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ABSTRACT. We study the spectral stability of a family of periodic wave trains
of the Korteweg-de Vries/Kuramoto-Sivashinsky equation 0;v 4+ v9,v + 8311 +
5 (02v+94v) = 0,6 > 0, in the Korteweg-de Vries limit § — 0, a canon-
ical limit describing small-amplitude weakly unstable thin film flow. More
precisely, we carry out a rigorous singular perturbation analysis reducing the
problem of spectral stability in this limit to the validation of a set of three
conditions, each of which have been numerically analyzed in previous studies
and shown to hold simultaneously on a non-empty set of parameter space.
The main technical difficulty in our analysis, and one that has not been pre-
viously addressed by any authors, is that of obtaining a useful description
for 0 < § < 1 of the spectrum of the associated linearized operators in a
sufficiently small neighborhood of the origin in the spectral plane. This mod-
ulational stability analysis is particularly interesting, relying on direct calcu-
lations of a reduced periodic Evans function and using in an essential way
an analogy with hyperbolic relaxation theory at the level of the associated
Whitham modulation equations. A second technical difficulty is the exclu-
sion of high-frequency instabilities lying between the O(1) regime treatable by
classical perturbation methods and the > §~! regime excluded by parabolic
energy estimates.
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1. INTRODUCTION

In this paper, we study the spectral stability of periodic wave trains of the
Korteweg-de Vries/Kuramoto-Sivashinsky (KdV-KS) equation

(1.1) O+ udyu+ O3u+ 6(02u+ dju) =0, Vt>0,Vz €R,

with 0 < § < 1. When § = 0, equation (LLI)) reduces to the well-studied Korteweg-
de Vries (KdV) equation, which is an example of a completely integrable infinite
dimensional Hamiltonian system. As such, the KdV equation is solvable by the
inverse scattering transform, and serves as a canonical integrable equation in math-
ematical physics and applied mathematics describing weakly non-linear dynamics
of long one dimensional waves propagating in a dispersive medium.

When § > 0 on the other hand, equation (IT) accounts for both dissipation and
dispersion in the medium. In particular, for 0 < § < 1 it is known to model a thin
layer of viscous fluid flowing down an incline, in which case it can be derived either
from the shallow water equations

2

Oth + 0y (hu) =0,  0;(hu) + 0y (hu? + ;Lﬁ) = h — u® 4 v9, (hd,u)

as F' — 2% (F being the Froude number, with F' = 2 the critical value above which
steady constant-height flows are unstable) or from the full Navier-Stokes equations
if 0 < R— R, < 1 (R, being the critical Reynolds number above which steady
Nusselt flows are unstable) in the small amplitude/large scale regime; see [Wil[YY]
for more details. For other values of §, (IT]) serves as a canonical model for pattern
formation that has been used to describe, variously, plasma instabilities, flame
front propagation, or turbulence/transition to chaos in reaction-diffusion systems
[STLIS2LSMILKLKT].

Here, our goal is to analyze the spectral stability of periodic traveling wave so-
lutions of () with respect to small localized perturbations in the singular limit
0 — 0. In this limit the governing equation (LI) may be regarded as a dissipa-
tive (singular) perturbation of the KdV equation, for which it is known that all
periodic traveling waves are spectrally stable to small localized perturbations; see
[BDLKSFL[Sp]. However, as the limiting KdV equation is time-reversible (Hamil-
tonian), this stability is of “neutral” (neither growing nor decaying) type, and so it
is not immediately clear whether the stability of these limiting waves carries over
to stability of “nearby” waves in the flow induced by () for |§| < 1. Indeed,
we shall see that, for different parameters, neutrally stable periodic KdV waves
may perturb to either stable or unstable periodic KdV-KS waves, depending on the
results of a rather delicate perturbation analysis.

Our analysis, mathematically speaking, falls in the context of perturbed inte-
grable systems, a topic of independent interest. In this regard, it seems worthwhile
to mention that the proof of stability of limiting KdV waves, and in particular the
explicit determination of eigenvalues and eigenfunctions of associated linearized op-
erators on which the present analysis is based, is itself a substantial problem that
remained for a long time unsettled. Indeed, by an odd coincidence, both the origi-
nal proof of spectral stability in [KSELSp] and a more recent proof of spectral and
linearized stability in [BD] (see also the restricted non-linear stability result [DK])
were accompanied by claims appearing at about the same time as instability of
these waves, an example of history repeating itself and indirect indication of the
difficulty of this problem.
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However, our motivations for studying this problem come very much from the
physical applications to thin-film flow, and particularly the interesting metastability
phenomena described in [PSULBJRZLBINRZ3] (see Section [[T] below). Interest-
ingly, our resolution of the most difficult aspect of this problem, the analysis of
the small-Floquet number/small-§ regime, is likewise motivated by the associated
physics, in particular, by the formal Whitham equations expected to govern long-
wave perturbations of KdV waves, and an extended relaxation-type system formally
governing the associated small-§ KdV-KS problem; see [NR2].

The identification of this structure, and the merging of integrable system tech-
niques with asymptotic ODE techniques introduced recently in, e.g., [JZ2PZI[HLZ,
BHZ] (specifically, in our analysis of frequencies |\| € [C,C§~1]), we regard as in-
teresting contributions to the general theory that may be of use in related problems
involving perturbed integrable systems. Our main contribution, though, is to the
theory of thin-film flow, for which the singular limit § — 0 appears to be the
canonical problem directing asymptotic behavior.

We begin by defining the notion of spectral stability of periodic waves of the
4th order parabolic system KdV-KS, following [BJNRZI|, as satisfaction of the
following collection of non-degeneracy and spectral conditions:

e (H1) Let © C RS be an open set such that the map H : Q — R? tak-
ing (X,b,¢,q) = (u,u,u")(X,b,¢,q) — b, where (u,v',u")(-;b,c,q) is the
solution of

1
S(u" +u) +u’ + §u2 —cu=gq, (u,u’,u")(0;b,¢c,q)="b,

is well-defined. Let (X,b,¢,q) € H'({0}); then @ = u(.;b,¢,q) is a X-
periodic travelling wave of KdV-KS. We assume that H is full rank at
(X,b,6,q) € H ({0}). (Notice that this is precisely the condition of
transversality of the periodic traveling wave as a solution of the traveling
wave ODE.)

o (D1) o2y (L) C {A € C|R(A) < 0} U {0}, where

L=-0(0;+092)—92—0,(u—c)

denotes the linearized operator obtained by linearizing (LI about 4 =
u(;b,¢,q).

o D2) 012 (0.x)(Le) C {A € C[RA < —0[¢|?} for some 6 > 0 and any
¢€[-m/X,n/X), where

Lelf] = =0 ((0z +i&)*f + (0o +i€)*f) — (0x +i€)*f — (0x + i) (@ —2)f)
denotes the associated Bloch operator with Bloch-frequency &.
e (D3) A = 0is an eigenvalue of the Bloch operator Lg of algebraic multiplic-
ity two.

Under assumptions (H1) and (D3), standard spectral perturbation theory implies
the existence of two eigenvalues \;(§) € o(L¢) bifurcating from the (£, A) = (0,0)
state of the form \; (&) = i8;€ + o(§). Assumption (D1) ensures that ; € R. Our
final structural condition in our definition of spectral stability of periodic traveling
wave solutions of (ILI)) ensures the analyticity in & of the critical curves \;:

e (H2) The coefficients §; are distinct.

The above definition of spectral stability is justified by the results of [BINRZI],
which state that, under the assumptions that (H1)-(H2) and (D1)-(D3) hold, the
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underlying wave @ is L'(R) N H*(R) — L°(R) non-linearly stable; moreover, if @
is any other solution of (IL1]) with data sufficiently close to @ in L'(R) N H*(R), for
some appropriately prescribed 1, the modulated solution (- — 9 (-, t),t) converges
to @ in LP(R), p € [2, 00].

This is to be contrasted with the notion of spectral stability of periodic waves of
Hamiltonian systems, which, up to genericity conditions analogous to (H1)-(H2) and
(D3), amounts to the condition that the associated linearized operator analogous
to L has a purely imaginary spectrum. That is, in order that a (neutrally) stable
periodic wave of KdV perturb under small § > 0 to a stable periodic wave of KdV-
KS, its spectra must perturb from the imaginary axis into the stable (negative real
part) complex half-plane.

The main goal of this paper, therefore, is to establish by rigorous singular pertur-
bation theory a simple numerical condition guaranteeing the existence of periodic
traveling wave solutions of () satisfying the above conditions (H1)-(H2) and
(D1)-(D3) for sufficiently small 6 > 0, more precisely, determining whether the
neutrally stable periodic solutions of KdV perturb for small § > 0 to stable or to
unstable solutions of KdV-KS.

Remark 1.1. The methods used in [BINRZI| to treat the dissipative case § > 0,
based on linearized decay estimates and variation of constants, are quite different
from those typically used to show stability in the Hamiltonian case. The latter
are typically based on Arnold’s method, which consists of finding sufficiently many
additional constants of motion, or “Casimirs”, such that the relative Hamiltonian
becomes positive or negative definite subject to these constraints (hence controlling
the norm of perturbations); that is, additional constants of motion are used to
effectively “excise” unstable (stable) eigenmodes of the second variation of the
Hamiltonian. This approach is used in [DK] to show stability with respect to nX-
periodic perturbations for arbitrary n € N, where X denotes the period of the
underlying KdV wave train. However, as L? spectra in the periodic case are purely
essential, such unstable (stable) eigenmodes are uncountably many, and so it is
unclear how to carry out this approach for general L? perturbations. Indeed, to
our knowledge, the problem of stability of periodic KdV waves with respect to
general H® perturbations remains open.

Remark 1.2. As we will see in Section 2] below, the set of all periodic traveling wave
solutions of the KAV-KS equation (I.T) form a three parameter family parametrized
by the period X of the wave, the wave speed ¢, and the value of the wave profile
at the origin. However, thanks to the translation and Galilean invariance of (L.1J),
it follows that the stability of a particular wave only depends on one parameter,
namely, the period X of the wave. Thus, when discussing the stability of peri-
odic traveling wave solutions of the KdV-KS equations we identify all waves of a
particular period.

The spectral stability of periodic wave-train solutions of (IT]) itself has a long and
interesting history of numerical and formal investigations. In [CDK], the authors
studied numerically the spectral stability of periodic wave trains of

O + udpu + Y03u + 0%u + 9tu = 0,

which is, up to a rescaling, equation (LI)) with § = y~!, and they showed the
stabilizing effect of strong dispersion (large y/small ds). As « is increased from 0
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to 8 (§ € (1/8,00)), only one family of periodic waves of the Kuramoto-Sivashinsky
equation survives and its domain of stability becomes larger and larger and seems
to “converge” to a finite range (X1, X2) with X; & 27/0.74 and X5 ~ 27/0.24. In
[BN], Bar and Nepomnyashchy studied formally the spectral stability of periodic
wave trains of (II]) as 6 — 0, finding evidence for the existence of spectrally stable
waves in the § — 0 limit as well. More precisely, for a fixed Bloch wave number &

the non-zero eigenvalues {\;(§,6)}32, of L¢ are formally expanded]] as

(1.2) 2j(6,€) = Xjo(€) + 0N 1(8) + O(6%)

for each j € N, where the {\;0(§)}72; C Ri denote the eigenvalues associated with
the stability of periodic waves of KdV, known explicitly (see [BD]), and the X; (&)
are described in terms of elliptic integrals@ Then, the authors verified numerically,
using high-precision computations in MATHEMATICA (see [BN, Appendix B] and
Appendix [A]), that
sp supR(Aa(6) <0,
¢e[-n/X,m/X) JEN

consistent with stability, on the band of periods X e (X1, X2) with X =~ 8.49 and
X5 &2 26.17, which are approximately the bounds found in [CDK]. Similar bounds
were found numerically in [BJNRZ1] by completely different, direct Evans function,
methods, with excellent agreement to those of [BNJ.

However, the study of Bar and Nepomnyashchy is only formal and, in particular,
as mentioned in [BN], it is not valid in the neighbourhood of the origin (§,\) =
(0,0). Because of a lack of uniformity with respect to £ when £ goes to 0, it seems
at first glance that the expansion in [BN] is only uniformly valid for |£| bounded
away from zero. However, as we show in Section [ after blowing up with respect
to d the (£, ) = (0,0) singularity, it turns out that the description (I2)) possesses
an extension uniformly valid in a cone 0 < ‘% < 1. Yet, even with this optimized
justification, for a given & > 0 it is still not possible to deduce directly from this
expansion any spectral stability of an associated periodic wave train of () since
the analysis misses a d-neighborhood of the origin in the space of the Floquet
parameters £.

Likewise, the numerical study in Section 2 of [BJNRZI|, which is not a singu-
lar perturbation analysis, but rather a high-precision computation down to small
but positive 5E gives information about 6 — 0 only at finite scales, and hence in
effect omits an O(§ x TOL) neighborhood of the origin, where TOL is the rela-
tive precision of the computation. Thus, though very suggestive, neither of these
computations gives conclusive results about stability in the § — 0 limit, and, in
particular, behavior on a 0-neighborhood of the origin is not (either formally or
numerically) described.

In this paper, we make rigorous the formal singular perturbation analysis that
was done in [BN] and extend it to the frequency regimes that were omitted in
[BN], completing the study of the spectrum at the origin and in the high-frequency
regime. More precisely, we carry out a rigorous singular perturbation analysis
reducing the problem to the study of Bloch parameters & € [C4d,27] (see Section

L As we shall see, such eigenvalues do expand in this way under condition (A1) below.
2See formula (AT) where vg is an (explicit) associated KdV eigenfunction and wq is explicitly
given by (AJ).

3Minimum value § = .05, as compared to § = .125 in [CDK]; see Table 3, [BINRZI].
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[ for the definition of a Bloch parameter) and eigenvalues |[RA| < C§, |SA| < C,
C > 0, sufficiently large, on which the computations of [BN] may be justified by
standard Fenichel-type theory.

The exclusion of high frequencies is accomplished by a standard parabolic en-
ergy estimate restricting |S\| < C'63/4, followed by a second energy estimate on a
reduced “slow”, or “KdV”, block restricting |3\| < C; see Lemma Bl and Proposi-
tion B3] in Section [3.I] below. For related singular perturbation analyses using this
technique of successive reduction and estimation, see for example [MZ|[PZl[Zl[JZ2]
and especially [BHZ|, Section 4. The treatment of small frequencies proceeds as
usual by quite different techniques involving rather the isolation of “slow modes”
connected with formal modulation and large-time asymptotic behavior.

At a technical level, this latter task appears quite daunting, being a two-
parameter bifurcation problem emanating from a triple root A = 0 of the Evans
function at £ = § = 0, where the Evans function E(\,¢,0) (defined in (34 be-
low) is an analytic function whose roots A for fixed § > 0 and ¢ € [-7/X,7/X)
comprise the L2-spectrum of the linearized operator about the periodic solution.
However, using the special structure of the problem, we are able to avoid the anal-
ysis of presumably complicated behavior on the main “transition regime” A :=
{(6,6) | C71 < [€]/6 < C}, C > 1, and only examine the two limits [£]/§ — 0, +o0
on which the problem reduces to a pair of manageable one-parameter bifurcation
problems of familiar types.

Specifically, we show that (small) roots A of the Evans function cannot cross
the imaginary axis within A, so that stability properties need only be assessed on
the closure of the A-complement, with the results then propagating by continuity
from the boundary of A to its interior. This has the further implication that
stability properties on the wedges |£|/d < 1 and |£]/d > 1 are linked (through
A), and so it suffices to check stability on the single wedge |£]/d > 1, where the
analysis reduces to computations carried out in [BN]. Indeed, the situation is simpler
still: stability on the entire region |£],6 < 1 reduces by the above considerations
to validity of a certain “subcharacteristic condition” relating characteristics of the
Whitham modulation equations for KdV (the limit |£|/§ — oo) and characteristics
of a limiting reduced system as 6 — 0 (the limit |£]|/d — 0).

As the above terminology suggests, there is a strong analogy in the regime
|€],0 < 1 to the situation of symmetric hyperbolic relaxation systems and sta-
bility of constant solutions in the large time or small relaxation parameter limit
[SKLYol[Ze], for which a similar “non-crossing” principle reduces the question of
stability to checking of Kawashima’s genuine coupling condition, which in simple
cases reduces to the subcharacteristic condition that characteristics of relaxation
and relaxed system interlace. Indeed, at the level of Whitham modulation equa-
tions, the limit as |£]/0 — co may be expressed as a relaxation from the Whitham
modulation equations for KdV to the Whitham equations for fixed ¢ in the limit as
0 — 0, a relation which illuminates both the role/meaning of the subcharacteristic
condition and the relation between KdV and perturbed systems at the level of as-
ymptotic behavior. These issues, which we regard as some of the most interesting
and important observations of the paper, are discussed in Section

The final outcome, and the main result of this paper, is that stability- whether
spectral, linear, or non-linear- of periodic traveling wave solutions of ([Il) in the
KdV limit 6 — 0 is completely determined by the formal high-frequency analysis
and numerical results of [BN].
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To state our main result more precisely, we introduce three natural conditions
that we assume hold simultaneously to obtain stability. Before stating these condi-
tions, note, first, that by translational invariance of ([I1l), two waves differing by a
uniform translation share the same stability properties; thus, we will identify any
two such waves throughout the analysis. Further, it is shown in [EMR] that there
exists a two dimensional submanifold M of R? such that if (X, M, E) € M, then
the X-periodic traveling wave solution ug(-; X, M, E) of the KdV equation, unique
up to translations, with fOX ug(x)dr = M and fOX %uo(x)de = FE, continues, for
0 sufficiently small, to a one-parameter family § — wus, defined for § sufficiently
small, of X-periodic traveling wave solutions of the KdV-KS equation (II]) such
that fOX ug(x)dz = M, with us — ug uniformly on [0, X] as § — 0; see Proposition
24 below for details. In particular, for each period X there exists (up to transla-
tions) a one-parameter family of X-periodic traveling wave solutions of the KdV
equation that can be continued to X-periodic solutions us of KdV-KS. However,
we notice that by the Galilean invariance of ([LLI)) the stability of a given wave us
depends only on the period X and not on the quantities M and FE associated with
the limiting KdV wave train. This motivates us to define the set

W:={X >0| (X,M,E) € M for some (M, E) € R?}.

Our first condition on admissible periods X € W, related to the non-degneracy of
the Bloch spectrum for the associated KdV linearized operator, is as follows:

e A period X € W is said to satisfy condition (A1) if there exists an (M, E1)
€ R? with (X, My, E1) € M such that all the non-zero eigenvalues of the
linearized (Bloch) KdV operators

Licav ¢luo] := (9 +i€) (=(0z +1€)* = uo +¢) : L3, (0, X) = L3,(0, X)

per

about the associated limiting KAV wave ug = wo(-; X, My, F1), consid-
ered with compactly embedded domain ngr(O,X ), are simple for each
§e[-n/X,m/X) and A = 0 is an eigenvalue of Lkqv ¢[uo] only if £ =0, in
which case it is an eigenvalue of algebraic multiplicity three
Notice by the above comments that if the condition in (A1) holds for some (M, E) €
R? with (X,M,E) € M, then it necessarily holds for all (M,E) € R? with
(X,M,FE) e M.

Condition (A1) was shown to hold for a particular period in [BD], where the
authors derive explicit formulas for the eigenvalues of Lkqv ¢; see Figure 2 and
the surrounding discussion in [BD]. Furthermore, this condition is verified] for a
particular wave by the plot in Figure [IL where we plot the Bloch spectrum as a
function of the Bloch-frequency ¢ for a KAV cnoidal wave with periocﬁ X ~9.39.
The first main objective in our analysis is to rigorously justify, given a family of
periodic traveling wave solutions us with period satisfying condition (A1), that the
non-zero Bloch eigenvalues of the linearized KdV-KS operator can be expanded

41t was shown in Section 5 of [BrJK] that the origin is always an eigenvalue of Lxqv,o[uo] with
algebraic multiplicity three.

5In Figure [ the spectrum is recovered by projecting the graph onto the vertical axis. Obvi-
ously we do not plot the full unbounded spectrum, but notice that the non-displayed monotone
branches singly cover the remainder of the imaginary axis, hence the only possibility for eigenvalues
of the associated KdV Bloch operators to not be simple is in a neighborhood of the origin.

SMore precisely, for k = 0.9 in Proposition 241
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FIGURE 1. Here, we plot the imaginary part of the (purely imag-
inary) eigenvalues (vertical axis) of the KdV linearized (Bloch)
operator L¢[a] about an X-periodic traveling wave solution of the
KdV equation that continues as a solution of ([II]) for 0 < § < 1
as a function of ¢ € [0,27/X) (horizontal axis), where here we
take k = 0.9, i.e. X ~ 9.39, in Proposition 24l The spectrum of
L[u] on L?(R) is recovered by projecting this graph onto the ver-
tical axis. From this figure, it is clear that for each & € (0,27/X)
the eigenvalues of L¢ are simple, verifying condition (A1) in this
particular case.

analytically in 6 as § — 0 for each fixed £ € [—7/X,7/X); this is the content of
Corollary below[1

Our next condition concerns the nature of the eigenvalues near the origin of the
linearized (Bloch) KdV operators Liqv ¢[uo] about an X-periodic cnoidal wave ug
of the KdV equation when X € W and |{| < 1. Assuming that condition (A1) holds
for X, the origin is an eigenvalue of the operator Lxqv o[uo] with algebraic multi-
plicity three. Furthermore, this triple eigenvalue is known to break differentiably
in £ for || < 1. More precisely, there are three critical modes {Akav ;(§)}j=1,2,3
of the KdV linearized operator that can be expanded for |£| < 1 as

(1.3) Akav,j(§) =i (§)§ = ia?f +o([¢])

for some real numbers ag € R; see, for instance, [BrJ] for details. The second

condition in our analysis is as follows:

e A period X € W is said to satisfy condition (A2) if it satisfies condition
(A1) and if there exists (M, F2) € R? with (X, Ma, E») € M such that the
real numbers {a9};=123 in (L3) associated with the linearized operator
Lyav ¢[uo(+; X, My, E5)] are distinct.

"This fact seems to have been taken for granted in the formal analysis of [BN]. As we will see,
however, our proof relies on condition (A1) holding for the particular wave we are studying, thus
we must either assume that the non-degeneracy condition (A1) holds for this wave or else prove
such a condition to make this expansion rigorous.
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As above, if (A2) holds for some (M, E) € R? with (X, M, E) € M, then it neces-
sarily holds for all (M, E) € R? with (X, M, E) € M.

In [BrJK], it was numerically verified that all periods of all periodic traveling
wave solutions of the KdV equation satisfy condition (A2) B Furthermore, in Section
below we provide an alternate numerical verification of condition (A2) for all
periods of the KdV cnoidal waves by using the well-known identification of the ag-)
in (L3) to the characteristic speeds of the associated KdV Whitham modulation
system; in particular, see Figure [ in Section 23] The validity of condition (A2)
will prove to be crucial in our analysis of the spectrum of the KdV-KS linearized
operator Lg near the origin for || < 1; see Section [ below.

Our final condition is the stability criterion derived formally by Bar and Nepom-
nyashchy [BN]. More specifically, if X € W satisfies condition (A1) we will show
that for each family of X-periodic traveling wave solutions us of (L)) the non-
zero eigenvalues of the Bloch operators Le[us] admit an analytic expansion in ¢ for
0 < 0 < 1 of the form ([2) for each fixed £ € [-7/X,7/X). Indeed, if X € W,
then to each pair (£, Ag) with Ag € o (Lkav ¢[us]) \ {0} and € € [-n/X,7/X) there
is a unique spectral curve A(§, g, d) bifurcating from Ao analytically in & of the
form

(1.4) A€, N0, ) = Ao + A1 (€, No) + O(5?).

Notice that this parametrization of the spectrum of the linearized KdV-KS operator
by the pair (£, A\g) is well defined under the assumption that X satisfies condition
(Al). The final condition, stating that a particular wave satisfies the stability
criterion that was numerically investigated in [BN], is as follows. This is stated
precisely as follows:

e A period X € W is said to satisfy condition (A3) if it satisfies condition
(A1) and if there exists (Mz, E3) € R? with (X, M3, E3) € M such that
the function

Ind(X) := sup R (A(€, A0))
Xo€o(Lkav,e[uo(;X,M3,E3)])\{0}
ge[—n/X,m/X)
satisfies Ind(X) < 0.

As above, if (A3) holds for some (M, E) € R? with (X, M, E) € M, then it neces-
sarily holds for all (M, E) € R? with (X, M, E) € M.

Remark 1.3. In Appendix[A] we review the numerical calculations in [BN] concern-
ing condition (A3). In particular, we recall there the explicit formula for A; (&, Ag)
used by Bar and Nepomnyashchy [BN].

Remark 1.4. We note in passing that, in principle, given a period X > 0 each
of the conditions (A1)-(A3) can be verified for a different (M, E) € R? such that
(X, M, E) € M. In practice, however, it seems easier to verify them simultaneously
for a fixed wave, i.e. for a fixed (M, F) € R? with (X, M, E) € M. That is, one
would find a wave satisfying (A1) and then verify that it also satisfies (A2) and
(A3).

81n [BrJK], the a? are distinct so long as the “modulational instability index” Ay is non-zero,

which was (numerically) shown to hold for all cnoidal wave solutions of KdV in Section 5.1 of
[BrJK].
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As we will see, the validity of conditions (A1) and (A3) provides us with a “high-
frequency” stability result, allowing us to verify spectral stability of a given wave
outside a sufficiently small neighborhood of the origin in the spectral plane; see
Section B3] and, in particular, Corollary B.I0l Furthermore, we will also see that
conditions (A2) and (A3) imply a set of “subcharacteristic” conditions that allows
us to obtain a low-frequency stability result, verifying spectral stability in a suffi-
ciently small neighborhood of the origin; see Section £l Together then, recalling
Remark [[L2] these complementary results provide a rigorous proof of spectral sta-
bility of a given family of the X-periodic “near-KdV” traveling wave solution of
(I, in the case that the period X € W satisfies conditions (Al)-(A3) simulta-
neously. Notice, however, that it is a highly non-trivial task to check that there
exists a period X € W that satisfies (A1), (A2), and (A3); indeed, to the best
of our knowledge no such proof exists. Nevertheless, there are many well-founded
numerical results suggesting that there is a non-empty open set of periods for which
(A1)-(A3) hold; see, for instance, [BNIBINRZIICDK], together with the numerical
experiments in Section 3] of this paper. Still, we consider the rigorous verification
of these assumptions for a non-empty common set of periods to be an important
open problem.

With the above motivation, we define P to be the set of all periods X € W that
simultaneously satisfy conditions (A1)-(A3). Note that P is open. Furthermore,
it is natural to expect, based on the aforementioned numerical evidence, that the
set P is non-empty. Indeed, by the above discussion, it is expected that P is a
connected interval (X7, X3) with X7 ~ 8.49 and X5 ~ 26.17. Now, we can state
precisely the main result of our analysis.

Theorem 1.5. For each X € P, there exists a real number 0 < dp(X) < 1 such
that for each 0 < § < §o(X), the non-degeneracy and spectral stability conditions
(H1)-(H2) and (D1)-(D3) hold for all X -periodic traveling wave solutions us of
(@1, as constructed in [EMR] (see Proposition 24 below). Moreover, dy(-) can be
taken to be uniform on compact subsets of P.

Remark 1.6. Though the choice of dy can be taken to be uniform on compact
subsets of P, as mentioned above, we expect that P = (X1, X3) with X; ~ 8.49
and X5 & 26.17, in which case one would have dp(X) — 0 as X \, X; or X 7 Xs.

Remark 1.7. Our proof yields another form of uniformity. If K is a compact subset
of the subset of W on which (A1)-(A2) hold, then there exists C' > 0 such that, for
any X € K, condition (A3) is equivalent to

sup R(M(& M) < 0.

Ao€a(Lkav e[uo])\{0}
gel—m/X 7/ X)

Ix<C
Since, as we shall prove, (&, Ag) converges, as (£, Ao) — (0,0), to one of three
possible limits, depending on the spectral curve followed by (€, Ag), the validation
of (A3) is indeed uniformly reduced to the sign evaluation of an explicit function
on a compact set.

1.1. Discussion and open problems. To yield stability, our Theorem [[.5] should
be completed with an investigation of conditions (A1)-(A3), and especially of con-
dition (A3). Thus, given the present state of the art, it should be combined with
the numerical investigations of [BN]. Together this does not constitute a numerical



SPECTRAL STABILITY OF KDV/KS WAVE TRAINS IN THE KDV LIMIT 2169

proof, but rather a “numerical demonstration”, in the sense that the computations
of [BN] on which we ultimately rely for evaluation of the sign of Ind(X) are carried
out with high precision and great numerical care, but not with interval arithmetic
in a manner yielding guaranteed accuracy. However, there is no reason that such
an analysis could not be carried out — we point for example to the computations
of [M] in the related context of stability of radial KdV-KS waves — and, given
the fundamental nature of the problem, this seems an important open problem for
further investigation.

Indeed, numerical proof of stability or instability for arbitrary non-zero values
of ¢, verifying the numerical conclusions of [BJINRZI], or of Evans computations
in general, though considerably more involved, seems also feasible, and another
important direction for future investigations.

The particular limit § — 0 studied here has special importance, we find, as a
canonical limit that serves (as discussed at the beginning of the introduction) as
an organizing center for other situations/types of models as well, and it has indeed
been much studied; see, for example, [EMRLBNI[PSU], and the references therein.
As discussed in [PSULBJINRZ3,BJRZ], it is also prototypical of the interesting
and somewhat surprising behavior of inclined thin film flows that solutions often
organize time-asymptotically into arrays of “near-solitary wave” pulses, despite the
fact that individual solitary waves, since their endstates necessarily induce unstable
essential spectrumE are clearly unstable.

To pursue the analogy between modulational behavior and solutions of
hyperbolic-parabolic conservation or balance laws that has emerged in [OZ][Sel
BINRZ1[BINRZ2|, etc., and, indeed, through the earlier studies of [EST] or the
still earlier work of Whitham [W], we feel that the KdV limit § — 0 of (1)) plays a
role for small-amplitude periodic inclined thin film flow analogous to that played by
Burgers equation for small-amplitude shock waves of general systems of hyperbolic—
parabolic conservation laws, and the current analysis a role analogous to that of
Goodman’s analysis in [Goll[Go2)] of spectral stability of general small-amplitude
shock waves by singular perturbation of Burgers shocks[1

The difference from the shock wave case is that, whereas, up to Galilean and
scaling invariances, the Burgers shock profile is unique, there exists up to invariances
a one-parameter family of periodic waves of KdV, indexed by the period X, of
which only a certain range are stable. Moreover, whereas the Burgers shock profile
is described by a simple tanh function, periodic KdV waves are described by a more
involved parametrization involving elliptic functions. Thus, the study of periodic
waves is inherently more complicated, simply by virtue of the number of cases
that must be considered and by the complexity of the waves involved. Indeed, in
contrast to the essentially geometric proof of Goodman for shock waves, we here
find it necessary to use in essential ways certain exact computations coming from
the integrability/inverse scattering formalism of the underlying KdV equation.

Plan of the paper. In Section Bl we recall how to compute an expansion of
periodic waves of KAV-KS in the limit § — 0 by using Fenichel singular pertur-
bation theory [EMR]. In Section Bl we analyze the stability of the spectrum of a

9A straightforward Fourier transform computation reveals that all constant solutions are
unstable.
10Gee also the related [PZL[FreS], more in the spirit of the present analysis.
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given X-periodic traveling wave solution ug, as constructed in Section [ for all §
sufficiently small, outside of a sufficiently small neighborhood of the origin in the
spectral plane; at times, we will refer to this as a “high-frequency” stability result.
This is accomplished by first deriving a priori estimates on the size of the unstable
spectrum of L[us] showing, in particular, that such unstable spectra are necessarily
of order O(1) as 6 — 0; see Proposition B.3land Corollary B35 Then, in Proposition
B and Corollary B.8, we compute an expansion of both the Evans function and
high-frequency spectra with respect to § as § — 0. This analysis holds true except
in a neighborhood of the origin from which spectral curves bifurcate. In Section
[ we compliment the high-frequency analysis of Section [B] by computing asymp-
totic expansions of the spectral curves in the neighborhood of the origin and show
that spectral stability is related to subcharacteristic conditions for a Whitham’s
modulation system of relaxation type, as conjectured in [NR2).

Note added in proof. Since the acceptance of this paper, Barker [B] has estab-
lished by rigorous numerical proof that for X € [6.285,48.36], there is a single
stability range (i.e. periods for which conditions (A1)-(A3) hold) given by [X;, X,]
where X € [8.43,8.45] and X, € [26.0573,26.0575], largely completing the stability
analysis of small amplitude waves and answering the open problem posed in the
discussion section above. It remains to treat the X — 27 and X — oo limits, which
should be accessible by more standard (non-numerical) techniques.

2. EXPANSION OF PERIODIC TRAVELING-WAVES IN THE KDV LIMIT

For 0 < § < 1, equation (I is a singular perturbation of the Korteweg-de
Vries equation

(2.1) Opu + udpu + 03u = 0,

where the periodic traveling wave solutions may be described with the help of the
Jacobi elliptic functions. In [EMR], periodic traveling wave solutions of (LIl are
found, d-close to periodic traveling wave solutions of ([2), and, furthermore, an
expansion of these solutions with respect to § is obtained. We begin our analysis
by briefly recalling the details of this expansion. Notice that (1)) admits traveling
wave solutions of the form wu(z,t) = U(z — ct), provided the profile U satisfies the
equation
(U _ C)U/ + U/// + 5(U// + U////) — 0,
where here ' denotes differentiation with respect to the traveling variable § = x — ct.
Due to the conservative nature of (IT]) this profile equation may be integrated once
yielding
2

U
(2.2) 7—CU—|—U”+5(U/—|—U’”):q,

where ¢ € R is a constant of integration. By introducing x = U,y = U’ and
z=U"+ U, we may write ([2.2) as the equivalent first order system
2

(2.3) =y, y=z-z, 6z’=—z+q+(c+1)x—%.
Setting § = 0 in ([23)) yields the slow system

22 / / 22
(2.4) z=q+(c+lr——, 2'=y, ¢y =qt+tcr——,

2 2
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which is equivalent to the planar, integrable system governing the traveling wave
profiles for the KdV equation ([2)). By using the well-known Fenichel theorems,
one is able to justify the reduction and continue the resulting KdV profiles for
0 < 6 <« 1. To this end, we define

2
MO = {(l’,y,Z) € RS

T

Z:q{—(c—i—l)x—? = fO(x)}a

and recognize this as the slow manifold associated with (23]). It is readily checked
that this manifold is normally hyperbolic attractive, and so a standard application
of the Fenichel theorems yields the following proposition.

Proposition 2.1. Let O C R? be a bounded open set and r > 1 a (arbitrary)
positive integer. There exists g > 0 such that for all § € (0,00), there is a
slow manifold Ms invariant under the flow of [23) that is written as Ms =
{(z,y,2) e R® | z = fs(x,y)}, where the function f5 is C” both in (z,y) € O and
0 €10,80) variables. Moreover, f5 expands as

o(asy) = fol@) + 651 (a,y) + 8 falay.), 2
T

filz,y) =2y —(c+ 1)y, folz,y,0) = -y + (c+1—-2)(g+cx — 5 )

Remark 2.2. Notice that the specific choice of r > 1 of regularity in the above
proposition is arbitrary, but that the size of g and the particular choice of fs are
expected, of course, to depend on the specific choice of r. In particular, as r — oo
we expect 09 — 0. This flexibility being able to prescribe an arbitrarily large degree
of regularity on f will be important in our analysis. In particular, at any point we
can make r larger (but finite) by simply possibly choosing §p smaller (but still
non-zero).

The expansion of f5 is obtained by inserting z = f5(x,y) into (23) and identifying
the powers in §. Then by plugging this expansion into (Z3])2, one finds the reduced
planar system

2

T
(25) (E/ =Y y/ =q+cx— 7+(5(.’[y— (C+1)y)+62f2($7y36)
or equivalently the scalar equation

2
(2.6) ac”:q+cac—%—|—5(a:—c—1)a:’+(52f2(a:,ac’,5).

Equation (2.6]) is a regularly perturbed problem. Then, fixing r > 1 as an arbitrary
positive integer, it is easily proved that the z solution of ([Z6]) is C" in the variables
0 =x—ct € Randd € [0,d) for some Jy sufficiently small. Now, we seek an
asymptotic expansion of the solutions of (23] in the limit § — 0. An easy way
of doing these computations to any order with respect to ¢ is to follow the formal
computations in [BN], which are now justified here with Fenichel’s theorems. To
begin, notice that when § = 0 the periodic solutions = = zy with wave speed ¢ = ¢
of ([Z8) agree with those of the KAV equation (1), which are given explicitly by

(2.7)  x0(0; ¢, K, k, a0) = ag + 12k*k% cn® (/<;(9 + ), k), co = ag + 8K%k? — 4K2,

where cn(-, k) is the Jacobi elliptic cosine function with elliptic modulus k& € [0,1)
and Kk > 0, a9, ¢ are arbitrary real constants related to the Lie point symmetries
of 210); see [BD]. Thus, the set of periodic traveling wave solutions of (2.1]) forms
a four dimensional manifold (3 dimensional up to translations) parameterized by
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ag, K, k, and ¢. Note that such solutions are 2K (k)/k-periodic, where K (k) is the
complete elliptic integral of the first kind.

Remark 2.3. The parameterization of the periodic traveling wave solutions of the
KdV equation given in (2.7 is consistent with the calculations in [BD] where the au-
thors verify the spectral stability of such solutions to localized perturbations using
the complete integrability of the governing equation. However, this parameteriza-
tion is not the same as that given in [BN], whose numerical results our analysis
ultimately relies on. Indeed, in [BN] the periodic traveling wave solutions of (2]
are given (up to rescalin) as

where dn(-, k) denotes the Jacobi dnoidal function with elliptic modulus &k € [0,1),
and K (k) and E(k) denote the complete elliptic integrals of the first and second
kind, respectively. Nevertheless, using the identity

k2 en?(x, k) = dn®(z, k) — (1 — k?)

we can rewrite (2.7)) as

20(8) = 1262 (dn? (5(0 + 0), k) + 1505 — (1= k%)),
which, upon setting x = %(k), ¢ = —by, and choosing ug so that
(%) E(k)

e~ F) = 5y

we see that 2(f) = Xpn(#). Thus, there is no loss of generality in choosing one
parameterization over the other. Furthermore, the numerical results of [BN] carry
over directly to the cnoidal wave parameterization chosen here.

Next, we consider the case 0 < § < 1. To begin we seek conditions guaranteeing
that periodic traveling wave solutions of (II)) exist for sufficiently small §. Multi-
plying both sides by 2’ and rearranging, we find that equation ([2.6]) may be written
as

A2 B g2
(2.8) diﬁ <( 2) T ey qx) =6(2(2')? = (c+ 1)(2)%) + O(6%);

hence a necessary condition for the existence of an L-periodic solution to (2.0)) is
L
(2.9) | @@ @) - e+ )h6)?) o = o.

By a straightforward computation using integration by parts and (2.0), (2.9) can
be simplified to the selection principle

L L
(2.10) / (21/(60))2d0 = / () (6))2do,

1y [BN], the authors consider the KdV equation in the form @; + 64ty + @zee = 0, which is
equivalent to (2I)) via the simple rescaling @ — éu.
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or, equivalently,

2K (k)
/ [(en?) 12 (5)dy
(2.11) k2= 20 = F%(k).

2K (F)
/0 [(en?)" 2 (y)dy

Using the implicit function theorem, one can show that if ([2I1]) is satisfied, there
exists a periodic solution z° of (Z6]) which is & close to zo. As a result, we obtain
a 3 dimensional set of periodic solutions to (ILI]) parametrized by wug, ¢ and either
k or k. Note that the limit x — 0 (i.e. k¥ — 1) corresponds to a solitary wave and
k — 1 (i.e. £ — 0) corresponds to small amplitude solutions (or equivalently to the
onset of the Hopf bifurcation branch).

The above observations lead us to the following proposition.

Proposition 2.4 ([EMR]). Given any positive integer r > 1, there exists a 69 > 0
such that the periodic traveling wave solutions us(0), 0 = x—ct, of (L)) are analytic
functions of 8 € R and C” functions of § € [0,60). Furthermore, taking r > 3, we

find that as § — 0 the profiles us expand (up to translations) as
(2.12) us(0) = uo(K0, ag, k, k) + UL (0) + 5°Us(9) + O(8°),
. ¢ = colag, k, k) + 6%cy + O(6%),

where ug, cg are defined as
K(k)\> K(k K(k)\?
uo(y,ao, k7/{):a0+3k <H—()> cn? <Ly, k) , CO:aO+(2k_1) (H—()) ,
s s 7

and k is determined from k via the selection principle k = G(k) with
K(k)G(k) 2 7 2(k* — K2+ 1D)E(k) — (1 — k) (2 — k2K (k)
20 (=24 3k2 + 3k* — 2kS)E(k) + (kS + k4 — 4k2 + 2)K (k)

Moreover the functions (U;)i=1,2 are (respectively odd and even) solutions of the
linear equations

™

. U2 ! )
Lo[Uy] + wull + 52uf" =0,  Lo[Us] + (71 - CQUO) + KUY + KUY =0,

where Lo:=rk*03+0, ((uo — co).) is a closed linear operator acting on L2 (0, 2K (k))
with densely defined domain H3, (0,2K (k)).

per

Remark 2.5. The condition k = G(k) is precisely the defining relation for the period
X = 2K(k)/k to belong to the set W defined in the introduction. Furthermore,
the choice of dy in Proposition 2.4] can be chosen uniformly on compact subsets of

W.

Proof. The regularity of the profiles us in 6 follows by basic ODE theory, while
the regularity with respect to ¢ follows by Proposition Il Furthermore, the ex-
plicit expansions above are determined as follows. After rescaling, continuing the
2K (k)/k-periodic wave trains of ([2]) to 0 < § < 1 is equivalent to searching for
2K (k)-periodic solutions of

(2.13) (U= U + k20" + 5(kU" + U™ ) =0
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for § > 0 sufficiently small. We expand ¢, us in the limit § — 0 as
c=co+oc1 +0(62), wus(0) =uo(0) + sUL(0) + O(5?),

with ug(0) = z¢(0, kK, k,ap) as defined in 7). Notice that, up to order O(1),
equation (ZI3)) is satisfied for all ag, k, , i.e. there is no selection of a particular
wave train. Now, identifying the O(d) terms in (23] yields the equation

(2.14) RO + (w0 = co)Uh) = exuiy + g + ug” = 0.
The linear operator Lo[z] = k22" + ((up — co)x)/, defined on H® (0,2K (k)), is

er
Fredholm of index 0 and (1, ug) span the kernel of its adjoint (see [BfJ,JZB] for more
details). Then one can readily deduce that equation (ZI4]) has a periodic solution
provided that the following compatibility condition is satisfied: ((uf)?) = #2((ug)?)
which is precisely the selection criterion (ZIT]). In order to determine ¢1, one has
to consider higher order corrections to zg: in fact, ¢; is determined through a
solvability condition on the equation for x5. This yields ¢; = 0 (see [EMR] for more

details).

Remark 2.6. As indicated in Remark [2.2] while the degree of regularity of the
profile us in § can be chosen arbitrarily, the value of §y is expected to depend on
r. In particular, as 7 — oo we expect d9 — 0. Throughout the paper, we will
arbitrarily choose the regularity of the profile to be sufficiently large (but finite)
to make our arguments valid. This can, of course, be done at successive steps by
possibly choosing the value of Jy to be smaller than at the previous step, but still
non-zero.

Remark 2.7. Notice that Proposition 24 associates to each X € W a one-parameter
family of X-periodic traveling wave solutions {us}sep,5,) With wave speeds
{cs}se0,6,) for some sufficiently small 6o > 0. Throughout this paper, we will
abuse notation slightly and refer to such a family simply as a periodic traveling
wave solution wug, defined for all § € [0,dp) for some sufficiently small 6y > 0, of
(L), in particular taking the associated wave speeds c¢ to be implicit.

As a consequence, a two dimensional manifold is obtained of periodic traveling
wave solutions (identified when coinciding up to translation) of (LI parametrized
by ag € R (or alternatively ¢p) and the wave number x € (0,1] (or alternatively
the parameter k € [0,1)). As noted in Remark [[2 it follows from the translation
and Galilean invarience of (I that the stability of a given periodic traveling wave
solution of (1)) depends only on the period of the wave.

3. STABILITY WITH RESPECT TO HIGH-FREQUENCY PERTURBATIONS

In this section, we begin our study of the spectral stability of periodic traveling
waves of (L)) in the limit § — 0T. To begin, let X € W and let us be an X-periodic
traveling wave solution of (LI]), defined for all 6 € [0, dp) for some sufficiently small
0o > 0. Linearizing (LI)) about us in the co-moving framd™? (x—ct,t) = (0,t) leads
to the linear evolution equation

Opv — Lfuglv =0

12Recall, by our abuse of notation, that we are suppressing the dependence of ¢ on §.
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governing the perturbation v of ws, where L[us] denotes the differential operator
with X-periodic coefficients

L[U5]v = _((Ué _ C)’U), _ 5(1)// —I—’UHH).

In the literature, there are many choices for the class of perturbations considered,
each of which corresponds to a different domain for the above linear operator. Here,
we are interested in perturbations of U which are spatially localized, hence we require
that v(-,t) € L?(R) for each ¢t > 0. This naturally leads one to a detailed analysis
of the spectrum of the operator L considered as an operator on L?(R) with densely
defined domain H*(R).

To characterize the spectrum of the operator L{us], considered here as a densely
defined operator on L%(R), we note that as the coefficients of L[us] are X-periodic
functions of z, Floquet theory implies that the spectrum of L]us] is purely contin-
uous and that A € o(L[us]) if and only if the spectral problem

(3.1) Lluslv = Av

has an L*°(R) eigenfunction of the form

(3.2) 0@\ ) = e u(; A, €)

for some & € [-7n/X,7/X) and w(-) € L2..(0,X). Following [G]ST,[S2], we find

that substituting the ansatz ([3.2) into (31]) leads one to consider the one-parameter

family of Bloch operators {L¢}ec(—r/x,x/x) acting on L2, ([0, X]) via

(3.3) (Lefus]w) (2) i= e~ Llug] [ w()| (@),

Since the Bloch operators have compactly embedded domains H3, ([0, X]) in

per

L2..([0, X]), their spectrum consists entirely of discrete eigenvalues which, further-
more, depend continuously on the Bloch parameter . It follows by these standard

considerations that

oo (L)) = U onz o) (Lelus)):
gel—m/X,m/X)
see [G] for details. As a result, the spectrum of L may be decomposed into countably
many curves A(§) such that A(&) € o(L¢) for £ € [-n/X,7/X).
The spectra A of the Bloch operators L¢[us] may be characterized as the zero
set for fixed £, 0 of the Evans function

(3.4) E(\,6) = det (R(X, A, 8) — X Ides)

where R(:,A) denotes the resolvent (or fundamental solution) matrix associated
with the linearized eigenvalue problem (B.I) evaluated at x = X; that is, writing
) as the first order ODE @'(z) = H(z, A, §)®(x), R(-, A, d) is the unique solution
to the initial value problem

' (x) = H(z, \,0)®(x), ®(0)=1Id.

Thus, the spectra of L consists of the union of zeros A as all values of £ €
[-7/X,7/X) are swept out. Now, for any positive integer r > 1, Proposition
241 implies that we can find a d; > 0 such that the profile us is a C" function
of § € [0,d0). It follows then that solutions of L¢[uslv = Av depend analytically
on (), €) on open and bounded subsets of (\,¢) € C2?, and are C" functions of
0 € [0,d0). Hence, the Evans function F will possess these same regularity prop-
erties. We will see in Section that the spectral problem E(\,&,6) = 0 can be
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replaced by E(\,&,0) = 0, equivalent to the original one for all § > 0 and so that
E is analytic in (), €) € C? and, for any fixed positive integer r > 1, is C" for all
r < oo in d for § € [0,dy) provided dp > 0 is sufficiently small.

In the following, we will first prove that possible unstable eigenvalues are of order
O(1) +iO0(673/*) by using a standard parabolic energy estimate. By a bootstrap
argument based on an approximate diagonalisation of the first order differential
system associated with ([B.I]), we show that possible unstable eigenvalues are O(1),
which implies that they are necessarily of order O(d) + iO(1). We then provide
an expansion in § of the Evans function as § — 0 in a bounded box close to the
imaginary axis with the help of a Fenichel-type procedure and an iterative scheme
based on the exact resolvent matrix associated with the linearized KdV equations.

3.1. Boundedness of unstable eigenvalues as  — 0. In this section, we bound
the region in the unstable half-plane R(\) > 0, where the unstable essential spec-
trum of the linearized operator L may lie in the limit 6 — 0. Throughout, we
use the notation |lul* = fOX |u(z)|?dz. We begin by proving the following lemma,
verifying that the unstable spectra is O(63/%) for ¢ sufficiently small.

Lemma 3.1. Let X € W and let us be an X-periodic traveling wave solution of
@1, defined for all § € [0,8q) for some &g > 0 sufficiently small. Then there exist
constants Cy,Ca > 0 such that, for all § € [0,00), the operator L[us] has no L*°(R)
eigenvalues with R(\) > Oy or with R(A) > 0 and 5°/*|S(\)| > Cs.

Proof. Suppose that A is an L (R) eigenvalue of L]us] and let v be a corresponding
eigenfunction. Multiplying equation ([B.I]) by v and integrating over one period, we
obtain

X
(3.5) Allol* = /0 ((us =)o +0")0'da +5(||v"[|* = [[']|*) = 0.

Identifying the real and imaginary parts yields the system of equations:
1 (X
ROV + 5/ uslvl*dz + 5 ([lo”"]|* = [[v'[|*) =0,
0
SOV < i Cus = o lollil | + [l
Here, we have used the fact that, by B.2), v(z + X) = e“Xv(z) so that |v] is X-

periodic. Next, using the Sobolev estimate ||v'[|? < C||v[|?/2 + [[v"]|?/(2C), valid
for any C' > 0, into the first equation yields the bound

(3.6)

1 1
B0 RO+ (1= 55 ) P < (bl + 5OV I, € >0

Letting C' = 1/2 then yields

2 \ 5¢[0,50) 2

1 ]
RN <5 < sup |ugloe + —O> ,

which verifies the stated bound on the real part of .
Suppose now R(\) > 0. Using again the Sobolev estimate |[v'|| < [Jv]|*/2|]v"||'/2,
the imaginary part of A can be bounded as

SOl < llus — elloo ol 10" [[2 + o] /2|0 2.
Furthermore, ||v”|| can be controlled by
31117 < (luslloe + ) [l0]1%,
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which follows by setting C' =1 in (8.7)) and recalling that (\) > 0 by hypothesis.
Thus, setting K? = supseg s, [[45]loc + 0 We deduce that

ISV <[ sup ||us — ¢lloo K1/26=1/4 4 g3/25-3/4
6€[0,60)

which completes the proof. O

Remark 3.2. By a slight modification, the estimates in Lemma [3.]] can be extended
into the stable spectrum. Indeed, if C3 > 0, then adding Cs|v||? to both sides of
the bound B.7) yields the estimate

1 1
(RO + Ca)[ol* +8(1 = 52" 1” < 5 (luplloo +2C5 + 5C) o]
Thus, as long as 8(A)+C5 > 0 we can repeat the proof on the estimates of imaginary

parts to conclude
IS(N)| < K326 1V4 + Ky673/4,
where K3 = ||uf|lco +2C3 + 0.

Next, we bootstrap the estimates in Lemma [B] to provide a second energy
estimate on the reduced “slow”, or “KdV”, block of the spectral problem @I in
the limit § — 0. This yields a sharper estimate on the modulus of the possibly
unstable spectrum in this distinguished limit, in particular proving that unstable
spectra must lie in a compact region in the complex plane. Notice that this result
relies heavily on the fact that the corresponding spectral problem for the linearized
KdV equation about a cnoidal wave (271) has been explicitly solved in [BDLSp].

Proposition 3.3. Let X € W and let us be an X -periodic traveling wave solution
of (1), defined for all 6 € [0,8y) for some &y > 0 sufficiently small. Then there
exists a constant 0 < §* < &g and constants C1,Cs > 0 such that for all § € [0,5%)
the operator L[us] has no L (R) eigenvalues with R(N\) > 0 and either R(X) > C16
or [S(N)] > Cs.

Proof. The proof is done in two steps: first, we show that if A is an L*°(RR) eigenvalue
of L[us] with R(A) > 0 and corresponding eigenfunction v, then there exists Cy > 0
such that |$(A)| < Cy. The estimate on R(\) will then easily follow. To begin, let
r > 3 be a positive integer, and let d; > 0 be such that the profiles us constructed
in Proposition 2] are C™ functions of § € [0,01). Next, let (v, A) be an L*°(R)-
eigenpair of B.I]) with R(\) > 0 and set z = v, y = v/, 2 =v" + v, w = 2/, and
s =c+1, so that (ZI]) may be written as the first order system

(3.8) =y, yY=z-—2z Z=w, '=-w-—(us+Nz— (us— )y

We first apply a Fenichel-type procedure and introduce wy = w+(us+)z+(us—s)y,
noting then that w; satisfies

dw) = —wy + (5(ugx + (2uf + Ny + (us — s)(z — x))
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We further introduce wg = wy — J(Uga: + 2uf + Ny + (us — s)(z — :1:)) so that ws
satisfies the equation
swy = — (14 6% (us — s))wa — 6 ((uf’ — (us — s)(us + A — ouy))z
— % ((3uf — (us — )+ 6(us — )(2u5 + A)y
- (3uf A+ S(ug — 8)2) (2 — x)).

Now, by Lemma 3] we know that necessarily one has R(\) + §3/4|S(\)| < C for
some constant C' > 0. It follows that \d = o(1) as § — 0; hence, for § > 0
sufficiently small we may rewrite system ([B.8) as

(3.9)
' = Y, y/ =z,

2 =wy — (uf+ N — (us — 8)y + §(ug3: + (2us + Ny + (us — s)(z — a:))7
duty = —wy — 62A((2 = 2) = (us — 5)a ) + OO (Jo| + Iyl + |2] + [wa]).

Next, we remove ws from the equation in z by introducing the variable z, = z+dws,
in terms of which (9] reads for § > 0 sufficiently small

!/ /
=y, Y = zy — 0w — 1,

2= =+ Nz = (us = s)y + 0 (ufa + (2uf + Ny + (u5 = 5)(2. — 7))
— 62\ ((20 — @) — (us — $)z) + O@ (|2 + [y] + |22 + [w2])),
buty = —wy — 6°A((2 = @) = (us — 5)2 ) + OO (ja| + Iyl + |2 + lwa)).

(3.10)

We further introduce the variables §j = y — 6?ws, =  and Z = z, — z. For ¢
sufficiently small the system (BI0) then reads
(3.11)

o' =g+ 00 (12l + gl + 2] + [wal), 7' =2+ 00 (12] + |yl + 2] + [w2l)),

7 =—(us+ Nz — (us — )y + 5(ug:z + (2us + Ny + (us — s)z)
= 8" A(2 = (us — 5)7) + O(*(|7] + [5] + |2] + [w2))),
buty = —wy — 6°A(2 = (us — )7 ) + O (|| + [g] + 2] + |wa])).
In particular, by neglecting O(9) terms in the (Z,7,Z) equations in (BII) and

eliminating (g, Z), we recognize the spectral problem associated with the linearized
KdV equation about the periodic wave uy with speed co:

" 4 ((uo — o)) + A& = 0.

The above calculations motivate us to make a reduction to the “KdV block” of the
spectral problem (3.1I). More precisely, recalling (2.12), we write the differential

system (BIT), 1), @) on X = (z,5,2)7 as

(3.12) X = (AO +0(Ay + AAy) + A2 A5 + 0(52)))‘( + O(6%|wa)),
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where
0 1 0
(3.13) Ay = 0 0 1
—(ug+A) —(up—co) 0

denotes the coefficient matrix for the linearized KdV equation, and Ay, Ay, and Aj
are defined as

0 0 0
A = 0 0 0 :
Ui +uy =Up+2uy wug—co
0 00 0 0 0
A= 0 0 0 |, A45= 0O 0 0
0 1 0 UuUg — Co 0 -1

In order to analyze (B12) for 0 < § <« 1, we recall that in [BD] the complete
integrability of (2] was used to determined a basis of solutions of X' = ApX,
at least when A # 0, which corresponds to a linearized KdV equation about the
periodic wave train Uy. Specifically, such a basis (V;)i=1,2,3 is defined as V; =

(0, 0}, 0") with 4; given by

Uy o Ady
(0,0 =(1-2
(6, ( 3)\)exp </0 Uo(@/)/3—co+m>’

and 7); are solutions of the polynomial equation

(3.14) (n—4&)(n — 4&) (n — 4&) = X2,

where & = k% — 1,& = 2k% — 1,£3 = k2. In order to deal with the limit |[\| — oo,
we introduce the diagonal matrix D(\) with

Dii(A) = - <m> 7

where (g(+)) denotes the average of the function g over [0, X] and write a resolvent
matrix for X' = Ay X as

R(\,0) = P(\,0)eP™,

where P(\,0) = (V1, Va2, V3)(A, 0) is the matrix function with columns being given
by the vector valued functions Vi ;(),0) = e_D""(’\)ea‘gi_l)ﬁk(O),i =1,2,3. Next
we make the periodic change of variable X (0) = P()\, )Y (), which is nothing but
the classical change of variable in Floquet’s theorem. In terms of Y, system (B12))
expands as

(3.15) V' = (D(A) +opt (A1 + My + A6 A3 + 0(5))13) Y + O P~Y|Jw2))

as |\| = oc.

We now analyze the individual terms in ([BI5]) more closely. To this end, first
notice that as |A| — oo the eigenfunctions associated with the linearized KdV
equation expand as

6:(0,0) = (140 (]A[71/2)) ePur,
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It follows that as |A\| — oo the matrix P defined above expands as

1 1 1
P=| A Ay As | A+O(AV3,
AT A3 A3

where A; := D;;(\). Thus, by a straightforward calculation we see that as |A\| = oo
we have the estimates | P(), )| L) = O(|A|*/?) and

[P~ ) pee ) = O(1), ‘|P71A1P‘|L°°(R,d9) =0(1),
1P~ AsP|| o (.as) = O(1).

Hence, using the fact that |\|6%/4 = O(1), equation (BI5) can be rewritten as
(3.16) Y' = (D()\) FOOP AP + O(1)) + 0(55/4)) Y + O(6%|ws)).

Finally, with a near-identity change of variables of the form ¥ = (Id+ O(S|AIY3) Y
one can remove the non-diagonal part of §(AP~' A3 P +O(1)) up to O(65/4) so that

BI6) reads
3.17) Y/ = (D()\) + odiag( AP~ A, P + O(1)) + 0(55/4)) Y + O(6%|ws)).

Next, define the diagonal matrix I'(\) := D(\) + ddiag(AP~1 A3 P + O(1)) with
diagonal entries

r =0+ 0 (AR o))
Pz = oot (A0 4 ogapry),
R e LRI

where A := (Ay — A1) (As — A1) (A3 —Ay). From ([BI4) it follows that n; = O(|A|?/?)
as |A| — oo, from which we see A;(\) = O(|A|'/?) in this limit. Introducing the
polar coordinates A = |\|e!(™/2=¢)and noting that R(\) = O(1) by Lemma B1]
we find that ¢ = O(|]A\|~!) as |A| — oo. Directly expanding the D;;()\), we have

Ay = [NV3iT27003) L ONY3), Ay = jA +O(1), As = A+ O(1),

where j = €2™/3 denotes the principal third root of unity so that, in particular, we
have the estimates

V3
2

V3

(3.18) R(Ay) = -5

A2 +0(1), R(As) = =AY+ 0(1)
as |\| — oo.

With the above preparations, we are now in a position to perform the necessary
energy estimates. Indeed, under the condition Y (z+X) = eV (z) and wa(z+X) =

ews(z) and recalling that [|[P(A, )| ze®) = O(|A|*/3), it follows from (BII) that

(3.19)  [lwall < CING* PN, oo (12 + 1311+ 1121]) < C8* (1] + g1l + 11211),
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where here we set ¥ = (%,7,%)T. Similarly, using the bounds in I8, it follows
from (BI7) that
5/4

_ - d .
(3.20) 191l + lI1Z]l < CWIIIII-

Inserting the bounds [BI9) and [B20) into the & equation in BIT) and recalling
that the function £ must be uniformly bounded on R as a function of 6, we find
necessarily that R(T'(\)11) = O(6°/4) as |A\| = oo, i.e. we have

|AJ2/3 173y _ ys5/4
(A1) +0 +O(A?) ) = 0(8°%)
which, as |A] = oo, reduces to
R(A -
(3.21) 0< %(1 L O3 + 6 (|)\|2/3 n (’)(|)\\1/3)) < 051,

Since we have assumed R(\) > 0, it immediately follows that |A| must indeed be
bounded. More precisely, we deduce that there exists C; and d; > 0 such that
for all 0 < § < d1, the operator L has no unstable eigenvalues A on L*°(R) such
that |A] > C2. As we have already verified in Lemma B.1] that $(\) is necessarily
bounded, we obtain a uniform bound on |J(\)|. Moreover, it is then easy to show,
by using (B2I]), that, necessarily, possible unstable eigenvalues satisfy 0 < (\) <
C§ for some constant C' > 0, and the proposition is proved. O

Remark 3.4. As discussed in Remark[B2] the estimate |S(\)| = O(673/4) is actually
valid so long as #(A) = O(1). Thus, by repeating the argument of Proposition B3]
one can prove that for any C' > 0 there exists M,d; > 0 such that if 0 < § < &
and |A| > M, then there are no eigenvalues A such that ®(\) > —C$.

As a result of Proposition 3.3 and Remark [3.4] we have proved the following
corollary.

Corollary 3.5. Let X € W and let us be an X -periodic traveling wave solution
of (1)), defined for all § € [0,0¢) for some §g > 0 sufficiently small. Then given
any constant C' > 0, there exist constants M > 0 and §, € (0,0¢) such that for
0 <6 < 81 we have

012w (Llug]) € {A € C|R(\) < —C6}U{A € CI[R(N)| < C6, [S(\)| < M},

In summary, we have restricted the location of the unstable part of the L?(R)-
spectrum of the linearized operator L[us] to a compact subset of C, uniformly
for 0 sufficiently small. Our next goal is to prove convergence, for a fixed &, of
the eigenvalues of the Bloch operator L¢ to the eigenvalues of the linearized KdV
equation as 6 — 0. This is accomplished in the next section through the use of the
periodic Evans function.

Remark 3.6. The structure of the argument of Proposition may be recognized
as somewhat similar to those of arguments used in [JZ2|[PZLHLZLBHZ] to treat
other delicate limits in asymptotic ODE. A new aspect here is the incorporation
of detailed estimates on the limiting system afforded by complete integrability of
KdV, which appear to be crucial in obtaining the final result.
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3.2. Expansion of the Evans function as § — 0. In this section, we provide an
expansion of both the Evans function and eigenvalues in the vicinity of the imagi-
nary axis where all the eigenvalues are located at § = 0 (this is the spectral stability
result of [BDL[Sp]). To this end, we will use the basis of solutions constructed in
[BD] to build an approximation of the resolvent matrix associated with the full
spectral problem (B.)). This leads us to the following result.

Proposition 3.7. Let X € W and let us be an X -periodic traveling wave solution
of (), defined for all § € [0,0¢) for some 8y > 0 sufficiently small. Then on any
compact set A € K C C, the Evans function [B4]) of the associated spectral problem
B can be expanded for 0 < d < 1 as

(3.22) E.8,6) = —eX(1 4 de(N, €, 0)) exp (%) E(\6,6),
E(X&,0) = Exav(\ §) + 0E1(N, §) + 67 Ea (N, €, 9),

with Exav(A, &) = det (RKdV(X, A)— eifxldcs), Rkav (-, A) being the resolvent
matriz associated with the linearized KdV equation. Furthermore, given any positive
integer v > 1, there exists a 61 € (0,00) sufficiently small such that the functions
e and E are analytic with respect to (\,€) € K x [-7/X,n/X) and C" with re-
spect to § € [0,01). Hence, the spectral problem E()\,€,6) = 0 is equivalent to
E(N\E,0) =0 for § sufficiently small. Moreover for each fized Bloch wave number
¢ e [-n/X,n/X) and § sufficiently small, if an eigenvalue (X\s(§)) of Le[us], defined
for & sufficiently small, belongs to K for all & sufficiently small, then \s(§) con-
verges to Ao(€), an eigenvalue of the linearized KAV equation, as 6 — 0, uniformly
with respect to &.

Proof. To begin, let r > 1 be a fixed positive integer, and let o > 0 be small enough
that the profiles us exist and depend in a C"® on § € [0,dy). First, we carry out a
Fenichel-type computation on the spectral problem (B.I) up to O(4?). Recall that
by Corollary BBl the L>°(IR) unstable eigenvalues of the operator L[us] are uniformly
bounded in C. Redoing the computations done in the proof of Proposition [3.3] the
spectral problem (B is transformed into the system
(3.23)

T =g+ 0°f1(0,7,7, 2, w2, A, 5),

¥ =2+ 6% f2(0,7,7, Z,wa, \, 8),

7= —(uj+ Nz — (uo — )g + 8§ ((ug — U1)Z + (2uy — Uy + Ny + (ug — 5)Z)

+62f3(9 z,Y,% U)Q,A,(S),
Swh = —wq + 62 f4(6,
where the f;, ¢ = 1,.. are analytic functions of § € R, linear functions in
(z,9, z), polynomial in )\, and C™*3 functions of § € [0,8y). Introducing ¥ =
(z,9, z), we can thus write [B.23) as
(3.24)
Y = A(6,5,\)Y + 6%wy F(0,)\,6), dwh=—(1+0862B(6,5,\))ws +62G(0,),6)TY,
where the functions F,G, A, B are analytic functions of § € R, analytic functions
of A € C, and C"*3 functions of § € [0, o).
Further, we denote by R(+; A, §) the resolvent matrix associated to Y/ = A(.; 6, \)Y

It is a clear consequence of the regularity of the flow associated with this latter dif-
ferential system that R(-;\,d) is analytic with respect to A € C and C™*3 with

x g z w2;>‘35)7
,4,
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respect to & € [0,dp). Moreover R expands as R(-,A,0) = Rkav (-, A) + dR1(-; A, ),
where Rkqv is the resolvent matrix of the linearized KdV equation Y’ = A(,;0,\)Y
satisfying the initial condition Rkav(0,A) = Idcs. In order to simplify the nota-
tion in the forthcoming calculations, we now drop the (), §) dependence of resolvent
matrices.

Next, we seek to construct a basis of solutions of ([B.24)) valid for 0 < 6 < 1. To
this end, notice that by Duhamel’s formula the system ([3.24]) can be equivalently
written as

0
Y (0) = R(O)Y (0) + 6 / ws (M) R(O)R™ () F (),

] 0 ] ]
ws(6) = exp (— / u(q)dq> ws(0) + 6 / exp (— / M(Q)dq> GT(n)Y (n)dn,

where here (q) = 0~ +6B(q; A\, ). As a first step, we build a set of 3 eigenvectors
which are continuations of the eigenvectors of the linearized KdV equation. For

that purpose, we set wy(0) = 0 and write Y as
(3.25)

o rn n
Y(8) = R(B)Y (0)+4° / / exp <— /< u(Q)dQ> GT(C)Y (C)R(O)R () F(n)d¢ds.

By applying a fixed point argument in C°([0, X];C3) to ([B.25) and for ¢ suffi-
ciently small, we find a set of three eigenvectors (Y;, ws;)i=1,23 of (324) given by
Y; = R()e; + O(8°) with e;; = 6;; and wa,; = O(5). To find a fourth linearly
independent eigenvector of ([3.24)), we seek a solution (Y, ws) = (Y4, w2 4) such that

X 6 X
(3.26) wy = exp (/9 M(Q)dQ> <1 +5/0 exp (—/ u(q)dq> GT(n)Y(n)dn> ;

in particular, notice then that wy(0) # 0. Then choosing Y'(0) so that Y(X) =0
gives
(3.27)

X X 0
exp (— / u(q)dq> V(o) =~ [ exp (— / M(Q)dq> ROR™ () (n)dCdn
n
n X
43 [ e (— / M(Q)dq> GQY (RO R () F (n)dCd,
0 ¢
We then apply a fixed point argument in weighted space

exp (— / u(q)dQ> ([0, X];C%)

to (B27)) to obtain a solution Yy such that

X
exp (—/9 u(q)dq> Ya(0)

X 13
S /9 exp (— / u(Q)dq> R(E)R™ () F(n)dy + O(6%).

By plugging Y, (0) into ([B:26]), one completes the basis of solutions of ([3.24]) for
0<ik 1
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Let us now consider the regularity of the basis of solution (Y;,w;)i=1,... 4. We
start with (Y}, w;);=1,2,3. By applying the fixed point procedure in C°([0, X]; H(2))
(where H () is the set of holomorphic functions on 2 C K an open set), one proves
that for all § € (0,dp), (Y, w;);j=1,2,3 are analytic in # € R and are holomorphic, and
thus analytic, functions with respect to A € K, and are C" functions of 6 € [0, dp).

The regularity with respect to § € [0,d9) comes as follows. First, for j = 1,2,3
it is clear that the estimates Y; = R(f)e; + O(6%) and w; = O(6) easily yield the
continuity of (Yj,w;)j=1,2,3 at 6 = 0. Next, recalling that the profiles U = Us are
assumed to be C"*? in § € [0, &), we find by differentiating the fixed point relation
([3.25)) with respect to § and applying a fixed point argument in C°([0, X]; C?) for
9sY;, j =1,2,3, that 95Y; € C°([0, X]; C?) for all 6 € [0,0p) and that

05Y; = 05 R(0)e; + O(52).

It follows that for j = 1,2, 3 the functions JsY} are continuous at 6 = 0, and hence
the functions Y;, j = 1,2,3, are C' in § at § = 0. The continuity of dsw; at § = 0
then immediately follows To now prove C? regularity in & for the functions
Y;, j = 1,2,3, one must first carry our one additional Fenichel-type step in the
transformations carried out in Proposition B.3] as to obtain O(§2) remainders in
a system of the form [@.23). In doing so, the coefficient functions of the O(§%)
remainders will contain up to three derivatives of the underlying wave profile uy,
and hence these functions will be C"*2 functions of § € [0, ). One can now repeat
the above argument by differentiating the fixed point relation ([B.25]) twice in order
to verify that the functions Y;, j = 1,2,3, are C? functions of § at § = 0. As
above, C? regularity in § at § = 0 of ws, follows immediately. Finally, continuing
this procedure inductively, one obtains C" regularity in 6 € [0, ) of the functions
Y;, j=1,2,3, and ws.

Let us now consider Yy, wy: with similar arguments, one shows that (Y, wy) are

written as
—w

(Y;L, w4) = exp <X > (52?4, (1 =+ 5@4)) ,

with (Y4,74) analytic with respect to A € K and C" with respect to & € [0, &p).

With the above preparations, we are now ready to expand the Evans function in
0. At £ =0, the resolvent matrix R of ([B.24]) reads

Ides  exp (fox u(Q)dQ) 0(5?)

R(0,A,90) =
0.0 0 e (Jy ulo)dq) (1+00))

whereas at £ = X, it reads

R(X7A76)_(R(X,A,5) 0 >

0B) 1+ 0(5)

where, with a slight abuse of notation, O(6§™) (m = 1,2) are functions f(\,0)
analytic in A € K and C” functions of ¢ € [0, §p) that satisfy
5 0)| e
i G0

< 1.
§—0+ om ~

I3Note that in the differentiation procedure, we lost one order of regularity of the profile with
respect to 4.
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Therefore, recalling that, by definition, R(u(q)) ~ 6% as § — 0, it follows that

E(\€,6) = det (R(X, A, ) — eSXR(0, A, 5))

X
= —(1+0(6))e™* exp (/0 u(q)dQ> E(\&,0),

where
E(\E,8) = det(R(X, A 0) — eiﬁxfdcg) +O(5);

notice above we have expanded the Evans function with respect to the last column
of the determinant to obtain the final equality. The function E(),¢,d) is analytic
with respect to (X, &) and C" with respect to 6 € [0, dp). Recalling that R(-, A, d) =
Riav (-, A) + 0R1(+, A, 6), the proposition follows. a

3.3. Expansion of eigenvalues as § — 0. By now considering the equation
E()\¢,0) =0 for 0 < § < 1 and applying an appropriate implicit function ar-
gument, we deduce that if condition (Al) holds for a given X € W, then, for a
given X-periodic traveling wave solution us, defined for all § € [0,dy) for some
0o sufficiently small, via Proposition 2.4, and for each fixed £ € [-n/X,7/X) the
eigenvalues of the Bloch operator L¢[us] can be expanded in § as § — 0.

Corollary 3.8. Let X € W and let us be an X -periodic traveling wave solution of
(1), defined for all § € [0,0¢) for some &y sufficiently small. Let & € [—n/X,7/X)
be fized and let Ao be a non-zero eigenvalue of Lxav e[uo]. If X satisfies condition
(A1), then there exists a 61 € (0,00) such that for all 6 € (0,01) there exists a
unique eigenvalue A(€, Ao, d) of Le[us] such that (&, Ao, d) — Ao as 6 — 0 and,
furthermore, for 0 < § < 1 this eigenvalue A(§, Ao, 0) can be expanded analytically
nd as

AE, X0, 8) = Ao + 0M1 (€, Xo) + 02 X2(€, Xo) + O(8°)

for some complex valued functions A1, Aa.

Proof. The initial spectral problem E (), &,8) = 0 is equivalent to E(), &,d) = 0 for
§ sufficiently small. We proved in Proposition 3.7 that E is analytic with respect
to (A, &) € C? and, for any positive integer r > 3, can be chosen to be C” with
respect to § € [0,dp) for &g > 0 sufficiently small after choosing the profile us to
be sufficiently regular in 4. Since condition (A1) is assumed to hold for X € W,
the eigenvalue \g is an isolated root of E(-,&,0) = Fkqv(-,€) so that one has
ONE(M\o(€),€) # 0. The result follows by a combination of a Cauchy root counting
argument and a straightforward application of the implicit function theorem. [J

Remark 3.9. Notice that the expansion of the eigenvalues provided by Corollary [3.8]
is precisely the one that is assumed to exist in the work of Bar and Nepomnyashchy
in [BN]. Note, however, that for the moment this expansion is only expected to be
uniformly valid for || > n > 0, where 7 is an arbitrarily small real number. In the
following we do extend this expansion to the larger zone 0 < § < £. However, even
this extended version fails to cover any neighborhood of the origin in the spectral
plane. In Section ] we will indeed see that the eigenvalues near A = 0 of the Bloch
operator L¢[us] do not expand smoothly in § as 6 — 0.
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From the above corollary, it follows that if conditions (A1)-(A3) are assumed
to hold for a given X € W, then all the non-zero eigenvalues of the limiting KdV
operator Lkav ofuo], with ug being an X-periodic traveling wave solution of the
KdV, bifurcate into the stable left half plane for ¢ sufficiently small. More precisely,
we have the following result.

Corollary 3.10. Let X € P. Then for any m > 0, there exist §1(X,m1) > 0 and
01(X,m1) > 0 such that for any X -periodic traveling wave solution us, defined for
0 €1[0,61), we have that for allm < |§] <7w/X

o(Lelus]) € { A R(N) <016}
while for all 0 < |€] < m we have
o (Le[us)) N B(0,m)¢ € { A ] R(A) < =616 }.

Notice that the choices of §; and #; in Corollary [3.10 can be taken to be uniform
when X varies in a compact subset of P. Corollary B0 effectively establishes the
stability of the “high-frequnecy” part of the spectrum for any wave with X € P.
Moreover, the results of this section rigorously justify the formal approach taken in
[BN] to investigate necessary conditions, that is, Ind(X) < 0, for stability of “near-
KdV” solutions of the KdV-KS equation. Our goal is now to establish that the strict
conditions, namely that X € P, is also sufficient for stability, thus completing the
proof of Theorem[I.5l To this end, it remains to analyze how the spectrum organizes
itself about the triple eigenvalue A = 0 of the limiting KdV operator Lkqv o[uo] for
sufficiently small § and £. This is the goal of the next section.

4. SPECTRUM AT THE ORIGIN AND MODULATION EQUATIONS

As described above, at the present stage of the analysis, we already know that
the formally derived and numerically evaluated criterion of [BN] may be used to
provide a first estimate of stability boundaries and that any undetected instability
would necessarily be weak and correspond to long-wavelength perturbations. In
this section, we complete the stability analysis initiated in the previous section
by studying stability in the region |(\,&)| < 1 using explicit calculations on a
reduced Evans function designed to detect instabilities of L¢[us] near the origin for
(N, €,0)] < 1.

4.1. Spectral analysis through Evans function computations. We begin our
study of the spectrum of the linearized operator L, in a neighborhood of the origin
by analyzing the periodic Evans function E(),€,6), introduced in Proposition 3.7,
for |(A,&,0)|cxrxr < 1. We begin with the following result.

Proposition 4.1. Let X € W and consider the reduced Evans function E defined
about an X -periodic traveling wave solution ug, defined for § € [0,dq) for some
0o > 0 sufficiently small, of (LI). In a sufficiently small neighborhood of (A, &, ) =
(0,0,0), then the spectral problem E(\,€,6) = 0 is equivalen to E(,\,g,a) =
with

N 3

E(\&0) =[x —ia;(&) +y5H —iBY€) + 6% E5(\, £,0) + 0E5 1 (N, &, 6),

Jj=1

1 As in Proposition B, by equivalence we mean that the functions are equal up to some
non-vanishing multiplicative factor, which clearly preserves algebraic multiplicity of the zeros.
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where a;(§) € R,j = 1,2,3, are as given in (L3), the 5; € C are either real or
complex conjugates, and v € R is a constant. Given any positive integer r > 1,
the functions Eg,g and Eg,l are analytic with respect to (A, €) in a sufficiently small
neighborhood of the origin in C x R, and is C" with respect to 6 € [0,00) for 69 >0
sufficiently small. Moreover, one has 838%”@2,2(0,0,5) =0ifl+m < 2 and

080" E5,1(0,0,8) = 0 if L +m < 3 for all § € [0, d9).

Remark 4.2. When applying Proposition [4.1] we will discuss only loosely the con-
straint on the smallness of A. Indeed, we already know from Proposition B.7] that
roots of E in a given compact domain of the complex plane can be made uni-
formly close to roots of Fxqy by taking ¢ small; thus the amplitude of the former
is essentially slaved to the size of (&, 4).

Proof. Recall from Proposition 3.7 that, after a suitable renormalization, in a suf-
ficiently small neighborhood N; of the origin A = 0 the Evans function expands
as

E(\€,6) = Exav(\, &) 4+ 6E1(\, €) 4+ 62Ex(\, €, 0)

for sufficiently small § > 0. Now by using the fact that for all § > 0 the dimension of
the manifold of KdV-KS periodic wave is 2 (indeed it is in one to one correspondence
with a two dimensional submanifold of the KdV periodic waves if ¢ is small enough),
one proves (see [Se] for more details) that for all § > 0, E(\,&,d) expands, now
with respect to (X, &) =~ (0,0), as

E()‘> 67 6) = a’(é))‘Q + b(é)){ + 0(6)62 + P3(>\7 57 5) + E4()‘7 57 6)7

where, by choosing the profile us to be sufficiently regular in §, and hence dg
sufficiently small, a,b,c : (0,d9) — C are C” functions of § and P3(\,¢,0) a ho-
mogeneous polynomial of degree 3 with respect to (A,€) for all 6 and C" with
respect to 0 € [0,dp) (dp small enough). The function FEj is analytic with respect
to (X, &) € N7 x N3, where Ay C R is a sufficiently small neighborhood of ¢ = 0,
and C” with respect to § € [0,d¢) so that 85\8?E4(0,0,6) = 0 for all 6 > 0 and
I 4+m = 3. Furthermore, since for each fixed § the function E(), £, ) is clearly real
valued for A € R and & € Ri, it follows that the functions a and ¢ are real valued,
while the function b has range in Ri. Next, letting § — 0, one finds

a(O) = b(O) = C(O) = 07 EKdV(Aa €) = P3()‘7 57 O) + E4(Aa €7 0)
Hence, E now expands as
E(X,€) =6 (aoA? 4+ ibo A + co€?) + Exav(A, €) + 6°Ea2(),€,6) + 0B51 (), €, 6),

for some constants ag, by, cg € Ri, where, for all § € [0, dp), 3&83‘1@272(0,0,5) =0
forall I +m <2 and 8&6%”E371(O,O, d)=0foralll +m < 3.

Note that the principal part of Fxqy in its Taylor expansion with respect to (X, &)
about (0,0) is a homogeneous polynomial of degree 3. Restricting to |(\, &)|cxr <
1, the Weierstrass Preparation Theorem yields an expansion for Fxqy of the form

Exav(A,§) = TN (A —iai(§)E) (A — iaz(€)E) (A — iaz(§)E),

where I' is a real valued analytic function defined in a sufficiently small neighbor-
hood of the origin in C x R such that I'(0,0) # 0 and the numbers ia;(§)¢ are
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the roots of the associated Evans function EFkqy(+, &) for the linearized KdV equa-
tion; see also (IL3). Then, the spectral problem E = 0 is equivalent, if \,&,§ are
sufficiently small, to £ = 0 with
(4.1)
E(A€6) = 07 (A + iboX¢ + @82) + (A — i1 () (A — ia2(E)€)(A — iz (€)€)
+ 52E2,2()‘7 §7 6) + 6E3,1()‘7 5; 5)a

for some constants l~)0, ¢o € R and where EZ] share the same properties as F; ; and
v € R*.
Finally, notice that
N 4 iboAE + &€ = (A — iBYE) (A — iB3€),
for some constants 62, k = 1,2, that are either real or complex conjugates. Inserting
this into (1), we have proved that in a sufficiently small neighborhood of (A, &, ) =
(0,0,0), the spectral problem is equivalent, up to a non-vanishing function analytic
in (A, §) and C” with respect to § € [0, dp), to
2

E()\€,0) H —iaj(€)E) + 78 H(A—i52£)+6252,2(/\,£,5)+553,1(/\,€75),

j=1 k=1
with, for all § > 0, agag%Eg,Q(o,o,&) =0ifl4+m < 2and agagnﬁg,l(o,o,é) =0if
I +m < 3. This concludes the proof of the proposition. O

Remark 4.3. The real numbers «;(0) and 3Y in the above proposition can be rec-
ognized as the characteristic speeds of the averaged Whitham modulation systems
for the KdV and KdV-KS equations, respectively, while the constant ~y is related to
the relaxation dynamics associated with sending § — 0 in the averaged Whitham
modulation system associated with the KdV-KS equatlon. In the next section, we
will explore this insightful connection in more detail. Besides, there we numerically
evaluate these various numbers. We note, however, that the analysis in the current
section is independent of any knowledge of this connection.

Given that Corollary B0 provides stability in Zone 1 of Figure [2, we restrict
our attention now to a small neighborhood of (¢,0) = (0,0). We use the above
asymptotic expansion of the periodic Evans function and split the neighborhood of
the origin into three regions on which we apply different arguments; see Figure
for a pictorial description. Our first objective is to prove an extension of expansion
(L4):

MEX0,8) TET Xg+ M (€, ho) + O(8?),

uniform in both Zones 1 and 2, with A1 (&, \g) converging, as (£, Ag) — (0,0), to one
of three possible limits, depending on the spectral curve followed by (£, Ag). This
shall extend stability up to Zone 2 provided the slope of the line boundary C = |£|/d
is large enough. In a second step, we extend this stability by a non-crossing argu-
ment to Zone 3, a disc sector C 1| < 8 < C¢], |(£,9)| < ne, provided ne > 0 is
small enough (depending on C'). Since we already know that there is no crossing
at the origin, we only need to exclude the crossing of non-zero eigenvalues of L,
through the imaginary axis. Finally, we need to prove stability in the remaining

151n Section we provide an explicit formula for v; see Remark [A1l
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sector |£|/0 < C, corresponding to Zone 4 in Figure[2, provided C' is large enough.
To this purpose, we benefit from the fact that, in the process of handling Zone
1, we prove that (A1)-(A3) imply a finite set of conditions, which coincide with
the subcharacteristic conditions identified in [NR2], and prove that these condi-
tions yield a regular eigenvalue expansion as (|¢|/d,d) — (0,0) implying that, up
to choosing dp smaller, there exist C' > 0 and 6 > 0 such that, for all |{] < C'6,
RN, N, 0)) < —0£2/6 (whatever the choice of the corresponding )g). In carrying
out this intricate three-regions proof, we elucidate the role of the subcharacteris-
tic conditions, conjectured in [NR2|], by proving that they imply “low-frequency”
stability while being implied by (A1)-(A3).

§=Cl¢| Corollary 3.10
U0 Lemmasa
[T Lemmads
B Lemmads

=1l

N Nﬁ

FIGURE 2. Domains in the (|¢],0) plane where it is proved that
there are no unstable eigenvalues. The middle sector is described
by inequalities C~1|¢] < 6 < C|¢], |(&,0)] < ne with C > 1; then
nc < 1. Stability in Zone 1 corresponds to a rigorous validation of
expansions as carried out in (Corollary BI0). Zone 2 is han-
dled by providing an extension of the previous expansion (Lemma
[£4). The study of Zone 1 also provides that the subcharacteris-
tic conditions (S1), (S2), (S3) are implied by (A1), (A2), (A3). In
turn, the previous subcharacteristic conditions yield that in Zone 3
no eigenvalue can cross the imaginary axis, thus no unstable eigen-
value appears there (Lemma [.0]). At last, in Zone 4, a different
kind of expansion is obtained from (S1), (S2), (S3) and proved to
yield stability (Lemma 7).
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Let us start from the rescaled, reduced Evans function found in Proposition [£.1]
_ 3
(4.2) E(\&,0) = [[(A\—ia;(§)€)+7s H —if36)+02Eg0(\ €,8)+0E5 1 (N, €, 6),
j=1

where v € R is constant, the ﬁk are real or complex conjugate constants, and
a;(€) € R. Notice that since the spectral curves for the linearized KdV equation
obey the symmetry A(—¢) = A(€), it follows that the a; are even functions of &.
Furthermore, letting £ — 0 in «;(§) one obtains «;(0) = a‘;,j = 1,2,3, where
the a? are the eigenvalues of the Whitham modulation system for the Korteweg-
de Vries equation; see [BrJ|BrJKIIJZBIJZ1] for details. It follows that if the period
X € W of the underlying wave ug belongs to the set P, i.e. if X satisfies conditions
(A1)-(A3), then the o are distinct and, without loss of generality, obey the ordering

(4.3) ) <a) <al.

We now carry out our first step that consists in extending (L4). Actually we only
need to do so for 0 < § < C~Y¢|, €] < n, provided n, C~1 > 0 are sufficiently
small. This is the content of the following lemma.

Lemma 4.4. Let X € W satisfy (A1) and (A2). Consider the Evans function E
defined about an X -periodic traveling wave solution of the KdV-KS equation (L.IJ).
Then there exist constants Co,1m9 > 0 and My > 0 such that for all 0 < § < Cy €|
and |&] < no, there are exactly three roots {\i(€,6)}k=1,2,3 of the associated Evans
function E(X,€,8) with |\ < My. Moreover, these roots are smooth functions of
€€ (—no,nmo) and 6 /€ € (—ep,€0) and expand, for k =1,2,3, as

[T (x(6) — 89)
Hj;ék(ak(f) —;(8))

R(A(£,0)) = A, + O(3€)  with Ay, = —

Ak(§,0) = iak(§)§ — 76

+ 0(6¢),

Hj;ék(ag - O‘?)
when |(§,0/€)] — 0. Moreover, one has A < 0 for all k =1,2,3 if and only if the
following conditions are satisfied:
(S1) BY,89 € R and Y # BY;
(S2) oY < BY < af < B9 < af (once we have fized B9 < 53);
(83) v>o0.
In particular,

o if (S1)-(53) hold, then there exist n1(X) > 0, Cop(X) > 0 and 6p(X) > 0
such that, provided dqy is small enough, for a corresponding X -periodic wave
ugs, 6 €[0,80), for all § < Cy ¢,

o(Lelus]) N B(O,m) € { A R(A) < =005 };
e condition (A3) implies conditions (S1)-(S3).
Remark 4.5. In what follows, the conditions (S1), (S2), and (S3) will be referred to
as “the subcharacteristic conditions”: this terminology will be justified in Section
below by discussing their formal derivation in [NR2]. There, we will recall the
results of [NR2| that the B? are the limits, as § goes to 0, of the characteristics of

the first order averaged Whitham modulation equations for (II]). Hence, condition
(S1) above simply states that the Whitham modulation system for (I]), derived for
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fixed § > 0, about the underlying wave is uniformly strictly hyperbolic in the limit
6 — 0. Note that hyperbolicity of this system, corresponding to the requirement
that ﬁ;) € R, is a well-known necessary condition for spectral stability to weak
large-scale perturbations; see [Se|[NR2]. We note furthermore that the condition
(S1) is equivalent to the spectral assumption (H2) necessary to invoke the non-linear
stability theory of [BINRZI].

Proof. Let r > 3 be a fixed positive integer and let J, > 0 be sufficiently small
such that the underlying wave profile u;s is at least a C” function of 6 € [0, dp).
As described above, for (JA, |€],0) sufficiently small the equation E(X,&,0) = 0 is
equivalent to

3
H — oy (€ 751_[ — i) + 62y 5(\, £,0) + 6E51 (N, &, 0) = 0.

Now, setting § = 66, A = A\¢ and dividing ([@4) by &° yields the equation

3 2

(4.5) €(X,€,6) = [ (A—iay(¢) H (A=ifR) +€e22(N €, 0)+Ees.1(A,€,0) = 0,

j=1 k=1

with €32 = 5*2525272(5\5,5,55) and €37 = 5*355371(5\5,5,55) analytic functions
with respect to A and C" with respect to & and ¢ near the origin. By comparing
polynomial growth in A, it follows that there exist constants 7;, M > 0, such that
if |6] 4 [£] < 1, then |\ < M < oo.

Now, letting §,¢ — 0 in (&3] one finds that necessarily

3
0) = H(x_mg) =

Since X satisfies condition (A2), one has d5é(ia,0,0) # 0. Thus, the function &
being analytic with respect to A and C” with respect to 6, £, one shows, by applying
to (@A) a combination of a Cauchy counting argument and the implicit function
theorem in a neighborhood of a , that there exist, for &, § sufficiently small, exactly
three roots {\;(£,6)}j=1,23 of @3) and that they are C" functions of ¢ and § and
can be expanded as

(£ 5) = i (€) — 5@ (8) = B (a5 (§) — B3)
(6 A& =iy =0 @)

Returning to the original variables via \;(£,8) = &€X;(&,6), we obtain the desired
regularity and expansions for the critical eigenvalues A;, j = 1,2, 3.

Recalling that the constants 37,39 are either real or complex conjugate, we
deduce by taking real parts

O(5¢).

(@0 - B2 - BY)
! Hk#(a?—ag) '

By taking limits (£, X\g) — 0, along A\g € o(Lkav,¢) \ {0}, we also derive

(4.7) R(N;(£,0) =0 A; + O(66%) with A; =

max, A < Ind(X),
=12
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hence proving that condition (A3) yields max;—123A; < 0. Since it follows from
elementary computations that conditions (S1)-(S3) imply max;—123A; < 0, the
only thing left is the proof of the converse.

Let us assume that max,—;23A; < 0 and prove that the conditions (S1)-(S3)
are satisfied. First, we suppose that 39, 3 are complex conjugates. In this case our
assumption implies for any j that v # 0 and (af — 87)(d — 89) = o) — B7|* > 0,

and hence
sgn (4;) = —sgn ()sgn (J[ (e — af)).
k#j
Since a < af < af, it follows that, contrary to our hypothesis, the Aj cannot

have all the same sign. Thus, it must be the case that the B? are real and distinct,
verifying condition (S1). Taking without loss of generality ) < 9, it is now an
easy computation to show that the signs of (A4;);=1,2,3 are the same if and only if the
condition (S2) is satisfied. In this case, one has sgn (A4;) = —sgn () for j = 1,2, 3,
hence condition (S3) must hold. This verifies that conditions (S1), (S2), and (S3)
hold provided max;—; 23 A; < 0 and completes the proof of the lemma. O

To emphasize the crucial role of conditions (S1)-(S3) in determining the stability
in a small neigborhood of the origin (£,,\) = (0,0,0), we go on assuming the
previous conditions instead of the stronger condition (A3). We now carry out our
second step, proving that these conditions imply the absence of small imaginary
eigenvalues in C~1¢| <6 < C¢), |(€,6)] < ne provided ne is small enough.

Lemma 4.6. Let X € W and assume that conditions (A1), (A2), (S1), (S2), and
(S8) hold. Then for any C > 1, there exists a constant nc > 0 such that, in a
neighborhood of the origin, there is no crossing through the imaginary axis of any
root of E(-,&,0) in the parameter region defined by C~1|¢] < 6 < C|¢|, 1(€,6)] < ne-
More precisely, for (£,8) in this region,
o if £ =0, then § = 0 and the only root in a neighborhood of the origin is
A = 0, which has algebraic multiplicity three;
o if £ £ 0, then, in some neighborhood of the origin, there is mo imaginary
T00t.

Proof. Let C' > 1 be given. We start by choosing nc small enough so that we
may indeed replace F with E. The statement about the case & = 0 is trivial, but,
combined with a root counting argument, it implies a non-crossing through zero
provided that nc > 0 is sufficiently small.

Let us now focus on the case £ # 0. Suppose there exist (£*,*) with £* #£ 0,
|(€*,6)] < ne and 6* € [C7H¢¥|,Cl¢*]] and a small real number 7* such that

E(iT*, £*,6%) = 0. Then, taking real and imaginary parts in ([£2]) yields the system

of equations

3
(= (6 = (5728 (Baalir”,€°,6%)) + "9 (Bua(ir*,€%,67) ).

1

(4.8) ’

2
[1( = B8e") = (62 (Baalir®, €,6%)) + 6" (Bo (i7", €",07) ).
j=1

Dividing the first of these equations by (£*)® and using the facts 8&82”E272(0, 0,9)
=0foralll+m <2, 8&85E3,1(0,0,6) =0 for all [ +m < 3, and & is uniformly
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bounded in the region we are working in, it follows that given any € > 0, by possibly
choosing n¢ > 0 smaller than above, there exists a j € {1,2, 3} such that

*

Similarly, by dividing the second equation in (&S] by (£*)? it follows that for any
e > 0, by possibly choosing ¢ > 0 above even smaller, there exists a k € {1,2}
such that

T* 0 €
— -6 < <.

F <3

From condition (S2), we know that we may apply the above arguments with

- B2

and thus obtain a contradiction. This achieves the proof of the lemma. O

min |04j
(4,k)€{1,2,3} x{1,2}

At last, under the same conditions as in the previous lemma, we investigate the
region |£] < C716, 0 < § < §. Note that for fixed § > 0, this is the region that
contains small Floquet parameters £. Hence this is where we should read for a given
“near-KdV” wave whether conditions (H1), (H2), (D2), (D3) are satisfied.

Lemma 4.7. Let X € W satisfy conditions (A1), (A2), (S1), (52) and (S3). Pro-
vided C' > 0 is large enough and dg > 0 is small enough, then, in some neighborhood
of the origin, for any (£,8) such that 0 < || < C~15 and 0 < & < &g, there are ex-
actly three roots {\;(€,0)}j=1,2,3 of the associated Evans function E(-,£,0). These
roots are C” functions of (0,£/9) and expand as

2
s = wfermSro(sa+ ), mueoy = S ro (g2 + ),
naed) = wher s +o(sa+ L) moues) = mS o7+ i 5.
X3(€,6) = Bzd+o(9), R(A3(£,8)) = Bsd+o(d)

as |(6,£/6)| = 0, with

T, (88 — a?)

B; = ’
T s (B = BY)

=12, and By = —.

Moreover,

max B; < 0.
j=1,2

In particular, there exist n1(X) > 0, C’o( ) >0 and 6p(X) > 0 such that, provided
0o is small enough, for a corresponding X -periodic wave us, § € (0,0dy), conditions
(H1), (H2) and (D3) hold, and, for all |¢| < Cy'9,

o(Le[us)) N B(O,m) © { Y ‘ R(A) < —6, L }

Note that the expansions of the previous lemma preclude smooth eigenvalue
expansions with respect to (&, ) in a neighborhood of the origin.

Proof. Let C' > 1 be given. We choose dp small enough so that we may replace £
with E. First, dividing (@2) by 6 and setting A = \§, £ = £§ yields the equation
3 2

(49)  J[O—ia;(66)€ H —iBRE) + 0€22(N,§,0) + 631 (N, ,0) =

j=1 k=1
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with €39 = 5’2E212(5\5, £6,0) and €31 = 5*3E371(5\5, £€6,6) analytic with respect to
(A, &) and O™ with respect to §. Then, for |(§,¢)| sufficiently small, one obtains by
comparing polynomial growth a uniform bound on possible roots A\. Now a root
counting argument yields that there are exactly three roots, two Ay, Ao lying in
an o(1)-neighborhood of the origin and one A3 contained in an o(1)-neighborhood
of —v, when (4,€) — 0. Undoing the renormalization already yields the expected
expansion of A3 and that the two other roots belong to an o(d)-neighborhood of the
origin when (§,£) — 0.

Let us choose a neighborhood of the origin small enough so that it contains only
the two roots A\; and Ay and focus on this neighborhood. We expect, for j = 1,2,
not only the known X\; = o(d) but A\; = O(£). In order to get this, we note that
(#3) implies

w2 _ OUNIIE+IER) — s11d o 122 _

so that a growth comparison provides ;\? = 0(|¢)?), j = 1,2. To go further, we

replace the previous eigenvalue scaling by A = 5\5 , or equivalently \ = 5\5 , and

rewrite (IIQI) as
(4.10) H — da( (6€))

_Zﬂk +5 62 2( 35,5) +5g§3,1(5‘,ga5) =

u:jw

with ep0 = (55)—2E272(X55, €5,8) and es; = (68)3Es1(N\E6,€0,6). Then, for
j = 1,2, applying the implicit function theorem in a neighborhood of (), €,68) =
(484,0,0) yields the relevant regularity and the expected expansion

Aj(€6) = iB)+B;E+ O (5+€7).
Then, for j = 1,2, by using that 8‘%;\j is an odd function of £, one obtains
RN (£,0) = Bi&+0 (8l +[€) -

Moreover, by an elementary investigation, the sign of the B, is deduced from (S1)-
(S3).

Condition (D3) and the conclusion on the spectrum o(Le¢[us]) directly follow
from the expansions. In turn it is known that (D3) implies (H1); see [NR2, Lemma
2.1]. At last, provided g is small enough, condition (H2) follows from (S1) and,

Proof of Theorem [[LH. By gathering the results of Corollary B.I0l and Lemmas [£4]
4 and [£7, we achieve the proof of Theorem Indeed, one may complete
the explicit bounds on the real part of the spectrum contained in Corollary B.I0I
and Lemmas 4] and 7] by noting that the non-crossing argument of Lemma
combined with a uniformity argument and a comparison on boundaries where one
may apply either Lemma L4 or Lemma [£.7] yields that, provided Cj is large enough
and Jp is sufficiently small, for a corresponding X-periodic wave us, 6 € (0,do),
there exists 0p(X,d) > 0 such that, for all Cy'é < [¢] < Cyd,

o(Lelus]) N B(0,m) < { A R(A) <=6 }.

Hence (D3) follows from Corollary B0l for large A, and, for small A, from Lemmas
A7, 7 and E4], and Corollary B0 respectively for |¢] < Cy's, Cyto < |€] < Cod,



SPECTRAL STABILITY OF KDV/KS WAVE TRAINS IN THE KDV LIMIT 2195

Cod < |¢] < mp and n; < |¢] < w/X. Uniformity of do(-) is deduced from a close
inspection of the proof. O

Before we continue, we emphasize that it follows from Lemmas A.4] and
M1 that, when (Al) and (A2) hold, the subcharacteristic conditions (S1), (S2),
and (S3) are sufficient for the diffusive spectral stability under slow low-Floquet
perturbations Given this role and though we know from Lemma [£.4] that they
are implied by (A1)-(A3), we wish to provide an independent numerical verification
of the subcharacteristic conditions (S1)-(S3) that are independent of the numerical
calculations in [BN] or, equivalently, independent of the numerical investigation
of condition (A3). In the process, we will justify our terminology in referring
to (S1)-(S3) as the subcharacteristic conditions. The terminology comes directly
from the singular version of the Whitham modulation theory developed in [NR2].
Actually, this is precisely on the basis of the following formal discussion that the
subcharacteristic conditions (S1)-(S3) were first conjectured to play a major in the
slow /small-Floquet stability of “near-KdV” waves [NR2].

4.2. Whitham’s modulation equations. It is now a classical result that
Whitham’s modulation equations for periodic waves of conservation laws provide
an accurate description of the spectral curves at the origin, i.e. of the stability of
a given wave train to weak large-scale perturbations Let us mention here the work
[Se] in the general case, [NRI] for shallow water equations, [NR2] for KAdV-KS either
for fixed 6 > 0 or in the KAV limit and [JZBLIJZ1] for the generalized Korteweg-
de Vries equation. When considering (L)) in the singular limit § — 07, however,
even the formal derivation of such a connection is more involved. In particular,
we note that it is not sufficient to simply let § — 0 in the modulation equations
derived for (IT]) with 6 > 0 fixed. Instead, in this singular limit the introduction
of a new set of modulation equations is required [NR2]. In this section, we recall
the derivation of the appropriate modulation equations in this singular limit and
emphasize in which way the previous analysis demonstrates their connection with
the spectrum at the origin of the linearized operator about a given wave train. In
particular, the structure of the modulation equations will justify our terminology,
referring to conditions (S1), (S2), and (S3) as the “subcharacteristic” conditions.
Recall that the KdV-KS equation reads

2
(4.11) Opu + O, (“7) + OPu+ 6(9%u + 92u) = 0.

Reproducing [NR2|, we derive the Whitham modulation equations about a given
periodic wave train of ([@I]]) in the singular limit § — 0T. To this end, we introduce
the slow coordinates (X, T) = (ex,¢t), € < 1, set § = de with & € (0, 00), and note
that in the slow (X, T) variables equation ([£I]) reads

2 —
(4.12) Oru + Ox (%) + 20%u + 6(20%u + 0% u) = 0.
Following [Se], we search for an expansion of u, a solution of (£I2), in the form
X, T X, T
(4.13) w(X,T)=U0 (%;X, T) +eUW (?X T) + O(£?)

16That is corresponding to || < n1 and |¢| < m1, with n; sufficiently small independently of 6.
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with U®) (y; X, T) 1-periodic in y. Notice then that the local period of oscillation of
u® in the variable y is £/0x ¢, where we assume the unknown phase a priori satisfies
the condition dx ¢ # 0. By inserting this ansatz into ([@I2)) and collecting O(c~1)
terms, one finds

(4.14) 00,00 + kU©9,00) + SO =,

where ) = 0r¢ and kK = Ox¢. Equation ([{.I4) is recognized as the traveling wave
ODE for the KdV equation (1)) in the variable ky with wave speed —Q1/k. As
such, equation ([£I4) has a solution provided Q = —kcy(ug, k, k), where now ug, k
and k are considered as functions of the slow variables(X,T). In this case, the
solutions of ([@I4]) can be expressed as

U(O) (y7 X7 T) = UO (yu Ug, R, k) = U + 12]{72”2(3112(‘%:1/7 k)a

4.1
(4.15) co(uo, k, k) = up + 8K%k* — 4r2.

In what follows, we derive a system of “modulation equations” describing the evolu-
tion of (ug, %, k) as functions of the slow variables (X, T'). One such equation comes
from noticing that the compatibility condition drk = Jx {2 yields the equation

(416) aT'%_"aX(HCO(uOv’%a k)) =0

for the local wave number k.

To find other modulation equations we continue the above expansion and note
that collecting the O(1) terms yields an equation of the form LKdv,oU(l) = ...,
where Lkqv o is the operator describing the linearized evolution of the KdV equation
about U®). Since the kernel of the adjoint of Lkqv,o is spanned by 1 and U©),
solvability conditions and thus the needed extra equations will be obtained by
averaging in y against 1 and U©) the O(1) equation. Yet with this equation being
of the form

U(O) 2
(4.17) orU© + oy <%> =3, (),
it follows, averaging it over a single period in y, that
U2
(418) 8T<U0(~;’U,0,I€,]€)>+(9X<70(',’U,(),I€, k)> =0

must be satisfied, where here (f) := fol f(y)dy. To obtain the other solvability
condition in an easy way, let us first remark, following the method used in [JZ1] to
derive modulations equations for the generalized Korteweg-de Vries equation, that
by multiplying (£IT]) by u we obtain an equation of the form

(4.19) o (%2) + 0y (%3 ~ ?’(%W) =6 ((0,u)* — (B2u)?) + 02(---).

This implies that equation (£I7)) multiplied by Uy yields

(4.20) or (%3) +0x (%g - @) =06 ((U9)? = (Ug)?) + 9y (---).

Averaging [£20) over a period in y then provides the balance law

azy or (%) o (B2 5w - ).



SPECTRAL STABILITY OF KDV/KS WAVE TRAINS IN THE KDV LIMIT 2197

Together, the homogenized system (4.16]), ([4I18), (4.2I)) forms a closed system of
three conservation laws with a source term, called the averaged Whitham modula-
tion system, describing the evolution of the quantities (ug, %, k) as functions of the
slow variables (X, T).

Again repeating [NR2], let us now comment on the previous system. As a first
step in analyzing the modulation system @I0), {I8), (£2I), notice that the
steady states are given by points (u}, x*, k*) € R3 such that

<(Ué)2( : ,US, H*’ k*)> = <(U(/)/)2( ! aua, H*a k*)> )

where Uj is given as in ([{I3]), i.e. Uy corresponds to periodic traveling waves of
(@II) in the limit 6 — 0. Indeed, by Proposition 2:4] these are simply the cnoidal
wave trains of the KdV equation that can be continued as solutions of (IIJ). Now,
letting & — 0, corresponding to large scale perturbations with frequency/wave
number of order ¢ > §, in the homogenized system ([@I6), ([I]), (£2I) yields the
Whitham averaged system for the Korteweg-de Vries equation; see [WLJZ1]. As
stated previously, the numerical results in Figure B below demonstrate that for all
KdV cnoidal wave trains considered here the Whitham averaged system for (2]
is strictly hyperbolic with eigenvalues

aq (ug, Kk, k) < as(ug, £, k) < ag(ug, k, k), Y(ug,k, k) € R3.

Furthermore, in the limit § — oo, corresponding to a relaxation limit and large scale
perturbations with frequency/wave number € < d, we obtain the relaxed system

aTg(k) + aX (g(k)CO(UOa g(k‘), ];)) = 07
(4.22) Or (Uo(+;u0,G(k), k) + Ox <%(‘§ uo, G(k), k)> =0,

where here k = G(k) is given by the selection principal in Proposition 24 Notice
that this system may also be obtained directly from the Whitham averaged system
of conservation laws for the KdV-KS equation (]), derived in [NR2] for fixed § > 0
as

2
Ok + Ox (res(M, k) = 0, OpM + Ox <%(M, H)> —0, M= (Us(M,x)),

in the limit as 6 — 0. It is now well established [Sel[NR2|] that a necessary condition
for spectral stability of periodic traveling waves under large scale perturbations is
that system (@22)) be hyperbolic, i.e. have only real eigenvalues. In our analysis
from Section Il however, we assume the stronger condition that the modulation
system ([E22)) is strictly hyperbolic with eigenvalues

(423) 61 (UO, k) < ﬂg(’do, k),

this corresponds precisely to condition (S1) in Lemmal[Z4l It clearly follows that in
considering only the relaxed hyperbolic system ([@22]), obtained by simply letting
0 — 0 in the Whitham modulation equations for (L) derived for fixed ¢ > 0, that
some information is lost; namely, in this particular limit we obtain no information
regarding conditions (S2) and (S3).

To understand the roles of conditions (S2) and (S3), we must consider rather the
full modulation system ([@I6]), (EI8]), @21) derived in the singular limit § — 0. For
the sake of clarity, let us write this system with the parameterization (k, M, E) with
M = (U) corresponding to the spatial average of U over a period and E = (U?/2);
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see [JZBIlIJZ1] for a discussion on such a parameterization of periodic wave trains
of the KdV equation (ZTJ).

In this parameterization, the modulation system ([@I6]), (ZI8), [E2I) recovers
the form obtained in [NR2J,
(4.24)
Ork—0x(Qk, M,E)) =0, Oy M +0xE =0, OrE+0xQ(k, M, E) = 6R(k, M, E),

where Q(r, M, E) = —kco(k, M, E), Q = (U3 —3(U})?/2) and R = ((U})? — (U{)?).
In the context of relaxation theory it is a classical assumption to suppose that the
condition g R(k*, M™*, E*) # 0 is satisfied, ensuring that near the equilibrium state
(k*, M™*, E*) the equation E(k, M, E) = 0 defines F implicitly in terms of (k, M);
in what follows, we assume that this condition holds.

Under this assumption, the subcharacteristic condition (S3) can be easily inter-
preted. Indeed, linearizing the modulation system ([£24]) about the steady state
(k*, M*, E*) and restricting to spatially homogeneous, i.e. X-independent, pertur-
bations yields the equation

(4.25) Ori =0, OrM=0, OrE=35 (aER*E + dy n R (R, M)) ,

where R* = R(k*, M*, E*). Considered as a constant coefficient equation in the
slow variables (X, T), the dispersion relation of ([@23]) is then given by

(4.26) M (XN = 80gR*) = 0.

From this, it is clear from our spectral analysis in Section ] that the condition (S3)
is equivalent to g R* < 0. We note that this condition is a standard assumption
in the context of relaxation theory and is equivalent to requiring that the manifold
of solutions of R(k, M, E) =0 is stable.

Furthermore, the dispersion relation (28] implies that two spectral curves bi-
furcate from the origin as one allows the period of the perturbations to vary, cor-
responding to stability or instability with respect to weak long-wavelength pertur-
bations. It is a classical result [Wl[Yo] that a necessary condition for the stability
of the steady states of ([{.24)) to such large-scale perturbations is given by the sub-
characteristic condition

(4.27) a] < Pf <a; <5 <o,

where here the o and §; denote the functions ozjo. and B?, respectively, evaluated
at the associated steady state. Notice that in our analysis from Section 1] how-
ever, we assume the stronger condition that the inequalities in [@27) are strict,
corresponding precisely to condition (S2).

In summary, we have just reviewed how conditions (S1), (S2), and (S3) were
introduced in [NR2] as the strict subcharacteristic conditions for the relaxation-
type Whitham modulation system ([£24]), derived from ([I)) in the singular limit
0 — 0. As a byproduct of the analysis, carried out in Section 1], of the exact
role of conditions (S1)-(S3), our present work has also rigorously validated the role
of the modulation system (£24) in the determination of the presence of unstable
spectrum near the origin for “near KdV” waves.

4.3. Numerical computation of subcharacteristic conditions. To finish this
section, we use the explicit connection to the singular Whitham modulation sys-
tem of [NR2], reviewed in Section 2] to provide an independent verification of
the conditions (S1)—(S3). In particular, we also rely on the parametrization of the
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“near-KdV” wave trains of (IL.T]) described in Proposition 24l We recall, however,
that, when (A1) and (A2) hold, these subcharacteristic conditions follow directly
from condition (A3), which was numerically investigated in [BN], and that, without
(A3), we may only conclude to slow/small-Floquet spectral stability, which is in-
sufficient to apply the recent analysis in [BINRZI] that proves that any wave that
satisfies (H1)-(H2) and (D1)-(D3) is non-linearly stable (in a suitable sense).

It is well known that the Whitham modulation equations for the KdV equation
1) can be diagonalized by quantities referred to as Riemann invariants; see [W].
To describe this diagonalization and introduce the appropriate set of Riemann in-
variants, we first recall some properties concerning the parametrization of the KdV
wave trains. To begin, notice that traveling wave solutions of (2.1IJ) are solutions
of the form u(z,t) = u(x — ct) for some ¢ € R, where the profile u(-) satisfies the
equation

wu' —cu' +u" = 0.
Integrating once, one finds that the profile u satisfies the Hamiltonian ODE

2
o, u
u + — —cu=a,
2
for some constant of integration a € R, which can then be reduced to the form of
a non-linear oscillator as
(u/)Q u3 u2
— =q—W(u;a,c), W(u,a,c)=— —c— — au,
5~ =4—Wluac) (uja,0) = = —c5
where again ¢ denotes a constant of integration and W represents the effective
potential energy of the Hamiltonian ODE ([£2§). On open sets of the parameter
space (a,q,c) € R? the cubic polynomial ¢ — W (u;a, c) has a positive discriminant
so that there exist real numbers u; < us < us such that

(4.28)

qg—Wi(u;a,c) = %(u —uyp)(u— ug)(ug — u).

By elementary phase plane analysis, it follows that for such (a, g, ¢) the profile ODE

([#28) admits non-constant periodic solutions. Moreover, by identifying powers of

u we find in this parameterization that
U1 + us + us

1 U ULY
(4.29) C=—3 = —g(%uz—i-uwg—i—uzus), q= - 62 2

Using straightforward elliptic integral calculations, we find that the periodic so-
lutions of (A28]) can be written in terms of the Jacobi cnoidal function cn(z, k)
as

(4.30) u(€) = uz + (uz — up) cn® ( uf,k>, E=z—ct, K¥=22"12
3 Uz — Uy

In particular, notice that all solutions of () are of form ([@30) up to a Galilean

2
shift and spatial translation. Letting X = il denote the period of the above wave
K
train, it follows again by standard elliptic function considerations that x can be
expressed as

s us — Uy
K (k) 3 7

(4.31) K=
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where here
dx
V1—x2V1 — k222
denotes the complete elliptic integral of the first kind.
Furthermore, in terms of this parameterization we note that

E(k 2
(u}—u1+2(u3—u1)%, <%>—c<u>+a,
where here (-) denotes the spatial average (in &) over a period X and

N
/ 1— IQ
denotes the complete elliptic integral of the second kind.

With this preparation, we can introduce the Riemann invariants (w1, ws,ws) for
the KdV equation (2.1]), which are defined in terms of the wu; as

U1 + ug U1 + us3 w Uz + U3

w1:T7 w2 = 2 ) 3 = 2

In terms of this parameterization, we have

(4.32)

(4.33)

27 2((4)3 — wl)

K (k) 3
w1 + w2 + w3 9 W2 —wip E(k)
S WL T W e 27 WL — Wi+ ws — ws + 4(ws —
c 3 , ) o (u) = w1 + ws —ws (w3 —w1) Kk)’

2
<%> =cluy+a, a= f% (281(w2 + w3 —w1) + (w1 + w2 — w3) (w1 + ws — w2)) .

u(f):w1+ﬂg—w2+2(w2—wl)cn2( M& ), K =

The Whitham modulation equations for the KdV equations can be diagonalized by
the Riemann invariants w;, in the sense that they can be written as

Orw; + Vi(w1, wa, w3)Oxw; = 0,
where the characteristic velocities V; are given explicitly by
0w, (KC)

O, K

or, alternatively, as V;(w1,wa,ws) = ¢+ (0, In(x)). Clearly, the characteristic ve-
locities V;(w1,ws,ws3) correspond to the eigenvalues of the Whitham modulation
equations for () about the periodic traveling wave given in ([L30) associated
with (w1, ws,ws). To describe these velocities more explicitly, we find it more con-
venient to parameterize the problem by the variables wq, A = ws — w; and k? =
(wg —w1) (w3 —wi) L. In terms of (wy, A, k?), an elementary calculation shows that
the characteristic velocities V; can be expressed as V;(w1,wa,ws) = ¢ + (;, where

¢ = 22b;(k) and

k2K (k) k21— k?)K (k) (1-k?)K(k)
E(k) — K(k)’ (1= k*)K(k) - E(k)’ Ek)
with K (k), E(k) as in ([@32]), ([A33)) denoting elliptic integrals of the first and second
kind. In Figure B we plot the characteristic velocities in terms of the period X (k)
of the underlying KdV wave train. In particular, we see that for all k € (0,1) the

characteristic velocities are distinct, corresponding to satisfaction of ([£3)), i.e. to
strict hyperbolicity of the associated Whitham modulation equation.

Vi(wi, wa,w3) =

bi(k) = ba(k) =

b3 (k) =



SPECTRAL STABILITY OF KDV/KS WAVE TRAINS IN THE KDV LIMIT 2201

Next, we compute the eigenvalues of the relaxed Whitham modulation system
[#22), which is also the limit as § — 0 of the Whitham modulation system asso-
ciated to (CI) for fixed § > 0 [NR2]. Recall from Proposition [Z4] that we must
restrict ourselves to those cnoidal waves of form (€30) such that the selection
principle k = G(k) holds. In terms of the (wy, k%, A) parameterization of the KdV
Whitham system, this modulation system restricted to the “near-KdV” wave trains
discussed in Proposition [2.4] can be expressed as

(4.34) Ork + kOxc =0, Op(u)+ (u)dxc+ dxa =0,
where
E(k 1
(u)y = P14+ (/.;2 —1+ 4%) A, a= 5 (3ﬁf +2(k* +1)AB — (K — 1)2A2) ’

and, recalling Proposition [2.4]
wawOQ

k=G(k), A(k):§ ( 5

To compute the eigenvalues of this relaxed modulation system, using the Galilean

invariance of (1)) we require (u) = 0, which is equivalent to requiring w; =
—(k2 -1+ 4;?((12)))A(k) This reduction thus leaves the elliptic modulus k as the

only parameter of the problem. It is then a lengthly but straightforward calculation
to show that the eigenvalues 5 (k),i = 1,2, of (L34 are given by the roots of the
polynomial equation

(4.35) A(k)N? — B(k)A + C(k) =
where the coefficients are given by A(k) = Q’(k),

2

) +1  4E(k) '
Kk‘l‘ *zam)A%ﬂ’
Ck) = k> (2k* — 1) (2kA(K) + (K> + 1)A'(k)) .

Notice that the roots of ([d.33]) Correspond to the eigenvalues 37 considered earlier.
In Figure Bl we have plotted the characteristic wave speeds {a} (X (k))}i=1,2,3 and
{B; (X (k))}j=1,2 as functions of the period X (k) of the underlying wave train. From
these numerics, it is clear that the subcharacteristic conditions (S1) and (S2) are
satisfied for all waves with period X > X, where the critical period is X, ~ 8. For
X < X., condition (S2) is violated, corresponding to a sideband (modulational)
instability of the associated wave train. This threshold is consistent with the one
found in [BN]. Furthermore, since the low-frequency stability conditions (S1)-(S3)
are satisfied for all periods X > X, we see also that the upper stability boundary
X = 26.17 cannot be associated with a sideband instability, again consistent with
the observations of [BN].

Finally, we check the subcharacteristic condition (S3) and consider the spatially
homogeneous perturbations (independent of the space variable). The Whitham
equations read

u? -
(436) aTFE = O, 8T<u> = O, aT <?> =0 (<(’U/)2> _ <(u//)2>) ,
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i alpha1
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I alpha3
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I — — —beta2

FIGURE 3. Here, we plot the characteristic velocities
{oj (X (K))}3=, and {B;(X(k))}5=, for the Whitham system for
the Korteweg-de Vries equation and the relaxed Whitham’s sys-
tem (€34, respectively, as functions of the period X (k) of the
underlying wave train.

where u is defined by ([@30). In this setting, we use k, M = (u) and A = ug — ug
as parameters. One thus has

with P(k) = 1 — k* + 4(k* — 2)E(k)/K (k) + 12(E(k) /K (k))?. Next, one can show
that the source term is written in a simpler form,

R(k, M, A) = 3 ({()?) — (")) = r(k, M, A) (A(K) - A),
with r(k, M,A) > 0 and A given by

Ay = 2 20k* — K> + 1)E(k) — (1 — k%) (2 — K} K (k)
) =3 (=2 + 3k2 + 3k% — 2KS)E(k) + (kS + k% — 4k2 + 2)K (k)

The steady states of (@36 correspond to A = A(k). By linearizing ([@36) about
a steady state (K., Mi, A. = A(k,)) and searching for solutions that grow in time
exponentially, one finds the dispersion relation

A*(A—AL) =0,

with A, satisfying

<(P(§2ﬁ;()k*) + Plf’;”) Ai) A, = r(ky, My, A,) <AKI§I€(];) B A’(Qk*)> .
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FIGURE 4. Here, we zoom in on the largest eigenvalues a 3(X (k))
and P2(X(k)) in Figure Bl noting in particular that ao(X(k)) <
B2(X (k) < as(X(k)) for all periods X (k) > X, of the underling

wave train.
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FIGURE 5. Here, we plot A\.(X(k)) as a function of the period
X (k) of the underling wave train.

The subcharacteristic condition (S3) is satisfied if and only if A, < 0. In Figure

B we have represented . = A, /r(k«, M., A,) as a function of the period X. We
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clearly see that the subcharacteristic condition (S3) is always satisfied on the range
of period [27, X,,] with X,,, > 30. In particular, (S3) holds for all near-KdV wave
trains with period X > X, corresponding to the low-frequency stability boundary,
and X < 26.17, corresponding to the high-frequency stability boundary computed
in [BN].

APPENDIX A. HIGH-FREQUENCY SPECTRA: THE COMPUTATIONS OF [BN]

In this appendix, we review the formal expansions of [BN], upon which condition
(A3) is based. In particular, we rigorously justify the formal calculations contained
therein by using Corollary [3.8] to expand all the high-frequency eigenvalues of the
KdV-KS equation for 0 < § < 1, showing that, in our rigorous framework, we
recover exactly the formulas in [BN] for (A1 (Ao, £)) when Ag # 0 is an eigenvalue of
some (Bloch) linearized KdV operator Lxqgy ¢. In this way, we provide justification
that condition (A3) is meaningful and has indeed been numerically investigated in
[BN].

A.1. Formal asymptotics as 6 — 0. To begin, we fix X € W and let us be
an X-periodic traveling wave solution of (LT]), defined for all § € (0,d¢) for some
dg > 0 sufficiently small. Recall that in the proof of Proposition B.7lwe obtained an
asymptotic expansion for 0 < § < 1 of the periodic Evans function associated with
the linearization of (L)) about us up to O(63). However, an explicit expansion of
the eigenvalues of such a spectral problem is often complicated to obtain by using
analytic Evans function techniques. As an alternative, recalling the notation in
(L4, here we fix a Bloch wave number & € [—7/X, 7/X) and a non-zero eigenvalue
Ao of Lxav ¢[uo)k and search, for 0 < § < 1, directly for an expansion of the L>°(RR)
eigenvalues (&, Ao, §) and eigenfunctions v(-; &, Ao, §) of L¢[us] in the form

(A 1) A(f, >\O, 5) = )‘O + 5>\1(£, >\0) + 62)‘2(6; >‘0) + 0(53)’

- (€, 20,8) = vo(5 &, Xo) + dv1 (5 €, o) + 8702 (+5 €, Xo) + O(6°).
Note that such expansions are guaranteed to exist by Corollary B.8 and the Dunford
Calculus.

Now, recall that the spectral problem (B for the operator L{us] can be written
as
(A 2) v/// + ((u(§ _ C)’U)/ + 6(’[)// + /U/N/) + )\/U — 0,
. v(z + X) = e Xy(z),

with v € L2_.([0,X]). For § = 0, it is known by the results of [BD] that the

per
spectrum lies on the imaginary axis and is parameterized by

SA=£8v[n—mlln—nelln—msl, m€ (—o0,m] U [n2,m3),

where 1 = k? — 1,15 = 2k? — 1 and 13 = k? and k is the elliptic modulus associ-
ated with the underlying elliptic function solution wug of the KdV equation for this
particular period X. Moreover, the Bloch wave number & can be written as

¢ N7 jE\/In—mlln—nzlln—na/K(’“) dy
2K (k) K (k) o n— K +du(yk)

for some N € N.
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Before beginning our analysis of the perturbation expansion (A1), we make some
preliminary remarks concerning the spectrum of the linearized KdV operator. Let

Lxav = =0, (uo — ¢o) — 92

denote the linearized KdV operator, considered as a closed densely defined operator
on L*(R), and let (Lkav,e¢)¢e[—r/x,x/x) denote the associated family of Bloch oper-
ators defined on L2 ([0, X]). By the results of [BD], o(Lkav) = iR, corresponding
to spectral stability of the underlying cnoidal wave solution ug. Furthermore, when
condition (A1) holds given any & € [—n/X,n/X) the non-zero eigenvalues of
the KAV Bloch operators Lkqv,¢ are simple. Notice one may be easily misled by
the fact that, in some sense, each A € R\ {0} lies in the spectrum of Lkqyv with
multiplicity either 1, 2, or 3, since there exists either a unique § € [—7/X,7/X)
such that A € o(Lkav,¢) (corresponding to multiplicity 1) or else there exist either
twd or three distinct such ¢ (corresponding to multiplicity 2 and 3, respectively);
see [BD] for details. However, assuming the period of the underlying wave satisfies
condition (Al), when expanding such eigenvalues for a fixed £ one is doing sim-
ple perturbation theory. On the other hand, A = 0 is known to be an eigenvalue
of the KdV Bloch operator Lkgv,o, corresponding to £ = 0, with algebraic mul-
tiplicity three and geometric multiplicity two. Indeed, one can easily verify that
Ker(Lkav,o) is two dimensional and 1 € Ker(L gy o); see [BrJBrJK] for details.
Thus, a separate analysis is indeed necessary when considering the bifurcation of
the neutral modes of Lxqv, for 0 < § < 1.

We now begin our perturbation analysis by fixing £ € [-7/X,7/X) and con-
sidering the continuation of a fixed non-zero eigenvalue Ao of Lkqv ¢. To this end,
let vg € L2,.([0,X]) be a non-trivial function in the null-space of the operator

Lkav ¢ — Aol and insert the expansions ([212) and (A7) into (A2). Collecting the
O(8°) terms we find that vy must satisfy

’Ug/ + ((UQ - Co)’Uo)/ + )\0’(}0 = 0,
vo(e + X) = ¥ v(a),

which clearly holds by our choice of (Ag,vp). Continuing the expansion, identifying
the O(8') terms implies that v1(-;&, A\g) and A; (€, A\g) must satisfy

Ull// + ((UO - CQ)'Ul)/ + Aov1 + Avg + (Ulvo)/ + Ug + ’Ugl/ =0,
v (z + X) = X (2),
where here the function U is defined as in Proposition 2.4l To analyze the solv-

ability of (A.3) we consider the operator L/K—;_\: ¢ = 02 + 0, (up — o) defined on
all functions v € H?(0,X) such that v(x + X) = € *v(z), and note then that

the operator Lkav,¢ + Aol is Fredholm of index 0 on H?(0,X). In particular, we

(A.3)

— — 1
have Range(Lkav,¢ + Aol) = Ker ((LKdv,g + )\OI)*) , where the adjoint operator

of LKde + Aol is given by
(Lav,e + Aol)* = =05 — (ug — c0)d — Ao,

1TWe recall that it is justified numerically for some given waves in both [BD] and Figure [II

18 The points of multiplicity two correspond to the “turning points” of the triply covered region
of the KdV spectrum surrounding the origin. That is, they are found at the endpoints of the triply
covered region. See Figure [Tl
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defined here for all v € H?(0,X) such that v(z + X) = €% Xuv(x). Notice that

since Ao # 0 we easily identify Ker(Lkav ¢+ Aol)*. Indeed, as is easily verified, the
function

z+X
(A.4) wo(z) = / vo(s)ds

is non-trivial, satisfies the boundary condition wy(z + X) = e

Ker(@//@—l—/\o[)*. In this way, we obtain a complete basid of Ker(L/K;v/é +Aol)* .
Now, with the above notation it follows by the Fredholm alternative that equa-
tion (A3 has a solution provided the compatibility condition

(A.5) (Mvg + (Urvg) + vf + vy we) = 0

is satisfied, where here (-,-) denotes the standard (sesquilinear) inner product on
L2.([0,X]). We now give an expression for A; with respect to functions wo. To
this end, note that by definition we have the identity

w(z) = vo(z + X) —vo(z) = (eiEX — Dwo(x),
from which it follows that

1 X , e—1X/2 X ,
= — odt = ——————S vodx | .
(vo, wo) = T _1/0 oot = S dn(ex/2) > /0 Yool
Similar computations yield the following identities:

X
<(U1v0)l;w0> = 2je1¢X/2 sin(gX/Q)/ Ui|vo|?dz,
0

X wo(z), and lies in

X
(vf;wo) = —2e X/ 5in(€X/2)S (/ ”(/)aodx> ’
0

X
<U6’”; we) = e~ X/2 sin(£X/2)S </ 7}({1}6(1.’[:) .
0

Taking real and imaginary parts of (A5]), we find
X X
S / whwodz | R(A) =S / wiwl — wi'wldz |
0 0

X X
R / wiwodz | S(A1) = —/ Uy |wp|?d.
0 0

(A.6)

Note that, up to O(J), the O(d) correction U; of the underlying periodic profile
U can only contribute to the imaginary part of A\. Furthermore, this contribution
actually vanishes, as is seen from parity: indeed, note that

|wp|? = sin®(€X/2)(1 + [Ag 'up[*)
is an even function whereas, by Proposition 2.4l U; is an odd function. As these

functions are both 2X-periodic, assuming that?d fOX wjwodr # 0, the integral
which defines (A1) then vanishes, implying that (A1) = 0. As a result, we have

9Notice that when \g = 0, corresponding to £ = 0 by (A1), the above construction yields
only constant functions; indeed, one readily finds as a consequence of the conservative structure
of the KdV equation (1)) that 1 € Koero*.

20The non-vanishing of this integral is part of the numerical investigation of condition (A3),
as carried out in [BNJ, but was seen there to not be an issue.
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obtained an expansion valid up to order O(6?) for any eigenvalue (£, Ao, §) such
that Ao # 0 and fOX wwodx # 0. Furthermore, we find that

(fo wy vy — ’woda;)
%(fo w{)wodx)

which is precisely the formula determined in the formal analysis of [BN]. In partic-
ular, in [BN] the above quantity was computed numerically and was found to be
strictly negative for all £ € [-7/X,7/X) and A € Ri \ {0} provided the period X
of the underlying wave us satisfies X € (X1, X2) where X; ~ 8.49 and X, =~ 26.17;
see Section [A.2] below for a summary of the numerical scheme used in [BNJ.

(A7) R(A1(E, X)) =

Remark A.1. Using similar methods to those discussed above, one can also derive
an expansion for the triple eigenvalue Ay = 0 for the linearized KdV operator Lxqv o
with € = 0 held fixed and 0 < § < 1. Indeed, one can show that near the origin
the operator Ly[us] has A = 0 as an eigenvalue with algebraic multiplicity two, and
a third eigenvalue A..i(0) that can be expanded analytically with respect to ¢ for
6 < 1 with

%()\érlt(O)) — <(U1¢) -2—[(/}'(5 u_(;w////

where ug and U; are as in Proposition 2.4] and
-1
Y =1—(0rco) ~ Orup.

See the appendix of [BN] for details. Notice that, by Lemma A7 this gives an
explicit definition of the constant v introduced in Proposition 11

o) ¢R,

A.2. Numerical computations. In this appendix, we describe in our own nota-
tion the numerical computations carried out in [BN|] determining the sign of the
real part of the O(9) corrector A1 (&, Ag) for a fixed £ € [—7/X,7/X) and a non-zero
eigenvalue Ay € o(Lkav ¢[uo]). To this end, recall that for a fixed £ € [—7/X, 7/X)
the L>°(R) eigenvalues A(&, \g, ) can be expanded for 0 < § < 1 as in (A]), where
we recall that for Ao # 0 the real part of the O(J) corrector can be found from

(A6), assuming fOX whwodx # 0, as

& fO wé’u’){J wé”w()’ wh, w!! 4w
(A.8) R\, = ( ):< 0, wo + wg")

3 (fo wéwo) (w, wo)

notice that this is precisely formula (54) on page 593, with ®; = wy, for the O(9)
correction of non-zero KdV eigenvalues )¢ found in [BN]. Using Mathematica, the
authors of [BN] then numerically evaluate the quantity

sup §R(>‘1(£a AO))?

§E[—m/X,m/X)
Ao€a(Lkav,e[uo])\{0}

which clearly must be non-positive to prevent instability. The details of these
computations are as follows.
First, denote
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Following the stability analysis for the KdV equation (2] presented in [Sp], the
authors of [BN] parameterize the eigenvalues and eigenfunctions Ag and 9 and the
Bloch wave number £ as
(A.9)

) o (z +iw' + a)

_ —2(z+iw’ )¢ (@) — 4 — 9 _ ¢
W0(@) = ot e A= (@), € =2 (¢ - o).

where here o and ( denote Weierstrass’s sigma- and zeta-functions, respectively,

v(z) denotes the Weierstrass elliptic function with periods w = T and iw’ where

W = K(ni Il(z]f;)ﬂ Notice that £ € R only if ®(a) = nw,n € N. In this case,

the problem is parameterized by « and k, since x is determined by the selection
criterion x = G(k) given by formula (34) on page 590 in [BN]. In [BN], the authors
described the computations for &« = nw + 48 for n = 0,1 and S € [0, 2w], claiming
that the other cases n > 2 do not provide any new results. There, the parameter
k was restricted to the interval [0,1 — 10~7], which corresponds to periods X = 27“
lying approximately in the interval [27, 107]. In order to evaluate the Weierstrass

elliptic functions, the usual theta functions are used:
0(z) =23 (~1)" "  sin (20 — D)mz/2K (R))
n:oé \
01(2) =2 (—=1)" 1P M cos (2n — V)mz/2K (k).
n=1

with go = exp(—7K(v1 — k?)/K(k)). Then the various Weierstrass functions are
represented as

(
01(0)0(2vA)
) E O'(2vV )
)= e VAR
1 C(w)2? O(2vV))
o) = o505 T,

where e; = v(w), A = v(w) — v(w + iw').

Using the above approach, it is numerically demonstrated in [BN] that the quan-
tity

sup R(A1(E; o))
g€[—m/X,m/X)
Ao€o(Lkav ¢ [uo])\{0}

is strictly negative for all periods in the interval [8.49,26.17]. In particular, no-
tice that from Figure Bl the subcharacteristic conditions (S1)-(S3) hold in this
interval, as indicated in Section LIl Furthermore, the left stability boundary
corresponds to £ &~ 0, hence to a sideband-type instability; as noted in the pre-
vious section, the right stability boundary does not. For each k, and thus each
period, the authors determine approximately the value &,, where the functions
§ 7 SUD) o (Licay c[uo))\{0} TA1(§; Ao) take their maximal values, which provides
the boundaries of the stability region (in the period).
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As mentioned throughout our analysis, it is important to note that the analysis
of [BN] a priori explores regions where the eigenvalues expand as

)‘(fa AO) 5) = )\O + 5A1(€v )‘0) + 0(62)5

and is thus limited only to some particular regions of the (|¢|, §)-plane. In particular,
we stress that only the unveiling of the role of subcharacteristic conditions enables
us to prove that, though from the analysis of [BN] it is not possible to conclude
spectral stability, their numerical investigation is still sufficient to complete our
analysis.

Finally, we note that another way of carrying out these computations would be
to instead use the parameterization of eigenvalues and eigenvectors presented in
[BDJ]. In this case, one has

Xo(n) = £8iv/|n — mlln — nalln —msl,  m €] — oo, m] U 2, ms),

&=

Nm i8\/|77—771||77—772|?7—773|/K(k) dy
2K (k) K(k) 0 n— k2 +dn(y, k)’

e+ X (k) uh(y) Y Ao(n)dz
ania) = [ Ol — U ep (- [ Y,

with 91 = k2 — 1, 9 = 2k — 1, 3 = k? and ug the cnoidal wave given by setting
k = G(k) as defined in Proposition 24
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