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THE STABILITY OF SELF-SHRINKERS

OF MEAN CURVATURE FLOW IN HIGHER CO-DIMENSION

YNG-ING LEE AND YANG-KAI LUE

Abstract. We generalize Colding and Minicozzi’s work (2012) on the stabil-
ity of hypersurface self-shrinkers to higher co-dimension. The first and second
variation formulae of the F -functional are derived and an equivalent condi-
tion to the stability in general co-dimension is found. We also prove that Rn

is the only stable product self-shrinker and show that the closed embedded
Lagrangian self-shrinkers constructed by Anciaux are unstable.

1. Introduction

Let X : Σ → Rm be an isometric immersion of an n-dimensional manifold Σ
in the Euclidean space Rm. Mean curvature flow of X is a family of immersions
Xt : Σ → R

m that satisfies{ (
∂
∂tXt(x)

)⊥
= H(x, t),

X0 = X,

where H(x, t) is the mean curvature vector of Xt(Σ) at Xt(x) and v⊥ denotes
the projection of v into the normal space of Xt(Σ). Mean curvature flow of a
submanifold in a Riemannian manifold can be defined similarly. Because the mean
curvature vector points in the direction in which the area decreases most rapidly,
mean curvature flow is a canonical way to construct minimal submanifolds. It also
improves the geometric properties of an object along the flow (e.g., see [7]).

A submanifold Σ in Rm is called a self-shrinker if its position vector X : Σ → Rm

satisfies

H = −1

2
X⊥.

The terminology comes from the fact that
√
1− tX(Σ) is a solution of mean curva-

ture flow, i.e., a self-shrinker evolves homothetically along mean curvature flow in a
shrinking way. Moreover, self-shrinkers describe all possible central blow-up limits
of a finite-time singularity of mean curvature flow. This follows from Huisken’s
monotonicity formula [8], and its generalization to type II singularity by Ilmanen
[10] and White. Singularities occur along mean curvature flow in general and are
obstacles to continue the flow. It is therefore an important issue to understand
singularities and the candidates of their blow-up limits, self-shrinkers.

Standard sphere Sn(
√
2n) and cylinder Sk(

√
2k) × Rn−k are simple examples

of self-shrinkers in Rm. Abresch and Langer [1] found all immersed closed self-
shrinkers in the plane. In the case of high dimensional complete hypersurface,
Huisken [9] classified all embedded self-shrinkers with nonnegative mean curvature,
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polynomial volume growth, and the second fundamental form bounded. The con-
dition on second fundamental form is later removed by Colding and Minicozzi in
[6]. However, there are still many other different hypersurface self-shrinkers (e.g.,
see [3]), and a classification of all self-shrinkers is not expected. For the higher
co-dimensional case, our understanding is even more limited. One result is due to
Smoczyk in [13] who obtained a classification of self-shrinkers with parallel prin-
cipal normal ν ≡ H/|H| and bounded geometry. The parallel principal normal
condition mainly reduces the problem to a similar situation as the co-dimensional
one case. Several different families of Lagrangian self-shrinkers are constructed by
Anciaux in [2], and Joyce-Lee-Tsui in [11] which generalizes examples constructed
by Lee-Wang in [12]. Lagrangians are submanifolds of middle dimension. See §5
for the definition of Lagrangian.

Adapted from the back heat kernel introduced by Huisken in [8], Colding and
Minicozzi [6] defined a functional F by

(1) F (Σ, x, t) =
1√
4πt

n

∫
Σ

e
−|X−x|2

4t dμ,

for any submanifold X : Σn → Rn+1, x ∈ Rn+1 and t > 0. One of the main
properties of this functional is that (Σ, x0, t0) is a critical point of F iff Σ satisfies

H = − (X−x0)
⊥

2t0
. Specifically, it is a self-shrinker when x0 = 0 and t0 = 1. They

proved that if an n-dimensional complete smooth embedded self-shrinker Σn in
Rn+1 has polynomial volume growth and is F -stable with respect to compactly
supported variations, then it must be the round sphere or a hyperplane. Here
being F -stable means that for every compactly supported smooth variation Σs with

Σ0 = Σ, there exist variations xs of 0 and ts of 1 such that ∂2

∂s2F (Σs, xs, ts) ≥ 0
at s = 0. Relating to functional F , a notion of entropy and entropy stable can be
defined, and F -unstable implies entropy unstable if the self-shrinker does not split
off a line. Moreover, entropy decreases along mean curvature flow. The importance
and goal of Colding-Minicozzi’s work is to conclude that the blow-up near the first
time singularity of mean curvature flow for generic initial data gives stable self-
shrinkers (see [6] for the exact statement).

In this paper, we intend to generalize Colding and Minicozzi’s work [6] to higher
co-dimensional cases. The domain of the functional F is now (Σ, x, t) for Σn ⊂ Rm,
x ∈ R

m and t > 0. The critical points satisfy the same equation as in co-dimension
one. Colding and Minicozzi’s classification on F -stable hypersurface self-shrinkers
is first to conclude that the mean curvature function h is the first eigenfunction of an
elliptic operator; it then implies h ≥ 0. Huisken’s classification on embedded self-
shrinkers with h ≥ 0 and the generalization by Colding-Minicozzi will lead to the
conclusion. Although the counterpart of Huisken’s result in higher co-dimension is
not available, we can still relate the stability of self-shrinkers in higher co-dimension
to the mean curvature vector being the first vector-valued eigenfunction for an
elliptic system. More precisely, the equivalent condition of stabilities is as in the
following theorems.

Theorem 4. Suppose Σ ⊂ Rm is an n-dimensional smooth closed self-shrinker

satisfying H = −X⊥

2 . The following statements are equivalent:
(i) Σ is F-stable.
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(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V , namely, a
smooth normal vector field V which satisfies∫

Σ

〈V,H〉e−
|X|2

4 dμ = 0 and

∫
Σ

〈V, y⊥〉e−
|X|2

4 dμ = 0

for any constant vector y ∈ R
m, where

L⊥V = Δ⊥V + 〈Aij , V 〉gkigjlAkl +
V

2
− 1

2
∇⊥

X�V

is a second order elliptic operator and Aij is the second fundamental form as defined
in (2), and ∇⊥ is the normal connection on the normal bundle of Σ.

Note that in high co-dimension F -unstable also implies entropy unstable if the
self-shrinker does not split off a line. We will only discuss F -stability in this paper,
and stable is always referred to as F -stable. From the standard spectrum theory
for unbounded domain, it is natural to consider the set H1

0(Σ), which is the closure
of compact support smooth normal vector fields with respect to the norm || · ||1,e.
See the definition of || · ||1,e in (3). We also obtain the following equivalent condition
for the stability of F in the complete noncompact case.

Theorem 5. Let Σ ⊂ Rm be an n-dimensional smooth complete noncompact self-

shrinker satisfying H = −X⊥

2 . Suppose that the second fundamental form A of
Σ is of polynomial growth and Σ has polynomial volume growth. The following
statements are equivalent:

(i) Σ is F -stable.

(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V in H1
0(Σ).

Recall that the notion of admissible vector field is defined in Theorem 4.
In the case of hypersurfaces, Sn(

√
2n) and Rn are the only complete smooth

F -stable self-shrinkers with polynomial volume growth [6]. When considered as
self-shrinkers in R

m for m > n + 1, they are still F -stable. But the stability
for all other higher co-dimensional self-shrinkers is not clear. We will employ the
above equivalent condition to investigate the F -stability of product self-shrinkers
and Anciaux’s Lagrangian self-shrinkers [2].

For smooth self-shrinkers Σn1
1 ⊂ R

m1 and Σn2
2 ⊂ R

m2 , it is easy to see that
Σ = Σ1 × Σ2 is also a self-shrinker in Rm1+m2 . Conversely, considering a self-
shrinker Σ ⊂ Rm1+m2 , if Σ can be expressed as Σn1

1 × Σn2
2 for smooth Σn1

1 ⊂ Rm1

and Σn2
2 ⊂ Rm2 , then both Σn1

1 and Σn2
2 are self-shrinkers. Such Σ is called a

product self-shrinker in this paper. In §4, we prove

Theorem 6. The n-plane is the only complete smooth F -stable product self-shrinker
in Rm whose volume and second fundamental form are of polynomial growth.

Now we introduce Anciaux’s examples in [2]. They are n-dimensional self-
shrinkers in Cn, n ≥ 2, and are expressed as γ(s)ψ(σ), where ψ : Mn−1 → S2n−1 ⊂
Cn is a minimal Legendrian immersion and γ is a complex-valued function that
satisfies the system of ordinary differential equations (25). Because the F -value is
infinite on the complete noncompact Lagrangian examples constructed by Anciaux,
we will only discuss the closed case. That is, the corresponding curves γ are closed
and the immersions ψ : M → S2n−1 are closed. We prove that

Theorem 7. Anciaux’s closed embedded examples as described in Lemma 1 are
F -unstable.
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Since Anciaux’s examples are Lagrangian in Cn, it is natural to ask whether
these examples are still F -unstable under the restricted Lagrangian variations. We
have the following

Theorem 8. Anciaux’s closed embedded examples are F -unstable under Lagrangian
variations for the following cases:

(i) n = 2 or n ≥ 7,

(ii) 2 < n < 7, and E ∈ [
√

7−n
8 Emax, Emax],

where E and Emax are described in (26).

Theorems 7 and 8 also work for the case with transversal intersections. It will
be interesting to understand whether Joyce-Lee-Tsui’s Lagrangian self-shrinkers are
F -stable or not. The answer to this question is still not clear to us. By a suggestion
of Mu-Tao Wang, we recently also studied Hamiltonian stability of F -functional for
Lagrangian self-shrinkers. We can prove that Clifford torus (the product of circles)
are Hamiltonian F -stable and find that our variation in the proof of Theorem 8 is in
fact a Hamiltonian variation for n ≥ 3. It thus shows that the cases are Hamiltonian
F -unstable. These and related issues will be investigated in a forthcoming paper.

We learned after this paper was finished that Andrews-Li-Wei also obtained
part of the results in this paper independently [5]. However, they focused on the
classification of self-shrinkers with parallel principal normal instead in the second
part of their paper. We remark that part of our results was first presented by
the second author at the annual meeting of the Taiwan Mathematical Society in
December of 2010.

2. The 1st and 2nd variation formulae of F

2.1. Notation and preliminaries. Let X : Σn → Rm be a smooth isometric
immersion and continue to denote the image as Σ which has co-dimension m− n.
Suppose {ei} and {eα} are orthonormal frames for the tangent bundle TΣ and the
normal bundle NΣ, respectively. The coefficients of the second fundamental form
and the mean curvature vector are defined to be

Aij = Aα
ijeα ≡ 〈∇eiej , eα〉eα(2)

and H = Hαeα ≡ Aii,

where by convention we are summing over repeated indices and ∇ is the standard
connection of the ambient Euclidean space. For a submanifold B in an ambient
manifold C, we use AB,C and HB,C to denote the associated second fundamental
form and mean curvature vector, respectively. When the ambient space is Cn, we
denote them as AB (or A) and HB (or H) for simplicity. For a normal vector field
V , 〈A, V 〉 is a (2, 0)-tensor and |〈A, V 〉|2 is defined as

∑n
i,j=1〈Aij , V 〉2. When Σ

is a hypersurface, the mean curvature vector H and the second fundamental form
reduce to the function h = −〈H,n〉 and the 2-tensor hij = −〈Aij ,n〉, respectively.
Here n is the unit outer normal vector of Σ.

Definition 1. Let Σ be a submanifold in Rm and Br(0) be the geodesic ball in Rm

with radius r. Σ is said to have polynomial volume growth if there are constants
C1, C2 and k ∈ N so that for all r ≥ 0

V ol(Br(0) ∩ Σ) ≤ C1r
k + C2.
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Definition 2. A normal vector field V (or the second fundamental form A) of Σ is
of polynomial growth if there are constants C1, C2 and k ∈ N so that for all r ≥ 0

|V | ≤ C1r
k + C2 (or |A| ≤ C1r

k + C2) on Br(0) ∩ Σ.

For any smooth normal vector fields V and W in the space of sections Γ(NΣ),

their weighted L2 inner product is defined to be
∫
Σ
〈V,W 〉e− |X|2

4 dμ, where 〈·, ·〉 is the
standard inner product on R

m. Denote this weighted L2 inner product by 〈V,W 〉e
and call (Γ(NΣ), 〈·, ·〉e) the weighted L2 inner product space. For V ∈ Γ(NΣ), we

define norms ||V ||e = 〈V, V 〉
1
2
e and

||V ||1,e = (

∫
Σ

|V |2e−
|X|2

4 dμ)1/2 + (

∫
Σ

|∇⊥V |2e−
|X|2

4 dμ)1/2.(3)

Let Nc(Σ) be the collection of all smooth normal vector fields in Γ(NΣ) with
compact support and denote the space H1

0(Σ) as the closure of Nc(Σ) with respect
to the norm || · ||1,e.

2.2. The first variation formula of F . Colding and Minicozzi derived the first
and second variation formulae of the F -functional of a hypersurface in [6]. These
can be generalized to higher co-dimensional cases by similar calculation. We derive
the first variation formula of F in the following theorem.

Theorem 1. Let Σ ⊂ Rm be an n-dimensional complete manifold with polynomial
volume growth. Suppose that Σs ⊂ Rm is a normal variation of Σ, xs, ts are
variations of x0 and t0, and

∂Σs

∂s
= V,

dxs

ds
= y, and

dts
ds

= τ,

where V has compact support. Then

∂

∂s
F (Σs, xs, ts) =

1√
4πts

n

∫
Σs

(
− 〈V,Hs +

Xs − xs

2ts
〉+ τ (

|Xs − xs|2
4t2s

− n

2ts
)

+
〈Xs − xs, y〉

2ts

)
e

−|Xs−xs|2
4ts dμ,(4)

where Xs is the position vector of Σs and Hs is its mean curvature vector.

Proof. From the first variation formula for area, we have

(5)
∂

∂s
(dμ) = −〈Hs, V 〉dμ.

The variation of the weight 1√
4πts

n e−|Xs−xs|2/4ts contains terms coming from the

variation of Xs, the variation of xs and the variation of ts, respectively. Using the
following equations:

∂

∂ts
log

(
(4πts)

−n/2e−
|Xs−xs|2

4ts

)
=

−n

2ts
+

|Xs − xs|2
4t2s

,

∂

∂xs
log

(
(4πts)

−n/2e−
|Xs−xs|2

4ts

)
=

Xs − xs

2ts

and
∂

∂Xs
log

(
(4πts)

−n/2e−
|Xs−xs|2

4ts

)
= −Xs − xs

2ts
,
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we obtain

∂

∂s
log

(
(4πts)

−n/2e−
|Xs−xs|2

4ts

)
=− 〈Xs − xs, V 〉

2ts
+ τ (

|Xs − xs|2
4t2s

− n

2ts
) +

1

2ts
〈Xs − xs, y〉.

Combining this with (5) gives (4). �

Definition 3. We call (Σ, x0, t0) a critical point of F if it is critical with respect
to all normal variations which have compact support in Σ and all variations in x
and t.

From the definition of F in (1), we have F (Σ, x, t) = F (Σ−x√
t
, 0, 1) and it is easy

to see the following property:

(Σ, x0, t0) is a critical point of F if and only if (
Σ− x0√

t0
, 0, 1)

is a critical point of F.(6)

Therefore, we only consider the case x0 = 0, t0 = 1. In the case of hypersurfaces,
Colding and Minicozzi proved that (Σ, 0, 1) is a critical point of F if Σ satisfies that

h = 〈X,n〉
2 . Their result, when written in the vector form H = −X⊥

2 , also holds for
higher co-dimensional cases. The proof needs the following propositions.

Proposition 1. If Σ ⊂ R
m is an n-dimensional complete submanifold with H =

−X⊥

2 , then

LXi = −1

2
Xi and

L|X|2 = 2n− |X|2.(7)

Here Xi is the i-th component of the position vector X, i.e., Xi = 〈X, ∂i〉 and the

linear operator Lf = Δf − 1
2 〈X,∇f〉 = e

|X|2
4 div(e

−|X|2
4 ∇f).

Proposition 2. If Σ ⊂ R
m is an n-dimensional complete submanifold with poly-

nomial volume growth, and H = −X⊥

2 , then∫
Σ

Xe
−|X|2

4 dμ =
−→
0 =

∫
Σ

X|X|2e
−|X|2

4 dμ and∫
Σ

(|X|2 − 2n)e
−|X|2

4 dμ = 0.(8)

Moreover, if W ∈ Rm is a constant vector, then∫
Σ

〈X,W 〉2e−
|X|2

4 dμ = 2

∫
Σ

|W�|2e−
|X|2

4 dμ.(9)

The proofs for these propositions are similar to the hypersurface case proved by
Colding and Minicozzi (see Lemma 3.20 and Lemma 3.25 in [6]), and will thus be
omitted. Combining (4), (6) and (8), we get

Proposition 3. For any x0 ∈ Rm, t0 ∈ R+, (Σ, x0, t0) is a critical point of F if

and only if H = − (X−x0)
⊥

2t0
.
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2.3. The general second variation formula of F .

Theorem 2. Let Σ ⊂ Rm be an n-dimensional complete submanifold with poly-
nomial volume growth. Suppose that Σs is a normal variation of Σ, xs, ts are
variations of x0 and t0, and

∂Σs

∂s
= V,

dxs

ds
= y,

dts
ds

= τ,
d2xs

ds2
= y′, and

d2ts
ds2

= τ ′,

where V has compact support. Then

∂2F

∂s2
(Σ, x0, t0)

=
1√

4πt0
n

∫
Σ

e−
|X−x0|2

4t0

{
− 〈V, L⊥

x0,t0V 〉+ 〈X − x0, V 〉
t20

τ +
〈V, y〉
t0

− (|X − x0|2 − nt0)τ
2

2t30
− |y|2

2t0
− τ 〈X − x0, y〉

t20

+

(
−〈V,H +

X − x0

2t0
〉+ τ (

|X − x0|2
4t20

− n

2t0
) + 〈X − x0

2t0
, y〉

)2

− 〈∇⊥
V V,H +

X − x0

2t0
〉+ τ ′(

|X − x0|2
4t0

− n

2t0
) +

〈X − x0, y
′〉

2t0

}
dμ,(10)

where

L⊥
x0,t0V = Δ⊥V + 〈Aij , V 〉gkigjlAkl +

V

2t0
− 1

2t0
∇⊥

(X−x0)�
V

and Aij is the second fundamental form as defined in (2).

Proof. Apply one more derivative on equation (4). It gives

∂2F

∂s2
(Σ, x0, t0)

=
1√

4πt0
n

∫
Σ

e−
|X−x0|

4t0

{
−〈V, ∂

∂s
(Hs +

Xs − xs

2ts
)
∣∣∣
s=0

〉

+ τ
∂

∂s
(
|Xs − xs|2

4t2s
− n

2ts
)
∣∣∣
s=0

+ 〈 ∂
∂s

(
Xs − xs

2ts
)
∣∣∣
s=0

, y〉

+

(
−〈V,H +

X − x0

2t0
〉+ τ (

|X − x0|2
4t20

− n

2t0
) + 〈(X − x0

2t0
), y〉

)2

− 〈V ′, (H +
X − x0

2t0
)〉+ τ ′(

|X − x0|2
4t20

− n

2t0
) + 〈(X − x0

2t0
), y′〉

}
dμ.(11)

Similar to the derivation of the second variation formula for the area, we have

〈(∂Hs

∂s
), V 〉 = 〈Δ⊥V + 〈Aij , V 〉gkigjlAkl, V 〉.(12)

On the other hand, since the Lie bracket [V, (X−x0)
2t0

)�] is tangent to Σs, it follows
that

〈∇�
V V,

X − x0

2t0
〉 = −〈V,∇V (

X − x0

2t0
)�〉 = −〈V,∇

(
X−x0
2t0

)�
V 〉.(13)
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Using ∂Xs

∂s = V ,
dt−1

s

ds = −τt−2
s and dxs

ds = y, we simplify

− 〈V, ∂

∂s
(Hs +

Xs − xs

2ts
)
∣∣∣
s=0

〉 − 〈V ′, H +
X − x0

2t0
〉

=− 〈V, ∂Hs

∂s

∣∣∣
s=0

〉−〈V, ∂

∂s
(
Xs − xs

2ts
)
∣∣∣
s=0

〉−〈∇⊥
V V,H+

X − x0

2t0
〉−〈∇�

V V,
X − x0

2t0
〉

=− 〈V, L⊥
x0,t0V 〉 − 〈∇⊥

V V,H +
X − x0

2t0
〉+ 〈V, y

2t0
〉+ τ

2t20
〈V,X − x0〉,

where the second equality is from (12), (13), and the definition of L⊥
x0,t0 . The

second term in (11) is given by

∂

∂s
(
|Xs − xs|2

4t2s
− n

2ts
)
∣∣∣
s=0

=
〈X − x0, V − y〉

2t20
− τ |X − x0|2

2t30
+

nτ

2t20

=
〈X − x0, V 〉

2t20
− |X − x0|2 − nt0

2t30
τ − 〈X − x0, y〉

2t20
.

For the third term in (11), observe that

〈 ∂
∂s

(
Xs − xs

2ts
)
∣∣∣
s=0

, y〉 = 〈 V

2t0
, y〉 − |y|2

2t0
− τ

2t20
〈X − x0, y〉.

Combining these gives the theorem. �

2.4. The second variation formula at a critical point. From now on we denote
∂2F
∂s2 (Σ, 0, 1) in (10) as D2

(V,y,τ)F for clarity. When (Σ, 0, 1) is a critical point of F ,

we have H = −X⊥

2 and the second variation formula of F at (Σ, 0, 1) can be
simplified as the following:

Theorem 3. Let Σ ⊂ Rm be an n-dimensional complete submanifold with poly-
nomial volume growth. Suppose that Σs is a normal variation of Σ, xs, ts are
variations of x0 = 0 and t0 = 1, and

∂Σs

∂s

∣∣∣
s=0

= V,
dxs

ds

∣∣∣
s=0

= y,
dts
ds

∣∣∣
s=0

= τ,

where V has compact support. If (Σ, 0, 1) is a critical point of F , then

D2
(V,y,τ)F

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ 〈H,V 〉 − τ2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2
4 dμ.(14)

Here the operator L⊥ = L⊥
0,1, and

(15) L⊥V = Δ⊥V + 〈Aij , V 〉gkigjlAkl +
V

2
− 1

2
∇⊥

X�V.

Proof. Since (Σ, 0, 1) is a critical point of F , by (4) we have that

(16) H = −X⊥

2
.

It follows from (8) that
(17)∫

Σ

Xe
−|X|2

4 dμ =
−→
0 =

∫
Σ

X|X|2e
−|X|2

4 dμ and

∫
Σ

(|X|2 − 2n)e
−|X|2

4 dμ = 0.
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Theorem 2 (with x0 = 0 and t0 = 1) gives

D2
(V,y,τ)F = (4π)−

n
2

∫
Σ

(
− 〈V, L⊥V 〉+ τ 〈X,V 〉+ 〈V, y〉 − (|X|2 − n)τ2

2
− |y|2

2

− τ 〈X, y〉+ {τ ( |X|2
4

− n

2
) + 〈X

2
, y〉}2

)
e−

|X|2
4 dμ,

where we use (16) and (17) to conclude the vanishing of a few terms in (10). Note
that y is a constant vector and τ is a constant. Squaring out the last term of
D2

(V,y,τ)F and using (16) and (17) again leads to

D2
(V,y,τ)F =(4π)−

n
2

∫
Σ

(
−〈V, L⊥V 〉 − 2τ 〈H,V 〉+ 〈V, y〉 − |y|2

2

+ τ2(
|X|2
4

− n

2
)2 +

1

4
〈X, y〉2 − (|X|2 − n)τ2

2

)
e−

|X|2
4 dμ.

Using the equality (7) and Stokes’ theorem, we have that∫
Σ

τ2(
|X|2
4

− n

2
)2e−

|X|2
4 dμ =−

∫
Σ

τ2(
|X|2
4

− n

2
)L|X|2

4
e−

|X|2
4 dμ

=

∫
Σ

τ2∇|X|2
4

· ∇|X|2
4

e−
|X|2

4 dμ

=

∫
Σ

τ2
|X�|2

4
e−

|X|2
4 dμ

=

∫
Σ

τ2
|X|2 − |X⊥|2

4
e−

|X|2
4 dμ.

Combining (8) and (9), the second variation D2
(V,y,τ)F can be further simplified as

1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ 〈H,V 〉 − τ2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2
4 dμ.

�

In [6], Colding and Minicozzi defined the following concept.

Definition 4. A critical point (Σ, 0, 1) of F is called F -stable if for every compactly
supported smooth variation Σs with Σ0 = Σ and ∂Σs

∂s

∣∣
s=0

= V , there exist variations

xs of 0 and ts of 1 such that D2
(V,y,τ)F ≥ 0, where y = dxs

ds

∣∣
s=0

and τ = dts
ds

∣∣
s=0

.

Remark 1. When Σ is fixed, i.e. V = 0, we see from (14) that the second variation
formula of F is nonpositive for any variations of xs and ts.

3. An equivalent condition for F -stability

3.1. Vector-valued eigenfunctions and eigenvalues of L⊥. Let X : Σ → R
m

be a closed self-shrinker. Recall that the second order operator L⊥ is defined by

L⊥V = Δ⊥V − 1

2
∇⊥

X�V + 〈Aij , V 〉gkigjlAkl +
V

2
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for V ∈ Γ(NΣ). Therefore, we have∫
Σ

〈−L⊥V,W 〉e−
|X|2

4 dμ

=

∫
Σ

(
〈∇⊥V,∇⊥W 〉 − 〈Aij , V 〉〈Akl,W 〉gikgjl − 1

2
〈V,W 〉

)
e−

|X|2
4 dμ

for V,W ∈ Γ(NΣ). It is easy to see that the operator L⊥ is self-adjoint in the
weighted L2 inner product space and the standard spectral theory also works. Di-
rect computation leads to the following proposition.

Proposition 4. Let Σ ⊂ Rm be an n-dimensional smooth complete self-shrinker

satisfying H = −X⊥

2 . Then the mean curvature vector H and the normal projection

y⊥ of a constant vector field y satisfy

(18) L⊥H = H and L⊥y⊥ =
1

2
y⊥,

respectively. That is, they are vector-valued eigenfunctions of L⊥ with eigenvalue 1
and 1

2 , respectively.

Proof. Fix p ∈ Σ and choose an orthonormal frame {ei} in a neighborhood of p
such that ∇eiej(p) = 0, gij(p) = δij . Using H = − 1

2X
⊥, we have

∇⊥
eiH = ∇⊥

ei(−
1

2
X⊥) =

1

2
∇⊥

ei(〈X, ej〉ej −X) =
1

2
〈X, ej〉Aij .(19)

In the second equality of (19), we use X� = 〈X, ej〉ej . Taking another covariant
derivative at p, it gives

∇⊥
ek
∇⊥

eiH =
1

2
(∇ek〈X, ej〉)Aij +

1

2
〈X, ej〉∇⊥

ek
Aij

=
1

2
Aik +

1

2
〈X,Akj〉Aij +

1

2
〈X, ej〉∇⊥

ejAik,(20)

where ∇ekej(p) = 0; the Codazzi equation and (19) are used in the last equality.
Taking the trace of (20) and using H = − 1

2X
⊥, we conclude that

Δ⊥H =
1

2
H − 〈H,Aij〉Aij +

1

2
∇⊥

X�H.

Therefore,

L⊥H = Δ⊥H − 1

2
∇⊥

X�H + 〈Aij , H〉Aij +
1

2
H = H.

For a constant vector y in Rm, the covariant derivative of y⊥ is

∇⊥
eiy

⊥ = ∇⊥
ei(y − 〈y, ej〉ej) = −〈y, ej〉Aij .(21)

Taking another covariant derivative at p, it gives

∇⊥
ek
∇⊥

eiy
⊥ = −(∇ek〈y, ej〉)Aij − 〈y, ej〉∇⊥

ek
Aij

= −〈y,Akj〉Aij − 〈y, ej〉∇⊥
ejAki(22)



THE STABILITY OF SELF-SHRINKERS 2421

by applying ∇ekej(p) = 0 and the Codazzi equation. Taking the trace of (22) and
using (19), (21), we conclude that

Δ⊥y⊥ = −〈y,Aij〉Aij − 〈y, ej〉∇⊥
ejH

= −〈y⊥, Aij〉Aij −
1

2
〈y, ej〉〈X, ei〉Aij

= −〈y⊥, Aij〉Aij +
1

2
〈X, ei〉∇⊥

eiy
⊥

= −〈y⊥, Aij〉Aij +
1

2
∇⊥

X�y
⊥.

Therefore,

L⊥y⊥ = Δ⊥y⊥ − 1

2
∇⊥

X�y
⊥ + 〈Aij , y

⊥〉Aij +
1

2
y⊥ =

1

2
y⊥. �

For the hypersurface case, we have the following immediate corollary.

Corollary 1 (Theorem 5.2 in [6]). Let Σ ⊂ R
n+1 be an n-dimensional smooth

complete self-shrinker satisfying h = 〈X,n〉
2 , where h = −〈H,n〉 is the mean cur-

vature function. Then h and the functions 〈y,n〉 for constant vector fields y are
eigenfunctions of L with Lh = h and L〈y,n〉 = 1

2 〈y,n〉, where

Lf = Δf − 1

2
〈X,∇f〉+ |〈Aij , n〉|2f +

1

2
f.

3.2. An equivalent condition. In this subsection, we give an equivalent condition
for the stability of a critical point (Σ, 0, 1) of F . Namely, it is F -stable if and only if
H and y⊥ are the only vector-valued eigenfunctions of L⊥ with positive eigenvalue,
where y in R

m is a constant vector field. The formulation is inspired by the proof
of Lemma 4.23 of Colding and Minicozzi in [6].

Theorem 4. Suppose Σ ⊂ Rm is an n-dimensional smooth closed self-shrinker

satisfying H = −X⊥

2 . The following statements are equivalent:
(i) Σ is F-stable.

(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V , namely, a
smooth normal vector field V which satisfies∫

Σ

〈V,H〉e−
|X|2

4 dμ = 0 and

∫
Σ

〈V, y⊥〉e−
|X|2

4 dμ = 0(23)

for any constant vector y ∈ Rm.

Proof. (i) ⇒ (ii) Assume to the contrary that there is an admissible vector field V

satisfying
∫
Σ
〈V,−L⊥V 〉e−|X|2

4 dμ < 0. For any real value τ and constant vector y
in Rm, using the second variation formula (14) of F , we have

D2
(V,y,τ)F

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ 〈H,V 〉 − τ2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2
4 dμ

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − τ2|H|2 − 1

2
|y⊥|2

)
e−

|X|2
4 dμ

<0.

This contradicts the stability of F .
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(ii) ⇒ (i) From the standard spectral theory, a smooth normal vector field V
can be decomposed as aH + z⊥ + V0, where aH and z⊥ are the projections of V
with respect to weighted L2 inner product into H and {y⊥|y ∈ R

m}, respectively.
Note that V0 is an admissible vector field. For any real value τ and constant vector
y ∈ Rm, by plugging the decomposition of V into (14), we have

D2
(V,y,τ)F

=
1√
4π

n

∫
Σ

(
−〈V, L⊥V 〉 − 2τ 〈H,V 〉 − τ2|H|2 + 〈V, y〉 − 1

2
|y⊥|2

)
e−

|X|2
4 dμ

=
1√
4π

n

∫
Σ

(
− a2|H|2 − 1

2
|z⊥|2 − 〈V0, L

⊥V0〉 − 2τa|H|2 − τ2|H|2

+ 〈z⊥, y⊥〉 − 1

2
|y⊥|2

)
e−

|X|2
4 dμ

≥ 1√
4π

n

∫
Σ

(
−|H|2(a+ τ )2 − 1

2
|z⊥ − y⊥|2

)
e−

|X|2
4 dμ,

where condition (ii) is used in the last inequality. Choosing τ = −a and y = z gives
D2

(V,z,−a)F ≥ 0. That is, Σ is F -stable. �

Recall that H1
0(Σ) is the closure of Nc(Σ) with respect to the norm || · ||1,e, where

Nc(Σ) is the set of smooth normal vector fields with compact support. When Σ
is a smooth self-shrinker with polynomial volume growth and its second funda-
mental form A is of polynomial growth, it is easy to see that |H|e and |y⊥|e are
finite. Hence H and y⊥ all belong to H1

0(Σ). For any V ∈ H1
0(Σ), the integral∫

Σ

(
|∇⊥V |2 − |〈A, V 〉|2 − 1

2 |V |2
)
e−

|X|2
4 dμ is finite and

〈V,−L⊥V 〉e =
∫
Σ

(
|∇⊥V |2 − |〈A, V 〉|2 − 1

2
|V |2

)
e−

|X|2
4 dμ,(24)

if Σ has no boundary. We also obtain the following equivalent condition for F -
stability in the complete noncompact case.

Theorem 5. Let Σ ⊂ Rm be an n-dimensional smooth complete noncompact self-

shrinker satisfying H = −X⊥

2 . Suppose that the second fundamental form A of
Σ is of polynomial growth and Σ has polynomial volume growth. The following
statements are equivalent:

(i) Σ is F -stable.

(ii)
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ ≥ 0 for any admissible vector field V in H1
0(Σ).

Remark 2. The conditions can be weakened to that the integrals
∫
Σ
e−

|X|2
4 dμ and∫

Σ
|A|2e− |X|2

4 dμ are finite. Admissible vector fields are characterized by (23).

Proof. (i) ⇒ (ii) Assume to the contrary that there is an admissible vector field
V in H1

0(Σ) satisfying 〈V,−L⊥V 〉e < 0. Here V may not be compact supported.
For j ∈ N, consider smooth functions φj : R+

⋃
{0} → R that satisfy 0 ≤ φj ≤ 1,

φj ≡ 1 on [0, j), φj ≡ 0 outside [0, j + 2) and |φ′
j | ≤ 1. Define cutoff functions

ψj(X) = φj(ρ(X)), where X ∈ Σ and ρ(X) is the distance function from a fixed
point p ∈ Σ to X with respect to the metric gij . Let Vj(X) = ψj(X)V (X); then
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we have

|∇⊥Vj |2 =

n∑
i=1

|(∇eiψj)V + ψj∇⊥
eiV |2

≤ 2|∇ψj |2|V |2 + 2|ψj |2|∇⊥V |2

≤ 2|V |2 + 2|∇⊥V |2.
Here {ei} is an orthonormal basis for TXΣ. Since the second fundamental form
A of Σ is of polynomial growth and V ∈ H1

0(Σ), the weighted L2 inner product
〈V,−L⊥V 〉e is finite. Using the dominant convergence theorem and the admissible
condition, it follows that

lim
j→∞

〈Vj ,−L⊥Vj〉e = 〈V,−L⊥V 〉e and lim
j→∞

〈Vj , H〉e = lim
j→∞

〈Vj , y
⊥〉e = 0.

For any small positive ε, choose a sufficiently large j such that

〈Vj ,−L⊥Vj〉e <
1

2
〈V,−L⊥V 〉e < 0,

|〈Vj , H〉e| < ε|H|e, and max
|y⊥|e=1

|〈Vj , y
⊥〉e| < ε.

For any real value τ and constant vector y in Rm, we get

D2F(Vj ,y,τ)

=
1√
4π

n

∫
Σ

(
−〈Vj , L

⊥Vj〉 − 2τ 〈H,Vj〉 − τ2|H|2 + 〈Vj , y
⊥〉 − 1

2
|y⊥|2

)
e−

|X|2
4 dμ

<
1√
4π

n

(
−1

2
〈V, L⊥V 〉e + 2τε|H|e − τ2|H|2e + ε|y⊥|e −

1

2
|y⊥|2e

)

=
1√
4π

n

(
−1

2
〈V, L⊥V 〉e + ε2 − (τ |H|e − ε)2 +

1

2
ε2 − 1

2
(|y⊥|e − ε)2

)
.

Choosing ε2 < 1
10 〈V, L⊥V 〉e, we get D2F(Vj ,y,τ) < 0 for every τ and y. This

contradicts the stability of F .
(ii) ⇒ (i) From the standard spectral theory, a smooth normal vector field V ∈

H1
0(Σ) can be decomposed as aH + z⊥ +V0, where V0 is an admissible vector field.

Here we use the fact that V , H, and z⊥ belong to H1
0(Σ) to conclude that V0

belongs to H1
0(Σ), too. The remaining part of the proof is essentially the same as

the proof of (ii) ⇒ (i) in Theorem 4. �

4. Classification of stable product self-shrinkers

In this section, we discuss the F -stability of product self-shrinkers.

Theorem 6. The n-plane is the only complete smooth F -stable product self-shrinker
in Rm whose volume and second fundamental form are of polynomial growth.

Proof. The mean curvature H of Σ1 × Σ2 is equal to (H1, H2) ∈ Rm1 × Rm2 and

Σ1 × Σ2 is a self-shrinker because H1 = −X⊥
1

2 and H2 = −X⊥
2

2 . Since a smooth
minimal self-shrinker must be a plane through 0 (Corollary 2.8 in [6]), there are
only two cases, namely Σ1 × Σ2 with H1 �≡ 0, H2 �≡ 0 or Σ1 × Rn2 with H1 �≡ 0,
needing to be excluded. By Theorem 4 and Theorem 5, it suffices to construct an

admissible vector field V with
∫
Σ1×Σ2

〈V,−L⊥V 〉e− |X|2
4 dμ < 0.
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For the first case, let V = (aH1, bH2), where a and b would be chosen later. Note
that V is not a zero vector field since Hi �≡ 0 for i = 1, 2. The first integral in the
admissible condition is∫

Σ1×Σ2

〈V,H〉e−
|X|2

4 dμ

=

∫
Σ1

∫
Σ2

(a|H1|2 + b|H2|2)e−
|X1|2

4 e−
|X2|2

4 dμ2dμ1

=a

∫
Σ1

|H1|2e−
|X1|2

4 dμ1

∫
Σ2

e−
|X2|2

4 dμ2 + b

∫
Σ1

e−
|X1|2

4 dμ1

∫
Σ2

|H2|2e−
|X2|2

4 dμ2.

Now choose nonzero constants a and b such that
∫
Σ1×Σ2

〈V,H〉e− |X2|
4 dμ = 0. Recall

thatHi and y⊥i are vector-valued eigenfunctions of L⊥
i for yi ∈ Rmi , where L⊥

i is the
corresponding operator on Σi, i = 1, 2. Hence the second integral in the admissible
condition for y = (y1, y2) ∈ Rm1+m2 is∫

Σ1×Σ2

〈V, y⊥〉e−
|X|2

4 dμ

=a

∫
Σ1

〈H1, y1〉e−
|X1|2

4 dμ1

∫
Σ2

e−
|X2|2

4 dμ2 + b

∫
Σ1

e−
|X1|2

4 dμ1

∫
Σ2

〈H2, y2〉e−
|X2|2

4 dμ2

=0.

Hence V is an admissible vector field and the weighted L2 inner product 〈V,−L⊥V 〉e
can be computed as∫

Σ1×Σ2

〈V,−L⊥V 〉e−
|X|2

4 dμ

=

∫
Σ1×Σ2

〈(aH1, bH2),−(aH1, bH2)〉e−
|X|2

4 dμ

=− a2
∫
Σ1

|H1|2e−
|X1|2

4 dμ1

∫
Σ2

e−
|X2|2

4 dμ2−b2
∫
Σ1

e−
|X1|2

4 dμ1

∫
Σ2

|H2|2e−
|X2|2

4 dμ2

<0.

It shows that Σ1 × Σ2 is F -unstable.
For the second case, choose V = s(H1, 0), where s is the first component coor-

dinate function in Rn2 . Using the fact that
∫
Rn2

se−
|X2|2

4 dμ2 = 0, the first integral
in the admissible condition is∫

Σ1×Rn2

〈V,H〉e−
|X|2

4 dμ =

∫
Rn2

se−
|X2|2

4 dμ2

∫
Σ1

|H1|2e−
|X1|2

4 dμ1 = 0

and the second integral in the admissible condition is∫
Σ1×Rn2

〈V, y⊥〉e−
|X|2

4 dμ =

∫
Rn2

se−
|X2|2

4 dμ2

∫
Σ1

〈H1, y
⊥
1 〉e−

|X1|2
4 dμ1 = 0

for y = (y1, y2) ∈ R
m1+m2 . Therefore, the smooth normal vector field V = s(H1, 0)

is an admissible vector field and belongs to H1
0(Σ). Using the fact L⊥H = H, direct

computation shows that V is a vector-valued eigenfunction of L⊥ with eigenvalue
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1
2 and the weighted L2 inner product

〈V,−L⊥V 〉e =
∫
Σ1×Rn2

−1

2
|V |2e−

|X|2
4 dμ < 0.

Hence Σ1 × Rn2 is F -unstable. �

5. The unstability of Anciaux’s examples

5.1. Anciaux’s examples. Let 〈〈·, ·〉〉 =
n∑

i=1

dzi ⊗ dzi be the standard Hermit-

ian inner product on Cn, where zi = xi +
√
−1yi, i = 1, . . . , n are the standard

complex coordinates. It gives the standard Riemannian metric 〈·, ·〉 = Re〈〈·, ·〉〉 =∑n
i=1(dx

2
i+dy2i ) and standard symplectic form ω(·, ·) = −Im〈〈·, ·〉〉 =

∑n
i=1 dxi∧dyi

on Cn. We have ω(·, ·) = 〈J ·, ·〉, where J( ∂
∂xi

) = ∂
∂yi

and J( ∂
∂yi

) = − ∂
∂xi

.

Recall that an immersion ψ from an (n− 1)-dimensional manifold M into S
2n−1

is said to be Legendrian if α|ψ(M) = 0, where α(·) = ω(X, ·) is the contact 1-form

on S
2n−1 induced from the standard symplectic form ω on C

n and X is the position
vector for points in S2n−1. Moreover, dα = 2ω and on a Legendrian ψ(M) we have
〈Jy, z〉 = ω(y, z) = 1

2dα(y, z) = 0, 〈JXM , y〉 = ω(XM , y) = α(y) = 0 for all y,

z ∈ Tψ(M). For y ∈ Tψ(M) ⊂ T (S2n−1), we always have 〈XM , y〉 = 0, therefore it
follows that y, Jz, XM , and JXM are mutually orthogonal for any y, z ∈ Tψ(M).
It is easy to see that the complex scalar product γψ of a smooth regular curve
γ : I → C∗ and ψ is a Lagrangian submanifold in Cn, i.e., ω|γψ ≡ 0. Anciaux
proved the following result in [2].

Lemma 1 (Anciaux [2]). Let ψ : M → S
2n−1 be a minimal Legendrian immersion

for n ≥ 2 and γ : I → C∗ be a smooth regular curve parameterized by its arclength
s. Then the immersion

γ ∗ ψ : I ×M → Cn

(s, σ) → γ(s)ψ(σ)

is a Lagrangian. Moreover, γ ∗ ψ satisfies the self-shrinker equation

H +
1

2
(γ ∗ ψ)⊥ = 0

if and only if γ satisfies the following system of ordinary differential equations:{
r′(s) = cos(θ − φ),

θ′(s)− φ′(s) = ( r2 − n
r ) sin(θ − φ),

(25)

where the curve γ is denoted as r(s)eiφ(s) and θ is the angle between the tangent
vector of γ and the positive x-axis. From (25), we can derive a conservation law

rne−
r2

4 sin(θ − φ) = E,(26)

where 0 < E ≤ Emax = ( 2ne )n/2 is a constant determined by the initial data
(r(s0), θ(s0)− φ(s0)).
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5.2. The unstability for general variations. Because Anciaux’s complete non-
compact examples are contained in a ball of finite radius, their F -functional values
will be infinite. Hence we will only discuss the closed cases.

Theorem 7. Anciaux’s closed embedded examples as described in Lemma 1 are
F -unstable.

To prove the result, we first set up the notation and derive a few lemmas. Any
point p ∈ Σ = γ ∗ ψ(I × M) can be represented as γ(s0)q for some s0 ∈ I and
q ∈ ψ(M). Choose a local normal coordinate system x1, . . . , xn−1 at q. Denote

us = ∂X
∂s = γ′XM , ei =

∂XM

∂xi , and ui =
∂X
∂xi = γei for i = 1, . . . , n− 1, where XM

is the position vector of ψ(M) and X = γXM . The induced metric on Σ in the
u1, . . . , un−1, us basis has

gss = 1, gjs = gsj = 0, gjk = r2hjk, and hjk(q) = δjk(27)

for j, k = 1, . . . , n− 1. The Levi-Civita connections on Σ and ψ(M) are denoted by
∇ and ∇M , respectively. Define

N0 = {V |V = J(γw), w ∈ Γ(Tψ(M))}.

For V ∈ N0, the operator 〈V,−L⊥V 〉e can be simplified as below.

Lemma 2. Assume that Σ is a closed Lagrangian self-shrinker as in Lemma 1 and
V ∈ N0 is represented by J(γw). The second fundamental forms of Σ in Cn and
ψ(M) in S2n−1 are denoted by AΣ and AM,S, respectively. Then we have

(i) |〈AΣ, V 〉|2 = |〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2,(28)

(ii) |∇⊥V |2 = |∇Mw|2 + 2 cos2(θ − φ)|w|2,(29)

(iii) 〈V,−L⊥V 〉e = −
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−1ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−1ds

∫
M

(
|∇Mw|2 − |〈AM,S, Jw〉|2

)
dμM .(30)

Proof. (i) For V ∈ N0, it can be represented by J(γw) for some vector field w ∈
Γ(Tψ(M)). Using γγ = r2 and γ′γ = rei(θ−φ), we conclude that

〈AΣ
kl, V 〉 = Re〈〈γ ∂2XM

∂xk∂xl
, J(γw)〉〉 = r2Re〈〈AM

kl , Jw〉〉 = r2〈AM,S
kl , Jw〉,

〈AΣ
ks, V 〉 = Re〈〈γ′ ∂X

M

∂xk
, J(γw)〉〉 = r sin(θ − φ)〈ek, w〉,(31)

〈AΣ
ss, V 〉 = Re〈〈γ′′XM , J(γw)〉〉 = Re(γ′′γ〈〈XM , Jw〉〉) = 0

for k, l = 1, .., n − 1. Here the second equalities of the second and third equations
of (31) follow from the fact that ek, Jw, X

M , and JXM are mutually orthogonal.
Combining (27) and (31), it gives

|〈AΣ, V 〉|2 =
n−1∑
k,l=1

〈AΣ
kl, V 〉2 1

r4
+ 2

n−1∑
k=1

〈AΣ
ks, V 〉2 1

r2
+ 〈AΣ

ss, V 〉2

=|〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2 at p.

(ii) Since Σ is a Lagrangian, {Juα}α=1,...,n−1,s is an orthogonal basis at p for
the normal bundle. We now calculate the projections of (∇⊥

uα
J(γw))α=1,...,n−1,s
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on Juj and Jus. Using the properties that w, Jek, X
M , and JXM are mutually

orthogonal, γγ = r2 and γ′γ = rei(θ−φ), we can show that

〈∇⊥
uk
J(γw), Juj〉 = Re〈〈iγ ∂

∂xkw, iγej〉〉 = r2〈∇M
ek
w, ej〉,

〈∇⊥
uk
J(γw), Jus〉 = −Re〈〈iγw, ∂

∂xk iγ
′XM 〉〉 = −r cos(θ − φ)〈w, ek〉,

〈∇⊥
us
J(γw), Juj〉 = Re〈〈iγ′w, iγej〉〉 = r cos(θ − φ)〈w, ej〉,

〈∇⊥
us
J(γw), Jus〉 = Re〈〈iγ′w, iγ′XM 〉〉 = 0.

(32)

From (32), it follows that

|∇⊥V |2 = 〈∇⊥
uα

J(γw),∇⊥
uβ
J(γw)〉gαβ

=

n−1∑
k=1

〈∇⊥
uk
J(γw),∇⊥

uk
J(γw)〉 1

r2
+ 〈∇⊥

us
J(γw),∇⊥

us
J(γw)〉

=

⎛
⎝ n−1∑

j,k=1

〈∇⊥
uk
J(γw),

Juj

r
〉2 +

n−1∑
k=1

〈∇⊥
uk
J(γw), Jus〉2

⎞
⎠ 1

r2
+

n−1∑
j=1

〈∇⊥
us
J(γw),

Juj

r
〉2

=

n−1∑
j,k=1

〈∇M
ek
w, ej〉2 +

n−1∑
j=1

2 cos2(θ − φ)〈w, ej〉2

=|∇Mw|2 + 2 cos2(θ − φ)|w|2.

(iii) Plugging (28) and (29) into (24), and using e
−|X|2

4 dμΣ = e−
r2

4 rn−1ds dμM ,
we get

〈V,−L⊥V 〉e

=

∫
Σ

(
|∇⊥V |2 − |〈AΣ, V 〉|2 − 1

2
|V |2

)
e−

|X|2
4 dμΣ

=

∫
γ

∫
M

(
|∇Mw|2 + 2 cos2(θ − φ)|w|2 −

(
|〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2

)
− 1

2
r2|w|2

)
e−

r2

4 rn−1dμM ds

=−
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−1ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−1ds

∫
M

(
|∇Mw|2 − |〈AM,S, Jw〉|2

)
dμM .

Thus (iii) is proved. �

To further simplify 〈V,−L⊥V 〉e, we need to derive some integral equalities on
the curve γ.

Lemma 3. Let γ : I → C∗ be a closed smooth regular curve parameterized by
the arclength s and satisfying (25). That is, γ ∗ ψ in Lemma 1 defines a closed
self-shrinker. Then one has∫

γ

(
1

2
r2 − n)rn−1e−

r2

4 ds = 0(33)
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and ∫
γ

(
1

2r2
− n

r4
)rn−1e−

r2

4 ds = −
∫
γ

4 cos2(θ − φ)

r4
rn−1e−

r2

4 ds.(34)

Remark 3. The equality (33) will be used to simplify (30) while the equality (34)
will be used to simplify (48) for Lagrangian variations.

Proof. Equality (33) follows from a simplification of (8),

0 =

∫
γ

∫
M

(r2 − 2n)e−
r2

4 rn−1dμMds =

∫
γ

(r2 − 2n)e−
r2

4 rn−1ds

∫
M

dμM ,

and
∫
M

dμM �= 0. Recall from Proposition 1 that we have

Lf = Δf − 1

2
〈X,∇f〉 = e

|X|2
4 div(e−

|X|2
4 ∇f).

Hence ∫
Σ

L( 1

|X|2 )e
− |X|2

4 dμΣ =

∫
Σ

div(e−
|X|2

4 ∇ 1

|X|2 )dμΣ = 0,(35)

since ∂Σ = ∅. On the other hand,

L( 1

|X|2 ) =
−L|X|2
|X|4 +

2|∇|X|2|2
|X|6 =

−2n+ |X|2
|X|4 +

8|X�|2
|X|6(36)

by equation (7) and ∇|X|2 = 2X�.
Combining (35), (36), and |X�| = Re

(
rei(φ−θ)

)
= r cos(θ − φ), it gives

0 =

∫
γ

∫
M

(
−2n+ r2

r4
+

8r2 cos2(θ − φ)

r6
)e−

r2

4 rn−1dμMds

=

∫
γ

(
−2n+ r2

r4
+

8r2 cos2(θ − φ)

r6
)e−

r2

4 rn−1ds

∫
M

dμM .

Then the equality (34) follows since
∫
M

dμM �= 0. �

Next, we want to find a vector field w0 in Γ(Tψ(M)) with nice special properties
that will be needed in proving Theorem 7 and Theorem 8.

Lemma 4. Let ψ : Mn−1 → S
2n−1 ⊂ C

n be a minimal Legendrian immersion.
Then there exists a nonzero vector field w0 in Γ(Tψ(M)) satisfying∫

M
(|∇Mw0|2 − |〈AM,S, Jw0〉|2)dμ∫

M
|w0|2dμ

≤ 1 and 〈∇M
x w0, y〉 = 〈∇M

y w0, x〉(37)

for any x, y ∈ Tψ(M).

Remark 4. The condition 〈∇M
x w0, y〉 = 〈∇M

y w0, x〉 implies that 1
r2J(γw0) induces

a Lagrangian variation.

Proof. Define

f(y) =

∫
M

(|∇My|2 − |〈AM,S, Jy〉|2)dμ

for y ∈ Γ(Tψ(M)). Let E1, . . . , E2n be the standard basis for Cn with Eα+n = JEα

for α = 1, . . . , n. We claim that there exists a β0 in {1, . . . , 2n} such that w0 = E�
β0

is a nonzero vector field satisfying f(w0) ≤
∫
M

|w0|2dμ, where E�
β0

is the projection
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of Eβ0
into the tangent space of ψ(M). For fixed q ∈ ψ(M), choose a local normal

coordinate system x1, . . . , xn−1 at q. Denote ∂j =
∂

∂xj . We have

〈∇M
∂k
(E�

β ), ∂j〉 = 〈 ∂

∂xk
(Eβ − E⊥

β ), ∂j〉 = −〈 ∂

∂xk
E⊥

β , ∂j〉 = 〈Eβ, A
M
jk〉.(38)

Since the map ψ is a Legendrian immersion into S
2n−1, the space spanned by

{∂1, . . . , ∂n−1, X
M} is a Lagrangian plane in Cn. It gives

AM
kj = AM,S

kj + 〈AM
kj , X

M 〉XM = AM,S
kj − δkjX

M at q(39)

and the second fundamental form AM,S
jk of the submanifold ψ(M) in S2n−1 is or-

thogonal to JXM because

〈AM,S
kj , JXM 〉 = 〈 ∂

∂xk
(∂j), JX

M 〉 = −〈∂j , J∂k〉 = 0.

Recall that ψ is a minimal immersion in S2n−1 and hence HM,S = 0. Combining
the equations (38) and (39), the first term of f(E�

β ) can be simplified as

|∇M (E�
β )|2 =

n−1∑
j,k=1

|〈Eβ, A
M,S
kj 〉 − 〈Eβ, δkjX

M 〉|2

= |〈Eβ, A
M,S〉|2 − 2〈Eβ, H

M,S〉〈Eβ, X
M 〉+ (n− 1)〈Eβ, X

M 〉2

= |〈Eβ, A
M,S〉|2 + (n− 1)〈Eβ, X

M 〉2 at q.(40)

Since ∂l and XM are orthogonal, we have (JAM,S)� = JAM,S and the second
term of f(E�

β ) can be simplified as

〈AM,S, J(E�
β )〉 = −〈JAM,S, E�

β 〉 = −〈JAM,S, Eβ〉 = 〈AM,S, JEβ〉.(41)

Combining (40) and (41) gives

f(E�
α ) =

∫
M

(
|〈Eα, A

M,S〉|2 + (n− 1)〈Eα, X
M 〉2 − |〈Eα+n, A

M,S〉|2
)
dμ,(42)

f(E�
α+n) =

∫
M

(
|〈Eα+n, A

M,S〉|2 + (n− 1)〈Eα+n, X
M 〉2 − |〈Eα, A

M,S〉|2
)
dμ(43)

for α = 1, . . . , n. Summing (42) and (43) over α = 1, . . . , n gives

n∑
α=1

(
f(E�

α ) + f(E�
α+n)

)
= (n− 1)

2n∑
β=1

∫
M

〈Eβ, X
M 〉2dμ = (n− 1)

∫
M

dμ(44)

since |XM | = 1.

On the other hand, we have
∑2n

β=1 |E�
β |2=

∑2n
β=1

∑n−1
j=1 〈Eβ, ∂j〉2 =

∑n−1
j=1 |∂j |2 =

n − 1 at q because ∂1, . . . , ∂n−1 is an orthonormal basis for Tqψ(M). Plugging it
into (44), we get

2n∑
β=1

∫
M

(
|∇M (E�

β )|2 − |〈AM,S, J(E�
β )〉|2

)
dμ =

2n∑
β=1

∫
M

|E�
β |2dμ.

Therefore, there exists a β0 in {1, . . . , 2n} such that E�
β0

is a nonzero vector field
and ∫

M

(
|∇M (E�

β0
)|2 − |〈AM,S, J(E�

β0
)〉|2

)
dμ ≤

∫
M

|E�
β0
|2dμ
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which is exactly the first inequality in (37). Using (38) and the fact that 〈Eβ0
, AM

jk〉
is symmetric for j, k, it follows that the vector field w0 = E�

β0
also satisfies the

second condition in (37). �

Now we are ready to prove Theorem 7:

Proof of Theorem 7. By Theorem 4, it suffices to construct an admissible vector

field V satisfying
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ < 0. Assume V = J(γw), where w ∈
Γ(Tψ(M)) would be chosen later. Because H is parallel to Jus (see [2], p. 40), the

first integral
∫
Σ
〈V,H〉e− |X|2

4 dμ in the admissible condition is equal to zero. The
second integral in the admissible condition is∫

Σ

V e−
|X|2

4 dμ = i

∫
γ

γe−
r2

4 rn−1ds

∫
M

wdμM .

Recall that the construction of γ in [2] is made by m > 1 pieces Γ1, . . . ,Γm

which each corresponds to one period of curvature function. (When γ is the circle

S1(
√
2n), we may take m = 2.) Every piece Γi is the same as Γ1 up to a rotation.

Suppose the rotation index of γ is l. Then we have∫
γ

γe−
r2

4 rn−1ds =

m∑
j=1

∫
Γj

e−
r2

4 rneiφds

=

∫
Γ1

e−
r2

4 rneiφ(1 + ei
2lπ
m + · · ·+ ei

(m−1)l
m ·2π)ds = 0,

since 1 + ei
2lπ
m + · · · + ei

(m−1)l
m ·2π = 0 for m > 1. Therefore, the second integral in

the admissible condition is equal to zero.
For the case n ≥ 3, we choose w = w0 satisfying (37) and V0 = J(γw0). Plugging

the first inequality of (37) into (30) and using (33), the weighted L2 inner product
〈V0,−L⊥V0〉e becomes∫

Σ

〈V0,−L⊥V0〉e−
|X|2

4 dμ

≤−
∫
γ

(
1

2
r2 − 3 + 4 sin2(θ − φ)

)
e

−r2

4 rn−1ds

∫
M

|w0|2dμM

=−
∫
γ

((
n− 3 + 4 sin2(θ − φ)

))
e−

r2

4 rn−1ds

∫
M

|w0|2dμM

<0.

For the case n = 2, the only minimal Legendrian curves in S3 are great cir-
cles. They are totally geodesic in S3. Therefore, the weighted L2 inner product
〈V,−L⊥V 〉e can be simplified as∫

Σ

〈V,−L⊥V 〉e−
|X|2

4 dμ

=

∫
γ

e−
r2

4 r
(∫

S1

|∇S
1

w|2 −
(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
|w|2dμS1

)
ds

=

∫
γ

e−
r2

4 r
(∫

S1

|∇S
1

w|2 − 4 sin2(θ − φ)|w|2dμS1

)
ds.
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Here we use (33) again to get the last equality. Finally, by choosing w to be the
tangent vector of the great circle, which is a parallel vector field, we can make the
weighted L2 inner product negative. This completes the proof. �

5.3. The unstability for Lagrangian variations. Since Anciaux’s examples are
Lagrangian, it is natural to investigate whether these examples are still unstable
under the more restricted Lagrangian variations, that is, for variations from the
deformation of Lagrangian submanifolds. A simple calculation shows that a vector
field V induces a Lagrangian variation if and only if the associated one form αV =
ω(V, ·) is closed, i.e.

〈∇⊥
XV, JY 〉 = 〈∇⊥

Y V, JX〉,(45)

where ∇⊥ is the normal connection on NΣ and X, Y ∈ TΣ. For this question, we
can prove the following results.

Theorem 8. Let Σ be an n-dimensional closed embedded Lagrangian self-shrinker
as in Lemma 1. Then Σ is F -unstable under Lagrangian variations for the following
cases:

(i) n = 2 or n ≥ 7,

(ii) 2 < n < 7, and E ∈ [
√

7−n
8 Emax, Emax],

where E and Emax are described in (26).

Because 〈∇⊥
us
V, Juj〉 �= 〈∇⊥

uj
V, Jus〉 for V ∈ N0, it does not induce a Lagrangian

variation. Thus to prove the theorem, we need to consider variations different from
those in §5.2. We now define a new set N1 by

N1 = {V |V =
1

r2
J(γw), where w ∈ Γ(Tψ(M)) satisfies

〈∇M
x w, y〉 = 〈∇M

y w, x〉, for all x, y ∈ Tψ(M)}.

For V ∈ N1, written as V = 1
r2J(γw), we claim that V satisfies the equation (45)

and hence indeed induces a Lagrangian variation. Noting that γ′ = eiθ, 〈V, Jus〉 =
0, and r′ satisfying (25), we therefore have

〈∇⊥
us
V, Juj〉 = −2r′

r3
〈J(γw), J(γej)〉+

1

r2
〈J(γ′w), J(γej)〉

= −cos(θ − φ)

r
〈w, ej〉,

〈∇⊥
uj
V, Jus〉 = −〈V,∇⊥

uj
Jus〉 = − 1

r2
〈J(γw), J(γ′ej)〉 = −cos(θ − φ)

r
〈w, ej〉,

〈∇⊥
uk
V, Juj〉 =

1

r2
〈 ∂

∂xk
J(γw), J(γej)〉 = 〈∇M

ek
w, ej〉

= 〈∇M
ej w, ek〉 = 〈∇⊥

uj
V, Juk〉.

Thus (45) is satisfied.
For V ∈ N1, the operator 〈V,−L⊥V 〉e can be simplified as in the following

lemma.



2432 YNG-ING LEE AND YANG-KAI LUE

Lemma 5. Assume that Σ is a closed Lagrangian self-shrinker as in Lemma 1 and
V ∈ N1 is represented by 1

r2J(γw). The second fundamental forms of Σ in Cn and

of ψ(M) in S
2n−1 are denoted by AΣ and AM,S, respectively. Then we have

(i) |〈AΣ, V 〉|2 =
1

r4
|〈AM,S, Jw〉|2 + 2

r4
sin2(θ − φ)|w|2,(46)

(ii) |∇⊥V |2 =
1

r4
|∇Mw|2 + 2 cos2(θ − φ)

r4
|w|2,(47)

(iii) 〈V,−L⊥V 〉e = −
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−5ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−5ds

∫
M

(
|∇Mw|2 − |〈AM,S, Jw〉|2

)
dμM .(48)

Proof. (i) For V ∈ N1, denoting V0 = J(γw) ∈ N0, we then have V = 1
r2V0. Using

equation (28) gives

|〈AΣ, V 〉|2 =
1

r4
|〈AΣ, V0〉|2 =

1

r4
|〈AM,S, Jw〉|2 + 2

r4
sin2(θ − φ)|w|2.

(ii) From equation (32), we conclude that

〈∇⊥
uk

1

r2
J(γw), Juj〉 =

1

r2
〈∇⊥

uk
J(γw), Juj〉 = 〈∇M

ek
w, ej〉,

〈∇⊥
uk

1

r2
J(γw), Jus〉 =

1

r2
〈∇⊥

uk
J(γw), Jus〉 = −1

r
cos(θ − φ)〈w, ej〉,(49)

〈∇⊥
us

1

r2
J(γw), Jus〉 =

−2r′

r3
〈J(γw), Jus〉+

1

r2
〈∇⊥

us
J(γw), Jus〉 = 0.

Using (49) and (45), a computation at p leads to

|∇⊥V |2 = 〈∇⊥
uα

1

r2
J(γw),∇⊥

uβ

1

r2
J(γw)〉gαβ

=

n−1∑
k=1

〈∇⊥
uk

1

r2
J(γw),∇⊥

uk

1

r2
J(γw)〉 1

r2
+ 〈∇⊥

us

1

r2
J(γw),∇⊥

us

1

r2
J(γw)〉

=

⎛
⎝ n−1∑

j,k=1

〈∇⊥
uk

1

r2
J(γw),

Juj

r
〉2 +

n−1∑
k=1

〈∇⊥
uk

1

r2
J(γw), Jus〉2

⎞
⎠ 1

r2

+

n−1∑
j=1

〈∇⊥
us

1

r2
J(γw),

Juj

r
〉2

=
1

r4

n−1∑
j,k=1

〈∇M
ek
w, ej〉2 +

2

r4

n−1∑
j=1

cos2(θ − φ)〈w, ej〉2

=
1

r4
|∇Mw|2 + 2 cos2(θ − φ)

r4
|w|2.
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(iii) Plugging (46) and (47) into (24), and using e
−|X|2

4 dμΣ = e−
r2

4 rn−1dsdμM ,
we get

〈V,−L⊥V 〉e

=

∫
Σ

(
|∇⊥V |2 − |〈AΣ, V 〉|2 − 1

2
|V |2

)
e−

|X|2
4 dμΣ

=

∫
γ

∫
M

(
|∇Mw|2 + 2 cos2(θ − φ)|w|2 −

(
|〈AM,S, Jw〉|2 + 2 sin2(θ − φ)|w|2

)
− 1

2
r2|w|2

)
e−

r2

4 rn−5dμMds

=−
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e

−r2

4 rn−5ds

∫
M

|w|2dμM

+

∫
γ

e
−r2

4 rn−5ds

∫
M

(
|∇Mw|2 − |〈AM,S, Jw〉|2

)
dμM .

Thus (iii) is proved. �

Proof of Theorem 8. By Theorem 4, it suffices to construct an admissible

Lagrangian variation V satisfying
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ<0. Assume V = 1
r2J(γw)

∈ N1, where w ∈ Γ(Tψ(M)) will be chosen later. Similar to the proof of Theorem
7, V is an admissible Lagrangian variation.

We now further specify V , so that
∫
Σ
〈V,−L⊥V 〉e− |X|2

4 dμ < 0. When n ≥ 3, we

choose w = w0 satisfying (37). Then V1 = 1
r2J(γw0) is in N1. From (37) and (48),

the weighted L2 inner product 〈V1,−L⊥V1〉e becomes

∫
Σ

〈V1,−L⊥V1〉e−
|X|2

4 dμ

≤−
∫
γ

(
1

2
r2 − 3 + 4 sin2(θ − φ)

)
e

−r2

4 rn−5ds

∫
M

|w0|2dμM

=−
∫
γ

((
n− 3 + 4 sin2(θ − φ)− 4 cos2(θ − φ)

))
e−

r2

4 rn−5ds

∫
M

|w0|2dμM

=−
∫
γ

((
n− 7 + 8 sin2(θ − φ)

))
e−

r2

4 rn−5ds

∫
M

|w0|2dμM ,

where (34) is used to conclude the first equality. Thus to prove Lagrangian un-
stability, it suffices to show that f(s) = n − 7 + 8 sin2(θ − φ) is nonnegative
and positive at some point. For n ≥ 7, this is clearly true. Because we have
sin(θ − φ) ≥ E

Emax
from (26), f(s) is nonnegative and positive somewhere when

2 < n < 7 and E ∈ [
√

7−n
8 Emax, Emax].

In the case n = 2, the only minimal Legendrian curves in S3 are great circles
which are totally geodesic. Choosing w1 to be the tangent vector of the great

circle, we have |∇S
1

w1| = 0 and |w1| = 1. The vector field V1 = 1
r2J(γw1) gives a

Lagrangian variation and the weighted L2 inner product 〈V1,−L⊥V1〉e in (48) can
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be simplified as∫
Σ

〈V1,−L⊥V1〉e−
|X|2

4 dμ

=−
∫
γ

(
1

2
r2 − 2 + 4 sin2(θ − φ)

)
e−

r2

4 r−3ds

∫
S1

|w|2dμS1

=− 2π

∫
γ

(
1

2
r2 + 2

(
sin2(θ − φ)− cos2(θ − φ)

))
e−

r2

4 r−3ds.

Using (34), it follows that∫
γ

1

2
r2e−

r2

4 r−3ds =

∫
γ

2
(
sin2(θ − φ)− cos2(θ − φ)

)
e−

r2

4 r−3ds.

Therefore, 〈V1,−L⊥V1〉e = −2π
∫
γ
r2e−

r2

4 r−3ds < 0, and concludes the Lagrangian

unstability in Theorem 8. �
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