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GLOBAL STRONG SOLUTION TO THE DENSITY-DEPENDENT
INCOMPRESSIBLE FLOW OF LIQUID CRYSTALS

XTAOLI LI AND DEHUA WANG

ABSTRACT. The initial-boundary value problem for the density-dependent in-
compressible flow of liquid crystals is studied in a three-dimensional bounded
smooth domain. For the initial density away from vacuum, the existence and
uniqueness are established for both the local strong solution with large initial
data and the global strong solution with ‘small’ data. It is also proved that
when the strong solution exists, a weak solution with the same data must be
equal to the unique strong solution.

1. INTRODUCTION

Liquid crystals are substances that exhibit a phase of matter that has properties
between those of a conventional liquid and those of a solid crystal. A liquid crystal
may flow like a liquid, but its molecules may be oriented in a crystal-like way. There
are many different types of liquid crystal phases, which can be distinguished based
on their different optical properties. One of the most common liquid crystal phases
is the nematic, where the molecules have no positional order, but they have long-
range orientational order. The three-dimensional density-dependent incompressible
flow of nematic liquid crystals can be governed by the following system of partial
differential equations ([4,[12125]28]):

(1.1a) Op+ V- (pu) =0,

(1.1b) O(pu) + V- (pu®@u)+ VP = pAu— AV - (Vd © Vd),
(1.1¢c) dd+u-Vd =y (Ad+|Vd[*d),

(1.1d) Vou=0,

where p denotes the density, u € R? the velocity, d € S? (the unit sphere in
R3) the unit-vector field that represents the macroscopic molecular orientations,
P € R the pressure (including both the hydrostatic part and the induced elastic
part from the orientation field arising from the incompressibility V - u = 0); they
all depend on the spatial variable x € R3 and the time variable ¢ > 0. The positive
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constants pu, A,~y stand for viscosity, the competition between kinetic energy and
potential energy, and microscopic elastic relaxation time or the Deborah number
for the molecular orientation field, respectively. The term AV - (Vd ® Vd) in the
stress tensor represents the anisotropic feature of the system. We set u = A =
~v = 1 since their exact values do not play any role in our analysis. The symbol
Vd ® Vd denotes a matrix whose (7, j)-th entry is 0,,d - 0,,d for 1 < i,j <
3, and it is easy to see that Vd ® Vd = (Vd)'Vd, where (Vd)" denotes the
transpose of the 3 x 3 matrix Vd. System (1)) is a simplified version, but still
retains most of the interesting mathematical properties (without destroying the
basic nonlinear structure) of the original Ericksen-Leslie model ([14}[15]18][19]25]
27)) for the hydrodynamics of nematic liquid crystals; see [T0|1T,28134.39] for more
discussions on the relations of the two models. Both the Ericksen-Leslie system and
the simplified one (IT]) describe the macroscopic continuum time evolution of liquid
crystal materials under the influence of both the velocity and the orientation of
crystals which can be derived from the averaging/coarse graining of the directions
of rod-like liquid crystal molecules. In particular, there is a force term in the u-
system (LID) depending on d; the left-hand side of the d-system ([LId) stands for
the kinematic transport by the flow field, while the right-hand side represents the
internal relaxation due to the elastic energy. In many situations, the flow velocity
field does disturb the alignment of molecules, and in turn a change in the alignment
will induce velocity.

We consider the initial-boundary value problem of system (L) in a bounded
smooth domain  C R? with the initial condition:

(1.2) (p,u,d) [t=0= (po,u0,dp), x€Q,
and the boundary condition:
(1.3) (u, 8,,d) |8Q: (0, 0),

where po : Q@ = R, up : Q = R3 dp : Q — S? are given with compatibility, and v
denotes the outer unit-normal vector field on 9. The boundary condition implies
nonslip on the boundary and no contribution to the surface forces from the director
field d. The homogeneous Neumann boundary condition on d makes it mathemati-
cally convenient since By(d—a) loo= 0,d |an= 0 with a constant vector d € S? and
this ‘no-flux’ condition conforms to the homogeneous boundary conditions in [IJ.
Roughly speaking, () is a coupling between the incompressible inhomogeneous
(density-dependent) Navier-Stokes equations and the transported flow of harmonic
maps. In the homogeneous case p = 1, ([LI)) becomes the hydrodynamic flow sys-
tem of incompressible liquid crystals. In a series of papers [28]-[31], Lin and Liu
addressed both the regularity and existence of global weak solutions to the Leslie
system of variable length, i.e. when the Dirichlet energy

1
= [ vdPdx, d: Q—S?
2 Q

is replaced by the Ginzburg-Landau energy

Lo, (1-1]dP)? 5
- S . Q- RS,
/9(2\Vd| e )Ax (>0, d: 0o

In particular, for any fixed ¢ > 0, they [28] proved the global existence of weak so-
lutions with large initial data under the assumption that uy € L*(Q),do € H*()
with do |sn€ H %(BQ) in the two-dimensional and three-dimensional cases. The
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existence and uniqueness of global classical solution were also obtained if uy €
H'(Q),do € H?(2) when the fluid viscosity u is large enough. The partial regular-
ity of the weak solution was investigated in [29] (and also in [Bl[1934]), similarly to
the classical theorem by Caffarelli, Kohn, and Nirenburgh [3] on the Navier-Stokes
equations that asserts that the one-dimensional parabolic Hausdorff measure of
the singular set of any suitable weak solution is zero. With the Ginzburg-Landau
penalty function, the global strong and weak solutions to the compressible flow
of liquid crystals were obtained in [35H37,[40]. See also [6]20,231341[39] for some
related discussions. For the incompressible version of system (LI) with constant
density, Lin-Lin-Wang [32] established the existence of global weak solutions that
are smooth away from at most finitely many singular times in any bounded smooth
domain of R?, and we [26] proved the global existence of a strong solution in a
bounded smooth domain of R3. For the compressible version of system (L), the
one-dimensional classical solution was obtained in [T0,11L[38], and the blowup cri-
teria of strong solutions were studied in [21],22].

In this paper, we are interested in the existence and uniqueness of global strong
solution (p,u, P,d) of (1) in W (Q) x W24(Q)3 x WH4(Q) x W4(Q)? with
3 < g < r < oo while assuming in addition that the initial density is bounded away
from zero. By a strong solution, we mean a quadruplet (p,u, P,d) satisfying (L))
almost everywhere with the initial-boundary conditions (L2)-(3]). Note that, for
a constant vector d € S?, Vd = V(d — d), d;d = 9;(d —d), Ad = A(d —d) in £,
and 0,d |po= 0,(d —d) |sg= 0. Our strategy is to consider the following auxiliary
problem:

(1.4)

Op+v-Vp=0,

pdu—Au+ VP =—pv-Vv-V-((V(f-d)"V(f-d)),
o(d—-d)—Ad-d)=-v-V(f—-d)+ |V -d)*(f-d) +|V(f - d)|*d,
V-u=0,

(p,u,d —d) |t=o= (po, uo,do — d),

(u,9,(d — d)) [oa= (0,0)

for some given vectors v € R?, f € R3. One of the motivations for such a strat-
egy is that the continuity equation ([LTal) is the transport equation of p, (LIL)
is the evolutionary density-dependent incompressible Navier-Stokes equation with
the source term —AV - (Vd @ Vd), while (IId) is the parabolic system in terms of
d. Therefore we can use a result of the transport equation (cf. Proposition B.]),
the maximal regularities of the parabolic equations (cf. Theorem Bl and density-
dependent Stokes equations (cf. Theorem B2). We first use an iteration method
based on (I4]) to establish the local existence and uniqueness of the strong solution
with general initial data. Then we prove the global existence by establishing some
global estimates under the condition that the initial data are small (close to an
equilibrium state) in some sense. As system (LI]) contains the Navier-Stokes equa-
tions as a subsystem, one cannot expect in general any better results than those
for the Navier-Stokes equations. The uniqueness of a global weak solution is al-
ways an open problem. We shall prove that when the strong solution exists, all the
global weak solutions must be equal to the unique strong solution, which is called
the weak-strong uniqueness. Similar results were obtained by Danchin [§] for the
density-dependent incompressible viscous fluids in a bounded domain of R? with
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C?*¢ boundary. We shall establish our results in the spirit of [8], while developing
new estimates for the crystal orientation field. Due to the particular structure of
the equations for the velocity, especially the strongly nonlinear term (Vd)'Ad in
the u-system, it will be necessary to obtain more regularities for the crystal orienta-
tion field. By developing more novel and subtle estimates, we will be able to finally
establish the global existence of strong solution and weak-strong uniqueness for the
initial-boundary value problem (LI)-(L3]) of the density-dependent incompressible
flow of liquid crystals. The results of this paper generalize our early results in [20]
for the incompressible case with constant density. The analysis in this paper is
much more difficult and complicated than that in [26] due to the appearance of
nonconstant density.

The rest of the paper is organized as follows. In Section 2, we state our main
results on local and global existence of the strong solution, as well as the weak-strong
uniqueness. In Section 3, we recall a standard result for the transport equation,
the maximal regularities for the nonhomogeneous nonstationary Stokes operator
and the parabolic operator, and also some L> estimates in the spatial variable. In
Section 4, we give the proof of the local existence. In Section 5, we prove the global
existence. Finally, in Section 6, we show the weak-strong uniqueness.

2. MAIN RESULTS

In this section, we state our main results. If k£ > 0 is an integer and p > 1, we
denote by WP the set of functions in LP({2) whose derivatives of up to order k
belong to LP(£2). For T > 0 and a function space X, denote by LP(0,T; X) the set
of Bochner measurable X-valued time dependent functions f such that t — || f||x
belongs to LP(0,T), and the corresponding Lebesgue norm is denoted by || -{[ e (x).
We will consider the solutions in the functional spaces defined below.

Definition 2.1. For T > 0 and 1 < p,¢,r < oo, we denote by MPZ*" the set of
quadruplets (p,u, P,d) such that

ue C([0,T); D), p”’) N LP(0,T; W29(Q) N W Y(Q)),
du € L”(O,T,Lq( ), V-u=0;

de (0,7} BS ")) LP(0,T; W*9(R)), ,d € LP(0,T; LI(Q));

peC(0,T; W' (Q)); P e LP(0,T;W"%(Q)) and / P dx =0.
Q
If 7 = oo, then p belongs to L>(0,T;Wh>(Q)) N C(Q x [0,T]) instead of
C([0,T]; W1°°(Q)). The corresponding norm is denoted by || - | agzoaor.

We notice that the condition [, P dx = 0 in Definition 2.1 holds automatically

if we replace P by
i
—— | Pdx
jl

in (LI). Also, in the above definition, the space D A, »"" stands for some fractional
domain of the Stokes operator in L? (cf. Section 2. 3 in [8]). Roughly, the vector-

fields of D Aq » are vectors which have 2 — 2 derlvatlves in L9, are divergence-free,
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. . 31-1)
and vanish on 9. The Besov space (for definition, see [2]) By p can be regarded
as the interpolation space between L9 and W34, that is,

3(1-1)

Ba.p = (LY, WS?q)l—

= =

3(1-1)
Moreover, we note that B, *

1
L as ¢ > 3, one has B,i(pl »)

— Wheif p > 2. By the embedding W —

— L°°, which will be used repeatedly in this paper.

Remark 2.1. System () has the following scaling property. If p(x,t), u(x,t),
P(x,t) and d(x,t) solve ([LT)), then for each [ > 0, p; = p(Ix,1%t), u; = lu(lx, *t),
P, = I?P(Ix,1?t) and d; = d(Ix,[?t) also solve ([I). Motivated by this scaling
invariance observation, the regularity of the director field d is one order higher
than that of the velocity u. A well-known global existence result was obtained in
[16] for the compressible Navier-Stokes equatlons 1n the homogeneous Sobolev space
Hz 2 this reminds us of a function space like H3 for d. However, bounds of the
dlrector fieldd in H3 cannot imply the L* bound of d. To overcome this difficulty,
inspired by [7] for the compressible Navier-Stokes equations, it seems more natural

to work the liquid crystal equation in the framework of homogeneous Besov space

_1
BS,(; ») which is continuously embedded into L°°. Taking the definition of the

strong solution into account, we choose the L7 setting instead of an L? one so that
(1) can be satisfied almost everywhere.

The local existence will be shown by using an iterative method, and if the initial
data are sufficiently ‘small’ in some suitable function spaces, which means that the
initial data (ug,dg) are close to an equilibrium state (0,d) with d € S? being a
constant unit vector, the solution is indeed global in time. More precisely, our
existence result reads as follows.

Theorem 2.1. Let Q be a bounded smooth domain of R®. Assume that % <
p<oo 3<q<r<oo and py € WLHT(Q) with pg > p for some p > 0

1 —
ug € DA do —de Bq » 7, d€S? is an arbitrary constant vector. Then,

(1) there exists Ty > 0 such that system (1) with the initial-boundary condi-
tions (L2)-L3) has a unique strong solution (p,u, P,d) such that (p,u, P,
d-d)ec Mp*" with 0 < p < p and |[d| =1 on Q x [0, Tp].

(2) Moreover, there exist a constant v > 0 depending on p,q,r, p, i, A, 7y, Q and
a constant § > 0 depending only on p,q,r such that if

14
ol .+ 1o =l sy < G
D, D = W Toollwar)?

holds for the initial data, then the initial-boundary value problem (LI])-(L3))
has a unique strong solution (p,u, P,d) such that (p,u, P,d —d) € Mp®"
for all T > 0. Furthermore, denoting by A1 the first eigenvalue of the
Dirichlet-Laplace operator in €, for some constant C' depending on p, A
and v, we have the following inequality for all t € R :

|(AW @)l + V(D)2 < Ce™ 7 <|fuo||Lz+|Vdo||Lz>(1+<221 >—>
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with p = ||po|lLe=, and for some positive constant K depending only on
Hp0||W1>"'7 p,q,7, K, /\777 /3 and Q,

[(pow, Pod = )llggpor < K (Juoll s, +ldo—all sy |-
DAq BQvP
Similar to [32], a weak solution to ([I) with the initial-boundary conditions
(C2)-([C3) means a quadruplet (p, 0,1, d) satisfying system (II]) in © x (0,7 for
0 < T < oo in the sense of distributions, i.e.

J[ @0+ pa- Vo) dxdt+ [ puo(,0) dx =,
Qx(0,T) Q

—// pi- (0p + - Vo) dxdt + / Vil : Vo dxdt
Qx(0,T)

Qx(0,T)

= / poug - (-, 0) dx + // (Vd o Vd) : V¢ dxdt,
Q Qx(0,T)

and
—// &-6t¢dxdt+// ﬁ-V&-qbdxdt—i—// (Vd) : (Vo) dxdt
Qx(0,T) Qx(0,T) Qx(0,T)

:/d0-¢(-,0) dx+// |Vd|*d - ¢ dxdt,
0 Qx(0,7)

for all ¢ € C°(Q2x [0,T);R) or C(Q x [0, T); R?). Moreover, (11, d) satisfies (L3)
in the sense of trace. In this weak formulation, the pressure II can be determined
as in the Navier-Stokes equations (see [17]).

Next, we will give a uniqueness result. Suppose

peL=Qx[0,T))NC(0,T; LP()), Vp>1,
e (L2(Qx [0,T) N Wy%(Qr))°, pla)> € L=(0,T; L'(Q)),

d e (L([0,7), H'(@) N L*((0, ], H*())", |d| =1, VIT € (L(0,T: L# ()"
(for all T € (0,00)) is a global weak solution to (I)-(L3). Then, we have the fol-
lowing energy inequality (cf. [32], Section 5, for the two-dimensional homogeneous
case):

1 - t - -
= / (pt)[a(t)]? + [Vd(t)|*) dx +/ /(|Vﬁ\2 +|Ad + [VA[*d|?) dxdr
(21) 2 Q 0o JQ

1
<5 [ tooluol? + [Vaof?) ax
Q

for all ¢ € (0, 00).

However, as for the standard Navier-Stokes equations, the question of uniqueness
in the above class of solutions remains open. For the same initial-boundary condi-
tions, the relation between weak solutions and strong solutions can be formulated
as:

Theorem 2.2. Let Q,p, q,r be as in Theorem 21l and pg, ug, dg satisfy the assump-
tions of Theorem Rl Then any weak solution to (LI)-({L3)) in the above class is
unique and indeed is equal to its unique strong solution.
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Usually, the uniqueness in the above theorem is called weak-strong uniqueness.
For similar results on the compressible Navier-Stokes equation, we refer the reader
to [13L33].

3. MAXIMAL REGULARITY

In this section, we recall a quite standard result for the transport equation and
the maximal regularities for the parabolic operator and the nonhomogeneous non-
stationary Stokes operator, and prove some L and L" estimates in the spatial
variable as well.

For T >0, 1 < p,q < oo, denote

Wop(0,T) := (WP(0,T; L9()))° N (LP(0,T; WH9(2)))°.

Throughout this paper, C stands for a generic positive constant.
We first recall a result for the transport equation (cf. Proposition 3.1 in [§]):

Proposition 3.1. Let Q be a Lipschitz domain of R? and v € (LI(O,T; Lz’p))3
be a solenoidal vector-field such that v-n = 0 on 9Q. Let pg € WL (Q) with
r € [1,00]. Then the system

Oip+v-Vp=0,

pli=o0 = po
has a unique solution in L>(0,T; W1>(Q)) N C([0,T]; Ng<cocW4(Q)) if r = o0,
and in C([0,T); WL (Q)) if r < co. Moreover, the following estimate holds:

o) llwr < o IVVOledr gl ¢ e [0,T].
If in addition p belongs to LP(Q) for some p € [1,00], then
le@ e = llpollze, ¢ €0,T].

We first recall the maximal regularity for the parabolic operator (cf. Theorem
4.10.7 and Remark 4.10.9 in [1]):

_1
Theorem 3.1. Given 1 < p,q < 00, wy € B(i(pl ») and f € (LP(O,T; LQ(R3)))3,

the Cauchy problem

w\t:o = Wo

{wt ~Aw=f,
has a unique solution w € W, ,(0,T'), and

folhwa o) < € (I lg0 + ol a3 ).

q,p
where C is independent of wy, f and T. Moreover, there exists a positive constant
co independent of f and T such that

wllw, 0.1y = co sup |lw(t) _1y.
[wliw,..0.1) te(O,T)| HB?S 1)

Now we recall the existence theorem (cf. Theorem 3.7 in [8]) for the linear system
pdyu— pAu+VP=f [, Pdx=0,
(3.1) V-u=0,

ul;—o =ug, ulsa =0.
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Theorem 3.2. Let Q C R? be a bounded domain with C**¢ boundary, 1 < p < oo

1
and 3 < q <r < oo. Letug € Diq’”p and f € (LP(O,T;L‘](Q)))S. Assume that
the density p satisfies

0<p<p(xt)<p<oo, (x,t)€Qx(0,T),
and for some 8 € (0,1],
p € L=(0,T; W () N CP([0, T]; L=(%2)).-
Then the system BI) has a unique solution (u, P) such that
1
we C([0,T); Dy *7) N (LP(0, T; W(9) N W (),

dpu € (LP(0,T; L9(Q))°,
and
P e LP(0,T; WH1(Q)).
Moreover, there exists some constant C' depending on p,q,r and ) such that for all
t € [0,T), the following inequalities hold:

L1 g1 .
prut " lla@)l o1, + plallywe + Alwall pnay + 1Pl i)
Dqu

(3'2) . CutCp(t) PR
< CEBI (t)e 7@ | prp ”||110||D17%,p+|\f||Lf(Lq)
Agq
and
(3.3)
L1 _1 .
prutTr )il -z + [|p0ra, tV>u, VP||1p (ra)

Aq

Son(xL 1-1 Eplt
<C ( SB2E(t) (p7 ! Plhuoll -z, + £l Lz (Lay) + ch(t)HUHLf(u) :

Aq
where d(Q) is the diameter of Q, &, := p/p, and
B,(t) :=14d(Q) (5~ IVpllpeerry) 7

2Tql r* A— 1+5 1 3
Co(t) == €1 B, + @)y B, (0D (1),

@l

with
51
Mpg(t) = p ||P|‘cg;g(9x[o,t])’
and the exponents ¢, r* are numbers determined by p,q,r.
Remark 3.1. The reader can also refer to Theorem 3.7 in [§] for more details
about Theorem We notice that (B2]) and B3] do not include the estimate

for [lul[ze (zq). Indeed, since we consider only in a bounded domain €2, then there
exists a constant C' = C(q,d(€2)) such that

[ullwza = [[V?ullze +d(Q) 7 [Vullze +d(Q) 7 [[uflze < OVl s
whenever u € (W4(Q) N VVol’q(Q))3 (cf. Proposition 2.4 in [§]).

We also have the following two interpolation inequalities for the L and L"
estimates in the spatial variable (cf. Lemma 4.1 in [8], also Lemmas 3.1 and 3.3 in
[26]) which are useful in our proof.
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Lemma 3.1. Let 1 < p,q,r,s < oo satisfy

p_3p 1
g_°2r 41 Z_
0< 2 2q <5h s
Then the following inequalities hold:
13 _
IV fllee ey < CT2 2| f*°

LDy P

1_3 _
IV fllpo oy < CTZ 3| ]|
LE

==
Q|

1S v

0
:%,p)HfHL;(Wz,s),
for some constant C depending only on ,p,q,r, and

1-46 3

1
P2 2
Similarly, we can prove

Lemma 3.2. Let1 < p,q,r,s < oo satisfy

2 1 1
o< Py —==Z
3 q s r

Then .
||vf||L’%(L°°) < CT§*E||f||1;9(B3(1_%))||f||i§(w3’q)7

T a,P

2_1 1-6 0
||Vf||L,1}(Lr) < CT3 4 ||f||Loo(Bg(17%))||f||L’7',(W3,s)7
7 (Ps,p
for some constant C depending only on ,p,q,r, and

1-6 2 1

p 3 q
Proof. The proof is based on the applications of embedding and interpolation results
in [2]. First, we notice that, from Theorem 6.4.5 in [2],
3-3_3 3-3 1-60 2 1
Bk 7, Bso)on = Bl ith —— =2 — -,
( ) ) )971 0,1 Wi » 3 q
and from the embedding (Theorem 6.2.4 in [2]) BL, ; — W', we get
(3-4) 19l < O o g 111

3_3"
P q
OC , 00

‘We remark that
3(1—1) 3-3_3 3 3 3-3
(3.5) Bgp 7 B, ', W2 By < Booo

(cf. Theorems 6.5.1 and 6.2.4 in [2]). Therefore, according to (B4), (335) and by
Holder’s inequality, we deduce that

0 0 i
||Vf||L;(Lw>sc< / IIfIP(l)eIIfII”th> <0< / ||f||p(§<1l)||fllweq )

2.1 -6
<oria|f| 3-1) ||f||L;(W3,q)~
LFE(Bgp ©)

The proof of the second inequality is based on the fact that

2-2-3 52— 1-6
Bro,l = (Brp” *,Brr")oq — L" with T =

| =

2
3
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(cf. Theorem 6.4.5 and Theorem 6.2.4 in [2]) and that

2_3 2_3_3
q

_3
W27S N Bz,r q, Bs,pp oy Bnpp
(cf. Theorems 6.2.4 and 6.5.1 in [2]). In fact, by Holder’s inequality, we have

<c< / uwu”“ IV 5.t )

S'P

2_1 —0
< T f|I! 0, 1125 .oy

T

IV £llz2 (2 sc( / HVpr(J_f)_gIIVfIIP 3dt>

Lemma 3.3. Let 1 < p,q,r,s < oo satisfy

Then
1_ 1 —0
||V2f“L‘}(L°°) <CTs Hf||1W(Bs<1_%>)||f\|%l;(ws,q)7

T

11 —0 0
||V2fHL§Z(LT) <crsiTa||f|* ( 3(17%))Hf||L§(W3vS)a
L5 (Bap
or some constan epenaing on on T, an
tant C' depending only on §,p,q,r, and

1-0_1_1
p 3 a
Proof. First, we notice that (cf. Theorem 6.4.5 in [2])
9_3_3 9.3 1-6 1 1
Bk *,Bsx&)ea = Bl | with —— = — — —
( k] ) )651 00,1 Wl p 3 q
Hence,
(36) IV lx < CIVFllwr= < CIVFlsy , < CIVAP s IVAS05 -

Q

cooc oooc

We remark that (cf. Theorems 6.2.4 and 6.5.1 in [2])

03 | p3t=t ag ., po 2-2
Byyp — B,k ¢, W= <—>Bq7oo<—>Boo,OO.

Thus, according to ([B.0) and by applying Hélder’s inequality, we deduce that

00,00 Boo,&

T
§O< / [Falls 3q||f|p(§(19)1)dt>

1 1
< T E| | 6 .
>~ q ||fH OC(B;;’(;_%))HfHL?}(W&q)

T

IV fllep(re) < C </ IV I, IIVfllpg_g_gdt>

=
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The proof of the second inequality is based on the fact that

0 17%7% 17% r . 10
Br,l = (Brp ,Brr®)p1 — L with T =

=

1
3
(cf. Theorem 6.4.5 and Theorem 6.2.4 in [2]) and that

3

1-3 1—3 1—
Wb < By, Bsp® < Brp”

(cf. Theorems 6.2.4 and 6.5.1 in [2]). In fact, by Holder’s inequality, we have

_3
q

P
BTrP

T

T L
-0
IVfllze o < C ( / IVAP S IIVfII’:lgdt>

1
T P
-0
<C ( / |Vf|”<33>||w||€31,sdt>
0 B P
1_1 _
<CTsallf 0 s 110 wee)-
Lo s, P)

7 (Bs,p

4. LOCAL EXISTENCE

In this section, we prove the existence and uniqueness of the strong solution on a
short time interval, i.e. the local strong solution in Theorem 2.1l The proof will be
divided into several steps, including constructing the approximate solutions by it-
eration, obtaining the uniform estimates, and showing the convergence, consistency
and uniqueness.

4.1. Construction of approximate solutions. We initialize the construction
of approximate solutions by setting p° := JF u’ := uy and d° := dy. Given

(p",u, P",d" — d) with a constant vector d € S?, Proposition B3Il Theorem B.1]
and Theorem [3.2] enable us to define respectively p"!(x,t) as the (global) solution
of the transport equation

n+1 n ., n+1 —
(41) {&p +u”-Vp 0,

pn+1 |t:0: Lo,

d"t1(x,t) — d as the (global) solution of
y(d"*! —d) — A(d"*! —d)

(42) — —ut V(A" - d) + V(@ - AP - d)+ [V - )P,
d"*! —d |;—o=do—d, 9,(d"" —d)|sq =0,

and (u"™(x,t), P""(x,t)) as the (global) solution of

pn+latun+1 _ AunJrl + VPnJrl

— —ptlut . Yt — V- (V(d® — d)TV(d" — d)),
V-urtt =0, [, P"Hdx =0,

u" g =up, u"tsg =0.

(4.3)

An argument by induction yields a sequence {(p",u™, P",d" — d)},en C MPT"
for all T' > 0.
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4.2. Uniform estimate for some small fixed time 7,. We aim at finding a
positive time 7, independent of n for which {(p",u™, P",d" —d)},en is uniformly
bounded in the space M7*".

First we control p"*! and its derivative in the time variable in terms of u,, and
Vu, in spaces W17 (Q) and L*(Q2) with s (depending on g,7) to be specified below.
Applying Proposition B to (&1), we get

(4.4) o™ (1) [lwa.r < o IV O ledr oy
and

(4.5)  minp"t(x,t) = p:=minpg(x) and max p" T (x,t) = p := max po(x).
xS x€e x€e x€e

Since 9;p" Tt = —u™ - Vp"*t!, then by Holder’s inequality, we have
Oep" T € Lig (RY; L%(9))

with s = 2= (s = ¢ if 7 = 00), and for ¢ > 0,

(4.6) 100" H oo ey < 0| Lee (o) [IVA™ | Lo (1r)-

. 1—4.p . -
Then we control u”*! in D, ™ in terms of p"™!, u" and d” — d. In order to

apply Theorem to ([@3)), we need to prove p"t! € CP([0,T]; L>=(f2)) for some
B € (0,1]. Actually, noticing that p"*! belongs to C#([0,T]; L>°(92)) whenever

B € (0, %) by interpolation between L°°(0,T; W1 (2)) and W1°°(0,T; L* (1)),
it holds that

(4.7) HPnH”cf(Loo) <C (HP”HHL?C(WLT) + ”atanrlHL?C(LS)) .

Here we have used Young’s inequality.
Hence, applying Theorem to ([@3)) yields

Hu”“(t)”Dl_%m + 0" o qweay + 100" | Lo oy + [P Loy
Aq

< CeCt®) <|IUO|D1%,p + Ju" - Vu" + V- (V(d" —d))'v(@" - d))||Lf(Lq)> ,

Aq

where
1
60 = L+ 1 o)™ (14157 1y )

for some positive exponent 7y depending only on p,q,r, 8 and the constant C de-
pending only on p, q,r, g, p, 2, 5. Using ([&0]) and ([@T), we get

() < C(L+ p" M peewrn)” (1+ Hun”Li’o(Lq))% ;
where ¢ depends only on p, g, and 8. Therefore,
(4.8)
Hunﬂ(t)Hle%,p + ||un+1||Lf(W2"1) + HatU—nHHLf(Lq) + ||Pn+1||Lf(W1v<1)

Aq

n+1 g n 1
SCGCt(lJer HL,;C(WLT)) (1+lIu™ oo zay) P (HuoHDk%,p+||u"~Vu"HLf(Lq>

Aq

+ IV (V(@" = @) V(@ = )l zzre))-
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1

_ 3(1— _
Finally we control d"*! —d in Besov space BqF; ») in terms of u™ and d” —d.
Applying Theorem [B1] to ([£2), we obtain

A" (t) — a”Bsuf%) + [la™ !t — a”wq,,,(o,t)
q,p
(49)  <C(ldo—d] ooy ]~ u"- V(@ —d) +[V(d" - d)(d" ~d)

+ V(@ = )Py )

Define
Ur) :=lhal - aoa, Fllu e awes) + 10" Ly na)

t qu,
n_ 3 n__ q
+d d”m(sjf,?’%)) +[1d" = dllw,,0,6);

t

U’ = Juol| -1, +([do— a” 3(1-1y,
Dqu BQ7P P
0" () == llp" lLewrry and oo := [|pollwrr-

Next we will estimate the right-hand side of ({4), [@J) and (@I) by using
Lemmas B33l Since Lemmas B33 are valid for different ranges of %, we need
to establish the estimates for different cases. In fact, the indices are special in

1_1 1_ 3 2_ 1 3 i
Lemmas B.TH3.3 and 3 s <373, <573 for ¢ > 3, so we will consider seven

different ranges for % as follows.
Case 1. % — % < 1—1), using Lemmas B33 we get

=gy 3_1_3
(410) Qn+1(t) éet ?[|Vu IlL?(LOO)”pO”Wl»" < QOeCtQ P 2qU (t)’

" O 2a s + 0" rwzay + 100" Lr oy + 1P zpwia)
A p
aq

o 1
n+1 o , n B
< C@Ct(l-ﬁ-l\p lLoo (w1, )) (1+[lu HLfC(Lg)) (HuOHDl—%,p+||un||L;>°(LQ)||VunHLf(Loo)

Aq
+IV(d" = Dl (2 [A@" = D)z z)),

14" @) = dll g, + 14" = dllw, 00
<C(lldo = dll_uo-g, + " lgow V(@ = D)z

+ (12" = dll ) + DIV = ) (2 [V(A" = D)2 )
and
(4.11)

- 1
U"'H(t) < Cect(1+g"+1(t)) (1+Un(t)) B (UO + (t%ﬁ% +t%7% -I-t%*%)(U”(t))z
T (U"(t))3).
Assuming that ¢ is sufficiently small so that

(4.12) Ct? v 3 U™(t) < In2,
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we get from (LI0) that
(4.13) 0" tH(t) < 200,

and from (@IT)) that

1
U"+1(t) < CeQ"Ct(1+Un(t)) B (1400)° (UO + (t%f% + t%*% —I—tgfé)(U”(t))
Ftie (U"(t))3).

3(1-1 o,
Case 2. % — % = %, then Bq,(p ») < W~ with co— denoting any positive

number large enough (but not oo), using Lemmas Bl and B3] we get
[d" () = d| soo1, + [|d™H - dllw, 0.
Byp ?
<O (ldo =l sy + 87 "l | (A" = D)lage oo
+ 47 (" = |z 2y + DIVE" = D)l (2o [0 = ) ez
and
Unti(t) < oect(tre ) (o) (UO F(tE 5 4 1) (UM (1))
+t5 (U 0)°).
Assuming that ¢ is sufficiently small as in (Z12]), we get [@I3]) and

(4.14)
U tL(t)

1
< ce2 (14U ®) P (14e0)” (UO F(tE 3T ) (UT(1) 4t (U”(t))3> :
1 3 3(1-1) 1 .
> 3 — 550 then Byp 77— W, using Lemmas (.11 and B3]

la™ () — aHBsgkg +[1d"* —dllw, , 0.0
< O (ldo =l a3, + 0 "z V(@ = Dl
7 (A" — dll g 2oy + DIIV(A" = )| 30 (10 | V(A" — a)”L;’"@“))’
and again, by choosing ¢ sufficiently small as in (£12), then (£13)) and ([@I4) follow.

1-2p _ 3(1-1) .
Case 4. 3 — 2 =2 then D, *" — W1~ and By, »’ < W™ using Lemma
2 2 " p q ’

B3 we get

(4.15) oH(t) < QoeCtl’%U"(t)

)
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and
" O a1, + " e w2y + 000" | Lo pay + 1P 2oy
D, P
! 1 o 1
< (I e wary ) T (1" oo 2a)) P
(ol sy + 710" e ) I V0" 10
Aq
+ V(" = )l (2 [A@" = )z z)),
(4.16)

- IRY
Un+1(t) < CeCt(1+Q7L+1(t)) (1+U (t)) P (UO + (t%f% + 2!‘,%) (Un(t))2+ t% (Un(t))3>
Assuming that ¢ is sufficiently small so that

(4.17) Ct'rU™Mt) < In2,
we get from (T3] that (I3) holds and
(4.18)

=

3

kS

Un+1(t) < CeQ"C’t(H—U’L(t)) (1400)° (U0+(t%7% +2t%)(Un(t))2—|—t% (Un(t))3).

1-1 3(1—1)
1 3 1 1 1 p'P 1,00 P 1,00 :
Case 5. 5 —5,> 5 >3 — g then Dy 77— W and By p — W, using

Lemma [3:3] we get

Hunﬂ(t)Hle%,p + W | e way + 1000 Lo oy + 1P| Lo (wray
Aq

n g n l
< O Lt (I Mo iy ) (LI e 2y ) P
1
o (e L PP S PR
DAq
+IV(@" = )l |A@" = D)2z ),

and ([4I0) follows. Moreover, by choosing ¢ sufficiently small as in ([@I7), then
(#13) and (@I8) follow.

_1
Case 6. (1=3)

1-%.p 3 _
5 5=y then Dy 77— W™ and By, 7 W27, we get

Hunﬂ(t)Hle%,p + 0" o w2.ay + 100" | o oy + [P oy
Aq

n41 g n 1
gceCt(””” lzseqwir ) (1" g (zay) P

1
< (Il a2 0" e V0" e )
Aq

i n J n J
V(@ = )l ron) | A@" = D)o

and
(4.19)

Un+1(t) < CeC’t(1+Q7L+1(t))U(1+U"(t))§ (UO + 3ti (Un(t))2 4 t%(Un(t))S) ]
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Assuming that ¢ is sufficiently small as in (£17), we get (£13) and
1
(4.20) () < o2 Ct(1+Um (1) 7 (1+00)° (UO 1 3th (Un(t))2 Lyt (Un(t))?’).

-1, 3(1—1
Case 7. % — % > %, then D, * P Wb and Bq,(p N W2 we get

Hunﬂ(t)Hle%,p + 0" o w2.ay + 100" | o oy + [P oy
Aq

n+1 “ n %
SOeflt(unp loseqwrr ) (1™ g (zay) 7

1
(ol 1o+ Il e
+ V(A" = @)l no) 1A = D]z iz )
and ([@I9) follows. Assuming that ¢ is sufficiently small as in (£I7), then (ZI3)
and ([@20) hold.

Hence, for Cases 1, 2, and 3, if we assume that U"(t) < 4CU° on [0, T}] with

3pg—2q—3p
2pq

T ) ( In2 ) P In2
s — 11111 VR ) ) 1
4c?U° 20C(1 + 00)° (14 4CU)7

(4.21) 5g
1 7-3 <1
(1602U0(3+4CU0)> } -
or
In2 T In2
1< T* =min (ﬁ) s T
(1.22) iC*U 200(1 + go)7 (1 +4CU%)7

1 max{p72:—33}
<1GC2U0(3 n 4CU0)> ’

and for Cases 4, 5, 6, and 7, if we assume that U"(¢) < 4CU° on [0, T,] with

7. —min < In2 )Pl In2
’ AC2U° ) 9001 + go)7 (1 +4CTU0)F

(4.23) 1 SO
<1GC2U0(3+4CU0)> }51
or
1<T*—min{<ln—2) o In2
(424) G300 ) O+ o) (14+4CU)

1 p
(e acom)
then a direct computation yields

U™ti(t) <4CU° on [0,T.).
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Coming back to ([I0), we conclude that the sequence {(p",u™, P*,d" —d)} is uni-
formly bounded in M7;"". More precisely, we have proved the following estimates:

Lemma 4.1. For all t € [0,T.] with T, satisfying EZ2T) or @22) for Cases 1-3,
and @23) or @24) for Cases 4-7,

(4.25) 0"(t) <200 and U™(t) < 4CU°.
4.3. Convergence of the approximate sequence.

Lemma 4.2. There exists Ty such that {(p™,u™, P",d" — d)}>°; is a Cauchy
sequence in M%’)S"T and thus converges.

Proof. Let
ﬁn = pn+1 _ pn l_ln = un+1 _ un pn = PnJrl _ Pn an — dn+1 _ dn
Define
Un(t) :=[a"| . leé,p) + @™ (| e (w2.ey + [|0:0" || Lp Loy

(D,

+ ”VPnHLf(LS) + ||an\|Loc Bft—%)) + [d™lw, ,0,)-

It is easy to verify that (p",@", P",d") satisfies

Op" +um - Vp = —a""t - Vp",
prtloan — Aan + VP
_ _ﬁn(atun + un . vun) _ pn(un . Vl—lnfl + 1_,1"71 . Vunfl)

-V ((vd"H)Tv(@"-d))-V- ((V(d”*l a))Tvanfl)
od™ — Ad" = —a"! - V(d" —d) — u"" d” 1+\V( )\2d” !
+ (V" =d)+V(d* ! —-d)):vd" 1) (d" ! —-d
+((V(d"=d)+Vv(@d *-d Vd" Nd,

vVur=0, [,Prdx=0
with the initial-boundary conditions:
(ﬁnu ﬁn7 an)|t:0 = (07 07 0)7

(@",0,d")|aq = (0,0).
Applying Theorem B.1] to

0y d" — Ad" = —a" 1. V(d" —d) —u*l. Va4 |V(d" - d)2d"
+((V(d" —d)+ V(@' ~d)): Va" ') (d" " ~d)
+ (V" =d)+Vv(d* ! —-d)):vd"!)d
d"|i—0 =0, 08,d"oq =0
and applying Theorem to

ptloa” — Aa" + VP
= —p"(0pu" +u" - Vu") — p"(u" - Va* ' +a" . vu' !
=V ((Vah)Tv(@" —d)) - v (V@' -d)'vd),
vV-ar =0, [,Prdx=0,
"= =0, u"|pn =0,
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we have

Un(t) < C(Hﬁ”(atu" Fut VU [ pe e + lu” - Va4 w T Vatg
+V-((vd"H)TV(@" —d)) + V- (V@ " =d)"vd" ")z
+lant V(@ —d) VA e + [[IV(@ = d)PA e re
+ (V" —=d)+V(d" ' =d)): vd" ) (d" ' —d)

+ (V" - )+ V(@ —d)) : VA ) dll o))

< C(17" N (o) (100" g oy + 0" e oy IV g (1))
+ 0™ oo Loy IV M pp oy + 10 | e oy IV 1o 20
+ V(@ = d) ey [AD" H p ey + IV e 2oy [A(A" = )| 2 (1)
+ VA" e ooy [ A (A" - a)”Lf(Lw) +[|v(d" " - a)HLf"(Lq)HAan_luLf(L"')
+ [0 poe 2y IV(A™ = @)l 2 roey + 10" Hlpge 2oy VAl 2 (1
+ V(@™ = @)l e (oI V(A" = )|l L2 A" oo (2o
+ ||Van71||L;’°(LS) (Iv(a" - a)l|Lf(L°°) +[v(@ - a)HL;’(Lw))
(1"~ = dll ey + 1))

Note that if § — 2 < ~ using Young’s inequality, Lemma [3.1] yields

—n— 1_3 2] —n—
Vet pp(pry < Ct27 2 <|un 1”100 1-%,p)+““n l”if(W?’s))'

Lge( Ag

1-, . . .
Ifi— 2> 1 wehave D, »" < WL so that the above inequality holds with the
27 2¢ 7 p A, Yy
1
power of ¢ replaced by t7». As for % — % = %, since

[u” - Vﬁn_luLf(LS) < HunHLfC(L‘”)”Vﬁn_IHLf(L?‘*)

and D PPy Lot D PPy W= with g+ (resp. r—) slightly greater (resp.
smaller) than ¢ (resp r) we still have

—n— 1 —n—
[u™ - VA" pp ey < t7fJu” 1, )IIU" oo

1— LaP N
7 (Dy, LE(Da,” )
The other terms such as \|Aa”_1||Lp (L") ||Va"_1||Lp vy and A" — d)]|zp

1-1
may be handled via a similar technique by using the Besov space Bs(p ).

To simplify the presentation, assume from now on that 2 — E < 5 so that Lemmas
B33 can be applied. Otherwise, according to the arguments above, we would get
t7 instead of tgfé, t%f’é‘%, or t37 7 below once their exponents are greater than or
equal to %.
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1
Hence, for all t € [0, T,], taking advantage of ([@2H]), the embedding Bi(; N
W5 and Lemmas B.IH3.3] we get
(4.26)
_ . o 1.8 . =
un(t) SC(HP lzse(ry + [V 1||Lf(L’“) +t27 2 | 1||L;’°(LS) +[|Ad 1||Lf(L’“)
L1 an 2 1 . ~n_
+t37a || VA" M| pge ey + 150" | peo ey + VA L2y
2o1ian1 2 liggn-l
+ 137 a||d" | poo oy + 37 4[|V ||L;>°(Ls))

1

< C (17" e oy + (373 4 8575 44575071 (1)).
Moreover, multiplying
atﬁn +u”- Vﬁn _ _l—ln—l . vpn

by [p"|"~2p" and integrating over €, using V - u” = 0 and the zero boundary
condition, by Hélder’s inequality we have

1d, . 1/n ) /_,2_,,1 _

- = c=—— [ u" V(P dx— | |p" et vt d

sl == [ w0y dx [ " dx
<7 e Ve

By Holder’s inequality, ([{25]) and the embedding

3
W25(Q) — L®(Q =T =
Q) (Q) as s PRt

we eventually obtain

2" ()l - S/O [a"=*(r) - Vp" ()| -dr

4.27 5l
(4.27) <t A ey V" oo (1)

<Ot U 1),
Inserting (£.27) into ([{.26]), we get for ¢t € [0, T,],
U™M(t) < C(E7F + 573 44577 4457 3)0" (1),

If we choose Ty € (0, T,] such that

13 phed | pdob il
(4.28) O, »+T¢ 4Ty " +Ty *)<

)

N —

then {(p",u", P",d" —d)} is a Cauchy sequence in M%*" and thus converges in
M. 0

We remark here that the time of existence Ty depends (continuously) on the
norms of the data, on the bound for the density, on the domain and on the regularity
parameters.
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4.4. The limit is a solution. Let (p,u, P,d — d)
sequence {(p",u", P",d" —d)}o2, in Mp*™".
(A219) yields

0< Ib < p(X’ t) < ﬁ) (X t) € x [OaTO] and pE Loo(ovTO;ler(Q)%

€ M}>" be the limit of the
Passing to the limit in (£5) and

ue L%(0,Ty; D), p’p) N LP(0,To; W9(Q)),  dyu € LP(0, Top; LI(Q)),

d—de L0, To; B2 7)) A LP(0, T WH(Q)),  94(d — d) € LP(0, Ty: L)),
P e LP(0, To; WH(Q)).

We claim that all the nonlinear terms in (@I), (£2), (@3) converge to their

corresponding terms in (1)) almost everywhere in Q x (0,7p). Indeed, for « :=
T8

s (= 2

Hun . Vpn+1 —u- VPHL%% (L)

< Ju" - u||L3%(Ls) VPWHHL;% Ly + ||u||Lg%(Ls)

+1
Vpttt - VPHL%‘(’)(LT)
=C (90”“" —ullarger + ullog o lle™ = pIIM%)s,T)

— 0 as n — oo,

lp" 8™t — pdyul| e (L)
To

< ||Pn+1||L~;%(LT)||6tunJrl - at11||L';O(Ls) + ||Pn+1 - PHL;%(LT)||3tU||L';D(LS)

<C (QOHUn - uHM;i(’]S*" + ||8tuHL’}O(LS)HPn+1 — pHM%}“')
— 0 as n — oo,

and
lp" a™ - V" — pu - Vul gz (e

<"t = p”L%‘;(L")

+ ”pHL;%(LOC)HunHL;?(LS)

"= Vul|pr rry
+ollLg oy 0" = ullge o) IVullz 2
+1
<" = pllg

(Lq)Hu HL o (W2a)
+C||P||L3%(Loo)||u"||Lg%(Lq)||Vu —VUHLP (L")

+ ||p||L%%(L°°)Hun - uHL"TCO(Lb V| zz o (L")
< C((UO)2||P"+1 - p”M%’;'T + U T2 % ol Lge (roeyllu™ — u”M%’;‘T
13 n ) .
+ T35 ol g ooy 0" = llagg e gz )
— 0 as n — oo,
due to u” = u and p*t! = pin MZ;>" as n — oo. Hence,
"LVt s u-Vp in LP(0,To; L*(0));
p"+18tu"+1 — pdyu  in (Lp (0, Tp; L*(2 )) :
p"u" - Vu' = pu-Vu in (LP(0, Tp; L™ (Q)))3
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Meanwhile,
IV-((V(@" =d))'V(d" = d)) = V- ((V(d = d))'V(d = d))llzg o)
= H%v (V@™ —d)+V(d—d)): (Vd" — Vd)) + (Vd" — Vd) " A(d" - d)
+(V(d—d) " (Ad" — Ad)| g (Lo
< O(IVd" = Vdll g @y |A(d" = ) + A(d = D)llzg, (1)
V(A" = d) + V(d = d)|rg 2o lAd" = Ad|lzz (2
+[|vd™ - VdHLgso(Ls) Ad" - a)”L;O(Lr)

+IV(d = )z @) 14" = Adllgg 1))

1_1 _
< OTF 77 (U0 + [[d - dllagper)

— 0 asn — oo.

n -
A" — e

Moreover,
Ju" - V(d" —d) —u-V(d = )|y, (2
<" = ull g (o) V(A" = d)llg ) + [l (1) 17" = Ve 15 (1)

< € (000" ~ ullagger + [l ooy " — dllagger)

— 0 asn — oo,

[[V(d" - d)[’d - |[V(d - a)|2a||L1;0(Ls)

< C|IV(d" =d) + V(d = d)|lzg ) VA" = Vd] 1z (1)
<CU°+|d - a||M;;j’T)||Vdn = Vd| 1z w2

<CU° +|d - a||M§(f*)||d" = d|| e

— 0 asn — oo.

Then, we have

V-(V(d"~d))TV(d" ~d)) > V-(V(d-d)TV(d-d)) in (L(0, To; L*(2)))";

u V(" —d) s u-V(d—d) in (LP(0,Tp; L*(2)))’;

IV(d" —d))’d = [V(d — d)|’d in (LP(0, Ty; L*(2)))°.

We know d — d € C((0,To): Bay *) 1 (LP(0, To; W*=())°, s = 2 > 3,

and Wh* < L> if s > 3. As for s = 3, Wh* < L~ with co— denoting any
3q

positive number large enough (but not oo), we will use W'* < L5-a below. When

% <5< 3, W?% < L*>. Due to these different embedding properties, we discuss

the term [V(d™ — d)[*(d™ — d) respectively for s >3, 3 < s <3 and 5 = 3.
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If s > 3, we have

[IV(d" - d)]*(d" —d) - [V(d —d)[*(d - a)\ILgO(Lg)

<IV(@" = )l o) (I = ), o 14" =l

Hld = dll g o) [V =Vl )
+ld = dllzg ) V(A = )25 oy VA" = VAl 14,
Ty
< CIV(@ = D)llzz o0 (IV(@" = D)l el = dllzg 2o
+l1d = dll g oy IVA" = Va1 (1))

+C|d - aHLg%(WLS)) IV(d - a)HLFT’O(LT')

va" - Vd| 1)

— 2_1 —
<CU°(U° + ||d - dlagge )" = dllagger + CTg" 7 [1d = dH?w;;»" d” —dfjager

— 0 as n — oo.

If%<s<3,wehave

V(" = (A"~ d) - [Vd - d)(d-d)], g,

<c (|||v<d" — Q)R - )|

Ly (L)
HIV(d" —d) : (Vd" ~ Vd)(d ~d)] , (Lg))

+|V(d-d): (Vd" — vd)(d - d)|

_3s
L%O(Lﬁ—s)

< IV = )1 ) (V0" = D)o, a1 =l 1)
+ld = dllg o) [V =Vl )
= dl e 196 = @)l 0| 4" = V15 0

< CIV(@" = d) 1z 2oy (IV(@" = DIz v 14" = dllge (2
+lld = dll g, weo VA" = Vlzz (1))

+Cld - aHL%‘(’)(les))Hv(d - a)l|L‘}O(W2>5)

vd" - Vd| g 1)

< CU(U° + ||d = dllagr)|d” = dl|ager + Clld — a”if%}“

n
A" — dllygpee

— 0 asn — oco.
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The case s = 3 may be handled by noticing that we also have

IIV(d" —d)P(a" —d) = [V(d - P =), 5,

< VA" = ), oy (190" = DLy o) 0"~ 3
Hlld = dll g oo [V =Vl )
=l V(= Dllag, ) 94" = Pl o

< CIV(d" = d)|lLg 2o (||V(d" = d)llzz (wrolld” = dllzg 1)
+lld = dll g, w2y VA" = V] 1z 1))
+Clld = dllzg (wro)IV(d = )|z wee) IV = Vd| g (19)
<CU(U° + ||d — EIHM%,)M)Hdn - d\|M%,)3,r +C|d - aH?Mﬁs,r |d" — d||M£,;(,]3,T
— 0 as n — o0.

Hence, we finally get

IV(d" —d))>(d” —d) = |V(d—d)[>(d—d) in (LP(0,Tp; L#(2)))°.

Thus, passing to the limit in (@), @2) and (£3) as n — oo, since L*() —
L) < L3(Q), we conclude that (LI) holds in LP(0,Tp; L3 () or
(LP(O, Ty: L3 (Q)))B, and therefore almost everywhere in £ x (0,Tp).

Next, we check that d € S2. Multiplying the d-system (LId) by d, we obtain

1 1
5at(\dP) +5u V(|d]*) = Ad-d + |Vd|*|d|*.

Since
A(|d]?) = 2|Vd|* +2d - (Ad),

it follows that

SOAP) + S V(dP) = TA(AP) - VAP +|VdPidP
Therefore, it is easy to deduce that
(4.29)  9(|d* 1) —A(d? = 1) +u-V(d? - 1) —2[Vd]*(|d]* - 1) = 0.

Multiplying ([#29) by (|d|? —1) and then integrating over €, using (LId) and (L3),
we get the following inequality:

% (|d)* = 1)? dx < 4/ |Vd2(|d|? — 1)? dx
(4.30) @ @

< 4||vd|?~ /Q(|d|2 —1)% dx.
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Note that interpolation between L°°(0, Tp; W14(Q)) and LP(0, To; W34(Q)) shows
that for some positive @ > 3, d — d belongs to (LQ(O,TO;H“O‘(Q)))S and that
[Vd|?. € L(0,Ty). Notice also that

/(|d|2 —1)?dx =0, attimet=0.
)

Thus, using [30) together with Grénwall’s inequality yields |d| = 1 in © x (0, Tp).

4.5. Uniqueness and continuity. Let (p1,u1, Pi,d1) and (p2, us, Pe,ds) be two
solutions to (LT]) with the initial-boundary conditions ([2l), (I3). Denote

p=p1—p2, U=u—uy, P=P-P, d=d;—ds.
Note that the quadruplet (p, 0, P,d) satisfies the following system:

Op+uy-Vp=—-u-Vpy,
p10a — A+ VP
= —p(Opuz +uy - Vuy) — pa(a- Vuy +uy - V)
—V-((V(d1 —d))TVd) — V- ((Vd)"V(ds — d)),

od —Ad = —u;-Vd —1u-V(dy —d)

+((V(dy —d) + V(dy — d)) : Vd) (d2 — d)

+|V(di —d)Pd + (V(di — d) + V(d2 — d)) : Vd) d,
Vu=0, [,Pdx=0

with the initial-boundary conditions
(ﬁ,ﬁ,a)|t:0 = (0,0,0), (ﬁv aua)|39 = (070)'
Using the same argument for p™ in Subsection 4.3, for all ¢t € [0, Ty], we have

t
< / 1V p2(7)]

1—1 _
<t 7P| Vpel ey [0l Lr L)

1p(2)]

Lr ﬁ(T) ||Loo dr

(4.31)
1 _
< O H | pall w18l pwaey.

On the one hand, since p1, pa € L%(0,To; W (Q)) N W (0, Tp; L*(Q2)) im-
_s
plies that py, pa € CP([0, Tp]; L=(Q)) whenever 3 € (0, L—g), Theorem B2 yields,

for some constant C depending on Ty, p,q, 7, p, 0,2, 8 and on the norm of p; in
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L2(0, To; WHT(2)) N CP(0, To; L*°(92)), and for all t € [0, Ty,

(4.32)
||ﬁ(t)||D17%,p +lallzeweey + 10l e ney + 1Pl Lewas)

As
< C(||,5(8tu2 +ug - V)| prpey + o2 Vau || pe(zsy + |lp2uz - VUl pe )
+ V- ((V(dy — ) "Vd) | ze ey + IV - (V)" V(da — a))”Lf(Ls))

< C (Il wr) (1902l pzay + il ooV | g )
+ IVar || e oy 10l oo (zs)
+ gl Lo oy IVl Loy + V(1 = @)l Loe Loy [ Al Lp
120 = Dllzg oo [Vl e (zey + 1V (d2 = D)l ze ey | Al (1)
+112(d2 = Dl ) IVl = 2))

e A e

+ [l e wza) [0l Lee (ns) + HU2HL?C D;%,p IvVal e

%,p)HulHLf(WZ»q))

+(di=d| a1y +[d2—d]
©(Bap 7))

t

- Bsu—%)))HAaHLf(Lr)

72 (Bq,p
+ (i = Al sy + 1dz = dllzzwsn) [Vl o) ).
On the other hand, Theorem B.1] yields, for some constant C independent of Ty,
(4.33)
||a(t)||B§(;—%) + ||aHWs,p(0,t)
< c(|| —w - Vd—i-V(dy —d) + |V(d; — d)2d
+ ((V(d; —d) + V(d2 — d)) : Vd)(d2 — d)
+ ((V(dy — d) + V(dy — d)) ; va)aan(Ls))
< C(IIUlIILgo(La)IIVallLf(m +[IV(d2 = d) ||z )l g 2
+IV(di = d)|l e o IV(dr = d)ll Lr ) lld] g o)
+ (IV(d1 = )|l Lr(poey + 1V (d2 = Q)| 12 (1.0 IVA]| oo (£ ([|d2 — aHLgﬂ(Lw)‘H))
<O(lwll,_

1—
t Aq

%vp)Hvaan(U) + [l d2 = dllLr w2y [l e 20

+dy —d _1y |1y = dl| e wza Al Loz
i =al s e = dlzove [y

+ ([ld2 — aHLOC(Ble%))"i'l)(”dl_aHLf(W?vﬂ+Hd2_a”Lf(W?v‘l))HVEIHLSO(LS))'

We remark here that Holder’s inequality and the embedding W4(Q) < L% (£2)
(¢ > 3) have been employed repeatedly in both [@32]) and [@33)).
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Lemmas B.IH3.3] yield, by use of Young’s inequality,

_ 1_ 3 _ _
IV alpen < OB (g + i),
t Ag

IValzzery < CEHOAL oy +Idlzoves),

IAd]|zpzry < Cﬁ_?(lla\lm( sa-p, + I Ly ws.s))-

Define
X () =llpllLse(zry + ||ﬁ||Loo( -1, e wesy + 100l Le(zs)

-1,
As

VPl 1 gy + w00

_1
Thus, combining (£31))-[@33) and Bi(pl L Whs(Q) — L"(Q), we have

_1
X(t) < C{tl ?llp2llLge wrry (1 + 10002l £p ey + HulHLOC(DF%,;))Hul”Lf(W?,Q))

t Aq

e, Al e
Loo(D _EJ)) Ltoo D _5’7’) t( 1 )

i (Da, Aq
1_1 - — _
+t27a(||dy —d] sa-1y +[|d2 —d]| sa-1) ) +[ld2 —d|lzr w2
?O qu P ) too Bq;P P ) )

+lldr = dllpwsay + [d2 = dllppwsay + dr = dl] 3<1—%>)||d1 — d|| w20y

t

+ (/|2 — a”mw-%’) +1)([ldr = dl|zr w20y + [[d2 — dl| Lz (w2.0)) }XW
Now, choosing 7 so small that the term between brackets is less than % fort =n
enables us to conclude that X = 0 on [0,7]. As the constant C' does not depend on
7, a standard induction argument yields the uniqueness on [0, Tp).

Finally, as p satisfies a transport equation with data in W (Q), u satisfies

pou — Au+ VP e (LP(0,t; LY(Q)))°,
and d satisfies
d,d — Ad € (LP(0,t; LI()))?,
then Proposition Bl and Theorems insure that p € C([0,To]); Wh(Q))

1 1
1-5.p 3(1-3)

(if r # 00), we O([0,To; Dy *") and d — d € C([0, Tu): Byyp *).

Remark 4.1. Following the argument of uniqueness and continuity, we can also
easily prove that if (p1,uy, P1,d;) and (p2,us, P2, ds) are solutions to ((LI)-(T3)
with different initial data (p}, ud,dy) and (p3,u3,d3), then the following estimate
holds true on [0, Tp):

lo(2)]

Pz ey + 1O sa-g) +l1dlw, 00

L+ ||ﬁ(t)||D17%,p + lal e we.e) + [0 e rs)

Asg

<C (HPOHU + o]l i1, + lIdo] s<1—l>> ;
D, P B.p P

Asg
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where fo := p§ — p§, To := uf —uf, do := dj —dj. Combining with Theorem 2]
we conclude that for small enough T', the map (pg, up,dg —d) — (p,u, P,d —d) is
5P 3(1-3)

?” to

Lipschitz continuous from bounded sets of W™ x Dil;;’ X Bgp
C(10, ) 27 (@) (C(10, 71 DYy, (W (0,7 1#(9))) (L0, 7 W2#(2)))°
x 120, T, W () x (C(0,T): By ) (W (0,73 14(2)))
N (LP(0, T; WS’S(Q)))3>.

5. GLOBAL EXISTENCE

In this section, we prove that if the initial data of velocity and orientation field
is sufficiently ‘small’ in appropriate norms, with the help of uniform estimates, the
local strong solution (p,u, P,d) of ([II)-(L3]) established in the previous section is
indeed global in time.

5.1. Estimates for ||u||z2 and ||d||z.

Lemma 5.1. Let Q,p,q,r be as in Theorem .11 and let (p,u, P,d) with (p,u, P,
d—d) € Mp*" be a solution to (LI)-(L3) on Q x [0,Tp]. Then the following
inequality holds true for all t € [0,Tp) :

(VP (®)I[72 + V()7
_2g 20, 2y
<e ﬁlt (H\/p_ou()”%z + HVd()H%z) (1 + 71t6 51 t) ,
where A1 stands for the first eigenvalue of the Dirichlet-Laplace operator in Q.

Proof. Due to the inhomogeneous incompressible character the flows we are dealing
with, the natural framework in which we shall work is that of the solenoidal vector
field of L?(Q)3. Note that

1—2.p

we O([0, 7 DYy, 7)1 (2200, Ty Wa(2) N W3 (2))

d—de (0Tl Byy )0 (L7(0, Ty WH1(92)))°

And, since
Dy By P X
(see Proposition 2.5 in [§]) where
X1={zeL9N)?|V-z2=0 inQ andz-n=0 on 9N},
then when 1 < p < 2, by the standard interpolation inequality

L>=(0,To; LYU(Q)) N LP(0, To; W>4(Q)) € L*(0, To; HT(Q)),

where 1 0 1 1 1 1 2
+a
=2, - - =(1-60)=-+6(--2
5=, 33 ( )q+<q 3),
we have
(5.1) u € (C([0, To); H*(Q)) N L2(0, Ty; H*()))°,

(5.2) d—d e (C([0, Ty); H*(Q)) N L2(0, To; H>H*(2)))° .
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When 2 < p < oo, (B1)-(E2) hold obviously due to W24(Q) < H?(Q2) as ¢ > 3.
Now, p is continuous in (x,t), u € (C([0, Tp]; H*(€2)) N L?(0, To; HHO‘(Q)))3 and
d—d € (C([0, To); H* () N L2(0, T; H2+O‘(Q)))3. This enables us to justify the
following computations.
Taking the L? scalar product in (LIB) with u and performing integration by
parts, using the continuity equation ([LTal), we obtain

1d
2dt

(5.3) = —§/Q|u| V- (pu) dx—/qu-Vu-udx—/Qu- (vd)"Ad) dx
= _/ u- ((Vd)"Ad) dx
Q

Here we have used the facts

p|u|2 dx+/ |Vu|? dx

vd[?

V-(VdeVvd) =V < ) +(vVd)"Ad

and V-u=0in Q, u=0 on 99, as well as

2
/VP~udx—/V(|Vd >-udx—0.
Q Q 2

Multiplying (LId) by —(Ad + |Vd|?d) and integrating over (2, we obtain

—/ Oid - Ad dx — / (u-Vd)-Ad dx = —/ |Ad + |Vd|*d|?dx.
Q Q Q
Here we have used the fact that |d| =1 to get
1

(O d +u-Vd) - |Vd|*d = 5 (IVd[*8,(|d|*) +u - V|d]*|Vd|*) = 0

Since d,d = 0 on Jf2, integrating by parts, we have
A - _ - 2
(-0 ax = — dt/ VdP dx.

Hence we obtain
(5.4) th/ |Vd|? dx+/ |Ad + |Vd[*d|? dx—/(u~Vd)~Ad dx.
Q

By adding (53) and (54), we eventually get the identity

(5.5) %% Q(p|u|2 +|Vd[?) dx + /Q(|Vu|2 + |Ad + |Vd|*d|?) dx = 0.
Since Vd € L%(0,Tp; H'(2)) and |d| = 1, we have

(5.6) Ad-d+ |Vd]* =0,

and then

/ |Ad + |Vd[*d|? dx:/ |Ad x d|? dx:/ 10,d|* dx.
Q Q Q

The last equality comes from Ad = 9;d+u-Vd —|Vd|*d and the fact that |d| = 1.
Now, by virtue of the Poincaré inequality

IVallZ: > AsflulZ:
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and the inequality
d
18edllz2 > —[ld(t)] 2 =0,
we get from (B0 that

1d Al
o (1Al + 19413) + 22wl <0,

i.e.
d / 2n 22, d
(5.7) = (M vpulta) + e VAl <0,
Integrating (B.7) from 0 to ¢, we obtain
221 2 2
e " (Ivpa)(B)lZ: +[IVA()]Z2)

oA [t
1/ 5V (7| Padr
0

< [IVpouolz: + IVdol 72 + 5

It follows from Gronwall’s inequality that

2A1, 2y

TVl < 2, + [ Vdo|22)(1
e 7 IVdlze < (llveouollz: + [Veol[z2)(1 + ==t 77,

and furthermore,

2 2A1 2 22, 2\
e 7 (Ivpulli: +IVdlE:) < (I Vpouollis +Vdolze) 2+ ZZhte s —e 74 Z2he).

]

Usually (50)) is called the basic energy law governing the system (LI)-(T3). It
reflects the energy dissipation property of the flow of liquid crystals.

5.2. A more explicit lower bound for the existence time. We denote by
T* the maximal existence time for (p,u, P,d) which means (p,u, P,d) cannot be
continued beyond T™* into a strong solution of (LI)-(L3)). Let us first state a
continuation criterion:

Lemma 5.2. Let pg,ug,dg be as in Theorem Bl and assume that system (L))
with the initial-boundary conditions (L2)-[L3) has a strong solution on a finite
time interval [0, T*) with

[oe) * 1,r .
p € L0, T, W>"(Q)), t<T1*r,lfxEQ p(x,t) >0,

1 _ _1
we L2(0,7 Dy *") and d-deL®(0,T% B,y 7).

Then (p,u, P,d) can be continued beyond T™* into a strong solution of (LI))-(3).

Proof. Indeed, a positive lower bound T for the existence time has already been

obtained in the proof of Theorem 2.1l (see @21, @22) and #28)) when (po, uo,

dp — d) remains in a bounded set of
_1 _1
W x Diq 7P BSfpl »)
with, in addition, infxeq po(x) > p for a fixed p > 0. Hence system (LI]) with
initial density p(T* — %), initial velocity u(T™ — %) and initial orientation field
d(7T* — %) has a unique strong solution on [0, 7] which provides a continuation of
the strong solution beyond T*. ([l
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Combining Lemma [5.1] and Lemma enables us to get the following result:

Proposition 5.1. Let pg,ug,do be as in Theorem 211 and let (p,u, P,d) denote
the corresponding strong solution of ([LI)-{I3). Then there exists some constant
C depending on p,q,r, i, A\, v, Q and p such that the maximal existence time T for
(p,u, P,d) satisfies
T > ¢
@+ llpollwr)=(UO)

for some positive exponents k and v depending only on the reqularity parameters.

Proof. Fix a T < T*. We aim to prove that if T§ C(1 4+ ||pollw.r)~"(U)~* for a
convenient choice of C, x and ¢, then (p, u, P,d —d) may be bounded in M;f,’(” by a
function depending only on the data. Then Lemma will entail Proposition (.11
Define
o) =) .
t Aq
+ VP (ray + |d—d 1, 4 [d-d .
9Pz + 1 =al_ ompy o+ 1d =l 0

t

. lallewea) + (|0l Lr(La)

1
7’

According to Theorems and (7)), we have
(5.8)
G < (B0l 3, + I Vullsgan + 19 (V) V) o)

Aq
+Co®)llullzr(ra) + ||d0||Bs<1—%) +|—u-Vd+ |Vd|2dHLf(L‘1))v
a,p
where C' = C(p,q,7,Q, p, p).

Combining the Gagliardo-Nirenberg-Sobolev inequality and Young’s inequality
yields, for all € > 0,

69l < Clellulwes + ) with 0= =
We note that Lemma [51] insures

all e ey < C(1L+£2)U
then employing Holder’s inequality, we have
(5.10) lullzpee) < ¢ l[ulliguz) < Cto (14 £2)U°.
Moreover, we get
(5.11) u-Vullprpey < [ullpse oy IVul[Lepey < Ct=72 G2 (1),

(5.12)

IV - ((VA)'VA)lr ey < ClIV(A = )| oy [A(D = d)|| ooy < CEZT1G3(2),
| —u-Vd+|Vd[*d| s (L)

(5.13) < ullzeezoylIV(d = d)| () + V(A = d) || Lse (1) [V (d = d) || Lp (<)
< Ct?~ 35 G2(1).
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Here we have used the fact that |d| = 1. Hence plugging (59)-(EI13) into (B.8)
while taking e = eCp_l(t) with e suitably small, we get

(5.14) G(t) < C(BAO(U° + (tF %

On the other hand, using the same argument as for p**! in Subsection 4.2, we
obtain

3
(5.15) ||vp||L§’°(L’“) < ||P0\|W1,T€Ct2 ! 2qG(t)7

Pl (poy < Cllpll g wrry + 110epl Lo 1))
(5.16) < C(llpllzse (wrry + lall Lz 2oy [ Voll Lo (L))
< C|IVpllpe ) (L +G(1)).

Then, according to the definitions of B,(t) and C,(t) in Theorem 3.7 in [8], using
BEI5) and (BI6), we eventually get

3_1

3
(5.17) B,(t) < CeC" 7 MO 4 | pollyrrr) 73,

-5 1 3 3
Colt) < € 7RO (1 g )™ + (14 o lwne) oo s (1+G(1) )

where v; and 2 depend only on p,q,r and 5.
Plugging (B.17)-(E18) into (5.14]), for some positive exponents d; and o, we have

3_1 3

G(t) <CeO OO 4 pollrr ) (UO (1485 (14 £3)(1 + G(1))2)
4tz % +t%*i)G2(t)).
Assume that T has been chosen such that
(5.19) G(T) < 8C(1 + [lpollwr.r) U

This is possible because of the continuity of the function ¢ — G(t). Noticing that
G(t) is increasing in ¢, a standard induction argument shows (5.19) is satisfied at
time ¢ < T with a strict inequality whenever the following three inequalities are
satisfied:

8C2(1 + ||pollwr.- ) U253 < In2,

(14 8C(1+ [pollwr ) T0) 213 (1 4+ 13) < 1,

ol
Q=

64C2(1 + || pollw ) 2D UC(t3 2% +¢374) < 2.

Hence Lemma enables us to continue the solution (p,u, P,d) beyond T.
The proof of Proposition [(£.1]is complete. O
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5.3. The case of a ‘small’ initial velocity and orientation field. Proposition
[Edlinsures that the existence time of a strong solution for (I1))-(T3) goes to infinity

(for fixed initial density) when ug (resp. dg — d) tends to O in D 7 (resp.
3(1—

Byp )). We now aim to state that the system has indeed a global strong solution
if ug and dg are suitably small. This will give Theorem

Let (p,u, P,d) be the strong solution given by Theorem 21l For any ¢ > 0,
define

GO’Q’C(t) = (H\//)—OU-OHL? + HVdOHL?) (1 + (2{15)%60) and G()’Q = G0’270(t).

By Lemma 5.1l for ¢ < T*, we have

2X1

(5.20) Ivpullrr(z2) < CGoatv (1+ (715)%)

and
I(V/Pa) ()| 2 + IVA(@)]| 2 < Ce™ 7 G02 2 (8)-
Hence, starting from (0.8)), using (B9)), (520) and the fact that
[a-Vullpepey < llullpe o [Vallze =)
<Clull s, [lullpwea) < CG2(1),
L(Dy,” )
IV - (V&) TVA) | Lr(re) < CIVA| Lge Loy | A L2 (1)
<Clld-d|l  su- by Id = d]l Ly ws.ay < CG*(),
L (B,

| —=u-Vd+[Vd[d| tr(L
< hullzge @ IVAllLe ey + IVA| Lgo (L) VAl Lp (<)

<o(lul sy ld=dllpaven +ld=dll s d=dlpares)
LD,y ") Lge ")

Aq t a,p

< CG*(t),
we end up with

G(t) < C((l +B2() (U + G2(1)) + CF ()Goat# (1 + (2—;\)%)%))

Once again, the bounds for B,(t) and C,(t) will follow from (GI7) and (GIJ).
However, in contrast with the previous section, we are gomg to take advantage

of Lemma [B.J] to avoid the appearance of the factor £2 %, Indeed, since

(L2(2), W24(€)) , —= W2 (Q) with ¢ = =24 it follows from Hélder’s inequality
that

t t
/O IVu(r)|p~dr < C / ()5 (r) [ynadr

b 1-9
<0 [ € Gy () I
< CG 0 (DG ().
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Now, bounding B,(t) and C,(t) may be done by mimicking the proof of Proposition
B, and we eventually conclude that

(5.21)
oGlv ()G (1) sl L . s )
Gt)<Ce **7% 1+ llpollwr.r) B(U (1+tr(1+1t2)(1+G(1)")+G (t))

for some positive exponents d3 and d4 depending only on p, g, 7.
Fix a positive T" and assume that

(5.22) G(t) < 8C(1 + ||pollwr.r)2U°, te[0,T).
If the data are so small that
CGy oty (DO + lpollwr.)*0°)” < In2,
then (B21)) implies
G(t) < 20(1 + || pollw.r ) (U°(1 v (L4 £3)(14 G(1)™) + G2(t)).
Now, if in addition

1 _ _
64C2(1+ || polw.r)?%2U° < 5 and T5(1+T%)(148C(1+ || poflw.-)=U°)* <

NO| W

then (5.22)) is satisfied with the constant 6C instead of 8C. A standard bootstrap
argument enables us to conclude the second part of Theorem 2.1l

6. WEAK-STRONG UNIQUENESS

The purpose of this section is to show weak-strong uniqueness in Theorem
To this end, we need to obtain first an energy estimate for the strong solution to

system ([LI))-(T3)).

Lemma 6.1. Let p, q,r satisfy the same conditions as Theorem 2] and (p,u, P,d)
with (p,u, P,d —d) € Mp*" be the unique solution to (LI)-(L3) on Q x [0, Tp].
Then for any 0 <t < Ty, we have

1

- 5/?(p(t)m(m V()] )dx+/0 /Q(|Vu| +|Ad + [VdPd[?) dxdr
T2 /Q(P0|uo|2 +[Vdo[?) dx.

Proof. Integrating (5.5) over the time interval [0,¢], we obtain the energy equality

@1). O

Now, we proceed to prove weak-strong uniqueness. Let (p, ﬁ,H,a) be a global
(in time) weak solution. On one hand, as the density p satisfies

Oip+1-Vj=0
pli=o = po € WH(Q)

1()C(]R+;H§(§2)))3, Theorem 1 in [9] insures that p € C(RY; Wh™ (Q))
for all 7~ < r. On the other hand, we remark that, in view of the regularity of the

with @ € (L2
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strong solution (p,u, P,d), we deduce from the weak formulation that

(6.2)

t
/ﬁﬁ-udX—I—/ /Vﬁ:VudXdT
Q 0 Ja

t t
:/p0|u0|2 dx+/ /ﬁﬁ~(3Tu+ﬁ-Vu) dxdT—/ /(V&)TA&-UdXdT
Q 0 JQ 0 JQ

and

/V&;Vd dx—/ |Vd|* dx

(63) Q Q

. . ] ] ) o

://(—d-AdT—i—ﬁ-Vd-Ad—Ad-Ad—|Vd|2d-Ad) dxdr
0JQ

for almost all t € (0, Tp).
If we write

poru+ pu-Vu— Au+ VP

(6.4) vdp?

= (p—p)(@u+u-Vu)+j(@i—u)-Vu-V (T) —(vd)T Ad,

then multiply ([6-4)) by @ and integrate over § x (0,t) to find
(6.5)

¢ ¢
/ /(ﬁ&,u + pa-Vu) - a dxdr + / / Vu: Va dxdr
0 Jo 0 Jo

¢
= / / ((p—p)(Oru+u-Vu) -4+ p(E—u) - Vu-a— (Vd)' Ad- 1) dxdr,
0o Jo
then meanwhile replace 9;d by ([Id) in (€3] to get

/va:Vd dx—/ |Vdy|* dx
Q Q

t
(6.6) ://(—2A&~Ad+u-Vd-A&+ﬁ-V&-Ad—|Vd|2d~A&
0JQ

— |Vd[*d - Ad) dxdr.
Combining ([62), (63) and ([6.0), we get for almost all t € (0,Tp),
(6.7)
t
/(ﬁﬁ~u+V& . Vd) dx+2/ /(va:VquA&-Ad) dxdr
Q 0 Ja
t
= / (poluo)?® +|Vdo|?) dx —/ /(V&)TAEI -u dxdr
Q 0o Jo

' b — u+u-Vu)-a+p(—u)-Vu-ua-— T -u) dxdr
[ [ (=m0t u V)i —w - Ve (V)T Ad - 5) dxd

t
+/ /(u-Vd~A&+ﬁ-V&-Ad—|Vd\2d-A&—\V&P&-Ad) dxdr.
0 JQ
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From (6.4) and (LId), using the same argument we used to get the energy estimate
(©1)), we get for almost all ¢ € (0,Tp),

1 t
5/(,3|u|2+ |vd|?) dx+/ /(|Vu\2+ |Ad + |Vd[2d|?) dxdr
Q 0 JQ

1
68 =5 [ (ol + [V)ax

+/O /Q((ﬁ_ﬂ)(aru-f'u'vu)-u+/3(f1—u)~Vu-u)dxdT.

Here we have used the fact that 0;p = —a - Vp.
Then, adding (2.I)) and (6.8) and substracting (6.7), together with the fact that
B6) and (p, 0,11, d) is a weak solution, we obtain

1 ~ ¢ ~
5/(ﬁ\u—ﬁ|2+|Vd—Vd|2) dx+/ /(|Vu—Vﬁ|2+|Ad—Ad|2) dxdr
Q 0 Q

S/O /Q((ﬁ_P)(37u+u~VU)-(u—ﬁ)—ﬁ(u—ﬁ).Vu.(u_ﬁ_)) dxdr

—/t/Q (Vd-vd)-Ad-(u—a)—u-(Vd - Vd) - (Ad — Ad)
0 + (|Vd[*d — [Vd[*d) - (Ad — Ad)) dxdr.
Hence, for almost all ¢ € (0,Tp) and for all € > 0, we have
(6.9)
% /Q(ﬁ\u —a]? +|vd — vd|?) dx + /Ot /Q(|Vu —Vvil|? + |Ad — Ad)?) dxdr

t
< / (Colloru + u- Vulf2ap — plf2
0
t
+eflu—all7e) dT—i—e/ /|Ad—Ad|2 dxdr
0 Q

t t
+CE/ (HVdH‘zm/ |d —d|? dx) d7+/ (HVu||Loo/ﬁ|u—f1|2 dx) dr
0 Q 0 Q
t
+/ (OE(|Vd+Vd||2Loo +|ju))?w + ||Ad||%3)/ |Vd — Vd|? dx) dr.
0 Q

Here we have used Holder’s inequality and Cauchy’s inequality with e.
Now, we wish to estimate ||p — p||z2 and ||d — d||zz. We write

(6.10) Op—p)+Vip—p)-a=(a—u)-Vp
and
(6.11) dy(d—d)+u-V(d—d)+ (u—1)-Vd = Ad — Ad + |Vd|*d — |Vd|*d.

Multiplying (6.I0) (resp. ([€I1)) by p—p (resp. d—&) and integrating over Qx (0, t),

we have
1 . ¢ e
5 [lo=oPix= [ [ (o= pa-—w-Vpdxir
Q 0 Q
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and
1 712
3 [ ld-dp ax
// -Vd-(d—d) dxdT—//\Vd vd|? dxdr

+/ /|Vd|2|d—&|2 dxd7+/ /(Vd+va);(w—va)a.(d—a) dxdr.
0 JQ 0 JQ

Employing the same argument as in (69), we get

1 . t ~ .
(6.12) 3 ), Ip —p)?dx < / (CclIVpllZsllp — All7> +ellu—1lZe) dr,
0

(6.13)

/|d df? dx

1 - ! ~
g/o (Ca|Vd||L3+||Vd|%W +§>/Qd—d|2 dxd7+5/0 Ju— a7 dr

o (o IR ) [ v var o
0 Q

Using Sobolev’s inequality ||lu — t||ps < C||Vu — V|2, we eventually get from

©3), 6I2) and (6I3), for almost all ¢ € (0, Tp),
/ (plu—a> +|Vd — Vd]* + |p — p* + |d — d|*) dx
Q

t
+/ /(\Vu—Vﬁ|2+|Ad—A&|2) dxdr

/ [ (€ (o= g+ 9 = VR + ja - )
+C(r)(plu—a? +|Vd — Vd|? + |d — a|2)) dxdr,

where C.(-),C(:) denote various nonnegative measurable functions in L' (0, Tp)
which occurred when we applied the parabolic type estimates for quasi-linear equa-
tions (cf. [24], Chapter VI, Section 2) to (LId) to obtain d(-,t) € C™* for some
a > 0, with the C* norm independent of ¢. We hence conclude that u =, d = d
and p = p a.e. in Q x (0,Tp) by applying Gronwall’s inequality.

The proof of Theorem [2.2]is complete. O
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