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EISENSTEIN SERIES ON LOOP GROUPS

DONGWEN LIU

ABSTRACT. Based on Garland’s work, in this paper we construct the Eisenstein
series on the adelic loop groups over a number field, induced from either a cusp
form or a quasi-character which is assumed to be unramified. We compute the
constant terms and prove their absolute and uniform convergence under the
affine analog of Godement’s criterion. For the case of quasi-characters the
resulting formula is an affine Gindikin-Karpelevich formula. Then we prove
the convergence of Eisenstein series themselves in certain analogs of Siegel
subsets.
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1. INTRODUCTION

One of the most important tools to study automorphic forms is the theory of
Eisenstein series. In the fundamental work of R. Langlands [31], he showed how to
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get automorphic L-functions from the constant terms of the Eisenstein series. This
method, which was further developed by F. Shahidi and known as the Langlands-
Shahidi method, has been applied to the Ramanujan conjecture and Langlands
functoriality [26L27,[35]. On the other hand, H. Garland [I0HI2] has made very im-
portant generalizations to loop groups. He considered the Eisenstein series induced
from a character and proved the absolute convergence of constant terms first and
then the Eisenstein series itself, under certain affine analog of Godement’s criterion.
His work lays the foundation of this field and gives the first example of automorphic
forms on infinite dimensional groups.

Based on the methods of Garland, in this paper we study the Eisenstein series
defined on adelic loop groups over a number field, induced from either a cusp
form or a quasi-character which is unramified. We prove the absolute and uniform
convergence of these series and analyze their constant terms and Fourier coefficients.

Given an untwisted affine Kac-Moody Lie algebra g associated to a complex
simple Lie algebra g, we have the affine root system ® and the set of simple roots
A= {ap,a1,...,ay} such that A = {a1,...,a,} is the set of simple roots of g.
The affine Weyl group W is isomorphic to the semi-direct product W x @ where
W is the Weyl group of g and QV is the coroot lattice. Associated to § we first
construct the central extension

1= F* = G(F((t) = G(F((t)) = 1
and then form the semi-direct product
G(F((t) = G(F((t)) x o(F),

where F' is any field and o(q), g € F'*, acts on F'((t)) as the automorphism ¢ — gt.
There are two methods to construct the central extension. One is via the tame
symbol BI4) on F((t))*, and the other is to use a rational representation of
G and the method of determinant bundles (see [1]). In Theorem B8 we give
the explicit relation between these two constructions. More precisely, we obtain a
homomorphism between loop groups, which is identity after modulo the center, and
when restricted on the center is to the power of the Dynkin index of the rational
representation.

For a number field F' with adele ring A and idele group I, we may form the adelic

/

loop group G(A(t)) = G(A(t)) x o(I), where A(t) = [[F,((t)) is the restricted

product with respect to O,((t)) for all finite places v.v The “F-rational points”
of the loop group is G(F(t)), where F(t) = F((t)) N A(t). We have defined the
subgroups B, and K, of G(F,((t))) for each place v, which are analogues of the
Borel subgroup and maximal compact subgroup respectively. More concretely, Ev
is the preimage of the Borel subgroup of G(F),) under the map

G(E[[1)]) — G(R[[H]) =3 G(F),

We have the Iwasawa decomposition G(F,((t))) = B,K,. The group G(F,[[t]]) can
be interpreted as the maximal parabolic subgroup of G(F,((t))) corresponding to
A. Tt can be shown that the central extension splits over G(F,[[t]]), i.e. we may
realize G(F,[[t]]) as a subgroup of G (F,((t))) canonically. The corresponding results
for the adelic groups are formulated in an obvious way. There is also the Bruhat
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decomposition G(F,((t))) = B,WB,. These results can be proved by using the
standard theory of Tits systems.
Fix q € I. If f is an unramified cusp form on G(A), s € C, we define a function

fo on G(A(t)) » o(q) by

Fil9) = Iel* f (po),
where g = cpo(q)k is the Iwasawa decomposition such that ¢ € T, p € G(A{t)+)
with A(t > A(t) A[[t]], k € K, and po is the image of p under the projection

GAt)y) =3 G(A ) This function is well defined and we construct the Eisenstein
series defined on G(A(t)) x o(q) as

E(s, f,9) = > f:(v9),

YEG(F () +)\G(F(t))

where F(t)y = F(t) N F[[t]]. The Eisenstein series is left invariant under @(F (t))
and right invariant under K. Similar construction applies for an unramified quasi-
character x4 on T(A)/T(F) where T is the maximal torus of B.

The unipotent radical U of B is the subgroup corresponding to the set of all the
positive roots of ®. It can be proved that U (F)\U(A) is compact and inherits the
product measure from that of A/F. We define the constant term of E(s, f, g) along

B by
Eg(s, f.9) = /A _ E(s, f,ug)du
U(FN\U (&)
The following theorem generalizes Garland’s results in [11].

Theorem 1.1. (i) Suppose that g € @(A(t}) x o(q) with g € T and |q] > 1,
s € H={z € C|Rez > h + h"}, where h (resp. hY) is the Cozxeter (resp. dual
Coxeter) number. Then E(s, f,ug), as a function on ﬁ(F)\fj(A), converges abso-
lutely outside a subset of measure zero and is measurable.

(it) For any e,m > 0, let H. = {z € C|Rez > h+ hY + ¢}, 0, = {o(q)|q €
L |q| > 14 n}. The integral defining E5(s, f,g) converges absolutely and uniformly
forse H, g € T/J\'(A)Qanf?, where Q is a compact subset of T(A).

(i) Replace fs by the height function hs = |c|®, and denote the resulting series
by E(s,h,g). Then fora € ZA“(A),

(1.1) Ep(s;h,ao(q) = Y (ao(q))”™"

wEW\W

7lﬁ+w sL Cw(s),

where the summation is taken over representatives of minimal length of the cosets
WA\W, L is the fundamental weight corresponding to oy, p € h* satisfies (p, o)) =1,
i=0,1,...,n, and

_ AF(<3L_ﬁ76v )
42 el BE@HM; Ae((sL—p,BY) +1)°

with Ap the normalized Dedekind zeta function.

The formula (L)) is an affine analogue of the Gindikin-Karpelevich formula. The
condition Res > h + h" is an affine analogue of Godement’s criterion. Similarly,
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if we consider the Eisenstein series E(xs,g) induced from an unramified quasi-
character x4 on T(A)/T(F), then under the condition || > 1 and Re(xs) > 2,
i=0,1,...,n, the constant term Eg(x5,a0(q)), a € T, is given by

(1.3) Ep(xg.a0(@) = Y (ao(@)? O e, (xz),
weW

where

(1.4) SRCO R | N L(=(p, BY), x78")

— (3 BYY v~BV)"
ks L= (5,8, x7B")
Here Ap is the discriminant of F' and L(s, x) is the Hecke L-function.

We have also considered the Fourier coefficients of our Eisenstein series. To
obtain a general formula would be quite difficult and non-trivial. But at least for
S Ly we have computed everything explicitly, and the formulas are given in Section
4.4.

Following Garland’s approach in [12], we also prove some results on the absolute
convergence of the Eisenstein series themselves instead of the constant terms. For
example, we establish uniform convergence over certain analogues of Siegel sets.
The proof is technical and involves the systematic use of Demazure modules to-
gether with estimations of some norms for both archimedean and non-archimedean
cases. Let us only state the main results along this direction.

Theorem 1.2. Fiz q € I, |q| > 1. There exists a constant cq > 0 depending on
q, such that for any e > 0 and compact subset Q of T(A), E(s, f,g) and E(s,h,g)
converge absolutely and uniformly for s € {z € C|Rez > max(h + h" 4+ £,¢q)} and

g€ ﬁ(A)Qa(q)K.

Theorem 1.3. There exist constants c1,co > 0 which depend on the number field
F, such that for any e > 0 and compact subset Q of T(A), E(s, f,9) and E(s,h,g)
converge absolutely and uniformly for s € {z € C|Rez > max(h + hY + ¢,c1hY)}
and g € U(A)Qo., K.

We conjecture that Theorem [[3 is true for ¢; = 1 (in which case the first
condition reads s € H.) and arbitrary co > 0. In other words, we conjecture that
the domain of uniform convergence for the constant term Ez(s, f,g) in Theorem
[T also applies for E(s, f,g) itself. We again interpret this as the analogue of
Godement’s criterion. We have proved the conjecture for F' = Q. For the geometric
analogue we know that the conjecture is true for F' = Fy(T'), the function field of
P |

The theory of Eisenstein series on infinite dimensional groups is far from com-
plete. Besides the above conjecture, let us propose some other related open prob-
lems.

(A) Build the foundations of representation theory and harmonic analysis for
infinite dimensional algebraic groups. Since we are dealing with groups which are
not locally compact, we do not have Haar measures. One should also be concerned
with induction from ramified representations, in contrast to what we do in this paper
where we only consider induction from unramified cusp forms or quasi-characters.

(B) Generalize the theory of Eisenstein series further to all Kac-Moody groups
(see [28] for the theory of Kac-Moody groups) and also non-split infinite dimensional
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groups. Compute the constant and non-constant coefficients to see if there are any
new L-functions [I7}[36].

(C) Establish the Maass-Selberg relations [I3HI6] and as applications prove
the analytic continuation and functional equations for the Eisenstein series. This
project, together with (B), would be crucial for the generalization of the Langlands-
Shahidi method.

(D) In his thesis [37], M. Patnaik investigated the geometric meaning of Eisen-
stein series on loop groups over a function field, where he used the concept of
ribbons [24]. It would be interesting to consider this problem for the number field
case.

2. AFFINE KAC-MOODY LIE ALGEBRAS

In this section we review the theory of affine Kac-Moody Lie algebras. The basic
references are [7,23,142].

2.1. Definition. Let g be a complex simple finite dimensional Lie algebra. Let
(,) denote an invariant symmetric bilinear form on g, normalized such that the
square length of a long root is equal to 2. Following [7] we call it the standard
bilinear form. The affine Lie algebra g is a complex infinite dimensional Lie algebra
constructed as follows.

Let C[t,t71] be the algebra of Laurent polynomials in the indeterminate ¢ over
C. For a Laurent polynomial P = Y ¢;t* the residue is defined by Res P = c_;.
Consider the complex infinite dimensional Lie algebra g = C[t,t~!] ®¢ g. The in-
variant form on g can be extended naturally to a bilinear C[t,¢~!]-valued form on
g, which we again denote by (,). Any derivation D of C[t,¢~!] can be extended to
a derivation of g by D(P ® g) = D(P) ®g.

Define a C-valued bilinear form v on g by

dx
w(ﬂ%y) = Res (Evy) .

1) satisfies the properties:

(1) ¢($7y) = —¢(y,x) and

(i) ([z,y], 2) + ¥(ly, 2], #) + P([z, 2], y) = 0.

Then v is a 2-cocycle and we define § to be the corresponding one-dimensional
central extension of §. The affine algebra g is obtained by adding to § a derivation

d which acts on g as t% and acts on the center as 0.
More precisely, g is the complex vector space
9= (Clt,t ' ®cg) ®CcaCd
with the Lie bracket

dx dx
[21 B a1c® frid, x2 B aac @ Pod] = <[$1,$2} + Bltd_tQ - 52td—tl> @ (1, z2)C.

Here z; € g, [x1, 2] is the bracket in the Lie algebra g and «;, 8; € C.
We introduce a C-valued bilinear form (,) on g by
(21 ® a1c® Brd, w2 B e @ Bod) = Res (7" (21, 22)) + a1 B2 + 21

It is easy to check that this bilinear form is symmetric, non-degenerate and in-
variant. Note that the restriction of the form (,) to the subalgebra g C g induces
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the standard bilinear form on g. Following [7] we also call the form (,) on g the
standard bilinear form.

2.2. Root system of g and subalgebras in g. Let § denote a Cartan subalgebra

of g. Let g = h@ > gn be the root space decomposition of g with respect to b;
acd
here & C b* is the system of roots. We fix a choice of positive roots &, C ®; let

A ={ay,...,a,} be the subset of simple roots and let & be the highest root.
Define the following subalgebra in g:

h=hoCcaCd.
This is a maximal abelian diagonalizable subalgebra in g and is called a Cartan
subalgebra of g. For o € h* the attached root space is
o = {z € gl[h, 2] = a(h)x, b € b},

and « is called a root if o # 0. We extend any linear function A € h* to a linear
function on b, which we still denote by A, by setting A(c) = A(d) = 0. Let 6 € h* be

defined by 6|y+cc = 0, 8(d) = 1. Similarly, define L € h* by L|p1cqa = 0, L(c) = 1.
The decomposition of g into a sum of root spaces with respect to b is

g=ha Y (Focgd)® » (F'ach).

€D €L 1€Z\{0}
Therefore the root system of g with respect to H is
® = {a+idla e ®,icZ}U{idli € Z\{0}}.
A root 8 = a4+ id with @ € ® is called real and a root 8 = id, i € Z\{0}, is
called imaginary. The multiplicity dimgg of a root 3 € @ is 1 if / is real and is n
otherwise.

The following properties of the standard form on g can be deduced from the
corresponding properties of the standard form on g:

() |5 is non-degenerate;
(,) [gs@5_, is non-degenerate;
(98,9,) =0if B+v #0.

Let v : E ~ H* be the isomorphism induced from the standard bilinear form, and
we still write (,) for the induced bilinear form on h*. Moreover, we denote by ()
the canonical pairing h* x h — C. Note that

(a1 +1i10 + 1L, ag + 120 + joL) = (o, a2) + i1 j2 + i2j1

and that a root a € ® is real if and only if (a, &) # 0, in which case (a, @) > 0. Let
us write
&) = (57‘6 U &)im
for the decomposition of ® into real roots and imaginary roots.
Define a subsystem of positive roots ‘I>+ by

&, = {a +idleither i >0, or i =0, € ®,}.
Then & = &hr U (—&Lr), and the corresponding system of simple roots is

Ez{aozé—&,al,...,an}.
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The following subalgebras of g are the analogues of the maximal nilpotent and the
Borel subalgebras of g:

ﬁJr: @§57 n_= @5*57 b:h@HJr
BED, BED,
2.3. Affine Weyl group of g. For a real root 3 € &)Te, let BV € E be the coroot.

Lemma 2.1. Let oz_v € b be the coroot of the root a € ®; then the coroot of

i ~
B=1id+ais Y = ) (a¥,aY) e+ V. In particular, the coroot of ay is ¢ — a”.

Proof. Let x,7_, and " be a standard basis of go + g_o + Ca¥ =~ sly; then
/BV = [ti®xaatii®x—a]
= [ZayToa] +i(Ta,Zoa)cC

= o+ ! ([aY,24],7_0) C

= o'+ = (Y, [ra, 7 0]) C

One can easily check that
BVt x| =2t @0, [BY, 17 Qx o]=-20"Q1_4,.
O
Let p € b* be the half sum of all the positive roots in ®; then (p, ') = 1 for
i=1,...,n.Let p=p+ (14 (p,a”))L € h*; then (p,)) =1 for i =0,1,...,n.
The number hY := 14 (p, @") is called the dual Coxeter number of the root system

®. Therefore p = p+ h"L. N
For a real root 3 € ®,., let 73 be the reflection whose action on h* is given by

rs(A) = A=\ 8V)8, Aeb,
and whose action on H is given by
ra(h) =h—(8.m)B", heb.
The two actions are dual to each other:
(rs(\),rp(h) = (A h),  hehAen”.

The group W c GL(H*) generated by 7g’s over all real roots 3 € ®,. is called the

affine Weyl group of g. The form (,) |-, is W-invariant. Note that any real root is

B
a W-conjugate of a simple root and the line Co is the fixed point set for . Write
r; instead of ry,, ¢ =0,1,...,n. Then the group W is generated by r;’s.

Let W be the Weyl group of g, which can be identified with the subgroup of W

generated by the reflections rq, ..., 7.
Let @ be the root lattice of g, i.e., the Z-lattice generated by A, and let QY
denote the coroot lattice, i.e., the lattice generated by a,i = 1,2,...,n. It is

known that oV € QV for all o € ®.
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Theorem 2.2. The affine Weyl group W is isomorphic to W x QY. Write T), for
h € QV as an element in W x QV. Then the isomorphism is given by, for o € ®,

Ta ™ Tay, Tis—aTa — Liav.
See [7123,28]. The following two lemmas give the explicit action of W on E and
b*.

Lemma 2.3. The W-action on E fizes c. The action is given by the formula: for
a€ed®, yeQV,heh, andicZ,

roa(h+id) = rq(h)+id,
Ty(h+id) = h+id+i7—<(h,7)+%(%v)>c

or, equivalently,

1

7o) =+ ()7 = (13 + 5 6 @) ) V€

Proof. Since (¢, ) = 0 for every real root 3, c is fixed by W. We prove the second
formula for v = @ with a € ®. The general case can be reduced to this one:

T, (h + kd) = T5s_aVv ’I“a(h + Zd)
= T5—a(ra(h) +id)

= 71o(h) +id — (ro(h) +id,6 — a) (Mc - aV>

= 71o(h) +id+ (i + (h,)) <av — Mc)

= h+id+ia¥ — ((h,ozv) + % (av,av)) c.

O

Lemma 2.4. The W -action on H* fixes 6. The action is given by the formula: for
aed®, yeQV, Nebh*, andi € Z,
ra(A+iL) = 74(N\) 4L,

1

T,(A+iL) = A+ilL+iv(y)— ((A,w + 5 (7,7)) )

or, equivalently,

7,0) =+ @00)v0) = (e + 5 (000 00)) 6, Vo e,

In particular,
T,(8) =B~ (8,7)8, B €.

The proof of this lemma is similar to that of Lemma [2.3] and can be reduced to
the case v = a" with a € ®.
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3. CONSTRUCTIONS OF LOOP GROUPS

We shall construct the loop groups associated with complex simple Lie algebras
and obtain central extensions of loop groups by using tame symbols. Then we
discuss the highest weight representations of loop groups. Another construction of
loop groups starting from a linear algebraic group and a rational representation
of this group will be given, and we will see the relationships between these two
constructions. We also construct adelic loop groups and review some fundamental
results of H. Garland [8] on arithmetic quotients.

3.1. First construction of loop groups. We first recall the definition of Cheval-
ley groups. The main references are [331[38]. Let g be a complex simple Lie algebra,
and we use the same notation as in Section 2. Fix a Chevalley basis of g. The uni-
versal Chevalley group associated to g is a simply connected affine group scheme
G over Z, and for any field F' the F-rational points G(F) of G are generated by
the elements z,(u), o € ®, u € F subject to relations BI)-B3) if rank g > 2, or
relations (B1)), B3) and B4) if g = slo.

For a € ®, u,v € F,

(3.1) To(U)Ta (V) = 2o (u + v).
For o, 5 € ®, 0 # -, u, v € F,
(3.2) xa(u)mg(v)xa(u)_lmg(v)_l = H xwt-i-y,@( o u'v?),

1,jELT iat+jBED
where the order of the right-hand side is given by some fixed order, and the coef-

ficients cfjﬁ are integers which depend on this order and the Chevalley basis of g,

but not on the field F or on u, v. For a € ®, u € F'* we set
W (u) = To (W) _o0(—u"N2a(1),  ha(u) = we(u)wy (1)
Then for u, v € F'*,

(33) htx(u)ha(v) = ha(’lﬂ}).
If g = sly, there are only two roots +a, and the relation ([:2) above is replaced by
(3.4) W (W) Zo (V)Wwe(—u) = 2_o(—u?v), ue F*,veF.

The universal Steinberg group G'(F) is generated by Z,(u), « € &, u € F
subject to relations () and (B2)) if rank g > 2, or (BI)) and (B4) if g = slp. Here
for a € @, u € F* we define

B (1) = Fo(W)F-a(—u)Fa(u),  ha(u) = Ta(w)Ba(1) ™
Let w : G'(F) — G(F) be the homomorphism defined by 7(Z(u)) = z4(u) for
all @ € @, u € F. Steinberg ([38] p.78] Theorem 10) proved that if |F| > 4, and
|F| # 9 when g = slo, then (7, G’) is a universal central extension of G. Recall
from [38 p.74] that a central extension (7, E) of a group G is universal if for any

central extension (7’, E’) of G there exists a unique homomorphism ¢ : E — E’
such that 7’ = 7, i.e. the following diagram is commutative:

E— % L F

N A
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Let C = Ker m. Matsumoto [33] and Moore [34] (cf. [38, Theorem 12, pp.86-87])
proved that if |F'| > 4, then C' is isomorphic to the abstract group generated by the
symbols c¢(u, v) (u,v € F*) subject to the relations

3.5) c(u, v)c(uv, w) = c(u, vw)e(v,w), c(l,u) =c(u,1) =1,

3.6) c(u, v)e(u, —v™ 1) = c(u, —1),
.7) c(u,v) = c(v™t,u),
3.8) c(u,v) = c(u, —uv),
)

C(ua 1)) = C(U, (1 - u)v),
and in the case ® is not of type C), (n > 1), the additional relation

(3.10) ¢ is bimultiplicative.

In this case the relations [3.3)-([39) may be replaced by [B.10) and
(3.11) c is skew,

(3.12) c(u, —u) =1,

(3.13) c(u,1 —u) =1.

The isomorphism is given by c(u,v) — hg(u)ha(v)he(uv)~t, where a is a fixed
long root. For a field F' and an abelian group A, a map ¢ : FF* x F* — A is
called a Steinberg symbol on F'* x F'* with values in A if it satisfies the relations
BH)-[B3), and it is said to be bilinear if it also satisfies (B.10).

In the Steinberg group G’ let cq (1, v) = ha () ha(v)ha(uv) ™, o € @, u,v € FX.
Lemma 3.1 ([33] Lemma 5.4. p.26]).

(a) ca(u,v) = c_o(v,u)~!, Vo € .

(b) If there exists w € W such that B = wa, then cg equals co or c_q.

(¢) For o, 8 € @,

o (u)hg(0)ha(w) Tha(v) ™t = cq(u,v/8 ) = cg(v,ulP )1,

(d) The Steinberg symbol c,, is blinear except when the case G is symplectic and
a is a long root.

Suppose that ¢ : F* x F* — A is a Steinberg symbol. By [33] Théorem 5.10,
p.30], there exists a central extension of G(F) by A such that ¢, = ¢ for any
long root «, if either ¢ is bilinear or G is symplectic. In fact, the symbol gives a
homomorphism of abelian groups ¢ : C — A. We may assume that ¢ is surjective.
Then from the universal central extension 1 - C — G'(F) — G(F) — 1 we obtain

C G'(F)

1
- Kerg - Kerg

— G(F) — 1.

Then G'(F) /Ker¢ is the required central extension. If ¢ is bilinear, then ¢, = cﬁ,
Va € ®. This can be proved by using Lemma BJ] (¢) and checking the Dynkin
diagrams. Recall that the square length of a long root equals 2.

The following lemma follows from [39]; see [33] Lemme 5.1 and Lemme 5.2,
pp.23-24].

Lemma 3.2. In a central extension of G by a Steinberg symbol we have the follow-
ing relations for a,f € @ :

(a) Wo(u)Zs(v)Wa(u)~t = Emﬁ(naﬂu*(ﬁ,a”v), where 1q.5 are integers equal to
+1 given by [33, Lemme 5.1 (c)].
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(b) Wa(w)hs (0)Wa(u) ™" = hyyp(na,gu™ P o)y (o gu=Po0) 7 e

W (W)hs(0) Do (W)L = er5(v, 70,50~ F ) 1Ry 5(v),

(€) ha(w)Tp(v)ha(u) ™t = Tg(ul®* )v)

(@) B ()0} l) ) = 5 (0P ),

(6) Ta( Vs (W)Ba(l) ™ = ha(wha(u @), )

Ef) Wa(u) = W_o(~u""), ha(u) = hoa(u) ™", Wa(1)ha(u)Wa(1)~" = ha(u™h),

g) wa(l)_lia(u)wa(l) = %—a(_u) = %a(_u_l)wa(u_l)ga(_u_l)’ u # 0.

The tame symbol defined for the field of Laurent power series F'((t)) is the map
(, tame : F((£))* x F((¢))* — F* given by

) 20 (W)

— (—1)v@v(y
(314) (xay)ta’me - ( 1) yv(:rr) =0

where v is the valuation on F'(()) normalized such that v(¢!) = i. Note that tame
symbol is trivial on F* x F*.

Since the tame symbol is a bilinear Steinberg symbol, we obtain a central ex-
tension of G(F'((t))) by F*, associated to the inverse of the tame symbol. Let us
denote this central extension by a(F((t))) It is generated by Z,(u) with o € @,
u € F((t)) and F*, subject to the relations 1)), B2) and BI5) below if rank
g > 2, or the relations (31), B.4) and (BI3) if g = slp. By previous remarks, for
each a € 9,

315)  he@ha(ha(en) ! = @), @y € F(O)
Then we have the following exact sequence for G(F((t))):
1— F* — G(F((t)) = G(F((t)) — 1,

where 7 is given by Z,(u) — x4 (u).

For a real root § = a +id € ®,., and u € F, v € F*, we define for G(F((t))),

wp(u) = zo(ut’),
(3.16) ws(v) = mp(v)e.p(—v)as(v) = wa(vt),
hp(v) = we(v)ws(1) ™" = ha(v).
For G (F((t))) we can define the elements by the same formula with z, w, h replaced

by Z,w, h. From the definition we have

(3.17) Eg(u) = zﬂa(uti)@a(ti)*l:@a(uti)iﬁa(l)*l(ﬁa(ti)@a(l)*l)*l
= Tt a(t) L = ()75 oo (1)

= uTw hy(u) = uD ha(u).

It is clear that {zg(u)|u € F'} (resp. {ZTg(u)lu € F'}) forms a subgroup isomor-
phic to the additive group G,(F). We call it the root subgroup associated to 3,
and denote it by Ug (resp. (75)

For a positive imaginary root 5 = id € %im+, i € N, we define the root subgroup
Ug (resp. U, ) as follows, which is isomorphic to G?. The map

exp : tF[[t] — 1+ tF[[t]
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is a bijection with inverse map log. The root subgroup Ug is given by
(3.18) Us = {ha, (exp(uit?)) - - - ha, (exp(unt’))|us, . .., u, € F}.
We define (75 similarly, with h replaced by h.

Lemma 3.3. For each real root f = a+id € &Sre, there is a unique group homo-
morphism g : SLa(F) — G(F((t))) (resp. G(F((¢)))) such that

(6 1) = ostw Gesn ot (3 ) = st (resp. Tp(a).

Proof. For G(F((t))) we have

ws(u) = T (ut)r_o(—u™ o (ut’) = we (ut?),

h(u) = ho(ut’)ha ()1 = ho(u),
and therefore
hg(W)hs(v)hg(uv) ™! = ho(u)ha (v)ha (uwv) ™! = 1.

For G(F((t))), we only need to verify the last equation above since others are
similar. However, from BI7) it follows that

Eﬁ(“)ﬁﬁ(”)ﬁﬁ(u”)_l = ha(u)ha('l))ha(u’l})_l =1.

This verifies that xg(u) (resp. Tg(u)) and z_g(u) (resp. T_g(u)) satisfy the rela-
tions of SLy(F). O

Apply BI7) and use properties of the tame symbol; we can translate Lemma
B and Lemma [3:2 into the data of affine root system ®. Assume that o = o + 10,
B =B+ j6 € Dre, where ag, By € ®, i, j € Z. One should not confuse ap with the
simple root g = § — &@. Let 00,8 = Mg, B -

Corollary 3.4. We have the following relations in @(F((t))) for a, B € Oy

(

(d) @a(u)fﬁ(v)@a(u)*l 7:~cra5(na7ﬁu*<5’°‘ W), u€ F*, v € F,

(€) Ga(Whs (0)Ta ()" = hyps(v), u, 0 € F7

() Ba(w)(0)ha(u) ™ = Fs(u?200), we P, v e F,

(9) ha(u)@g(v)ha(u)_l = @g(u<f’a ), u,v € FX,

(B) Wa()hp(u)ia(1)™" = hs(w)ho(u™ @), u e F, N

(4) X@a(u) = W_a(~u"), ha(u) ™" = ha(u™), Wa(Dha(w)Wa(l)™" = ha(u™),
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Ea(u)fg(v)ia(y)_lfg(p)_l |
= oo (ul')Tp, (08 )Taq (ut") " T, (v7) 7

= 11 T o (Con® (ut')™ (vt!)")
m,n€Zt mag+nBoEP
= H Tomatnp (0P my™).,

m,nEZ‘*‘,maJrn,BG‘im
(b) Since the tame symbol is trivial on F* x F*,
Ta@ha(v) = u@T oD hay (u)hag (v)
= (uv)ﬁﬁao (wv) = ho(uv).

(¢) By Lemma [3.1] (¢),
ha(uhs(v) = uTD 0T Ry (w)hs, (v)

= u%vﬁﬁgo (V) hag (1)

= hg(v)ha(u).
(d) By Lemma (a),
W (u)Tp(v)Wa(W) ™" = Wy (ut")Zs, (8 )io, (ut’) !
= Ty ((ut) P00t
= FpuP),

where the last equality follows from the formulas
(B,0") = (Bo,ag),  TaB =Tagfo + (j = (Bo, g )i)d.
(e) By Lemma (),
() (0) T () !
= VT Wy (ut)hg, (0) Ty (ut?) !

. 2
2 3. 7

= VT (U,navg(uti)%ﬁ’aw)

2(i—(B,aV)i) ~
— 3,8
= v 8.8 hraoﬁo (v)

= hrag(v).
(f) and (g) are easy consequences of (B.16) and [BIT). By (d) the left-hand side
of (h) equals h, g(u). By Lemma (e), the right-hand side of (h) equals
wT = Ty (whag (w()
U=(B.a¥)i) =~
I iy (1, ()0, (1)
20 —(BaV)i) ~

= u 38 hTaO/BO (u)

= hmﬂ(u).
This proves (h). (i) follows from (a) and (g). (j) follows from (d) and the fact
Doy = Na,—a = 1; see [33, Lemme 5.1 (c), p.24]. O

Tag Bo (U)

tame

= u
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For each o € &, the subgroup of G(F') generated by z,(u) and z_4(u) (u € F)
is isomorphic to SLy(F) by the map

(3.19) xa(u)H((l) g‘) xa(u)H(i ?)

The subgroup B(F') generated by z,(u) (o € &) and hy(u) is a Borel subgroup,
and the subgroup generated by zo(u) (o € ®4) is the unipotent radical of B(F).
When F is a local field, G(F) is a locally compact topological group. We choose
a maximal compact subgroup K of G(F) as follows. We first choose for SLy(F)
a maximal compact subgroup. If F = R or C we choose SO2(R) or SU(C). If F
is non-archemedean, we choose SLy(Op), where Op is the ring of integers of F.
Using (319) we obtain a maximal compact subgroup in the SLq(F') corresponding
to each positive root a. Let K be the subgroup generated by these subgroups. Then
we have the Iwasawa decomposition G(F') = B(F)K.

Let By be the preimage of B(F) of the canonical projection G(F[[t]]) — G(F).
It is easy to prove that EO is generated by the elements (1) where either « € @,
u € F[[t]] or & € ®_,u € tF[[t]], and the elements hy(u), @ € ¢, u € F[[t]]*. The
subgroup By plays the role of Borel subgroup for G(F((t))). Let No be the group
generated by wq (u) with a € &, u € F((¢))*.

Lemma 3.5. The subgroup PAIO = §0 N J\A/'O is generated by elements ho(u) where
a €, ue F[t]]*, and is normal in Np.

Let wy = wa(1), Wa = Wa(l). Let S = {wa, Ho, - . ., wa, Ho} € No/H.
Theorem 3.6. (G(F((t))), Bo, No,So) is a Tits system, and its Weyl group is
isomorphic to W. Moreover, wq, Hy — r; gives an isomorphism.

Theorem [B.6] follows from [22] Theorems 2.22 and 2.24, pp.37-38]. Now consider
the central extension G(F((t))).

~

Theorem 3.7. There exists a lifting G(F[[t]]) — G(F((t))) given by zq(u) —
To(u), where a € ®,u € FI[t]].

The proof of Theorem B.llrequires the theory of highest weight representations of
loop groups and will be given in the next section. Assume its validity at the moment;
we may regard G(F|[[t]]) and its subgroups as subgroups of G(F((t))). In particular,
we may identify 17/3 with Ug for each 8 € &)Jr. Let B be the preimage of EO in
G(F((t))) under the canonical map G(F((t))) — G(F((t))). Then B = By x F* is
a subgroup of G(F[[t]]) x F*. Let N be the subgroup of G(F((t))) generated by
the center F* and the elements W, (u) with o € ®, u € F((t))*.

Lemma 3.8. The subgroup H=BnN is generated by the center F'* and the
elements hq,(u) with a € ®, u € F[[t]]*, and is normal in N.

Let S = {tWo H, ..., W, H} C N/H.
Theorem 3.9. (G(F((t))),B,N,S) is a Tits system, and its Weyl group is iso-
morphic to W under the isomorphism given by wq, H — ;.

Lemma [3.8 and Theorem B.9 are immediate consequences of Lemma and
Theorem We shall always identify the quotient N/B N N with the affine Weyl
group W using the isomorphism in the theorem.
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Lemma 3.10. For every o € ®, ho(t') € N and it maps to T_;qv € w.

Proof. ho(t') = wa(t)) ;" € N. The isomorphism in Theorem maps Ws—qWe
to r5_aTa = Tnv. On the other hand,

W5y = W_ot)Wa = Wa(—t )Wy
= ha(—t)T; = ha(~t"ha(=1) = ha(t7),
where the 2nd equality used Lemma[B3.2) f), the 2nd last equality used [33], T}}fzoréme
6.3(b), pp.34-35], and the last equality used Corollary B.4(b). Therefore ho(t™1)

corresponds to Tp,v € W. O
The standard results about the Tits system implies the Bruhat decomposition
(3.20) G(F((t) = |J BuwbB.
wGW

The general Bruhat decomposition with respect to parabolic subgroups also applies
to the loop groups, where the notion of parabolic subgroups are explained below.

For any 6 C A= {ap, a1,...,a,}, there corresponds a parabolic subgroup Py of
G(F((t))) such that Py, C Py, if and only if 6; C 6. Let Py = MyNy be the Levi
decomposition where Mpy is the Levi subgroup and Ny is the unipotent radical.

For example, we have Py = G(F((t))), Py = B, My = T x F*, where T ~ G, is
generated by Ea (u) with @ € ® and v € F*. An important example is the maximal
parabolic subgroup Pa = G(F[[t]]) x F* with Ma = G(F) x F*. In fact these are
the subgroups from which we induce the Eisenstein series in Sectlon 4.

Let U = Ny be the unipotent radical of B = Py, ie. U is generated by the
elements 7, (u) where either « € @1, u € F[[t]] or « € ®_, u € tF[[t]]. Let UT be
the subgroup generated by the elements Z,(u) where a € <I>+ and u € F[[t]], and
U™ be the subgroup generated by the elements Zo(u) where o € @_ and u € tF[[t]],
and D = BNN be the subgroup generated by the center F'* and the elements h (u)
where o € @, u € F[[t]]*, and D' be the subgroup of D generated by hq (u) where
o€ ®and uel+tF[[t]. Let T =T x F*; then both 7 and D' are stable under
the conjugation of w.

Lemma 3.11 ([22] Proposition 2.1, p.29]). We have unique factorizations
I vs, vvr= ][] Us, D=TD",

BEDm BED, ot
B=TU=U"DU*, U=UDU*= [] Us.
BED,
In general let Nf=U*n Ny; then
(3.21) Ny =N, D'N, .
Note that if ®y is the subsystem of ® generated by 6, then
(3.22) Ny = H U,.
O¢€<f>+f¢'9

Let Wy be the subgroup of W generated by {r;|a; € 6}. The following result is
also standard; see [3].
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Theorem 3.12. For 64, 6 C ﬁ, there is the Bruhat decomposition into disjoint
UNLONS

GF() = |J PowPs,

Wo, \W /W,

where w runs over a set of representatives of the double cosets in WGI\W/Wgz.
The following is such a set of double coset representatives:

W(6,0:) = {w e Wlw 16, C &, ,why C Dy}
In the case 61 = 6 and 02 = 0, for each w € W(60,0) there is a bijection
PgU)P@ ~ Py x {w} X Uw,

Uw= ][] Ua

a>0,wa<0

where

Assume now that F' is a local field. For a real root 8 € EI;TG, we denote Kz as
the image of the standard maximal compact subgroup of SLy(F) under the map
¢ in Lemma[33] Let K denote the subgroup of G(F((t))) generated as follows:

(K, € Bre,£1 € RX), if F =R,
(3.23) K=1¢ (Kz,B€®,.,S cC*), it F=C,
(Kg,B € e, 05, G(OF[[t]])), if F is p-adic.
The standard method using the Tits system shows that there is the Iwasawa de-
composition
G(F((t))) = BK.
For all local fields F' and all real roots 38, wg = wg(1l) € K; therefore W has a set

of representatives in K. Denote the image of K in G(F((t))) by K.

Now let us construct the full loop group G(F((t))). The reparametrization group
of F((t)) is

AutpF((t) = {Zuiti e Fl[t])lu1 # o} ,

where o(t) € AutpF((t)) acts on F((t)) by u(t) — u(o(t)), and the group law is
(01 * 02)(t) = o02(01(t)). This induces an action of AutpF((t)) on G(F((t))) as
automorphisms. It is easy to check that the action of AutpF((t)) preserves the

tame symbol, therefore it acts on G(F((t))) as automorphisms. More precisely, we
have

a(t) - Ta(u(t)) = Za(u(o(t))),

and the action on the center F'* is trivial. It is also clear that the subgroup G(F)
is fixed under this action. We have the semi-direct product group

G(F((1))) x AutpF((t))
on which there is the standard relation

a(t)go~'(t) = o(t) - g.
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We shall only consider the subgroup o(F'*) C AutpF'((t)) which consists of the
elements o(q) = qt (q € F*). It is clear that o(F*) is isomorphic to G,,(F). We
form the semi-direct product group

(3.24) G(F((1) = G(F(()) = o(F).
Consider the tori in G(F((t))),
(3.25) T—T<T,
where T =T x o(F*). The torus T ~ G™*2 will play the role of a maximal torus

for G(F((t))). Then we have the cocharacter lattices

X (T) —— X.(T) —— X.(T)
j(v c v Jf c ‘L
QV—— QY Dle—— Qg
where Qavff = QV ® Zc ® Zd is called the affine coroot lattice. It has a basis
{af,... an,c d}, and {a(\)/, ay,...,a,,d} is also a basis. The identification of QY4

with X, (T ) is, for A =« —i—zc—i—jd € Qaﬁ, where a € @, i, 5 € Z, the corresponding
cocharacter is A : G,,, — T given by

Mu) = ha(w)uio(u?).
It is clear that N normalizes T and therefore W acts on T. On the other hand

W acts on f) by the formula in Lemma [23] and the lattice Q) is stable under the
action. We have

Lemma 3.13. The cocharacter map
Qla X G =T, (A u) = A u)
18 W-equivariant.

Proof. The lemma is equivalent to: for every w € W, let W € N be a representative;
then
(3.26) W)t = (w- \)(u).
It is clear that ([B:20]) is true for w € W. We now prove it for w = T_,v. By Lemma
BI0 @ = he(t) is a lifting of w. For A = 8 € QV, [B20)) is a special case of the
following identity:

Rt (wha ()" = u' (™7 Vs (w),
which follows from Lemma B] (¢). It remains to prove [B.20]) for A = d, for which
the left-hand side of ([B:26]) is

(3.27) ha(t)o(Wha ()™ = o(wha(u t)ha(t) ™"
= o(wu <ava)i~1a(u71)

where we have used (815). By Lemma 23]

VARV,
2

Tiavd:—\/_w d:_\/_
(d) « 5 c+ « @)

Therefore T_,v (d)(u) is equal to the right-hand side of (B.27]). O

c+d.
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Finally, define B = B o(F*). If F is a local field, we also define
K =K x o(Mp),
where Mg is the maximal compact subgroup of F'*, i.e
(£1}, if F=R,
(3.28) Mp =14 St if F=C,
Op, if Fis p-adic.

3.2. Highest weight representations of loop groups. Let A\ € H* be a domi-
nant integral weight, i.e. (\, )} € Z>0,7=0,...,n, and (\,d) € Z. Let V) be the
corresponding irreducible highest weight representation of g, and vy be a highest
weight vector. A vector v € V), is said to be homogeneous of weight p if it lies in a
weight space V) ,. Every vector v € V) is a sum of homogeneous elements (called
components of v). There is a lattice V) z C V) which is preserved by the action of

1 " ~
_—'(Xa ® t')? € U(g) for every positive integer j and basis vector X, € g, in the

C.hevalley basis of g. Moreover,

Wiz = @ Va2
o

where p runs over all the weights of Vy, and V) ,z = Vaz N V) 4. Assume that
V)\,A,Z = Z’UA. _

For any local field F, V) p = V) 7z ®z F' is a representation of G(F((t))), with
the action of 7, (ut') given by

Ty (ut?) Z (X, @t
—o/

for every v € V) p. Since (X, ® t’)fv = 0 for j large enough, the sum above is
finite. Since the operators X, ®t* (i € Z) are commutative, and (X, ®@t*)v = 0 for
i large enough, for u = Y oo v u;t" € F((t)) the product [[;2 y Zo(u;t')v is finite,
and we define the action of T, (u) as [[;= 5 Za(uit"). The action can be extended to
an action of G(F((t))) by setting

(3.29) o(q)v = gDy

for each v € V) , F.

Theorem 3.14 (Garland [§]). There is an action of G(F((t))) on Vi,r defined as
above. The action of w € F* on V) r is the scalar u™e) | and the action of he(u)
(a € ®) on Vi, p is ule’),

If F =R or C, there is a hermitian inner product (,) on V) r such that
(4) (va,0n) =1,
(#4) homogeneous vectors with different weights are orthogonal,
(#4i) there is a homogeneous orthonormal basis contained in V) z,
(iv) elements of K act as unitary operators,

(v) Xo @t and X_, ®t~* are adjoint operators.

In particular, the norm |[v|| = (v,v)z > 1 for all v € Vi z, v # 0. If F is a p-adic
field with Op the ring of integers and m € Op a uniformizer, we let

or =Vaz®OF
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and define a norm on Vj r by setting [|0]] = 0 and |jv|| = |7!| for v # 0, where [
is the largest integer such that v € 7'V) o,.. Recall that the normalized absolute
value on F is defined by |r| = ¢~ !, where ¢ is the cardinality of the residue field
Op/7nOp. Since the action of K preserves V) o, this norm is preserved by K. We
also have ||zv|| = |z|||v|| for z € F, x € V) p, and |Jv1 + v2|] < max(|Jv1]], ||v2]])-

Now we are ready to prove Theorem 371 Let H be the subgroup of @(F((t)))
generated by the elements T, (u) with a € ®, u € F|[[t]]. Write 7 for the projection
G(F((t))) = G(F((t))). It suffices to prove the following lemma.

Lemma 3.15. 7 : H — G(F|[[t]]) is an isomorphism.

Proof. Using U(g) = U_(g)U+(g), we have a decomposition
i=w0aewnl)e:--,

where

!
Va(d) = Span{(Xa, @1t 4) -+ (X0, @t ")ox|d; >0, d; = d}.
i=1
It is clear that V(0) is the highest weight module of g with highest weight Al.
Then V) (0) is a representation of G(F') and becomes an H-module via the following
diagram:
H—= G(F[[t]])

NE

G(F) —— GL(VA(0))

Assume u € Ker(n|y) C F*; then uw acts on V,(0) trivially. On the other hand,
by Theorem B4 u acts by the scalar u{*¢). Therefore u{** = 1 for any dominant
integral weight \. It follows that u = 1. |

Using Theorem 314 we can also prove the following lemma, for p-adic loop groups.

Lemma 3.16. If F is p-adic, then
Ker(n|z) = OF.

Proof. If u € Ker(w|z) C F*, since K preserves Vy o, we obtain u<’\’C)V,\,oF =
Va0, by Theorem B4 Tt follows that u** € OF for any dominant integral
weight X. This implies u € OF. O

3.3. Second construction of loop groups. We start from the example G =
GL,. A lattice L of an n-dimensional F'((t))-vector space V is a free F/[[t]]-submodule
of rank n. In other words L is an F[[t]]-span of a basis of V. Any two lattices Ly,
Ly in V are commensurable, which means that the quotients L;/(L; N L2) and
Lo/(Ly N Ly) are finite dimensional over F. For example, any lattice in F((t))™ is
commensurable with F[[t]]".

Let Lo be the lattice F[[t]]", and g € GL,,(F((t))). Since gLo/(LoNgLo) is finite
dimensional over F, we can define the top wedge power A" (gLo/LoNgLo), which
is a one-dimensional vector space over F. Let det(Lg, gLg) be the tensor product

top top

/\(gLo/Lo NgLo) ®F /\(Lo/Lo NgLo)™ !,
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where (—)™! = Hompg(—, F') denotes the dual vector space. Let det(Lg,gLo)> be
the set of non-zero vectors in det(Lg, gLo) which form an F*-torsor. Now define
the group

GLa(F((t)st = {(9:wy)lg € GLu(F((1))), wy € det(Lo, gLo)*}-

Here the subscript “st” stands for the standard representation of GL,,. The multi-
plication in the group is given by

(ngg)(hvwh) = (ghawg A gwh)7

where gw, is the image of wy, under the natural map det(Lg, hLg) EN det(gLg, ghLy),
and wy A gwp is defined by the isomorphism det(Lo, gLo) A det(gLo,ghLo) —
det(L(), ghLo).

o(q) € AutpF((t)) with q € F* preserves Lo, and hence induces the maps

gLo/LoNgLo— (a(q)-9)Lo/LoN(o(q)-9)Lo, Lo/LoNgLo — Lo/LoN(o(q)-g)Lo-

Therefore o(q) induces the map det(Lg, gLo) — det(Lo, (o(q) - g)Lo), and hence
acts on the group GL, (F((t)))st- We can form the semi-direct product group

GLn(F((£))st = GLo(F((t)))st x o (F*).

Suppose that G is a linear reductive algebraic group over F' and that (p, V) is
a (faithful) rational representation of G. Then G(F((t))) acts on V() = V ®F
F((t). Let Vo = Ve = V ®F F[[t]]; then Vj is a lattice of Vi(q)). Define the
following loop group:

G(F((1))), = {(g,wy)lg € G(F((1))),w, € det(Vo, p(9)V0)* }-

The group law is defined similarly to the GL, case. It is clear that G(F((t))) o is
a central extension of G(F((t))) by F*. o(q) acts on Vi) as id ® o(q), which
preserves Vj. Therefore we can form the full loop group:

G(F((t), = G(F((1)), x o(F>).

From the construction it is seen that this notion only depends on the equiva-
lence class of p. Namely, if (p, V) and (p’, V') are equivalent representations of G,
then é(F((t)))p and é(F((t)))p/ are isomorphic. To show this, let f: V — V' be
any intertwining linear bijection; then f(p(g)v) = p'(g)fv for all v € V, g € G.
The action of f extends to Vp(y)) = V ®p F((t)) by scalar extension. Then
fVo) = Vg, flp(e)Vo) = p'(g9)Vy, and f induces an isomorphism of F*-torsors
fq + det(Vo, p(g)Vo)* — det(Vy, p'(9)Vy) ™, which commutes with the action of
o(F*). Let us identify f, with a scalar in F'*. Then

FGF() = GE(1)y,  (g,wg) % (1) = (g, fowg) % o(u)

is a group isomorphism, which can be easily checked. Write f for the restriction of
f to G(F((t))),; then the the following diagram with exact rows is commutative:

1—— FX —— G(F((1), —— G(F((t)) — 1

[ A
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It is also clear that ]?2 o ]71 = foofi if W} Iy Vs £ V3 are the equivalence of
representations of G.

Lemma 3.17. If G is a connected and simply connected semi-simple algebraic
group split over F, then the isomorphism f : G(F((t))), = G(F((t))), does not
depend on the choice of the intertwining map f.

Proof. Tt is equivalent to prove that if p = p’ and f : V — V is an intertwining
map, then f = id. In other words, we have to show that fq = det(Vo, p(9)Vo)* —
det(Vo, p(g)Vo) ™ is the identity map for all ¢ € G(F((¢))). We may assume that
V' = mV,, where V; is irreducible. Then Schur’s lemma implies that f is given by
an element ay € G L,,(F). Recall that for any two lattices L1, Ly in Vp(()), we have
the notion of relative dimension:
. . Ly . 2
dlm(Ll, LQ) = dlmFm — dlmp*m.

It is easy to see that

(i) dim(hLi,hLy) = dim(Ly, Ly) for any h € GL(Vp(x))),

(ZZ) CllI’Il(Ll7 Lg) = Clll’Il(Ll7 LQ) + dlm(LQ, Lg)

Since f commutes with p(g), we have f, = (det a)dm(Vror(9)Vr0) where Vo =
V: ®F F[[t]]. Therefore we only have to show that dim(V;o, p(g)Vz0) = 0. We have
the decomposition G = PAQV Pa since G is simply connected. Using this together
with the fact that p(Pa) preserves Vg, by (i) above we may assume that g € W
and is mapped into QV, e.g. g is a product of elements of the form h,(t), o € ®.
Using (i) and (i¢) repeatedly we get the formula

dim(L, hihg - --hy,L) = dim(L, hy L) + - - - + dim(L, h,, L).
Hence we are reduced to proving that dim(V;, ha (t)Vy0) = 0. However, this follows

from the fact that h,(u) acts on the weight space V; x of V; of weight A by the
scalar u(Me’), (raA, ") = —(\,a"), and dimV; ,» = dimV; 5, Yw € W. ]

Let us denote by [p] the equivalence class of representations of p. Under the
condition of Lemma B.17] @(F((zﬁ)))p1 and G(F((t)))p2 are canonically isomorphic
for any p1, p2 € [p], and our loop group can be written as é(F((t)))[p].

To see the relations with the construction in Section 3.1, let us assume that G is
a connected and simply connected simple linear algebraic group split over F'. Let
gr be the (simple) Lie algebra of G, and g = gz ®z C be the complex simple Lie
algebra, where gz is the lattice spanned by a Chevalley basis of gr. Let é(F((t)))
be the central extension of G(F((t))) constructed in Section 3.1. Let (p, V) be a
rational representation of G.

~

Theorem 3.18. There exists a group homomorphism ¢, : G(F((t)) — G(F((1))),
such that the following diagram is commutative:

1—— FX — 5 G(F((t) —— G(F((t)) —— 1

Jdp Lﬁp J{id
L —— FX —— G(F((1)), —— G(F((t)) — 1

d
where d, is the Dynkin index of the representation p and F* =5 F* is the d,-th

power.



2100 DONGWEN LIU

The Dynkin index of a representation, introduced to the theory of G-bundles
over a curve by Faltings [6] and Kumar et al. [29], is defined as follows. By abuse
of notation we also write the representation p : g — sl(V'). Let

ch V= Zm\e)‘
A

be the formal character of V. Then the Dynkin index of p is defined to be
1 ~
=3 Z nx(\, @
A

[32] contains a Lie algebra version of this theorem, which is much easier to prove.
The minimal Dynkin index dg is defined to be mind,, where p runs over all rep-
resentations p : g — sl(V). For a dominant weight A, let p) be the irreducible
g-module with highest weight A. The following table is given in [32]:

Type of g A, | B,,n>3|C, | Dy,n>4| Eg | E7 | Es | Fy | Go
dg 1 2 1 2 6 | 12 | 60| 6 2
Ast. d,, =dg | w1 w1 w1 w1 we | wr | ws | w4 | W1

Proof of the theorem. By the existence of the canonical lifting (Theorem B.7))

G(F[[])) = G(F((1))),
and such that p(G(F[[t]])) preserves Vj, we first define ¢,(Zq(u)) = (q(u),1) for
a € ®,u € F[[t]]. For general u € F((t)), choose 8 € ® with {a, ") # 0. There
exists v € F((t)) such that v=(*5 ")y e F[[t]]. Let hg(v) = (hg(v),w) be an element
t

~

in the preimage of hg(v) under the projection @(F((t))) — G(F((t))). We define

(3:30) 0p(Ta(10)) = hp(0) By (Ta (v~ V) B (v) !
Let us check that this is well defined, namely, the right-hand side of [B30) does not
depend on the choice of hg(v). But we have
(3.31) R (V)b (Ta (v @8 V) g (v) 7
(hg(v),w)(@a (o™ @7 u), 1) (s (0) 7 hg(v) w™)
= (za(u),wAza(w)w™).
(

Then we have to prove that for w’ € det(Vp, hg (v')Vy)* with o' @By e FH]],
!/

-1 -1

WwAZo(Ww =W Axg(u)w

Let n = w™lw’ € det(hg(v)Vy, hg (v')Vp)*. Since

Zo(W)hg(0) Vo = hs(v)za (0P Du)Vo = hy(v) Vo
and similarly x,(uw)hg (v')Vo = hg (v')Vo, it is clear that z,(u) acts on the finite
dimensional spaces
hs(v)Vo h (V)Vo
ha(0)Vo Nhg (0)Vo'  hg(0)Vo N hg (v)Vo

unipotently. Taking the top wedge product we see that z,(u) fixes . This proves
B30) is well defined.
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To show that ¢, is the required homomorphism, we need to verify that
(1) ¢p(Ta(u)), @ € ®, u € F((t)) satisfy (BI) and B2) if rank g > 2, or (B)
and B4) if g = sl.
~ ~ ~ 2
(11) 6p((ha (1)), (ha () (ha (w0)) ™ = (,0), 57 @ € @, v € F((1)".
(I is trivial. (32)) is clearly true when u,v € F[[t]], and to prove the general
case we need a lemma.

Lemma 3.19. Suppose that g is a simple complex Lie algebra with root system ®,
and o, B are positive roots in ®. Then there exists v € ® such that (o, vV){B,vY) >
0.

The lemma can be verified for the Lie algebra g of type A, B, ..., G separately.
Since we cannot find this lemma in the literature, let us sketch procedures of the
proof. If («,8) > 0, then it is obvious. If (a,8) < 0, it is reduced to checking
the lemma for all irreducible root systems of rank 2, namely As, By and Gs. For
(a, B) = 0 we only have a case-by-case proof, and we omit the details here.

We continue to prove [B2). Since a + 8 # 0, there exists w € W such that
wa,wf > 0. By Lemma B9 we can find v € ® satisfying (o, 7V){(8,7Y) > 0
Then there exists a € F((t))* such that a= @)y, a= B )y e F[t]]. As before let

hy(a) = (hy(a),w) € G(F((t )))p- It follows that
3p (T (1) 6 (T5(0))Bp(Tar (1) "1y (T (v))
= By (a)p(Tala™ 7 D))y (@5(a™ P M)
% p(Ta(a™ @ Mu)) 716, (F5(a™ P 0)) Ty (a)
= hya) I 0e@iarin(c (@@ u) (@B I0)) )Ry (a)
i,jELT ia+jBED
= I @il uiv?)).
1,JELT ia+jBED

This proves [B.2)). The same trick also applies to the proof of (3:4]).
Let us compute the 2-cocycle and prove (ii) above. It suffices to treat the case

g = sly. In fact, if we define
1
LY miay
A

for a € @, then e, is proportional to 1/ (a, «). So assume g = sly, « is the simple
root, and we shall prove that

B (ha(ut')@p(he(v87)) 6 (R (vt 7))~ = (ut?, vt ) i,
where u,v € F*, i,j € Z. Let us restrict ourselves to the case ¢,j > 0. Other cases

can be treated similarly. We can further assume that p is irreducible, say, of highest
weight m. Then V has the weight space decomposition

V= &y Vi,

A=mm—2,...,—m

—_

an = = e first study the element T_a(ct™)) where
dd, = /\>0)\ We fi dy the el dp(T ¢ h

ceF~x ’LGZ>0 By (330) and (B31) we have
Gp(T_alct™ N = (z_alct ™), wAz_glct™Hw™),

\}
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where w € det(Vp, ha(t')Vp)*. Let {vx|A = m,m —2,...,—m} be a basis of V such
that X_, vy = vy_g. Since ha(ti) acts on V) p(()) as the scalar t**, we can choose
w= A wy, where
A=m,m—2,--- ,—m
A oy, if A <0,
(3.32) =1 . A\
( =0 tU)\) , if A>0.

Recall that the action of z_,(ct™%) is given by

> ip—ii X ip—id
(ct~ Yoy = At I _ ct '
T_o(ct™ oy = S TUx = T UA-25)
j=0 J: =0 J:

from which it is seen that ., (ct~*) preserves the F-span of {t'vy|\ < 0,4\ <1< —1}

and acts unipotently. Write w = wy Aw_, where wy = A wy, w— = A wy, with
A>0 A<0

the \’s in decreasing order. Then z_(ct™*) fixes w_, and
WAT_o(ct ™ Hw ™t = wip Aa_g(ct Hwi !
Now we have
Sp(ha(ut)))
= ¢p<wa(uti)>¢p( a(1))
(@a(ut), 1)@p(T—a(—u~'t™"))(@a(ut"), 1)(wa(1),1)
= (wa(ut), D(@—a(-u""t7"), 0y Ar_a(-u""t7 i) (2o (ut)wa(1),1)
(ha(ut"), @),

where
O = za(ut)(wy Az_o(—u Tt Hwi!)
= zo(uthwy Ao (ut)z_o(—u 't Hwi!
= wi Awe(ut)ze(—ut)wi!
= wi Awg(utwi’

From the action of w, on V it is seen that

iA—1
we (ut )wt = wa(uti)/\ /\ thoy
A>0 =0
ix—1 .
— /\ /\ (_1)%,“—)\#—1/\”7)\
A>0 =0
= ACEDTEFTa /\ tlo_y
A>0 I=—i)
7/\(A+m) e
= (H(_1) A )/\w A
A>0 A>0

In summary, we can write

(3.33) Sp(ha(ut’)) = (ha(ut'), wa.),
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where
Wy = H(Eg\u_i)\Q) /\ wia A /\ Wi, —X»
A>0 A>0 A>0
Ex = (—1)M, and w; » is given by ([B32). Let us apply this to prove (ii). We
have
Bp(ha(ut')@p(ha(vt)) = (ha(uvt™7), wyi A ha(ut')wy ;)
and

Wi A P (uti)wv,j

_ H(Ei\+ju_i>\27}_j>\2) /\ (ixltlw) /\ ( K tlv)\>

A>0 A>0 \ =0 A>0 \l=—i)
ja—1 -1 -1
/\ (/\ WM ) /\ /\ u ML,
A>0 A>0 \I=—jA
L . . iA—1 -1 1
— H(uﬂ,\ Vi )H(€1)\+J(xy)*(z+J))\ ) /\ (/\ tlv/\> /\ ( /\ tlv_)\>
A>0 A>0 A>0 \ 1=0 A>0 \l=—iX
(i+5)A—1 -1 —iA—1
A\ /\ /\ tl’U)\ /\ /\ tl’U,)\
A>0 I1=iX A>0 \I=—(i+j)A
N2 2 Sy 2
= H(uﬁ)\ v (_1)”)\ Wi+

A>0
g
= (l'tla yt] )tm’ZewuvyiJrjv
where the second-to-last equality is obtained from a direct counting. This finishes
the proof of (i), hence ¢, is the required homomorphism. (Il

3.4. Adelic loop groups and arithmetic quotients. Let F' be a number field,
and for each place v let F,, be the completlon of F at v. For each local field F,,
we have the local loop groups G(F,((t))), G(F,((t))) and G(F,((t))) constructed
in Section 3.1 which correspond to a complex simple Lie algebra g. We add the
subscript v to indicate the corresponding local subgroups. So we have

EOU <—>]§v ‘—>£~3v, IA(OU ‘—)I/(\'v ‘—>I~(v, T, ‘—>Tv <—>TVU.

For example, in G(F,((t))) we have T, = T, x o/(FX). We form the restricted direct
product group H G( (1)) (vesp. T, G(F,((1)), I, G(F,((t))))) with respect to
the KOv (resp. Kv, K, )’s.

Let A and I be the adele ring and the idele group of F' respectively. We let A(t)
be the restricted product [, F,,((¢)) with respect to the O,((t))’s for finite places
v. In other words,

At) = {(zy)v]|zy € Fu((t)), and z,, € O,((¢)) for almost all finite places v}.

Note that we do not require that the (x,)’s in (z,), have bounded poles, so the
ring A(t) is not a subring of A((t)). Let

F(t) = F(()) VA1),
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i.e. F(t) is the subset of the elements z € F((t)) such that € O,((t)) for almost
all finite places v. We also define

Bty = F&) N F[[H],  At)y = A@) N A[[t]].
Lemma 3.20. F(t) is a subfield of F((t)).

Proof. The only thing we need to check is that if x € F(t) and z # 0, then

x71 € F(t). We can assume that x = 1 + x1t + 29t% + - - - ; then the coefficients in

x~! are polynomials of the x,,’s. Therefore ™! also lies in F(t). O

We shall denote [T, G(F,((¢))) by G(A(t)), and TT, G(F,((1))) by G(A(t)). For
a € D, u e F((t), we also denote by Z,(u) the element in H G(F,((t))) whose
v-component is Zq (u) in G(F,((t))). If u € F(t), then Z, (u) € G(A(t)). We denote
the subgroup generated by Zo(u) (0 € ®,u € F(t)) and G(F(t),) by G(F(t)). It
is clear that @(F(t})/FX is isomorphic to G(F'(t)). We have the following diagram
with exact rows:

1 1 G(F(t)) — G(F({t)) —— 1
1 I G(A(t)) —— G(A(t)) —— 1

where F'* — 1 is the diagonal subgroup.
By abuse of notation, we also use T', B, ... to denote the following adelic sub-
groups of G(A(t)):

T=TA)=]][T., U=UA HUU,

=[[B.. E=EK@®) =]][K.,

where the restricted products are defined with respect to the corresponding ana-
logues of maximal compact subgroups in the finite dimensional case. For example,
U is generated by To(u) where either « € &4, u € A(t)y ora € &_, u € tA(t) 4.
Then every element g € G(A(t)) can be wrtten as g = ugagky with ug € U, ag € T
and k, € K. The local actions of o(FX) on G(F,((t))) piece together to form an
action of the group o(I) on G (A(t)). Define the semi-direct product group

(3.34) G(A(t)) = G(A({L)) x o(I).
Similarly we can set the subgroups of G(A(t)):
T = HTU, =Bxo(l)=]]B..

K:KXHUMFU :Hf{v.
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Since J(H) normalizes B, any g € G(A(t)) can be written as g = ugagky with
quU aquandk; €kK.

Let G(F(t)) = G(F(t)) x o(F*) < G(A(t)). By abuse of notation, for any
subgroup H of G(F((t))), we still denote by H the subgroup HNG(F(t)) of G(F(t)).
For example we have the subgroup U (F) of @(F (t)), which is generated by Z (u),
where either o € @, u € F(t)y or o € P_, u € tF(t)+

By Lemma [B.13] we have a W—equivarient map

QVxI—=T
given by, for A = a¥ +ic+ jd € Q) where o € ®, u € I,
(M) = Mu) = ho(w)uio(u’).

For a dominant integral weight A, we have a representation of V g, of G(F,((1)))
for each place v. Form the restricted product

/
aa = H VA F,
v

with respect to the lattices V) o, which are defined for all finite places. Denote
by vy € V) 4 the element with v-component vy for each place v. Note that V) g
embeds diagonally into Vj 4.

We define a map |- | : Vi a — R>¢ as follows. Recall that we have defined a norm
on Vy g, for each place v in Section 3.2. For (u,), € Via, if v is real or p-adic,
let |u,| = |luy|); if v is complex, let |u,| = ||uy||?. Then define |(uy),| = [, |tol-

Note that almost all |u,|’s are less than or equal to 1, hence the product is finite. If
ue Vay and k € K, then |ku| = |uf; and if = (), € I, then |zu| = |z||u|, where
lz| =1L, |xv|v In particular, |zu| = |u| for © € F* by the Artin product formula.

For 11 € b*, define a quasi-character p : T(F)\T(A) — C* by, for g = hq(2)yo(2)
GTWherex y,z €1

plg) = Ja 4oy 0 ] 1),
In particular, for A € Q) we have

Az = ||
However, sometimes we also use the following notation: if a = (ay), € T(A),
B € X*(T), the character lattice of T spanned by ®, § and L, then write

a? = (dP), e L.

Interpretations of the notation we shall use depend on the situation and would not
cause any confusion.

Lemma 3.21. For each g € G(A(t)) with decomposition g = ugagky, and vy €
Vi ap the highest weight vector as above, then

g~ oAl = ag ™.
Proof. Note that usvy = vy, and since K preserves | - |, it follows that
\g_lw\| = |a;1v)\\ = ag_)‘.
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In the rest of this section we collect some lemmas on the arithmetic quotients of
loop groups based on [8,42].

Lemma 3.22. For each i = 0,1,...,n, and each integer I > 0, the set of weights
of Vi of the form
A — Z lelj
§=0

with 1; <1, is finite.

Lemma 3.23. Let a € T and ao(q) € T with q € 1, |q] < 1. Then there exists
w € W such that (wao(q))* <1 for alli=0,1,...,n.

Proof. It is easy to see that the lemma can be reduced to @(R((t))) It follows from
the vle/ll—known fact that for each h = hg + ic + jd € g with j > 0, there exists
w € W such that (wh,e;) >0 fori=0,1,...,n. |

Lemma 3.24. Assume the conditions of the previous lemma. Moreover, suppose
that (ao(q))® <1 fori=0,1,...,n. Then there exists 0 < j < n such that

(ao(q)) < 1.

Lemma 3.25. For any g € G(A(t)) x o(q) with q € L, |q| < 1, there exists
vo € G(F(t)) such that

[g70vA] < [gyval
for all y € G(F(t)).

Proof. The lemma is essentially an adelic formulation of Lemma 17.15 in [8]. Write
g = kao(q)u. First note that for any positive number C, we may choose a finite set
of weights we of V) such that |(ao(q))#| > C for any weight p of V) which is not in
we. Enlarge we if necessary; we may assume that if 4 € we, then all the weights
of V) with depth less than the depth of u are also in w¢. Recall that the depth of
a weight A — >0 Loy is Y., l;. Then Lemma guarantees the finiteness of

we. Now set C = (ao(q))* and divide G(F((t))) into two parts,

G(F((t))) = GL UGy,
where G consists of all the 7’s such that some component of yvy has weight not
in we, and Gy consists of other +’s, i.e. all the 7’s such that all components of )y
have weights in we. If v € Gy, let p € we be a maximal weight of yvy, and let

v" # 0 be the p-component of yvy. It is clear that v' € V), p, and the p-component
of ao(q)uyvy is (ac(q)) v’. Then

lg7val = lao(a)uyval = (ao(a))"|v| = (ac(a))" > C.
For v € G, yv, lies in the finite dimensional F-space )

ao(q)uyvy lies in a finite dimensional F-space in )
Yo € G2 such that

pewe VA F- Consequently

pewe Ak, SO there exists

(3.35) lgr0va] < |gyual
for all v € G5. In particular e € Gg; hence by Lemma [3.21]
l9700A] < |gua| = (ao(@)* = C.
Therefore (338) holds for all v € G(F(t)). O
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Consider the partial order on ®, such that a < 8 if § — « is a sum of positive
roots. Fix a total order on ®; which extends this partial order, and induce the
corresponding order on ®_ by identifying ®_ with &, via a — —a.

Lemma 3.26. We have unique factorizations

U(A)=U"(A)D! =[] vaa®)) []ha, @ +ta®)s) J] UaCtalt

acd i=1 acd_

3

3

U(F)=U*(F)D! = [ va(F&)) ] has O+tF (1)) T] Ua(tF(t

acd i=1 acd_
where the product is taken with respect to the above fixed orders on ® and ®_.

Let D C A be a fundamental domain of A/F. We shall take

(3.36) D=Dyx [] O,
v<o0
where Dy is a fundamental domain of ( [[ F,)/Or = (F®gR)/OF constructed as
v|oo

follows. Let wy,...,wn be a basis of Op over Z, where N = [F': Q]. The diagonal
embedding Op — Hv‘oo v identify Op with a lattice in F ®g R = RN. Let Do
be the following subset of [, ., F.

N
Do = {Ztiwiw <t < 1}

i=1
For example, if F = Q, then Dy, = [0,1) is a fundamental domain of R/Z. We
define

D(t) = {Zuiti € Alt)|u; € D,W} . D)y =D NAL).
Let Up be a subset of fj(A):

(3.37) Up= ][] Ual ﬁh (1+tD(t)y) J] Ua(tDit

acd =1 aced_

where the product is taken with respect to the order in Lemma [3.20]

Lemma 3.27. Every u € U(A) can be written as u = y,up (or upy,) for some
’yueU( ) (mduDEUD

4. EISENSTEIN SERIES AND THEIR COEFFICIENTS

Let G be the Chevalley group associated to a complex simple Lie algebra g, and
let F' be a number field. In this section we construct the Eisenstein series E(s, f, g)
defined on G(A(t)) x o(q), where s € C and f is an unramified cusp form on G(A).
We always make the assumption that q € I and |q| > 1. We establish the absolute
convergence of the constant terms of E(s, f,g) along U , under the condition that
Res is large enough. The proof makes use of the Gindikin-Karpelevich formula,
which will be used frequently. The same method gives the values of constant terms
and Fourier coefficients of E(s, f, g) along unipotent radicals of parabolic subgroups.
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4.1. Definition of the Eisenstein series. Let G(A) be the restricted product
[, G(F,) with respect to K,, where K, is a maximal compact subgroup of G(K,).
If v is finite we take K, to be G(O,). Then

G(A) = @ H G(FU) H K,,
S

vES vgS

where the inverse limit is taken over all finite sets of places.
Let f € L?(G(F)\G(A)) be an unramified cuspidal automorphic form, i.e.
(¢) f is invariant under right translation of K =[] K.,
(7i) f is an eigenform for all p-adic Hecke operators,
(4i) f is an eigenform for all invariant differential operators at all infinite places,
(iv) the constant term of f along the unipotent radical of any parabolic subgroup

of G is zero, i.e.
[ o=
Up(F)\Up(A)

where P is any parabolic subgroup of G and Up is the unipotent radical of P.
Associated to f and s € C, we shall define a function fs on G(A(t)). Suppose
g € G(A(t)) has a decomposition

g = cpo(q)k,

where ¢,q € I, p € G(A(t)4), k € K = IL, K,. Write po for the image of p under
the projection

G(A{t)1) = G(A).
Then we define
fag) = le]* f(po).

We have to check that fs is well defined, namely, fs(g) does not depend on the
choice of the decomposition of g. In fact, if cpo(q)k = /p'o(q)k’, then ¢/~teo(q)~t-
(p~'p) = Kk~ € BN K, which implies that |¢'c™!| = 1, py = phko for some
ko € K. Note that (o(q) - p)o = po. This proves that fs is well defined since f is

right K-invariant. f,; has the following invariance properties:

Lemma 4.1. (1) fs is right K -invariant,
(@) fs is left G(F(t)4)-invariant and left o(I)-invariant,
(iii) fs(cg) = |c|®fs(g), and fs is F*-invariant.

Proof. (i) By definition f, is right K-invariant. It is also K-invariant since o(Mp,)
normalizes K, for each place v, where M r, is given by (B.28). (i) follows from the
fact that f is left G(F)-invariant, and that (o(q) - p)o = po, as noted above. (ii7)
follows from the definition and the Artin product formula. |

Let G(F(t);) = G(F(t);) x F*; then f, is left G(F(t) )-invariant by the pre-
vious lemma. We define the Eisenstein series E(s, f, g) on G(A(t)) by

(4.1) E(s, f.9) = > f:(v9).

YEG(F(t)+)\G(F(t))
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It is clear that the right-hand side is a countable sum, right I?—invarignt and
left G(F(t))-invariant. E(s, f,g) is also left o(F*)-invariant, hence left G(F(t))-
invariant. To see this, let ¢ € F*. By Lemma [A.1] (i),

E(s. f.o(0)g) = 3 F(vo(ag) = 3. (o™ ro(@)g) = E(s, £.9).

Note that in this case o(q) acts on G(F(t)) as an automorphism and preserves
G(F(t),).

For completeness let us construct an Eisenstein series induced from cusp forms
on other parabolic subgroups. Let P be a parabolic subgroup of G with Levi
decomposition P = MpNp. Then Mp is a finite dimensional split reductive group.
Let fu, be an unramified cusp form on Mp(A), and v be an unramified quasi-
character of Mp(A). If g € G(A(t)) decomposes as g = mno(q)k, where m €
Mp(A), n € Np(A) and k € K, then we define a function Frip on G(A())
associated to fas, and v by

(4.2) Fatpw(g) = v(m) far (m).

Then we form the Eisensten series

(43) E(Va f]\/IP’g) = Z }TMP,V(’VQ)'
YEP(F\G(F (1))

Similarly one may verify invariance properties of fMP’V and E(v, farp, 9), and check
that they are well defined.

For later use, we shall specialize to the case that P is maximal. We follow the
treatment in [35]. Assume P = Py and that ap is the corresponding simple root.
Let Ap denote the (split) torus in the center of Mp. For any group H defined over
F,let X(H)F be the group of F-rational characters of H. Set

ap = HOIn(X(Mp)F, R)
as the real Lie algebra of Ap. Then
ap =X(Mp)r®@zR = X(AP)F ®z R.

Let Hp : Mp(A) — ap be the homomorphism defined in [35]. Let pys,. be the half
sum of the roots in @y, and pp = p — parp. Then ap = (pp,af) pp belongs to

X(T)r and thus by restriction to Ap can be viewed as an element in a},. We shall
now identify s € C with sap € ap ¢, and with

(4.4) svp = exp(sap, Hp(-))

which is an unramified quasi-character of Mp(A). Then we set fMP, s = fMP’syp

and E(s, farp,9) = E(svp, fup,g), which are defined by (£2) and ([@3). Fi-
nally we remark that this definition is compatible with the previous definition of
E(s, f,g), but different from the usual one which uses the quasi-character

exp(sap + ,Dp,HP(~)>.

For the case P = Pa the latter corresponds to shifting s by hV.
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4.2. Absolute convergence of constant terms. The constant term of E(s, f, g)
along the unipotent radical U of B is defined to be the following integral:

(4.5) Ex(s, f.q) = /ﬁ(F)\ﬁ(A)E(s,f, ug)du.

We have to specify the topology of ﬁ(F)\ﬁ(A) and the measure du. By Lemma

it suffices to define topologies and measures on A(t), /F(t); and (1+tA(t) )/

(14 tF{t)y).

Lemma 4.2. The natural map o : A{t) /F{t). — A[[t]]/F[[t]] = [](A/F); is
i=0

an isomorphism of abelian groups.

Proof. ¢ is clearly injective. Let S, be the set of all infinite places of F', and let

Asoo: H FUX H Ov;

VES V€S0

o0 .

then F' + Ag_ = A. Hence for any u = Y w;t* mod F[t]] € A[[t]]/F][t]], we may
i=0

assume that u; € Ag__ for each i. Then u € A(t), and therefore ¢ is surjective. O

Lemma 4.3. The natural map

T (LA ) /(1+ tF(t) ) — (1+ tA[H]])/(1 + tF[[t]) =5 tA[[t]/tF[t]
s an isomorphism of abelian groups.

Proof. Again it is clear that 7 is injective. To prove 7 is surjective, we have to show
that for any x € 1+tA[[t]] there exists y € 14+t F[[t]] such that z = xy € 1+tA(t) .
Write 2 =1+ > oo, ot y = 14 307 yith; then z = 14+ 3772 2;t" with

Zi =X +Ti—1y1 + o+ T1Yi—1 + Y-

Applying F' + Ag__ = A repeatedly, we can find a sequence of y; € F' such that
zj € Ag_ for each 4. This finishes the proof. O

Since A/F is compact, Lemma [£2] and Lemma 3] imply that A(t), /F(t)+ and
(1+tA(t)4)/(1 4+ tF(t)+) are compact and inherit the product measure from that
of A/F, which will be defined as follows.

We first specify the self-dual Haar measure on the local field F, with respect to
a non-trivial additive character ¥r, of F,. If F}, = R, we take

(4.6) Yr(z) = 27T,
and dz is the usual Lebesgue measure on R; if F,, = C, we take
(4.7) Yo (z) = 2Ttz — edmiNes

and dzdz = 2dzdy is twice the usual Lebesgue measure on C; if F, is a finite
extension of @@, then we first take the character v, of Q, given by

(4 8) w (:17) _ e—Zﬂi(fractional part of x)
. p - b
and define ¥ r, by

(4.9) ¥r, (2) = ¥p(trr, o, 7).
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The self-dual Haar measure on Q, satisfies vol(Z,) = 1. Let O, be the ring of
integers of F,,, and 5;1 be the inverse different

5;: ={z € F,|Y(20F,) = 1} = {z € F,|tr(20,) € Z,}.

Then the self-dual Haar measure on F, satisfies vol(O,) = N((SFU)_%. Ifw, € O, is
a uniformizer, then dp, = wO, for some non-negative integer e, and N(d,) = ¢,
where ¢, is the cardinality of the residue field O, /p,.

Let us compute vol(A/F') under the above self-dual measures. Recall from (3.30])
that A/F has a fundamental domain D = D x [[; .., Ou. Therefore

vol(A/F) = vol((F ®g R)/OF) x [] vol(Oy).
<00
F' is unramified at almost all places v, hence the right-hand side is a finite product.
It is known that vol((F ®g R)/Op) = |Ap|2, where Ap is the discriminant of F.
On the other hand
1

I vou o) = T[ NGr)~2 = [] 1AR17% = A2,
V<00 V<00 v< 00

where Ap, is the relative discriminant A, /g, with v[p. We conclude that vol(A/F’)

= 1. It follows that the quotient spaces Un (F)\Uq(A) (o € @) and lA](F)\ﬁ(A)
are compact with volume equal to 1.
The main result of this section is the following theorem.

Theorem 4.4. (i) Suppose that g € G(A(t)) x o(q) with q € T and |q| > 1,
s € H={z € C|Rez > h+ hv}, where h (resp. hY) is the Cozeter (resp. dual
Cozeter) number. Then E(s, f,ug), as a function on U(F)\U(A), converges abso-
lutely outside a subset of measure zero and is measurable,

(11) For anye,n >0, let H. = {z € C|Rez > h+h" +¢}, 0, = {o(q)lq € L, |q] >
1+ mn}. The integral [A3) defining Eg(s, f,g) converges absolutely and uniformly
forse H., g€ ﬁ(A)QanI?, where Q is a compact subset of T(A).

Define the height function hy, s € C, on G(A(t)) by
(4.10) hs(cpo(q)k) = |c|*

ifec,qel,pe GAA(t)1), k € K. Then h, has the same invariance properties as those

of fs. Also note that the restriction of hs on T can be expressed as hy(a) = a*~.

Let us define

(4'11) E(Sahvg) = Z hs(’yg)

YEG(F(t)4 )\G(F(t))
and
(4.12) Eg(s,h,g) = /A _ E(s,h,ug)du.
U(M\U(A)

Lemma 4.5. Theorem 4 is true for E(s,h,g). Moreover, for s, q satisfying the
conditions of the theorem and a € T, one has

(4.13) Eg(s,hao(@) = > (ao(q)7 I e, (s),
weW (A,D)
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where

H AF(<SL_ﬁaﬂv>)

A L—p,BY 1)’
S aud. r((sL—p,BY)+1)

(4.14) Culs) =

with Ap the normalized Dedekind zeta function of F defined below.
Let r1 (resp. r2) be the number of real (resp. complex) places of F, and let
Tr(s) = 72T (s/2), Tc(s)=2(2n)°T(s),
where I'(s) is the Gamma function. Then Ap is given by
Ap(s) = |Ap|5Tr(s)" Te(s)Cr(s),

where (r is the Dedekind zeta function of F' and has an Euler product over all
prime ideals P of Op:

1
)= [ — Res> 1.
731_([91, 1= Nr/o(P)

E. Hecke proved that (z has a meromorphic continuation to the complex plane
with only a simple pole at s = 1. Moreover Ap satisfies the functional equation

AF(S) = AF(l - S)
Proof of Lemma 3. From the Bruhat decomposition (Theorem BI2)), it follows
that
GEm) = | GEWulu(F).
weW (A,D)

Note that Uy = [[,0.wa<0
lies in G(F(t)). Then for u € U(A),

E(s,hyug)= Y > ho(wyug)=: Y Hy(s,ug).

weW (A,0) yeUw (F) weW (A,0)

U, is finite dimensional (of dimension [(w)) and hence

We first prove that each inner sum H,, (s, ug) is a measurable function on U (F)\U(A).
Let us introduce

(4.15) ULA) = Gaman ] Uaa)
a>0,wa>0

and

(4.16) UL(F) =G(FW)n [ UalF):
a>0,wa>0

Then U = U! U, and wU,w=! C (7; therefore

Hy (s, ug) = Z hs(wyug),
VEU,, (F\U(F)

w

which is left U(F)-invariant. Since dim U, = I(w) < oo, applying Lemma
(c) and Corollary B4 (a) it is easy to see that there exists i, € N such that the
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commutator [Uy, Ug] C U}, for each 8 = a+ 16 with o € U {0} and @ > i,,. If we
define

(4.17) vLa) = Gaman [ Uass(d),
a€PU{0},i>1y
(4.18) Uy(F) = G(F({t)+)N II  Uasis(F),

a€DPU{0},i>1y,

then U}/ is of finite codimension in U and H, (s, ug) is left U/ (F)\U. (A)-invariant.
This proves that H, (s, ug) is measurable.

The lemma can be reduced to the case s € R. Indeed, since |hs| = hxes we have
|Hy(s,ug)| < Hy,(Res, ug). By Fubini’s theorem,

Eg(Res, h,g) :/A _ E(Res, h,ug)du = Z / w(PRes, ug)du
U(FN\U(4)

weW (A,D)

If we can show that Ez(Nes,h,g) is finite, then E(Res,h,g) converges almost
everywhere and hence is measurable. It follows that E(s, h,ug) converges absolutely
almost everywhere and is measurable. Using the Lebesgue dominated convergence
theorem we get

Eg(s,h,g) = /A _ E(s,h,ug)du = /A _ Hy(s,ug)du.
U(F)\U(A) U(F)\U(A)

So we may assume that s € R. Let us evaluate E5(s, h,g) and prove its finiteness
and uniform convergence. The computation for general s is the same.

weW (A,D)

Since Eg is left U-invariant and right K -invariant, by the Iwasawa decomposition
we may also assume that ¢ = ao(q) with a € T and |q| > 1. Let us prove ([@I3)
and show that the summation is finite. By previous discussion we have

(4.19)  Eg(s,h,g) = Z /A _ Hy(s,ug)du
weW (A,9) Y UENU(A)

= hs d
Z /A(F)\ﬁ(A) Z gt

wew (a,0) 7Y ~yeU! (F)\U(F)

— Z / / hs(wu'ug)dudu’
werrtag JULINUL ) JU(a)

= Z / hs(wug)du,
Uw (A)

weW (A,D)

where the last equality follows from the fact that vol(U/ (F)\U/,(A)) =1 and that
hs is left G(A(t))-invariant.

To evaluate ([@I9) let us introduce some notation. Let w = r;, ---r; be the
reduced expression of w, where | = I(w). Let

EI')WIEISJFQ’[U&;? :{Bl;“wﬂl},

where 8 =r;, -+-7;,_ ;. Then

(I>w71 = <T>+ N w_li)f = {’717 cee 7’71}7
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where y; = —w™'B; =1y, - - - 7i,,, @y, . Note that

i+ +Bi=p—wp, m+-+u=p—wp
Recall that we have assumed s € R, and g = ao(q), a € T. We have

(4.20) /U(A)hs(wuaa(q))du
— [ huwas(a)Adas (@) u)du
Uw (A)
= [ helwar @), (Cao @) )y (o)) -

—  (ag(q))ntotte L /l by (W (1) -+ oy (ur) )y - - - dg
A

= (ao(q))ﬁ_wilﬂwilﬂ /Al hs(«%’fﬁl (u1) - "5751 (Ul))dm - duy.

By the Iwasawa decomposition we have
Ty () = n(ur)a(ur)k(ur),

where a(w;) € T, = {E@ (u)|u € I}, n(w) € Ug,, k(w) € Kg,. Let w' =1y, -1,
then {B1,...,0-1} = &, Nw'®_. Consider the decomposition
(4.21) U=U. Uy,
where U/, is given by (£I5)), (£I6]) with w replaced by w’. Then

U_g, - U_p_, =wUyw .
Using ([{2]]) we can define the projection

7w Uw ™ — w'Uyw' ™.

Since U_p,,...,U_p,_,, Us, C w'Uw'~", we have the map
7o Ad(n(w)) : wUyw' ™t — W' Upw' ™1,

which is unimodular. From this fact, together with invariance properties of hg and
Corollary B4l (f), we get

(422) /AL hs(f_gl (ul) .. .5_[31 (ul))du1 o duy
= /Al hs (i—ﬁl (Ul) .. '5—[3171(“!—1)0(%)) duy - - - du,
= /Al hs (a(uz)f,gl (a(ul)ﬁlul) A 5*51—1(a(ul)ﬁl_lul,1)) du1 o dul

_ /AG(UI)SL_ﬂl_.“_ﬁlildul /Al_l hs(ifﬁl (ul) ... %7ﬁl—1 (Ulfl))dul cooduy_q

= / aluy)*E =P P dyy /l hs(@—p, (u1) -+ T—g,_y (wi—1))duy - - - dug 1.
A Al-1
From the Gindikin-Karpelevich formula [19,31], the first integral in (£22) equals
Ar(z1)
AF(Zl —+ 1) ’
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where
2= (sL—p+wp By — 1= (sL—p, B).
Note that (w'p, 6)) = (p,w'~ ') = (p,;)) = 1. By induction on [ it is clear that

[E22) equals ¢, (s).

Now we prove that the right-hand side of (I3 is finite. We first prove that
s > h+ 1Y implies that (sL — p,3Y) > 1 for each 3 € &, = ®, Nwd_. In fact,
since w C W(A, D), w LA C &, It follows that 8 = i6 + a with i > 0, a € ®. By
Lemma 2] 8Y = jc+ o with j > 0. Then

(sL—p,BY)=j(s—h")={(p,aVy>s—h" —h+1>1.

By standard results on zeta functions, for every € > 0 there exists a constant ¢, > 0
such that whenever Rez > 1 + ¢ we have

‘ Ar(z)
Ap(z+1)

It follows that ¢, (s) < cé(w) for s > h+ hY +e.
Next consider (ac(q))?~*" P+ "sL Write w=! = Thwp, where A € Q¥, wo € W.
By Lemma 2.4]

‘<cs.

1
wlL=L+A=5 AN,

wp = wop — (wop, \)d +hYw ™!

Let |Al = (A, )\)% If we write A = Y7 | l;o, then there exists a constant ¢; > 0
which does not depend on A such that ., [l;| < ¢1|A]]. Then

n
> lilpywy ta)
i=1
Combining the above equations we obtain

()= "7 = |g|(wor N+ INIP < [gqlerhINI+E AP,

[{wop, A)| = < crh|[All

Let ¢, = max |a®|; then
acd
(4.24) aﬁ—wflﬁ_t,_wflsL < cfl(w)as)\ < cfl(w)+cls||/\\|_
But we have
(4.25) H(w) <UTx) +Uwo) < Y lU(Tay) + 4| < o M| + D],
i=1

where ¢o = ¢ maxi<i<pn {(T,y). In summary we obtain

EE(S’ h7 CLO'(C[)) — Z (ao—(q))ﬁer_l(SLfﬁ) (S)
weW (A,0)
(4.26) < W(eeca)!®H ST (egzegrsten) Mg erhiNI= = A2
AeQV

for s > h+ hY +e. It is clear that the last series in (28] is finite and satisfies the
required uniform convergence properties. (Il
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The proof of Theorem [.4lis similar to that of Lemma [43] and we only need the
following two observations: (1) f is bounded by cuspidality, (2) consider

E(s, fug)= Y. Fulssug)= > > fulwyug).
weW (A,D) weW (A,0) ~veU,, (F)

We can modify the definition of U)} in (A.I7) and (£I8)) by taking i,, large enough
such that [Uy,Us] C w™!Naw C U/, whenever 8 = a + i§ with a € ® U {0} and

1 > 1. Here by our convention for any 6 C A we let

(4.27) No(A) =GN [ Ua),
ae‘f’+—<b9

(4.28) No(F) = G(FW)n [ Ual).
a€$+—¢9

Then U is again of finite codimension in U, and F, (s, ug) is left U/ (F)\UZ (A)-
invariant.

Corollary 4.6. IfRes>h+h" and|q|>1, then E(s, f,uac(q)) and E(s, h,uac(q)),
defined by (@) and (I, as functions on U(F)\U(A) x T, are measurable and

converge absolutely outside a subset of measure zero.

Let us state the Gindikin-Karpelevich formula in the case of SLy(F,) where F), is
the completion of F' at place v, whose proof is well known. Let x, be an unramified
character of FX. Let fs,, € Ind3"(|-|* ® xu), s € C, Res > 0 be the unique
spherical function satisfying

a T R
(4.29) fo (5452 #) = xwlalalz®,
where k € K, the standard maximal compact subgroup of SLs(F,). Let w =

0 1
(_1 O) . Define

(4.30) c(s,X0) = /F v Fores <w1 (é f)) da.

Proposition 4.7. Suppose F, is p-adic. Let w, be a uniformizer of p, C O,, and
qv be the cardinality of the residue field O, /p,. Then
1-— —sl A2 L
el x0) = vol(0,) L X T  _JA L)
1 — xo(wy)gw Ay 2 L(s+ 1, x0)

Recall that A, is the relative discriminant A, /g, satisfying vol(O,) = A, 2.
Ap(s)
Ap(s+1)
at v. In the case that F,, = R or C, unramified characters of F), are of the form

| - |20 for so purely imaginary. Then one has the following

In particular, if y, is trivial, then ¢, (s, x,) contributes the local factor of

Proposition 4.8. Suppose F, =R or C. Then

cfs, |- 1) = mel8E0)_
Ip,(s+s0+1)
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4.3. Constant terms and Fourier coefficients. In this section we shall com-
pute the constant terms of Eisenstein series along unipotent radicals of parabolic
subgroups of G. In the classical theory [31], if P = MN is a parabolic subgroup
of G and f is a cusp form on M(A), then the L-functions associated to f and the
representations of “M on “n will appear in certain constant terms of the Eisen-
stein series induced by f. Unfortunately for loop groups the constant terms are all
trivial. However, we will obtain certain non-trivial higher Fourier coefficients of the
Eisenstein series. R

Let P = Py and Q = Py be two maximal parabolics of G with Levi decom-
positions P = MpNp and @ = MgNg. Let ap and ag be the corresponding
simple roots. Let fp;, be an unramified cusp form on Mp(A) and E(s, farp,9)
be the Eisenstein series defined at the end of Section 4.1. The constant term of
E(s, famp,g) along Ng is given by

(431) EQ(safJVIP’g) = / E(svfMpvng)dn'

N (F)\Nq(A)
Using similar method to that in the proof of Theorem [£.4] one can show that the
integral ([@31)) converges absolutely for |q| > 1 and PRes > 0. One can easily find
the precise range of convergence for Re(s), and we will not give it here.

Theorem 4.9. Eq(s, frp,9) =0 unless P = Q, in which case

Ep(s, fatp, 9) = (svp)(m) farp (m),
where g = mno(q)k, m € Mp(A), n € Np(A) and k € K.

Proof. We follow the arguments of Langlands [31]. We write
EQ(SvfMpvg): Z

YEP(F)\G(F(t))/No(F)

/ anS(FYng)dn'
Y1 P(F)yNNg(F)\Ng (&)

From the Bruhat decomposition we may assume that each ~y is of the form v = w~’
with w € W(61,02) and v € Mg(F). Then up to a scalar depending on ', a
typical integral equals

/ Fatp.s(wny g)dn.
w=tP(F)wNNq(F)\Nq(4)
Since w € W (01, 62) we have

Up =~ w ' Pwn Ng\Ng.
Let w™!'PwNNg = N1 Ny, where N1 = w™ ' MpwN Ng, N2 = w™ Npwn Ng; then
the above integral equals

/ / / fMP’S(wnlnguw’g)dnldngdu.
Uw(A) J N2(F)\N2(A) J N1 (F)\N1(A)

Since far, is a cusp form on Mp, the most inner integral vanishes unless N; = 1.
Then w16 C @y, which forces that w=10 = ¢’. By the following lemma, which
is essentially Shahidi’s Lemma [I7, Lemma 4.1], we have w = 1 and P = Q. In this

case we can take 4 = 1, and thus Ep(s, farp,9) = fMP’S(g) = (svp)(m) farp(m).
(I

Lemma 4.10. In the above settings if there exists w € W such that w = 0, then
w=1and P = Q.
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Proof. For convenience let us enumerate ap = oy, g = ;. It is enough to show
that wa; > 0. For the contrary suppose wa; < 0. Let wf be the longest element in
We; then wwl = —0'. We may write

0
Wy = Q; + g N Q.
k#i

Then ww§a; has an expression

wwlo; = wa; + Zn;ak
k]
since wh = 6'. Let us write woy = Y p_qbrag. If b; = 0, then way; € Py, which
is impossible. Therefore b; < 0, which further implies wwfa; < 0. Thus we obtain
wwgﬁ < 0, a contradiction. (]

In general, for a connected reductive algebraic group G which is split over F' (e.g.
G = GL,,), the theory of a generalized Tits system [21L[22] implies that G(F((t)))
= BoW'By, where W' = W x X,(T). The proof of Theorem together with
certain variants of Lemma .10 suggests that the triviality of constant terms should
also hold for G.

Now let us define and compute the Fourier coefficients of E(s, far,.,g). Let 9
be a character of U(F)\U(A); then 1) = [[.cx Ya> where ¢, is a character of
Uy (F)\U4(A). This follows from the fact that

U/|U.U) =~ [] U..

aeﬁ
Define the t-th Fourier coefficient of E(s, far.,g) along B by
Bp(ofup®) = [ Bl fup 9Bl
U(F)\U(A)

Then Eg (s, fup, 9) is a Whittaker function on G(A(t)) x o(q), i.e. a function W
satisfying the relation W (ug) = 1(u)W (g), Vu € U(A). Let Up = Mp N U be the
unipotent radical of MpN B C Mp. We say that ¢|y, is generic if 1), is non-trivial

for each a € 0, and that 1 is generic if 9, is non-trivial for each ao € A.

Theorem 4.11. (i) Assume that v is generic. Then Eg (s, frp,9) =0.
(i1) Assume that Y, is trivial. Then Eg (s, fry, ) = 0 unless v, is generic,
in which case

Bp o5 Futp.9) = Gve)(m) [ Pt ()b (u)d,

Up (F)\Up(A)

where g = mno(q)k, m € Mp(A), n € Np(A) and k € K.

Proof. (i) Since 1 is U(F)-invariant, similarly as before we have

Bpo(situng) = 5 [ S Fup(wrug)inde
wew (6,0) " VENUA) ey, (7

Fatp. s (wug)(u)du.

wew (0,0) /’UIP(Fmﬂﬁ(F)\ﬁ(A)
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For each w € W(0,0), w10 C &, therefore w U (F)w C w™'P(F)w N U(F). If
we write U = NoywNi1wUw, where Niy = w™ Upw, Now = w ! Npw N U, then a
typical integral equals

/ / / fMP’S(wngnlug)@(ngnlu)dngdnldu.
Uw (A) le(F)\Nl'w (A) N27U(F)\N2w (A)

By definition of fMP,S the function fMP’s(wngnlug) is constant on Na,,. Hence we
are reduced to showing that 1|y, is non-trivial, provided that v is generic. In this
case ¥|n,,, is trivial if and only if U, ¢ w™!Npw for any a € A. Equivalently we
are looking for a w satisfying the conditions wA C &_ U ®p, and w6 > 0. For
such w in fact one has
w& C (CT), — (I)g,) U Py
From this it is easy to deduce that w&ﬂfb(ﬁ forms a system of simple roots for ®y,
hence wA N @y, = 6. By Lemma FI0 we must have w = 1, which is obviously a
contradiction. Therefore we have proved that such a w does not exist, hence 9|,
is non-trivial.
(i) We reverse the order of Ny, and Na,, to rewrite the integral as

/ / fyip,s(wningug)(ningu)dng dnadu.

Naw (F)\N2w (&) J N1w (F)\N1w(A)

Consider the subset 8,, = 0 Nw®y, of 6 and let P, be the corresponding parabolic
subgroup of Mp. If ,, # 6, then P, has a non-trivial unipotent radical Up, C Up.
From the definition of 6, it follows that w™'Up,w C Ny, and therefore by our
assumption 1 is trivial on w'Up, w. Since fis, is a cusp form on Mp(A), it
follows that the most inner integral vanishes. If 6, = 6, then w=16 C ®y,, from
which we deduce that w6 = 6 and hence w = 1 by Lemma EI0l It follows that

Eg (5 frtprg) = /  Faes(ug)Bw)du
/ U(F)\U(A)

(sve)m) [ sy (wm) ()
Up(F)\Up(A)
which vanishes unless 9|y, is generic, again by the cuspidality of fas,. O

In the rest of this section we consider the Eisenstein series induced from a quasi-
character on T'. More precisely, let x5 = @, x5 : T(A)/T(F) — C* be a quasi-

character such that x4 is unramified for each place v. Extend x4 to T =T xo(I)
such that xz|s is trivial. For each o € &%e, xzaY 1 I/F* — C* is the Hecke

quasi-character such that xza"(z) = X7 (ha()). In particular, x4 o is unramified
for each place v.

In general, if x : I/F* — C* is a Hecke quasi-character, we may write x as
p| - |?°, where p is unitary and sg € C. Define Rex = Resg, which is called the
exponent of x. Recall that L(s,x) =[], L(s, xv) is the Hecke L-function of x. We
may twist x to make it unitary. Then L(s, x) is holomorphic in {s € C : Res > 1},
admits meromorphic continuation to the entire complex plane, and satisfies the
functional equation

L(]' -5, Xv) = 6(8, X)L(Sa X)v
where YV = x 71| - | is the shifted dual of x.
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We define the Eisenstein series on G(A(t)) induced from X7 by
(4.32) E(xz:9)= Y,  xX#(19)
YEB(F\G(F(t))
where X4 is given by
(4.33) X7 (cba(a)k) = x7(cbo),
where ¢, q € I, b € Bo( ) by € B(A) is the image of b under the projection
By(A) — B(A), and k € K. Then ¥ X7 is well defined, right K-invariant and left

B(F)-invariant. We define the constant term and Fourier coefficients of E(x, g)
along B by

Eg(x3:9) =[ _ E(xs,ug)du,
TEN\T(A)

Es,(x3.9) = /A _ E(xs,ug)d(u)du
T(FN\D(A)

Theorem 4.12. (i) Suppose that g € G(A(t)) x o (q) with |q] > 1, and Re(xpa)) >

2,i=0,1,...,n. Then E(xs,ug), as a function on U(F)\U(A), converges abso-
lutely outside a subset of measure zero and is measurable.
(i) For any e >0, let

’Hsz{xf:f(A)/f( ) = C* ‘XT unramified, Re(xs0) > 24¢€,i=0,1,...,n }

The mtegml deﬁnmg E5(x5,9) converges absolutely and uniformly for x# € He,
g€ U(A)QanK, where n > 0 and Q is a compact subset of T(A). More explicitly,
for a € T one has

(4.34) Eg(x#,a0(q)) = Z (aa(q))’pr“’il(xf*mcw(xf),
wew

where

(4.35) cwixp) = I Ap|-} L(—(p, "), x#8")

L(l - <ﬁaﬂv>aXf‘5V).

/36$+ﬂw<f>,

Proof. The proof follows exactly the line for proving Lemma [.5]if we apply analytic
properties of Hecke L-functions together with Propositions .7 and 8 With the
analog of Godement’s criterion,

(4.36) Re(xge)) >2, i=0,1,...,n

we have the following two observations, which suffice for the convergence of the
Eisenstein series: (1) Re(x73Y) — (p,BY) > 1 for any S € ®cq, which is pre-
cisely ([@306) when S is a simple root. (2) Consider the factor a(q)“’fl(xf*m =
(w- o (q))X7~P. Write w = Thwo € W such that A\ € QY, wy € W. Then from

A 2

wd=Tyd=d+x— | 2” ,

we see that

(100 (@)77] = [q O+ el ) B
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The coefficient of the quadratic term is negative. Indeed,
Re(xzc) = Re (xp(ag +a")) > 24 (p,af +a") =2+ h".

Let us remark that due to the last equation, for our second consideration Gode-
ment’s criterion is much stronger than required. (]

4.4. Explicit computations for 5‘12. It would be interesting to investigate the
Fourier coefficients of our Eisenstein series in full generality. To obtain an explicit
formula would be a quite difficult and non-trivial problem, as suggested by the
paper of W. Casselman and J. Shalika [5] where they gave a formula for finite
dimensional groups. The reason their method does not work here is that we do not
have a longest element in the affine Weyl group, as opposed to the classical case.
However, in the case of SLy we do have explicit computations and everything is
known. _

Let ap = § — a, @1 = «a be the simple roots of sly, and 1) = g be a character
on ﬁ(F)\ﬁ(A) where 1; corresponds to a;, i = 0,1. Let f be an unramified cusp
form on SLy(A).

Proposition 4.13. Assume that ¢ is non-trivial. Then ng(s,f, g) vanishes
unless V¥ equals 11 and is non-trivial, in which case it equals the Fourier coefficient

of £,
Bgaodo) =l [ (5 1)) Fatm

where g = cpo(q)k, c €1, p € SLa(A(t)4), k € K.

Proof. The case 1) = 1)1 is known due to Theorem [£.1T} hence we only need to show
the vanishing of Fz " in other cases. As usual let us write

CNOYV RN S  F(wug)B(u)du
weTW —ta>0 “LG(F () 4)wnT(F)\U ()
For w € W such that w=ta > 0, if w # 1, then w™'a # g, oy, which implies
that ¢ is trivial on the root subgroup Uy-1, = w'U,w. On the other hand, the
integration of fs along U, (F)\Uq(A) is zero since f is cuspidal. Therefore we arrive
at

Eg (5. f,9) = /ﬁm\m Fa(ug)B(w)du.

Since by definition fs is left invariant under the root subgroup U,,, Eg5 " vanishes
unless g is trivial, i.e. ¥ equals 11 and is non-trivial. O

Now suppose that x4 is an unramified character on f(A) /f(F ) such that
(4.37) x7(c-a) =xo(c)xi(a), cel, acT(A)~I,

where xo and x; are unramified Hecke quasi-characters on I. We define E(x 4, g)
by ([.32) and the Fourier coefficient £z, (x,g). Similarly as before we have

Eg,(x3:9) = Y ~ _ Xp(wug)d(u)du
= Jw=1G(F(t) ) wnD (F)\D (A)
weWw
For any w € W, at least one of way, i = 0,1, is positive. Since X4 is left invariant
under any root subgroup of a positive root, we see that Eg " does not vanish unless
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one of ¥;, i = 0,1, is trivial, i.e. 1) = 1)y or 9. Let us work out the explicit formula
for Bz, (x#,9) at g = a(q), i = 0, 1. For simplicity let us assume that

(438) 'l/}z(iou (u)) = 'l/}F(u)’ ued, i=0,1,

where Yp = @), 1, and ¢p, is the standard character of F), defined by (@.6)-(£3).
As preliminary computations let us give the local coefficients for SLy(F,). Define

(4.3) W) = [ o (w7 (g 1)) Fnlen

where f ,, is given by ([@29). The following proposition is well known.

Proposition 4.14. Suppose F, is p-adic; then

W (s, x0) = vol(O,)L(s + 1, x,) "

We also have the local coeflicients at archimedean places. Assume x, = |- |5,
v|oco. If F,, =R, then

(4.40) W(s,xo) = 2/ (14 22)~ =3 e 2mizgy
0

= 2Ir(s+ 17Xv)71KH%(27T)~

If F, =C, then

(4.41)  W(s,|-1¢)

2/ (1+x2+y2)—s—so—1e—47ri;cdxdy
R2

11 e .
= Bls+so+ =, / (1 + a?)"s7s0e=4miz gy
2°2) J,
1

_ 1.
= ﬁFC(S"‘f—lev) IB(8+31),§) 1Ks+sv7%(4ﬂ—)'

In the above, B(-,) is the Beta function and K,(y) is the K-Bessel function, also
known as the Macdonald Bessel function, defined by

1 [ 1y g dt
Ks(y) = 5/ e v(tHt )/Qts?
0

We have used the formulas in [2, pp.66-67] to obtain (£40) and ({ZI]). Define

(4.42) Wi(s,x) = HW(s,xv).

Then W (s, x) can be written as |Ap|~2 W/ (s, x)L(s + 1,x) %, where W/_(s, x) is
a product involving Bessel functions and Beta functions. Now we are ready to give
the formula for the Fourier coefficients ERW (x5,0(q)). We do the case ¢ = 9.
The other case is similar and is only a little bit more involved.
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Proposition 4.15. Assume |q| > 1 and Godement’s criterion
Rex1 > 2, E}{e(XO - X1) > 2.
Then

Eg ., (7 0(a)

00 —1
—Nn 1 n— n2 n —n2 n.,, —
= 1A (g™ ) @W (L= dnod )

L(1—2i XOXl b
L(2 = 2i, xéx1 )

L(1—2i, x5 xa)
D L(2— 20, x4 'x1)

no

o =
Y 3
ek

- —n —_n— ’I’L2 —n *’n2 n
+ 20 1AR a7 (™) @ (1 - dnxE )
n=0

.
I

Proof. By previous reasonings, we have

Bpo 0= > [ Ra(wuo() T
e o wmraeEn et T8

For w € W, recall our notation
Dy =0 Nwb_ ={B1,....5},

Dy =P, Nw 'd_ = {7,y i}
It is clear from the formula for §;, ~y; that if wa < 0, then 7; = «. Following the

arguments of ([@19)), (£20) we obtain
@ T (wue(9) () du

B(F (1) 1 ywn T (FNT (4)
= [ Retwuota)da
Uw(A)
[ X (@) (@) ) (o)) B () -
— gttt /Al X (WEy, (w1) -+ Ty (W) o (wr)duy - - - duy
= 0@ 0P [ T @ () T ) B ()
Al
Notice that o(q)" = o(q)® = 1. Similarly as in ([@22)),
/Al XT (@—p, (u1) - T (ul))EF(ul)dul cduy

= /Aa(ul)xf_’ﬂw/ﬁﬂp(ul)dul / X7 (g (w1) 2o, (1)) dug - duy_y.

Al—1

By applying the formula of Fourier coefficients for S Ly, together with the Gindikin-
Karpelevich formula, we see that the last equation equals

. T L8, x5
Apl= 2 W(- D) xB 5 8 xnBY)
== WG 8 xe 80 T 5= 5oy ey

There are two cases for w € W such that wa < 0.
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Case 1: w="Tuov,n>0. Thenl=2n, §; =id —« and 7; = (2n —4)0 + . In this
case we obtain

~ 1
(0,8 = <§a—|—2L,ic—aV) =2 —1,
Wd:Tnan:d+nOév —7120’
o o, N
X#8 =xoxits xpwd =xixo™ . (pwd) =n—2n>.

Case 2: w =T_pqvra,n > 0. Thenl =2n+1, §; = (i—1)0+a, v; = (2n+1—i)d+a.
Similarly we obtain

1
(7.57) = (ga+2L, (i - Deta’) =20 - 1,
wd =T_povrad =T _povd=d — naV — n2c7

. g _
x#B =xo 'x1, xpwd=x7"xo", (pwd) =—n—2n%
Combining contributions from these two cases, we get the formula. ]

5. ABSOLUTE CONVERGENCE OF THE EISENSTEIN SERIES

Under the conditions of Theorem (4] we have proved that E(s, f,ug) converges
absolutely almost everywhere on U(F)\U(A), by proving the finiteness of the con-
stant term Eg(s, h, g). The main result of this section is the absolute and uniform
convergence of E(s, f,g) for g in a certain Siegel set and with Re’s large enough.
By boundedness of the cusp form f, it is enough to prove the absolute convergence
of E(s,h,g). The main ingredient of the proof is the systematic use of Demazure
modules together with some technical estimations. We follow Garland’s idea in [12].
Our arguments in the adelic settings also involve a property of algebraic number
fields, which is analogous to the Riemann-Roch theorem for algebraic curves.

5.1. Demazure modules. Recall that for any dominant integral weight A, we have
the irreducible highest weight module V), and the highest weight vector v, such that
Vaaz = Zvy. There is amap |- | : Vj o — R>¢ defined in Section 3.4. The highest
weight vector vy embeds into V) 5 diagonally. Recall that L is the fundamental
weight such that (L,a))=0,i=1,...,n, and (L,af) = (L,c —&") = 1. Then by
Lemma [B2T] it follows that the height function h can be defined as

(5.1) hs(g) = g~ |7,

where vy, is the highest weight vector in V7, 4 as above.

The simple equation (B.IJ) plays a crucial role in the proof of the absolute conver-
gence of the Eisenstein series. In this section we shall collect some basic results on
the Demazure module V) (w), which is associated with a dominant integral weight

Aand w € W, and is a submodule of V) defined belon.
Recall that ny. = P, 9a is the Lie algebra of U. Let UZ(ny) be a Z-form of
the universal enveloping algebra U(n) of ny.. We define
(52) V)\(w)z :L{Z(E+) cW Uy
Let A(w) be the subset of all weights p of Vy such that u > wA, i.e.

ILL—w/\:ZliOLZ‘, l; GZZO'
=0
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Then it is clear that
(5.3) WwzC @ Vauz
pEA(w)

For any field F’ we define the Demazure module over F' corresponding to A and
w by Va(w)p = Va(w)z @ F. Let Vy(w)a C Vi be the restricted product

IV (w)r,

with respect to Vy(w)p, = Vi(w)z ® O, defined for all finite places v. If ¢ = ®, ¢,
such that ¢, is a linear operator on V) g, and ¢, preserves V) o, for almost all
finite places v, then we define

(5:4) Igoll = sup ozl llgll = [Tl

TEV,F,»llzl|=1

and

(5.5) bl = sup  guzl, gl =] Ioul-

€V, Ry, |lz||=1

Note that |¢,| = ||¢s]|? or ||¢| according to whether or not v is complex. If ¢,
preserves V) (w) g, for each v, then we define ||- ||, and |- |,, similarly by restriction.

In particular, ||¢y[lw < [¢v]; [dolw < |60l
Let F be a local field. We shall estimate the norm of Zg(u) acting on Vy(w)p,

where 8 € &)TH_, u € F. By Lemma B3] we have the group homomorphism ¢z :
SLy(F) = G(F((t))) such that

e
Pp ((ﬁ u91>> = hg(u), uweFx,

and g maps the maximal compact subgroup of SLy(F') into K.
If F =R or C, consider the Cartan decomposition

B0 e

where k lies in the maximal compact subgroup of SLy(F) and a > a=! > 0.
Comparing the trace and determinant of both sides it is easy to obtain

242 V]ul?2 +4
(5.7) a=a(u) = ul” + +|§‘ ul® + .

Then it follows that

Lemma 5.1 ([I2] Lemma 4.1]). Suppose FF = R or C, g € <T>Te+, u € F. The
square norm ||Zs(uw)||? of Tg(u) restricted on Vy(w)p is bounded by

sup a(u)ww’
nEweights of Vy(w)

where a(u) is given by ([B7).
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Proof. The adjoint operator of Z3(u) is T_g(@), which follows from the fact that
Xo®@tand X_, ®@t~¢ (o € ®) are adjoint operators and that the inner product is
hermitian. Then by the above discussions we get
IZs(u)ls = sup [
VeV (W) F,|v]|=1
= sup (T_p(@)x5(u)v,v)
vEVA (W) F,|v]|=1
= sup (kghg(a)kglv,v)
veVx(w)p,llv[|=1

= sup (hg(a)v,v)

veEVA(w)r,|lv]|=1

\%
sup PAGS
peweights of Vi (w)

IN

where a = a(u) and kg = @g(k) € K, with k the element appearing in (5.0)). O

Lemma 5.2. Suppose F is a p-adic field and f = o+ i6 € &%H, u € F. Then
|Tg(u)|w =1 if |[u| <1, and it is bounded by

\4
sup |u‘2\(u,a )
peweights of Va(w)

if lul > 1.

Proof. If |u] <1 the lemma is clear since Zg(u) € K, which preserves the norm on
V.. Assume that |u| > 1. Then

Fa@he = [ha()Ts ™ halu

IAN N
=
Q
I
N—

. =

£ &

T =
Q
—~
IS

_)—‘

g‘;’

™ €

i3

peweights of Vi (w)

Consider the real Cartan subalgebra and its dual,

br = hr B Rc®Rd, b = b & RS S RL.
For any u € EH*Q, write p as the decomposition
(5.8) p=to — Kkpd + o, L,

where 19 € bg, £, 0, € R.If pis a weight of Vy(w), then p > wA and K, < Kya.
We impose the condition x) = 0 in order that A be a dominant integral. The
following lemmas are due to Garland [12]. For the reader’s convenience we shall
sketch the proof.

Lemma 5.3. Let \ € Eﬁi be a dominant integral weight \. Then there exists a
constant kg > 0 such that for all w e W,

Kox < Kol(w)?,
and for any weight p of Vy(w), w # 1,
(10, p10) < kol(w)>.
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Proof. We only prove the first inequality. See [12] for the proof of the second one.
Let us write A = Mg+ oL, where \g € b*, o) € N. Write w = T, wo, where v € QV,
wo € W. Then by Lemma [Z4]

wA = woAg + oxL + oy — <<>\Oa’y> + % (%’Y)) d.
It follows from Lemma below that
R = (R0.7) + 5 (1,7) = O I? = OWI(T,)? < O()(1(w) + |- ])2.
From this the first inequality is clear. Here we denote by O(1) a bounded term. O

As a consequence of this lemma we obtain the following result.

Corollary 5.4. Given k > 0, there exists K1 > 0 such that for all w € /V\V/, w #£ 1,
and for all B € ® of the form

B=a+i), 0<i<kl(w), a€d,
we have (i, BY) < k1l(w) for any weight u of Vy(w).
Proof. Write 1 = po — £,6 + oAL. By Lemma 1] ¥ = % (a",a") ¢+ a". Then
from Lemma [5.3] it follows that

7 1 K
(1, 8Y) = {0, @¥) + 5 (a¥,0¥) o < (i oV + Flla¥|0n) ).

Let k1 be the maximum of the above coeflicient of I(w) over o € . 0
The condition on 3 in Corollary (5.4l is satisfied in the following case.

Lemma 5.5. There exists € N such that for all w € W and B=a+i6 € d, =
O, Nwd_ (a€ D,i € Z>g), we have 0 < i < kl(w).
Proof. Write w™! = T, wp, where v € QV, wy € W. Then
w8 = woa + (i — (woa,v))d < 0,
which implies that i < (woa,7y) < ||7|llle|l. The proof follows from Lemma

below, together with the inequality I(T) < l(w) + l(wo) < l(w) + |@4|. O
Lemma 5.6. There exists & > 0 such that ||v|| < RI(T) for all v € QY.
Proof. From [22], Proposition 1.23], we get
UT) = > )= [l
acd =1

~ can be written as a linear combination of the fundamental coweights, with coef-
ficients (a;,7), 1 <4 < n. The lemma is clear from this observation. O

The Demazure module V) (w)p is preserved by the action of the elements Z,, (u),
a € D, u e tF[[t]], and hy(u), a € &, u =1 mod tF[[t]].

Lemma 5.7. Let & be given as in Lemma 55l For anyw € W, the elements To (1),
ac®, uectl@E[[t]] and ho(u), @ € &, u =1 mod t* () act as identity on the
Demazure module Vy(w)p.
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Proof. Let u,,-1 = Gaae%w go be the Lie algebra of U,,-1; then
Va(w)z = U" (uy-1 )woy.

Let ®, = {B1,..., 5} with [ = [(w). The PBW Theorem implies that the mono-
mials Xgll . --Xgl, i1,...,4 € Z>o, form a basis of U(u,,-1). To prove the lemma,
it suffices to show that Ug(F') acts on Vy(w)p trivially for each 8 = « + 90 with
a € ®U{0}, ¢ > kl(w). Then we are further reduced to show that gsg = ga+is
with a € ® U {0}, i > kl(w) acts on V)(w)p as zero. We prove by induction on
i1 + -+ 14 that

(5.9) gs X3 - X wuy = 0.

Since w™'ggw = g,-15 and w5 > 0 by Lemma[5.5] we have ggwvy = 0. Consider

(93, 93,], which is zero if 5+ §; ¢ $ and equals ggyp, otherwise. In each case the
induction follows and (E59) is proved. O

5.2. Estimations of some norms. Let F' be a local field. In this section we shall
apply the results of the previous section to estimate the norms of elements in U (F)
acting on Vy(w)p, under certain conditions.

Lemma 5.8 ([12, pp.228-232]). Suppose that F = R or C, Za(u) € U(F), where
a€ @ u=>Y 2 ut € F[t] (€ tF[[t] if « € ®_) such that |u;| < M7*, i =
0,1,..., forsome M >0 and 0 < 7 < 1. Then ||Tq(u)||w < exp(kar,-l(w)) for some
constant kpr,r only depending on M and 7.

Proof. Consider = a +1id € <T>m+, u; € F. Let k € N be the constant in Lemma
If i > kl(w), then Tg(u;) acts on Vy(w)p trivially; if ¢ < kl(w), by Lemma [5.1]
and Corollary [5.4] we have
|ZsClll, < supa(w) P < afu) ),
pEweights of Vi (w)

where a(u;) > 1 is given by (B1). It is easy to show that there exists cpy > 0
depending on M such that a(u;) < 1+ cp7¢. Then by Lemma [5.7] we have

rl(w)—1 rl(w)—
|Za ()], = H Toris (ui)l[7 < H ||xa+z5 i)l
N(w)fl . rl(w)—1 4
< H (14 cpr) 1@ < exp | myearl(w) Z T
i=0 =0
KR1CM
< l .
< exp (1 — (w)>
. R1CM
The lemma follows if we set ka7, = O

2(1—171)°

Lemma 5.9 ([12] pp.233—240].). Suppose that F = R or C, u =1+ Z(;il u;tl €
1+tF[[t] such that |u;| < M7, 5 =1,2,..., for some M >0 and0 <7 < 1. Then
|ha, (W)]lw < exp(Ra-l(w)), i =0,1,...,n, for some constant Ky~ only depending
on M and T.
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Proof. Let us consider the following two cases:

Case 1: wla; < 0. Let w' = Wy, w; then [(w) = I(w') + 1. Moreover, if we write

B, = &)Jr Nwd_ = {B1,--.,Bi-1}, then d, = {a;,7iB1,. .., 7iBi—1}. We shall
prove the following:

(5.10) X_a;VA(w)r C Va(w)r,

(511) V)\(’w/)p C V)\(’LU)F
To prove (5.10) it suffices to prove that for j,ji,...,ji—1 € Z>o,
X_0, X X7, - XTI woy € Vy(w)p.

iB1 riBi-1
We use induction on j+ 71 +...4ji—1. It is clear by assumption that X_,,wvy = 0.
The induction follows since [X_o,, Xo,], [X—a:, Xrig)s - [Xoai Xrig 1] € b =

han,. Va(w) r is also preserved by X,,; hence it is preserved by w,,;. Then (5I1))
follows from

Xéll ” .Xéllillwlv)\ = Wy (waiXﬁleti)jl e (waiXﬁlfleli)jl_lka € V)\(w)F'

Since wq, = wy, (1) € K , which preserves the norm, by Lemma [5.§ and its proof
we obtain
1he; @l = [[wa; (Wwa, (1) lw = [[wa,; ()]
< s (W)l Z—ay (=™ [ Zas (1) [l < exp(3ras, L (w)).

Case 2: w™la; > 0. Then thanks to (5I0) and (5I)), Vi\(w')r is preserved by
X_q, and W,,, and we have V) (w)p C Vy(w')p. Applying the result in Case 1 we
get

o, (@)oo < o () s < exp(Bringr (1(w) +1)).

Combining the two cases, the lemma holds for ks r = 3kar,- + 1. O
We have the following p-adic analog of Lemma 5.8

Lemma 5.10. Suppose that F is a p-adic field and To(u) € U, where o € @,
w=>Y 2 uit" € F[[t] (€ tF[[t] if a € ®_) such that |u;| < M, i =0,1,..., for
some M > 0. Then |Tq(u)|w < exp(kprl(w)) for a constant kpr only depending on
M.

Proof. We may assume that M > 1. By Lemma [5.3] we have
1
(1, @) = (1o, a¥)| < kg la”[[i(w) < k1l(w)
for any weights u of V) (w). Following the proof of Lemma we obtain

[Za(u)lw = |Ea(M)5a(M_2u)Ea(M_l)‘w§ma(M)‘wma(M_l)‘w

< sup |M|2I<mav>\ < ‘M|2ml(w);
peweights of Vi (w)

note that 2, (M ~2u) € K. The lemma follows by setting ry; = 2k log M. O
Let F be any local field. Recall from [3:29) that o(q), g € F'* acts on V) g by

o) = g
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for each v € V) ,, 7. Then

o (@)]lw < sup |q‘<#vd> < sup ‘q|(,u,d).
peEweights of Vy (w) LEA(w)

If A= L, then (u,d) <0 for any u € A(w). In this case we obtain the following:

Lemma 5.11. Assume A= L, q € F*. Then

)L if la| > 1,
@)l = { o(@ ], if]al < L.

From this lemma we can get the following global result.

Corollary 5.12. Assume A = L, q = (qy)y € I. Then |0(q)|w =1 if |qu|o > 1 for
each v, and |o(q)|w = o(q)%" if |qu|o < 1 for each v.

Proof. This is clear from the fact that |o(q)]w =[], |o(dv)]w- O

5.3. Convergence of the Eisenstein series. In this section we prove the ab-
solute convergence of the Eisenstein series everywhere, whenever the conditions of
Theorem [£4] are satisfied. The uniform convergence of the Eisenstein series over a
certain analog of Siegel set will be established. The main result is the following:

Theorem 5.13. Fiz q € I, |q| > 1. There exists a constant cq > 0 depending on
q, such that for any e > 0 and compact subset Q of T(A), E(s, f,q) and E(s,h,g)
converge absolutely and uniformly for s € {z € C|Rez > max(h+ h" +¢,¢q)} and

g€ UM (K.

Proof. We only need to prove the theorem for E(s, h, g). Let us write g=ug4a,0(q)kq,
where u, € U(A), a, € ©, |q > 1 and k, € K. Since E(s, h,g) is left G(F(t))-
invariant, by Lemma B.27] we may assume that u, € (7@. We may also assume that
kg = 1. Recall from (5.I) that hs is the height function such that hs(g) = [¢ vr| ™%,
and

E(s,h,g) = Z Z hs(wyg).

weW (A,0) ~veU, (F)
Let C > 1 be a constant which will be determined later. Write q = qlqgl such
that

(1) 1,92 € Iy :={z = ()0 €] |z0]s = 1,V0},
(44) |q10] > C for each v]oo.

By Corollary B2, |o(q; )w-1 = o(q;')* L. Assume v € Uy(F). Let gy =
uga,0(q1) = go(qa). Since (wygr) tvr € Vi(w™t)4, we have
(5.12) hi(wyg) = [(wyg) tor]| ™t = |o(q2)(wyg:) oL
_ _ _ 1wt
lo(a2 ) w1 | (wygn) or| T = o(az )Y Fha(wygr).

IA

Similarly for any u € U(A) we have (wyugi) tvy € Vi(w™!)s. Note that g; acts
on Vi (w™1),; therefore
(5.13) hi(wyg) = gy 'y e o[

< g tuT gl - [(wyug) Tton T

g7 " u ™t g1 |1 ha (wyugy ).
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Assume u € (7@, and we shall estimate |g; 'u""gi|,,—1, which is bounded by

|(agor(q1)) (ago(ql))|w 1|(ago (m))flu*l(aga(ql)ﬂw,l
x |(ag (ql)) Yy (ago (d1)) w1

Let us estimate |(agq ( 1)) 'u(ag0o(q1))|w-1. Other factors can be treated sim-

ilarly. Since u=! € Up, u~' is a product of the elements Z,(uq) where either

o€ ®, uy € —D(t)y or @ € D_, uy € —tD(t),, and the elements hq, (u;),
e(1+tD{ty ) L i=1,...,n
By our choice of D, there exists Mp > 0 such that for any = = (z,), € D we
have |z,| < Mp for each v|oo. Then for any np > 2Mp there exists M > 0 such
that if z = 1 + Z;’il zith € (L+tD{t);) ", then |zj,] < Mnp, j = 1,2,..., for
each v|oo. In fact z € (1+¢D(t)) ! implies that ! defines a non-vanishing series
absolutely convergent in the range |t| < (2Mp) ™!, hence so is z,, itself. This implies
1 1 1
; Z > —,
limsup {/|z;o] ~ 2Mp ~ 71D
whence the assertion follows.
Consider

(ago(a1)) ™ P, (ui) (ago(a1)) = ha, (o (a7 ) - wi).
Let C > 1 be any constant such that
(5.14) C >np > 2Mp.
Applying Lemma with M chosen as above and 7 = C~!np, we get a constant
Kep = 27%]\/[7,r such that
[, (o (a7 ") - i) ulwr < exp (re,pl(w))

for each v|oo. On the other hand it is clear that kg (0(q7) - us)y € K, for v < oo.
Therefore

(5.15) o (0 (ar ) - wi) w1 < exp (|Suclie,pl(w))

where S, is the set of infinite places of F.
Now consider

(aga(ql))_lia(ua)(ago(ql)) = %(a?ff(qfl) CUg).
Since (2 is a compact subset of T'(A), we may assume that
ac [[ 7(r) = ] T©
vESqQ v€Sa

where Sq D S is a finite set of places, and we can find Mg > 0 such that [a%| < Mg
for any a € Q, v € Sq and a € ®. Applying Lemma B.8 with M’ = MqMp and
7' = C~1, we get a constant Keo,p,o = 2k - such that

Zalado(ayh) - ta)vlw— < exp (kopol(w))
for v € S. Applying Lemma [5.10 we get
|Za(ago(a7h) - Ua)ulw— < exp (Karl(w))
for v € S\ Seo. Therefore
(5.16) Zalago(ar) - ua)lw-1 < exp ((|Swlhic,p,0 + [Sa\Swolrrrg )l (w)) -
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Combining (515) and (5.I6), there exists a constant kK¢ p o such that

197 ' g1 w1 < exp (Fop.al(w))

for any u € Up, and hence for any u € ﬁ(F)\(/j(A) From (.12) and (EI3), it

follows that

(5.17) hi(wyg) < exp (Ke,pal(w)) a(qz_l)wfthl(w’yugl).

Now we are ready to finish the proof of the theorem. We may assume that s € H,
is a real number. Taking the s-th power of both sides of (517) and integrating over

U(F)\U(A), we obtain

EGuhg) < Y ew(sfepallw)) ol ) [ > hu(wyug)du

wEW(A,@) ﬁ(F)\ﬁ(A) fyer(F)

T aga(a)?TY T G Pe, (s)

= Z exp (ske,pol(w)) o(qy )™
weW (A,D)

= Y exp(shepalw) o@2)? " P(ago(@)PH T CE e, (s).
weW (A,D)

Let us keep track of the proof of Lemma Let

5
co = maxc, = max _|a®] §M5|2 al,
a€ef) a€Q,aed

Then [E24) reads

agfw_lﬁer_lsL < Cégw)+cls\|/\|\.
Plugging in (£23), [@28) and ¢, (s) < ) we see that
O [)(cecq) !

x 37 (2o M exp(sFiopaca | Al g MM AP
AEQVY
h\/

|01h\|/\|\7572 I

E(s,h,g) < |W|exp(skc,p.a

X |q
The last summation converges if and only if
Y _s—hY
g2 = Ja” 2 <1,
ie.

IOgCI2|>
5.18 $>cq:=h" <1+ .
(5.18) | log ||

It is clear that convergence is uniform for all s satisfying (5.I8).

O

When |q| is large enough, we can replace ¢q by a constant which does not depend

on q. We need the following lemma [30, p.143].

Lemma 5.14. There exists a constant cp > 1 depending on the number field F
such that, for all q €1, |q| > cp, there exists x € F* such that 1 < |zqy|, < |q| for

each place v.
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Since the Eisenstein series are left o(F*)-invariant, and o(F*) normalizes
[/J\(A)T(A)7 we may replace q in Theorem [5.13] by zq for any x € F*. Therefore we
may assume that ¢ satisfies the conclusion of Lemma [5.14] whenever |q| > cp. In
this case g can be chosen such that |q2,| = 1 for v < oo, and |q2,| < C for each
v|oo. Then we have

log C
5.19 < 025l <cni=hY [142[S]—=).
(5.19) lg2| < , Cqg<cp + 2| °°|10ch

In summary we obtain the following result.

Theorem 5.15. For any ¢ > 0 and compact subset Q of T(A), E(s, f,g) and
E(s,h,g) converge absolutely and uniformly for

s € {z € C|Rez > max(h+ hY +¢,cr)}

and g € U(A)Qo., 1K, where cp and ¢y are given by Lemma BI4 and (5.19)
respectively.

The constants in the theorem can be made explicit for the case F' = Q. In fact
we get the same range of convergence as that of the constant term of the Eisenstein
series. Namely Theorem (4] also holds for the Eisenstein series itself.

Corollary 5.16. Let F = Q. Then for any e,n > 0, E(s, f,g) and E(s,h,g)
converge absolutely and uniformly for s € H, and g € U(A)o, K.

Proof. Tt is clear that cg in Lemma [5.14] can be chosen to be an arbitrary constant
greater than 1. Fix cg = 14 n with n > 0. We may choose

11
D: [—5,5) Xl;[Zp

1
and Mp = 7 It follows from (5.I4) and (5I9) that we can choose C' to be close
enough to 1 such that cfQ < hY +¢. O

As mentioned in the introduction, we conjecture that Corollary holds for
an arbitrary number field or in general for a global field F. For the geometric case
that F' is the function field of a smooth projective curve X over a finite field F,,
Lemma [5.14] boils down to the Riemann-Roch theorem. Namely, let Dy be the
divisor corresponding to g € I; in order that H°(—Dg) # 0 it is sufficient that
—deg(Dq) +1—9g>0,ie.

lq] = g~ 48P > ¢,
where g is the genus of X. Hence we set cp = ¢? + 1 and ¢ = h", since So = 0.

In particular, the condition for s reduces to s € H,, and Corollary [5.16] is true for
X =P .
q
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