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LAWS OF THE ITERATED LOGARITHM

FOR SELF-NORMALISED LÉVY PROCESSES AT ZERO

BORIS BUCHMANN, ROSS A. MALLER, AND DAVID M. MASON

Abstract. We develop tools and methodology to establish laws of the it-
erated logarithm (LILs) for small times (as t ↓ 0) for the “self-normalised”
process (Xt−at)/

√
Vt, t > 0, constructed from a Lévy process (Xt)t≥0 having

quadratic variation process (Vt)t≥0, and an appropriate choice of the constant
a. We apply them to obtain LILs when Xt is in the domain of attraction of
the normal distribution as t ↓ 0, when Xt is symmetric and in the Feller class
at 0, and when Xt is a strictly α−stable process. When Xt is attracted to the
normal distribution, an important ingredient in the proof is a Cramér-type the-
orem which bounds above the distance of the distribution of the self-normalised
process from the standard normal distribution.

1. Introduction

Let (Xt)t≥0 be a Lévy process on R with canonical triplet (γ, σ2,Π), where
γ ∈ R, σ2 ≥ 0, and Π is the Lévy measure of X, satisfying

(1.1)

∫
R

min(x2, 1)Π(dx) < ∞.

See Bertoin [3] and Sato [27] for basic properties. Suppose Xt has jump process
ΔXt := Xt −Xt−, t > 0, ΔX0 = 0, and define its quadratic variation process by

(1.2) Vt = σ2t+
∑

0<s≤t

(ΔXs)
2, t ≥ 0.

The small time (as t ↓ 0) behavior of Xt, and, in particular, types of iterated
logarithm behavior as t ↓ 0, have been of interest since the work of Khintchine in
the last century. See Sato [27, Sect. 47] for an overview of the results obtained.
More recently, the small time behavior of the self-normalised process1

(1.3)
Xt − at√

Vt

, t > 0,

where a is an appropriate constant, has been studied in a variety of contexts; see,
for example, Maller and Mason [22], and their references. Maller and Mason give
conditions for the convergence in distribution and, more generally, for some kinds of
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compactness behavior of the self-normalised process, related to the Feller stochastic
compactness classes, as t ↓ 0.

A classic result of Khintchine [20] (see Sato [27, p. 358]) tells us that

(1.4) lim sup
t↓0

|Xt|√
2t log log (1/t)

= σ, a.s.

This implies that whenever Xt has no normal component (σ2 = 0), the limsup in
(1.4) is almost surely zero. We shall show, perhaps somewhat unexpectedly, that
if σ2 = 0 and the first t in the denominator of (1.4) is replaced by Vt, then the
limsup can be finite and positive. Thus normalisation by Vt can have a remarkable
stabilising effect. We shall call such limit results self-normalised laws of the iterated
logarithm [LILs] at zero for Xt.

Our aim in this paper is to develop tools and methodology to establish LILs for
small times (as t ↓ 0) for the self-normalised process (Xt − at)/

√
Vt, t > 0, and

apply them when Xt is in the domain of attraction of the normal distribution as
t ↓ 0, when Xt is symmetric and in the Feller class at 0, and when Xt is a strictly
α−stable process. These results can be viewed as analogues of large-time LIL results
of Griffin and Kuelbs [14, 15], Shao [28], Giné and Mason [12] and Jing, Shao and
Zhou [17], for self-normalised random walks. We refer also to the monograph of
de la Peña, Lai and Shao [6] for background and an overview.

Our three LILs are stated in Section 2. After some necessary tools are gathered
together in Section 3, they are proved in Section 4 using a general procedure devel-
oped there. A crucial ingredient when Xt is attracted to normality is a Cramér-type
theorem which bounds above the distance of the distribution of the self-normalised
process from the standard normal distribution, for small t. This result is established
in Section 5 and should be of separate interest. Our LIL in this case is the most
technically involved to establish. Some other needed technical results are collected
in an appendix.

2. LILs at 0 for the self-normalised Lévy process

In order to state our LILs, we need to introduce some notions concerning domains
of attraction and the Feller stochastically compact classes at 0. To do this we must
establish some notation. Define the tail functions based on the Lévy measure Π,
(2.1)

Π
−
(x) = Π{(−∞,−x)}, Π

+
(x) = Π{(x,∞)}, Π(x) = Π

+
(x) + Π

−
(x), x > 0.

Π(x) and Π
±
(x) are nonincreasing right continuous functions on (0,∞), possibly

taking the value +∞ as x → 0+. Truncated mean and variance functions are
defined by

(2.2) ν(x) = γ −
∫
x<|y|≤1

yΠ(dy) and V (x) = σ2 +

∫
0<|y|≤x

y2Π(dy), x > 0.

Also let

(2.3) U (x) = σ2 + 2

∫ x

0

yΠ (y) dy = x2Π (x) + V (x) , x > 0.

These are all right continuous functions on (0,∞) (continuous in the case of U(x)),
and finite for all x > 0 by virtue of property (1.1) of the Lévy measure Π, which
further implies that limx↓0 x

2Π(x) = 0. The function ν(x) may be unbounded as
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x → 0+, but V (x) and U(x) are always finite, with V (0+) = U(0+) = σ2 ∈ [0,∞),
and V (+∞) < ∞ if and only if EX2

1 < ∞.
Note that (Vt)t≥0 in (1.2) is a subordinator with drift σ2 ≥ 0 and Lévy measure

having tail function ΠV (x) = Π(
√
x), x > 0. It’s easy to check that Vt remains

positive, a.s., for all t > 0, if and only if σ2 > 0 or Π(R) = ∞, which we will assume
throughout. The assumption σ2 > 0 or Π(R) = ∞ also implies V (y) > 0 for all
y > 0.

We say that the Lévy process X is in the domain of attraction of the normal dis-
tribution as t ↓ 0, denoted Xt ∈ D(N) at 0, when there are deterministic functions
a(t) and b(t) > 0 such that

Xt − a(t)

b(t)

D−→ N(0, 1), as t ↓ 0.

(N(0, 1) is a standard normal rv.) See Doney and Maller [7] for various analytical
equivalences for Xt ∈ D(N) at 0, among them being that

(2.4) lim
x↓0

x2Π(x)

V (x)
= 0,

or, equivalently, V (x) is slowly varying at 0. Maller and Mason [22] show that we
may always take the centering function a(t) as 0, when Xt ∈ D(N) at 0. This
means that

(2.5) lim
x↓0

x|ν(x)|
V (x)

= lim
x↓0

x|ν(x)− γ|
V (x)

= 0.

In fact Maller and Mason [22] prove that Xt ∈ D(N) at 0 if and only if Xt/
√
Vt

D−→
N(0, 1), as t ↓ 0.

By the Feller class at 0 we will mean the class of Lévy processes Xt which are
stochastically compact at 0 after norming and centering; that is, those for which
there are nonstochastic functions a(t), b(t) > 0 such that every sequence tk ↓ 0
contains a subsequence tk′ ↓ 0 with

(2.6)
Xtk′ − a(tk′)

b(tk′)

D−→ I ′, as tk′ ↓ 0,

where I ′ is a finite rv, a.s., not degenerate at a constant. (The prime on I ′ denotes
that in general it will depend on the choice of subsequence tk′ .) We describe this
kind of convergence as “Xt ∈ FC at 0”. An analytic equivalence for Xt ∈ FC at 0
is

(2.7) lim sup
x↓0

x2Π(x)

U(x)
= c0 < 1.

See Maller and Mason [22] for this and some other results on the Feller class at 0.
Note that if Xt ∈ D(N), then (2.7) holds with c0 = 0. Our first LIL concerns

this case.

Theorem 2.1. Assume σ2 > 0 or Π(0+) = ∞ and Xt ∈ D(N) at 0. Then

(2.8) lim sup
t↓0

± (Xt − tγ)√
2Vt log log (1/t)

= 1, a.s.
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Remark 2.1. (i) Note that (2.7) holds with c0 = 0 when σ2 > 0, since limx↓0 x
2Π(x)

= 0. In this case we have limt↓0 Vt/t = σ2, a.s., by a result of Shtatland [30] (see
also Sato [27, Thm. 43.20, p. 323]). (2.8) then reduces to the constant norming
LIL in (1.4).

(ii) Apart from the case σ2 > 0, we stipulate Π(0+) = ∞ (equivalently, Π(R) =
∞) in Theorem 2.1 since results like (2.8) cannot hold when Π(R) < ∞ (i.e., Xt is
compound Poisson); see the proof of Theorem 2.1.

(iii) We show following the proof of Theorem 2.1 that the centering term tγ in
(2.8) can be deleted.

The interesting case in Theorem 2.1 is thus when σ2 = 0. To illustrate, we give
two examples of Lévy processes in D(N) at 0 which satisfy σ2 = 0 and Π(0+) = ∞.

Example 1. Let Xt be symmetric with σ2 = 0. Assume that for some β > 0 and
all small positive y,

Π (dy) = (β/2) y−3 |log y|−1
(log |log y|)−1−β

dy.

For this example Fristedt [9] shows that

lim sup
t↓0

±Xt√
2t (log log (1/t))(1−β)/2

= 1, a.s.

Example 2. Let Xt be symmetric with σ2 = 0. Assume that for some β > 0 and
all small positive y,

Π (dy) = (β/2) y−3 |log y|−1−β dy.

Let h be a positive, continuous, strictly increasing function on (0,∞) with inverse
function h−1 such that h3 (t) /t ↓ 0 as t ↓ 0. For this example, it follows from

Theorem 1 of Fristedt [9], as he points out, that
∫ 1
0
h−1(y)Π (dy) = ∞ implies

lim sup
t↓0

|Xt|
h(t)

= ∞, a.s.,

whereas if
∫ 1
0
h−1(y)Π (dy) < ∞ and h satisfies two additional technical conditions,

then

lim
t↓0

|Xt|
h(t)

= 0, a.s.

On the other hand, each of these examples satisfies (2.4), hence (2.8) with γ = 0.
This illustrates how

√
Vt can stabilise the behavior of Xt near zero.

For the next result we need a slight modification of the Feller classes. Say that
Xt is in the centered Feller class, written Xt ∈ FC0 at 0, when there exists a
nonstochastic function b(t) > 0 such that Xt/b(t) is stochastically bounded as t ↓ 0
and each subsequential limit random variable Y ′ is nondegenerate. In particular,
this occurs when Xt is symmetric about 0 and Xt ∈ FC at 0.

Results like (2.8), even with the
√
Vt log log(1/t) norming, are not restricted to

Xt ∈ D(N) at 0 (though we expect that the constant “2” in (2.8) is specific to the
normal distribution). The methods we shall develop can also be applied to obtain
bounds of the form

lim sup
t↓0

Xt − tγ√
Vt log log (1/t)

≤ c1, a.s.,
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and

lim sup
t↓0

Xt − tγ√
Vt log log (1/t)

≥ c2, a.s.,

where c1 ≥ c2 > 0, in cases whenXt ∈ FC0 at 0; in particular, whenX is symmetric
and in a domain of attraction of a stable law as t ↓ 0.

The following theorem is a small-time Lévy process version of the LILs given in
Theorems 2 and 3 of Giné and Mason [12] for self-normalised random walks.

Theorem 2.2. Suppose Π(0+) = ∞ and Xt is symmetric about 0. Then

(2.9) lim sup
t↓0

±Xt√
Vt log log (1/t)

≤
√
2, a.s.

If in addition Xt is in the Feller class at zero, then for some constant c > 0,

(2.10) lim sup
t↓0

±Xt√
Vt log log (1/t)

≥ c, a.s.

Remark 2.2. We expect that a deeper analysis of the sort performed by Jing et
al. [17] in proving their Theorem 1.1 would yield a moderate deviation result that
would allow us to specify the constant in (2.10) under added regularity conditions.
However, this is well beyond the scope of the present paper.

The next result, Theorem 2.3, should be compared to Proposition 47.16 in Sato
[27] (see Khintchine [19] and Theorem 11.2 of Fristedt [11]) which gives: suppose
Xt is a strictly α-stable process on R with 0 < α < 2 and Π{(0,∞)} > 0. Let h be
a positive, continuous, increasing function on (0, δ), for some δ > 0. Then

(2.11) lim sup
t↓0

|Xt|
h(t)

= 0, or = ∞, a.s.,

according to whether

(2.12)

∫ δ

0

dt

(h(t))α
< ∞ or = ∞.

Theorem 2.3. Suppose Xt is a strictly α−stable process with 0 < α < 2 and
Π{(0,∞)} = ∞. Then

(2.13) lim sup
t↓0

|Xt|√
Vt log log (1/t)

< ∞, a.s.,

and for some finite constant c > 0,

(2.14) lim sup
t↓0

Xt√
Vt log log (1/t)

= c, a.s.

Remark 2.3. The constant c in (2.14) will be identified in the proof of Theorem
2.3. When Xt is a strictly α−stable subordinator with 0 < α < 1, we have (2.14)
holding, while the version of (2.14) with limsup replaced by liminf is 0, a.s.
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3. Tools for proving LILs

In this section we shall establish a number of tools needed to prove our self-
normalised LILs. Write the Lévy-Itô decomposition of X (cf. Sato [27, Thm. 19.2,
p. 120], Doney and Maller [7, Lemma 6.1, p. 770]) in the form

(3.1) Xt = tν(h) + σZt +X
(S,h)
t +X

(B,h)
t , t ≥ 0, h > 0,

where (Zt)t≥0 is a standard Brownian motion, (X
(S,h)
t )t≥0, is a compensated sum

of jumps of Xt smaller than or equal to h in the modulus

X
(S,h)
t = a.s. lim

ε↓0

⎛⎝ ∑
0<s≤t

ΔXs1{ε<|ΔXs|≤h} − t

∫
ε<|x|≤h

xΠ(dx)

⎞⎠ , t > 0,

and X
(B,h)
t is the big jump part of Xt, defined as

X
(B,h)
t =

∑
0<s≤t

ΔXs1{|ΔXs|>h}.

The corresponding quadratic variation processes are
(3.2)

V
(S,h)
t =

∑
0<s≤t

(ΔXs)
21{0<|ΔXs|≤h} and V

(B,h)
t =

∑
0<s≤t

(ΔXs)
2 1{|ΔXs|>h}, t>0.

As shown by Sato, all three components (Zt)t≥0, (X
(S,h)
t )t≥0, and (X

(B,h)
t )t≥0 in

(3.1) are independent of each other, as are (V
(S,h)
t )t≥0 and (V

(B,h)
t )t≥0 in (3.2).

All moments of X
(S,h)
t and V

(S,h)
t are finite. Observe that, for any t > 0, h > 0,

(3.3) E
(
σZt +X

(S,h)
t

)2
= σ2t+ t

∫
0<|x|≤h

x2Π(dx) = tV (h).

Define, for t ≥ 0,

Ft = σ{Xy : y ≥ t},
with an analogous definition for F (S,h)

t in terms of X
(S,h)
y . Note that the σ–fields

F and F (S,h) concern future values of the process.

Lemma 3.1. Let Xt be a Lévy process with E|X1| < ∞. Then

(3.4) E
(
Xt

∣∣Ft+s

)
=

t

t+ s
Xt+s, a.s., t > 0, s > 0.

In particular, when X
(S,h)
t is the small jump process,

(3.5) E
(
X

(S,h)
t

∣∣F (S,h)
t+s

)
=

t

t+ s
X

(S,h)
t+s , a.s., t > 0, s ≥ 0, h > 0.

Proof of Lemma 3.1. (3.4) is in Lemma 10.3.5, p. 432 of Rolski et al. [26]. Since

|X(S,h)
1 | has finite expectation we can apply (3.4) to get (3.5). �

Lemma 3.2. For s > 0 let (St,At)t≥s be a right-continuous nonnegative sub-
martingale, and fix 0 < c < 1, x > 0, and p > 1, q > 1 with 1/p+1/q = 1. Assume
ESp

t < ∞, t ≥ s. Then for all t ≥ s,

(3.6) P

(
sup

s≤y≤t
Sy > x

)
≤ 1

x(1− c)

∫
{St>cx)

StdP ≤ P 1/q (St > cx)E1/p(Sp
t )

x(1− c)
.
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Proof of Lemma 3.2. Shorack and Wellner [29, p. 870] give the following discrete
time version of (3.6): let (Tn,An), n ≥ k ≥ 1, be a submartingale in discrete time.
Then for any x > 0 and 0 < c < 1,

P

(
max

k≤m≤n
Tm > x

)
≤
∫
{Tn>cx)

TndP

x(1− c)
.

Using this we get

P

(
max

�ns�≤m/n≤�nt�
Sm > x

)
≤

∫
{S�nt�/n>cx) S�nt�/ndP

x(1− c)
.

Since, for s < t, S�nt�/n ≤ sups≤y≤t Sy is integrable by Doob’s inequality, letting
n → ∞ gives the left-hand inequality in (3.6). The right-hand inequality in (3.6)
follows from Hölder’s inequality. �

Lemma 3.3. Let ϕ(z) be a symmetric convex function which is an increasing
function of |z| such that, for each t > 0, E|ϕ(Xt/

√
Vt)| < ∞, and for each t > 0

define

Mu=ϕ

(
t

t+ s− u

Xt+s−u√
Vt+s−u

)
and Gu=σ {(Xy, Vy) : y≥t+ s− u} , for 0≤u≤s.

Then (Mu,Gu)0≤u≤s is a submartingale. This implies, for x > 0, 0 < c < 1, t > 0,
s > 0, the inequalities
(3.7)

P

(
sup

0≤y≤s

t

t+ s− y

∣∣∣∣∣ Xt+s−y√
Vt+s−y

∣∣∣∣∣ > x

)
≤

P 1/q
(∣∣Xt/

√
Vt

∣∣ > cx
)
E1/p

∣∣Xt/
√
Vt

∣∣p
x(1− c)

and
(3.8)

P

(
sup

0≤y≤s

t

t+ s− y

Xt+s−y√
Vt+s−y

> x

)
≤

P 1/q
(
Xt/

√
Vt > cx

)
E1/p

∣∣Xt/
√
Vt

∣∣p
x(1− c)

.

Proof of Lemma 3.3. To check the submartingale property, write

E

(
ϕ

(
Xt√
Vt

) ∣∣∣∣Ft+s

)
≥ E

(
ϕ

(
Xt√
Vt+s

)∣∣∣∣Ft+s

)

≥ ϕ

(
E

(
Xt√
Vt+s

∣∣∣∣Ft+s

))

= ϕ

(
t

t+ s

Xt+s√
Vt+s

)
.(3.9)

Here the first inequality holds since ϕ(z) is a symmetric increasing function of |z|,
the second inequality holds by Jensen’s inequality since ϕ is a convex function, and
the equality holds by (3.4). By applying (3.6) to (Mu,Gu)0≤u≤s, with the convex

functions ϕ(z) = |z| and ϕ (z) = max(0, z), we get (3.7) and (3.8). �

Remark 3.1. We can replace (Xt)t≥0 by (Xt− tc)t≥0, for any c ∈ R, in (3.4), (3.5),
(3.7), and (3.8), because (Xt−tc)t≥0 is a Lévy process, also with quadratic variation
process (Vt)t≥0.
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Lemma 3.4 (Moment bounds for Poissonized sums). Suppose Y, Y1, Y2, . . . are
independent identically distributed (i.i.d.) random variables (rvs), with E|Y |p < ∞,
p ≥ 2, and N is an independent Poisson random variable. Then, for every p ≥ 2,

(3.10) E

∣∣∣∣∣
N∑
i=1

Yi − ENEY

∣∣∣∣∣
p

≤
(

15p

log p

)p

max
[(
ENEY 2

)p/2
, ENE|Y |p

]
.

Moreover, specializing to Y ≡ 1, we have for every p ≥ 2,

(3.11) E |N − EN |p ≤
(

15p

log p

)p

max
[
(EN)p/2, EN

]
.

Proof of Lemma 3.4. This is Lemma 2.3 of Giné, Mason and Zaitsev [13]. �

Remark 3.2. For 0 < p ≤ 2, we get the following bound from Jensen’s inequality:

E |N − EN |p = E[(N−EN)2]p/2 ≤ (EN)p/2.

Now define, for p ≥ 2 and x > 0

Vp (x) =

∫
0<|y|≤x

|y|pΠ(dy) and Up (x) = p

∫ x

0

yp−1Π(y) dy = xpΠ(x)+Vp (x) .

Also, for h > 0, p > 0, define cp = E|Z1|p, where Z1 ∼ N(0, 1), and

Cp = 1{1≤p≤2} + (15p/ log p)p 1{p>2},

and let
(3.12)

Mp (t, h) =

⎧⎪⎪⎨⎪⎪⎩
max{21−p/2, 2p/2} (tV (h))p/2 , 0 < p ≤ 2,

22p−2
(
cpσ

ptp/2 + Cp max
[
(tV2(h))

p/2 , tVp(h)
])

, p > 2,

and
(3.13)

πp (t, h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max{22p−1, 1}
(
tΠ (h)

)p
, 0 < p ≤ 1,

22p−1
[
tΠ(h) +

(
tΠ(h)

)2]p/2
, 1 < p ≤ 2,

23p−2
[
Cp max

[(
tΠ(h)

)p/2
, tΠ(h)

]
+
(
tΠ(h)

)p]
, p > 2.

Lemma 3.5. For any p > 0, t > 0, h > 0, and c ∈ R,

E
(
|Xt − tc| /

√
Vt

)p
≤ max{22p−2, 1} (Mp (t, h) + (t|ν(h)− c|)p)E(V

−p/2
t/2 )

+ πp/2 (t, h) .

(3.14)

Proof of Lemma 3.5. Use the Lévy-Itô decomposition (see (3.1) and the definitions
following it) to write, for t > 0, h > 0,

(3.15)
|Xt − tc|√

Vt

≤ |t(ν(h)− c) + σZt +X
(S,h)
t |√

Vt

+
|X(B,h)

t |√
V

(B,h)
t

.
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First we deal with the small jump part. Write

E
(∣∣∣σZt +X

(S,h)
t

∣∣∣ /√Vt

)p(3.16)

≤ E
((∣∣∣σZt/2 +X

(S,h)
t/2

∣∣∣+ ∣∣∣σ(Zt − Zt/2) +X
(S,h)
t −X

(S,h)
t/2

∣∣∣) /√Vt

)p
≤ E
((∣∣∣σZt/2+X

(S,h)
t/2

∣∣∣ /√Vt − Vt/2 +
∣∣∣σ(Zt − Zt/2)+X

(S,h)
t −X

(S,h)
t/2

∣∣∣ /√Vt/2

))p
≤ 2max{2p−1, 1} E

∣∣∣σZt/2 +X
(S,h)
t/2

∣∣∣p E (V −p/2
t/2

)
,

where in (3.16) the last inequality is implied by the cr-inequality

(3.17) E|ξ + η|p ≤ max{2p−1, 1} (E|ξ|p + E|η|p) (when p > 0) .

For 0 < p ≤ 2 we have by Jensen’s inequality

(3.18) E
∣∣∣σZt/2 +X

(S,h)
t/2

∣∣∣p ≤
(
E
(
σZt/2 +X

(S,h)
t/2

)2)p/2

= 2−p/2(tV (h))p/2.

For the case p > 2, recall again the Lévy-Itô decomposition in (3.1). Now for any
0 < ε < h ≤ 1,∑

0<s≤t

ΔXs1{ε<|ΔXs|≤h} − t

∫
ε<|x|≤h

xΠ(dx)
D
=

Nt∑
i=1

Ji − ENtEJ1,

where the Ji are i.i.d. random variables, i = 1, 2, . . ., with distribution

Π(dx)

Π (ε)−Π(h)
1{ε<|x|≤h},

andNt is a Poisson random variable with expectation t
(
Π(ε)−Π(h)

)
, independent

of the Ji. Lemma 3.4 then gives, for any p > 2,

E

∣∣∣∣∣∣
∑

0<s≤t

ΔXs1{ε<|ΔXs|≤h} − t

∫
ε<|x|≤h

xΠ(dx)

∣∣∣∣∣∣
p

≤ Cp max
[(
ENtEJ2

1

)p/2
, ENtE|J1|p

]
= Cp max

⎡⎣(t ∫
ε<|x|≤h

x2Π(dx)

)p/2

, t

∫
ε<|x|≤h

|x|pΠ(dx)

⎤⎦
≤ Cp max

[
(tV2(h))

p/2, tVp(h)

]
.(3.19)

Letting ε ↓ 0 and using Fatou’s lemma, we get from the inequalities in (3.19) that

(3.20) E
∣∣∣X(S,h)

t

∣∣∣p ≤ Cp max[(tV2(h))
p/2, tVp(h)] (when p > 2),

and, thus, by the cr-inequality again,

E
∣∣∣σZt/2 +X

(S,h)
t/2

∣∣∣p ≤ 2p−1
(
E|σZt/2|p + E|X(S,h)

t/2 |p
)

≤ 2p−2
(
cpσ

ptp/2+Cp max[(tV2(h))
p/2, tVp(h)]

)
(when p>2).(3.21)
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To summarise, for the small jump process, we get from (3.16), (3.18) and (3.21)
that

E
(∣∣∣ t(ν(h)− c) + σZt +X

(S,h)
t

∣∣∣ /√Vt

)p
(3.22)

≤ max{2p−1, 1} (Mp(t, h) + (t|ν(h)− c|)p) E(V
−p/2
t/2 ),

for all p > 0, t > 0, h > 0.
Next, for the big jump component, note that

(3.23)

∣∣∣∑0<s≤t ΔXs1{|ΔXs|≥h}

∣∣∣√∑
0<s≤t(ΔXs)21{|ΔXs|≥h}

≤
√ ∑

0<s≤t

1{|ΔXs|≥h}.

Thus when 0 < p ≤ 2, by Jensen’s inequality,

(3.24) E

(
|X(B,h)

t |/
√
V

(B,h)
t

)p

≤

⎛⎝E
⎡⎣ ∑
0<s≤t

1{|ΔXs|≥h}

⎤⎦⎞⎠p/2

=
(
tΠ(h)

)p/2
,

and when 2 < p ≤ 4, by Jensen’s inequality,

E

(
|X(B,h)

t |/
√
V

(B,h)
t

)p

≤ E

⎛⎝ ∑
0<s≤t

1{|ΔXs|≥h}

⎞⎠p/2

≤

⎛⎜⎝E
⎛⎝ ∑

0<s≤t

1{|ΔXs|≥h}

⎞⎠2
⎞⎟⎠

p/4

=
(
tΠ (h) +

(
tΠ (h)

)2)p/4
.

(3.25)

When q > 2, using (3.11),

E |Nt − ENt|q ≤ Cq max[(ENt)
q/2, ENt]

and

ENq
t ≤ 2q−1 (E |Nt − ENt|q + (ENt)

q) ,

we get

(3.26) ENq
t ≤ 2q−1Cq

(
max[(ENt)

q/2, ENt] + (ENt)
q
)
.

Hence when p > 4, using (3.23) and (3.26) with q replaced by q = p/2, we get

E

(
|X(B,h)

t |/
√
V

(B,h)
t

)p

≤ E

⎛⎝ ∑
0<s≤t

1{|ΔXs|≥h}

⎞⎠p/2

≤ 2(p−2)/2
(
Cp/2 max

[(
tΠ(h)

)p/4
, tΠ(h)

]
+
(
tΠ(h)

)p/2)
.

(3.27)

To summarise, we get from (3.24), (3.25) and (3.27) that, for all p, t, h > 0,

(3.28) max{2p−1, 1} E

(
|X(B,h)

t |/
√
V

(B,h)
t

)p

≤ πp/2(t, h) .

In view of (3.17), bounds (3.15), (3.22), and (3.28) together prove (3.14). �
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Now we need the following construction. Assume Π(0+) = ∞. Recall the
definition of U in (2.3). The function x �→ x−2U(x) is absolutely continuous with
strictly negative derivative on (0,∞). Hence it is strictly decreasing on (0,∞) and
tends to ∞ as x ↓ 0 and to 0 as x → ∞. Let ϕ be its inverse function. This is a
continuous strictly decreasing function with ϕ(0+) = ∞ and ϕ(∞) = 0, and ϕ (1/t)
solves

(3.29) tU (ϕ (1/t)) = ϕ2 (1/t) , for t > 0.

Lemma 3.6. Assume Π(0+) = ∞ and

(3.30) lim sup
y→∞

y|ν(y)− c|
U(y)

< ∞

for some c ∈ R. Then for t > 0, p > 0, and some finite constants Ap > 0, Ãp > 0,

(3.31) E
(
|Xt − tc| /

√
Vt

)p
≤ Ap + Ãp

(
σptp/2 + ϕp (1/t)

)
E(V

−p/2
t/2 ).

Proof of Lemma 3.6. Since x2Π(x) ≤ U(x), (3.29) implies tΠ(ϕ (1/t)) ≤ 1, which
implies, for p > 0,

(3.32) πp/2 (t, ϕ (1/t)) ≤

⎧⎪⎨⎪⎩
24, 0 < p/2 ≤ 2,

23p(Cp/2 + 1), p/2 > 2

(see (3.13)). By (3.30) we have for some D > 0 and all 0 < t ≤ 1,

t |ν (ϕ (1/t))− c| ≤ tD

ϕ (1/t)
U (ϕ (1/t)) = Dϕ (1/t) .

Thus for p > 0,

(3.33) (t |ν (ϕ (1/t))− c|)p ≤ Dpϕp (1/t) .

Now for p ≥ 2 and t > 0,

tVp (ϕ (1/t)) ≤ tUp (ϕ (1/t))

= tp

∫ ϕ(1/t)

0

xp−1Π(x) dx

≤ tpϕp−2 (1/t)U (ϕ (1/t))

= pϕp (1/t) .

Hence (see (3.12))
(3.34)

Mp (t, ϕ (1/t)) ≤

⎧⎨⎩
2ϕp (1/t) , 0 < p ≤ 2,

22p−2cpσ
ptp/2 + 22p−2 max[2p/2, p]Cpϕ

p (1/t) , p > 2.

Putting together (3.14), (3.32), (3.33), and (3.34), we get (3.31). �

We also need:

Lemma 3.7. Suppose (2.7) holds with the given c0. Then, with α = 2(1 − c0) ∈
(0, 2], we have

(3.35) lim inf
x↓0

U(μx)

U(x)
≥ μ2−α, for all 0 < μ < 1,



1748 BORIS BUCHMANN, ROSS A. MALLER, AND DAVID M. MASON

and for all ε > 0 with c0 + ε/2 < 1, i.e., 0 < ε < α, there is an x0 = x0(ε) > 0
such that 0 < x ≤ x0 and 0 < μ < 1 imply

(3.36)
U(μx)

U(x)
≥ μ2−α+ε.

Further, for some c1 = c1(ε) > 0 and all 0 < y ≤ x0,

(3.37) U(y) ≥ c1y
2−α+ε.

Proof of Lemma 3.7. If σ2 > 0, then (3.35)–(3.37) are obvious, so take σ2 = 0.
Assume (2.7) and choose ε > 0 with c0+ε/2 < 1. Then there is an x0 = x0(ε) > 0

such that 0 < x ≤ x0 implies x2Π(x) ≤ (c0 + ε/2)U(x). Hence for 0 < μ < 1 and
0 < x ≤ x0,

log

(
U(x)

U(μx)

)
=

∫ x

xμ

2yΠ(y)

U(y)
dy ≤ 2(c0 + ε/2)

∫ x

xμ

dy

y
= logμ−2c0−ε.

Thus
U(μx)

U(x)
≥ μ2c0+ε = μ2−α+ε,

where α = 2(1 − c0) ∈ (0, 2], proving (3.36). Letting ε ↓ 0 in (3.36) gives (3.35).
Further, take x = x0 in (3.36) to get U(μx0) ≥ μ2−α+εU(x0). Then set y = μx0

to write this as the lower bound in (3.37), valid for 0 < y ≤ x0, because then
μ = y/x0 ≤ 1. �
Remark 3.3. (i) It’s easy to show that (3.35) is also equivalent to

(3.38) lim sup
x↓0

U(λx)

U(x)
≤ λ2−α, for all λ > 1,

with α ∈ (0, 2]. Further, (3.35) and (3.38) imply (2.7).
(ii) Versions of relations (3.35)–(3.38) hold with V (x) in place of U(x) if (2.7) is

replaced by the equivalent condition

(3.39) lim sup
x↓0

x2Π(x)

V (x)
= c < ∞.

(To be precise, the bounds in (3.35) and (3.38) then have to be multiplied by
positive constants, in general.)

Let LV (z) = Ee−zVt , z > 0, be the Laplace transform of the subordinator Vt.
Then

LV (z) = e−tΨV (z),

where

ΨV (z) = σ2z +

∫ ∞

0

(1− e−zx)dΠV (x).

Lemma 3.8. (i) We have the identity

(3.40) E

(
1

V
p/2
t

)
=

1

Γ(p/2)

∫ ∞

0

e−tΨV (z)zp/2−1dz, t > 0, p > 0.

(ii) Suppose Xt ∈ FC at 0. Then for all p > 0 and some c± > 0 there is a
t0 > 0 such that

(3.41)
c−

ϕp(1/t)
≤ E

(
1

V
p/2
t

)
≤ c+

ϕp(1/t)
, for 0 < t ≤ t0.
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Proof of Lemma 3.8. (i) For p > 0,

E

(
1

V
p/2
t

)
=

1

Γ(p/2)

∫ ∞

0

LV (z)z
p/2−1dz,

which gives (3.40).
(ii) By Bertoin [3, Prop. 1, p. 74], there are positive constants c1, c2 such that

c1z(σ
2 + IV (1/z)) ≤ ΨV (z) ≤ c2z(σ

2 + IV (1/z))

for all z > 0, where

IV (1/z) =

∫ 1/z

0

ΠV (y)dy =

∫ 1/z

0

Π(
√
y)dy = 2

∫ 1/
√
z

0

yΠ(y)dy.

Thus

(3.42) c1zU(1/
√
z) ≤ ΨV (z) ≤ c2zU(1/

√
z)

for all z > 0, and so from (3.40),

1

Γ(p/2)

∫ ∞

0

e−c2tzU(1/
√
z)zp/2−1dz

≤ E

(
1

V
p/2
t

)
≤ 1

Γ(p/2)

∫ ∞

0

e−c1tzU(1/
√
z)zp/2−1dz,

or, equivalently,
(3.43)

2

Γ(p/2)

∫ ∞

0

e−c2tU(x)/x2

x−p−1dx≤E

(
1

V
p/2
t

)
≤ 2

Γ(p/2)

∫ ∞

0

e−c1tU(x)/x2

x−p−1dx.

Recalling that ϕ is the inverse function to x−2U(x), we get from (3.43) that

(3.44)
2

Γ(p/2)

∫ ∞

0

e−c2ts
|dϕ(s)|
ϕp+1(s)

≤ E

(
1

V
p/2
t

)
≤ 2

Γ(p/2)

∫ ∞

0

e−c1ts
|dϕ(s)|
ϕp+1(s)

.

We can invert the inequality (3.36) as follows. (3.36) implies, for all 0 < μ < 1
and 0 < x ≤ x0(ε),

U(μx)

(μx)2
≥ μ−α+εU(x)

x2
;

hence μx ≤ ϕ(μ−α+εy), where y = U(x)/x2, and thus, x = ϕ(y). Now x ≤ x0 iff
y = U(x)/x2 ≥ U(x0)/x

2
0 =: y0 = y0(ε). Then for all 0 < μ < 1 and y ≥ y0(ε), we

have

μϕ(y) ≤ ϕ(μ−α+εy).

Let λ = μ−α+ε in this to get

(3.45) ϕ(y) ≤ λ
1

α−εϕ(λy),

valid for all λ ≥ 1 and y ≥ y0(ε). Note that y0 depends on ε only, not on λ.
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Also, (3.37) gives ϕ(y) ≥ cy−
1

α−ε , for large y and some c > 0. Thus, integrating
by parts in (3.44), we find, for t > 0,

E

(
1

V
p/2
t

)
≤ 2

Γ(p/2)

∫ ∞

0

e−c1ts
|dϕ(s)|
ϕp+1(s)

=
2c1t

pΓ(p/2)

∫ ∞

0

e−c1ts
ds

ϕp(s)

=
c1

Γ(1+p/2)

∫ ∞

0

e−c1s
ds

ϕp(s/t)

=
c1

Γ(1+p/2)

(∫ 1

0

+

∫ ∞

1

)
e−c1s

ds

ϕp(s/t)
.(3.46)

Then ∫ 1

0

e−c1s
ds

ϕp(s/t)
≤ 1

ϕp(1/t)

∫ 1

0

e−c1sds

≤ 1

c1ϕp(1/t)
,(3.47)

while by (3.45) we have for 0 < t ≤ t0(ε) := 1/y0(ε) that∫ ∞

1

e−c1s
ds

ϕp(s/t)
=

1

ϕp(1/t)

∫ ∞

1

e−c1s

(
ϕ(1/t)

ϕ(s/t)

)p

ds

≤ 1

ϕp(1/t)

∫ ∞

1

s
p

α−ε e−c1sds

≤
Γ( p

α−ε + 1)

c
p

α−ε+1

1 ϕp(1/t)
.(3.48)

Together, (3.46), (3.47) and (3.48) prove the right-hand inequality in (3.41). For
the left-hand inequality in (3.41), use (3.44) and integration by parts to write

E

(
1

V
p/2
t

)
≥ c2

Γ(1+p/2)

∫ ∞

1

e−c2s
ds

ϕp(s/t)

≥ e−c2

Γ(1+p/2)ϕp(1/t)
.

This completes Lemma 3.8. �

Lemma 3.9. Assume σ2 > 0 or Π(R) = ∞, E|Xt| < ∞, EXt = tμ, t > 0, and
write

(3.49) Xt − μt =:

n∑
i=1

Y (i, t, n), t > 0, n ≥ 1,

where for each t > 0,

Y (i, t, n) := Xit/n −X(i−1)t/n − tμ/n.
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Then
(3.50)(

n∑
i=1

Y (i, t, n),
n∑

i=1

Y 2(i, t, n)

)
=

(
Xt − tμ,

n∑
i=1

Y 2(i, t, n)

)
ucp−→ (Xt − tμ, Vt) ,

where the convergence is ucp (in probability, uniform on compact subsets of t; Prot-
ter [24, p. 57]).

Proof of Lemma 3.9. The Y (i, t, n) are i.i.d., 1 ≤ i ≤ n, distributed as Xt/n−tμ/n,
and

n∑
i=1

Y 2(i, t, n) =

n∑
i=1

(
X2

it/n −X2
(i−1)t/n − 2X(i−1)t/n(Xit/n −X(i−1)t/n)

)
− 2tμ

n∑
i=1

(Xit/n −X(i−1)t/n)/n+ t2μ2/n

= X2
t − 2

n∑
i=1

X(i−1)t/n(Xit/n −X(i−1)t/n)− 2tμXt/n+ t2μ2/n

ucp−→ X2
t − 2

∫ t

0

Xs−dXs, as n → ∞,(3.51)

where the convergence holds by Theorem 21, p. 64, of Protter [24]. The last quantity
is the quadratic variation of X, namely, Vt. So we have (3.50). �

4. Self-normalised LIL proofs

In this section we prove Theorems 2.1–2.3. We begin by developing a general
methodology. This is then applied in the following subsections to establish the
upper and lower bound parts of each of the three LIL theorems.

Proposition 4.1 (Upper bound). Suppose that for some constants γ1 > 0 and
ε0 > 0, for all 0 < ε < ε0,

(4.1) lim sup
t↓0

logP
(
(Xt − tγ) /

√
Vt >

√
γ1 (1 + ε) log log (1/t)

)
log log (1/t)

≤ − (1 + ε) ,

and for every p > 1 there exist tp > 0 and 0 < Bp < ∞ such that

(4.2) sup
0<t≤tp

E
∣∣∣(Xt − tγ) /

√
Vt

∣∣∣p ≤ Bp.

Then

(4.3) lim sup
t↓0

Xt − tγ√
γ1Vt log log (1/t)

≤ 1, a.s.

Proof of Proposition 4.1. Define for r ≥ 2

δr = exp(−r/ (log r)
2
),

and let

Λr = sup
δr+1<t≤δr

Xt − tγ√
Vt

.
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Note that since δr/δr+1 → 1, we have for all ε0 > ε > ε′ > 0 and all large r,

P
(
Λr > (γ1 (1 + ε) log r)

1/2
)

≤ P

(
sup

0≤s≤δr−δr+1

δr+1

δr+1 + s

Xδr+1+s − (δr+1 + s)γ√
Vδr+1+s

> (γ1 (1 + ε′) log r)
1/2

)
,

which by inequality (3.8) does not exceed, for any p > 1 and 0 < c < 1,
(4.4)

P 1/q
((

Xδr+1−δr+1γ
)
/
√

Vδr+1 >c (γ1 (1+ε′) log r)
1/2

)
E1/p

(∣∣(Xδr+1−δr+1γ)/
√

Vδr+1

∣∣p)

(γ1 (1 + ε′) log r)1/2 (1− c)

where q = 1− 1/p. (Recall that in inequality (3.8) we can replace X· by X· − ·γ.)
Now since

(log r) / log log (1/δr+1) → 1, as r → ∞,

we see by (4.1) and (4.2) that for any 0 < ε′′ < ε′ and for all large enough r, the
bound in (4.4) is

(4.5) ≤ exp
(
−q−1c2 (1 + ε′′) log r

)
B1/p

p .

Clearly by choosing p > 0 large enough and 0 < c < 1 close enough to 1, so that
q−1c2 (1 + ε′′) > 1, we get from the bound (4.5) that

∞∑
r=2

P
(
Λr > (γ1 (1 + ε) log r)

1/2
)
< ∞,

which by the Borel-Cantelli lemma implies (4.3), since ε > 0 can be chosen as close
to 0 as desired. �

Proposition 4.2 (Lower bound). Suppose

(4.6) lim sup
t↓0

|Xt − tγ|√
Vt log log (1/t)

< ∞, a.s.,

and there are constants γ2 > 0 and 1 > ε0 > 0 such that, for all 0 < ε < ε0,

(4.7) lim inf
t↓0

logP
(
(Xt − tγ)/

√
Vt >

√
γ2 (1− ε) log log (1/t)

)
log log (1/t)

≥ − (1− ε) .

Then

(4.8) lim sup
t↓0

Xt − tγ√
γ2Vt log log (1/t)

≥ 1, a.s.

Proof of Proposition 4.2. For any β > 1 and k > (log 2)
−1/β

, define

ηk = 2−kβ

and λk =
∞∑
j=k

ηj .

Observe that, by our choice of k, we have − log ηk = kβ log 2 > 1. For future use,
note that since for j ≥ k,

jβ − kβ ≥ β (j − k) kβ−1 ≥ β (j − k) ,
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we have

(4.9) 2−kβ ≤ λk ≤ 2−kβ
∞∑
j=k

2−jβ+kβ ≤ 2−kβ
∞∑
j=0

2−βj = 2−kβ

/
(
1− 2−β

)
,

which implies, in particular,

(4.10) log log (1/λk−1) / (β log k) → 1, as k → ∞.

Next, for k > (log 2)
−1/β

+ 1 =: κβ , set

S (k) = Xλk−1
−Xλk

− (λk−1 − λk) γ and V (k) =
∑

λk<t≤λk−1

(ΔXt)
2
.

We see that for each k > κβ,

S (k) /
√
V (k)

D
=
(
Xηk−1

− ηk−1γ
)
/
√
Vηk−1

,

and
{
S(k)/

√
V (k)

}
k>κβ

are independent random variables. As log log (1/ηk−1) /

log k → β when k → ∞, given 0 < ε′ < ε < ε0 < 1 < β with (1− ε′)β < 1, we
have by (4.7)

P
(
S (k) /

√
V (k) >

√
γ2 (1− ε) β log k

)
≥ exp (− (1− ε′)β log k) ,

for all large enough k. Since (1− ε′) β < 1,∑
k>κβ

P
(
S (k) /

√
V (k) >

√
γ2 (1− ε) β log k

)
= ∞,

which implies by the Borel-Cantelli lemma that

(4.11) lim sup
k→∞

S (k)√
γ2βV (k) log k

≥
√
1− ε, a.s.

Applying (3.5) to Vt we get for h > 0, t > 0, s > 0,

E

(
V

(S,h)
t

V
(S,h)
t+s

∣∣∣∣σ(V (S,h)
y , y ≥ t+ s)

)
=

t

t+ s
,

which, since G1 := σ(V
(S,h)
y , y ≥ t+s) and G2 := σ(V

(B,h)
y , y ≥ t+s) are independent

σ-fields and σ(Vy, y ≥ t+ s) = σ(G1 ∪ G2), gives

E

(
V

(S,h)
t

V
(S,h)
t+s

∣∣∣∣σ(V (S,h)
y , y ≥ t+ s)

)
= E

(
V

(S,h)
t

V
(S,h)
t+s

∣∣∣∣σ(Vy, y ≥ t+ s)

)
=

t

t+ s
.

Now by letting h → ∞ we get, by dominated convergence,

E

(
Vt

Vt+s

∣∣∣∣σ(Vy, y ≥ t+ s)

)
=

t

t+ s
.

It follows that

E

(
Vλk

Vλk−1

)
=

λk

λk−1
≤

2−kβ∑∞
j=k 2

−jβ+kβ

2−(k−1)β
,

which by (4.9) and (k − 1)β − kβ ≤ −β (k − 1)β−1 is bounded above by

2−β(k−1)β−1

/(1− 2−β).
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Thus
∑

k>κβ
E
(
Vλk

/Vλk−1

)
< ∞, which implies that

(4.12)
Vλk

Vλk−1

→ 0, a.s.

By assumption (4.6) and (4.10),

lim sup
k→∞

|Xλk
− λkγ|√

Vλk
log k

< ∞.

Hence by (4.12),

(4.13) lim
k→∞

|Xλk
− λkγ|√

Vλk−1
log k

= 0, a.s.

We now get by (4.10), (4.11) and (4.13) that

lim sup
k→∞

Xλk−1
− λk−1γ√

γ2Vλk−1
log log (1/λk−1)

≥ lim sup
k→∞

S (k)√
γ2βV (k) log k

− lim
k→∞

|Xλk
− λkγ|√

γ2βVλk−1
log k

≥
√
1− ε, a.s.,

which implies (4.8) since ε > 0 can be chosen arbitrarily close to 0. �

4.1. Proof of Theorem 2.1. Assume σ2 > 0 or Π(0+) = ∞ and Xt ∈ D(N) at
0.

We begin with the observation that the random time τ := inf{t > 0 : |ΔXt| > 1}
is exponential with expectation 1/Π(1) if Π(1) > 0 and +∞ otherwise; hence τ > 0

a.s., and we have X
(B,1)
t = V

(B,1)
t = 0 for 0 ≤ t ≤ τ . So by (3.1) and (3.2), to prove

an LIL for
Xt − tγ√

Vt

as t ↓ 0, it suffices to establish one for (σZt + X
(S,1)
t )/

√
V

(S,1)
t . Therefore in the

remainder of the proof of Theorem 2.1 we shall assume without loss of generality
that

(Xt − tγ, Vt) =
(
σZt +X

(S,1)
t , V

(S,1)
t

)
,

equivalently, Π(1) = 0. Then, in particular, Xt and Vt have finite moments of all
orders.

Since Xt ∈ D(N) at 0, (2.4) and (2.5) hold. Thus (3.30) holds with c = γ, and
(2.7) holds with c0 = 0, so Xt ∈ FC at 0 and (3.41) of Lemma 3.8 is applicable.
In (3.41), ϕ(1/t) is in RV (1/2) as t ↓ 0, because U(x) is slowly varying at 0; this
follows immediately from (3.35) with c0 = 0 and from (3.29). (Note that if σ2 > 0,

ϕ(1/t) ∼ σ
√
t as t ↓ 0, and then (3.41) of Lemma 3.8 gives EV

−p/2
t  t−p/2 as

t ↓ 0.) We now deduce from (3.31) that for each p > 1 there is a 0 < Bp < ∞ with

(4.14) lim sup
t↓0

E
(
|Xt − tγ|/

√
Vt

)p
≤ Bp.

Next we apply the Cramér-type bound given in Theorem 5.2. (Theorem 5.2 is
proved independently. Refer to Section 5 for its statement and proof.) From (5.9)
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it is easy to conclude that (4.1) holds with γ1 = 2 both for (Xt − tγ) /
√
Vt and for

− (Xt − tγ) /
√
Vt. Thus we can apply Proposition 4.1 to get

(4.15) lim sup
t↓0

|Xt − tγ|√
2Vt log log (1/t)

≤ 1, a.s.

Also from (5.9) we get that (4.7) holds with γ2 = 2. Hence by Proposition 4.2,

(4.16) lim sup
t↓0

Xt − tγ√
2Vt log log (1/t)

≥ 1, a.s.

This completes the proof of Theorem 2.1. �
The next lemma allows us to delete the centering in Theorem 2.1.

Lemma 4.1. Suppose σ2 > 0 or Π(0+) = ∞ and (3.37) holds with α ∈ (0, 2].
Then

(4.17) lim
t↓0

Vt

tβ
= ∞, a.s., for all β > 2/α.

Proof of Lemma 4.1. The result can be deduced quickly from Theorem 3.3 of
Bertoin, Doney and Maller [4]. We omit the details. �

4.2. Proof of Theorem 2.2. Assume Π(0+) = ∞, Π(1) = 0 and Xt is symmetric
about 0. First we shall show that for some ε0 > 0, (4.1) holds with γ1 = 2 for all
0 < ε < ε0. We have, for all x > 0,

(4.18) P
(
±Xt/

√
Vt > x

)
≤ e−x2/2.

To see this, define

Xt =

n∑
i=1

Y (i, t, n), t > 0, n ≥ 1,

where Y (i, t, n) := Xit/n −X(i−1)t/n. Since Xt is a symmetric Lévy process,

±
∑n

i=1 Y (i, t, n)√∑n
i=1 Y

2(i, t, n)

D
=

∑n
i=1 siY (i, t, n)√∑n
i=1 Y

2(i, t, n)
,

where s, s1, . . . , sn, are i.i.d. with P {s = −1} = P {s = 1} = 1/2, independent of
Y (i, t, n), i = 1, 2, . . . , n. Conditioning on Y (1, t, n), . . . , Y (n, t, n) and applying
Hoeffding’s [16] inequality, we get

P

( ∑n
i=1 siY (i, t, n)√∑n
i=1 Y

2(i, t, n)
> x

)
≤ e−x2/2.

Now apply Lemma 3.9 in which we can take μ = 0 by the symmetry to get

lim
n→∞

P

(
±
∑n

i=1 Y (i, t, n)√∑n
i=1 Y

2(i, t, n)
> x

)
= P

(
±Xt√
Vt

> x

)
.

This proves (4.18). Thus the first upper bound condition (4.1) of Proposition 4.1
holds with γ1 = 2 and any ε0 > 0. Moreover, from inequality (4.18) we can also
infer that for every p > 1 there exists a Bp ∈ (0,∞) such that (4.2) holds with
γ = 0, independently of t > 0. Hence (2.9) holds.

We shall now show that when Xt is also in the Feller class at zero, condition
(4.7) of Proposition 4.2 is satisfied. This will follow from the next two lemmas.
Note that symmetry is not assumed in these two lemmas.
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Lemma 4.2. Suppose there exists a nonstochastic function b (t) > 0 such that every
sequence tk ↓ 0 contains a subsequence tk′ ↓ 0 such that

Xtk′ /b(tk′)
D→ Y ′,

where Y ′ is a finite rv which does not place positive mass at 0. Then

(4.19) lim
c↓0

lim sup
t↓0

P (|Xt/b(t)| ≤ c) = 0.

Proof of Lemma 4.2. Suppose on the contrary that there exists an ε > 0 such that

(4.20) lim
c↓0

lim sup
t↓0

P (|Xt/b(t)| ≤ c) > ε.

Let c1 > 0 and t1 > 0 be such that

P (|Xt1/b(t1)| ≤ c1) > ε.

Now let 0 < t2 < t1/2 be such that

P (|Xt2/b(t2)| ≤ c1/2) > ε.

Continuing, we select 0 < tm+1 < tm/2m such that

P
(∣∣Xtm+1

/b(tm+1)
∣∣ ≤ c1/2

m
)
> ε.

We can find a subsequence tm′ of tm+1 such that

Xtm′ /b(tm′)
D→ Y ′.

Since, by assumption, Y ′ does not place positive mass at 0, 0 is a continuity point
of G, the cumulative distribution of |Y ′|. Therefore we can find a continuity point
y > 0 of G as close to 0 as desired such that 0 < y < c1 and P (|Y ′| ≤ y) < ε/2.
Now since

P
(∣∣Xtm′/b(tm′)

∣∣ ≤ y
)
→ P (|Y ′| ≤ y)

we see that P
(∣∣Xtm′/b(tm′)

∣∣ ≤ y
)
≤ ε for all large enough m′, which contradicts

the fact that

P
(∣∣Xtm′/b(tm′)

∣∣ ≤ c1/2
m′
)
> ε for all m′. �

Lemma 4.3. Suppose Xt ∈ FC0 at 0. Then there exist δ > 0 and 0 < t0 < 1 such
that for all integers r > 1 and 0 < t ≤ t0,

(4.21) P
(
|Xtr|/

√
Vrt > δ

√
r
)
≥ exp (−r) .

Proof of Lemma 4.3. Suppose Xt ∈ FC0 with norming function b(t). Choose any
integer r > 1. By Proposition 6.2 in the Appendix, every subsequential limit law
of Xt/b(t) has a density and hence does not place positive mass at 0. Thus we can
apply Lemma 4.2 to infer the existence of c > 0 and 0 < t0 < 1 such that for all
0 < t ≤ t0,

P (|Xt/b(t)| > c) >
18

20
.

Clearly for each such t either P (Xt/b(t) > c) > 9/20 or P (Xt/b(t) < −c) > 9/20.
Suppose

(4.22) P (Xt/b(t) > c) > 9/20.
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By Theorem 2.1 of Maller and Mason [22], Xt ∈ FC0 at 0 implies that Vt/b
2 (t) is

stochastically bounded as t ↓ 0. Thus there exist M > 0 and 0 < s0 < 1 such that
for all 0 < t ≤ s0,

(4.23) P
(
Vt/b

2(t) > M2
)
< 9/20− e−1.

Thus if 0 < t ≤ t0 ∧ s0 and (4.22) holds, then
(4.24)

P
(
Xt/b(t) > c,

√
Vt/b(t) ≤ M

)
≥ P (Xt/b(t) > c)− P

(
Vt/b

2(t) > M2
)
> e−1.

Set ΔXt (i) = Xit −X(i−1)t and ΔVt (i) = Vit − V(i−1)t for i = 1, . . . , r. We have
by independence

P
(
|Xtr|/

√
Vrt > c

√
r/M
)
≥ P
(
Xtr/b(t) > cr,

√
Vrt/b(t) ≤ M

√
r
)

≥ P
(
ΔXt (i) /b(t)>c,

√
ΔVt (i)/b(t) ≤ M, i=1, . . . , r

)
≥ e−r.

The same inequality holds if P (Xt/b(t) < −c) > 9/20. �

Remark 4.1. Suppose Xt ∈ FC at 0 and Xt is symmetric about 0. The same proof
shows that there exist δ > 0 and 0 < t0 < 1 such that for all integers r > 1 and
0 < t ≤ t0,

(4.25) P
(
Xtr/
√
Vrt > δ

√
r
)
≥ exp (−r) .

Returning to the proof of Theorem 2.2, choose any 0 < ε < 1. Set for 0 < t < e−2

r (t) = �(1− ε) log log (1/t)� .
We get by Lemma 4.3, for some t0 > 0 and δ > 0, and for all 0 < t/r(t) ≤ t0 (note
that we write t = (t/r(t)) r(t)), that

logP
(
|Xt|/

√
Vt > δ

√
(1− ε) log log(1/t)

)
log log(1/t)

≥
logP

(
|Xt|/

√
Vt > δ

√
r (t)
)

log log(1/t)

≥ −�(1− ε) log log(1/t)�
log log(1/t)

,

which implies

lim inf
t↓0

logP
(
|Xt|/

√
Vt > δ

√
(1− ε) log log (1/t)

)
log log (1/t)

≥ − (1− ε) .

The same observation holds with |Xt|/
√
Vt replaced by Xt/

√
Vt when Xt is sym-

metric about 0. This shows that condition (4.7) of Proposition 4.2 is satisfied with
γ2 = δ2 and any 1 > ε0 > 0. This completes the proof of Theorem 2.2. ��

4.3. Proof of Theorem 2.3. Assuming Xt is a strictly α−stable process, one can
verify, as in the appendix of Maller and Mason [23], that for each t > 0,(

t−1/αXt, t
−2/αVt

)
D
= (X1, V1) ,

which of course implies

(4.26) Tt := Xt/
√
Vt

D
= X1/

√
V1 =: T, t > 0.
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(Note that X1 is strictly stable with index 0 < α < 2.) Moreover, it can be shown
that if ξ1, ξ2, . . . are i.i.d. as X1, then as n → ∞,

Tn :=

n∑
i=1

ξi/

√√√√ n∑
i=1

ξ2i
D→ X1/

√
V1.

(See the arguments in Maller and Mason [23].) From the results in Section 5 of
Logan et al. [21] and the assumption Π{(0,∞)} = ∞, we can conclude that T has
a density that is positive on (0,∞) . Further, by applying Theorem 3.2 of Shao [28],
we get that for any sequence of positive constants xn → ∞ at the rate xn = o (

√
n),

(6.8) of Lemma 6.2 in the Appendix holds for a positive constant τ > 0 whose value
depends on the tails of X1. (See Shao [28] for a description of this constant.) Thus
(6.9) of Lemma 6.2 is satisfied. In particular, by the distributional identity (4.26)
we get, for all 0 < ε < 1 with c = τ−1,

(4.27) lim
t↓0

logP
(
Xt/

√
Vt >

√
c (1 + ε) log log (1/t)

)
log log (1/t)

= − (1 + ε)

and

(4.28) lim
t↓0

logP
(
Xt/

√
Vt >

√
c (1− ε) log log (1/t)

)
log log (1/t)

= − (1− ε) .

We also have, for some constants d > 0 and D > 0, and for all x ≥ 0,

(4.29) P {T > x} ≤ De−d2x2

.

If Π{(−∞, 0)} = ∞ we obtain by the same argument that (4.27), (4.28) and (4.29)
hold with Xt/

√
Vt and T replaced by −Xt/

√
Vt and −T , respectively, and with c,

d and D replaced by suitable c1 > 0, d1 > 0 and D1 > 0, respectively. Whereas
if Π{(−∞, 0)} = 0, then necessarily 0 < α < 1 and Xt ≥ 0 for all t > 0. This
provides us with the ingredients to apply Propositions 4.1 and 4.2, with γ = 0, so
as to conclude (2.14). �

5. A Cramér bound for the self-normalised process

A Cramér-type bound for the self-normalised process is a crucial component of
the proof of Theorem 2.1. In this section we prove such a theorem by transferring
to continuous time a discrete time result of Robinson and Wang [25]. To state their
result, let Y, (Yi)i=1,2,...,n be i.i.d. random variables, and for each x > 0 and n ≥ 1
define

(5.1) κn(x) := sup

{
y > 0 :

EY 21{|Y |≤y}
y2

≥ 1 + x2

n

}
.

Here and elsewhere we define the supremum of the empty set to be zero. Then,
with Y κ = Y 1{|Y |≤κn(x)}, set

(5.2) Δn,x := nP (|Y | > κn(x)) +
n|EY κ|
κn(x)

+
nE|Y κ|3
κ3
n(x)

.

(We suppress the dependence on n in Y κ.) Let Φ(x) be the cdf of the standard
normal distribution.
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Robinson and Wang [25, Theorem 2] prove:

Theorem 5.1. Let Y, (Yi)i=1,2,...,n be i.i.d. rvs with E|Y | < ∞ and EY = 0. Then
there is an absolute constant A > 0 such that

e−AΔn,x ≤
P
(∑n

i=1 Yi ≥ x
√∑n

i=1 Y
2
i

)
1− Φ(x)

≤ eAΔn,x ,(5.3)

for each n = 1, 2, . . . and x ≥ 0 satisfying Δn,x ≤ (1 + x2)/A.

Remark 5.1. Robinson and Wang state their theorem under the hypothesis that
Y is in the domain of attraction of the normal distribution as n → ∞ (denoted
Y ∈ D(N)), meaning that

∑n
i=1 Yi is asymptotically normal, after centering and

norming. However, this assumption is not actually used in their derivation of (5.3).
Note, however, that (5.3) is only sharp when limn→∞ Δn,x = 0, and this occurs iff
Y ∈ D(N) (Bentkus and Götze [1]).

Now let (Xt)t≥0 be a Lévy process with E|Xt| < ∞, EXt = tμ, t > 0, quadratic

variation process Vt as defined in (1.2), and with tails Π(x) and Π
±
(x) of Π as

defined in (2.1). Recall that Vt is positive, a.s., for all t > 0 when σ2 > 0 or
Π(R) = ∞, and this also implies V (y) > 0 for all y > 0. For t > 0, x > 0, let

(5.4) b(t, x) := sup

{
y > 0 :

V (y)

y2
≥ 1 + x2

t

}
.

Then 0 ≤ b(t, x) < ∞ for all t > 0, x > 0, b(t, x) is nondecreasing in t, for all x > 0,
and limt→0 b(t, x) = 0 for all x > 0. Further, Lemma 6.1 in the Appendix shows
that b(t, x) is a point of continuity of the function x �→ x−2V (x), thus satisfying

(5.5) (1 + x2)b2(t, x) = tV (b(t, x)), t > 0, x > 0.

Take b > 0 and define

(5.6) Δ(b) := Π(b) +
|ν(b)− μ|

b
+

∫
0<|y|≤b

|y|3Π(dy)

b3
.

Our main theorem in this section is:

Theorem 5.2. Suppose (Xt)t≥0 has E|Xt| < ∞ and EXt = tμ, t > 0, and assume
σ2 > 0 or Π(R) = ∞. For a given η ∈ (0, 1), assume there is a y0 = y0(η) such
that

(5.7) y2Π(y) ≤ (1− η)V (y), whenever 0 < y ≤ y0.

(i) Then there is an absolute constant A > 0 such that

e−3AtΔ(b(ηt,x)) ≤
P
(
Xt − tμ ≥ x

√
Vt

)
1− Φ(x)

≤ e3AtΔ(b(ηt,x))(5.8)

for all t > 0 and x ≥ 0 satisfying tΔ(b(ηt, x)) ≤ (1 + x2)/(6A) and b(t, 0) ≤ y0.
(ii) In particular, (5.8) holds with μ = γ if Xt is the small jump component in

(3.1) with h = 1, i.e., Xt = γt+ σZt +X
(S,1)
t , and Vt = σ2t+ V

(S,1)
t .

(iii) Suppose, in addition, in part (ii) that Xt ∈ D(N) at 0. Then, for a given
ε ∈ (0, 1), there is a t0 = t0(ε) such that, for all t > 0 and x ∈ R satisfying
0 < t ≤ (1 + x2)t0, we have

(5.9)

∣∣∣∣P (σZt +X
(S,1)
t ≤ x

√
V

(S,1)
t

)
− Φ(x)

∣∣∣∣ ≤ 4e−(1−ε)x2/2

1 + |x| .
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Remark 5.2. (i) When σ2 = 0 and Π(R) < ∞, X and Vt are compound Poisson
processes and hence are zero in a random neighbourhood of 0. In this case we do
not expect (5.8) to hold.

(ii) The constant A in (5.8) is the same as in (5.3).
(iii) The assumption (5.7) holds with η arbitrarily close to 1 when Xt ∈ D(N)

at 0, by (2.4). (5.7) as stated implies Xt is in a Feller compactness class at 0, with
index α ∈ (1, 2]; see (3.39) and (3.38).

Before proving Theorem 5.2 we need a preliminary proposition and a lemma.

Proposition 5.1. Suppose Xt ∈ D(N) at 0 with E|Xt| < ∞ and EXt = tμ,
t > 0, and assume σ2 > 0 or Π(R) = ∞, so that b(t, x) > 0 for all t > 0, x > 0,
and so Δ(b(t, x)) is well defined (see (5.6)). Take ε > 0. Then there is a t0 = t0(ε)
such that for all t > 0 and x ∈ R satisfying 0 < t ≤ (1 + x2)t0, we have

(5.10) tΔ(b(t, x)) ≤ ε(1 + x2);

thus limt→0 tΔ(b(t, x)) = 0 for each x > 0. Conversely, limt→0 tΔ(b(t, x)) = 0 for
some x > 0 implies Xt ∈ D(N) at 0.

When Xt ∈ D(N) at 0, for every 0 < c < 1 and β > 0 there is a t1(c, β) > 0
such that 0 < t ≤ t1 implies

(5.11) (1 + x2)(b(t, x))2−β ≥ ct, for all x > 0.

Proof of Proposition 5.1. Under the assumption σ2 > 0 or Π(R) = ∞, (5.7) implies
limy→0 y

−2V (y) = ∞, and this means that b(t, x) > 0 for all t > 0, x > 0. Thus
Δ(b(t, x)) is well defined.

Now suppose Xt ∈ D(N) at 0 so (2.4) and (2.5) hold and V (y) is slowly varying
at 0. Assume also that E|Xt| < ∞ and EXt = tμ, t > 0. Given ε = 3δ ∈ (0, 1)
choose y0(ε) > 0 such that

(5.12) y2Π(y) + y|ν(y)− μ| ≤ δ4V (y), for 0 < y ≤ y0.

Now fix x > 0. Note that b(t, x) decreases in x for each t > 0, so b(t, x) ≤ b(t, 0).
Thus for t ≤ t0(ε) such that b(t, 0) ≤ y0, we have by (5.12) that

(5.13) tΠ(b(t, x)) +
t|ν(b(t, x))− μ|

b(t, x)
≤ δ4tV (b(t, x))

b2(t, x)
= δ4(1 + x2) < δ(1 + x2).

Next, still with ε = 3δ ∈ (0, 1), write

t
∫
0<|y|≤b(t,x)

|y|3Π(dy)

b3(t, x)
≤

δt
∫
0<|y|≤δb(t,x)

y2Π(dy)

b2(t, x)
+

t
∫
δb(t,x)<|y|≤b(t,x)

|y|3Π(dy)

b3(t, x)

≤ δtV (b(t, x))

b2(t, x)
+ tΠ(δb(t, x))

= δ(1 + x2) +

(
(δb(t, x))2Π(δb(t, x))

V (δb(t, x))

)(
tV (δb(t, x))

δ2b2(t, x)

)
≤ δ(1 + x2) + δ4(1 + x2)/δ2

≤ 2δ(1 + x2),(5.14)

provided we keep b(t, 0) ≤ y0, since then δb(t, x) ≤ y0. Combining (5.13) and
(5.14), recalling (5.6), and recalling that ε = 3δ gives, for 0 < t ≤ t0,

(5.15) tΔ(b(t, x)) ≤ ε(1 + x2).
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To extend this range, let tx = t/(1 + x2) and note that b(t, x) = b(tx, 0), and so

txΔ(b(t, x)) = (1 + x2)tΔ(b(tx, 0)).

Then by (5.15), txΔ(b(tx, x)) ≤ ε(1 + x2) if 0 < tx ≤ t0(ε), giving (5.10) for
0 < t ≤ (1 + x2)t0. Of course this also means limt→0 tΔb((t, x)) = 0 for each fixed
x > 0.

Conversely, assume limt→0 tΔ(b(t, x)) = 0 for some x > 0. Then for ε ∈ (0, 1),

t
∫
εb(t,x)<|y|≤b(t,x)

|y|3Π(dy)

b3(t, x)
≥ ε3t

(
Π(εb(t, x))−Π(b(t, x))

)
= ε3tΠ(εb(t, x)) + o(1)

shows that limt→0 tΠ(εb(t, x)) = 0 for all ε ∈ (0, 1) and hence for all ε > 0. Then
(5.5) gives, for all ε > 0,

tV (εb(t, x))

b2(t, x)
= 1 + x2 −

t
∫
εb(t,x)<|y|≤b(t,x)

y2Π(dy)

b2(t, x)

→ 1 + x2, as t → 0.

Then by Theorem 15.14, p. 295, of Kallenberg [18],

Xt − a(t, x)

b(t, x)

D−→ N(0, 1 + x2), as t → 0,

for some a(t, x). Thus Xt ∈ D(N) at 0.
When V is slowly varying at 0, then by a Potter bound (Bingham, Goldie and

Teugels [2, p. 25]), for every 0 < c < 1 and β > 0 there is a y0(c, β) > 0 such that
V (y) ≥ cyβ for all y ≤ y0(β). Then by (5.5), for b(t, 0) ≤ y0 (so b(t, x) ≤ y0),

(1 + x2)b2(t, x) = tV (b(t, x)) ≥ ctbβ(t, x),

giving (5.11). �

Lemma 5.1. Let Xt be an arbitrary Lévy process with canonical triplet (γ, σ2,Π).

Fix x > 0, a continuity point of Π
±
.

(i) We have

(5.16) lim
t↓0

t−1P (Xt > x) = Π
+
(x), lim

t↓0
t−1P (Xt < −x) = Π

−
(x),

(5.17) lim
t↓0

t−1E
(
Xt1{|Xt|≤x}

)
= γ −

∫
x<|y|≤1

yΠ(dy) = ν(x),

(5.18) lim
t↓0

t−1E
(
X2

t 1{|Xt|≤x}
)
= σ2 +

∫
0<|y|≤x

y2Π(dy) = V (x),

and, for all β > 2,

(5.19) lim
t↓0

t−1E|Xt|β1{|Xt|≤x} =

∫
0<|y|≤x

|y|βΠ(dy).

(ii) Let c ∈ R be any real number. Equations (5.16), (5.18), and (5.19) remain
true if Xt is replaced by Xt−ct on the left-hand side, while in this case (5.17) takes
the modified form

(5.20) lim
t↓0

t−1E
(
(Xt − ct)1{|Xt−ct|≤x}

)
= ν(x)− c.
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Proof of Lemma 5.1. Part (i), (5.16)–(5.19), can be deduced from the work of
Figueroa-Lopez [8], and part (ii) follows easily from these. �

Proof of Theorem 5.2. Assume σ2 > 0 or Π(R) = ∞, E|Xt| < ∞, EXt = tμ, t > 0,
and (5.7). We shall first establish part (i). As in Lemma 3.9, write

Xt − μt =:

n∑
i=1

Y (i, t, n), t > 0, n ≥ 1,

where for each t > 0,

Y (i, t, n) := Xit/n −X(i−1)t/n − tμ/n.

The assumption EXt = tμ implies EY (1, t, n) = 0, t > 0, n ≥ 1. Apply (5.3) to
get

e−AΔn,x(t) ≤
P
(∑n

i=1 Y (i, t, n) ≥ x
√∑n

i=1 Y
2(i, t, n)

)
1− Φ(x)

≤ eAΔn,x(t),(5.21)

for all n ≥ 1 and x ≥ 0 satisfying Δn,x ≤ (1 + x2)/A, where A is an absolute
constant,

Δn,x(t) := nP (|Y (1, t, n)| > bn(t, x)) +
n|E
(
Y (1, t, n)1{|Y (1,t,n)|≤bn(t,x)}

)
|

bn(t, x)

+
nE
(
|Y (1, t, n)|31{|Y (1,t,n)|≤bn(t,x)}

)
b3n(t, x)

,

(5.22)

and bn(t, x) is defined by

bn(t, x) := sup

{
y > 0 :

E
(
Y 2(1, t, n)1{|Y (1,t,n)|≤y}

)
y2

≥ 1 + x2

n

}
.

Lemma 6.1 in the Appendix shows that

(5.23) (1 + x2)b2n(t, x) = nE
(
Y 2(1, t, n)1{|Y (1,t,n)|≤bn(t,x)}

)
.

Our aim is to let n → ∞ in (5.21) so as to obtain (5.8), for the stated ranges of
t and x, via (3.50). This will follow from the inequality

(5.24) lim sup
n→∞

Δn,x(t) ≤ 3tΔ(b(ηt, x))

and our assumption that tΔ(b(ηt, x)) ≤ (1 + x2)/(6A). To prove (5.24), recall the
definition of b(t, x) in (5.4) and note from Lemma 5.1 that we have

lim
n→∞

nE
(
Y 2(1, t, n)1{|Y (1,t,n)|≤y}

)
= lim

n→∞
nE
((

Xt/n − tμ/n
)2

1{|Xt/n−tμ/n|≤y}

)
= tV (y), t > 0, y > 0.(5.25)

Notice that (5.25) implies that the sequence {bn(t, x)}n=1,2,... is bounded above.
Thus, given ε ∈ (0, 1), we can apply (5.25) with y = b((1− ε)t, x) to see that there
is an n0(t, y, x, ε) such that n ≥ n0 implies

nE
((

Xt/n − tμ/n
)2

1{|Xt/n−tμ/n|≤b((1−ε)t,x)}

)
y2

≥ (1− ε)tV (b((1− ε)t, x))

b2((1− ε)t, x)
=1+x2.
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Hence from (5.4), for all n ≥ n0,

bn(t, x) ≥ b((1− ε)t, x).

Since b(t, x) is nondecreasing in t, for all x > 0, we can take ε ↓ 0 in this to get

(5.26) lim inf
n→∞

bn(t, x) ≥ b(t−, x),

which as we argued in Proposition 5.1 is positive for all x > 0, t > 0. Now, since
the sequence {bn(t, x)}n=1,2,... is bounded above, given any sequence n′′ → ∞, we
can choose a subsequence n′ = n′(t, x) → ∞ such that

bn′(t, x) → b′(t, x) ∈ [b(t−, x),∞).

Clearly, to establish (5.24) it suffices to show that for any such sequence n′ we have

(5.27) lim
n′→∞

Δn′,x(t) = tΔ(b′(t, x)) ≤ 3tΔ(b(ηt, x)).

To this end, given ε ∈ (0, b′(t, x)), choose n′ so large that |bn′(t, x) − b′(t, x)| ≤ ε,
and use (5.23) to write

(1 + x2)b2n′(t, x) = n′E
((

Xt/n′ − tμ/n′)2 1{|Xt/n′−tμ/n′|≤bn′ (t,x)}

)
≤ n′E

((
Xt/n′ − tμ/n′)2 1{|Xt/n′−tμ/n′|≤b′(t,x)+ε}

)
.(5.28)

Thus, by Lemma 5.1, for any ε > 0 such that b′(t, x) + ε is a continuity point of
V (·),

(1 + x2)(b′(t, x))2 = (1 + x2) lim
n′→∞

b2n′(t, x)

≤ lim
n′→∞

n′E
((

Xt/n′ − tμ/n′)2 1{|Xt/n′−tμ/n′|≤b′(t,x)+ε}

)
= tV (b′(t, x) + ε),

in which we can let ε ↓ 0 to deduce, by right-continuity of V (·),

(1 + x2)(b′(t, x))2 ≤ tV (b′(t, x)).(5.29)

By the definition of b(t, x) this means b′(t, x) ≤ b(t, x); hence by (5.26)

(5.30) b(t−, x) ≤ b′(t, x) ≤ b(t, x).

Now if b(t−, x) = b(t, x), then limn′→∞ bn′(t, x) = b(t, x), and, as argued previously,
b(t, x) is a point of continuity of V (·). Alternatively, b(t−, x) < b(t, x). This can
only be the case if σ2 = 0 and x−2V (x) is constant on the interval [b(t−, x), b(t, x)].
If this is so, then

(5.31)
V (b(t−, x))

b2(t−, x)
=

V (b′(t, x))

(b′(t, x))2
=

V (b(t, x))

b2(t, x)
=

1 + x2

t
.

By (5.5) we have for ε ∈ (0, t) that

(1 + x2)b2(t− ε, x) = tV (b(t− ε, x)),

and letting ε ↓ 0 shows that

(1 + x2)b2(t−, x) = tV (b(t−, x)−)

= tV (b(t−, x)) (by (5.31)).



1764 BORIS BUCHMANN, ROSS A. MALLER, AND DAVID M. MASON

Thus b(t−, x) is a point of continuity of V (·). Since V (·) is also continuous at
b(t, x), V (·) is continuous at all points of [b(t−, x), b(t, x)]. Thus V (·) is continuous
at b′(t, x) and, by (5.31), satisfies

(1 + x2)(b′(t, x))2 = tV (b′(t, x)).

This is true for any subsequential limit of bn(t, x), in particular, if limn→∞ bn(t, x) =
b(t, x) exists.

Taking a limit through n′ in (5.22), and keeping in mind that V (·) is continuous
at b′(t, x), we obtain from Lemma 5.1 that

lim
n′→∞

Δn′,x(t) = tΠ(b′(t, x)) +
t|ν(b′(t, x))− μ|

b′(t, x)
+

t
∫
0<|y|≤b′(t,x) |y|3Π(dy)

(b′(t, x))3

= tΔ(b′(t, x)) (by (5.6)).(5.32)

Now, for the η and y0(η) specified in (5.7), choose t > 0 so small that b(t, 0) ≤ y0.
Then b(t−, x) ≤ y0 for all x > 0, and we have

1− b2(t−, x)

b2(t, x)
=

V (b(t, x))− V (b(t−, x))

V (b(t, x))
(by (5.31))

≤ b2(t, x)

(
Π(b(t−, x))−Π(b(t, x))

V (b(t, x))

)
≤ b2(t−, x)Π(b(t−, x))

V (b(t−, x))
(using (5.31) again)

≤ 1− η.

Thus we have by (5.30) that

(5.33) (b′(t, x))2 ≥ b2(t−, x) ≥ ηb2(t, x).

Note further that, by (5.5),

(1 + x2)b2(ηt, x) = ηtV (b(ηt, x))

≤ ηtV (b(t, x))

= η(1 + x2)b2(t, x),

implying b(ηt, x) ≤ √
ηb(t, x). This, (5.30) and inequality (5.33) imply

b(t, x) ≥ b′(t, x) ≥ b(ηt, x).

This allows us to replace Δ(b′(t, x)) in (5.32) by Δ(b(ηt, x)), as follows. First,

|ν(b′(t, x))− μ|
b′(t, x)

=
1

b′(t, x)

∣∣∣∣
(
γ −
∫
b′(t,x)<|x|≤1

xΠ(dx)

)
−
(
γ −
∫
|x|>1

xΠ(dx)

)∣∣∣∣
=

1

b′(t, x)

∣∣∣∣ ∫
|x|>b′(t,x)

xΠ(dx)

∣∣∣∣
≤ 1

b(ηt, x)

∣∣∣∣ ∫
|x|>b(ηt,x)

xΠ(dx)

∣∣∣∣+Π(b(ηt, x))

≤ |ν(b(ηt, x))− μ|
b(ηt, x)

+ Π(b(ηt, x)).



LILS FOR SELF-NORMALISED LÉVY PROCESSES 1765

Second,

1

(b′(t, x))3

∫
|x|≤b′(t,x)

|x|3Π(dx) ≤ 1

(b(ηt, x))3

∫
|x|≤b(ηt,x)

|x|3Π(dx) + Π(b(ηt, x)).

Hence, using (5.6),

Δ(b′(t, x)) ≤ 3Π(b(ηt, x)) +
|ν(b(ηt, x))− μ|

b(ηt, x)
+

1

(b(ηt, x))3

∫
|x|≤b(ηt,x)

|x|3Π(dx)

≤ 3Δ(b(ηt, x)).(5.34)

Thus we conclude from (5.32) that, for t > 0 such that b(t, 0) ≤ y0, and all x > 0,

(5.35) lim sup
n→∞

Δn,x(t) ≤ 3tΔ(b(ηt, x)).

Now suppose t > 0 and x ≥ 0 further satisfy tΔ(b(ηt, x)) ≤ (1 + x2)/6A. Then
by (5.35), for some n0 = n0(x,A) and all n ≥ n0, we have Δn,x(t) ≤ (1 + x2)/A.
Thus (5.21) holds for such n and x. Letting n → ∞ in (5.21) through subsequences
n′, keeping in mind (5.35), then proves (5.8).

Let us note at this stage that (5.8) holds under the same conditions if the ratio
in (5.8) is replaced by

P
(
Xt − tμ ≤ −x

√
Vt

)
Φ(−x)

, x > 0.

To see this, apply (5.8) to the Lévy process Yt := −Xt, which has canonical char-
acteristics (−μ, σ2,Π(−dx)), and, in an obvious notation, V Y

t = Vt, ΠY (x) = Π(x),
νY (x) = −ν(x), VY (x) = V (x), bY (t, x) = b(t, x), and ΔY (b(t, x)) = Δ(b(t, x)).
Since

(5.36)
P
(
Xt − tμ ≤ −x

√
Vt

)
Φ(−x)

=
P
(
Yt + tμ ≥ x

√
Vt

)
1− Φ(x)

,

we get the indicated result. This completes the proof of part (i).
(ii) When h = 1, the small jump component of X in (3.1) equals γt + σZt +

X
(S,1)
t , which has expectation γt, and we can apply part (i) of the theorem to

γt+ σZt +X
(S,1)
t and tσ2 + V

(S,1)
t .

(iii) From (5.8) with η = 1/2 applied to γt+ σZt +X
(S,1)
t and σ2t+ V

(S,1)
t , we

can deduce that

(5.37)

∣∣∣∣P (σZt +X
(S,1)
t ≤ x

√
V

(S,1)
t

)
− Φ(x)

∣∣∣∣ ≤ (e3AΔ(b(t/2,x)) − 1
)
(1− Φ(x))

for t > 0, x ≥ 0 satisfying tΔ(b(t/2, x)) ≤ (1 + x2)/(6A) and b(t, 0) ≤ y0(1/2).
Given ε ∈ (0, 1/2) there is, by Proposition 5.1 with t replaced by t/2 and ε replaced
by ε/(6(A ∨ 1)), a t0 = t0(ε) such that 0 < t ≤ (1 + x2)t0 implies tΔ(b(t/2, x)) ≤
ε(1 + x2)/(6A). Thus (5.37) applies in this situation. Then, using the inequality

1− Φ(x) ≤ 2e−x2/2/(1 + x), we get∣∣∣∣P (Xt − tγ ≤ x

√
V

(S,1)
t

)
− Φ(x)

∣∣∣∣ ≤ (eε(1+x2)/2 − 1
) 2e−x2/2

1 + x

≤ 4e−(1−ε)x2/2

1 + |x| .

We can replace x > 0 by x < 0 in this using (5.36). �
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6. Appendix: Some technical results

Recall that the canonical triplet of Xt is denoted by (γ, σ2,Π), and the tails

Π(x) and Π
±
(x) and truncated mean and variance functions are defined in (2.1)

and (2.2).
We use the following fact, proved as for U in Lemma 3.7:

Proposition 6.1. Xt ∈ FC at 0 iff there exist constants c > 0 and α ∈ (0, 2] such
that, for each μ ∈ (0, 1) and ε ∈ (0, α), there is an x0 = x0(ε) such that

(6.1)
V (μx)

V (x)
≥ cμ2−α+ε, for all 0 < x ≤ x0.

Remarks. Just as for U , (6.1) implies that V (y) is bounded away from 0 by a power
of y, for small y, i.e.,

(6.2) V (y) ≥ cy2−α+ε,

for some c > 0, for 0 < y ≤ x0(ε), with ε ∈ (0, α).

Suppose Xt ∈ FC at 0, with centering and norming functions a(t) and b(t) >
0. Let us call any a.s. finite rv I obtained as the limit in the distribution of
(Xtk − a(tk))/b(tk), for a sequence tk → 0 as k → ∞, a “subsequential limit rv”.

Proposition 6.2. Let Xt ∈ FC at 0, having a subsequential limit rv I. Then the
distribution of I is absolutely continuous, in fact, is infinitely differentiable at each
point in R.

Proof of Proposition 6.2. Let Xt ∈ FC at 0. Denote the Lévy triplet of I by

(γI , σ
2
I ,ΠI(·)), and let Π

±
I and ΠI be the tails of ΠI .

As I is a subsequential limit rv, we know that there exist nonstochastic functions
a(t) and b(t) > 0, where necessarily b(t) → 0 as t ↓ 0, and a sequence tk → 0 as

k → ∞, for which (Xtk − a(tk))/b(tk)
D−→ I. Thus, for each x > 0 which is a point

of continuity of Π±
I , we have

(6.3) Π
±
I (x) = lim

k→∞
tkΠ

±
(xb(tk))

and

(6.4) VI(x) := σ2
I +

∫
|y|≤x

y2ΠI(dy) = lim
k→∞

tkV (xb(tk))

b2(tk)
.

We can apply (6.1) to show that there is a c > 0 such that, whenever μ ∈ (0, 1)
and x > 0, and both μx and x are continuity points of Π±

I ,

(6.5)
VI(μx)

VI(x)
= lim

k→∞

V (μxb(tk))

V (xb(tk))
≥ lim inf

y↓0

V (μy)

V (y)
≥ cμ2−α.

When passing to the limit in (6.5), we keep in mind that b(t) → 0 and ε ∈ (0, α)
can be made arbitrarily small in (6.1).

Just as for V , (6.5) implies that VI(y) is bounded away from 0 by a power of y,
for small y, i.e.,

(6.6) VI(y) ≥ cy2−α+ε,

for some c > 0, for 0 < y ≤ x0(ε), with ε ∈ (0, α).
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The conclusion of Proposition 6.2 is obvious if σ2
I > 0, since then I has the

normal distribution as a convolution component, so we can assume σ2
I = 0. Then

the characteristic function of I satisfies

|EeiθI | =
∣∣∣eiθγI+

∫
R
(eiθy−1−iθyI{|y|≤1})ΠI(dy)

∣∣∣
= e−

∫
R
(1−cos(θy))ΠI(dy).

Since σ2
I = 0 we have ΠI �= 0, and then for |θ| > 1,∫

R

(1− cos(θy))ΠI(dy) ≥
θ2

3

∫
0<|y|≤|θ|−1

y2ΠI(dy)

=
θ2

3
VI(|θ|−1)

≥ c|θ|α−ε/3,

by (6.6). Thus we get, for |θ| > 1,

(6.7) |EeiθI | ≤ e−c|θ|α−ε/3,

which shows that I has an absolutely integrable characteristic function. This im-
plies the infinite differentiability of the distribution of I. �

The following lemma is useful in defining norming functions as in (5.4). Let the
function φ : (0,∞) → (0,∞) be a right continuous function not identically equal to
zero and set

b = sup {φ (y) : y > 0} .
Note that b may be infinity and necessarily b > 0. Assume that

(i) sup {φ (y) : y ≥ c} < ∞ for all c > 0;
(ii) φ (y) → 0, as y → ∞;
(iii) for all 0 < y < b, φ (y)− φ (y−) ≥ 0.

For any 0 < s < b, define

p (s) = sup {y > 0 : φ (y) ≥ s} .

Notice that by assumption (ii) p (s) is finite. Assumption (ii) also implies that

b = sup {φ (y) : 0 < y ≤ a}

for all a > 0 sufficiently large. Thus there exists a > 0, κ ∈ [0, a], and a sequence
zm ∈ (0, a) such that limm→∞ φ (zm) = b, φ (zm) ≤ b for all m ≥ 1 and zm → κ.
Therefore for all 0 < s < b, the set {y > 0 : φ (y) ≥ s} is nonempty, and hence
p (s) > 0.

Lemma 6.1. Under assumptions (i), (ii) and (iii), for any 0 < s < b, φ (p (s)) = s.

Proof of Lemma 6.1. We always have p (s) > 0. Suppose φ (p (s)) < s. In this case,
by the definition of p (s) we can find a sequence ym ∈ {y > 0 : φ (y) ≥ s} such that
ym ↑ p (s), as m → ∞, which since φ (ym) ≥ s, implies φ (p (s)) − φ (p (s)−) < 0.
This contradicts (iii), so φ (p (s)) < s is impossible.

Now suppose that φ (p (s)) > s. Then necessarily φ (p (s) + ε) < s for all ε > 0.
However, by right continuity of φ, φ (p (s)) − φ (p (s)+) = 0. Thus φ (p (s)) > s is
also impossible. Hence φ (p (s)) = s. �
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Example a. Set for y > 0, V (y) = σ2 +
∫
0<|u|≤y

u2Π(du) and

φ (y) = V (y)/y2.

It is easy to check that (i) and (ii) hold. In this example φ (y)−φ (y−) = Π (y−)−
Π(y), and thus (iii) is also satisfied.

Example b. Let X be any random variable. Set for y > 0

φ (y) = E
(
X21{|X|≤y}

)
/y2.

Notice that φ (y) converges to 0 as y → ∞, and also φ (y) ≤ 1. Thus (i) and (ii)
hold, and b ≤ 1. Further, it is easily checked that φ (y) − φ (y−) = P {X = y}, so
that (iii) is fulfilled too.

The proof of Theorem 2.3 requires the following lemma.

Lemma 6.2. Let {Tn}n≥1 be a sequence of random variables such that Tn
D→ T,

where P (T > x) > 0 for all x > 0 and P (T > x) is continuous on (0,∞). Assume
there exists a constant τ > 0 such that for any sequence of positive constants xn →
∞ satisfying xn = o (

√
n), we have

(6.8) −x−2
n logP (Tn > xn) → τ, as n → ∞.

Then

(6.9) −x−2 logP (T > x) → τ, as x → ∞.

Proof of Lemma 6.2. Choose any 2 > λ > 1. Set M0 = N0 = 1. Select M1 ≥ 1
such that for all n ≥ M1,

2−1P (T > λ) ≤ P (Tn > λ) ≤ 2P (T > λ),

and let N1 = max {M1, 2} . Then for any k > 1 choose Mk ≥ 1 such that for all
n ≥ Mk,

2−1P (T > λk) ≤ P (Tn > λk) ≤ 2P (T > λk),

and set, for k ≥ 2,

Nk = max
{
Mk, 2

k2

,Mk−1 + 1
}
.

Now for Nk ≤ n < Nk+1, k ≥ 0, let xn = λk. We see that xn → ∞ and for
Nk ≤ n < Nk+1, k ≥ 1,

xn√
n
=

λk

√
n
≤ λk

√
2k2

≤ λk

√
λk2

,

which implies that xn = o (
√
n) and thus that (6.8) holds. Further, by construction,

for any Nk ≤ n < Nk+1,

− logP (Tn > λk)

λ2k
= − logP (Tn > xn)

x2
n

and

−
log
(
2P (T > λk)

)
λ2k

≤ − logP (Tn > λk)

λ2k
≤ −

log
(
2−1P (T > λk)

)
λ2k

.

Thus

−λ−2k logP (T > λk) → τ , as k → ∞.
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Given any x ≥ 2 choose an integer k (x) such that λk(x) ≤ x < λk(x)+1. Then

λ−2 lim
x→∞

− logP (T > λk(x))/λ2k(x) = τλ−2

≤ lim inf
x→∞

− logP (T > x)/x2 ≤ lim sup
x→∞

− logP (T > x)/x2

≤ λ2 lim
x→∞

− logP (T > λk(x)+1)/λ2k(x)+2 = τλ2.

Since 2 > λ > 1 can be chosen arbitrarily close to 1 we see that (6.9) is satisfied. �
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