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MAXIMAL SUBSEMIGROUPS OF THE SEMIGROUP
OF ALL MAPPINGS ON AN INFINITE SET

J. EAST, J. D. MITCHELL, AND Y. PERESSE

ABSTRACT. In this paper we classify the maximal subsemigroups of the full
transformation semigroup Qf*, which consists of all mappings on the infinite set
Q, containing certain subgroups of the symmetric group Sym(£2) on €. In 1965
Gavrilov showed that there are five maximal subsemigroups of Q€ containing
Sym(Q2) when Q is countable, and in 2005 Pinsker extended Gavrilov’s result
to sets of arbitrary cardinality.

We classify the maximal subsemigroups of Qf? on a set Q of arbitrary infinite
cardinality containing one of the following subgroups of Sym(£2): the pointwise
stabiliser of a non-empty finite subset of 2, the stabiliser of an ultrafilter on
Q, or the stabiliser of a partition of €2 into finitely many subsets of equal
cardinality. If G is any of these subgroups, then we deduce a characterisation
of the mappings f,g € Q2 such that the semigroup generated by G U {f, g}
equals Qf.

1. INTRODUCTION

A subgroup H of a group G is a mazimal subgroup if H # G and the subgroup
generated by H and g equals G for all ¢ € G\ H. The definition of a mazimal
subsemigroup of a semigroup is analogous: a subsemigroup 7' of a semigroup (or
group) S is a mazimal subsemigroup if T # S and the subsemigroup (7', s) generated
by T and s equals S for all s € S\ T.

Let Q denote an arbitrary (finite or infinite) set, let Q% denote the semigroup of
mappings from  to itself, and let Sym(Q2) denote the symmetric group on Q. In
this paper we are interested in those maximal subsemigroups of Q¢ that contain
certain subgroups of Sym(€2). The maximal subgroups of finite symmetric groups,
having been investigated by O’Nan and Scott [28], Aschbacher and Scott [I], and
Liebeck, Praeger and Saxl [I8], are, in some sense, known. When ( is finite, it is
easy to see that a maximal subsemigroup of Q is either the union of a maximal
subgroup of the symmetric group and 2\ Sym(£2) or it is the union of Sym(Q) and
the mappings with at most |Q2| — 2 points in their images. In general, the maximal
subsemigroups of an arbitrary finite semigroup are determined, roughly speaking,
by their maximal subgroups; see Graham, Graham, and Rhodes [12].

Maximal subgroups of Sym(f2) have also been extensively studied when € is
infinite; see [2H4L[6H8,T920,22,27] and the references therein. It seems extremely
unlikely that a complete description, in any sense, of maximal subgroups of Sym(2)
exists for infinite 2. Maximal subsemigroups of Q2 when Q is infinite have been
considered to a lesser degree. The maximal subsemigroups of Qf containing the
symmetric group were classified by Gavrilov in [IT] for countable Q and by Pinsker
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[24, Theorem 1.4] for arbitrary infinite Q; these are the only results regarding
maximal subsemigroups of Qf when € is infinite of which we are aware. We state
and prove Gavrilov and Pinsker’s theorem (Theorem [A)) since elements of the proof
are required later on, for the sake of completeness, and for the convenience of
the reader. Maximal subsemigroups of other infinite semigroups of mappings have
been considered. For example, Levi and Wood [17] and Hotzel [I3] considered
maximal subsemigroups of Baer-Levi semigroups, and Shneperman [29] considered
the maximal subsemigroups of the endomorphism monoid of a finite dimensional
complex vector space that are maximal with respect to being compact.

The subsemigroups of Qf form an algebraic lattice with 2/’ compact elements
under inclusion. The study of maximal subsemigroups of Q? belongs to the wider
study of this lattice. Pinsker and Shelah [26] prove that every algebraic lattice
with at most 2/2l compact elements can be embedded into the subsemigroup lattice
of Q2. There are 22 distinct subsemigroups of Q2. There are even 22" sub-
semigroups between Sym(Q) and any maximal subsemigroup of Q that contains
Sym(£2) where || = R, and x = max{a,Ro}; for further details see Pinsker [25].

We show, as a consequence of Theorem[C], that there are also 92" maximal subsemi-
groups of 2. The maximal subsemigroups of the maximal subsemigroups described
by Gavrilov [I1] are classified in [10]; perhaps surprisingly there are only countably
many such semigroups. In further contrast to Pinsker and Shelah’s result [26], there
are only 38 subsemigroups between the intersection S7 N Se N .S3(Rg) N S4(Rg) N S
of the maximal subsemigroups described by Gavrilov [IT] and Q}; see Mitchell and
Jonusas [16].

Another natural question to ask about the subsemigroup lattice of Qf? is whether
or not every subsemigroup is contained in a maximal one. In [4] it is shown that
under certain set theoretic assumptions there exists a subgroup of Sym(2) that is
not contained in a maximal subgroup; it seems likely that the analogous result holds
for Q. There are several results in the literature concerning sufficient conditions
for a subgroup of Sym(f2) to lie in a maximal subgroup; see [20] and [2I]. In
Section [3l we explore the analogous problem for subsemigroups of Q2.

In this paper we classify the maximal subsemigroups of Q%, where Q is any
infinite set, containing certain subgroups of Sym(f2), which we define in the next
section. In particular, we classify the maximal subsemigroups of ¢ containing one
of the following groups: the symmetric group Sym(£2) (Theorem [A]), the pointwise
stabiliser of a non-empty finite subset of  (Theorem [B]), the stabiliser of an ultra-
filter on  (Theorem [C)), or the stabiliser of a finite partition of Q (Theorem [D).
For each of these subgroups, we obtain a characterisation of those pairs of elements
that, together with the subgroup, generate Q*; see Corollaries B2} 23] B4 and
Such a classification in the case that G = Sym(Q) and |Q] is a regular cardinal was
originally given in [I4, Theorem 3.3]. As previously mentioned, the classification of
maximal subsemigroup of Q2 containing Sym({2) is originally due to Gavrilov [11]
and Pinsker [24].

The paper is organised as follows: in Section [2 we state the main theorems of
the paper. In Section [B] we give several sufficient conditions for a subsemigroup of
Q% to be contained in a maximal subsemigroup, and also give a new proof of the
result of Macpherson and Praeger [21] which states that every subgroup of Sym(2)
that is not highly transitive is contained in a maximal subgroup. In Section [E]
we state and prove Corollaries [£.2] 3] 4] and In Section B we give several
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technical results which underpin the proofs of the main results in the paper. In
Sections [B] [l Bl and [@ we give the respective proofs of the four main theorems
from Section Bl In Section [0l we show that the setwise stabiliser of a non-empty
finite set, the almost stabiliser of a finite partition, and the stabiliser of an ultrafilter
are maximal subsemigroups (and not just maximal subgroups as is already well-
known) of the symmetric group.

We end this section by asking the three most interesting questions, in our eyes
at least, arising from our consideration of maximal subsemigroups of Q.

Question 1.1. Let G be a maximal subsemigroup of Sym(£2). Then does there
exist a maximal subsemigroup M of Qf such that M N Sym(Q) = G?

The intersection of every known example of a maximal subsemigroup of Qf
with Sym(2) is either a maximal subsemigroup of Sym(2) or Sym(2) itself, which
prompts the following question.

Question 1.2. Does there exist a maximal subsemigroup of Qf that does not
contain a maximal subsemigroup of Sym(€2)?

We suspect that the answer to Question is yes. A step in the other direction
would, perhaps, be a positive answer to the following question.

Question 1.3. Does every maximal subsemigroup of Q¢ have non-trivial intersec-
tion with Sym(€2)?

2. STATEMENTS OF THE MAIN THEOREMS

Throughout the paper we write functions to the right of their argument and
compose from left to right. If « € Q, f € Q% and ¥ C Q, then af ' = {3 € Q:
Bf =a}, Xf ={af : a € X}, and f|x denotes the restriction of f to ¥. We denote
{f€Q%:|Qf] < |9/} by §. Since § is an ideal of Q% if S is any subsemigroup of
Q% then so is SUF. Hence if S is maximal, then either § C S or SUF = Q. In the
latter case, 2\ § is a subset of S. But Q% \ § is also a generating set for Qf? and
so S = O, which contradicts the assumption that S is a maximal subsemigroup.
Hence § is contained in every maximal subsemigroup of Q2.

Let ¥ be any subset of 2 and let f : ¥ — Q be arbitrary. If I' C ¥ such that f|r
is injective and I'f = X f, then we will refer to I' as a transversal of f. We require
the following parameters of f to state our main theorems:

d(f) = |Q\%f|
c(f) = |¥\T|, where I is any transversal of f
K(f) = HaeQ:laf'| > u}, where s <[],

The parameters d(f), c(f), and k(f,|2|) were termed the defect, collapse, and infi-
nite contraction index, respectively, of f in [14].

As usual, we will think of a cardinal s as the set of all ordinals strictly less than
k. Recall that a cardinal & is singular if there exists a cardinal A < k and a family
of sets ¥, (1 € A) such that [,| < & for each p < A, yet | U<x ¥, | = k; otherwise,
k is regular. We denote the successor to any cardinal x by x™.

A subset ¥ of an infinite set I' is a moiety of T if |X| = |T'\ | = |T|.
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2.1. The symmetric group.

Theorem A (Gavrilov [I1], Pinsker [24]). Let Q be any infinite set. If | is a
regular cardinal, then the mazimal subsemigroups of Q% containing Sym(Q) are:

S ={feQ%:c(f) =0 ord(f) >0},
Sy ={f€Q%:c(f) >0 ord(f) =0},
Sa(p) = {f € Q¥ e(f) < p ord(f) > pu},
Sa(p) = {f € Q% e(f) = p or d(f) < p},

Ss ={f € Q% : k(f, 1) < |2},

where p is any infinite cardinal not greater than |$)|.

If |9 is a singular cardinal, then the mazximal subsemigroups of Q¢ containing
Sym(Q) are S1, Sa, Ss(u), Sa(w), where p is any infinite cardinal not greater than
19, and

Sy ={f € Q%: (B <10)) (k(f,v) < 2D}

The countable case of Theorem [Al was first proved by Gavrilov [I1]. The full
version of Theorem [A] given above was first proved by Pinsker [24, Theorem 1.4].
We independently proved Theorem [A] whilst unaware of the work of Gavrilov and
Pinsker. We thank Martin Goldstern and Lutz Heindorf for bringing these refer-
ences to our attention. A full proof of Theorem [Alis included in Section [f for the
convenience of the reader and for the sake of completeness.

2.2. The pointwise stabiliser of a finite set. If G is a group acting on a set
Q and X is any subset of €2, then we denote the pointwise stabiliser of ¥ under G
by G(x) and the setwise stabiliser of ¥ under G by Gxy. In [2], it is shown that
if ¥ is a non-empty finite subset of 2, then Sym(Q);s; is a maximal subgroup of

Sym(Q).

Theorem B. Let Q) be any infinite set and let ¥ be a non-empty finite subset
of Q. Then the mazimal subsemigroups of QO containing the pointwise stabiliser
Sym(2)(s) but not Sym(£2) are:

F(U,p)={f€Q:d(f) > porT ZQf or (Uf1 CT and ¢(f) < p)} U,

B ={fecQ:c(f)>vor|Tf|<|T| or (Tf =T and d(f) < v)} U,

where T is a non-empty subset of X and p and v are infinite cardinals with p < |Q|
and either |[U| =1 and v = |Q|* or [T| > 2 and v < |Q|T.

If £ < 19| and f € §, then d(f) = || = ¢(f), and so “UF” could be omitted
from the definition of Fy (T, i) and F»(T, i) in these cases.

If T'| = 1, then F5(T",v) is properly contained in Sy(v) for all v < |Q].
particular, F»(T',») is not maximal in this case. When p or v equals |QT, we
obtain the following simpler definitions of the semigroups in Theorem [Bl

F(,]QF) ={feQ?:TZQf or Tf ' CT}UF,
BT, [QF) ={fcQ*: [Tf| <[[[or Tf =T} USF.
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In particular, if I' = {~}, then

BN ={feQ?:v¢gQf orvf ' = {4}}UF,
BT QM) ={feQ® :vf =7} US.

If T is any finite subset of 2, then the intersection of Fy(T', u) or Fy(T, u) with
Sym(2) is the setwise stabiliser Sym(£2)(ry. Thus every maximal subsemigroup of
0 containing the pointwise stabiliser of a finite subset ¥ of Q also contains the
setwise stabiliser of some subset I' of ¥. Since Sym(£2)sy is a maximal subgroup of

Sym(2), it follows that the maximal subsemigroups of Q containing Sym(£2) sy
but not Sym() are those listed in Theorem [B] where I = 3.

2.3. The stabiliser of an ultrafilter. A set of subsets F of Q is called a filter if:
(i) 0 & F;
(i) f e Fand X CT CQ, then I € F;
(i) f ¥,T € F, then ¥ NT € F.

A filter is called an wltrafilter if it is maximal with respect to containment among
filters on . Equivalently, a filter F is an ultrafilter if, for every ¥ C Q, either
YeFor Q\X e F. An ultrafilter F on Q is principal if there exists a € ) such
that F = {£ C Q: a € X}. An ultrafilter F is uniform if |X| = |Q| for all ¥ € F.
The stabiliser of a filter F in Sym(€Q) is defined to be

{feSym(Q): (VEC Q) e F o Sf € F)}

and is denoted by Sym(€2);zy. The stabiliser of an ultrafilter is the union of the
pointwise stabilisers of the sets in the filter, i.e.

Sym(Q)(ry = U Sym(Q)(s);
TEF
see [20, Theorem 6.4]. It is shown in [20, Theorem 6.4] and [27] that the stabiliser
Sym(§2) (s of any ultrafilter is a maximal subgroup of the symmetric group.
Let F be any filter on 2 and let p be an infinite cardinal. Then we define the
following subsemigroups of Q:

UL(F,p) = {f € Q% : (d(f) > p) or (Uf & F)

or (c¢(f) <pand (VE & F)(Zf € F))}UTF;
Us(F, ) = {f € Q% : (e(f) > p) or (VE € F)(c(f]s) > 0)
or (d(f) < pand (Ve F)(XfeF))}USF.

If p <|Q] and f € §, then d(f) = || = ¢(f), and so “UF” could be omitted from
the definition of Uy (F, u) and Us(F, p) in these cases.

If T is any subset of 2, then the collection F of subsets of {2 containing I" is a
filter. In this case, the stabiliser of F in Sym(2) and the setwise stabiliser of " in
Sym(2) coincide. In the following lemma, we show that Uy (F, 1) and Us(F, ) are
the generalisations of the semigroups in Theorem [Bl to arbitrary filters.

Lemma 2.1. Let I' be a non-empty finite subset of Q and let F be the filter con-
sisting of subsets of Q containing T'. Then Fy(T,u) = Uy (F,u) and Fo(T,pn) =
Us(F, ) for all infinite cardinals .
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Proof. Suppose that f € Q2. Clearly, Qf ¢ F if and only if I'  Qf. Also Xf ¢ F
for all ¥ ¢ F if and only if ' € X f for all ¥ C Q such that I' € ¥ if and only if
[f~! CT. Therefore Fy (T, u) = Uy (F, ).

It is straightforward to show that ¢(f|g) > 0 for all ¥ € F if and only if no
transversal of f belongs to F if and only if I' is not a subset of any transversal of
f if and only if |T'f| < |I'|. Suppose that |I'f| = |T'|. Then Xf € F for all ¥ € F if
and only if I' C X f for all ¥ C Q such that I' C ¥ if and only if I'f C I' if and only
if I'f =T. Thus F5(T,v) = Ua(F,v), as required. O

The semigroups in Theorem [Bl contain not only the pointwise stabiliser, but the
setwise stabiliser of a finite set. It follows that the maximal subsemigroups of Q%
containing the stabiliser of a filter generated by a finite set, in particular principal
ultrafilters, have already been classified in Theorem [Bl For the sake of convenience,
we state the analogue of Theorem [Blin terms of filters.

Corollary 2.2. Let Q be any infinite set, let I' be a non-empty finite subset of
Q, and let F be the filter consisting of subsets of ) containing I'. Then the mazx-
imal subsemigroups of Q% containing Sym(2)(ry but not Sym(Q2) are Fy(I', p) =
Ur(F,p) and Fo(T,v) = Ua(F,v), where p and v are infinite cardinals with p <
| and either |U| =1 and v = |Q|" or [T'| > 2 and v < |Q|T.

If T| = 1, then F in Corollary is a principal ultrafilter. Replacing this
principal ultrafilter by a non-principal ultrafilter yields the following theorem, which
is similar to Corollary 2.2] the main difference being the possible values that the
cardinals p and v can have.

Theorem C. Let Q be any infinite set, let F be a non-principal ultrafilter on €2,
and let k(> Vo) be the least cardinality of a subset of Q in F. Then the maxi-
mal subsemigroups of O containing Sym(2) 7y but not Sym(Q2) are Uy (F, n) and
Us(F, u) where p is an infinite cardinal such that k < p < [Q|*.

Suppose that F is a non-principal ultrafilter. If f € Q% such that Qf ¢ F, then
Q\Qf € Fand so d(f) = |\ Qf| > . Hence if u < &, then

UL(F,p) = {f € Q%2 (d(f) 2 ) or (e(f) < p and (VS & F)(Sf & F))} S Sa(w),

and Uy (F, u) is not maximal in this case. If f € Q is such that ¢(f|s) > 0 for
all ¥ € F, then no transversal of f belongs to F. Hence the complement of any
transversal of f belongs to F, and so ¢(f) > «. In particular, if 4 < &, then

Uz(F,p) = {f € Q%2 (c(f) 2 ) or (d(f) < p and (VE € F)(Sf € F))} € Sa(n),

and so Uz (F, 1) is also not maximal in this case.

If F in Theorem [Clis a uniform ultrafilter, then x = || and so there is only
one possible value for p, namely |Q|", and the conditions on Uj(F,|Q|") and
Us(F, || *) become much simpler:

UL(F,|Q1F) = {f € Q% : (Y= ¢ F)(Sf ¢ F)} U,
Us(F, Q") = {f € Q% : (VS € F)(c(fls) > 0) or (VS € F)(Sf € F)} U3

There are 2/l elements in Sym(Q2), and by Pospfsil’s Theorem [I5, Theorem 7.6]

there are 22" ultrafilters on Q. Hence there are 22" non-conjugate maximal
subsemigroups of Q.
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While the semigroups in Corollary and Theorem [Cl have the same definitions
in terms of their respective filters, neither result appears to be a corollary of the
other. We were unable to formulate a more general theorem having Corollary
and Theorem [C], let alone Theorem [Bl as special cases.

2.4. The stabiliser of a finite partition. Let n > 2 and let P = {Xg, ¥4,...,
Yn-1} be a partition of Q such that |Xo| = -+ = |X,—1] = [Q]. We will refer to
such a partition P as a finite partition of . The stabiliser of a finite partition
P={30,%1,...,2n_1} is defined by

Stab(P) = {f € Sym(Q) : (v )(3 ))(S:f = 5},
and the almost stabiliser of P is defined by
AStab(P) = {f € Sym(Q) : (V )(3 ) (1Z:f \ Z5] + [5; \ Zi f| < [Q[)}-

Of course, Stab(P) is a subgroup of AStab(P) and so Stab(P) is not a maximal sub-
group of Sym(£2). On the other hand, it was shown in [27] (and [20] independently)
that AStab(P) is a maximal subgroup of Sym({2).

Let f € Q. Then define the binary relation py on {0,1,...,n — 1} by

(1) pr=A{(07) : [Z:f N Z5] =1}
If o is a binary relation on a set Q, then o= = {(4,5) : (j,i) € o} and o is total if

for all a € Q there exists § € Q2 such that («, 5) € 0. We will write Sym(n) for the
symmetric group on the set n = {0,1,...,n—1}.

Theorem D. Let Q be any infinite set and let P = {30, %1,...,35,-1}, n > 2, be
a finite partition of Q. Then the maximal subsemigroups of Q% containing Stab(P)
but not Sym(Q) are:

Ay (P) ={f € Q%: p; € Sym(n) or p; is not total},
Ay(P) ={f € Q% : py € Sym(n) or p;' is not total}.

If P is any finite partition of Q, then the intersection of A;(P) and Ay(P) with
Sym(€) is the almost stabiliser AStab(P) of P. Thus every maximal subsemigroup
of Q% containing the stabiliser of P also contains the almost stabiliser of P.

3. CONTAINMENT

In this section we consider the question of when a subsemigroup of Q¢ is con-
tained in a maximal subsemigroup. The analogous question has been considered
for subgroups of the symmetric group; see, for example, [420,2T]. The proposition
below is of particular interest here. In [4] it is shown that under certain set theoretic
assumptions there exists a subgroup of Sym(€?) that is not contained in a maximal
subgroup. However, such examples are difficult to find, and, roughly speaking, if
a subgroup of Sym() is large or small enough, then it is contained in a maximal
subgroup.

It will be convenient to use the following notion: if S is a semigroup and T is a
subset of S, then the relative rank of T in S is the least cardinality of a subset U
of S such that (T, U) = S.

Part (i) of the following proposition is a special case of Lemma 6.9 in Macpherson
and Neumann [20], and parts (ii) and (iii) are Theorems 1.5 and 1.6 in Macpherson
and Praeger [21].
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Proposition 3.1. Let G be a subgroup of Sym(2) satisfying any of the following:
(i) G has finite relative rank in Sym(Q2);
(i) |G| < |9
(iii) || is countable and there exists t € N such that G has infinitely many
orbits on Q.

Then G is contained in a maximal subgroup of Sym(2).

Proposition 3.2 (Bergman-Shelah, Section 5 in [B]). Let  be countably infinite
and let G be a subgroup of Sym(Q) such that G (s has an infinite orbit for all finite
¥ C Q. Then G has finite relative rank in Sym(?) and hence is contained in a
maximal subgroup.

We give an analogue of Proposition B.1}i) and (ii) for subsemigroups of Q.

Proposition 3.3. Let S be a subsemigroup of O satisfying either of the following:
(i) S has finite relative rank in Q;
(i) [S] <19/,

Then S is contained in a mazimal subsemigroup of Q.

Proof. (i) This is a straightforward consequence of Zorn’s Lemma, analogous to
the proof of Proposition B.I[(1).

(ii) Let ¢ be the cardinality of the set of injective elements of S and let {f, : a <
t} be those injective elements. Using transfinite induction for all ordinals o < ¢ we
may define

Tas Yo € Ufa \ {zs,y8 : B < a}

such that z4 # yo. Let T = {f € Q% : zof = yof (Vo < 1)}. Then (S,T) is
a proper subsemigroup of %, since every injective function in (S,T) belongs to
S and |S| < |Q. Also if ¥ is a transversal of any f € T such that |Qf| = ||,
then {g|s : g € T} = QF. Hence if h is any injective function in Q such that
Qh =X, then (S, T,h) = Q2. Hence (S,T), and so S, are contained in a maximal
subsemigroup of O by part (i). O

A subgroup G of Sym(€QQ) is highly transitive if for all n € N and for all (a1, as, . . .,
an), (B1,B2,...,0,) € Q" there exists g € G such that

(Oqg,azg, v ,Oéng) = (Blvﬂ% s aﬂn)
We give a new proof of the next theorem using Propositions B1] and

Theorem 3.4 (Macpherson & Praeger [21]). Let Q be countably infinite and let
G be a subgroup of Sym(Q) that is not highly transitive. Then G is contained in a
mazimal subgroup of Sym(2).

Proof. If G is any subgroup of Sym(2), then G satisfies one of the following condi-
tions:

(a) G(x) has an infinite orbit for all finite ¥ C €;

(b) there exists finite ¥ C €2 such that every orbit of G5 is finite.

Suppose that G is a subgroup of Sym(2) that is not highly transitive. If G
satisfies (a), then, by Proposition B2l G is contained in a maximal subgroup.

If G satisfies (b), then we may assume without loss of generality that ¥ =
{0,1,...,m — 1}. Since every orbit of G (5 is finite, every orbit of G on Qm+l
contains only finitely many tuples of the form (0,1,...,m — 1,n) where n € N.
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But there are infinitely many such tuples and so G has infinitely many orbits on

QM+ Thus Proposition BIJiii) implies that G is contained in a maximal subgroup
of Sym(Q). O

4. GENERATING PAIRS

In [I4, Theorem 3.3] it is shown that Sym(Q) has relative rank 2 in Q; that
is, there exist f,g € QF such that (Sym(Q), f,g) = Q. Those pairs f,g € Q
satisfying this property are completely classified in the case that || is a regular
cardinal; see [14, Theorem 4.1]. In this section, we recover this classification as a
corollary to Theorem [Aland extend it to sets of arbitrary cardinality. Furthermore,
we obtain analogous results where Sym(2) is replaced by the stabiliser of a finite
set, an ultrafilter, or a finite partition. We require the following straightforward
lemma to obtain the corollaries in this section.

Lemma 4.1. Let G be a subgroup of Sym(Q) containing Sym(Q) sy for some ¥ C Q
such that |Q\ 2| = || and let H be any subset of QL. Then (G, H) = Q2 if and
only if H is not contained in any mazimal subsemigroup of O that contains G.

Proof. If H is a subset of a maximal subsemigroup of ! containing G, then (G, H)
is contained in that semigroup, and so (G, H) # Q. For the converse, [20, Lemma
2.4] states that if U is any subgroup of Sym() containing Sym(£2)) for some
moiety I' of €, then there exists € Sym(Q2) such that (U, z,z71) = Sym(Q). It
follows that G has finite relative rank in Sym(€2). Hence, since Sym(2) has finite
relative rank in QO (by [14, Theorem 3.3] as stated above), any subsemigroup of
containing G has finite relative rank in Q. It follows by Proposition 3.3|(i) that any
proper subsemigroup of Q containing G is contained in a maximal subsemigroup
of Q2. Therefore if H is not contained in any maximal subsemigroup containing
G, then (G, H) = Q. O

The following corollary of Theorem [Aland Lemma Tl extends [14, Theorem 4.1].

Corollary 4.2. Let Q be any infinite set and let f, g € Q. Then (Sym(Q), f,g) =
Q% if and only if (up to renaming f and g) f is injective, d(f) = ||, g is surjective,
and either:

(i) 19| is regular and k(g,|Q2|) = |Q|; or

(ii) || is singular and k(g,v) = || for all v < |Q].

Proof. By Lemma [£.1] it suffices to show that none of the maximal subsemigroups
in Theorem [A] contains both f and g if and only if (up to renaming f and g) f is
injective, d(f) = ||, ¢ is surjective, and either:

(i) |9?| is regular and k(g, |2]) = |€2|; or

(i) |€?] is singular and k(g,v) = |Q| for all v < |Q].

For the direct implication, if {f,g} is not contained in S; U Sy, then (up to
renaming f and g) f is injective and ¢ is surjective. Hence g € Sy(u) and so
f & Sy(p) for all p. It follows that d(f) = |©2|. Regardless of the cardinality of
Q, f belongs to S; C S5. So, if || is regular, then S5 is maximal, g ¢ S5, and
k(g,|?) = |€?|. Similarly, if |2| is singular, then k(g,v) = || for all v < |€].

For the converse implication, it is easy to verify that f & S U Sy(u) and g &
S1 U S3(p) for all infinite cardinals p not greater than |Q2|. If || is regular, then
g & S5, and if || is singular, then g & SE. O
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Analogous to Corollary 1.2, we can deduce from Theorem [B] a characterisation
of those f, g € O that together with the pointwise stabiliser of a finite set generate
0,

Corollary 4.3. Let Q) be any infinite set, let 3 be a non-empty finite subset of €2,
and let f,g € Q. Then the following are equivalent:
(I) <Sym(Q)(E)7 f7 g> = QQ;
(II) (Sym(Q)ry, f.g) =Q? for alliT C 3;
(IIT) f and g satisfy the conditions of Corollary and for all non-empty ' C X
one of the following holds:
(i) TfZT and gt ¢ T;
(i) Tg Z T, ngl Z 7T, and |I'g| = |T'|;
(iii) Tf T, Tf1 €T, and T C Qf.

Proof. (I)=-(II) This implication follows immediately since Sym () sy CSym(£) 1y
forall T' C X.

(IT) = (III) Let T" be any non-empty subset of X. Since (Sym(Q), f,g) 2
(Sym(Q)ry, f,9) = 09 clearly f and g satisfy the conditions of Corollary B2} and
{f,g} is not contained in any proper subsemigroup of Q containing Sym(£2)(ry-
In particular, {f, g} is not a subset of Fy (T, |Q|T) or Fx(T, |Q|T). If f & F5(T, Q)
and g € Fy(T,|Q|"), then T'f Z T'and 'g~! € T and so (i) holds. If g & F»(T, || T),
then |Ig| = || and T'g € T'. But g is surjective and so T'g~! € T', and so (ii) holds.
If f¢ Fi(T,|97), then T € Qf and I'f~! € T'. Hence, since f is injective, I'f Z T
and (iii) holds.

(ITI) = (I) Again by Lemma [4.1] it suffices to show that none of the maximal
subsemigroups in Theorems [A] and [Bl contain both f and g.

Since f and g satisfy the conditions of Corollary [£.2] it follows that they are
not contained in any of the semigroups from Theorem [Al Moreover, the same
conditions imply that f & Fo(T, u) and g € F1 (T, u) for all g < |€|. If (i) holds, then
f ¢ F2(Fv |Q‘+) andg ¢ Fl(rv |Q|+) It (11) hOIdSa theng ¢ Fl(rv |Q‘+)UF2(F7 |Q|+)v
and if (iii) holds, then f & Fy (T, |Q|T) U Fx(T, Q). O

In the next corollary we characterise the pairs of functions that together with
the stabiliser of an ultrafilter generate Q. The statement of this result is similar
to that of Corollary

Corollary 4.4. Let Q) be any infinite set, let F be an ultrafilter on Q, and let
fr9 € Q% Then (Sym(Q) 7y, f,g) = Q? if and only if f and g satisfy the conditions
of Corollary and there exist X € F and I' € F such that one of the following
holds:
(i) 2f € F andT'g € F;
(ii) Xg &€ F, ¢(gls) =0, and T'g € F;
(iii) Xf € F and Tf € F.

Proof. If F is a principal ultrafilter, say generated by {a}, then Sym(Q)(r =
Sym(£2)({a}) and the result follows by Corollary E.3l

Suppose that F is a non-principal ultrafilter. Recall that Sym(Q);r; contains
the pointwise stabiliser of any ¥ € F. Let x denote the least cardinality of a set
in F. If k < |©], then there exists ¥ € F such that |X| = x and so |Q\ Z| = [Q].
Suppose that k£ = |Q]. Then if ¥ € F is such that |2\ ¥| < || and I" is a moiety of
Y (and hence in Q), then either I' € F or £\ T" € F (since otherwise 2\ X € F and
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|2\ ¥| < &, which is a contradiction). In either case, it follows that Sym(£2);r
contains the pointwise stabiliser of some ¥ € F such that [\ X| = [Q].

Therefore by LemmaBT and Theorem [C] it follows that (Sym(Q)(r}, f,9) = 0°
if and only if {f, g} is not a subset of Uy (F, u) U Uz (F, p) for any cardinal p such
that k < u < |QT.

(=) Since (Sym(%), f,g) 2 (Sym(Q) 7y, f,g9) = QY clearly f and g satisfy the
conditions of Corollary 4.2l From the discussion above, it follows that, in particular,
(.9} Z Us(F, |907) UUS(F, |0). Tt g ¢ Uy(F, Q%) and [ ¢ Us(F,|2F), then
there exists ¥ € F and I' ¢ F such that Xf ¢ F and I'g € F, in which case (i)
holds. If f & Uy (F,|QT), then there exists I' ¢ F such that I'f € F. It follows
that Q\T' € F and (Q\T)f C (Q\T'f) ¢ F, and so (R\I')f ¢ F, which implies
(iii) holds. If g & Ux(F,|Q2|"), then there exists X € F such that g ¢ F and
¢(gls) = 0. But g is surjective and so (2\ X)g D Q\ (X¥g) € F. Thus Q\ X ¢ F
but (2 \ X)g € F and so (ii) holds.

(<) If p < |Q], then, since f and g satisfy the conditions of Corollary [£2]
it follows that f & Us(F,u) and g ¢ Ui(F,p). Hence it suffices to show that
{f,9} € UL(F, Q) U Ux(F,|Q7T) if one of (i), (ii), or (iii) holds. It is easy to
verify that if (i) holds, then f ¢ Ua(F,|Q") and g & Uy (F,|Q1); and if (ii) or
(iii) holds, then g & Uy (F, |Q1) U Us(F,|Q|T) or f & UL(F,|QT) UUa(F,|QT),
respectively. O

As above, Theorem [Dl can be used to characterise those f, g € Q that together
with either Stab(P) or AStab(P) generate Q.

Corollary 4.5. Let Q be any infinite set, let P = {29, %1,..., 201}, n > 2, be a
finite partition of Q, and let f,g € Q. Then the following are equivalent:
(1) (Stab(P), f,g) = O,
(IT) (AStab(P), f,g) = Q;
(III) f and g satisfy the conditions of Corollary and one of the following
holds:
(i) ps,pg & Sym(n);
(ii) py & Sym(n) and p}l is total;
(iii) pg & Sym(n) and p, is total.
Proof. (I) = (II) This implication follows immediately since Stab(P) is a subgroup
of AStab(P).

(I) = (III) If ¥ = ¥y U- - -UX,,_1, then Stab(P), and hence AStab(P), contains
the pointwise stabiliser of ¥ in Sym(€2). Hence by Lemma 1] (AStab(P), f,g) =
Q% implies that {f,g} is not a subset of A;(P) or Ay(P). If f & A;(P) and
g & As(P), then pr,p, ¢ Sym(n) and (i) holds. If f & As(P), then p; ¢ Sym(n)
and pJIl is total and (ii) holds. If g & A1(P), then p, & Sym(n) and p, is total and
we are in case (iii).

(III) = (I) Again by Lemma [T}, to prove that (Stab(P), f,g) = Q%, it suffices
to show that none of the maximal subsemigroups in Theorems [A] and [D] contain
both f and g.

Since f and g satisfy the conditions of Corollary [£.2] it follows that they are
not contained in any of the semigroups from Theorem [Al If (i) holds, then f ¢
A1(P) and g ¢ A2(P); if (ii) holds, then, since f is injective, ps is total and so
[ & Ai1(P) U Aa(P); and if (iii) holds, then, since g is surjective, p, ' is total and
so g & A1(P) U Ay(P). O
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5. INVERSES AND PARAMETERS OF MAPPINGS

In this section we present several technical results which we will use repeatedly
throughout the paper.

We begin by considering the semigroup theoretic inverses of mappings in Q.
Roughly speaking, the proofs of the main theorems are in two parts and Corol-
lary 53] will imply that one part is a corollary of the other. More precisely, the
majority of the proof of, say, Theorem [B] consists of showing the following. If U
is a subsemigroup of Q% that is not contained in any of the semigroups listed in
Theorems [A] or [B] but that does contain the stabiliser of a non-empty finite subset
of Q, then U = Q. The stabiliser contains the symmetric group on an infinite
subset ¥ of 2. The two parts of the proof, referred to above, are to construct an
injective mapping in U with image contained in ¥ and a surjective mapping in U
mapping X onto Q. Using Corollary B3] the existence of the surjective mapping is
a consequence of the existence of the injective mapping. The proofs of Theorems [A]
[C and [Dl follow a similar strategy.

If S is a semigroup and s € S, then t € S is an inverse of s if sts = s and tst = t.
Clearly, t is an inverse for s if and only if s is an inverse for ¢t. If f, f/ € Q%, then
/! is an inverse for f if and only if Qf’ is a transversal of f and ff’ is the identity
on Qf'. Note that if f, f/ € Q% are inverses, then c(f) = d(f).

In general, the composition ¢’ f’ of inverses of g and f is not an inverse of the
composite fg. However, for certain composites ¢’ f’ is an inverse of fg.

Lemma 5.1. Let ug,u1,...,u, € Q2 be arbitrary and let u} be an inverse of u; for
all i€ {0,1,....n}. If Quouy - -ul_y C Qu, for alli € {1,...,n}, then ugul - - - ul,
and U, -+ - ULU are inverses.

Proof. We show that wu,---ujug is an inverse of uguj---ul, by showing that
Quy, - - - ugug is a transversal of ugu) - - - u), and uguj - - - uhuy, - - - ugug is the identity
on Qu, - - uilg.

Since Qugu} - - - ul_, is contained in the transversal Qu; of u} for alli € {1,...,n},
it follows that u} - - - u, is injective on Qug. Hence the transversal Qug of ug is also
a transversal of ujuj - - - ul,.

If z € Q, then zugu) ---u;_; € Qu; for all i € {1,...,n}. Since uju; is the
identity on Qu;, it follows that zugu} - - uj_juju; = xuguy - - - ui_, for all x € Q.

Applying this n times we obtain

TUGUY * - UL Uy, -+ - ULUY = TUYUg
for all x € Q. In particular, if z € Qug, then zuju] - - ul uy, - - - uyug = .
Certainly, Quy, -+ ug € Qug and since ugu -« - ul uy, - - uug is the identity on

Quyo, it follows that Quy, - - - ug 2 Quiu] - - ul Uy - - - urug 2 Quyg. O

Definition 5.2. Let V C Q% and let A : V — P(Q) be such that A(v) is a transver-
sal of v for all v € V. We refer to such a A as an assignment of transversals for V.
Then the set of products vgvy - - - v, € (V) such that v; € V and Qug - - - v;—1 C A(v;)
for all i € {1,...,n} is denoted by C(V, A).

Corollary 5.3. Let U C Q9, let u' € QP be an inverse of u for every u € U, let
U ={u:ueU}, andlet A : U" — P(Q) be defined by A(u') = Qu. Then every
element of C(U’, A) has an inverse in (U).
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Proof. Let uquy --- ,ul, € C(U',A). Then Qugu}---u,_; C A(u}) = Qu; for all
i€ {l,...,n}. Thus, by Lemma Il wu, ---ug € (U) is an inverse of ug - - - ul,. O

We will make repeated use of the following lemma, which is similar to Lemma 2.1
n [I4].
Lemma 5.4. Let Q be any infinite set, let p be an infinite cardinal such that
w< |9, and let f,g € Q. Then the following hold:
(i) if u is a reqular cardinal, then k(fg,pn) < k(f,u) + k(g, 1);

)
) .
(ivg c(f) < e(fg) < c(f) + clg);
)
)

v) if [ is surjective (i.e. d(f) =0), then c(fg) = c(f) + c(g);
(vi) if c(g) <p < d(f), then d(fg) > p;
(vii) if d(f) < p < c(g), then c(fg) > p.

Proof. (i) Let a € Q. Then

U sr
Beag—!

If |ag~ Y| <p and |Bf 1| < p for all BEag™!, then, since p is regular, |a(fg) ™| < p.
Hence

k(fg.pn) =HaeQ:la(fg) ™ > p}
<HaeQ:3Feag )BT =2 mH+HaeQ:|ag™| > pu}
< k(f,p) + k(g, 1),

as required.
(ii) It is straightforward to see that

Q\Qg CQ\Qfg C(Q\Qf)guU(Q2\Qg),

and s0 d(g) < d(fg) < [(2\ )gl + d(g) < d(f) + d(g).
(iii) If ¢(g) = 0, then

Q\Qfg = (Q\Qg) U (Qg\2fg) = (Q\Qf)g U2\ Qg)
and [(Q\ Qf)g] = |2\ Qf| = d(f). Hence d(fg) = d(f) + d(g), as required.

(iv) Let X C Q be a transversal of f. Then there exists ¥’ C ¥ such that ¥/ is a
transversal of fg. Hence ¢(f) < ¢(fg). Also ¢(fg) = |Q\ Y| = |Q\ X+ |2\ Y| =
e(f) + |2\ ¥, and so it suffices to show that |X \ X'| < ¢(g). Let T’ be any
transversal of g such that ¥'f CT. If « € ¥\ ¥, then there exists § € ¥’ such
that (a)fg = (8)fg. Since f is injective on X, af # Sf. But Bf € ¥'f CT and so
af € T. Thus (Z\Y)f CQ\Tandso |[Z\Y|=[(Z\X)f] <|Q\T] = c(g), as
required.

(v) Let 3,3, and T be as in part (iv). If d(f) = 0, then X f = Q. But we saw in
part (iv) that (X\X')f C Q\I"and ¥'f C T, and so in this case (X\X') f = Q\T" and
' f =T. Therefore ¢(fg) = |Q\X'| = |Q\Z|+|Z\Y| = |Q\Z|+|Q\T| = ¢(f)+c(g).

(vi) If X is any transversal of g, then, by assumption, |2\ X| = ¢(g) < p and
|Q\ Qf| = d(f) > p. Hence [EN(Q\QSf)| > p. Ifae XN () Qf) is such that
ag € Qfg, then there exists § € Qf such that ag = Bg. So, since ¢(g) < pu,

{ae XN (Q\Qf):ag € Qfg} < p.
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Therefore [{a € ZN (Q\ Qf) : ag & Qfg}| > p, and so

[Q\Qfg| = [ e EN(Q\QS) : ag & Qfgtg| = [{a € BN(Q\QS) : ag € Qf g} = p,
as required.

(vii) As in the proof of (iv), let ¥ be a transversal of f, let ¥ C ¥ be a
transversal of fg, and let " be a transversal of g such that ¥’ f C T". By assumption,
Q\Sf] = |2\ Qf| = d(f) < and [2\T| = c(g) > . Hence [Sf A (2\ )] > p.
Since ¥'f C T and, again as in the proof of (iv), (X \ ¥')f C Q\ T, it follows that
SfN@Q\T)=(Z\Y)f. Thus

p<BFO@\D)]=|(C\Z)f] = [E\Z] <2\ X' = c(fg),

as required. O

6. THE SYMMETRIC GROUP — THE PROOF OF THEOREM [A]

In this section, we give the proof of Theorem [Al We require the following result
from [I4, Theorem 3.3].

Theorem 6.1. Let Q be an infinite set and let f,g € Q be such that f is injective,
g is surjective, and d(f) = k(g,|Q|) = |Q|. Then (Sym(Q), f, g) = Q.

Recall that a subset 3 of an infinite set I' is a moiety of T if |X| = |T'\ | = |T|.

Lemma 6.2. Let Q be any set of singular cardinality and let g € Q% be such that
k(g, ) = |9 for all p < |2|. Then there exists a € Sym(Q2) such that k(gag, |Q]) =
2]

Proof. Since |Q| is singular, there exist £ < |Q] and €, C Q such that |Q,] < |Q]
for all 4 < r and Q = U, ., Q. Let ¥ be a moiety of {a € lag™t| > K}, let
{B(a,p) € Q:p <k} Cag? for all a € X, where B(a, 1) # B(a,v) if p # v, and
let X' = {Jyex{B(a, ) € Qi p < K}

We next show that there exists a moiety I' of  such that |[{a € T : |ag™!| >
pt = 19| for all p < |Q]. In fact, if Q is arbitrarily partitioned into moieties I'y
and I's, then one or the other of these sets has the required property. To see this,
suppose that there exists v < [Q] such that [{a € Ty : |ag™| > v} < [Q|. If pis a
cardinal such that v < pu < |Q|, then k(g, ) = [{a € Q: |ag™!| > p}| = |Q]. But

{aeQ:lag > p}={aeli:|ag | > p}U{aely:lag™| > pu}

and so [{a € Ty : |ag™t| > u}| = |Q|. So we now fix I with the above property.

Assume that ¥ x k is well-ordered. We define, by transfinite recursion, distinct
Y(a, 1) € T such that |y(a, u)g=t| > [©2,] for all (a,u) € ¥ x £ as follows. Let
(o, p) € ¥ x K and let

I ={y(B,v): (B,v) < (e, p)}-

Then [{y € T : |vg7!| > |Qu} = |9] and [I"| < |E x k| = |Q]. So, we may
choose y(a, u) to be any element in the set {y € I\ T": |[yg~!| > [Q,]} which is of
cardinality |€2|.

Since I and ¥/ are moieties, there exists a € Sym(2) such that

(v(a, pw))a = Bla, p)
for all (o, u) € ¥ x k. Therefore, for any a € X,
a(gag)™' 2 | Blaywa=lg™" = | (e, p)g™!

B<K p<Kk
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FI1GURE 1. The composite gag in the proof of Lemma

and so |a(gag) ™| > | U< Qul = [9]; see Figure [l Since [X| = |Q], it follows that
k(gag, |92]) = |9, as required. O

Theorem A (Gavrilov [I1], Pinsker [24]). Let 2 be any infinite set. If || is a
regular cardinal, then the maximal subsemigroups of Q% containing Sym(Q) are:

S ={feQ%:c(f)=0 ord(f) >0},
So ={f € Q% :¢(f) >0 ord(f) =0},
Ss(p) ={f € Q% e(f) < p or d(f) > p},
Su(p) = {f € Q% e(f) = p or d(f) < p},

Ss = {f € Q% : k(f, 1) < |2},

where p is any infinite cardinal not greater than |$)|.

If |9 is a singular cardinal, then the mazximal subsemigroups of QO containing
Sym(f2) are S1, Sa, Ss(p), Sa(p) where p is any infinite cardinal not greater than
19, and

S = {f € 9% (3w < 12)) (K(f.v) < 1)}

If © is any infinite set, then Lemma [5:4] can be used to show that S, Sa, S3(u),
and S4(p) are semigroups for all infinite ¢ < ||. In particular, parts (ii), (iii), and
(iv) show this for Sy; (ii), (iv), (v) show this for Sy; (ii), (iv), (vi) show this for
S3(u); and (i), (iv), (vii) show this for S4(p). It is also straightforward to verify
that none of Sy, Sa, S5(p), Sa(v), with p,v < |Q| infinite cardinals, are contained
in any of the others.

If |Qf is regular, then Lemma [54[i) shows that S5 is a semigroup. If |Q] is
singular, then S5 is a generating set for Q and, in particular, not a semigroup.
Regardless of the nature of ||, Sf is contained in Ss5. However, S5 and S are not
contained in, and do not contain, any of Sy, Sa, S3(u), and S4(u) for any p.
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To show that Sf is a semigroup in the case that || is a singular cardinal, let
f,g € SE. Then there exists u, v < |Q] such that k(f, u) < || and k(g,v) < |2]. Let
x = max{u, v}. If kT denotes the successor of x, then k™ < || since |Q| is singular.
Since k(f,xT),k(g, k") < |Q| and 7T is regular, it follows, by Lemma [5.4)i), that
k(fg,k™) < k(f, k") + k(g,x") < |Q]. Hence fg € S and S is a semigroup.

We require Lemmas and below to complete the proof of Theorem [Al
They are stated in far greater generality than required in this section because we
will use them again in later sections.

If @ € Sym(2), then we denote the set {a € Q : aa # a} by supp(a) and refer
to this set as the support of a.

Lemma 6.3. Let U be a subset of QS, which is not contained in Sy or Sy(u) for
any infinite p < |Q, let A be any assignment of transversals for U (as defined in
Definition [£2)), and let k be any cardinal such that X < k < |Q|. If U contains
an injective f and every a € Sym(Q) with supp(a) C Qf and |supp(a)| < k, then
there exists an injective f* € C(U, A) such that d(f*) > k and Qf* C Qf.

Proof. We prove by transfinite induction that for each cardinal pu < k&,
(2)

there exists f, € C(U, A) such that f, is injective, d(f,) > p, and Qf, C Qf.
If there exists f, € C(U,A) such that f, is injective and d(f,) > p, then, since f,
and f are injective, f,f € C(U,A), fuf is injective, d(f.f) = d(f.) +d(f) > p
and Qf, C Qf; i.e. @) holds for f,f. Hence it suffices to show that there exists
fu € C(U,A) such that f, is injective and d(f,) > p.

Since U € Sy, there exists an injective hg € U C C(U, A) such that d(hg) > 0.
Since hg is injective, hy belongs to C(U, A) and, by Lemma [BA(iii), d(hy) > n for
all n € N. Thus () holds for all finite p.

Let © be any cardinal such that Xy < p < k and assume that (2) holds for
every cardinal strictly less than p. Since U € Sy(p), there exists hy € U such
that c(hy) < p < d(h1). By our inductive hypothesis, there exists an injective
Jehyy € C(U,A) such that d(f.pn,)) > c(hi) and Qfypn,y € Qf. Since fen,) is
injective, |[(Q2\ Qfcn)) fethn)l = 12\ Qfe(n,)| and so

19\ Qf ey | = 12\ Qfeniy) Fetnn)| = [ ety \ Q| < 1QF\ QU -
It follows that
2120, \ A1) < [Q\ A(h)| = c(h) < d(forny)) = [\ Qfeny| < 12\ Q2 |-
Thus there is @ € Sym(€2) such that
(Qf&nyy \ M) e © QF\ Q)

and supp(a) C (Q C(h \A(hl)) U (fo(hl) \ A(h1))a; see Figure 2l Hence, since
Qfenyy € Qf, it follows that supp(a) € Qf and

[ supp(a)| < 2%,y \ A(ha)] < 202\ A(hy)| < p < .

In particular, a,a™! € U.
From the definition of a, it follows that

Qf20 \Ah1) € (U \QFZ,))a™"
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FIGURE 2. The composition ff(hl)(flhl from the proof of Lemma

and so fo(hl)a’l C A(hy); see Figure 2l This shows that z(hl)a*1h1 € C(U,N)
is injective, and d(ff(hl)a_lhl) > d(hy) > p by Lemma BA(ii). It follows that
fu = fZp,ya b € C(U, A), and so () holds for p. O

Lemma 6.4. Let U be a subset of O which is not contained in Sy or S3(u) for
any infinite p < |, and let & be any cardinal such that Rg < k < |Q|. If there exist
a surjective g € U and a transversal T' of g such that U contains every a € Sym(2)
with supp(a) C T and | supp(a)| < &, then there exists g* € (U) such that c(g*) > k
and T'g* = Q.

Proof. Let ¢’ € QO be any inverse for g such that Q¢’ = I" and let u/ € Q be an
arbitrary inverse for u for all u € U \ {g}. We denote {v' € Q% : w € U} by U’
and we set A : U’ — P(Q) to be the assignment of transversals for U’ defined by
A(u') = Qu. Recall that c¢(u) = d(u’) and d(u) = c(u’) for all u € U.

We prove that U’, ¢/, and A satisfy the conditions of Lemma Since U &
S1, U € S3(u), it follows that U’ € Ss and U’ € Sy(p) for all infinite u < k.
Since g is surjective, ¢’ is injective and by assumption Q¢ = I'. In particular,
U’ contains every @’ = a~! € Sym(Q) where supp(a) C Qg¢’ and [supp(a)| < k.
Thus by Lemma [63] there exists an injective f* € C(U’,A) such that d(f*) > k
and Qf* C Qg’. By Corollary B3, (U) contains an inverse g* of f*. Therefore
c(g*) =d(f*) > kand Qf* C T is a transversal of g*, and in particular ['g* = Q. O

Proof of Theorem [Al. Let M be a subsemigroup of Qf containing Sym(2). We first
prove that if M is not contained in any of Sy, Sa, S3(u), Sa(u), or S5 where p is any
infinite cardinal not greater than |Q|, then M = Q. By Lemmas[G.3 and [6.4] there
exist f,g € M such that f is injective, d(f) = |9, ¢ is surjective, and c(g) = |©].
By Theorem [6.1] it suffices to show that there exists a surjective h € M such that
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FIGURE 3. The composite hgag in the proof of Theorem [Al

k(h,|Q]) = |Q|. Since M € S5, there exists hg € M such that k(ho, |©2]) = |2]|. Let
I'={a€cQ:l|ahy'|=|Q|}. Then |T'| =|Q|. Let a € Sym(f2) be any element such
that I'a contains a transversal ¥ of g. So, if a € §2, then there exists § € ¥ such
that Bg = a and so a(hpag) ™' = ag~'a"'hy' D Ba"'hy'. But Ba~' €T and so
|Ba=hy | = |Q|. Thus |a(hoag)~t| = || and, since a € Q was arbitrary, it follows
that hoag is surjective and k(hoag, [Q2]) = |€2|. So the proof is concluded by setting
h = hgag; see Figure [Bl

If |?] is regular, then from the above either M is contained in one of Sy, Sz, S3(1),
S4(p), or S5 or M = Q2. It then follows that if M is a maximal subsemigroup of
Qf containing Sym(Q), then M equals one of Sy, S, S3(u), Si(i), or S5. On the
other hand, if M is one of the semigroups S1, S, S3(u), Sa(p), or S5, then, since
none of these semigroups are contained in any other, it follows that M is a maximal
subsemigroup of Q.

Suppose that || is singular. If M is not contained in any of the semigroups Si,
Sa, Ss(p), Sa(p), or Sg, then, by Lemmal62l M is also not contained in S5 and so,
from the above, M = Q. Hence as in the case that |Q| is regular, it follows that
M is a maximal subsemigroup of Q% if and only if M equals one of Sy, Sy, S3(u),
Sa(u), or Sk. O

7. POINTWISE STABILISERS OF FINITE SETS — THE PROOF OF THEOREM
In this section we prove Theorem

Theorem B. Let Q) be any infinite set and let ¥ be a non-empty finite subset
of Q. Then the mazximal subsemigroups of O containing the pointwise stabiliser
Sym(Q) sy but not Sym(S2) are:

Fi(T,p) = {f € 9% d(f) > p or T € Qf or (CF L CT and e(f) < )} UG,
ET,v)={fecQ:c(f)>v or|Tf] <|T| or (Tf =T and d(f) < v)} U,
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where I is a non-empty subset of ¥ and p and v are infinite cardinals with p < |Q|F
and either [T =1 and v =|Q|T or |T'| > 2 and v < |Q|T.

Throughout this section we let ¥ be a non-empty finite subset of 2. We start
by showing that the sets given in the theorem are actually semigroups.

Proposition 7.1. Let p be any infinite cardinal such that p < Q% and let T be
any non-empty subset of Q. Then Fy (T, n) and Fo(T, p) as defined in Theorem [Bl
are subsemigroups of Q.

Proof. Let f,g € Fi(T,p). If f € For g € §, then fg € §. If d(g) > p, then
Lemma [54(ii) implies that d(fg) > d(g) > pand so fg € Fi(T, p). If T' € Qg, then
' Z Qfg and so fg € Fi(T, p). Assume that Tg=! CT and c(g) < p. If d(f) > p,
then, by Lemma B.4(vi), d(fg) > p. If T' € Qf, then either I' Z Qg or T' C Qg.
In the former case, I' € Qfg, and in the latter, T¢g~! =T ¢ Qf and so I’  Qfg.
In either case, fg € Fi(U,u). T f~t CT and ¢(f) < u, then I'(fg)~! C T and
c(fg) <c(f)+c(g) < p by Lemma BA(iv). Hence Fy (T, ) is a semigroup.

Let f,g € Fo(T,p). If f € For g e, then fg € F. If c(f) > u, then c(fg) >
c(f) > pby LemmaE4(iv) and so fg € Fo(T, p). If [T f] < |T'|, then |I'fg| < |T'| and
so fg € F5(T', ). Hence we may assume that I'f =T and d(f) < p. If ¢(g) > p,
then, by Lemma [4(vii), ¢(fg) > p and so fg € Fo(T,p). If Tg| < ||, then
ITfgl =|Tg| <|T'| and fg € Fo(T,p). fTg =T and d(g) < p, then T'fg=Tg=T
and d(fg) < d(f)+ d(g) < wu, by Lemma [54(ii), and so fg € Fo(T, p). O

We require the following two lemmas to prove Theorem [Bl

Lemma 7.2. Let ¥ be a finite subset of Q and let U be a subset of Q% containing
Sym(Q) sy but which is not contained in Sy or in F3(I', ) for any non-empty subset
T of ¥ and any infinite cardinal p < |QF. If A is an assignment of transversals
(as defined in Definition [52)) for U such that ' C A(u) for all uw € U\ Fo(T, ),
then there exists an injective f € C(U, A) such that Qf N = 0.

Proof. Since ¥ is finite (and 1q € U), it suffices to show that for every injective
fo € C(U, A) with QfyNY # () there exists an injective f; € C(U, A) with Qf;NY C
QfoNX. We will denote Qfy NY by I'. We start by showing that there exists an
injective fo € C(U, A) such that Qfs "X C T and I'fy AT

IfT'fyg # T, then let fo = fo. Hence we may assume that I"fo = I'. Since U is not
contained in So, there exists an injective s € U \ Sz such that d(s) > 0. If I's # T,
then we set fo = sfy. Thus the final case to consider is when I's =T'.

For every infinite cardinal p with p < |Q|T, let h, be an element of U \ Fy(T', ).
Then the following hold:

c(hy) <p,  T'C A(hy),
and either
Th, #T or d(h,) > p.
Note that d(hjg+) <[] < [Q" and so Thig+ # I'. Thus we may let A be the

least infinite cardinal such that T'hy # I'. We will show by transfinite induction
that for every cardinal u strictly less than A

(3)

there exists an injective g, € C(U,A) with Qg, "X =T, I'g, =T and d(g,) > p.
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FIGURE 4. The composite ge(s,)ah, fo from the proof of Lemma

For any finite 1, we may let g, := s*fo. So let u < A be an infinite cardinal and
assume (B) holds for all cardinals strictly less than p. By the inductive assump-
tion there exists an injective ge(n,) € C(U,A) with Qg.p,) N X =T, Lgen,) =T,
and d(ge(n,)) > c(hy). Hence there exists a bijection a € Sym(£2)(x) such that
(Q9en,y)a € A(hy). We define g, := gcn,)ah,fo; see Figure @ Then by con-
struction g, € C(U,A), g, is injective, and since fy is injective d(g,) > d(h,) > p.
Also T'hy, = T', since 1 < A, and gen,,), f, a stabilise I' setwise, and hence I'g, = T..
Finally,

I'=rg,=Tg,NE¥EC Oy, NECQfoNE=T.

Hence (@) holds for all u < A.

Since c(hy) < A, there exists an injective g,y € C(U,A) with Qg.;,yNE =T,
Lgenyy = I and d(ge(n,)) > c(hy). Let b € Sym(Q) (s be such that (Qges,))b C
A(hy); see Figure Then g(s,)bhy is injective, and since g.(;,) and b stabilise
I' setwise but hy does not, I'gpn,)bhy # I'. Thus we let fo = gep,)ahy, which
completes this part of the proof.

We will use the function fo to prove that there exists an injective f; € C(U, A)
with Qfi N X C T If Qfs NX # T, then setting f; = fo concludes the proof.
Hence we only have to consider the case when Qfs MY = I'. Since I'fs # T, it
follows, in this case, that I’f{1 Z T = QfsNX. Thus there are two cases to
consider: Tfy ' Z Qfp or Tfy P € 8. I Tf; 1 € Qfo, then Qff N C T, and we set
fi = f3 ITfy' € %, then there exists i € T'f; '\ X. Since U is not contained
in Sa, there exists s € U \ Sz such that s is injective and d(s) > 0. It follows from
Lemma [5.4((iii) that d(s™) > |X| for some n € N. Hence there exists j € 2\ ¥ such
that j ¢ Qs™ and there is p € Sym(Q)(x) such that (j)p = i. In this case, we set
f1 1= s"pfa; see Figure[6l Then since j € Qs™ and pf, is injective, it follows that
ifg = (])pfg g anpfg = Qfl But ng S F, and so Qfl NXxCr \ {ng} g F, as
required. O
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FIGURE 6. The composite s"pf2 in the proof of Lemma [.2]

Lemma 7.3. Let ¥ be a finite subset of Q and let U be a subset of Q% containing
Sym(2) sy but which is not contained in Sy or in Fy(I', p) for any non-empty subset

T of ¥ and any infinite cardinal p < |Q|T. Then there ezists a surjective g € (U)
such that (2\ X)g = Q.

Proof. If u € U is arbitrary, then we denote an arbitrary inverse for u by u'. We
denote {u’ € Q% :u € U} by U’ and we set A : U’ — P(Q) to be the assignment of
transversals for U’ defined by A(u') = Qu.
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Since Sym(Q)xy € U € Sy U Fi(T', p), it follows that Sym(Q) )y € U" € S2 U
Fy(T, p) for all non-empty subsets I' of ¥ and for all infinite g < |Q|T. If v/ &
F5(T, p) for some v € U, then v ¢ Fi(I',u) and so I’ C Qu = A(w’). Thus by
Lemma [[2] there exists an injective f € C(U’, A) such that Qf NX = (). Then, by
Corollary 53] f has an inverse g € (U). Then g is surjective and Q f is a transversal
of g. In particular, (2\ X)g = Qg = , as required. O

Proof of Theorem [Bl It is straightforward to verify that none of the semigroups
listed in the statement of Theorem [Bl are contained in any of the others from that
list. Moreover, none of these semigroups are contained in any of the semigroups
from Theorem [Al

Let M be a subsemigroup of Q¢ containing Sym(€2)(s) that is not contained
in any of the semigroups in Theorems [A]l or [Bl We will prove that Sym(Q) is a
subsemigroup of M and so Theorem [A]implies that M = Q.

Let T be a finite subset of 2 and let y be an infinite cardinal such that u < |Q|*.
Ifu € Q2 but u ¢ Fy(T, p), then, in particular, u is injective on I' and so there exists
a transversal of u containing I'. In particular, there is an assignment of transversals
A for M such that I' C A(u) for all w € M\ F5(T, ). Hence by Lemma [[22] there
exists an injective f € M such that Qf N3 = @. Since M contains all permutations
with support contained in Q\ X, it contains all permutations with support contained
in Qf. Thus by Lemma there exists an injective f* € M with d(f*) = |Q] and
Qf* CQf CO\X.

By Lemma [[3] there exists a surjective ¢ € M with a transversal I' C Q\ X.
Clearly M contains every permutation with support contained in I'. Hence by
Lemma [6.4] there exists g* € M such that ¢(g*) = || and I'g* = Q.

Since Qf* and T' are moieties of Q \ X, every bijection from Qf* to T' is a
restriction of some element of Sym(2)(x). So, if a € Sym(f2) is arbitrary, then,
since f* and g*|r are injective, there exists b € Sym(€2)xy) such that a = f*bg*.
Therefore Sym(§2) is a subsemigroup of M and so, by Theorem [A] M = Q.

We have shown that if M is a subsemigroup of Q¢ that contains Sym()(x),
then either M is contained in one of the semigroups from Theorem [A] one of the
semigroups I} (', ) or Fy(T',v) from the statement of the theorem, or M = Q.
It follows that if M is maximal, then M is one of these semigroups. On the other
hand, if M is one of Fy (T, 1) or F5(T',v), then, since none of these semigroups are
contained in any of the others or any of the semigroups in Theorem [Al it follows
that M is a maximal subsemigroup of Q. O

8. THE STABILISER OF AN ULTRAFILTER — THE PROOF OF THEOREM D
In this section we give the proof of Theorem [Cl

Theorem C. Let Q be any infinite set, let F be a non-principal ultrafilter on §2,
and let k(> Vo) be the least cardinality of an element of F. Then the mazimal
subsemigroups of Q¥ containing Sym(§2) {7y but not Sym(Q2) are:
UL(F,p) = {f € Q% (d(f) 2 ) or (Uf & F)
or (c(f) <p and (VE & F)(Xf ¢ F))}US,
Us(F, ) = {f € Q% (e(f) > ) or (VS € F)(c(f]z) > 0)
or (d(f) <pand VE€eF)(Zf e F)UugF
for cardinals pi such that k < p < |QT.
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Throughout this section we let F be an arbitrary non-principal ultrafilter on €
and let k be the least cardinality of a set belonging to F. Since F is non-principal,
it follows that kK > Ny. A subset S of Sym(2) is transitive on moieties of  if for
all moieties X, I" of €2 there exists f € S such that X f =I". Recall that Sym(Q)r}
is transitive on moieties in F and hence also on moieties not in F. Moreover, if
[',¥ € F such that [Q\ T > [\ X[, then there exists a € Sym(£2)(z} such that
T'a CX.

The following lemma and its proof are similar to Lemmal[Z.2l We use the following
observation in the statement and proof of the next lemma. If f € Q9 but f ¢
Us(F, 1), then there exists ¥ € F such that ¢(f|g) = 0; in other words f is
injective on X. It follows that ¥ is contained in a transversal A(f) for f and so
A(f) € F. We have shown that every element of Q which does not belong to
Us(F, p) has a transversal in F.

Lemma 8.1. Let U be a subset of QO containing the stabiliser Sym(Q)¢ry of F
but which is not contained in Us(F, ), Sa, or Si(v) for any cardinals p,v such
that g < v <k < p < |Q|T, and let A be an assignment of transversals (as defined
in Definition [52)) for U such that A(u) € F for all uw € U \ Us(F, ). Then there
exists an injective f € C(U, A) such that Qf ¢ F.

Proof. It ¥ C Q such that [X| < &, then ¥ € F and so every a € Sym(2) such that
|supp(a)| < x belongs to Sym(€2)r) and hence to U. Thus by Lemma [6.3] there
exists an injective fo € C(U,A) such that d(fy) > k. We start by showing that
there exists an injective f; € C(U,A) and ¥ € F such that Xf; € F.

If there exists X € F such that X fy € F, then f; := fy is the required function.
Hence we may assume that Xfy € F for all ¥ € F. For every cardinal p such
that k < p < |Q|, let hy, be an element of U \ Uz(F, ). Then the following hold:
c(hy) < p, A(h,) € F, and either d(h,) > p or £h,, ¢ F for some ¥ € F. Note
that d(hjg+) < [ < |Q|" and so there exists ¥ € F such that Xhg+ ¢ F. Thus
we may define

A=min{p: k< p <|QT and (3T € F)(Th, € F)}.

We will show, by transfinite induction, that for every cardinal y strictly less than

Al
(4) there exists an injective g, € C(U, A)
such that d(g,) > p and Xg, € F for all ¥ € F.

By assumption, fy satisfies ({]) for all 4 < k. So let u be any cardinal such that
k < p < A and assume that (@) holds for all cardinals strictly less than .

By the inductive assumption there exists an injective ge(x,) € C (U, A) such that
d(ge(n,y) = c(h,) and Xgep,) € F for all ¥ € F. In particular, Qg.;,) € F, and
so by the comments preceding the lemma there exists a € Sym(€)¢ry such that
QGe(n,ya € A(h,); see Figure[[l We define g, := g(n,,)ah,. Then by construction
gu € C(U,A), g, is injective, and d(g,) > d(h,) > p. Also Xg, € F forall ¥ € F
since this property holds for ge,), @, and h, (since p < A). Hence (@) holds for
all < A

Since c(hy) < A, there exists an injective g.(;,) € C(U, A) such that d(gp,)) >
c(hy) and g,y € F for all ¥ € F. Then as above there exists b € Sym(Q)r)
such that (2gc(n,))0 € A(hy); see Figure Bl Then g, )bhx € C(U, A) is injective.
By the definition of A there exists ¥ € F such that Xhy ¢ F. Hence Ya~ ' € F
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FIGURE 7. The composite g.(x,)ah, in the proof of Lemma .11
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FIGURE 8. The composite g.(n,yahy in the proof of Lemma BTl

and so Q\ Ya~! ¢ F. It follows that (2\ La=1)g~! € F, and, since g is injective,
we have that Sa~g~! € F. Thus if we let fi = ge(n,)ahx and &' = Sa" g~ € F,
then ¥'f; = Xhy € F, which completes this part of the proof.

If Qf1 € F, then f; satisfies the conclusion of the lemma. If Qf; € F, then
there exists I' C Qf; \ ¥’ f1 such that I' € F and |I'| = x (the least cardinality of a
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FIGURE 9. The composite focfi in the proof of Lemma R}

set in F). Hence I'f; ' NY = and [T'f; | = &, since f; is injective. Thus there
exists ¢ € Sym(Q)x) < Sym(£2)(r; such that Tf' CQ\ Qfoc; see Figure [ The
required function is then f = focfy since Qf CQ\T ¢ F and so Qf ¢ F. Finally,
f€C(U,A) since fo,a, f1 € C(U,A). O

Lemma 8.2. Let U be a subset of Q! containing the stabiliser Sym(Q)¢ry of F but
which is not contained in Uy (F, ), S1, or S3(v) for any cardinals p,v such that
No <v <k <p<|QTt. Then there exists a surjective g € (U) with a transversal
A(g) which does not belong to F.

Proof. If uw € U is arbitrary, then we denote an arbitrary inverse for u by u'. We
denote {u/ € Q% :u € U} by U’ and we set A : U’ — P(Q) to be the assignment of
transversals for U’ defined by A(u') = Qu.

Since Sym(Q);ry € U € Uz(F, ) U Sy U S3(v), it follows that Sym(Q);ry C
U’ & Us(F, 1)U SaUSy(v) for any cardinals p, v such that g <v <k < pu < |Q|T.
If o & Us(F, p) for some u € U, then u & Uy (F, ) and so A(u') = Qu € F. Thus
by Lemma [B] there exists an injective f € C(U’, A) such that Qf ¢ F. Then, by
Corollary B3], f has an inverse g € (U). Then g is surjective and Qf ¢ F is a
transversal of g, as required. O

Proof of Theorem [Cl. Tt is easy to check that Uy (F, ) and Us(F, i) are semigroups
and that neither is contained in the other nor in any of the semigroups listed in
Theorem [Al Let M be any subsemigroup of Q containing Sym(2)(}. As in the
proof of Theorem [B], it suffices to prove that if M is not contained in any of the
semigroups from Theorems [Al or [C], then M = Q.

By Lemmas [B.1] and B2] there exist f,g € M such that f is injective, Qf & F,
g is surjective and g has a transversal A(g) ¢ F. Since Sym(€2);r) contains the
pointwise stabilisers in Sym(Q2) of the complements of f and A(g), it follows from
Lemmas and that there exist f*,¢g* € M with f* injective, g* surjective,
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d(f*) = c(g*) = |9, Qf* C Qf and a transversal A(g*) C A(g) for g*. Also since
Qf,Alg) € F it follows that Qf*, A(g*) & F. Since Sym(f2)(ry is contained in M
and it is transitive on moieties not belonging to F, it follows that every element of
Sym(£2) can be given in the form f*ag* for some a € Sym(2)(z. In particular,
Sym(Q) € M, and so, by Theorem [A] M = Q. O

9. THE ALMOST STABILISER OF A FINITE PARTITION —
THE PROOF OF THEOREM

Recall that a finite partition of ) is a partition of {2 into finitely many moieties.
Throughout this section we denote the finite partition {Xg, X1,...,X,_1} of Q with
n > 2 by P, and we write

Stab(P) = {g € Sym(Q) : (Vi)(3))Sig = 3, }

for the stabiliser of P.
A binary relation on an arbitrary set A is just a subset of A x A. If p and o are
binary relations on A, then the composition po of p and o is defined to be

po ={(a,8) € Ax A:(Iy)(a,7) € pand (7,8) € o}

Composition of binary relations is associative, and so we may refer to the semigroup
generated by a set of binary relations. A relation p on A is total if ap = {8 € A :
(o, B) € p} # 0 for all o« € A.

Recall that if f € QP then p; is the binary relation on n = {0,1,...,n — 1}
defined in () as

pr={(i,5) : [Zif N 55 = [}
The purpose of this section is to prove the following theorem.

Theorem D. Let Q be any infinite set and let P = {30, %1,...,35,-1}, n > 2, be
a finite partition of Q. Then the maximal subsemigroups of Q containing Stab(P)
but not Sym(Q) are:

A (P)={f€Q%: p; € Sym
Ay(P) ={f € Q% :p; € Sym
We start by showing that A; (P) and As(P) in Theorem [D] are semigroups.

Proposition 9.1. The sets A1(P) and A2(P) as defined in Theorem [Dl are sub-
semigroups of O, and neither is a subset of the other nor of any of the semigroups
in Theorem [AL

Proof. Tt is easy to verify that neither A;(P) nor A3(P) is contained in the other
nor in any of the semigroups listed in Theorem [Al We only prove that A;(P) is
a subsemigroup of Q; the proof that A(P) is a subsemigroup follows by a dual
argument.

Let f,g € A1(P). Then, certainly, pr, C pspy. Hence, if ps is not total, then
prpg is not total, and so py, is not either, whence fg € A;(P). Assume that
py € Sym(n). Then either prp, € Sym(n) or pspy is not total, depending on
whether p, € Sym(n) or p, is not total. Hence pry € Sym(n) or ps, is not total
and in either case fg € A;(P). O

(n) or pys is not total},
(

n) or pJTI is not total}.

We prove Theorem [Dl in a sequence of lemmas. If ¥ C €2, then we denote by
Sym(X) the pointwise stabiliser of Q\ ¥ in Sym(2).
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Lemma 9.2. Let f,g € Q2. Then there exists a € Stab(P) such that prag = ppy-

Proof. Let i € {0,1,...,n — 1} be arbitrary. If j € ip]l, then |X;f N ;| = (9],
and so X;f N'Y; can be partitioned into |ip,| + 1 moieties. If k € ip,, then ¢ has a
[transversall that intersects g~ 1NY; in a set T'y, where || = |©2]. Hence I'y, can be
partitioned into |ip]71| + 1 moieties. Let a; € Sym(X;) be any element mapping one
of the moieties partitioning 3; f N 3; to one of the moieties partitioning I';, for all
je ip}l and for all k € ip,. The required a € Stab(P) is then just ap---ap—1. O

Lemma 9.3. Let p and o be (not necessarily distinct) binary relations on {0,1, ...,
n — 1} such that p and o= are total but p,oc & Sym(n). Then the semigroup
(Sym(n), p,o) contains the total relation n x n.

Proof. We prove that there exists 79 € (Sym(n), p,o) such that 019 = {0,1,...,
n—1}. If this is the case, then by replacing p by 0~ and o by p~!, there exists 1, €
(Sym(n),o~t, p~1) such that 0r; = {0,1,...,n — 1}. Hence 7, * € (Sym(n), p, o)
and 7'1_17'0 =n X n, as required.

We may assume without loss of generality that 0p = {i: (0,) € p} # {0,1,...,
n—1}. Let A be a subset of {0,1,...,n — 1} with least cardinality such that

Ao ={j: (Fi e A)(i,j) €} ={0,1,...,n —1}.

Since o & Sym(n), it follows that |A| < n and without loss of generality that 0 € A
and |0c| > 1. Also by the minimality of A, for all i € A there exists j € io such
that j & (A\ {i})o.

If |0p| > |A], then let ap € Sym(n) be any permutation such that A C 0pag. In
this case, Opago = {0,1,...,n—1}, as required. If |0p| < |4, then let ag € Sym(n)
be any permutation such that 0 € Opag and Opag C A. In this case, |0pago| >
|0p| + 1 > |0p|. By repeating this argument we find a1, a9, ...,a,, € Sym(n) such
that Opagoaio---amo ={0,1,...,n — 1}, as required. |

Lemma 9.4. Let f € Q% be injective such that d(f) > 0. Then there exists an
ingective f* € (Stab(P), f) such that |X; \ Qf*| > d(f) for all i with0 <i<n-—1.
If d(f) is infinite, then |X; \ Qf*| = d(f) for alli.

Proof. Let p = d(f) and let g = f?". By Lemma B.4l(iii) and (iv), g is injective
and d(g) = 2np. In particular, there exists 0 < i < n — 1 such that |%; \ Qg| > 2u.
If |£; \ Qg > p for all 0 < j < n — 1, then the proof is completed by setting
f* = g. Suppose that there exists j such that 0 < j <n—1and |3; \ Qg| < p. It
follows that jp ' # 0, and so there exists a € Stab(P) such that ip, C jp;1 and
(2 \ Q9)an ;g7 > u. Hence

(Xi\ Qg)ag N X; € (2\ Qg)ag N5 C (2 Qgag) N %5 = 5\ Qgag
and so
25\ Qgag| > |(2:\Q9)agn;| > [(2:\Qg)agNTig~ " gl = [(Zi\Qg)anB;g~"| > p;
see Figure 10. Also, for all 0 < k < n — 1 such that |X; \ Qg¢| > p, we have
|2k \ Qgag| > p. Thus, by repeating this process at most n — 1 times, we obtain
the required f*.

If d(f) is infinite and h € (Stab(P), f), then either d(h) = 0 or d(h) = d(f) by
Lemma [54((ii) and (iii). The final statement follows immediately. O
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FIGURE 10. The composite gag in the proof of Lemma [0.41

Lemma 9.5. Let g € QY be surjective such that c(g) > 0. Then there exists
g* € (Stab(P), g) and a transversal T' of g* such that |X; \ T'| > c(g) for all i with
0<i<n-—1. Ifc(g) is infinite, then |3; \T'| = c(g) for all i.

Proof. If f is any inverse of g, then f is injective and d(f) = ¢(g) > 0, and so
by Lemma [0.4] there exists f* € (Stab(P), f) such that |2; \ Qf*| > d(f) for all ¢
with 0 <4 < n — 1. But every element of (Stab(P), f) is injective, and so € is the
unique transversal of every element in (Stab(P), f). In particular, if A is the unique
assignment of transversals for (Stab(P), f), then (Stab(P), f) = C((Stab(P), f),A)
and so f* € C((Stab(P), f),A). Thus, by Corollary B3] f* has an inverse g* in
(Stab(P), g). Moreover, if I = Qf*, then T' is a transversal of g* and

12\ T = [Z \ Qf*[ > d(f) = c(9),
for all 3. [l

Lemma 9.6. Let U be a subsemigroup of Q% containing Stab(P) such that there
ezist f,g,t € U and the following hold:

(i) f is injective, g is surjective, and d(f) = c(g) = |Q|;

(ii) pr =n x n.
Then Sym(Q2) is contained in U.

Proof. We start by showing that there are fy, go € U such that fy is injective, Q fy
is a moiety of Yg, and Qfygo = Q. By Lemma there exists f* € (Stab(P), f)
such that |X; \ Qf*| = |Q] for all ¢ such that 0 < ¢ < n — 1. Since f is injective,
every element of (Stab(P), f) is injective, and so, in particular, f* is injective. Let
0 <i < n—1be arbitrary. By assumption, Qf*NX; is contained in a moiety of 3;.
Also since p; = n x n, it follows that Yot—! N Y, is a moiety of ¥;. In particular,
there exists a transversal I'; of t|s,;-1qx, such that I'; is a moiety of 3;. Hence
there exists ag € Stab(P) such that (Qf*N%;)ag C T; for all i. Then Qf*agt C 3
and so Q(f*agt)? is a moiety of ¥g. Thus fo = (f*agt)? is the required mapping.
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For each i, let A; be a transversal of t|s -1nx, @ Lo = X;. So each A; is a
moiety of ¥g. Let a; € Stab(P) be any permutation such that Qfya; N A; is a
moiety of A; for all 2. Then |Qfoait N E;| = |Q| for all i. By Lemma [0 there
exist g* € (Stab(P),g) and a transversal A of ¢g* such that |X; \ A] = |Q] for all
7 such that 0 <4 < n — 1. In other words, A N 3; is contained in a moiety of ¥;
for all 4. Since g is surjective, every element of (Stab(P), g) is surjective, and so g*
is surjective. Therefore there exists as € Stab(P) such that fpaitas contains A.
Hence Qfpaitasg™ = Qg* = Q and gy = a1tazg™ is the required function.

To conclude, let b € Sym(§2) be arbitrary. Then if T' is a transversal of g
contained in Qfy, there exists az € Stab(P) such that afpas € ozbgo_1 NI for all
a € Q. But then b = fyazgo, and so Sym(f2) is contained in U, as required. O

At this stage it is straightforward to classify the maximal subsemigroups of Qf
containing the almost stabiliser of a finite partition using the results proved so
far. Since the stabiliser is a subgroup of the almost stabiliser, this classification
is actually a corollary of Theorem To prove the more general Theorem [D] we
require two further lemmas which are similar to Lemmas and [6.4]

Corollary 9.7. Let Q be any infinite set and let P = {X0,%1,...,5n-1}, n > 2, be
a finite partition of Q0. Then the mazimal subsemigroups of Q! containing AStab(P)
but not Sym(§2) are:

Ay (P) ={f € Q% p; € Sym(n) or p; is not total},
Ay(P) ={f € Q% : py € Sym(n) or p;' is not total}.

Proof. Let M be a subsemigroup of Q containing AStab(P) but which is not
contained in any of the semigroups listed in Theorems [Al or [Dl As in the proof of
Theorem [B], it suffices to show that M = Q.

Since M Z A;(P), Az(P), there exist f,g € M such that p; and pg_1 are total
but pf, pg & Sym(n). Hence, by Lemmas and @3], there exists ¢t € M such that
pt = n X n. Since AStab(P) contains {a € Sym(Q2) : |supp(a)| < |2}, it follows
by Lemmas [6.3] and that there exist f*,¢g* € M such that f* is injective, g* is
surjective, and d(f*) = ¢(g*) = |©2|. Thus, by Lemma [0:6, Sym(Q?) is contained in
M, and so, by Theorem [Al M = Q% as required. O

We return to the proof of Theorem

Lemma 9.8. Let U be a subset of QO which contains Stab(P) but which is not
contained in Sy or Sy(p) for any infinite p < |Q|, and let A be any assignment
of transversals for U (as defined in Definition [5.2]). Then there exists an injective
feC(U,A) such that d(f) = |©].

Proof. We prove by transfinite induction that for all cardinals p < |9,
(5) there exists an injective f, € C(U,A) with d(f,) > p.

Since U is not contained in So, there exists an injective hg € U C C(U, A) such that
d(hg) > 0. By taking powers of hy (which also belong to C(U,A)) and applying
Lemma [54((iii) and (iv), it follows that (&) holds for all finite p.

Let o be any cardinal such that Xg < p < || and assume that (&) holds for every
cardinal v < p. Since U € Sy(u), there exists hy € U such that c(hy) < p < d(hy).
By our inductive hypothesis, there exists an injective f.,) € C(U,A) such that

d(fe(ny)) = c(hy).
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FIGURE 11. The composite f*ahy in the proof of Lemma

By Lemma [04] there exists an injective f* € (Stab(P), fon,)) such that
12i \ Qf*| >d(feen,)) for all 0<i<n — 1. Since every element of (Stab(P), fe(n,))
is injective, it follows that (Stab(P), fe,)) € C(U,A) and so f* € C(U,A). Then,
since

23 \ A(R)] < [Q\A(h)] = e(h) < d(feny)) < 150\ Q7|
for all 0 <4 < n — 1, there exists a € Stab(P) such that (Qf* N%¥;)a C A(h1) N3,
for all i; see Figure [0l Hence, if we set f, = f*ahi, then, since f,,a € C(U,A)
and by the definition of a, it follows that f, € C(U,A), f, is injective, and d(f,) >
d(h1) > p by Lemma [54)(ii), as required. O

Lemma 9.9. Let U be a subset of Q% which contains Stab(P) but which is not
contained in Sy or Ss(u) for any infinite p < |Q|. Then there exists a surjective
g € U such that c(g) = |€].

Proof. Let v’ € Q be an arbitrary inverse for u for all u € U. We denote {u’ €
QO u e U} by U and we set A : U’ — P() to be the assignment of transversals
for U’ defined by A(u') = Qu. Recall that c(u) = d(v’) and d(u) = c(u’) for all
ueU.

We prove that U’ satisfies the conditions of Lemma Since U € 51, U ¢
S3(u), it follows that U’ € Sy and U’ € Sy4(p) for all infinite p < |Q2|. Thus
by Lemma there exists an injective f* € C(U’,A) such that d(f*) = |Q|. By
Corollary B3 (U) contains an inverse g* of f*. Therefore ¢(¢*) = d(f*) = Q. O

Proof of Theorem [Dl. Let M be a subsemigroup of Q containing Stab(?) but
not contained in any of the semigroups listed in Theorems [Al or Since M ¢
A1(P), A2(P), there exists f,g € M such that p; and p, ! are total but pys,p, &
Sym(n). Hence, by Lemmas and [0.3] there exists t € M such that p; = n X n.
Also by Lemmas and there exist f*,g* € M such that f* is injective, g* is
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surjective, and d(f*) = c(g*) = |©?|. Thus, by Lemma [0.6] Sym(Q?) is contained in
M, and so, by Theorem [Al M = Q% as required. O

10. MAXIMAL SUBSEMIGROUPS OF THE SYMMETRIC GROUP

In this section we prove that the stabiliser of a non-empty finite set, the al-
most stabiliser of a finite partition, and the stabiliser of an ultrafilter are maximal
subsemigroups of the symmetric group and not just maximal subgroups.

Let T be a subsemigroup of Sym(f2), and let G denote the group generated by
T. If G # Sym(Q) and T # G, then, for any f € G\ T, the semigroup generated by
T and f is a subsemigroup of G. In particular, (T f) # Sym(€2) and hence T is not
maximal. (We remind the reader that (U) always denotes the semigroup generated
by U.) Hence the group generated by any maximal subsemigroup of Sym(§2) that
is not a subgroup is Sym(€).

Theorem 10.1. Let 2 be any infinite set and let ¥ be a non-empty finite sub-
set of Q. Then the setwise stabiliser Sym(Q2);sy of ¥ in Sym(S2) is a mawimal
subsemigroup of Sym(S).

Proof. Let f € Sym(2) \ Sym(Q)¢s;. We must show that (Sym(Q)¢x), f) =
Sym(§2), i.e. that the semigroup generated by Sym(£)¢s; and f is Sym(2). Since
Sym(£2) sy is a maximal subgroup of Sym(€2), it suffices to find g € (Sym(2)xy, f)
such that g has finite order and g ¢ Sym()(s;. By postmultiplying by an element
of Sym(Q)¢s; if necessary, we may assume without loss of generality that every
nontrivial cycle of f contains an element of ¥. Since ¥ is finite, if every cycle of f
is finite, then f itself has finite order, and setting g = f concludes the proof in this
case. So suppose f has at least one infinite cycle. There exists m € N such that f™
has only infinite cycles, each of which contains at most one element of . Again
we may assume without loss of generality that every nontrivial cycle of f™ con-
tains precisely one element of ¥. Then f™ =c¢; ---¢,, where c1,...,c, are disjoint
infinite cycles. We may write ¢; = (..., -1, 0,1, Q;.2,...) where a; o € X.
Welet d; = (..., 2,1, —1,04 2,...) and h = dy ---d,. Then h € Sym(Q)x
and

g=nhf"=(a10,01,1) " (Qr0, 1) € (Sym(Q)(sy, ) \ Sym(Q2) (s}
has order 2, which completes the proof. ([l

If H and K are subgroups of a group G, then the subsemigroup generated by H
and K equals the group generated by H and K. Thus the following two lemmas
are immediate consequences of the corresponding results about subgroups given in
[9] and [23, Note 3(iii) of §4], respectively.

Lemma 10.2. IfT'1,T'y C Q and |T'; NTg| = min{|T'1|, |T2|}, then Sym(I'; UTs)
equals the subsemigroup (Sym(T'1),Sym(I's)) generated by the subgroups Sym(I'1)
and Sym(T's).

Lemma 10.3. Let S be a subsemigroup of Sym(Q2). If S contains Sym(X) for all
moieties X of Q, then S = Sym(Q).

Lemma 10.4. Let S be a subsemigroup of Sym(Q). If S contains Sym(X) for some
moiety X of Q and S is transitive on moieties of 2, then S = Sym((2).
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Proof. 1t suffices by Lemma [[0.3] to show that S contains Sym(I") for every moiety
T of Q. Let T’ be any moiety of Q and let f € Sym(T") be arbitrary. There exist
g, h,k € S such that
Fg=%, Yh=0\%, Q\X)k=T.

Since (¥)g~!fk~th™! = %, it follows that there exists a € Sym(X) C S such that
als = g7 fkTh7 g, Also Xh™lg7tk™! = ¥, there exists b € Sym(X) C S such
that bl = h~lg 1k~ Ys.

We will show that f = gahbk € S. If o € Q\ T is arbitrary, then ag € Q\ ¥ and
so aga = ag, and agh € ¥ and so aghb = ak~!. Therefore

(a)gahbk = (a)ghbk = (a)k™ 'k = a.

If 3 €T, then Bg € ¥ and so Bga = Bfk~'h~!. Thus

(B)gahbk = (B) fk~" bk,
and since Sfk~! € Q\ ¥ and b fixes  \ X pointwise, it follows that

(B)gahbk = (B)f,

as required. O

Let 2 be an infinite set, let P = {0, X1,..., 2,1}, n > 2, be a finite partition
of , and let f € Q. Recall that the binary relation p; on {0,1,...,n — 1} is
defined in Equation () in Section 2] as

pr=10,7) : |Zif N E;| =19}
Theorem 10.5. Let Q be any infinite set and let P = {0, X1,...,5n_1}, n > 2,
be a finite partition of Q). Then AStab(P) is a mazimal subsemigroup of Sym(fQ).

Proof. Let f € Sym(Q) \ AStab(P) be arbitrary. Then by Lemmas and
there exists g € (AStab(P), f) such that p; =n x n.

Let h € Sym(Zog~!). We will show that h = gbga for some a,b € AStab(P).
(In fact, a, b will belong to Stab(P).)

Since p; = n x n, both ;g7 N'X; and X;g N X; are moieties in ; for all
i,7 €{0,1,...,n — 1}. Tt follows that there exists a € AStab(P) such that

(Zig)a = %ig™!
for all i. Define b € Sym(Q) by ab = ag~tha~lg~!ifa € ¥y and ab = ag ta"lg™!
if a & Xp. Since h € Sym(Xog~1), it follows that (Sog~1)h = Xog~ ! and so
Sob = Yog tha™lg™! = Xog T g™ = Bogg Tt = X,
and if i # 0, then
Dib=Yig la"lg™ = Tigg™" =i
Hence b € AStab(P). Let a € Q be arbitrary. If a € $og~!, then ag € Xg, and so
agbga = agg *ha tg ga = ah.

If € Yog~ !, then
1

agbga = agg ta g lga = a = ah,

and so h = gbga, as required. It follows that Sym(Xog~!) < (AStab(P), f). There-
fore, since Xog ' Ny and Tpg~ ' NE; are moieties in ¥y and X1, respectively, and

by Lemma [I0.2]
Sym(Xo U £1) < (Sym(Zo), Sym(Z1), Sym(Eeg~ ")) < (AStab(P), f).
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Since AStab(P) is 2-transitive on X, ..., %, _1, we conclude that (AStab(P), f) =
Sym(Q?), and so AStab(P) is a maximal subsemigroup of Sym(2). O

Theorem 10.6. Let F be an ultrafilter on Q. Then the stabiliser Sym(2)(zy of F
is a mazimal subsemigroup of Sym(€).

Proof. Let f € Sym(£2) \ Sym(Q)(7y. Then either:

(i) there is a subset ¥ of 2 such that ¥ € F and X f ¢ F, or
(i) there is a subset I' of {2 such that ' ¢ F and I'f € F.

It is straightforward to verify that ¥ and I" can be chosen to be moieties of Q. If (i)
holds, then (ii) holds with I' = Q \ 3. If (ii) holds, then (i) holds with ¥ = Q\ T
So we may assume that both (i) and (ii) hold. Let A and A be moieties of Q. If A
and A both belong to F or neither belongs to F, then there exists ag € Sym(Q)r}
such that Aag = A. If A € F and A ¢ F, then we choose a1, as € Sym(Q2) (7} such
that Aa; = ¥ and (Xf)az = A, and note that Aa; fas = A. Similarly, if A € F
and A € F, then there exists a3, as € Sym(2)(ry such that Aazfas = A. We have
shown that (Sym(f2){ry, f) is transitive on moieties. Since Sym(£);r} is full on
every moiety = ¢ F, the result follows from Lemma [T0.41
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