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SHARP HARDY UNCERTAINTY PRINCIPLE AND GAUSSIAN

PROFILES OF COVARIANT SCHRÖDINGER EVOLUTIONS

B. CASSANO AND L. FANELLI

Abstract. We prove a sharp version of the Hardy uncertainty principle for
Schrödinger equations with external bounded electromagnetic potentials, based
on logarithmic convexity properties of Schrödinger evolutions. We provide, in
addition, an example of a real electromagnetic potential which produces the
existence of solutions with critical gaussian decay, at two distinct times.

1. Introduction

This paper is concerned with the sharpest possible gaussian decay, at two distinct
times, of solutions to Schrödinger equations of the type

(1.1) ∂tu = i(ΔA + V )u,

where u = u(x, t) : Rn × [0, 1] → C, and

V = V (x, t) : Rn × [0, 1] → C,

ΔA := ∇2
A, ∇A := ∇− iA, A = A(x) : Rn → R

n.

We follow a program which has been developed in the magnetic free case A ≡ 0,
in the recent years, by Escauriaza, Kenig, Ponce, and Vega in the sequel of papers
[7–11], and with Cowling in [3]. One of the main motivations is the connection with
the Hardy uncertainty principle, which can be stated as follows:

if f(x) = O
(
e−|x|2/β2

)
and its Fourier transform f̂(ξ) = O

(
e−4|ξ|2/α2

)
, then

αβ < 4 ⇒ f ≡ 0,

αβ = 4 ⇒ f is a constant multiple of e
− |x|2

β2 .

The solving formula for solutions to the free Schrödinger equation with initial datum
f in L2, namely

u(x, t) := eitΔf(x) = (2πit)−
n
2 ei

|x|2
4t F

(
ei

|·|2
4t f

)( x

2t

)
,
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gives a hint of the following PDE version of the Hardy uncertainty principle:

if u(x, 0) = O
(
e−|x|2/β2

)
and u(x, T ) := eiTΔu(x, 0) = O

(
e−|x|2/α2

)
, then

αβ < 4T ⇒ u ≡ 0,

αβ = 4T ⇒ u(x, 0) is a constant multiple of e
−
(

1
β2 + i

4T

)
|x|2

.

The corresponding L2-versions of the previous results were proved in [19] and affirm
the following:

e|x|
2/β2

f ∈ L2, e4|ξ|
2/α2

f̂ ∈ L2, αβ � 4 ⇒ f ≡ 0,

e|x|
2/β2

u(x, 0) ∈ L2, e|x|
2/α2

eiTΔu(x, 0) ∈ L2, αβ � 4T ⇒ u ≡ 0.

We mention [2, 13, 20] as interesting surveys about this topic. In the sequel of
papers [3,7–11], the authors investigated the validity of the previous statements for
zero-order perturbations of the Schrödinger equation of the form

(1.2) ∂tu = i(Δ + V (t, x))u.

An interesting contribution of the above papers is that a purely real analytical
proof of the uncertainty principle is provided, based on the logarithmic convexity
properties of weighted L2-norms of solutions to (1.2). Namely, norms of the type

H(t) := ‖ea(t)|x+b(t)|2u(t)‖L2(Rn), where a(t) is a suitable bounded function, and

b(t) is a curve in Rn are logarithmically convex in time. The interest of these
results relies on various motivations. First, since just real analytical techniques are
involved, rough potentials V ∈ L∞ can be considered, which are usually difficult to
handle by Fourier techniques. In addition, in [10] it is shown that a gaussian decay
at times 0 and T of solutions to (1.2) is not only preserved, but also improved, in
some sense, for intermediate times, up to suitably moving the center of the gaussian.
A consequence of Theorem 1 in [10] is the following: if V (t, x) ∈ L∞ is the sum of a
real-valued potential V1 and a sufficiently regular complex-valued potential V2, and

‖e|x|2/β2

u(0)‖L2 + ‖e|x|2/α2

u(T )‖L2 < +∞, with αβ < 4T , then u ≡ 0. Moreover,
the result is sharp in the class of complex potentials: indeed, Theorem 2 in [10]
provides an example of a (complex) potential V for which there exists a non-trivial
solution u 	= 0 with the above gaussian decay properties, with αβ = 4T .

The fact that the potential in [10] is complex-valued might have an appealing
connection with the examples by Cruz-Sampedro and Meshkov in [4, 17] about
unique continuation at infinity for stationary Schrödinger equations. In particu-
lar, an interesting question is still open, concerning the possibility of providing
analogous real-valued examples.

Our first result states the following: if one introduces a magnetic potential in
the hamiltonian, then real-valued examples in the spirit of Theorem 2 in [10] can
be found.

Theorem 1.1. Let n = 3, k > 3/2, and define A = A(x, y, z, t) : R3+1 → R3 and
V = V (x, y, z, t) : R3+1 → R3 as follows:

A(x, y, z, t) =
2kt

1 + t2
· z

(x2 + y2)(1 + r2)

(
xz, yz,−x2 − y2

)
,(1.3)

V (x, y, z, t) =
1

1 + r2

(
2k

1 + t2
+ 6k − 4k(1 + k)r2

1 + r2
− |A(x, y, z, t)|2

)
,(1.4)
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where r2 := x2 + y2 + z2. Then the function

(1.5) u = u(r, t) = (1 + it)2k−
n
2 (1 + r2)−ke

− (1−it)

4(1+t2)
r2

is a solution to
i∂tu+ΔAu = V u

satisfying
∥∥∥e r2

8 u(−1)
∥∥∥
L2

+
∥∥∥e r2

8 u(1)
∥∥∥
L2

< ∞.

Remark 1.2. The choice of the time interval [−1, 1] instead of [0, T ] does not lead to
the generality of the result, since by scaling one can always reduce matters to this
case (see also Remark 1.5 below). Notice that bothA and V are real-valued, and this
is (to our knowledge) a novelty. Observe moreover that A is time-dependent, and

singular all over the z-axis x = y = 0, with Coulomb-type singularity (x2 + y2)−
1
2 .

We finally remark that we are not able to generalize the above example to any
dimension n 	= 3, and it is unclear to us if this is an intrinsic obstruction or not.
The main idea relies in the expansion

ΔA = Δ− 2iA · ∇ − idivA− |A|2.
Applying this operator to the function u in (1.5), one notices that the first-order
term 2iA·∇u vanishes, since u is radial and we choose the Crönstrom gauge A·x ≡ 0;
on the other hand a purely imaginary, non-null zero-order term idivA naturally
appears, since A is real-valued. We refer to Section 2 below for the details of the
proof, which is a quite simple computation.

Theorem 1.1 motivates us to think to electromagnetic Schrödinger evolutions
as a natural setting for the study of Hardy uncertainty principles. We also need
to keep in mind the well known fact that the magnetic ground states (and hence
the corresponding standing waves) have gaussian decay (see [6] and the references
therein).

In recent years, some results in the spirit of the Hardy principle appeared, con-
cerning generic first-order perturbations of Schrödinger operators. Among the oth-
ers, Dong and Staubach in [5] proved that an uncertainty property holds, under
suitable assumptions on the lower order terms; nevertheless, a quantitative knowl-
edge of the critical constant in the gaussian weights seems to be difficult to be
found, due to the generality of the model. The paper [5] generalizes a previous
result by Ionescu and Kenig in [15], in which unique continuation from the exterior
of a ball is proved, in the same setting.

We stress that an electromagnetic field is not any first-order perturbation of a
Schrödinger operator, since it has a peculiar intrinsic algebra which has to be taken
into account. The feeling is that quantitative results could be obtained for such
operators, under geometric assumptions on the magnetic field. As an example, we
mention [1], where a non-sharp version of the Hardy uncertainty principle (with
αβ < 2T ) in the presence of (possibly large) magnetic fields has been recently
proved, inspired by the techniques in [9]. The last result of this paper improves the
ones in [1], covering the sharp range αβ < 4T . In order to settle the theorem, we
need to introduce a few notation.

In the sequel, we denote by A = (A1(x), . . . , An(x)) : Rn → Rn a real vector
field (magnetic potential). The magnetic field, denoted by B ∈ Mn×n(R), is the
antisymmetric gradient of A, namely

B = B(x) = DA(x)−DAt(x), Bjk(x) = Ak
j (x)−Aj

k(x).
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In dimension n = 3, B is identified with the vector field curlA, by the elementary
properties of antisymmetric matrices. We can now state the last result of this paper.

Theorem 1.3. Let n � 3, and let u ∈ C([0, 1];L2(Rn)) be a solution to

(1.6) ∂tu = i (ΔA + V1(x) + V2(x, t))u

in Rn × [0, 1], with A = (A1(x), . . . , An(x)) ∈ C1,ε
loc (R

n;Rn), V1 = V1(x) : R
n → R,

V2 = V2(x, t) : R
n+1 → C. Moreover, denote by B = B(x) = DA − DAt, Bjk =

Ak
j −Aj

k and assume that there exists a unit vector ξ ∈ Sn−1 such that

(1.7) ξtB(x) ≡ 0.

Finally, assume that

‖xtB‖2L∞ < ∞,(1.8)

‖V1‖L∞ < ∞,(1.9)

sup
t∈[0,1]

∥∥∥∥e |·|2
(αt+β(1−t))2 V2(·, t)

∥∥∥∥
L∞

esupt∈[0,1]‖�V2(·,t)‖L∞ < ∞,(1.10) ∥∥∥∥e |·|2
β2 u(·, 0)

∥∥∥∥
L2

+

∥∥∥∥e |·|2
α2 u(·, 1)

∥∥∥∥
L2

< ∞,(1.11)

for some α, β > 0.
The following hold:

• If αβ < 4, then u ≡ 0.
• If αβ � 4, then

sup
t∈[0,1]

∥∥∥ea(t)|·|2u(t)∥∥∥
L2(Rn)

+
∥∥∥√t(1− t)∇A(e

a(t)+ iȧ(t)
8a(t)

|·|2u)
∥∥∥
L2(Rn×[0,1])

� N

[∥∥∥∥e |·|2
β2 u(0)

∥∥∥∥
L2(Rn)

+

∥∥∥∥e |·|2
α2 u(1)

∥∥∥∥
L2(Rn)

]
,

(1.12)

with

a(t) =
αβR

2(αt+ β(1− t))2 + 2R2(αt− β(1− t))2
,

where R is the smallest root of the equation

1

2αβ
=

R

4(1 +R2)
,

and N > 0 is a constant depending on α, β and ‖V ‖L∞(Rn×[0,1]),

‖xtB‖L∞(Rn).

Remark 1.4. Notice that, apart from the local regularity assumption A ∈ C1,ε
loc ,

which is the minimal request in order to justify an approximation argument in
Lemma 3.3 below, all the hypotheses of Theorem 1.3 are in terms of B and V ,
respectfully, of the gauge invariance of the result. It is possible to prove, by standard
perturbation theory (see e.g. Proposition 2.6 in [1]), that, under the assumptions
of Theorem 1.3, the operator −ΔA − V1 is self-adjoint on L2, with form domain
H1(Rn); this fact will always be implicitly used in the rest of the paper.
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Remark 1.5. The choice of the time interval [0, 1] does not lead to the generality of
the results. Indeed, v ∈ C([0, T ], L2(Rn)) is solution to (1.1) in Rn × [0, T ] if and

only if u : [0, 1] → C, u(x, t) = T
n
4 v(

√
Tx, T t) is solution to

∂tu = i(ΔAT
u+ VT (x, t)u), in [0, 1]× R

n,

where

AT (x, t) =
√
TA(

√
Tx, T t), VT (x) = TV (

√
Tx, T t).

Moreover, observe that

‖e
|x|2
β2 v(0)‖ = ‖e

|x|2
β′2 u(0)‖, ‖e

|x|2
α2 v(T )‖ = ‖e

|x|2
α′2 u(1)‖,

sup
t∈[0,T ]

‖e
T2|x|2

(αt+β(T−t))2 v(t)‖ = sup
t∈[0,1]

‖e
|x|2

(α′t+β′(1−t))2 u(t)‖,

with β′ = T− 1
2 β, α′ = T− 1

2α.

Remark 1.6. The magnetic field in Theorem 1.3 does not depend on time, different
from the example in Theorem 1.1. Nevertheless, it could probably be possible to
generalize the result to the case of time dependent magnetic fields, by assuming the
existence of the purely magnetic flow and the L2-preservation, but this will not be
an object of study in the present paper.

Remark 1.7. Assumption (1.7) is fundamental in our strategy of proof, and it does
not allow us to include the 2D-case in the statement of Theorem 1.3, due to el-
ementary properties of antisymmetric matrices. We mention [1] for some explicit
examples of magnetic fields satisfying (1.7). It is an interesting open question if
there exist examples of magnetic fields which do not satisfy (1.7), for which the
Hardy uncertainty holds with different quantitative constants or different exponen-
tial decays. Observe that the example in (1.3) satisfies (1.7), with ξ = (0, 0, 1).
Indeed, an explicit computation shows that

B = curlA =
2kt

1 + t2
· 2z

(x2 + y2)(1 + r2)2
(−y, x, 0) .

The strategy of the proof of Theorem 1.3 is the following:

(1) first we reduce to the Crönstrom gauge x · A ≡ 0 (see Section 4.1), which
turns out to be a helpful choice;

(2) by conformal (or Appell) transformation (see Lemma 4.3), we reduce to the
case α = β, and we perform a time scaling to reduce to the time interval
[−1, 1] (see Section 4.2);

(3) we prove Theorem 1.3 in the case μ := α = β (see Section 4.3);
(4) we translate the result in terms of the original solution, by inverting the

transformations in step (2), thus obtaining the final result.

The key ingredient is Lemma 3.3 below, which comes into play in the proof of
step (3). This is based on an iteration scheme, introduced in [10]: by successive
approximations, we can start an iterative improvement of the decay assumption
(1.11), by suitably moving the center of the gaussian weight. In the limit, this
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argument leads to an optimal choice of the function a = a(t) : [−1, 1] → R for
which the estimate

(1.13) ‖ea(t)|x|2u(x, t)‖L∞
t ([−1,1])L2

x(R
n) � C(α, β, T, ‖V ‖L∞ , ‖xtB‖L∞)

holds. The presence of a magnetic field makes things quite more complicated, once
the iteration starts, as we see in the sequel. The rest of the paper is devoted to the
proofs of our main theorems.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is a straightforward computation. First, we expand
the magnetic Laplace operator and rewrite

(i∂t +ΔA)u = (i∂t +Δ) u− 2iA · ∇xu− i(divxA)u− |A|2u.

Now we compute

(i∂t +Δ) u =
1

1 + r2

(
2k

1 + it
+ 6k − 4k(k + 1)r2

1 + r2

)
=

1

1 + r2

(
− 2ikt

1 + t2
+

2k

1 + t2
+ 6k − 4k(k + 1)r2

1 + r2

)
,

where u is given by (1.5). Observe that, since u is radial and A · x ≡ 0 by the
definition (1.3), we have A · ∇xu ≡ 0. Finally, another direct computation gives

idivxA = − 2ikt

1 + t2
· 1

1 + r2
.

In conclusion,

(i∂t +ΔA)u =
1

1 + r2

(
2k

1 + t2
+ 6k − 4k(k + 1)r2

1 + r2
− |A|2

)
= V u,

by the definition (1.4), which completes the proof.
The rest of the paper is devoted to the proof of Theorem 1.3.

3. Some preliminary lemmata

Let us fix some notation and recall some results from [10] and [1]. We denote

(f, g) :=

∫
Rn

fḡ dx, H(f) = ‖f‖2 := (f, f),

for f, g ∈ L2(Rn).

Lemma 3.1 ([10], Lemma 2). Let S be a symmetric operator, A a skew-symmetric
one, both allowed to depend on the time variable, and f a smooth enough function.
Moreover, let γ : [c, d] → (0,+∞) and ψ : [c, d] → R be smooth functions. If

(3.1) (γ Stf(t) + γ [S,A]f(t) + γ̇ Sf(t), f(t)) � −ψ(t)H(t), t ∈ [c, d],

then, for all ε > 0,

H(t) + ε � e2T (t)+Mε(t)+2Nε(t)(H(c) + ε)θ(t)(H(d) + ε)1−θ(t), t ∈ [c, d],
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where T and Mε verify{
∂t(γ∂tT ) = −ψ, t ∈ [c, d],
T (c) = T (d) = 0,

{
∂t(γ∂tMε) = −γ ‖∂tf−Sf−Af‖2

H+ε , t ∈ [c, d],

Mε(c) = Mε(d) = 0,

Nε =

∫ d

c

∣∣∣∣� ((∂s − S −A)f(s), f(s))

H(s) + ε

∣∣∣∣ ds, θ(t) =

∫ d

t
ds
γ∫ d

c
ds
γ

.

Moreover,

∂t(γ ∂tH − γ �(∂tf − Sf −Af, f)) + γ ‖∂tf − Sf −Af‖2

� 2(γ Stf + γ [S,A]f + γ̇ Sf, f).
(3.2)

For ϕ = ϕ(x, t) : Rn+1 → R, we can write

eϕ(x,t)(∂t − iΔA)e
−ϕ(x,t) = ∂t − S −A,

where

S = −i (Δxϕ+ 2∇xϕ · ∇A) + ϕt,(3.3)

A = i
(
ΔA + |∇xϕ|2

)
(3.4)

(see [1]). Observe that S and A are respectively a symmetric and a skew-symmetric
operator. Our first goal is to apply Lemma 3.1 with a suitable choice of S,A. In
order to do this, we need to obtain the lower bound (3.1) when S and A are given
by (3.3) and (3.4), respectively. This is done in the following lemma, analogous to
[10], Lemma 3.

Lemma 3.2. Let

ϕ(x, t) = a(t)|x+ b(t)|2,
a = a(t) : R → R, b = b(t) = b(t)ξ : R → R

n, ξ ∈ S
n−1,

(3.5)

and S,A be defined as in (3.3) and (3.4). Assume that

x ·At(x) = 0,

b ·At(x) = 0,
(3.6)

for all x ∈ R
n and assume (1.7). Assume moreover

(3.7) F (a, γ) = γ

(
ä+ 32a3 − 3ȧ2

2a
− a

2

(
ȧ

a
+

γ̇

γ

)2
)

> 0 in [c, d].

Then, for a smooth enough function f ,

(3.8)

((γSt + γ[S,A] + γ̇S)f, f)

� −
((

γ2a2|b̈|2

F (a, γ)
+ 2γa‖xtB‖2L∞

)
f, f

)
, for all t ∈ [c, d].
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Proof. The proof is analogous to the one of Lemma 3 in [10], with some additional
magnetic terms to be considered. Explicit computations (see Lemma 2.9 in [1])
give:

∫
Rn

Sff̄ dx =

∫
Rn

[
−i(2na|f |2 + 4a(x+ b) · ∇Aff̄)

]
dx

+

∫
Rn

[
ȧ|x+ b|2|f |2 + 2aḃ · (x+ b)|f |2

]
dx,∫

Rn

Aff̄ dx =

∫
Rn

[
(iΔAf + 4ia2|x+ b|2f)f̄

]
dx,∫

Rn

[S,A]ff̄ dx =

∫
Rn

[
8a|∇Af |2 + 32a3|x+ b|2|f |2

]
dx

−
∫
Rn

[
4�[f 2a(x+ b)tB∇Af ]

]
dx

+

∫
Rn

[
4�[f̄ ȧ(x+ b) · ∇Af + f̄aḃ · ∇Af ]

]
dx,

∫
Rn

Stff̄ dx =

∫
Rn

[
2�[(2ȧ(x+ b) + 2aḃ) · ∇Af ]f̄

]
dx

+

∫
Rn

[
ä|x+ b|2 − 4a(x+ b) ·At

]
|f |2 dx

+

∫
Rn

[
4ȧḃ · (x+ b) + 2ab̈ · (x+ b) + 2a|ḃ|2

]
|f |2 dx.

Summing up we get

∫
Rn

(γSt + γ[S,A] + γ̇S)ff̄ dx

=

∫
Rn

(äγ + 32a3γ + γ̇ȧ)|x+ b|2|f |2 dx

+

∫
Rn

[(4γȧḃ+ 2γab̈+ 2γ̇aḃ) · (x+ b) + 2γa|ḃ|2]|f |2 dx

+

∫
Rn

8γa|∇Af |2 + 2�(−i∇Af) · (4γaḃf) dx

+

∫
Rn

2�(−i∇Af) · ((2γ̇a+ 4γȧ)(x+ b)f) dx

−
∫
Rn

4�(γf2a(x+ b)tB∇Af) dx

−
∫
Rn

4aγ (x+ b) ·At|f |2 dx.
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The last term in the previous equation vanishes, because of (3.6). Completing the
squares in the previous equation we get∫

Rn

(γSt + γ[S,A] + γ̇S)ff̄ dx

=

∫
Rn

8γa

∣∣∣∣∣−i∇Af +
ḃ

2
f +

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

∣∣∣∣∣
2

dx

+

∫
Rn

F (a, γ)

∣∣∣∣∣x+ b+
aγb̈

F (a, γ)

∣∣∣∣∣
2

|f |2 dx− γ2a2|b̈|2

F (a, γ)

∫
Rn

|f |2 dx

− 8γa

∫
Rn

�(f(x+ b)tB∇Af) dx.

(3.9)

Thanks to hypothesis (1.7) and the fact that B is antisymmetric, we have

f(x+ b)tB∇Af = fxtB∇Af = fxtB

(
∇Af + i

ḃ

2
f + i

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

)
,

for almost all x ∈ Rn, t ∈ [0, 1].
We can finally estimate

8γa�
∫
Rn

f(x+ b)tB∇Af dx

= 8γa�
∫
Rn

fxtB

(
−i∇Af +

ḃ

2
f +

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

)
dx

� 2γa‖xtB‖2L∞

∫
Rn

|f |2 dx

+ 8γa

∫
Rn

∣∣∣∣∣−i∇Af +
ḃ

2
f +

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

∣∣∣∣∣
2

dx,

which proves the result. �

We now choose

γ := a−1,

hence

F (a) := F (a, γ) =
1

a

(
ä+ 32a3 − 3ȧ2

2a

)
.

The next result is the key ingredient in the proof of our main Theorem 1.3. Its
magnetic-free version B ≡ 0 has been proved in [10].

Lemma 3.3 (Improved decay). Let u ∈ C([−1, 1], L2(Rn)) be a solution to

∂tu = i(ΔAu+ V (x, t)u) in R
n × [−1, 1],

with V a bounded complex-valued potential and A ∈ W 1+ε,∞
loc (Rn). Assume that,

for some μ > 0,

(3.10) sup
t∈[−1,1]

‖eμ|x|2u(t)‖ < +∞,
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and, for a : [−1, 1] → (0,+∞), smooth, even and such that ȧ � 0, a(1) = μ, a � μ,
and F (a) > 0 in [−1, 1], we have

(3.11) sup
t∈[−1,1]

‖e(a(t)−ε)|x|2u(t)‖ < +∞ for all ε > 0.

Then, for b = b(t) = b(t)ξ : [−1, 1] → Rn, smooth, such that b(−1) = b(1) = 0,
(3.12)

‖ea(t)|x+b(t)|2u(t)‖ � eT (t)+2‖V ‖L∞+
‖V ‖2

L∞
4 sup

t∈[−1,1]

‖eμ|x|2u(t)‖, −1 � t � 1,

where T is defined by{
∂t

(
1
a∂tT

)
= −

(
|b̈|2
F (a) + 2‖xtB‖2L∞

)
in [−1, 1],

T (−1) = T (1) = 0.

Moreover, there is Ca > 0 such that

‖
√
1− t2∇A(e

a+ iȧ
8a |x|2u)‖L2(Rn×[−1,1])

+ Ca‖
√
1− t2ea(t)|x|

2∇Au‖L2(Rn×[−1,1])

� e2‖V ‖L∞+
‖V ‖2

L∞
4 sup

t∈[−1,1]

‖eμ|x|2u(t)‖.

(3.13)

Proof. Extend u to Rn+1 as u ≡ 0 when |t| > 1 and, for ε > 0, set

aε(t) := a(t)− ε, gε(x, t) = eaε(t)|x|2u(x, t), fε(x, t) = eaε(t)|x+b(t)|2u(x, t).

The function fε is in L∞([−1, 1], L2(Rn)) and satisfies

∂tfε − Sεfε −Aεfε = iV (x, t)fε

in the sense of distribution, i.e.∫
Rn

fε(−∂sζ − Sεζ +Aεζ) dyds = i

∫
Rn

V fεζ̄ dyds

for all ζ ∈ C∞
0 (Rn × (−1, 1)), where Sε and Aε are defined as S and A are in

(3.3), (3.4) with aε in place of a. We denote here Sx,t
ε , Ax,t

ε and Sy,s
ε , Ay,s

ε as the
operators acting on the variables x, t and y, s respectively.

Since all the previous results make sense for regular functions, the strategy is to
mollify the function fε, obtain results for the new regular function, and uniformly
control the errors. Then let θ ∈ C∞(Rn+1) be a standard mollifier supported in
the unit ball of Rn+1 and, for 0 < δ � 1

4 , set gε,δ = gε ∗ θδ, fε,δ = fε ∗ θδ, and

θx,tδ (y, s) = δ−n−1θ

(
x− y

δ
,
t− s

δ

)
.

The functions fε,δ and gε,δ are in C∞([−1, 1],S(Rn)).
By continuity, there exists εa > 0 such that

F (aε) �
F (a)

2
, in [−1, 1],

when 0 < ε � εa, and for such an ε > 0 it is possible to find δε > 0, with δε
approaching zero as ε tends to zero, such that(

a(t)− ε

2

)
|x|2 � μ|x|2,

(
a(t)− ε

2

)
|x+ b(t)|2 � μ|x|2,
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when x ∈ Rn, 1 − δε � |t| � 1. In the following we assume 0 < ε � εa and
0 < δ � δε.

We can apply Lemma 3.1 to fε,δ, withHε,δ(t)=‖fε,δ(t)‖2, [c, d]=[−1 + δε, 1− δε],
γ = a−1

ε , S = Sε and A = Aε. It turns out that

(3.14) Hε,δ(t) �
(

sup
t∈[−1,1]

‖eμ|x|2u(t)‖+ ε

)2

e2Tε(t)+Mε,δ(t)+2Nε,δ(t)

when |t| � 1− δε, and where Tε, Mε,δ and Nε,δ are defined by{
∂t(

1
aε
∂tTε) = − |b̈|2

F (aε)
− 2‖xtB‖2L∞ , t ∈ [−1 + δε, 1− δε],

T (−1 + δε) = T (1− δε) = 0,
(3.15) {

∂t(
1
aε
∂tMε,δ) = − 1

aε

‖∂tfε,δ−Sεfε,δ−Aεfε,δ‖2

Hε,δ+ε , t ∈ [−1 + δε, 1− δε],

Mε,δ(−1 + δε) = Mε,δ(1− δε) = 0,
(3.16)

Nε,δ =

∫ 1−δε

−1+δε

‖(∂s − Sε −Aε)fε,δ(s)‖√
Hε,δ(s) + ε

ds.(3.17)

In order to let δ → 0 in (3.14), (3.15), (3.16), (3.17), we compute

(∂tfε,δ − Sx,t
ε fε,δ −Ax,t

ε fε,δ)(x, t)

=

∫
Rn

fε(y, s)(−∂sθ
x,t
δ (y, s)) dyds+

∫
Rn

(−Sx,t
ε −Ax,t

ε )fε(y, s)θ
x,t
δ (y, s) dyds

=

∫
Rn

fε(y, s)(−∂s − Sy,s
ε +Ay,s

ε )θx,tδ (y, s) dyds

+

∫
Rn

fε(y, s)(−Sx,t
ε −Ax,t

ε + Sy,s
ε −Ay,s

ε )θx,tδ (y, s) dyds.

Making explicit the term in the previous relation, we get

(∂tfε,δ − Sx,t
ε fε,δ −Ax,t

ε fε,δ)(x, t)

=

∫
Rn

fε(y, s)(−∂s − Sy,s
ε +Ay,s

ε )θx,tδ (y, s) dyds

+

∫
Rn

fε(y, s)[(ȧε(s) + 4ia2ε(s))|y + b(s)|2 − (ȧε(t)

+ 4ia2ε(t))|x+ b(t)|2]θx,tδ (y, s) dyds

+

∫
Rn

fε(y, s)[2aε(s)ḃ(s) · (y + b(s))− 2aε(t)ḃ(t) · (x+ b(t))]θx,tδ (y, s) dyds

+ 4i

∫
Rn

fε(y, s)[aε(s)(y + b(s)) · ∇A,y + aε(t)(x+ b(t)) · ∇A,x]θ
x,t
δ (y, s) dyds

+

∫
Rn

2infε(y, s)[aε(s) + aε(t)]θ
x,t
δ (y, s) dyds

− i

∫
Rn

fε(y, s)[ΔA,x −ΔA,y]θ
x,t
δ (y, s) dyds =: I + II + II + IV + V + V I.

(3.18)
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Since ∇xθ
x,t
δ (y, s) = −∇yθ

x,t
δ (y, s), we have

IV =4i

∫
Rn

fε(y, s)[aε(s)(y + b(s))− aε(t)(x+ b(t))] · ∇yθ
x,t
δ (y, s)] dyds

+ 4

∫
Rn

fε(y, s)[−aε(s)(y + b(s)) ·A(y)+aε(t)(x+ b(t)) ·A(x)]θx,tδ (y, s) dyds.

(3.19)

Moreover, recalling that

ΔAf = ∇2
Af = Δf − i(∇ ·A)f − 2iA · ∇f − |A|2f

and Δyθ
x,t
δ (y, s) = Δxθ

x,t
δ (y, s), we obtain

V I =

∫
Rn

fε(y, s)
[
−(∇x ·A(x) +∇y ·A(y)) + 2(A(x)−A(y)) · ∇y

+i(|A(x)|2 − |A(y)|2)
]
θx,tδ (y, s) dyds.

(3.20)

By (3.18), (3.19), (3.20) we can hence write

(3.21) (∂tfε,δ −Sx,t
ε fε,δ −Ax,t

ε fε,δ)(x, t) = i(V fε)∗θδ(x, t)+Aε,δ(x, t)+Bε,δ(x, t),

where

Aε,δ(x, t)

=

∫
Rn

fε(y, s)[(ȧε(s) + 4ia2ε(s))|y + b(s)|2

− (ȧε(t) + 4ia2ε(t))|x+ b(t)|2]θx,tδ (y, s) dyds

+

∫
Rn

fε(y, s)[2aε(s)ḃ(s) · (y + b(s))− 2aε(t)ḃ(t) · (x+ b(t))]θx,tδ (y, s) dyds

+ 4

∫
Rn

fε(y, s)[aε(t)(x+ b(t)) ·A(x)− aε(s)(y + b(s)) ·A(y)]θx,tδ (y, s) dyds

+ i

∫
Rn

fε(y, s)[|A(x)|2 − |A(y)|2]θx,tδ (y, s) dyds,

and

Bε,δ(x, t)

= 4i

∫
Rn

fε(y, s)[4i(aε(s)(y + b(s))− aε(t)(x+ b(t))) + 2(A(x)−A(y))]

· ∇yθ
x,t
δ (y, s)] dyds

+

∫
Rn

fε(y, s)[2in(aε(s) + aε(t))− (∇x ·A(x) +∇y ·A(y))]θx,tδ (y, s) dyds.

Since aε, b are smooth, and A ∈ C1,ε
loc , there is a Na,b,A,ε > 0 such that

‖Aε,δ‖L2(Rn×[−1+δ,1−δ]) � δNa,b,A,ε sup
t∈[−1,1]

‖e(a(t)− ε
2 )|x|

2

u(t)‖,(3.22)

‖Bε,δ‖L2(Rn×[−1+δ,1−δ]) �Na,b,A,ε sup
t∈[−1,1]

‖e(a(t)− ε
2 )|x|

2

u(t)‖.(3.23)

Moreover,

(3.24) sup
t∈[−1,1]

‖(V fε) ∗ θδ(t)‖ � ‖V ‖L∞(Rn×[−1,1]) sup
t∈[−1,1]

‖e(a(t)− ε
2 )|x|

2

u(t)‖.
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The function gε,δ verifies analogous relations, obtained by setting b ≡ 0 in the
previous equations.

Since the fε,δ and gε,δ are now regular, (3.2) holds. Therefore,

∂t

(
1

aε
∂tHε,δ −

1

aε
�(∂tgε,δ − Sεgε,δ −Aεgε,δ, gε,δ)

)
+

1

aε
‖∂tgε,δ − Sεgε,δ −Aεgε,δ‖2

� 2

(
1

aε
Sεtgε,δ +

1

aε
[Sε,Aε]gε,δ −

ȧε
a2ε

Sεgε,δ, gε,δ

)
.

(3.25)

Moreover, from (3.9) in the proof of Lemma 3.2, with γ = 1/aε and b ≡ 0, we get∫
Rn

(
1

aε
Sεt +

1

aε
[Sε,Aε]−

ȧε
a2ε

Sε

)
gε,δ ḡε,δ dx

=

∫
Rn

8

∣∣∣∣−i∇Agε,δ +

(
ȧε
4aε

)
xgε,δ

∣∣∣∣2 dx+

∫
Rn

F (aε)|x|2|gε,δ|2 dx

− 8

∫
Rn

�(gε,δ xtB∇Agε,δ) dx.

(3.26)

Since F (aε) > 0, there exists a constant C > 0 depending on a, such that we have∫
Rn

8

∣∣∣∣−i∇Agε,δ +

(
ȧε
4aε

)
xgε,δ

∣∣∣∣2 dx+

∫
Rn

F (aε)|x|2|gε,δ|2 dx

�
∫
Rn

∣∣∣∇A

(
e

iȧε
8aε

|x|2gε,δ

)∣∣∣2 dx+ Ca

∫
Rn

|∇Agε,δ|2 + |x|2|gε,δ|2 dx.
(3.27)

Moreover there exists an arbitrarily small η > 0 such that
(3.28)

−8

∫
Rn

�(gε,δ xtB∇Agε,δ) dx � −16

η
‖xtB‖2L∞

∫
Rn

|gε,δ|2 dx− η

∫
Rn

|∇Agε,δ|2 dx.

By (3.25), (3.26), (3.27), (3.28), we get∫
Rn

∣∣∣∇A

(
e

iȧε
8aε

|x|2gε,δ
)∣∣∣2 dx+ C

∫
Rn

|∇Agε,δ|2 + |x|2|gε,δ|2 dx

� ∂t

(
1

aε
∂tHε,δ −

1

aε
�(∂tgε,δ − Sεgε,δ −Aεgε,δ, gε,δ)

)
+

1

aε
‖∂tgε,δ − Sεgε,δ −Aεgε,δ‖2 +D‖xtB‖2L∞Hε,δ,

(3.29)

for some constants C,D > 0 depending on a. Multiplying the last inequality by
(1− δε)

2 − t2, and integrating by part in time, we get

‖
√
(1− δε)2 − t2∇Agε,δ‖L2(Rn×[−1+δε,1−δε])

� Na,B,ε,

and analogously

‖
√
(1− δε)2 − t2∇Afε,δ‖L2(Rn×[−1+δε,1−δε])

� Na,b,B,ε,

thanks to (3.21), (3.22), and (3.23). Letting δ tend to zero, we find that

‖
√
(1− δε)2 − t2∇Afε‖L2(Rn×[−1+δε,1−δε])

� Na,b,B,ε,
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which makes it possible to integrate in time by parts the first term in Bε,δ, obtaining

Bε,δ(x, t) =−
∫
Rn

∇yfε(y, s) · [4i(aε(s)(y + b(s))− aε(t)(x+ b(t)))]θx,tδ (y, s) dyds

−
∫
Rn

∇yfε(y, s) · [2(A(x)−A(y))]θx,tδ (y, s) dyds

+

∫
Rn

fε(y, s)[2in(aε(t)− aε(s))+(∇y ·A(y)−∇x ·A(x))]θx,tδ (y, s) dyds.

This, together with the fact that A ∈ C1,ε
loc , allows us to finally get

(3.30) ‖Bε,δ‖L2(Rn,[−1+δε,1−δε])
� δNa,b,A,ε,

when 0 < δ � δε, which improves (3.23).
Thanks to the above convergence results, we have fε is in C∞((−1, 1), L2(Rn))

and Hε,δ converges uniformly on compact sets of (−1, 1) to Hε(t) = ‖fε(t)‖2. Let-
ting δ and ε tend to zero, we finally get

‖ea(t)|x+b(t)|2u(t)‖2 � sup
t∈[−1,1]

‖eμ|x|2u(t)‖e2T (t)+M(t)+4‖V ‖L∞

when |t| � 1, with {
∂t

(
1
a∂tM

)
= − 1

a‖V ‖2L∞ ,
M(−1) = M(1) = 0.

Notice that M is even, and

M(t) = ‖V ‖2L∞

∫ 1

t

∫ s

0

a(s)

a(τ )
dτds, in [0, 1],

and, since a is monotone in [0, 1], we get (3.12). Using (3.27) again, analogously
we have

‖
√
(1− δε)2 − t2∇A(e

iȧε
8aε

|x|2gε,δ)‖L2(Rn×[−1+δε,1−δε])

+ Ca‖
√
(1− δε)2 − t2∇Agε,δ‖L2(Rn×[−1+δε,1−δε])

+ Ca‖
√
(1− δε)2 − t2xgε,δ‖L2(Rn×[−1+δε,1−δε])

� Ce2‖V ‖L∞+
‖V ‖2

L∞
4 sup

t∈[−1,1]

‖eμ|x|2u(t)‖+ δNa,ε,A,B ,

for C = C(‖V ‖∞, ‖xtB‖∞). Letting δ and ε go to zero, we get (3.13) and we
conclude the proof. �

4. Proof of Theorem 1.3

For convenience, we will denote

MB := 2‖xtB‖2L∞ < +∞,(4.1)

MV := 2‖V ‖L∞ +
‖V ‖2

4
< +∞.(4.2)

The proof is divided into several steps.
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4.1. Crönstrom gauge. The first step consists of reducing to the Crönstrom
gauge

x ·A(x) = 0 for all x ∈ R
n,

by means of the following result.

Lemma 4.1. Let A = A(x) = (A1(x), . . . , An(x)) : Rn → Rn, for n � 2 and

denote B = DA −DAt ∈ Mn×n(R), Bjk = Ak
j − Aj

k, and Ψ(x) := xtB(x) ∈ Rn.
Assume that the two vector quantities

(4.3)

∫ 1

0

A(sx) ds ∈ R
n,

∫ 1

0

Ψ(sx) ds ∈ R
n

are finite, for almost every x ∈ R
n; moreover, define the (scalar) function

(4.4) ϕ(x) := x ·
∫ 1

0

A(sx) ds ∈ R.

Then, the following two identities hold:

Ã(x) := A(x)−∇ϕ(x) = −
∫ 1

0

Ψ(sx) ds,(4.5)

xtDÃ(x) = −Ψ(x) +

∫ 1

0

Ψ(sx) ds.(4.6)

Remark 4.2. Notice that

(4.7) x · Ã(x) ≡ 0, x · xtDÃ(x) ≡ 0.

From now on, we will hence assume, without loss of generality, that (4.7) are
satisfied by A. Observe moreover that assumption (1.7) in Theorem 1.3 is preserved
by the above gauge transformation, and we have in addition that A · ξ ≡ 0. We
also remark that

‖Ã‖2L∞ + ‖xtB‖2L∞ � MB.

Finally notice that the first condition in (4.3) is guaranteed by the assumption

A ∈ C1,ε
loc in Theorem 1.3.

We mention [16] for the proof of the previous lemma; see alternatively Lemma
2.2 in [1].

4.2. Appell transformation. Following the strategy in [1,9,10], the second step is
to reduce assumption (1.11) to the case α = β, by pseudoconformal transformation
(Appell transformation).

Lemma 4.3 ([1], Lemma 2.7). Let A = A(y, s) = (A1(y, s), . . . , An(y, s)) : Rn+1 →
Rn, V = V (y, s), F = F (y, s) : Rn → C, u = u(y, s) : Rn × [0, 1] → C be a solution
to

(4.8) ∂su = i (ΔAu+ V (y, s)u+ F (y, s)) ,

and define, for any α, β > 0, the function

(4.9) ũ(x, t) :=

( √
αβ

α(1− t) + βt

)n
2

u

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) .

Then ũ is a solution to

(4.10) ∂tũ = i

(
ΔÃũ+

(α− β)Ã · x
(α(1− t) + βt)

ũ+ Ṽ (x, t)ũ+ F̃ (x, t)

)
,
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where

Ã(x, t) =

√
αβ

α(1− t) + βt
A

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
,

(4.11)

Ṽ (x, t) =
αβ

(α(1− t) + βt)2
V

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
,

(4.12)

F̃ (x, t) =

( √
αβ

α(1− t) + βt

)n
2 +2

F

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) .

(4.13)

Remark 4.4. The term containing Ã ·x vanishes (see Remark 4.2 above). Moreover,

assumptions (4.1) and (4.2) still hold for B̃ and Ṽ . We finally remark that Ã is
time dependent. Nevertheless, notice that

(4.14) x · Ãt(x) = 0, ξ · Ãt(x) = 0,

for all x ∈ Rn, t ∈ [0, 1].

By direct computations, we have∥∥∥∥e |·|2
αβ ũ(0)

∥∥∥∥
L2

=

∥∥∥∥e |·|2
β2 u(0)

∥∥∥∥
L2

,

∥∥∥∥e |·|2
αβ ũ(1)

∥∥∥∥
L2

=

∥∥∥∥e |·|2
α2 u(1)

∥∥∥∥
L2

,

sup
t∈[0,1]

∥∥∥∥e |·|2
αβ ũ(t)

∥∥∥∥
L2

= sup
t∈[0,1]

∥∥∥∥e |·|2
(αt+β(1−t))2 u(t)

∥∥∥∥
L2

.

For convenience, we change the time interval in [−1, 1]: let v(x, t) = 2−
n
4 ũ

(
x√
2
, 1+t

2

)
.

The function v is a solution to

∂tv = i(ΔAv + Vv), in R
n × [−1, 1],

with

A(x, t) =
1√
2
A

(
x√
2
,
1 + t

2

)
, V(x, t) = 1

2
V

(
x√
2
,
1 + t

2

)
.

The assumptions of Theorem 1.3 still hold (up to a change of the constants), and
moreover ∥∥∥∥e |·|2

2αβ v(0)

∥∥∥∥
L2

=

∥∥∥∥e |·|2
αβ ũ(0)

∥∥∥∥
L2

=

∥∥∥∥e |·|2
β2 u(0)

∥∥∥∥
L2

,∥∥∥∥e |·|2
2αβ v(1)

∥∥∥∥
L2

=

∥∥∥∥e |·|2
αβ ũ(1)

∥∥∥∥
L2

=

∥∥∥∥e |·|2
α2 u(1)

∥∥∥∥
L2

,

sup
t∈[−1,1]

∥∥∥∥e |·|2
2αβ v(t)

∥∥∥∥
L2

= sup
t∈[0,1]

∥∥∥∥e |·|2
αβ ũ(t)

∥∥∥∥
L2

= sup
t∈[0,1]

∥∥∥∥e |·|2
(αt+β(1−t))2 u(t)

∥∥∥∥
L2

.

We set

(4.15) μ :=
1

2αβ
.
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The basic ingredient of our proof is the following logarithmic convexity estimate:

sup
t∈[−1,1]

∥∥∥eμ|·|2v(t)∥∥∥
L2(Rn)

= sup
t∈[0,1]

∥∥∥∥e |·|2
(αt+β(1−t))2 u(t)

∥∥∥∥
L2(Rn)

(4.16)

� C sup
t∈[0,1]

∥∥∥∥e |·|2
β2 u(·, 0)

∥∥∥∥
β(1−t)

αt+β(1−t)

L2

∥∥∥∥e |·|2
α2 u(·, 1)

∥∥∥∥ αt
αt+β(1−t)

L2

� C

(∥∥∥∥e |·|2
β2 u(·, 0)

∥∥∥∥
L2

+

∥∥∥∥e |·|2
α2 u(·, 1)

∥∥∥∥
L2

)
< +∞,

with

C = C

(
α, β, ‖xtB‖L∞ , ‖V1‖L∞ , sup

t∈[0,1]

∥∥∥∥e |·|2
(αt+β(1−t))2 V2(·, t)

∥∥∥∥
L∞

·esupt∈[0,1]‖�V2(·,t)‖L∞
)
.

For the proof of (4.16) see Theorem 1.5 in [1]. From now on, we denote v, A and
V by u, A and V .

We follow the same strategy as in [10], which is based on an iteration scheme.
The argument here is a bit more delicate, due to the presence of additional terms
involving the magnetic field.

4.3. Conclusion of the Proof. We now apply an iteration scheme which is com-
pletely analogous to the one performed in [10]. The idea is to get the best possible
choice for a(t) such that an estimate like

(4.17) ‖ea(t)|x|2u(x, t)‖L∞
t ([−1,1])L2

x(R
n) � C(α, β, T, ‖V ‖L∞ ,MB)

holds. In order to do this, we will construct a as the limit of an appropriate
sequence aj(t), having in mind the improvement result of Lemma 3.3. At each
step of the procedure, assumptions (3.10) and (3.11) have to be checked. Also the
curve b(t) = b(t)ξ, with ξ ∈ Sn−1 as in (1.7), is naturally involved in the following
argument.

4.3.1. Iteration scheme. Let us first construct the iteration scheme. Assume that k
even and smooth functions aj : [−1, 1] → (0,+∞) and Caj

> 0, j = 1, . . . , k, have
been generated, such that
(4.18)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ ≡ a1 < a2 < · · · < ak in (−1, 1),

ȧj � 0 in [0, 1], F (aj) > 0 in [−1, 1], aj(±1) = μ,

supt∈[−1,1]‖eaj(t)|·|2u(·, t)‖ � eMB

∫ 1
0
saj(s) dseMV supt∈[−1,1]‖eμ|·|

2

u(·, t)‖,

‖
√
1− t2∇A(e

aj+
iȧj
8aj

|x|2
u)‖L2(Rn×[−1,1]) + Caj

‖
√
1− t2eaj(t)|x|2∇Au‖L2(Rn×[−1,1])

� CeMV supt∈[−1,1]‖eμ|·|
2

u(·, t)‖,
where C = C(‖V ‖∞, ‖xtB‖∞) > 0, for all j = 1, . . . , k.

The construction is identical to the one in [10]; we repeat it here for the sake of

completeness. In order to simplify notation, set ck := a
− 1

2

k . Let bk : [−1, 1] → R be
the solution to

(4.19)

{
b̈k = −F (ak)

ak
= −2ck(16c

−3
k − c̈k),

bk(±1) = 0.
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Observe that bk is even and

(4.20) bk(t) =

∫ 1

t

∫ s

0

F (ak(τ ))

ak(τ )
dτds in [−1, 1];

moreover, ḃk < 0 in (0, 1]. Now apply (3.12) in Lemma 3.3 with a = ak and b = bkη,
for η ∈ Rξ = {pξ | p ∈ R}. We get

(4.21) ‖eak(t)| ·+bk(t)η|2u(·, t)‖L2(Rn) � eTk(t)+MV sup
t∈[−1,1]

‖eμ|·|2u(·, t)‖L2(Rn),

with {
∂t

(
1
a∂tTk

)
= −

(
|b̈k|2|η|2
F (ak)

+MB

)
= −

(
F (ak)|η|2

a2
k

+MB

)
in [−1, 1],

Tk(±1) = 0.

Tk is even and, remembering that ak(s) � ak(τ ) if τ � s,

Tk(t) =

∫ 1

t

∫ s

0

(
ak(s)

ak(τ )

F (ak(τ ))|η|2

ak(τ )
+ ak(s)MB

)
dτds

� |η|2
∫ 1

t

∫ s

0

F (ak(τ ))

ak(τ )
dτds+MB

∫ 1

t

sak(s) ds

= bk(t)|η|2 +MB

∫ 1

t

sak(s) ds,

for t ∈ (−1, 1). Therefore the right hand side of (4.21) can be estimated as follows:∫
Rn

e2ak(t)|x+bk(t)η|2 |u(t)|2 dx � ebk(t)|η|
2

eMB

∫ 1
t
sak(s) dseMV sup

t∈[−1,1]

‖eμ|·|2u(·, t)‖.

Consequently we obtain∫
Rn

e2ak(t)|x|2−2η2bk(t)(1−ak(t)bk(t))+4ak(t)bk(t)x·η|u(t)|2 dx

� eMB

∫ 1
t
sak(s) dseMV sup

t∈[−1,1]

‖eμ|·|2u(·, t)‖.
(4.22)

Notice that, since ak is continuous in [−1, 1], we can estimate

eMB

∫ 1
t
sak(s) ds � Ck < +∞.

By (4.22), the check to be performed is concerned with the sign of 1−ak(0)bk(0).
If 1− ak(0)bk(0) � 0, then by (4.22) u ≡ 0 and the scheme stops.
If 1 − ak(0)bk(0) > 0, then 1 − ak(t)bk(t) > 0 for all t ∈ [−1, 1], because of the

monotonicity of ak and bk. In this case, we define the (k + 1)−th functions ak+1

and ck+1 as follows:

(4.23) ak+1 =
ak

1− akbk
, ck+1 = a

− 1
2

k+1.

We prove that the new defined ak+1 verifies the requests of (4.18). Indeed it is
easily seen that ak+1 is even, ak+1(±) = μ, ak < ak+1 in (−1, 1), ȧk+1 � 0 in [0, 1].
The proof that F (ak+1) > 0 in [−1, 1] deserves some comment: recall that

F (ak+1) = 2c−1
k+1(16c

−3
k+1 − c̈k+1);
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moreover, from (4.23),

ck+1 = (c2k − bk)
1
2 ,

c̈k+1 = c−3
k+1

(
16− ḃ2k

4
+ ck ċkḃk − ċ2kbk − 16c−2

k bk

)
.

From (4.18) and (4.20), we get ċk ḃk � 0 and 16bkc
−2
k + b2k > 0 in [−1, 1]; hence

16c−3
k+1 − c̈k+1 > 0.

Multiplying (4.22) by exp(−2εbk(t)|η|2), ε > 0, and integrating the correspond-
ing inequality on the line Rξ, with respect to η, we get

(4.24) sup
t∈[−1,1]

‖eaε
k+1(t)|·|2u(·, t)‖ � Ck(1 + ε−1)

n
4 eMV sup

t∈[−1,1]

‖eμ|·|2u(·, t)‖,

with

aεk+1 =
(1 + ε)ak

1 + ε− akbk
.

Thanks to (4.24), we have

sup
t∈[−1,1]

‖e(ak+1(t)−ε)|·|2u(·, t)‖ < +∞, for all ε > 0.

Using the previous estimate, we can conclude that (4.18) holds up to j = k + 1,
thanks to Lemma 3.3.

4.3.2. Application of the iteration scheme. Let us describe the first step of the
iteration. Choose a1(t) ≡ μ, for all t ∈ [−1, 1]; obviously (4.18) holds. Set b1 to be
the solution to (4.19), that is,

b1(t) = 16μ(1− t2), t ∈ [−1, 1].

We need the following preliminary result, already proved in [1], which will be useful
in the sequel.

Lemma 4.5 ([1], Theorem 1.1). In the hypotheses of Theorem 1.3, if αβ � 2, then
u ≡ 0.

Proof. The condition αβ � 2, namely μ � 1
4 by (4.15), is equivalent to 1 −

a1(0)b1(0) � 0. Then u ≡ 0 by the above arguments based on (4.22), and the
proof is complete. �

By means of the previous lemma, we only need to consider the range αβ > 2,
i.e. μ < 1

4 .
Apply the above described iteration procedure. If there exists k ∈ N such that

1 − ak(0)bk(0) � 0, then u ≡ 0 and the procedure stops. If for all k � 1 we have
1− ak(0)bk(0) > 0, the above described iteration produces an increasing sequence
(ak)k�1 of functions verifying (4.18). Set

a(t) := lim
k

ak(t), t ∈ [−1, 1].

We now need to distinguish two cases.

Case 1: limk ak(0) < +∞. In this case, from (4.18) we have

sup
t∈[−1,1]

‖ea(t)|·|2u(·, t)‖ � eMB

∫ 1
0
sa(s) dseMV sup

t∈[−1,1]

‖eμ|·|2u(·, t)‖,
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‖
√
1− t2∇A(e

(a+ iȧ
8a )|x|2u)‖L2(Rn×[−1,1])+Ca‖

√
1− t2e(a(t)−ε)|x|2∇Au‖L2(Rn×[−1,1])

� C sup
t∈[−1,1]

‖eμ|x|2u(t)‖,

for some C = C(‖V ‖∞, ‖xtB‖∞) > 0.
Moreover, a can be determined as the solution to a suitable ordinary differential

equation (see [10] for details). One has

a(t) =
R

4(1 +R2t2)
,

where R > 0 is such that

μ =
R

4(1 +R2)
.

This forces μ � 1
8 . Estimate (1.12) hence immediately follows after inverting the

changes in Section 4.2.

Case 2: limk ak(0) = +∞. In this case, if
∫ 1

0
sa(s) ds < +∞, then (4.18) forces

u ≡ 0. If otherwise
∫ 1

0
sa(s) ds = +∞, we need a more detailed analysis. For all

k � 1, let sk be the maximum point of sak(s) in [0, 1]; from (4.18) we have

∞ > e2‖V ‖L∞+
‖V ‖2

4 sup
t∈[−1,1]

‖eμ|·|2u(·, t)‖ �
∫
Rn

e2ak(0)|x|2−MB

∫ 1
0
sak(s) ds|u(0)|2 dx

�
∫
Rn

e2ak(0)|x|2−MBskak(sk) ds|u(0)|2 dx �
∫
Rn

e2ak(0)(|x|2−MB
sk
2 )|u(0)|2 dx.

If there exists a subsequence (skh
)h such that skh

→ 0, then the previous inequality
implies that u(0) ≡ 0 in Rn, i.e. u ≡ 0. If no subsequences of sk accumulate in 0,
take s̄ > 0 as a limit point of (sk)k; the previous inequality implies that u(0) ≡ 0
in the complementary of the ball centered in the origin of radius (MB s̄)/2. As a
consequence, by (1.11), one can take β > 0 arbitrarily small; then, by Lemma 4.5,
we conclude that u ≡ 0 in this case.

In conclusion, we summarize the above argument as follows: if μ > 1
8 , then

necessarily we are either in Case 2 or in the case in which the scheme stops in a
finite number of steps. In both cases, we proved that u ≡ 0; if μ � 1

8 , one can prove
the logarithmic convexity estimates in (1.12), by the arguments described in Case
1 above and the inversion of the changes of variables of Section 4.2, for which we
omit further details.
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Roma, Italy

E-mail address: cassano@mat.uniroma1.it

Dipartimento di Matematica, Sapienza Università di Roma, P.le A. Moro 5, 00185-
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