, τ )
in the total complex of Čp,q(U•, E

•) a principal bundle A → Pτ → G clutched
from the Čech cocycle τ . Then Φ defines a map Pτ × Pτ → Pτ (not necessarily a
bundle map, if G acts non-trivially on A) whose continuity and associativity may
be checked directly in local coordinates. Thus Pτ → G is an abelian extension
given by an element in H2

loc,c(G,A). By making the appropriate choices, one sees
that these constructions are inverse to each other on the nose.

4. The Comparison Theorem via soft modules

We now describe a method for deciding whether certain cohomology theories are
isomorphic. The usual, and frequently used technique for this is to invoke Buchs-
baum’s criterion [Buc55], which also runs under the name universal δ-functor or
“satellites” [CE56,Gro57,Wei94]. The point of this section is that a more natural
requirement on the various cohomology groups, which can often be checked right
away for different definitions, implies this criterion. The reader who is unfamil-
iar with these techniques might wish to consult the independent Section 6 before
continuing.

In order to make the comparison accessible, we have to introduce yet another
definition of cohomology groups Hn

SM(G,A) for a G-module A in kTop due to Segal
and Mitchison [Seg70]. We give some detail on this in Section 7; for the moment it
is only important to recall that A 	→ Hn

SM(G,A) is a δ-functor for exact sequences
of locally contractible G-modules that are principal bundles [Seg70, Prop. 2.3] and
that for contractible A, one has natural isomorphisms Hn

SM(G,A) ∼= Hn
glob,c(G,A)

[Seg70, Prop. 3.1].

Remark 4.1. In what follows, we will consider a special kind of classifying space
functor, introduced by Segal in [Seg68]. The classifying space BG and the universal
bundle EG are constructed by taking BG = |BG•| (where | · | denotes the thin
(or ordinary) geometric realization), and EG = |EG•|, where EG• denotes the
simplicial space obtained from the nerve of the pair groupoid of G. The resulting
EG is contractible. The nice thing about this construction of BG is that it is
functorial and that the natural map E(G×kG) → EG×k EG is a homeomorphism.
In particular, EG and BG are again abelian groups in kTop provided that G is so.

Definition 4.2 (cf. [Seg70]). On Ck(G,A), we consider the G-action (g.f)(x) :=
g.(f(g−1 · x)),13 which obviously turns Ck(G,A) into a G-module in kTop. If A
is contractible, then we call the module Ck(G,A) a soft module. Moreover, for
arbitrary A we set EG(A) := Ck(G,EA)14 and BG(A) := EG(A)/iA(A), where
iA : A ↪→ Ck(G,EA) is the closed embedding A ↪→ EA, composed with the closed
embedding EA ↪→ Ck(G,EA) of constant functions.

13This is the action one wants to consider, as one sees in [Seg70, Prop. 3.1] Some calculations
in [Seg70, Ex. 2.4] seem to use the action (g.f)(x) = f(g−1 · x), we clarify this in Section 7.

14Note that EA is still Hausdorff if A is so, cf. [SP10].
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Lemma 4.3. The sequence A → EG(A) → BG(A) has a local continuous section.
If A is contractible, then it has a global continuous section.

Proof. The first claim is contained in [Seg70, Prop. 2.1], the second follows from
[Seg70, App. (B)]. �

Proposition 4.4. Soft modules are acyclic for the globally continuous group coho-
mology, i.e., Hn

glob,c(G,Ck(G,A)) vanishes for contractible A and n ≥ 1.

Proof. This is already implicitly contained in [Seg70, Prop. 2.2]. See also [SP09,
Prop. 17] and Section 7. �

The following theorem now shows that all cohomology theories considered so far
are in fact isomorphic, at least if the topology of G is sufficiently well-behaved.

Theorem 4.5 (Comparison Theorem). Let G-Mod be the category of locally con-

tractible G-modules in kTop. We call a sequence A
α−→ B

β−→ C in G-Mod short
exact if the underlying exact sequence of abelian groups is short exact and α (or
equivalently β) has a local continuous section. If (Hn : G-Mod → Ab)n∈N0

is a
δ-functor such that

1. H0(A) = AG is the invariants functor,
2. Hn(A) = Hn

glob,c(G,A) for contractible A,

then (Hn)n∈N0
is equivalent to (Hn

SM(G, · ))n∈N0
as δ-functor. Moreover, each mor-

phism between δ-functors with properties 1. and 2. that is an isomorphism for n = 0
is automatically an isomorphism of δ-functors.

Proof. The functors I(A) := EG(A) and U(A) := BG(A) make Theorem 6.2
applicable. To check the requirements of the first part, we have to show that
Hn≥1(EG(A)) vanishes, which in turn follows from property 2. and Proposition
4.4.

To check the requirements of the second part of Theorem 6.2 we observe that
if f : A → B is a closed embedding with a local continuous section, then f(A) is
also closed in EG(B) and thus we may set Qf := EG(B)/f(A). The local sections
of f : A → B and B → EG(B) then also provide a section of the composition
A → EG(B), and A → EG(B) → Qf is short exact. The morphism BG(A) → Qf

can now be taken to be induced by f∗ : EG(A) → EG(B), since it maps A to
f(A) by definition. Likewise, ιB maps f(A) ⊆ B into f(A) ⊆ EG(B), so induces
a morphism γf : B/f(A) ∼= C → Qf = EG(B)/f(A). The diagrams (16) thus
commute by construction. �

The property of a G-module A to be locally contractible is essential for providing
a local section of the embedding A → EG(A) [Seg70, Prop. A.1]. We will assume
this from now on without any further reference.

Remark 4.6. Property 2. of the Comparison Theorem may be weakened to

Hn(A) = Hn
glob,c(G,A) for loop contractible A,

where loop contractible means that there exists a contracting homotopy ρ : [0, 1]×
A → A such that each ρt is a group homomorphism for each t ∈ [0, 1].

If this is the case, then one may still apply Theorem 6.2: We first observe
that the abelian group EA is loop contractible. In fact, identifying EA with the
space of left continuous step functions on the unit interval as in [Fuc11b, Ex. 5.5.]
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and [BM78, Rem. on p. 217] one gets an explicit function ρ : [0, 1] × EA → EA
for which one directly sees that ρ0 = ∗, ρ1 = idA and each single ρt is a group
homomorphism. Now it is important to observe that ρ actually coincides with the
contracting homotopy of EA as constructed from [Seg68, Prop. 2.1]. Thus ρ is
also continuous and we may conclude that EA is loop contractible, although the
identification of EA with the aforementioned space of step functions may not respect
the topology in general. In particular, EG = Ck(G,EA) is loop contractible and
thus Hn≥1(EG(A)) still vanishes. In this case, it is then a consequence of Theorem
6.2 that Hn(A) = Hn

glob,c(G,A) for all contractible modules A.

Corollary 4.7. If G×n
k is paracompact for each n ≥ 1, then Hn

SM(G,A) ∼=
Hn

simp,c(G,A).

Corollary 4.8. If G×n
p is compactly generated for each n ≥ 1, then we have

Hn
loc,c(G,A) ∼= Hn

SM(G,A).15 If, moreover, each G×n
p is paracompact, then the

morphisms
Hn

simp,c(G,A) → Hn
loc,c(G,A),

from Remark 2.17 are isomorphisms.

Corollary 4.9. Let G be a finite-dimensional Lie group, a be a quasi-complete
locally convex space on which G acts smoothly, Γ ⊆ a be a discrete submodule and
set A = a/Γ. Then the natural morphisms

(9) Hn
simp,s(G,A) → Hn

loc,s(G,A) → Hn
loc,c(G,A) ← Hn

simp,c(G,A)

are all isomorphisms.

Proof. The second is an isomorphism by Proposition 1.7 and the third by the pre-
ceding corollary. Since Hn

simp,s(G,Γ) → Hn
simp,c(G,Γ) is an isomorphism by defini-

tion and Hn
simp,s(G, a) → Hn

simp,c(G, a) is an isomorphism by Proposition 2.12 and

[HM62], the fist one in (9) is an isomorphism by the Five Lemma. �

Corollary 4.10. If G×n
k is paracompact for each n ≥ 1, and U• is a good cover of

BG•, then Hn
SM(G,A) ∼= Ȟn(U•, A

•
glob,c).

Remark 4.11. Analogously to Corollary 2.8 one sees that if each G×n
k is paracom-

pact, U• is a good cover of BG• and E• is a sheaf on BG• with each En acyclic, then
Ȟn(U•, E

•) is the cohomology of the first column of the E1-term. This shows in
particular that Ȟn(U•, A

•
loc,c)

∼= Hn
loc,c(G,A). Moreover, the morphism of sheaves

A•
glob,c → A•

loc,c induces a morphism

(10) Ȟn(U•, A
•
glob,c) → Ȟn(U•, A

•
loc,c)

∼=−→ Hn
loc,c(G,A).

This morphism can be constructed in (more or less) explicit terms by the stan-
dard staircase argument for double complexes with acyclic rows (note that by
the acyclicity of An

loc,c we may choose for each locally smooth Čech q-cocycle

γi0,...,iq : Ui0∩. . .∩Uiq → A on Gp a locally smooth Čech cochain ηi0,...,iq−1
such that

δ̌(η) = γ). It is obvious that (10) defines a morphism of δ-functors. From the pre-
vious results and the uniqueness assertion of Theorem 6.2 it now follows that (10)

is in fact an isomorphism provided G×n
p is compactly generated and paracompact

for each n ≥ 1.

15This is also the main theorem in [SP09], whose proof remains unfortunately incomplete.
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Remark 4.12. In [Fla08, Prop. 5.1] it is shown that for G a topological group and
A a G-module, such that the sheaf of continuous functions has no cohomology, the
cohomology group of [Fla08] coincide with Hn

glob,c(G,A). By [Fla08, Lem. 6] we

also have long exact sequences, so the cohomology groups from [Fla08, Sect. 3]
(which are anyway very similar to Hn

simp,c(G,A), see also [Lic09]) also agree with

Hn
SM(G,A).
There is a slight variation of the latter cohomology groups by Schreiber [Sch11]

in the smooth setting and over the big topos of all Cartesian smooth spaces. The
advantage of this approach is that it is embedded in a general setting of differential
cohomology. In the case that G is compact and A is discrete or A = a/Γ for a

finite-dimensional, Γ ⊆ a discrete and G acts trivially on A it has been shown
in [Sch11, Prop. 3.3.12] that the cohomology groups Hn

Smooth∞Grpd(BG,A) from

[Sch11] are isomorphic to16 Ȟn(U•, A
•
glob,s) (where U• is a good cover of BG∞

• ).

Remark 4.13. We now compare Hn
loc,c(G,A) with (one of) the cohomology groups

from [Moo76]. For this we assume that G is a second countable locally compact
group of finite covering dimension. A Polish G-module is a separable complete
metrizable17 abelian topological group A together with a jointly continuous action
G×A → A. Morphisms of Polish G-modules are continuous group homomorphisms
intertwining the G-action. If G is a locally compact group and A is a Polish G-
module, then Hn

Moore(G,A) denotes the cohomology of the cochain complex

Cn
μ (G,A) := {f : Gn → A : f is Borel measurable}

with the group differential dgp from (1). It has already been remarked in [Wig73]
that these are isomorphic to Hn

simp,c(G,A). We give here a detailed proof of this
and extend the result slightly.

On the category of Polish G-modules we consider as short exact sequences those

sequences A
α−→ B

β−→ C for which the underlying sequence of abstract abelian
groups is exact, α is an (automatically closed) embedding and β is open. From
[Moo76, Prop. 11] it follows that from this we obtain natural long exact sequences,
i.e., Hn

Moore(G, · ) is a δ-functor. Moreover, it follows from [Wig73, Prop. 3] and
from the remarks before [Wig73, Thm. 2] that each locally continuous cochain

f : G×n
p → C can be lifted to a locally continuous cochain f̃ : G×n

p → B. This is
due to the assumption on G to be finite-dimensional. From this it follows as in

Remark 1.2 that A
α−→ B

β−→ C also induces a long exact sequence for Hn
loc,c(G, · )

(this is the reason for choosing Hn
loc,c(G,A) for this comparison).

On the category of Polish G-modules we now consider the functors

A 	→ EG(A) := C(G,U(I, A)),

where U(I, A) is the group of Borel functions from the unit interval I to A modulo
those that vanish outside a set of measure 0. Moreover, U(I, A) is a PolishG-module
[Moo76, Sect. 2] and coincides with the completion of the metric abelian topological

16This assertion is not stated explicitly but follows from [Sch11, Prop. 3.3.12] by the van-
ishing of Hn

glob,s(G, a) [Est55, Thm. 1] and the long exact coefficient sequence.
17We will throughout assume that the metric is bounded. This is no loss of generality since

we may replace each invariant metric d(x, y) with the topologically equivalent bounded invariant

metric
d(x,y)

1+d(x,y)
.
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group A-valued step-functions on the right-open unit interval [0, 1), endowed with
the metric

d(f, g) :=

∫ 1

0

dA(f(t)g(t)) dt,

see also [BM78, Kee73, HM58]. In particular, U(I, A) inherits the structure of a
G-module and so does EG(A). Moreover, it is contractible and thus EG(A) is soft.
Since G is σ-compact we also have that C(G,U(I, A)) is completely metrizable.

Now A embeds as a closed submodule into EG(A) and we setBG(A) :=EG(A)/A.
Thus

A → EG(A) → BG(A)

becomes short exact since orbit projection of continuous group actions are auto-
matically open. By virtue of Theorem 6.2 and the fact that the locally continuous
cohomology vanishes for soft modules this furnishes a morphism of δ-functors from
Hn

loc,c(G, · ) to Hn
Moore(G, · ) (the constructions of Qf , βf and γf from Theorem 4.5

carry over to the present setting). Moreover, the functors A 	→ I(A) and A 	→ U(A)
that Moore constructs in [Moo76, Sect. 2] satisfy Hn

Moore(I(A)) = 0 [Moo76, Thm.
4]. Thus Remark 6.3 shows that Hn

loc,c(G, ·) and Hn
Moore(G, ·) are isomorphic (even

as δ-functors) on the category of Polish G-modules. This also extends [AM10, Thm.
A] to arbitrary contractible and locally contractible coefficients.

In addition, this shows that the mixture of measurable and locally continuous
cohomology groups Hn

lcm(G,A) from [KR12] does coincide with Hn
Moore(G,A). In-

deed, the morphism Hn
lcm(G,A) → Hn

Moore(G,A) of δ-functors [KR12, Cor. 1] is
surjective for each n and contractible A (since thenHn

glob,c(G,A) → Hn
Moore(G,A) is

surjective) and also injective (since Hn
glob,c(G,A) → Hn

lcm(G,A) → Hn
loc,c(G,A) is

so). Thus Hn
lcm(G,A) ∼= Hn

Moore(G,A) ∼= Hn
glob,c(G,A) for each n and contractible

A and the Comparison Theorem shows that Hn
lcm(G, ·) is isomorphic toHn

loc,c(G, ·),
also as δ-functor.

Remark 4.14. Whereas all preceding cohomology theories fit into the framework of
the Comparison Theorem, bounded continuous cohomology [Mon01,Mon06] does
not. First of all, this concept considers locally compact G and Banach space coeffi-
cients A, whence all of the above cohomology theories agree to give Hn

glob,c(G,A).

The bounded continuous cohomology Hn
bc(G,A) is the cohomology of the subcom-

plex of bounded continuous functions (Cbc(G
n, A), dgp). Thus there is a natural

comparison map

Hn
bc(G,A) → Hn

glob,c(G,A)

which is obviously an isomorphism for compact G. However, bounded cohomology
unfolds its strength not before considering non-compact groups, where the above
map is in general not an isomorphism [Mon01, Ch. 9], even not for Lie groups
[Mon01, Ex. 9.3.11]. In fact, bounded cohomology is designed to make the above
map not into an isomorphism for measuring the deviation of G from being compact.

Despite the last example, the properties of the Comparison Theorem seem to be
the essential ones for a large class of important concepts of cohomology groups for
topological groups. We thus give it the following name.

Definition 4.15. A cohomology theory for G is a δ-functor (Fn:G-Mod→Ab)n∈N

satisfying conditions 1. and 2. of the Comparison Theorem.
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Remark 4.16. We end this section with listing properties that any cohomology
theory for G has. We will always indicate the concrete model that we are using.
The isomorphisms of the models are then due to the corollaries of this section.
Parts of these facts have already been established for the various models in the
respective references.

(1) If A is discrete and each G×n
k is paracompact, then Hn

SM(G,A) ∼=
Hn

π1(BG)(BG,A) is the cohomology of the topological classifying space

twisted by the π1(BG) ∼= π0(G)-action on A (note that G0 acts triv-
ially since A is discrete). This follows from [Seg70, Prop. 3.3]; cf. also
[Del74, 6.1.4.2]. If, moreover, G is (n − 1)-connected, then Hn+1

SM (G,A) ∼=
Hom(πn(G), A).

(2) If G is contractible and each G×n
p is compactly generated, then Hn

SM(G,A)
∼= Hn

loc,c(G,A) ∼= Hn
glob,c(G,A). This follows from [Fuc11a, Thm. 5.16].

(3) If G is compact and A = a/Γ for a a quasi-complete locally convex space
which is a continuousG-module and Γ a discrete submodule, thenHn

SM(G,A)
∼= Hn+1

π1(BG)(BG,Γ). This follows from the vanishing of Hn
SM(G, a) ∼=

Hn
glob,c(G, a) (cf. [Hu52, Thm. 2.8] or [BW00, Lem. IX.1.10]) and the long

exact sequence induced from the short exact sequence Γ → a → A. In
particular, if G is a compact Lie group and A is finite-dimensional, then

Hn
loc,c(G,A) ∼= Hn

loc,s(G,A) ∼= Hn+1
π1(BG)(BG,Γ).

5. Examples and applications

The main motivation for this paper is that locally continuous and locally smooth
cohomology are somewhat easy to handle, but so far lacked a conceptual framework.
On the other hand, the simplicial cohomology groups or the ones introduced by
Segal and Mitchison are hard to handle in degrees ≥ 3. We will give some results
that one can derive from the interaction of these different concepts.

Example 5.1. There are several cocycles (or, more precisely, cohomology classes)
which deserve to be named “string cocycle” (or, more precisely, “string class”). For
this example, we assume that G is a compact simple and 1-connected Lie group
(which is thus automatically 2-connected). There exists for each g ∈ G a path
αg ∈ C∞([0, 1], G) with αg(0) = e, αg(1) = g and for each g, h ∈ G a filler18

βg,h ∈ C∞(Δ2, G) for the triangle (dgp α)(g, h) = g.αh − αgh + αg (Figure 1).

e

g

gh

α
g

g.αh

α g
h

(dgp α)(g, h) = g.αh − αgh + αg =
βg,h

Figure 1. βg,h fills (dgp α)(g, h)

18From the 2-connectedness of G it only follows that there exist continuous fillers, that these
can be chosen to be smooth follows from the density of C∞(Δn, G) in C(Δn, G) [Woc09, Cor.
14].
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Moreover, (dgp β)(g, h, k) = g.βh,k−βgh,k+βg,hk−βg,h bounds a tetrahedron which
can be filled with γg,h,k ∈ C∞(Δ3, G) (Figure 2).

g.βh,k

βg,hk

e

g

gh

ghk

β
g
,h

β
g
h
,k

(dgp β)(g, h, k) = g.βh,k − βgh,k + βg,hk − βg,h =

Figure 2. γg,h,k fills (dgp β)(g, h, k)

In addition, α, β and γ, interpreted as maps Gn → C∞(Δn, G) for n = 1, 2, 3, can
be chosen to be smooth on some identity neighborhood. From these choices we can
now construct the following cohomology classes (which in turn are independent of
the above choices as a straightforward check shows; cf. [Woc11, Rem. 1.12]).

(1) Since ∂ dgp(γ) = dgp(∂γ) = dgp
2 β = 0, the map

(g, h, k, l) 	→ (dgp γ)(g, h, k, l)

takes values in the singular 3-cycles on G and thus gives rise to map
θ3 : G

4 → H3(G) ∼= π3(G) ∼= Z (see also Example 5.2). This map is
locally smooth since γ was assumed to be so and it is a cocycle since
dgp(dgp(γ)) = 0 (note that it is not a coboundary since γ does not take
values in the singular cycles but only in the singular chains).

(2) The cocycle σ3 : G
3 → U(1) from [Woc11, Ex. 4.10] obtained by setting

σ3(g, h, k) := exp

(∫
γg,h,k

ω

)
,

where ω is the left-invariant 3-from on G with ω(e) = 〈[· , ·], ·〉 normal-
ized such that [ω] ∈ H3

dR(G) gives a generator of H3
dR(G,Z) ∼= Z and

exp: R → U(1) is the exponential function of U(1) with kernel Z. Since ω
is in particular an integral 3-form, this implies that σ3 is a cocycle because
dgp(γ)(g, h, k, l) is a piece-wise smooth singular cycle and thus

dgp σ3(g, h, k, l) = exp

(∫
dgp γ(g,h,k,l)

ω

)
= 1.

Since γ is smooth on some identity neighborhood, σ3 is so as well. Now

σ̃3(g, h, k) :=

∫
γ(g,h,k)

ω

provides a locally smooth lift of σ3 to R. Thus the homomorphism
δ : H3

loc,s(G,U(1)) → H4
loc,s(G,Z) maps [σ3] to [θ3] since

dgp σ̃3 =

∫
dgp γ

ω
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and integration of piece-wise smooth representatives along ω provides the
isomorphism π3(G) ∼= Z. We will justify calling σ3 a string cocycle in
Remark 5.13.

(3) The locally smooth cocycles arising as characteristic cocycles [Nee07, Lem.
3.6.] from the strict models [BCSS07,NSW13] of the string 2-group. In the
case of the model from [BCSS07] this gives precisely σ3.

Suppose U• is a good cover of BG•. The model from [SP11] is constructed by
showing that Ȟ3(U•, U(1)•glob,s) classifies central extensions of finite-dimensional
group stacks

[∗/U(1)] → [Γ] → G

and then taking the isomorphism

Ȟ3(U•, U(1)•glob,s)
∼= H3

SM(G,U(1)) ∼= H4(BG,Z) ∼= Z

(cf. Remark 4.16), yielding for each generator a model for the string group. We
will see below that the classes from above are also generators in the respective co-
homology groups and thus represent the various properties of the string group. For
instance, we expect that the class [σ3] will be the characteristic class for represen-
tations of the string group.

The previous construction can be generalized as follows.

Example 5.2. Let G be an (n−1)-connected Lie group and denote by C∞
∗ (Δk, G)

the group of based smooth k-simplices in G (the same construction works for locally
contractible topological groups and the continuous k-simplices). Then we may
choose for each 1 ≤ k ≤ n maps

αk : G
k → C∞

∗ (Δk, G),

such that each αk is smooth on some identity neighborhood and that

∂αk(g1, . . . , gk) = dgp(αk−1)(g1, . . . , gk).

In the latter formula, we interpret C∞
∗ (Δk, G) as a subset of the group 〈C(Δk, G)〉Z

of singular k-chains in G, which becomes a G-module if we let G act by left multi-
plication. Since G is (n−1)-connected, we can inductively choose αk, starting with
α0 ≡ e.

Now consider the map

θn := dgp(αn) : G
n+1 → 〈C(Δn, G)〉Z.

Since

(11) ∂θn = ∂ dgp(αn) = dgp(∂αn) = dgp
2(αn−1) = 0,

θn takes values in the singular n-cycles onG and thus gives rise to a map θn: G
n+1→

Hn(G) ∼= πn(G). Moreover, θn is a group cocycle and it is locally smooth since αn is
so. Of course, this means here that θn even vanishes on some identity neighborhood
(in the product topology). It is straightforward to show that different choices for
αk yield equivalent cocycles.

These are the characteristic cocycles for the n-fold extension

(12) πn(G) → Ω̃nG → PeΩ
n−1G → · · · → PeΩG → PeG → G
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(Pe denoted pointed paths and Ω pointed loops) of topological groups spliced to-
gether from the short exact sequences

πn(G) → Ω̃nG → ΩnG and ΩnG → PeΩ
n−1G → Ωn−1G for n ≥ 0.

Moreover, the exact sequence

Ω̃nG → Ωn−1G → · · · → ΩG → PeG

gives rise to a simplicial topological group Πn(G) and we have canonical morphisms

Bnπn(G) → Πn(G) → G.

Here, Bnπn(G) is the nerve of the (n− 1)-groupoid with only trivial morphisms up
to (n− 2) and πn(G) as (n− 1)-morphisms and G is the nerve of the groupoid with
objects G and only identity morphisms. Taking the geometric realization | · | gives
(at least for metrizable G) now an extension of groups in kTop

K(n, πn(G)) � |Bnπn(G)| → |Πn(G)| → |G| = G,

which can be shown to be an n-connected cover G〈n〉 → G with the same methods
as in [BCSS07].

Remark 5.3. Recall that a crossed module μ : M → N is a group homomorphism
together with an action by automorphisms of N on M such that μ is equivariant
and such that for all m,m′ ∈ M , the Peiffer identity

μ(m).m′ = mm′m−1

holds. Taking into account topology, we suppose thatM andN are groups in kTop,
μ is continuous and (n,m) 	→ n.m is continuous. We call a closed subgroup H of a
group in kTop split if the multiplication map G×k H → G defines a topological H-
principal bundle (see [Nee07, Def. 2.1]). We will throughout use the constructions in
the smooth setting from [Nee07], which carry over to the present topological setting.
In this case, we have in particular that G → G/H has a continuous local section. To
avoid pathological cases, we suppose that all our crossed modules are topologically
split, i.e., we suppose that ker(μ) is a split topological subgroup ofM , that im(μ) is a
split topological subgroup of N , and that μ induces a homeomorphism M/ ker(μ) ∼=
im(μ).

Using the above methods, we can now show the following:

Theorem 5.4. If each G×n
p is compactly generated, then the set of equivalence

classes of crossed modules with cokernel G and kernel A is in bijection with
H3

loc,c(G,A).

Proof. It is standard to associate to a (topologically split) crossed module a locally
continuous 3-cocycle (see [Nee07, Lem. 3.6]). To show that this defines an injection
of the set of equivalence classes into H3

loc,c(G,A), we use the continuous version

of [Nee07, Th. 2.17]. Namely, if A → M → N → G is sent to the trivial class,

the existence of an extension M → Ĝ
q−→ G realizing the outer action of G on M

gives rise to a crossed module A → A×M → Ĝ
q−→ G providing two morphisms of

four term exact sequences linking A → M → N → G to the trivial crossed module

A → A
0−→ G → G.
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Therefore we focus here on surjectivity, i.e., we construct a crossed module from
a given locally continuous 3-cocycle. For this, embed the G-module A in a soft
G-module:

0 → A → EG(A) → BG(A) → 0.

Observe that Hn
SM(G,EG(A)) ∼= Hn

glob,c(G,EG(A)) vanishes for n ≥ 1 (Proposition

4.4). The vanishing shows now that the connecting homomorphism of the associated
long exact sequence induces an isomorphism

δ : H2
loc,c(G,BG(A)) ∼= H3

loc,c(G,A),

where we have used the isomorphism of Hn
SM and Hn

loc,c. Thus for the given 3-

cocycle γ, there exists a locally continuous 2-cocycle α with values in BG(A) such
that δ[α] = [γ]. Using α, we can form an abelian extension

0 → BG(A) → BG(A)×α G → G → 1.

Now splicing together this abelian extension with the short exact coefficient se-
quence

0 → A → EG(A) → BG(A) → 0

gives rise to a crossed module μ : EG(A) → BG(A) ×α G which is topologically
split in the above sense. Indeed, the coefficient sequence is topologically split by
assumption, and the abelian extension has a continuous local section by construc-
tion.

Finally, the fact that the 3-class associated to this crossed module is [γ] follows
from δ[α] = [γ]. Some details for this kind of construction can also be found in
[Wag06]. �

Remark 5.5. In the case of locally compact second countable G and metrizable
A the module EA is metrizable [BM78] and since G is in particular σ-compact
C(G,EA) = EG(A) is also metrizable. Thus the above crossed module is a crossed
module of metrizable topological groups. In particular, if we take a generator
[α] ∈ H3

SM (G,U(1)) ∼= H4(BG,Z) ∼= Z for G a simple compact 1-connected Lie
group, then the crossed module

U(1) → EG(U(1)) → BG(U(1))×α G → G

gives yet another (topological) model for the string 2-group.

Remark 5.6 (cf. [SP09, Def. 19]). The locally continuous cohomology can be topolo-
gized as follows. For an open identity neighborhood U ⊆ G×n

k we have the bijection

Cn
U (G,A) := {f : Gn → A : f |U is continuous} ∼= C(U,A)×AGn\U .

This carries a natural topology coming from Ck(U,A)×kA
Gn\U , when first en-

dowing AGn\U with the product topology and then taking the induced compactly
generated topology. If U ⊆ V , then the inclusion Cn

U (G,A) ↪→ Cn
V (G,A) is contin-

uous so that the direct limit

lim−−−→
U∈U

Cn
U (G,A) ∼= Cn

loc,c(G,A)

carries a natural topology. The differential dgp is continuous and the cohomology
groups Hn

loc,c(G,A) inherit the corresponding quotient topology.
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Remark 5.7. There is a classical way of constructing products for some of the
cohomology theories which we have considered here. Let us recall these defi-
nitions. The easiest product is the usual cup product for the locally continu-
ous (respectively the locally smooth) group cohomology Hn

loc,c(G,A) (respectively

Hn
loc,s(G,A)) [Mac63, Ch. VIII.9]. In the following, we will stick to Hn

loc,c(G,A),

noting that all constructions carry over word by word to Hn
loc,s(G,A) for a Lie

group G and a smooth G-module A.
Suppose that the two G-modules A and A′ have a tensor product in kTop. The

simplicial cup product (see [Mac63] equation (9.7) p. 246) in group cohomology
yields a homomorphism

∪ : Hp
loc,c(G,A)⊗Hq

loc,c(G,A′) → Hp+q
loc,c(G,A⊗A′),

where the G-module A⊗A′ is given the diagonal action.
In case the G-module A has its tensor product A⊗A in kTop and has a product,

i.e., a homomorphism of G-modules α : A ⊗ A → A, we obtain an internal cup
product

∪ : Hp
loc,c(G,A)⊗Hq

loc,c(G,A) → Hp+q
loc,c(G,A)

by postcomposing with α. The product reads then explicitly for cochains c ∈
Cp

loc,c(G,A) and c′ ∈ Cq
loc,c(G,A)

c ∪ c′(g0, . . . , gp+q) = α(c(g0, . . . , gp), c
′(gp, . . . , gp+q)).

On the other hand, Segal-Mitchison cohomology Hn
SM(G,A) is a (relative) de-

rived functor, and therefore the setting of [Mac63, Sect. XII.10] is adapted. Observe
that our choice of exact sequences does not satisfy all the demands of a proper class
of exact sequences [Mac63, Sect. XII.4] (it does not satisfy the last two demands)
and we neither have automatically enough proper injectives or projectives. Nev-
ertheless, we have explicit acyclic resolutions for each module in kTop which are
exact sequences in our sense. We have the universality property for the functor
Hn

SM(G,A) [Mac63, Sect. XII.8] by Theorem 6.2. Therefore we obtain products
for Segal-Mitchison cohomology by universality as in [Mac63, Th. XII.10.4] for two
G-modules A and A′ which have a tensor product in kTop.

By the uniqueness statement in [Mac63, Th. XII.10.4], the isomorphism
Hn

SM(G,A) ∼= Hn
loc,c(G,A) respects products. Note also that the differentiation

homomorphism Dn : H
n
loc,s(G,A) → Hn

Lie,c(g, a) that we will turn to in Remark
5.14 is compatible with products.

We now give an explicit description of the purely topological information con-
tained in a locally continuous cohomology class. If G is a connected topological
group and A is a topological G-module, then there is an exact sequence

(13) 0 → H2
glob,top(G,A) → H2

loc,top(G,A)
τ2−→ Ȟ1(|G|, A)

[Woc10, Sect. 2], where τ2 assigns to an abelian extension A → Ĝ → G the char-
acteristic class of the underlying principal A-bundle. By definition, we have that
im(τ2) are those classes in Ȟ1(|G|, A) whose associated principal A-bundles admit
a compatible group structure.

We will now establish a similar behavior of the map τn for arbitrary n.

Proposition 5.8. Let G be a connected topological group and A be a topological
G-module. Suppose that the cocycle f ∈ Cn

loc,top(G,A) is continuous on the identity



1896 FRIEDRICH WAGEMANN AND CHRISTOPH WOCKEL

neighborhood U ⊆ Gn and let V ⊆ G be open such that e ∈ V and V 2×. . .×V 2 ⊆ U .
Then the map

τ (f)g1,...,gn : g1V ∩ . . . ∩ gnV → A, x 	→ g1.f(g
−1
1 g2, . . . , g

−1
n−1gn, g

−1
n x)

− (−1)nf(g1, g
−1
1 g2, . . . , g

−1
n−1gn)

defines a continuous Čech (n − 1)-cocycle on the open cover (gV )g∈G. Moreover,
this induces a well-defined map

τn : H
n
loc,top(G,A) → Ȟn−1(|G|, A), [f ] 	→ [τ (f)]

which is a morphism of δ-functors.

Proof. We first note that τ (f)g1,...,gn depends continuously on x. Indeed, the first

term depends continuously on x since g1V ∩ . . .∩gnV �= ∅ implies that g−1
k−1gk ∈ V 2

and f is continuous on V 2 × . . . × V 2 by assumption. Since the second term does
not depend on x, this shows continuity. Now the cocycle identity for f , evaluated
on (g1, g

−1
1 g2, . . . , g

−1
n−1gn, g

−1
n x), shows that τ (f)g1,...,gn(x) may also be written as

(δ̌(κ(f)))g1,...,gn(x), where

κ(f)g2,...,gn(x) := f(g2, g
−1
2 g3, . . . , g

−1
n x).

Note that κ(f)g2,...,gn does not depend continuously on x and thus the above asser-

tion does not imply that τ (f) is a coboundary. However, δ̌2 = 0 now implies that
τ (f) is a cocycle.

Clearly, the class [τ (f)] in Ȟn−1(|G|, A) does not depend on the choice of V
since another such choice V ′ yields a cocycle given by the same formula on the
refined cover (g(V ∩ V ′))g∈G. Moreover, if f is a coboundary, i.e., f = dgp b for

b ∈ Cn−1
loc,c(G,A) (where we assume w.l.o.g. that b is also continuous on V 2×. . .×V 2),

then we set

ρ(b)g1,...,gn−1
(x) := g1.b(g

−1
1 g2, . . . , g

−1
n−1x) + (−1)nb(g1, g

−1
1 g2, . . . , g

−1
n−2gn−1).

As above, this defines a continuous function on g1V ∩ . . . ∩ gn−1V �= ∅ and thus a
Čech cochain. A direct calculation shows that δ̌(ρ(f)) = τ (f) and thus that the
class [τ (f)] only depends on the class of f .

We now turn to the second claim, for which we have to check that for each exact

sequence A ↪→ B
q−→ C of topological G-modules the diagram

Hn
loc,c(G,C)

δn ��

τn

��

Hn+1
loc,c(G,A)

τn+1

��

Ȟn−1(|G|, C)
δn−1

�� Ȟn(|G|, A)

commutes. For this, we recall that δn is constructed by choosing for [f ]∈Hn
loc,c(G,C)

a lift f̃ : Gn → B and then setting δn([f ]) = [dgp f̃ ]. After possibly shrinking V ,

we can assume that f is continuous on V 2 × . . .× V 2 (n factors) and that dgp f̃ is
continuous on V 2 × . . .× V 2 (n+ 1 factors).

Since q is a homomorphism, f̃ also gives rise to lifts

τ̃ (f)g1,...,gn(x) := g1.f̃(g
−1
1 g2, . . . , g

−1
n−1gn, g

−1
n x)− (−1)nf̃(g1, g

−1
1 g2, . . . , g

−1
n−1gn)
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of τ (f)g1,...,gn , which obviously depends continuously on x on g1V ∩ . . .∩gnV . Thus

we have that δn−1(τn([f ])) is represented by the Čech cocycle

δ̌(τ̃ (f))g0,...,gn .

On the other hand, τn+1(δn([f ])) is represented by τ (dgp f̃)g0,...,gn , whose value on
x is given by

g0. dgp f̃(g
−1
0 g1, . . . , g

−1
n−1gn, g

−1
n x)− (−1)n+1 dgp f̃(g0, g

−1
0 g1, . . . , g

−1
n−1gn)

= g0.
[
g−1
0 g1.f̃(g

−1
1 g2, . . . , g

−1
n x)± . . .+(−1)kf̃(g−1

0 g1, . . . , g
−1
k−1gk+1, . . . , g

−1
n x)

± . . .+ (−1)n+1f̃(g−1
0 g1, . . . , g

−1
n−1gn)

]
− (−1)n+1

[
g0.f̃(g

−1
0 g1, . . . , g

−1
n−1gn)

± . . .−(−1)kf̃(g0, g
−1
0 g1, . . . , g

−1
k−1gk+1, . . . , g

−1
n−1gn)

± . . .+ (−1)n+1f̃(g0, g
−1
0 g1, . . . , g

−1
n−2gn−1)

]
The underlined terms cancel and the sum of the dashed terms gives

(−1)kτ̃ (f)g0,...,ĝk,...,gn(x). This shows that

δ̌(τ̃ (f))g1,...,gn(x) = τ (dgp f̃)g1,...,gn(x).

�

We will now identify the map τ with one of the edge homomorphisms in the
spectral sequence associated to Hn

simp,c(G,A).

Proposition 5.9. For n ≥ 1 the edge homomorphism of the spectral sequence (6)
induces a homomorphism

edgen+1 : H
n+1
simp,c(G,A) → H1+n

simp,c(G,A)/F2H2+n
simp,c(G,A)

∼= E1,n
∞ → E1,n

1
∼= Hn

Sh(G,A),

where F denotes the standard column filtration (cf. Remark 2.7). If, moreover,

G×n
p is compactly generated, paracompact and admits good covers for all n ≥ 1 and

A is a topological G-module, then the diagram

(14) Hn+1
simp,c(G,A)

∼=
��

edgen+1
�� Hn

Sh(G,A)

∼=
��

Hn+1
loc,c(G,A)

τn+1
�� Ȟn(|G|, A)

commutes.

Proof. We first note that Hn
loc,top(G,A) = Hn

loc,c(G,A) under the above assump-

tions. Since BG0 = pt, we have E0,q
1 = Hq

Sh(pt, A) = 0 for all q ≥ 1 and thus the

edge homomorphism E1,p
∞ → E1,p

1 . Since we have FpHp+q
simp,c(G,A) = Hp+q

simp,c(G,A)
for p = 0, 1, q ≥ 1 this gives the desired form of edgeq+1. Since this construction
commutes with the connecting homomorphisms, it is a morphism of δ-functors.
Moreover, the isomorphism Hn

Sh(|G|, · ) ∼= Ȟn(|G|, · ) is even an isomorphism of
δ-functors. By virtue of the uniqueness assertion for morphisms of δ-functors from
Theorem 6.2, it thus remains to verify that (14) commutes for n = 1.
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The construction from Remark 3.5 gives an isomorphism H2
loc,top(G,A) ∼=

Ȟ2(U•, A
•
loc,c), where U• is a good cover of BG• chosen such that Uk refines the

covers of Gk constructed there. Since this construction commutes with the connect-
ing homomorphisms, the isomorphism H2

loc,top(G,A) ∼= Ȟ2(U•, A
•
loc,c) is indeed the

one from the unique isomorphism of the corresponding δ-functors. Now τ2 coin-
cides with the morphism H2

loc,top(G,A) ∼= Ȟ2(U•, A
•
loc,c) → Ȟ1(|G|, A), given by

projecting the cocycle (μ, τ ) in the total complex of Čp,q(U•, E
•) to the Čech cocy-

cle τ . Since this is just the corresponding edge homomorphism, the diagram (14)
commutes for n = 1. �
Remark 5.10. In case the action of G on A is trivial, Proposition 5.9 also holds for
n = 0. Indeed, then the differential A ∼= E0,0

1 → E1,0
1

∼= C∞(G,A), which is given
by assigning the principal crossed homomorphism to an element of A, vanishes.
This shows commutativity of (14) also for n = 0.

Remark 5.11. The other edge homomorphism is induced from the identification
Cn

glob,c(G,A) ∼= H0
Sh(G

n, A) ∼= En,0
1 , which shows En,0

2
∼= Hn

glob,c(G,A). It coin-

cides with the morphism Hn
glob,c(G,A) → Hn

loc,c(G,A) induced by the inclusion

Cn
glob,c(G,A) ↪→ Cn

loc,c(G,A) (cf. also [Seg70, Remarks in §3]).

The following is a generalization of (13) in case A is discrete.

Corollary 5.12. Suppose that n ≥ 1, G is (n − 1)-connected, A is a discrete G-

module and that G×m
p is compactly generated, paracompact and admits good covers

for all m ≥ 1. Then τn+1 : H
n+1
loc,c(G,A) → Ȟn(|G|, A) is injective.

Proof. If G is (n−1)-connected, and A is discrete, then Ep,q
1 of the spectral sequence

(6) vanishes if q ≤ n− 1. Thus E1,n
∞ = ker(d1,n1 ) ⊆ E1,n

1
∼= Ȟn(|G|, A) and edgen+1

coincides with the embedding

Hn+1
loc,c(G,A) ∼= Hn+1

simp,c(G,A) ∼= E1,n
∞ ↪→ E1,n

1
∼= Ȟn(|G|, A).

�
Remark 5.13. An explicit analysis of the differentials of the spectral sequence
(6) shows that for discrete A with trivial G-action and (n − 1)-connected G the
image of τn+1 : H

n+1
loc,c(G,A) → Ȟn(|G|, A) consists of those cohomology classes

c ∈ Ȟn(|G|, A) which are primitive, i.e., for which

pr∗1 c⊗ pr∗2 c = μ∗c.

Since the primitive elements generate the rational cohomology of a compact Lie
group G [GHV73, p. 167, Thm. IV] it follows that all non-torsion elements in the
lowest cohomology degree are primitive in this case.

In particular, if G is a compact, simple and 1-connected (thus automatically 2-
connected), the generator of Ȟ2(|G|, U(1)) ∼= Ȟ3(|G|,Z) ∼= Z is primitive and thus

τ4 : H
4
loc,c(G,Z) → Ȟ3(|G|,Z) is an isomorphism. Since the diagram

H4
loc,c(G,Z)

τZ

4 ��

∼=
��

Ȟ3(|G|,Z)

∼=
��

H3
loc,c(G,U(1))

τ
U(1)
3 �� Ȟ2(|G|, U(1))
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commutes by Proposition 5.8, this shows that τ
U(1)
3 is also an isomorphism. Since

the string class [σ3] from Example 5.1 maps under τ3 to a generator [BM93,Cha12],
this shows that [σ3] indeed gives a generator of H3

loc,c(G,U(1)), and [θ3] gives a

generator of H4
loc,c(G,Z).

Remark 5.14. One reason for the importance of locally smooth cohomology is that
it allows for a direct connection to Lie algebra cohomology and thus may be com-
putable in algebraic terms. This relation is induced by the differentiation homo-
morphism

Hn
loc,s(G,A)

Dn−−→ Hn
Lie,c(g, a),

where Hn
Lie,c denotes the continuous Lie algebra cohomology, g is the Lie algebra

of G and a the induced infinitesimal topological g-module (cf. [Nee06, Thm. V.2.6]
and [Nee04, App. B]).

Suppose G is finite-dimensional. Then the kernel of Dn consists of those coho-
mology classes [f ] that are represented by cocycles vanishing on some neighborhood

of the identity. For Γ = {0} this follows directly from [Świ71], where it is shown that
the differentiation homomorphism from the cohomology of locally defined smooth
group cochains to Lie algebra cohomology is an isomorphism. Thus if [f ] ∈ ker(Dn),
then there exists a locally defined smooth map b with dgp b − f = 0 wherever de-
fined. Since we can extend b arbitrarily to a locally smooth cochain this shows
the claim. In the case of non-trivial Γ one may deduce the claim from the case of
trivial Γ since a and A = a/Γ are isomorphic as local Lie groups so that A-valued
local cochains can always be lifted to a-valued local cochains. If Aδ denotes A with
the discrete topology and if Aδ is a continuous G-module, then the isomorphism
Hn

π1(BG)(BG,Aδ) ∼= Hn
loc,s(G,Aδ) from Remark 4.16 induces an exact sequence

Hn
π1(BG)(BG,Aδ) → Hn

loc,s(G,A)
Dn−−→ Hn

Lie,c(g, a)

(see also [Nee02, Nee04] for an exhaustive treatment of D2 for general infinite-
dimensional G). From the van Est spectral sequence [Est58] it follows that if G
is n-connected (more general G may be infinite-dimensional with split de Rham
complex [Beg87]), then differentiation induces an isomorphism

Hn
glob,s(G, a) → Hn

Lie,c(g, a).

For G an (n−1)-connected Lie group this is not true any more; for instance, the Lie
algebra 3-cocycle 〈[· , ·], ·〉 from Example 5.1 is non-trivial but H3

glob,s(G,R) vanishes

by [Est55, Thm. 1] for compact and connected G.
However, there exist integrating cocycles when considering locally smooth coho-

mology: If G is an (n− 1)-connected finite-dimensional Lie group and A ∼= a/Γ is
a finite-dimensional smooth module for a a finite-dimensional G-module and Γ a
discrete submodule, then Dn : H

n
loc,s(G,A) → Hn

Lie,c(g, a) is injective and its image

consists of those cohomology classes [ω] whose associated period homomorphism
per[ω] [Nee06, Def. V.2.12] has image in Γ. In fact, Hn

loc,s(G,Aδ) vanishes (by

Corollary 5.12), and thus Dn is injective. Surjectivity of Dn may be seen from the
following standard integration argument. If ω is a Lie algebra n-cocycle, then the
associated left-invariant n-form ωl is closed [Nee02, Lem. 3.10]. If we make the
choices of αk for 1 ≤ k ≤ n as in Example 5.2, then

Ω(g1, . . . , gn) :=

∫
αn(g1,...,gn)

ωl
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defines

• a locally smooth group cochain on G, since αn depends smoothly on
(g1, . . . , gn) on an identity neighborhood and the integral depends smoothly
on αn(g1, . . . , gn);

• a group cocycle, since

dgp Ω(g0, . . . , gn) =

∫
dgp α(g0,...,gn)

ωl ∈ perω(πn(G)) ⊆ Γ.

A straightforward calculation, similar to the ones in [Nee02] or [Nee04] now shows
that Dn([Ω]) = [ω]. We expect that large parts of this remark can be generalized to
arbitrary infinite-dimensional G with techniques similar to those of [Nee02,Nee02].

6. δ-Functors

In this section we recall the basic setting of (cohomological) δ-functors (some-
times also called “satellites”), as for instance exposed in [CE56, Chap. 3], [Buc55,
Sect. III.5], [Gro57, Sect. 2] or [Moo76, Sect. 4]. It will be important that the
arguments work in more general categories than abelian ones, the only thing one
needs is a notion of short exact sequence.

Definition 6.1. A category with short exact sequences is a category C, together
with a distinguished class of composable morphisms A → B → C. The lat-
ter are called a short exact sequence. A morphism between A → B → C and
A′ → B′ → C ′ consists of morphisms A → A′, B → B′ and C → C ′ such that the
diagram

A ��

��

B ��

��

C

��

A′ �� B′ �� C ′

commutes.
A (cohomological) δ-functor on a category with short exact sequences is a se-

quence of functors

(Hn : C → Ab)n∈N0

such that for each short exact A → B → C there exist morphisms δn : H
n(C) →

Hn+1(A) turning

H0(A) → H0(B) → H0(C)
δ0−→ · · · δn−1−−−→ Hn(A) → Hn(B) → Hn(C)

δn−→ · · ·
into an exact sequence19 and that for each morphism of exact sequences the diagram

(15) Hn(C)
δn ��

��

Hn+1(A)

��

Hn(C ′)
δn �� Hn+1(A′)

commutes. A morphism of δ-functors from (Hn)n∈N0
to (Gn)n∈N0

is a sequence
of natural transformations (ϕn : Hn ⇒ Gn)n∈N0

such that for each short exact

19Note that we do not require H0 to be left exact.
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A → B → C the diagram

(16) Hn(C)
δn ��

ϕn
C

��

Hn+1(A)

ϕn+1
A

��

Gn(C)
δn �� Gn+1(A)

commutes. An isomorphism of δ-functors is then a morphism for which all ϕn are
natural isomorphisms of functors.

Theorem 6.2. Let C be a category with short exact sequences. Let F : C → Ab,
I : C → C and U : C → C be functors, ιA : A → I(A) and ζA : I(A) → U(A) be

natural such that A
ιA−→ I(A)

ζA−−→ U(A) is a short exact sequence and let (Hn)n∈N0

and (Gn)n∈N0
be two δ-functors.

1. If α : H0 ⇒ G0 is a natural transformation and Hn(I(A)) = 0 for all A
and all 1 ≤ n ≤ m, then there exist natural transformations ϕn : Hn ⇒ Gn,
uniquely determined by requiring that ϕ0 = α and that

Hn(U(A))
δn ��

ϕn
U(A)

��

Hn+1(A)

ϕn+1
A

��

Gn(U(A))
δn �� Gn+1(A)

commutes for 0 ≤ n < m. In particular, if Hn(I(A)) = 0 = Gn(I(A)) for
all n ≥ 0, then ϕn is an isomorphism of functors for all n ∈ N if and only
if it is so for n = 0.

2. Assume, moreover, that for any short exact sequence A
f−→ B → C the mor-

phism A → I(B) can be completed to a short exact sequence A → I(B)→Qf

such that there exist morphisms U(A)
βf−→ Qf and C

γf−→ Qf making

(17)

A
ιA �� I(A)

ζA ��

I(f)

��

U(A)

βf

��

A �� I(B) �� Qf

and

A
f

�� B ��

ιB

��

C

γf

��

A �� I(B) �� Qf

commute. Then the diagram

Hn(C)
δn ��

ϕn
C

��

Hn+1(A)

ϕk
A

��

Gn(C)
δn �� Gn+1(A)

also commutes for 0 ≤ m < m. In particular, if Hn(I(A)) = 0 for all A
and all n ≥ 1, then (ϕn)n∈N0

is a morphism of δ-functors.

Proof. The proof of [Buc55, Thm. II.5.1] (cf. also [Moo76, Thm. 2]) carries over
to this more general setting. The claims are shown by induction, so we assume
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that ϕn is constructed up to n ≥ 0. Then we consider for arbitrary A the diagram
(recall that Hn+1(I(A)) = 0)

Hn(I(A)) ��

ϕn
I(A)

��

Hn(U(A))
δn ��

ϕn
U(A)

��

Hn+1(A) �� 0

Gn(I(A)) �� Gn(U(A))
δn �� Gn+1(A)

,

which shows that there is a unique ϕn+1
A : Hn+1(A) → Gn+1(A) making this dia-

gram commute. To check naturality take f : A → B. By the construction of ϕn+1
A ,

the induction hypothesis and the construction of ϕn+1
B the diagrams

Hn(U(A))

ϕn
U(A)

��

δU(A)
n �� Hn+1(A)

ϕn+1
A

��

Gn(U(A))
δ
U(A)
n �� Gn+1(A)

and

Hn(U(A))

ϕn
U(A)

��

Hn(U(f))
�� Hn(U(B))

ϕn
U(B)

��

δU(B)
n �� Hn+1(B)

ϕn+1
B

��

Gn(U(A))
Gn(U(f))

�� Gn(U(B))
δ
U(B)
n �� Gn+1(B)

commute. Since (Hn)n∈N0
and (Gn)n∈N0

are δ-functors we know Hn+1(f) ◦ δU(A)
n

= δ
U(B)
n ◦Hn(U(f)) and that Gn+1(f) ◦ δU(A)

n = δ
U(B)

n ◦Gn(U(f)). We thus con-
clude that

ϕn+1
B ◦Hn+1(f) ◦ δU(A)

n = Gn+1(f) ◦ϕn+1
A ◦ δU(A)

n

holds. Since δ
U(A)
n is an epimorphism this shows naturality of ϕn+1 and finishes

the proof of the first claim.
To show the second claim we note that the first diagram of (17) gives rise to a

diagram

Hn(U(A))

ϕn
U(A)

��

Hn(βf )

����
���

��
δU(A)
n

��

Hn(Qf )
δ
Qf
n ��

ϕn
Qf

��

Hn+1(A) ��

ϕn+1
A��

0

Gn(Qf )
δ
Qf
n �� Gn+1(A)

Gn(U(A))

Gn(βf )

		�������

δ
U(A)
n





.

The outer diagram commutes by construction of ϕn+1
A (see above), the already

shown naturality of ϕn shows that the trapezoid on the left commutes and the two
triangles are commutative because H and G are δ-functors. This implies that the

whole diagram commutes. In particular, we have ϕn+1
A ◦ δQf

n = δ
Qf

n ◦ϕn
Qf

. The
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latter now implies that

Hn(C)

δCn
��

Hn(γf )
�� Hn(Qf )

δ
Qf
n

��

ϕn
Qf

�� Gn(Qf )

δ
Qf
n

��

Gn(C)

δ
C
n

��

Gn(γf )
��

Hn+1(A) Hn+1(A)
ϕn+1

A �� Gn+1(A) Gn(A)

commutes and since Gn(γf ) ◦ϕn
C = ϕn

Qf
◦Hn(γf ) we eventually conclude that

δ
C

n ◦ϕn
C = δ

Qf

n ◦Gn(γf ) ◦ϕn
C = δ

Qf

n ◦ϕn
Qf

◦Hn(γf )

= ϕn+1
A ◦ δQf

n ◦Hn(γf ) = ϕn+1
A ◦ δCn .

�
Remark 6.3. The preceding theorem also shows the following slightly stronger state-
ment. Assume that we have for each δ-functor H = (Hn)n∈N0

and G = (Gn)n∈N0

(defined on the same category with short exact sequences) different functors I, U
and I ′, U ′ such that Hn(I(A)) = 0 = Gn(I ′(A)) for all n ≥ 1 and all A. Suppose
that the assumptions of Theorem 6.2 (2.) are fulfilled for one of the functors I or
I ′.

If α : H0 → G0 is an isomorphism, then the natural transformations ϕn : Hn ⇒
Gn (resulting from extending α) and ψn : Gn ⇒ Hn (resulting from extending
α−1) are in fact isomorphisms of δ-functors. This follows immediately from the
uniqueness assertion since the diagrams

Hn(U(A))
δn ��

ϕn
U(A)

��

Hn+1(A)

ϕk
A

��

Gn(U(A))
δn �� Gn+1(A)

Gn(U(A))
δn ��

ψn
U(A)

��

Gn+1(A)

ψk
A

��

Hn(U(A))
δn �� Hn+1(A)

(and likewise for U ′) commute for arbitrary A due to the property of being a δ-
functor.

Remark 6.4. Usually, one would impose some additional conditions on a category
with short exact sequences, for instance that it is additive (with zero object), that
for a short exact sequence A → B → C the square

A ��

��

0

��

B �� C

is a pull-back and a push-out, that short exact sequences are closed under isomor-
phisms and that certain pull-backs and push-outs exist [Büh10]. These assumptions
will then help in constructing δ-functors. However, the above setting does not re-
quire this; all the assumptions are put into the requirements on the δ-functor.

Example 6.5. Suppose G is paracompact. On the category of G-modules in kTop,

we consider the short exact sequences A
α−→ B

β−→ C such that β (or equivalently
α) has a continuous local section and the functor A 	→ Ȟn(|G|, A) (or equivalently
A 	→ Hn

Sh(G,A)). Then the functors A 	→ EG(A) and A 	→ BG(A) from Definition

4.2 satisfy Ȟn(|G|, EG(A)) = 0 since EG(A) is contractible.
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Remark 6.6. The argument given in the proof of [Tu06, Prop. 6.1(b)] in order to
draw the conclusion of the first part of Theorem 6.2 from weaker assumptions is false
as one can see as follows. First note that the proof only uses I(U(A)) ∼= U(I(A)),
the more restrictive assumptions on the categories to be abelian and on the natural
inclusion A ↪→ I(A) to satisfy I(iA) = iI(A) may be replaced by this.

The requirements of [Tu06, Prop. 6.1(b)] are satisfied if we set I(A) = EG(A),
U(A) = BG(A) and iA as in Definition 4.2. In fact, the exactness of the functor E
shows that

0 → EA → ECk(G,EA) → EBG(A) → 0

is exact and since this sequence has a continuous section by [Seg70, Thm. B.2], we
also have that

0 → Ck(G,EA) → Ck(G,ECk(G,EA)) → Ck(G,EBG(A)) → 0

is exact. Consequently, we have

EG(BG(A)) = Ck(G,EBG(A)) ∼= Ck(G,ECk(G,EA))/Ck(G,EA) = BG(EG(A)).

However, the two sequences of functors A 	→ Hn
SM(G,A) ∼= Hn

loc,c(G,A) and

A 	→ Hn
glob,c(G,A) vanish on EG(A) for n = 1, but are different:

• H2
glob,c(G,A) is not isomorphic to H2

loc,c(G,A), for instance for G =

C∞(S1,K) (K compact, simple and 1-connected) and A = U(1).
• For non-simply connected G, the universal cover gives rise to an element in
H2

loc,c(G, π1(G)), not contained in the image of H2
glob,c(G, π1(G)).

• The string classes from Example 5.1 give an element in H3
loc,c(K,U(1)), not

contained in the image of H3
glob,c(K,U(1)).

7. Supplements on Segal-Mitchison cohomology

We briefly recall the definition of the cohomology groups due to Segal and Mitchi-
son from [Seg70]. Moreover, we also establish the acyclicity of the soft modules
from above for the globally continuous group cohomology and show Hn

SM(G,A′)
∼= Hn

glob,c(G,A′) for contractible A′. Consider the long exact sequence

(18) A → EGA → EG(BGA) → EG(B
2
GA) → EG(B

3
GA) · · · .

This serves as a resolution of A for the invariants functor A 	→ AG and the coho-
mology groups Hn

SM(G,A) are the cohomology groups of the complex

(19) (EGA)G → (EG(BGA))G → (EG(B
2
GA))G → (EG(B

3
GA))G · · · .

We now make the following observations:

1. [Seg70, Ex. 2.4] For an arbitrary short exact sequence Ck(G,A) → B → C,
the sequence

Ck(G,A)G → BG → CG

is exact, i.e., BG → CG is surjective. Indeed, for y ∈ CG choose an inverse
image x ∈ B and observe that g.x− x may be interpreted as an element of
Ck(G,A) for each g ∈ G. If we define

ψ(g, h) := (g.x− x)(h) and ξ(h) := h.ψ(h−1, e), 20

20Note that the leading h is missing in [Seg70, Ex. 2.4].
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then we have g.ξ − ξ = g.x− x since

(g.ξ − ξ)(h) =g.(ξ(g−1h))− ξ(h) = h.(ψ(h−1g, e))− h.ψ(h−1, e)

=h.((h−1.g.x− x)(e)− (h−1.x− x)(e))

=h.((h−1.(g.x− x))(e)) = (g.x− x)(h).

Thus x− ξ is G-invariant and maps to y.
2. It is not necessary to work with the resolution (18), any resolution

(20) A → A0 → A1 → A2 → · · ·
(i.e., a long exact sequence of abelian groups such that the constituting
short exact sequences have local continuous sections) with Ai of the form
Ck(G,A′

i) for some contractible A′
i would do the job. Indeed, then the

double complex

...
...

...
...

EG(B
2
GA) ��

��

EG(B
2
G(Ck(G,A′

0))) ��

��

EG(B
2
G(Ck(G

2, A′
1))) ��

��

EG(B
2
G(Ck(G

3, A′
2))) ��

��

· · ·

EG(BGA) ��

��

EG(BG(Ck(G,A′
0))) ��

��

EG(BG(Ck(G
2, A′

1))) ��

��

EG(BG(Ck(G
3, A′

2))) ��

��

· · ·

EG(A) ��

��

EG(Ck(G,A′
0)) ��

��

EG(Ck(G
2, A′

1)) ��

��

EG(Ck(G
3, A′

2)) ��

��

· · ·

A ��

��

Ck(G,A′
0) ��

��

Ck(G
2, A′

1) ��

��

Ck(G
3, A′

2) ��

��

· · ·

has exact rows and columns (cf. [Seg70, Prop. 2.2]), which remain exact af-
ter applying the invariants functor to it by the observation from 1. Thus the
cohomology of the first row is that of the first column, showing that the co-
homology of (19) is the same as the cohomology of AG

0 → AG
1 → AG

2 → · · · .
In particular, for contractible A′ we may replace (18) in the definition

of Hn
SM(G,A′) by

A′ → E′
GA → E′

G(B
′
GA

′) → E′
G(B

′2
GA) → E′

G(B
′3
GA

′) · · ·
with E′

G(A
′) := Ck(G,A′) and B′

G(A) := E′
G(A)/A (the occurrence of E

in the definition EG(A) := Ck(G,EA) only serves the purpose of making
the target contractible).

3. Since A′ is assumed to be contractible, the short exact sequence A′→E′
G(A

′)
→ B′

G(A
′) has a global continuous section [Seg70, App. B], and thus the

sequence

Ck(G,A′) → Ck(G,E′
G(A

′)) → Ck(G,B′
G(A

′))

is exact. In particular, the isomorphism Ck(G,E′
G(A

′)) ∼= E′
G(Ck(G,A′))

shows that

B′
G(Ck(G,A′)) := E′

G(Ck(G,A′))/Ck(G,A′)

∼= Ck(G,E′
G(A

′))/Ck(G,A′) ∼= Ck(G,B′
G(A

′))

is again of the form Ck(G,A′′) with A′′ contractible.

These observations, together with an inductive argument, imply that the sequence

AG → (E′
GA)G → (E′

G(BGA))G → (EG(B
′2
GA))G → (E′

G(B
′3
GA))G · · ·
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is exact for A = Ck(G,A′) and contractible A′, and finally that Hn
SM(G,A) vanishes

for n ≥ 1. What also follows is that for contractible A′, we have Hn
SM(G,A′) ∼=

Hn
glob,c(G,A′) (cf. [Seg70, Prop. 3.1]). Indeed, Ck(G

k, A′) ∼= Ck(G,Ck(G
k−1, A′))

and thus
A′ → Ck(G,A′) → Ck(G

2, A′) → Ck(G
3, A′) → · · ·

serves as a resolution of the form (20). Dropping A′ and applying the invariants
functor to it then gives the (homogeneous version of) the complex Cn

glob,c(G,A′).
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matics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR1711612 (2001d:55012)
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