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RESONANCE OF AUTOMORPHIC FORMS FOR GL(3)

XIUMIN REN AND YANGBO YE

Abstract. Let f be a Maass form for SL3(Z) with Fourier coefficients
Af (m,n). A smoothly weighted sum of Af (m,n) against an exponential func-

tion e(αnβ) of fractional power nβ for X ≤ n ≤ 2X is proved to have a main

term of size X2/3 when β = 1/3 and α is close to 3�1/3 for some integer � �= 0.
The sum becomes rapidly decreasing if β < 1/3. If such a sum is not smoothly
weighted, the main term can only be detected under a conjectured bound to-
ward the Ramanujan conjecture. The existence of such a main term manifests
the vibration and resonance behavior of individual automorphic forms f for
GL(3). Applications of these results include a new modularity test on whether
a two dimensional array a(m,n) comes from Fourier coefficients Af (m,n) of
a Maass form f for SL3(Z). Techniques used in the proof include a Voronoi
summation formula, its asymptotic expansion, and the weighted stationary
phase.

1. Introduction

Resonance is an important phenomenon which may occur between two vibration
systems. Fixing one vibration system, one may change the second (testing) system
to detect resonance frequencies of the first, and hence gain spectral information on
the oscillation nature of the first vibration system. A classic example of this is the
Fourier series expansion of a periodic function which is actually the GL(1) theory
(cf. Ren-Ye [20]). For the GL(2) theory, Iwaniec-Luo-Sarnak [9] and Ren-Ye [20]
proved that a cusp form f for SL2(Z) is resonant against an exponential function
e(αnβ) if and only if β = 1/2 and α is close to ±2

√
q for some positive integer q.

In this paper, we will study resonance behavior of certain Maass forms for GL(3).
Let f be a Maass form of type ν = (ν1, ν2) for SL3(Z). Then

μf (1) = ν1 + 2ν2 − 1, μf (2) = ν1 − ν2, μf (3) = 1− 2ν1 − ν2

are the Langlands’ parameters for f which has a Fourier Whittaker expansion (cf.
Goldfeld [4])

f(z) =
∑

γ∈U2(Z)\SL2(Z)

∑
m1≥1

∑
m2 �=0

Af (m1,m2)

m1|m2|
WJ

(
M

( γ 0
0 1

)
z, ν, ψ1,1

)
.

Here U2 =
{( 1 ∗

0 1

)}
, WJ(z, ν, ψ1,1) is the Jacquet-Whittaker function,

M = diag(m1|m2|,m1, 1),
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and Af (m1,m2) are Fourier coefficients of f . Note that WJ(z, ν, ψ1,1) represents
an exponential decay in y1 and y2 for

z =

⎛
⎝ 1 x12 x13

1 x23

1

⎞
⎠

⎛
⎝ y1y2

y1
1

⎞
⎠ .

It is known that (cf. Kim-Sarnak [12] and Sarnak [23] (21)) for automorphic cusp
form f on GLn over Q with n ≤ 4, the Fourier coefficient of f at p is bounded by
p1/2−1/(1+n(n+1)/2). Thus in the case on hand

Af (m,n) � |mn|5/14+ε.(1.1)

The Rankin-Selberg theory (cf. [6]) reveals that∑
mn2≤N

|Af (m,n)|2 = Of (N).(1.2)

Since Af (m2,m1) = Af̃ (m1,m2), where f̃ is the contragredient form of f , there
also holds ∑

m2n≤N

|Af (m,n)|2 = Of (N).(1.3)

These estimates lead to∑
m≤N

|Af (m, 1)|
m

� logN,
∑
n≤N

|Af (1, n)|
n

� logN.(1.4)

In this paper, we will first investigate the smoothly weighted exponential sum
twisted with Af (m,n) : ∑

n>0

Af (m,n)φ
( n

X

)
e(αnβ),

where φ is a C∞ function supported on [1, 2] with bounded derivatives, β > 0 is a
fixed parameter, α > 0, X > 1 are the main parameters and 1 ≤ m < X.

As is known, a Maass form f can be written as a finite sum of Hecke eigenforms,
i.e.

f =

ef∑
j=1

fj ,(1.5)

where fj , j = 1, 2, . . . , ef , are Hecke eigenforms. Our results are the following.

Theorem 1. Suppose max{2max{β,1/3}αβ, 1}m1/3 ≤ X1/3−β. Then the estimate∑
n>0

Af (m,n)e(αnβ)φ
( n

X

)
� X−M(1.6)

holds for any M > 0, where the implied constant may depend on M,β and f only.
In particular for 0 < β < 1/3, (1.6) holds for X > max{A, 1} and 1 ≤ m ≤
(X/max{A, 1})(1−3β) where A = (2(αβ)3)1/(1−3β) and the implied constant may
depend only on M and f.

Theorem 2. For β �= 1/3, the estimate∑
n>0

Af (m,n)e(αnβ)φ
( n

X

)
� m5/14+ε

(
1 + (αXβ)3/2 logX

)
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holds for arbitrary ε > 0, where the implied constant may depend on f, β and ε
only.

Theorem 3. For arbitrary ε > 0, we have∑
n>0

Af (m,n)e(α
√
n)φ

( n

X

)
�f,φ,ε m

5/14+ε(1 + α3/4+εX5/8+ε + αX1/2 logX).

We remark that when α2 is a rational number, the bound in Theorem 3 can be
further reduced to O(αX1/2 logX). See remarks after (3.18) below.

Theorem 4. Let f be a Maass form as given in (1.5). Then we have∑
n>0

Af (m,n)e(αn1/3)φ
( n

X

)

= −i3
√
3α−1X2/3

∑
d|m

Eα(d)
μ(d)

d
Jφ

(nα(d)

d

) ef∑
j=1

Afj

(m
d
, 1
)
Afj (1, nα(d))

+ Of,φ,ε

(
m5/14+ε(1 + α29/14+εX1/3+ε)

)
,

where

Jφ (x) =

∫ 21/3

1

uφ
(
u3

)
e
(
(α− 3x1/3)X1/3u

)
du,(1.7)

and Eα(d) = 1 or 0 according to whether or not there is an integer nα(d) ≥ 1 such
that

|nα(d)− α3d/27| < min{α2d1−εXε−1/3, 1/10}.
In particular, for any positive integer 	,∑

n>0

Af (m,n)e(3(	n)1/3)φ
( n

X

)

= −ic(φ)
√
3	−1/3X2/3

∑
d|m

μ(d)

d

ef∑
j=1

Afj

(m
d
, 1
)
Afj (1, d	)

+ Of,φ,ε(m
5/14+ε	29/42+εX1/3+ε),(1.8)

where c(φ) =
∫ 21/3

1
uφ(u3)du.

We remark that (1.8) generalizes Iwaniec-Luo-Sarnak’s result ([9]) on GL(2) to
GL(3).

In this paper we will also consider the sharp-cut sum∑
X<n≤2X

Af (m,n)e(αnβ).

In this direction, Miller considered the linear case (β = 1) and proved that (cf.
Miller [17]), uniformly for α ∈ R,∑

1≤m≤T

Af (m,n)e(αm) �f,n,ε T
3/4+ε.(1.9)

In this paper, we will prove the following result which can be compared with the
above estimate.
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Theorem 5. (i) For β �= 1/3, we have∑
X<n≤2X

Af (m,n)e(αnβ) �f,β,ε m
5/14+ε(X2/3 + (αXβ)3/2) logX.

(ii) For β = 1/3, we have∑
X<n≤2X

Af (m,n)e(αnβ) �f,ε m
5/14+ε(1 + α1/14+ε)(X2/3 logX + α2X1/3+ε).(1.10)

Note that (1.10) just fails to detect a main term as in Theorem 4. To get a main
term and a smaller error term we need to assume a bound toward the Ramanujan
conjecture

(1.11) |Af (m,n)| � |mn|θ+ε

for θ < 1/3. The Ramanujan conjecture predicts that θ = 0.

Theorem 6. Let f be a Maass form as in (1.5). Assume the bound (1.11) toward
the Ramanujan conjecture with θ < 1/3. Then for β �= 1/3 we have∑

X<n≤2X

Af (m,n)e(αnβ) �f,β,ε m
θ+ε

(
X(1+θ)/2+ε + (αXβ)3/2 logX

)
.

For β = 1/3 we have∑
X<n≤2X

Af (m,n)e(αnβ)

= −i3
√
3X2/3

∑
d|m

Eα(d)μ(d)
d

J1

(nα(d)

d

) ef∑
j=1

Afj

(m
d
, 1
)
Afj (1, nα(d))

+ Of,ε

(
mθ+ε(X(1+θ)/2+ε + α1+3θ+εX1/3)

)
,

where J1(x) is defined in (1.7) with φ = 1, and Eα(d) = 1 or 0 according to whether
or not there is an integer nα(d) ≥ 1 such that∣∣∣nα(d)− α3d/27

∣∣∣ < min
{
α2dX−(1+3θ)/6−ε, 1/10

}
.

In particular for any positive integer 	, one has∑
X<n≤2X

Af (m,n)e(3(	n)1/3)

= −i

√
3

2
(22/3 − 1)	−1/3X2/3

∑
d|m

μ(d)

d

ef∑
j=1

Afj

(m
d
, 1
)
Afj (1, d	)

+ Of,ε

(
mθ+ε(X(1+θ)/2+ε + 	1/3+θ+εX1/3)

)
.(1.12)

Note that when α → 0, (1.6) reduces to∑
n>0

Af (m,n)φ
( n

X

)
�f,M X−M(1.13)

for any M > 0 and m � X1−ε. This bound (1.13) was proved by Booker in [2]
and [3]. A similar bound was proved by the authors in [21] for β = 1 and α being
a rational number or a transcendental number with its approximation index > 3.
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The rapidly decreasing bound (1.13) played a crucial role in modularity testing in
[2] and [3]. In Bian [1] a GL(3) modularity test was carried out on a sequence an to
see if an = Af (1, n) for some Maass form f for SL3(Z). Bian’s test is based on the
functional equation of the L-function attached to f twisted by a primitive Dirichlet
character χ and he verified this functional equation numerically by replacing the
degree-three L-function by a smooth sum∑

n>0

anχ(n)φ
( n

X

)
.(1.14)

This motivated an important application of our results. Instead of testing the
functional equation for (1.14) twisted by χ, one may use the sum twisted by e(αnβ)
and test numerically (1.6), (1.8) and/or (1.12) with Af (m,n) replaced by a two
dimensional sequence a(m,n) which satisfies the usual multiplicativity as in (4.1)
and [4] p. 168. If (1.6) decays rapidly but (1.8) or (1.12) remains of order X2/3,
these a(m,n) are likely to be Fourier coefficients Af (m,n) of a Maass form f for
SL3(Z).

This new modularity test scheme has an added advantage as the main term on
the right side of (1.8) and (1.12) can be computed and compared with the sums on
the left side. These sums will not decay rapidly in the case of (1.8) or (1.12), as
opposite to ∑

n>0

anχ(n)φ
( n

X

)
�f,M X−M .

One may also use the main terms to test whether the SL3(Z) form f is self-dual
and comes from a symmetric-square lifting.

Xiaoqing Li and Matt Young proved in [16] bounds for similar sums for linear
phase (β = 1), uniformly on f when the SL3(Z) form f is a symmetric-square lift
of an SL2(Z) cusp form. Xiannan Li [13] extended their results to Maass forms
for SL3(Z) which are not necessarily a symmetric-square lift from SL2(Z). In [10],
[19], Kaczorowski and Perelli considered the following twists:

Fd(s, α) =
∞∑

n=1

a(n)

ns
e(−αn1/d), Re s = σ > 1, α > 0,

for F ∈ S#
d which is denoted as the extended Selberg class of degree d, and proved

analytic properties of Fd(s, α) (see [10] for details).
The main techniques we will use to prove the theorems include a Voronoi sum-

mation formula for SL3(Z) ([14], [18], [5], [6]), its asymptotic expansion ([8], [14],
[22]), and a weighted stationary phase argument ([7], [15], [21]). These techniques
when applied to sums with exponential functions of fractional powers played a cru-
cial role in a recent proof of a subconvexity bound for automorphic L-functions
for SL3(Z) ([14], [15]). These same techniques have been used for SL2(Z) in [20]
in which we proved that resonance happens between a cusp form for SL2(Z) and
exponential sums e(αn1/2). We expect that resonance occurs between a cusp form
for SLm(Z) and exponential sums e(αn1/m). It is also an interesting question to
generalize the resonance theory to automorphic representations of GL(m) over a
number field.

One can prove similar results for α < 0, and the argument follows exactly the
same line by replacing α by −|α|. It is interesting to generalize the above results
to the case when α and the SL3(Z) Maass form f both vary as well.
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We will give some preliminaries in section 2 and prove Theorems 1-6 in sections
3-6. By (1.5) we only need to prove the theorems for a Hecke eigenform f , and
then assertions for a general Maass form f follows easily.

In the following, ε > 0 is a small constant which may have different value in each
occurence.

2. Voronoi formula for SL3(Z)

Following [5], let ψ(x) ∈ C∞
c (0,∞), and set

ψ̃(s) =

∫ ∞

0

ψ(x)xs dx

x
.

Define

Ψk(x) =

∫
Re s=σ

(π3x)−s
3∏

j=1

Γ
(

1+s+2k+μf (j)
2

)

Γ
(
− s+μf (j)

2

) ψ̃(−s− k)ds,

where

σ > max(−1− Re μf (1)− 2k,−1− Re μf (2)− 2k,−1− Re μf (3)− 2k).

Write

Ψ0
0,1(x) = Ψ0(x) +

1

iπ3x
Ψ1(x), Ψ1

0,1(x) = Ψ0(x)−
1

iπ3x
Ψ1(x).(2.1)

Then the Voronoi type formula as first proved by Miller-Schmid [18] and then used
in [14] is stated as follows.

Lemma 2.1 ([18], [14]). Let Af (m,n) be the Fourier coefficients of the Maass
cusp form f for SL3(Z). Suppose that ψ ∈ C∞

c (0,∞). Let c, d be integers such that
c ≥ 1, (c, d) = 1 and dd̄ ≡ 1(modc). Then

∑
n>0

Af (m,n)e
(nd̄

c

)
ψ(n)

=
cπ−5/2

4i

∑
n1|cm

∑
n2>0

Af (n2, n1)

n1n2
S
(
md, n2;mcn−1

1

)
Ψ0

0,1

(n2n
2
1

c3m

)

+
cπ−5/2

4i

∑
n1|cm

∑
n2>0

Af (n1, n2)

n1n2
S
(
md,−n2;mcn−1

1

)
Ψ1

0,1

(n2n
2
1

c3m

)
.(2.2)

Here S (a, b; r) is the classical Kloosterman sum.

The asymptotic behaviors of Ψ0(x) and Ψ1(x) are included in the following
lemma.

Lemma 2.2 ([14], [22]). Suppose that ψ is a fixed smooth function of compact
support on [X, 2X] where X > 0. Then for x > 0, xX � 1, r ≥ 2 and k = 0, 1, we
have

Ψk(x) = (π3x)k+1
r∑

j=1

∫ ∞

0

ψ(y)
(
ak(j)e(3(xy)

1/3) + bk(j)e(−3(xy)1/3)
) dy

(π3xy)j/3

+O
(
(π3x)k(π3xX)−r/3+1/2−k+ε

)
,
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where the implied constant depends at most on r, ak(j) and bk(j) are constants with

a0(1) = −2
√
3π

3
, b0(1) =

2
√
3π

3
, a1(1) = b1(1) = −2

√
3π

3
i.(2.3)

3. Proof of Theorems 1-4 for m = 1

In this section and the following sections we will assume that f is a Hecke
eigenform for SL3(Z) and Af (m,n) its Fourier coefficients. Consider sums of the
form ∑

n>0

Af (1, n)e(αn
β)φ

( n

X

)
.

Let ψ(x) = e(αxβ)φ(x/X) and take m = c = d = 1 in Lemma 2.1. Applying
(2.1) and noting that S (1,±n2; 1) = 1, we obtain∑

n>0

Af (1, n)e(αn
β)φ

( n

X

)
=

∑
n>0

Af (1, n)ψ(n) = B0(X) + B1(X),(3.1)

where for k = 0, 1

Bk(X) =
π−5/2

4i

∑
n>0

Af (n, 1) + (−1)kAf (1, n)

n

(
iπ3n

)−k
Ψk (n) .

By Lemma 2.2 and making change of variable y = Xu3 we get

Bk(X) =
3π−5/2

4ik+1

∑
n≥1

Af (n, 1) + (−1)kAf (1, n)

n

×
r∑

j=1

(
π3nX

)1−j/3 (
ak(j)I

+
j (n) + bk(j)I

−
j (n)

)
+ E(k)

r (X)(3.2)

with

I±j (x) =

∫ 21/3

1

u2−jφ
(
u3

)
e
(
αXβu3β ± 3 (xX)

1/3
u
)
du(3.3)

and, for any integer r ≥ 2,

E(k)
r (X) � X−r/3+1/2−k+ε

∑
n≥1

|Af (n, 1)|+ |Af (1, n)|
nr/3+1/2+k−ε

�r X−r/3+1/2−k+ε.(3.4)

We next show that the contribution of I+j (n) to Bk(X) is small. Write

F±(u) = F±(u, x) = αXβu3β ± 3 (xX)1/3 u.

One has

F ′
±(u) = 3(αβXβu3β−1 ± (xX)1/3)

and

F
(t)
± (u) = 3αβ(3β − 1) · · · (3β − t+ 1)Xβu3β−t for t ≥ 2.

If |F ′
±(u)| ≥ Q > 0 for u ∈ [1, 21/3], then by repeated integrating by part one

obtains

I±j (x) =

∫ 21/3

1

gs(u)e (F±(u)) du,
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where

g0(u) = u2−jφ
(
u3

)
, gt(u) =

( gt−1(u)

2πiF ′
±(u)

)′
, t ≥ 1.

Since φ(t)(u) � 1, one can see that g0(u) and all its derivatives are bounded on

[1, 21/3]. Moreover |F (t)
± (u)| � |3β − 1| · · · |3β − t+ 1|αβXβ for t ≥ 2. Therefore

I±j (x) �
∑

0≤t≤s

(αβXβ)t

Qs+t
,(3.5)

where the implied constant may depend on β, φ and s.
For F ′

+(u) one can take Q = (xX)1/3 + αβXβ and obtain by (3.5) that, for any
x > 0,

I+j (x) � (xX)−s/3.

Therefore the contribution of I+j (n) to Bk(X) in (3.2) is, for any s ≥ 3,

�
r∑

j=1

X1−(j+s)/3
∑
n≥1

|Af (n, 1)|+ |Af (1, n)|
n(s+j)/3

� X(2−s)/3.

To estimate the contribution of I−j (n) to Bk(X) we write

a∗ = (αβ)3X3β−1min{23β−1, 1},(3.6)

b∗ = (αβ)3X3β−1 max{23β−1, 1}.(3.7)

For n ≥ 2b∗, one has |F ′
−(u, n)| � Q = (nX)1/3 � (b∗X)1/3 � αβXβ, and hence

by (3.5),

I−j (n) � (nX)−s/3.

Therefore the contribution of I−j (n) with n ≥ 2b∗ to Bk(X) is O(X(2−s)/3). Taking

s = r + 3k (r ≥ 2) we get

Bk(X) =
3π−5/2

4ik+1

r∑
j=1

(
π3X

)1−j/3
bk(j)

∑
n<2b∗

Af (n, 1) + (−1)kAf (1, n)

nj/3
I−j (n)

+ O(X−r/3+1/2−k+ε),(3.8)

where the implied constant may depend on r, β and φ only.

Proof of Theorem 1 for m = 1. Note that the main term in (3.8) disappears when
2b∗ ≤ 1 which is just

2max{β,1/3}αβ ≤ X1/3−β .(3.9)

In this case one obtains

Bk(X) �r,φ,β X−r/3+1/2+ε.

Back to (3.1) we get, for any integer r ≥ 3,∑
n>0

Af (1, n)e(αn
β)φ

( n

X

)
�r,φ,β X−r/3+1/2+ε.(3.10)

In particular when 0 < β < 1/3, (3.9) is satisfied when X > A = (2(αβ)3)1/(1−3β),
and the implied constant in (3.10) depends on φ and r only in this situation. This
proves Theorem 1 for m = 1 by choosing r > 3M + 2. �
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Proof of Theorem 2 for m = 1. Without loss of generality, one can assume that
2b∗ > 1. Using trivial estimate I−j (n) � 1 and (1.4) one can derive that the

contribution of I−j (n) for j ≥ 2 in (3.8) is

� (b∗X)
1/3

∑
n<2b∗

|Af (n, 1)|+ |Af (1, n)|
n

�β αXβ log(2b∗).

In view of the definition of bk(1) in (2.3), the contribution of j = 1 in B0(X)+B1(X)
is

−
√
3iX2/3

∑
n<2b∗

Af (1, n)

n1/3
I−1 (n) .

Thus we obtain∑
n>0

Af (1, n)e(αn
β)φ

( n

X

)

= −
√
3iX2/3

∑
n<2b∗

Af (1, n)

n1/3
I−1 (n) +Oβ(1 + αXβ log(2b∗)).(3.11)

If β �= 1/3, then

F ′′
−(u) = 3αβ(3β − 1)Xβu3β−2 �β αXβ.

By the second derivative test (cf. [24]) one obtains I−1 (n) �β (αXβ)−1/2. Hence
the main term in (3.11) is

� (αXβ)−1/2(b∗X)2/3
∑

1≤n≤2b∗

|Af (1, n)|
n

�β (αXβ)3/2 log(2b∗).

This proves ∑
n>0

Af (1, n)e(αn
β)φ

( n

X

)
�β 1 + (αXβ)3/2 logX,(3.12)

and hence finishes the proof of Theorem 2 for m = 1. �

Next we will show that when β = 1/2, the bound in (3.12) can be improved
further.

Proof of Theorem 3 for m = 1. Letting β = 1/2 in (3.11), we get
∑
n>0

Af (1, n)e(α
√
n)φ

( n

X

)

= −
√
3iX2/3

∑
n<2b∗

Af (1, n)

n1/3
I (n) +O(1 + αX1/2 logX),(3.13)

where 2b∗ =
√
2α3X1/2/4, and

I(n) =

∫ 21/3

1

uφ
(
u3

)
e (g(u, n)) du with g(u, n) = αX1/2u3/2 − 3 (nX)1/3 u.

Note that for n ≤ a∗/2 = α3X1/2/16, one has

g′(u, n) =
3

2
αX1/2u1/2 − 3(nX)1/3 � αX1/2.
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By repeated integrating by parts one obtains I(n) � α−3X−3/2 � (a∗X)−1. Hence
the total contribution of the terms 1 ≤ n ≤ a∗/2 in (3.13) is

� (a∗X)−1(a∗X)2/3
∑

1≤n≤a∗/2

|Af (1, n)|
n

� (a∗X)−1/3 log a∗ � 1.

Thus the main term in (3.13) becomes

−
√
3iX2/3

∑
α3X1/2/16<n≤

√
2α3X1/2/4

Af (1, n)

n1/3
I (n) .(3.14)

To bound I(n), we will use weighted stationary phase integral as stated in the
following lemma (cf. [7]).

Lemma 3.1 (Weighted stationary phase integral). Let g ∈ C4([a, b]) and f ∈
C3([a, b]) be real-valued functions with continuous fourth and third derivatives, re-
spectively. Suppose that there are positive parameters P, N, Q, U such that

P > b− a, N ≥ P√
Q
,

and positive constants Cj (j = 1, ..., 4) such that, for a ≤ t ≤ b,

|g′′(t)| ≥ Q

C2P 2
, |g(r)(t)| ≤ CrQ

P r
, |f (s)(t)| ≤ CsU

Ns
, 1 ≤ r ≤ 4, 0 ≤ s ≤ 3.

Suppose g′(t) changes sign at a point t = γ ∈ (a, b). Then∫ b

a

f(t)e(g(t))dt

= sgn(g′′(γ))
f(γ)e (g(γ) + 1/8)√

|g′′(γ)|
+

f(b)e(g(b))

2πig′(b)
− f(a)e(g(a))

2πig′(a)

+ O
(P 4U

Q2

(
1 +

P

N

)2( 1

(b− γ)3
+

1

(γ − a)3

))
+O

( PU

Q3/2

(
1 +

P

N

)2)
.

Apply Lemma 3.1 to f(t) = tφ(t3) and g(t) = g(t, n). Note that g′(t) has a
unique zero at

γ = γ(n) =
4

α2
n2/3X−1/3,

and 2−2/3 ≤ γ ≤ 2 for n in the range

α3X1/2/16 < n ≤
√
2α3X1/2/4.(3.15)

Moreover

g′′(t) =
3

4
αX1/2t−1/2, g(3)(t) = −3

8
αX1/2t−3/2, g(4)(t) =

9

16
αX1/2t−5/2.

Let [a, b] = [1/2, 4]. Then for a ≤ t ≤ b and r ≥ 1 one has |g(r)(t)| � αX1/2, and
g′′(t) ≥ αX1/2/4. Moreover, g′(a), g′(b) � αX1/2, and

(f(t))
(s)

=
(
tφ

(
t3
))(s) �φ,s 1, for s ≥ 1.

Choosing Q = αX1/2, N = U = 1, P > b− a and suitable constant Cj , we get

I(n) =
γφ(γ3)e (g(γ) + 1/8)√

g′′(γ)
+O

(
(αX1/2)−1

)
.
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Putting this in (3.14), the above O-term produces a contribution which is

(3.16) � X2/3(αX1/2)−1
∑

α3X1/2/16<n≤
√
2α3X1/2/4

|Af (1, n)|
n1/3

� αX1/2 logX.

Note that e(1/8) = (1 + i)/
√
2,

g(γ) = αX1/2γ3/2 − 3(nX)1/3γ = λn with λ = − 4

α2

and

γφ(γ3)√
g′′(γ)

=
8
√
6

3α3
X−2/3n5/6φ

(
σn2

)
with σ =

64

α6X
.

Thus (3.14) can be written as

8

α3
(1− i)

∑
n>0

Af (1, n)n
1/2φ

(
σn2

)
e(λn) +O(αX1/2 logX).(3.17)

Here we have used the fact that φ is supported on [1, 2]. By partial summation and
applying (1.9) we get∑

n>0

Af (1, n)n
1/2φ

(
σn2

)
e(λn)

= −
∫ √

2/σ

1/
√
σ

{∑
n≤u

Af (1, n)e(λn)
}(

u1/2φ
(
σu2

))′
du

�
∫ √

2/σ

1/
√
σ

u3/4+ε
(
u−1/2|φ

(
σu2

)
|+ σu3/2|φ′ (σu2

)
|
)
du

� σ−5/8−ε �φ,ε α
15/4+εX5/8+ε.

Back to (3.17), (3.14) and (3.13) we get
∑
n>0

Af (1, n)e(α
√
n)φ

( n

X

)
�φ,ε 1 + α3/4+εX5/8+ε.(3.18)

We remark that when α2 is a rational number, the coefficient λ = −4/α2 is
rational. In [20] we proved that, in this case, the sum in (3.17) decays rapidly.
A problem to applying this argument to the case of square-root twist at hand,
however, is that there seems no obvious way to reduce the error term in (3.17).
The resulting bound is thus O(αX1/2 logX) when α2 is rational. �

Proof of Theorem 4 for m = 1. Letting β = 1/3 in (3.11), we get
∑
n>0

Af (1, n)e(αn
1/3)φ

( n

X

)

= −
√
3iX2/3

∑
n<2α3/27

Af (1, n)

n1/3
Jφ (n) +O(1 + αX1/3 logX)(3.19)

with

(3.20) Jφ(x) =

∫ 21/3

1

uφ
(
u3

)
e (F (u, x)) du, F (u, x) = (α− 3x1/3)X1/3u.
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Note that the first term in (3.19) disappears when α ≤ 3/21/3. For α > 3/21/3, let
nα (≥ 1) be the integer such that

(α/3)3 = nα + λ, −1/2 < λ ≤ 1/2.

Then for any positive integer n,

|3n1/3 − α| = 3|n1/3 − α/3| = 3|n− nα − λ|
n2/3 + n1/3(α/3) + (α/3)2

.

For n �=nα, the right expression is�|n− nα|α−2, and hence

F ′(u, n)�|n− nα|α−2X1/3.

By integrating by parts one obtains

Jφ(n) �
α2X−1/3

|n− nα|
.

The contribution of the terms n �= nα to (3.19) is, by applying (1.1),

� α2X1/3
∑

1≤n�α3

n�=nα

|Af (1, n)|
|n− nα|n1/3

� α29/14+εX1/3.

The term corresponding to n = nα in (3.19) is

−
√
3iX2/3Af (1, nα)Jφ (nα)

n
1/3
α

.(3.21)

One has

|F ′(u, nα)| 
 α−2|λ|X1/3.

When |λ| ≥ 1/10, one has Jφ (nα) � α2X−1/3 by integrating by parts. Hence

the expression in (3.21) is bounded by α29/14+εX1/3. If α−2|λ|X1/3 � Xε, then
by repeated integrating by parts one obtains Jφ(nα) �φ X−sε, and hence the
contribution of (3.21) is neglectful by choosing s large enough. This proves

∑
n>0

Af (1, n)e(αn
1/3)φ

( n

X

)

= −Eα
√
3iX2/3Af (1, nα)

n
1/3
α

Jφ (nα) +Oφ(1 + α29/14+εX1/3 logX),(3.22)

where Eα = 1 if there is an integer nα ≥ 1 satisfying

|(α/3)3 − nα| ≤ min{X−1/3+εα2, 1/10},

and Eα = 0 if else. Note that the above inequality implies nα 
 α3 and

n−1/3
α = (α/3)−1 +O(X−1/3+εα−2).

Replacing n
−1/3
α by (α/3)−1, the above error term produces O(X1/3+ε) to (3.22).

Thus we get
∑
n>0

Af (1, n)e(αn
1/3)φ

( n

X

)

= −Eα3
√
3iα−1X2/3Af (1, nα)Jφ (nα) +Oφ,ε(1 + α29/14+εX1/3+ε).(3.23)



RESONANCE OF AUTOMORPHIC FORMS FOR GL(3) 2149

In particular, if (α/3)3 = 	 is an integer, then λ = 0, nα = 	 and (3.23) becomes∑
n>0

Af (1, n)e(3(	n)
1/3)φ

( n

X

)
= −

√
3ic(φ)X2/3	−1/3Af (1, l)

+Oφ,ε(	
29/42+εX1/3+ε),

where

c(φ) =

∫ 21/3

1

uφ
(
u3

)
du.(3.24)

This proves Theorem 4 for m = 1. �

4. Proof of Theorems 1-4 for m > 1

Let f be a Hecke eigenform. Then there holds the multiplicative formula

Af (m,n) =
∑

d|(m,n)

μ(d)Af

(m
d
, 1
)
Af

(
1,

n

d

)
.(4.1)

Consequently ∑
n>0

Af (m,n)e(αnβ)φ
( n

X

)

=
∑
d|m

μ(d)Af

(m
d
, 1
)∑

n>0

Af (1, n)e(αd
βnβ)φ

( n

X/d

)
.(4.2)

By replacing α by αdβ and X by X/d in (3.9) and (3.10), we get∑
n>0

Af (1, n)e(αd
βnβ)φ

( n

X/d

)
� (X/d)−r/3+1/2+ε

provided that

2max{β,1/3}αβm1/3 ≤ X1/3−β.

Note that if 2max{β,1/3}αβ ≤ 1 this inequality is satisfied when m1/3 ≤ X1/3−β

which implies (X/m)1/3 ≥ Xβ; while 2max{β,1/3}αβ > 1 the above inequality im-
plies (X/m)1/3 ≥ Xβ. So if we suppose

max{2max{β,1/3}αβ, 1}m1/3 ≤ X1/3−β,

then by (4.2) and (1.1) we get∑
n>0

Af (m,n)e(αnβ)φ
( n

X

)

�
∑
d|m

(m/d)5/14+ε(X/d)−r/3+1/2+ε �r (X/m)−r/3+1

� X−β(r−3) � X−M

by choosing r > M/β+3, where the implied constant may depend on φ, β and M.
In particular, when 0 < β < 1/3, the above estimate holds when X > max{A, 1}

and 1 ≤ m ≤ (X/max{A, 1})(1−3β) with the implied constant depending at most
on φ and M.

This proves Theorem 1 for a Hecke eigenform f , and hence for a general Maass
form f.
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Suppose β �= 1/3. Replacing α by αdβ and X by X/d in (3.12), then putting in
(4.2) and using (1.1) we get

∑
n>0

Af (m,n)e(αnβ)φ
( n

X

)

�β

∑
d|m

(m/d)5/14+ε
(
1 + ((αdβ)(X/d)β)3/2 logX

)

�β,ε m5/14+ε(1 + (αXβ)3/2 logX).

This proves Theorem 2 for a Hecke eigenform f , and hence for a general Maass
form f by applying (1.5).

When β = 1/2, by (3.18) and (4.2), we get
∑
n>0

Af (m,n)e(α
√
n)φ

( n

X

)

�φ,ε

∑
d|m

(m/d)5/14+ε
(
1 + (α

√
d)3/4+ε(X/d)5/8+ε

)

�φ,ε m5/14+ε(1 + α3/4+εX5/8+ε).

This proves Theorem 3 for a Hecke eigenform f , and hence for a general Maass
form f.

When β = 1/3, by (4.2) and (3.23) one has
∑
n>0

Af (m,n)e(αn1/3)φ
( n

X

)

= −3
√
3iα−1X2/3

∑
d|m

Eα(d)μ(d)
Af(m/d, 1)Af (1, nα(d))

d
Jφ

(nα(d)

d

)

+ O
(∑

d|m

∣∣∣Af

(
m/d, 1

)∣∣∣(1 + (αd1/3)29/14+ε(X/d)1/3+ε)
)
,(4.3)

where Jφ(x) is defined by (3.20) and Eα(d) = 1 or 0 according to whether or not
there is an integer nα(d) ≥ 1 such that

|nα(d)− α3d/27| < min{α2d1−εXε−1/3, 1/10}.

By (1.1), the O-term in (4.3) is

� m5/14+ε
(
1 + α29/14+εX1/3

∑
d|m

d29/42−1/3−5/14+ε
)

� m5/14+ε
(
1 + α29/14+εX1/3+ε

)
.

This proves∑
n>0

Af (m,n)e(αn1/3)φ
( n

X

)

= −3
√
3iα−1X2/3

∑
d|m

Eα(d)μ(d)
Af(m/d, 1)Af (1, nα(d))

d
Jφ

(nα(d)

d

)

+ Oφ,ε

(
m5/14+ε(1 + α29/14+εX1/3+ε)

)
.(4.4)
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In particular, if (α/3)3 = 	 is an integer, then Eα(d) = 1, nα(d) = d	, and

Jφ

(nα(d)

d

)
= c(φ) =

∫ 21/3

1

uφ(u3)du.

This shows that ∑
n>0

Af (m,n)e(3(	n)1/3)φ
( n

X

)

= −ic(φ)
√
3	−1/3X2/3

∑
d|m

μ(d)
Af (m/d, 1)Af (1, d	)

d

+Oφ,ε

(
m5/14+ε	29/42+εX1/3+ε

)
.

This proves Theorem 4 for a Hecke eigenform f , and hence for a general Maass
form f by using (1.5).

5. Proof of Theorem 5

Let 1 < Δ � X. Let φ(x) be a C∞ function which is supported on [1, 2] and
identically equal to 1 on [1 + Δ−1, 2−Δ−1] such that

φ(r)(x) � Δr for integer r ≥ 0.(5.1)

Then ∑
X<n≤2X

Af (m,n)e(αnβ) =
∑
n>0

Af (m,n)φ
( n

X

)
e(αnβ) + E(β),(5.2)

where

E(β) =
∑
n>0

Af (m,n)
(
1− φ

( n

X

))
e(αnβ).

By (4.1),

E(β) �
∑
d|m

∣∣∣Af

(m
d
, 1
)∣∣∣ ∑

X/d<n≤X/d+X/(dΔ)

|Af (1, n)|

+
∑
d|m

∣∣∣Af

(m
d
, 1
)∣∣∣ ∑

2X/d−X/(dΔ)<n≤2X/d

|Af (1, n)|.(5.3)

By (1.1), the sum over n is O((X/d)5/14+ε) for d > X/Δ, and is O(
√
(X/d)X/(dΔ))

for d ≤ X/Δ, by (1.3) and Cauchy’s inequality. Thus one obtains

E(β) �
∑
d|m

(m/d)5/14+ε
(
(X/d)5/14+ε + (X/d)Δ−1/2

)

� m5/14+ε
(
X5/14+ε +XΔ−1/2

)
.(5.4)

The estimate of the main term in (5.2) follows the same line of the proof of
Theorems 1-4 in sections 3 and 4. The difference is that the function φ here has
large derivatives as described in (5.1). By (4.2), we first need to estimate

∑
n>0

Af (1, n)e(αn
β)φ

( n

X

)
.
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Following the argument from (3.1) to (3.4) and choosing r = 2, we get

∑
n>0

Af (1, n)e(αn
β)φ

( n

X

)
= D0(X) +D1(X) +O(1),(5.5)

where for k = 0, 1

Dk(X) =
3π−5/2

4ik+1

∑
n≥1

Af (n, 1) + (−1)kAf (1, n)

n

×
2∑

j=1

(
π3nX

)1−j/3 (
ak(j)I

+
j (n) + bk(j)I

−
j (n)

)
.(5.6)

To bound I±j (x), we first note that the estimate in (3.5) is not valid here when s ≥ 2

because the φ(t) appearing in I±j (x) has derivatives depending on Δ. Instead, for
any integer s ≥ 1 we have

I±j (x) � Q−sΔs−1(5.7)

provided that F ′
±(u) � Q � αβXβ for u ∈ [1, 21/3]. Here we have used the

estimate
∫ ∞

0

|φ(t)(u)|du =
{∫ 1+Δ−1

1

+

∫ 2

2−Δ−1

}
|φ(t)(u)|du � Δt−1, t ≥ 1.

Let b∗ be defined by (3.7). Note that F ′
+(u, n) � (nX)1/3 + αβXβ for n ≥ 1, and

F ′
−(u, n) � (nX)1/3 � αβXβ for n ≥ 2b∗. Thus (5.7) gives

I+j (n) � (nX)−s/3Δs−1, for n ≥ 1;(5.8)

I−j (n) � (nX)−s/3Δs−1, for n ≥ 2b∗.(5.9)

Let B = Δ3X−1 + 2b∗. Taking s = 4 − j in (5.8) and (5.9), one finds that the
contribution of I±j (n) with n ≥ B to (5.6) is

�
2∑

j=1

∑
n≥B

|Af (n, 1)|+ |Af (1, n)|
n

(nX)
1−(j+s)/3

Δs−1 � (BX)−1/3Δ2 � Δ.

Taking s = 3 − j in (5.8) and (5.9), one can see that the contribution of I−j (n)

with 2b∗ ≤ n < B to (5.6) and the contribution of I+j (n) with 1 ≤ n < B to (5.6)
together is

�
2∑

j=1

Δ2−j
∑
n≤B

|Af (n, 1)|+ |Af (1, n)|
n

� Δ logB.

Thus we get

Dk(X) =
3π−5/2

4ik+1

∑
n<2b∗

Af (n, 1) + (−1)kAf (1, n)

n

×
2∑

j=1

(
π3nX

)1−j/3
bk(j)I

−
j (n) +O(Δ logB).(5.10)
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Note that if 2b∗ ≤ 1, then the main term disappears. Assume 2b∗ > 1. For β �= 1/3,
the second derivative test shows that I−j (n) � (αXβ)−1/2 for 1 ≤ j ≤ 2. Thus the

main term in (5.10) is

� (b∗X)2/3(αXβ)−1/2
∑

n≤2b∗

|Af (1, n)|+ |Af (n, 1)|
n

�β (αXβ)3/2 log(2b∗),

by (1.4). This proves

(5.11)
∑
n>0

Af (1, n)e(αn
β)φ

( n

X

)
� ((αXβ)3/2 +Δ) logB.

For β = 1/3, one has b∗ = α3/27. We will follow the argument from (3.19) to
(3.22). Let nα be a positive integer such that

α3/27 = nα + λ, −1/2 < λ ≤ 1/2.

If n �= nα or n = nα but |λ| ≥ 1/10 one can prove that the contribution of these
terms to Dk(X) in (5.10) is O(α29/14+εX1/3). Note that there is at most one integer
n = nα such that

∣∣α3/27− n
∣∣ < 1/10. The contribution of this term to (5.10) is,

by using (1.1) and the trivial estimate I−j (n) � 1,

� X2/3(α3)5/14+ε−1/3 � α1/14+εX2/3.

This proves

(5.12)
∑
n>0

Af (1, n)e(αn
1/3)φ

( n

X

)
� Δ logB + α1/14+εX2/3 + α29/14+εX1/3+ε.

Replace α by αdβ and X by X/d in (5.11) and (5.12). Set Δ = X2/3 and apply
(4.2). The desired estimates in Theorem 5 follow easily from (5.2) and (5.4).

6. Proof of Theorem 6

We start from (5.2) and (5.3). By (1.11) we get

E(β) �
∑
d|m

(m
d

)θ+ε(X
d

)θ+ε(
1 +

X

dΔ

)

� mθ+ε(Xθ+ε +X1+θ+εΔ−1).(6.1)

To estimate the smooth sum in (5.2), we follow the same arguments from (5.5) to
(5.12), but pick up a single main term corresponding to n = nα(d) such that

(6.2)
∣∣∣α3d/27− n

∣∣∣ < 1/10,

when β = 1/3 as in (4.4). Consequently one obtains, when β �= 1/3,

∑
n>0

Af (m,n)e(αnβ)

� mθ+ε(X1+θ+εΔ−1 +Xθ+ε + (αXβ)3/2 +Δ logB),(6.3)
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and when β = 1/3,∑
X<n≤2X

Af (m,n)e(αnβ)

= −i
√
3X2/3

∑
d|m

Eα(d)μ(d)
nα(d)1/3d2/3

Jφ

(nα(d)

d

)
Af

(m
d
, 1
)
Af (1, nα(d))

+ Of,ε

(
mθ+ε

{
X1+θ+εΔ−1 +Xθ+ε +Δ logB + α1+3θ+εXβ

})
,(6.4)

where as before Jφ is given by (3.20) and

B = Δ3X−1 + 2b∗ = Δ3X−1 + (αβ)3X3β−1 max(23β, 2),

and hence logB � logΔ+ logX. Recall that Eα(d) = 1 if (6.2) has a solution, and
= 0 otherwise.

By the construction of φ we get from (3.20) that

Jφ

(nα(d)

d

)
=

∫ 21/3

1

uφ(u3)e
((

α− 3
(nα(d)

d

)1/3)
X1/3u

)
du

=

∫ 21/3

1

ue
((

α− 3
(nα(d)

d

)1/3)
X1/3u

)
du+O

( 1

Δ

)

=: J1

(nα(d)

d

)
+O

( 1

Δ

)
.

When α− 3(nα(d)/d)
1/3 �= 0, i.e., when α3d/27 is not an integer, we can compute

J1(nα(d)/d) and show that

(6.5) J1

(nα(d)

d

)
�

∣∣∣α− 3
(nα(d)

d

)1/3∣∣∣−1

X−1/3,

using integration by parts once. If

(6.6)
∣∣∣α− 3

(nα(d)

d

)1/3∣∣∣ � X−1/3−(1+θ)/2−ε = X−(1+3θ)/6−ε,

then by (6.5)

X2/3J1

(nα(d)

d

)
� X1/3+(1+3θ)/6+ε = X(1+θ)/2+ε.

Thus by (1.11) the main term on the right side of (6.4) is

� (X(1+θ)/2+ε +X2/3Δ−1)
∑
d|m

1

nα(d)1/3d2/3

(m
d

)θ+ε

nα(d)
θ+ε

� mθ+ε(X(1+θ)/2+ε +X2/3Δ−1)
∑
d|m

1

d2/3+θ−εnα(d)1/3−θ+ε

� mθ+ε(X(1+θ)/2+ε +X2/3Δ−1),

when β = 1/3 and (6.6) holds. When (6.6) does not hold, we may impose

(6.7)
∣∣∣nα(d)− α3d/27

∣∣∣ < min
{
α2dX−(1+3θ)/6−ε, 1/10

}
,

and a main term remains on the right side of (6.4) for each d|m. Note that (6.7)
implies

na(d)
−1/3 = 3α−1d−1/3 +O(α−2X−(1+3θ)/6−εd−1/3).
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By (1.11) and using the fact that Jφ � 1, nα(d) 
 α3d, the above O-term con-
tributes to (6.4) the following:

O
(
X2/3−(1+3θ)/6−ε

∑
d|m

(m/d)θ+ε(nα(d))
θ+ε

α2d

)
= O(mθ+εX(1−θ)/2−ε).

Consequently when β = 1/3, (6.4) can be written as∑
X<n≤2X

Af (m,n)e(αnβ)

= −i3
√
3α−1X2/3

∑
d|m

Eα(d)μ(d)
d

J1

(nα(d)

d

)
Af

(m
d
, 1
)
Af (1, nα(d))

+ Of,ε

(
mθ+ε

{
X1+θ+εΔ−1 +Xθ+ε +Δ logB + α1+3θ+εXβ

})

+ Of,ε

(
mθ+ε(X(1+θ)/2+ε +X2/3Δ−1)

)
,(6.8)

where we redefine Eα(d) = 1 if there is an integer nα(d) satisfying (6.7) and = 0
otherwise.

To minimize the error terms in (6.3) and (6.8), we take Δ = X(1+θ)/2. Then we
get, when β �= 1/3,

∑
n>0

Af (m,n)e(αnβ) � mθ+ε
(
X(1+θ)/2+ε + (αXβ)3/2 logX

)
,

and when β = 1/3, the O-terms in (6.8) become

Of,ε

(
mθ+ε(X(1+θ)/2+ε + α1+3θ+εX1/3)

)
.(6.9)

Since θ is assumed to be < 1/3, we have (1 + θ)/2 < 2/3 in (6.9).
When (α/3)3 = 	 is an integer, (6.7) implies nα(d) = d	, Eα(d) = 1, and

J1

(nα(d)

d

)
=

∫ 21/3

1

udu =
22/3 − 1

2
.

Thus ∑
X<n≤2X

Af (m,n)e(3(	n)1/3)

= −i

√
3

2
(22/3 − 1)X2/3	−1/3

∑
d|m

μ(d)
Af (m/d, 1)Af (1, d	)

d

+ Of,ε

(
mθ+ε(X(1+θ)/2+ε + 	1/3+θ+εX1/3)

)
.

This proves Theorem 6 for a Hecke eigenform f , and hence for a general Maass
form f.
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