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THE STABILITY OF SELF-SHRINKERS
OF MEAN CURVATURE FLOW IN HIGHER CO-DIMENSION

YNG-ING LEE AND YANG-KAI LUE

ABSTRACT. We generalize Colding and Minicozzi’s work (2012) on the stabil-
ity of hypersurface self-shrinkers to higher co-dimension. The first and second
variation formulae of the F-functional are derived and an equivalent condi-
tion to the stability in general co-dimension is found. We also prove that R™
is the only stable product self-shrinker and show that the closed embedded
Lagrangian self-shrinkers constructed by Anciaux are unstable.

1. INTRODUCTION

Let X : ¥ — R™ be an isometric immersion of an n-dimensional manifold X
in the Euclidean space R™. Mean curvature flow of X is a family of immersions
X; : 2 — R™ that satisfies

2Xy(x))" = H(x,1),
Xo =X,

where H(z,t) is the mean curvature vector of X;(X) at X;(z) and v* denotes
the projection of v into the normal space of X;(X). Mean curvature flow of a
submanifold in a Riemannian manifold can be defined similarly. Because the mean
curvature vector points in the direction in which the area decreases most rapidly,
mean curvature flow is a canonical way to construct minimal submanifolds. It also
improves the geometric properties of an object along the flow (e.g., see [1]).

A submanifold ¥ in R™ is called a self-shrinker if its position vector X : 3 — R™

satisfies
Lo

H = 2X .
The terminology comes from the fact that /1 — X (X) is a solution of mean curva-
ture flow, i.e., a self-shrinker evolves homothetically along mean curvature flow in a
shrinking way. Moreover, self-shrinkers describe all possible central blow-up limits
of a finite-time singularity of mean curvature flow. This follows from Huisken’s
monotonicity formula [§], and its generalization to type II singularity by Ilmanen
[10] and White. Singularities occur along mean curvature flow in general and are
obstacles to continue the flow. It is therefore an important issue to understand
singularities and the candidates of their blow-up limits, self-shrinkers.

Standard sphere S"(v/2n) and cylinder S¥(v/2k) x R** are simple examples
of self-shrinkers in R™. Abresch and Langer [I] found all immersed closed self-
shrinkers in the plane. In the case of high dimensional complete hypersurface,
Huisken [9] classified all embedded self-shrinkers with nonnegative mean curvature,
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polynomial volume growth, and the second fundamental form bounded. The con-
dition on second fundamental form is later removed by Colding and Minicozzi in
[6]. However, there are still many other different hypersurface self-shrinkers (e.g.,
see [3]), and a classification of all self-shrinkers is not expected. For the higher
co-dimensional case, our understanding is even more limited. One result is due to
Smoczyk in [I3] who obtained a classification of self-shrinkers with parallel prin-
cipal normal v = H/|H| and bounded geometry. The parallel principal normal
condition mainly reduces the problem to a similar situation as the co-dimensional
one case. Several different families of Lagrangian self-shrinkers are constructed by
Anciaux in [2], and Joyce-Lee-Tsui in [I1] which generalizes examples constructed
by Lee-Wang in [I2]. Lagrangians are submanifolds of middle dimension. See §fl
for the definition of Lagrangian.

Adapted from the back heat kernel introduced by Huisken in [§], Colding and
Minicozzi [6] defined a functional F' by

1 =X —|?
1 F(X,xz,t)= n/e w du,
(1) ( ) o )y i

for any submanifold X : ¥» — R*! 2 € R*"! and t > 0. One of the main
properties of this functional is that (2, g, o) is a critical point of F' iff 3 satisfies

H = —%. Specifically, it is a self-shrinker when 2y = 0 and tg = 1. They

proved that if an n-dimensional complete smooth embedded self-shrinker X" in
R"*! has polynomial volume growth and is F-stable with respect to compactly
supported variations, then it must be the round sphere or a hyperplane. Here
being F-stable means that for every compactly supported smooth variation X5 with
Y9 = X, there exist variations zs of 0 and ¢5 of 1 such that g—;F(ES,xS,tS) >0
at s = 0. Relating to functional F', a notion of entropy and entropy stable can be
defined, and F-unstable implies entropy unstable if the self-shrinker does not split
off a line. Moreover, entropy decreases along mean curvature flow. The importance
and goal of Colding-Minicozzi’s work is to conclude that the blow-up near the first
time singularity of mean curvature flow for generic initial data gives stable self-
shrinkers (see [0] for the exact statement).

In this paper, we intend to generalize Colding and Minicozzi’s work [6] to higher
co-dimensional cases. The domain of the functional F is now (X, z,t) for ¥ C R™,
x € R™ and t > 0. The critical points satisfy the same equation as in co-dimension
one. Colding and Minicozzi’s classification on F-stable hypersurface self-shrinkers
is first to conclude that the mean curvature function h is the first eigenfunction of an
elliptic operator; it then implies h > 0. Huisken’s classification on embedded self-
shrinkers with & > 0 and the generalization by Colding-Minicozzi will lead to the
conclusion. Although the counterpart of Huisken’s result in higher co-dimension is
not available, we can still relate the stability of self-shrinkers in higher co-dimension
to the mean curvature vector being the first vector-valued eigenfunction for an
elliptic system. More precisely, the equivalent condition of stabilities is as in the
following theorems.

Theorem 4. Suppose ¥ C R™ is an n-dimensional smooth closed self-shrinker

. . o x+t
satisfying H = — =5

(i) X is F-stable.

. The following statements are equivalent:
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2
(i) fz —L*+V)e - dp > 0 for any admissible vector field V, namely, a
smooth normal vector field V' which satisfies

/(V,H)e‘%dp:() and /(V,yﬂe_
by b

or any constant vector y € R™, where
[ y Yy ,

o Vo1
LLV = AJ_V + <Aij7 V>gkzglek[ + 5 — §V§}TV

is a second order elliptic operator and A;; is the second fundamental form as defined
in @), and VL is the normal connection on the normal bundle of .

Note that in high co-dimension F-unstable also implies entropy unstable if the
self-shrinker does not split off a line. We will only discuss F-stability in this paper,
and stable is always referred to as F-stable. From the standard spectrum theory
for unbounded domain, it is natural to consider the set H{ (), which is the closure
of compact support smooth normal vector fields with respect to the norm || - ||1 .
See the definition of ||-||1,e in ([B]). We also obtain the following equivalent condition
for the stability of F' in the complete noncompact case.

Theorem 5. Let X C R™ be an n-dimensional smooth complete noncompact self-
shrinker satisfying H = —XTL. Suppose that the second fundamental form A of
3 is of polynomial growth and ¥ has polynomial volume growth. The following
statements are equivalent:

() Y is F'-stable.
(ii fz —L+V)e —F dp > 0 for any admissible vector field V in HE(X).

Recall that the notion of admissible vector field is defined in Theorem [4]

In the case of hypersurfaces, S"(v/2n) and R™ are the only complete smooth
F-stable self-shrinkers with polynomial volume growth [6]. When considered as
self-shrinkers in R™ for m > n + 1, they are still F-stable. But the stability
for all other higher co-dimensional self-shrinkers is not clear. We will employ the
above equivalent condition to investigate the F-stability of product self-shrinkers
and Anciaux’s Lagrangian self-shrinkers [2].

For smooth self-shrinkers ¥7* C R™ and X352 C R™2, it is easy to see that
¥ = ¥ x Xy is also a self-shrinker in R™T™2.  Conversely, considering a self-
shrinker ¥ C R™*™2_if ¥ can be expressed as ]! x X352 for smooth X' C R™
and X532 C R™2, then both X7* and X3? are self-shrinkers. Such ¥ is called a
product self-shrinker in this paper. In §4, we prove

Theorem 6. The n-plane is the only complete smooth F-stable product self-shrinker
i R™ whose volume and second fundamental form are of polynomial growth.

Now we introduce Anciaux’s examples in [2]. They are n-dimensional self-
shrinkers in C", n > 2, and are expressed as y(s)1(c), where ¢ : M"~1 — §2n~1 C
C" is a minimal Legendrian immersion and v is a complex-valued function that
satisfies the system of ordinary differential equations (23]). Because the F-value is
infinite on the complete noncompact Lagrangian examples constructed by Anciaux,
we will only discuss the closed case. That is, the corresponding curves ~ are closed
and the immersions 1 : M — S?"~1 are closed. We prove that

Theorem 7. Anciauz’s closed embedded examples as described in Lemma [l are
F-unstable.
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Since Anciaux’s examples are Lagrangian in C", it is natural to ask whether
these examples are still F-unstable under the restricted Lagrangian variations. We
have the following

Theorem 8. Anciauz’s closed embedded examples are F-unstable under Lagrangian
variations for the following cases:

i) n=2o0rn>7,

(i) 2<n <7, and E € [\/ 5% Emas, Emaz),

where E and Ep,q, are described in (20]).

Theorems 7 and 8 also work for the case with transversal intersections. It will
be interesting to understand whether Joyce-Lee-Tsui’s Lagrangian self-shrinkers are
F-stable or not. The answer to this question is still not clear to us. By a suggestion
of Mu-Tao Wang, we recently also studied Hamiltonian stability of F-functional for
Lagrangian self-shrinkers. We can prove that Clifford torus (the product of circles)
are Hamiltonian F-stable and find that our variation in the proof of Theorem [lis in
fact a Hamiltonian variation for n > 3. It thus shows that the cases are Hamiltonian
F-unstable. These and related issues will be investigated in a forthcoming paper.

We learned after this paper was finished that Andrews-Li-Wei also obtained
part of the results in this paper independently [B]. However, they focused on the
classification of self-shrinkers with parallel principal normal instead in the second
part of their paper. We remark that part of our results was first presented by
the second author at the annual meeting of the Taiwan Mathematical Society in
December of 2010.

2. THE 1ST AND 2ND VARIATION FORMULAE OF F'

2.1. Notation and preliminaries. Let X : ¥” — R™ be a smooth isometric
immersion and continue to denote the image as > which has co-dimension m — n.
Suppose {e;} and {e,} are orthonormal frames for the tangent bundle TS and the
normal bundle N3, respectively. The coefficients of the second fundamental form
and the mean curvature vector are defined to be

(2) Aij = Afieq = (Ve,e5,€q)€q
and H = Haea = Aii7

where by convention we are summing over repeated indices and V is the standard
connection of the ambient Euclidean space. For a submanifold B in an ambient
manifold C, we use A%¢ and HBC to denote the associated second fundamental
form and mean curvature vector, respectively. When the ambient space is C™, we
denote them as AP (or A) and HE (or H) for simplicity. For a normal vector field
V, (A, V) is a (2,0)-tensor and [(A4,V)|? is defined as ZZj:1<Aij>V>2' When ¥
is a hypersurface, the mean curvature vector H and the second fundamental form
reduce to the function h = —(H,n) and the 2-tensor h;; = —(A;;, n), respectively.
Here n is the unit outer normal vector of 3.

Definition 1. Let ¥ be a submanifold in R™ and B,.(0) be the geodesic ball in R™
with radius r. ¥ is said to have polynomial volume growth if there are constants
C4, Cy and k € N so that for all » > 0

Vol(B.(0)NX) < C1rk + Cs.



THE STABILITY OF SELF-SHRINKERS 2415

Definition 2. A normal vector field V' (or the second fundamental form A) of ¥ is
of polynomial growth if there are constants C7, Cy and k € N so that for all r > 0

V| <Cir*+Cy (or |A]<Cir*+Cy) on B.(0)NX.

For any smooth normal vector fields V' and W in the space of sections I'(NX),

2
their weighted L? inner product is defined to be [,(V, W>e_%d,u, where (-, -) is the
standard inner product on R™. Denote this weighted L? inner product by (V, W),
and call (I'(NX), (-,-)¢) the weighted L* inner product space. For V € T'(NX), we
1
define norms ||V||. = (V, V)& and

1x|2

_1x)2 x|
3) Vie = ( / Ve S a2 4 ( / VLV e 5 )2,

Let N.(X) be the collection of all smooth normal vector fields in I'(NX) with
compact support and denote the space H$(X) as the closure of N.(¥) with respect
to the norm || - ||1e-

2.2. The first variation formula of F. Colding and Minicozzi derived the first
and second variation formulae of the F-functional of a hypersurface in [6]. These
can be generalized to higher co-dimensional cases by similar calculation. We derive
the first variation formula of F' in the following theorem.

Theorem 1. Let ¥ C R™ be an n-dimensional complete manifold with polynomial
volume growth. Suppose that X3 C R™ is a normal variation of ¥, xs, ts are
variations of xg and to, and

0%, dn_ o dn
8s 0 ds ¥ ds
where V' has compact support. Then
0 1 X —x, | X, — 242 n
—F Esa sits) = n <_ V, Hy Yy -
Pt = [ (0B S (Bt
X — ER X, |?
(1) e
2t

where X, is the position vector of ¥s and H is its mean curvature vector.

Proof. From the first variation formula for area, we have

0
() 55 () = —(Hs, Vdp.
The variation of the weight \/ﬁn e~ 1Xs=a:l*/4ts contains terms coming from the

variation of X, the variation of z, and the variation of t,, respectively. Using the
following equations:

8 7\Xs—®s\2 —N |X — X |2
1 A7t —n/2 Its = s st
Ot og((4rt) ¢ ) 2t * 42
0 |Xs—ws|? X,—x
1 drty) M2 T ) = 288
o, Log((4rts) " e )= =%
0 /2 _1Xs—wsl? Xs — x5
and 8—X510g((477ts) /12¢ Its ) = _2—ts’
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we obtain
8 s—ZTs 2
95 log((47rts)_”/267 Pagred )
(Xs — s, V) | Xs — 22 n 1
= - 57 —(Xs — x5, 9).
T o) T o, s m o)
Combining this with (&) gives ). O

Definition 3. We call (3, zg,tg) a critical point of F if it is critical with respect
to all normal variations which have compact support in ¥ and all variations in x
and t.

From the definition of F in (), we have F(X, z,t) = F(E\;f,(), 1) and it is easy
to see the following property:

— T

NS

>
(X, x0,tp) is a critical point of F if and only if (

,0,1)
(6) is a critical point of F.

Therefore, we only consider the case zg = 0, t9p = 1. In the case of hypersurfaces,

Colding and Minicozzi proved that (3,0, 1) is a critical point of F' if ¥ satisfies that
h= @ Their result, when written in the vector form H = —%, also holds for

higher co-dimensional cases. The proof needs the following propositions.

Proposition 1. If ¥ C R™ is an n-dimensional complete submanifold with H =
— X" then
2 7’

1
LX;, = _EXi and
(7) LIX|)? =2n— X%

Here X; is the i-th component of the position vector X, i.e., X; = (X, 0;) and the

2 _ 2
linear operator Lf = Af — L(X,Vf) = e%div(e e V).

Proposition 2. If ¥ C R™ is an n-dimensional complete submanifold with poly-
nomaal volume growth, and H = —%, then

_ 2 _ 2
/Xe Ex d,lL:B):/X|X|2€ Ea dp  and
b b

Cix2
(8) /(\X|2 —onye 5 = 0.
b
Moreover, if W € R™ is a constant vector, then
2 2
(9) /(X, W>267‘X4‘ d,u:2/ |WT|267|)51I dp.
b b

The proofs for these propositions are similar to the hypersurface case proved by
Colding and Minicozzi (see Lemma 3.20 and Lemma 3.25 in [6]), and will thus be
omitted. Combining (@), (6) and (), we get

Proposition 3. For any xo € R™, tg € RT, (2, x0,%0) 45 a critical point of F if

. o (X—z )J‘
and only if H = —TDO.
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2.3. The general second variation formula of F.

Theorem 2. Let X C R™ be an n-dimensional complete submanifold with poly-
nomial volume growth. Suppose that Xg is a normal variation of %, x4, ts are
variations of xg and ty, and

aES*V %* %*T dQIS* ' and thS*T'
ds 0 ds P ds 7 a2 ds2
where V' has compact support. Then
82
a =) (E J)o,to)
| X—zgl? X — Vv V.
BT { <VLch_tV>+< 207 >T—|—< \Y)
\/47Tt0 0,70 to tO
(X —$0|2 — nto) 7> B |yl (X —0,y)
2t3 2t t2
2
X — g | X —20]> n X — g )
+(—(V.H + +7 - )+
( < 2ty )+ 4¢3 2ty 2ty )
—1 X — X —xo)? n (X — x0,y")
10 — V,.H - — 7}d ,
(10) (VyV,H + ot )+ 7( 1t %) Ml 1
where
A+ A igitA Vv LA
L, toV V4 (455, V)g" kl+2—t0—2—tov(x_x0)rv

and A;j is the second fundamental form as defined in (2).

Proof. Apply one more derivative on equation []). It gives

(?; 5 (2, o, to)

e [ g T )

+7£(% - 2%) L <%(Xs2;xs) oY

]
e R (O R

Similar to the derivation of the second variation formula for the area, we have

(12) (>

), V) = (ATV + (A, V)g" g7 Ay, V).

On the other hand, since the Lie bracket [V (X;ti“))T] is tangent to 3, it follows
that

— X9

7. X — X -z
(13) (Ve =) = =V Ve (S5

2ty

)T> = —<V, V( XQ;:Q)T V>
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Using 88)§s =V, dfiil = —7t;2 and dcf; =y, we simplify
-V %(Hs n )(2%) - viH X2;0I°>
—— w2 v @ A @y A
=~ VL, V) = (TVH + ) 4 Vol 4 B (VX — ),

where the second equality is from ([[2), [I3), and the definition of L3, , . The
second term in ([I]) is given by

£(|Xs—ass|2_i) _<X—$07V—y>_T\X—$O|2 nr
ds 4¢2 2t ls=0 2t2 2t3 2t2
_ (X =20, V) | X — 0|2 —ntoT_ (X — x0,9)
2t2 23 22 7
For the third term in (1), observe that
0 Xs— x4 |4 |y|2
(28 s — (_ A x
Gs o, o™ = (0¥~ g, 2t(2)< %0,Y)
Combining these gives the theorem. ([l

2.4. The second variation formula at a critical point. From now on we denote
%ZE(E, 0,1) in (I0) as D(zvy I for clarity. When (3,0,1) is a critical point of F,
we have H = —XTL and the second variation formula of F at (X,0,1) can be
simplified as the following;:

Theorem 3. Let X C R™ be an n-dimensional complete submanifold with poly-
nomial volume growth. Suppose that Xg is a normal variation of ¥, x4, ts are
variations of xg =0 and tg =1, and

825 diCs dts
0s ls=0 -0 % s=0 =¥ E s=0 -0
where V' has compact support. If (3,0,1) is a critical point of F, then
D(2V>y7T)F
(14) :L/ (~viL vy = 2n(H,V) = 2| HP + (V) - 1|yL|2)e* .
mn E ) 3 ) 2

Here the operator L+ = Lél, and

- vV 1
(15) LYV = AtV + <Aij, V>gkzg]lAkl + 5 §V§7V-
Proof. Since (%,0,1) is a critical point of F', by ({#l) we have that
XJ_

It follows from (B) that

(17)
_ 2 _ 2 _ 2
/Xe - du:ﬁ: X|X|%e T dy and (| X]? — 2n)e = dp = 0.
N
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Theorem [ (with zo = 0 and g = 1) gives

_(xXP-n)? P
2 2
X2 n X }Q)e,\XP

DhyynF = (m)F [ (= (VLV) 4+ 7XV) + (V)

b

—7(X,y) +{7(

4 _§)+<?ay> 4 d/j/a

where we use (I8 and ([IT) to conclude the vanishing of a few terms in (I0). Note
that y is a constant vector and 7 is a constant. Squaring out the last term of
Dy, I and using (I6) and (I7) again leads to

2 lyl?
Dy P =(am)F [ (<ViLHV) =20, V) Vo) = -
2 ‘X|2_ﬁ2 1 2_(|X|2_”)T2 _lx2
+7( 1 2) +4(X,y> 5 )e 1 du.

Using the equality (7] and Stokes’ theorem, we have that

X2 x|2 X2 X% _ix2
/72(| \ —2)26_%d/1‘:—/72(| | _E)Eue—%du
> b

4 2 4 2 4

X2 X2 2
_/27_2v| 4| v 4| 2y

T2
:/7‘2—‘X | e_ﬁdu
b

2 112
[ RESCR ey,
b

Combining (§) and (@), the second variation D(Qv)y yF' can be further simplified as

s T

_1x2

L _ 1 _ _ 2 2 _1 192 -
S (S EHV) 2n ) - P (V) = Sl

In [6], Colding and Minicozzi defined the following concept.

Definition 4. A critical point (X, 0, 1) of F'is called F'-stable if for every compactly

supported smooth variation X5 with ¥y = X and 882;5 «_o =V, there exist variations
zs of 0 and t, of 1 such that D(va_T)F > 0, where y = df; 40 and 7 = ”g; Y

Remark 1. When X is fixed, i.e. V' =0, we see from (I4) that the second variation
formula of F' is nonpositive for any variations of x5 and ¢,.

3. AN EQUIVALENT CONDITION FOR F-STABILITY
3.1. Vector-valued eigenfunctions and eigenvalues of L*. Let X : ¥ — R™

be a closed self-shrinker. Recall that the second order operator L is defined by

1 - 14
L'V =Atv - 5v)lﬂv + (Aij, V) gPig? Ay + 5
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for V € T'(NX). Therefore, we have
/ (—=LYV, W)e™
b

= [ (VW) = 4 Vi Whgh = SV

| 2

4d'u

1x|2
4 d'u

for V,W € T(NX). It is easy to see that the operator L is self-adjoint in the
weighted L? inner product space and the standard spectral theory also works. Di-
rect computation leads to the following proposition.

Proposition 4. Let 3 C R™ be an n-dimensional smooth complete self-shrinker
satzsfymg H = —=—. Then the mean curvature vector H and the normal projection
L of a constant vector field y satisfy

1
(18) L*H=H and L'yt = 5yi,

respectively. That is, they are vector-valued eigenfunctions of Lt with eigenvalue 1
and * 5, respectively.

Proof. Fix p € ¥ and choose an orthonormal frame {e;} in a neighborhood of p
such that V,e;(p) =0, gij(p) = 6;; . Using H = —1 X, we have

1 1 1
(19) Ve H = Vé(—iXL) = §V$(<Xa ejle; — X) = 5 (X, ;) Ayj.
In the second equality of ([9), we use X' = (X, e;)e;. Taking another covariant
derivative at p, it gives

1 1
V. Ve H= §(Vek <X, ej))Aij + §<X7 €;) Ve, Aij
1
(20) - 2Azk + = <X AkJ>AZ] + = <X €]>V$Aik,

where V., e;(p) = 0; the Codazzi equation and (I9) are used in the last equality.
Taking the trace of [20) and using H = —3 X, we conclude that

AtH = %H —(H, Aij) Ay + %V)L(TH
Therefore,
L*H=AYH - %v)l(TH + (Agj, HYAy; + %H = H.
For a constant vector y in R™, the covariant derivative of y=*
(21) Veyt = Vo (y— (y.es)e)) = —(y,e5) Aij.
Taking another covariant derivative at p, it gives

Velkvei-yl = _(VGk <y7e]>)Al - <y7€j>vL Aij
(22) = _<ya Akj>A <y7 6]>V Akt



THE STABILITY OF SELF-SHRINKERS 2421
by applying V., e;(p) = 0 and the Codazzi equation. Taking the trace of (22) and
using ([I9), 1)), we conclude that

Aty = —(y, Aij) Aij — <yaej>vé;‘H

1
=—(y", Ai) Aij — §<y,€j><X, i) Aij

:_<y AZ]>A2]+ <X 62>Vl +

= —(y*, Ay Aij + VxTy
Therefore,

1 1 1
Lyt = Atyt - §V)L(TyL + (A, y) Ay + §yl = §yL~ 0

For the hypersurface case, we have the following immediate corollary.

Corollary 1 (Theorem 5.2 in [6]). Let ¥ C R"! be an n-dimensional smooth
(X.m)
2

complete self-shrinker satisfying h = , where h = —(H,n) is the mean cur-
vature function. Then h and the functions (y,n) for constant vector fields y are
eigenfunctions of L with Lh = h and L{y,n) = 4 (y,n), where

L= Af = 00 VA) + Ay, mf + 5.

3.2. An equivalent condition. In this subsection, we give an equivalent condition
for the stability of a critical point (X, 0,1) of F. Namely, it is F-stable if and only if
H and y* are the only vector-valued eigenfunctions of L+ with positive eigenvalue,
where y in R™ is a constant vector field. The formulation is inspired by the proof
of Lemma 4.23 of Colding and Minicozzi in [6].

Theorem 4. Suppose ¥ C R™ is an n-dimensional smooth closed self-shrinker

satisfying H = —XTL. The following statements are equivalent:

(i) X is F-stable.

2
(i) fE<V, —LJ-V>e*%du > 0 for any admissible vector field V, namely, a
smooth normal vector field V' which satisfies

(23) Jvame Fa=0 ana [ vyt

for any constant vector y € R™.

X2

X
T du=0

Proof. (i) = (ii) Assume to the contrary that there is an admissible vector field V'

satisfying [, (V,—L*V)e i
in R™, using the second variation formula (I4) of F, we have

2
Dyt
1 X2
(V,L*V) = 27(H, V) — 7> |H|> + (V,5) — = l2)6—4d
m/( )= 20 (V) = P + (Vo) - 3l p

1 _1x?
(V,L*V) — 2| H|* — “) “id
= [ (V) = s - "

<0.
This contradicts the stability of F'.
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(ii) = (i) From the standard spectral theory, a smooth normal vector field V
can be decomposed as aH + z* + Vj, where aH and z* are the projections of V/
with respect to weighted L? inner product into H and {y|y € R™}, respectively.
Note that V{ is an admissible vector field. For any real value 7 and constant vector
y € R™, by plugging the decomposition of V into ([I4]), we have

D (2Vﬂ/, )F

X2

1
(V,L*V) =27 (H, V) — T2 |H|> + (V,5) — = “)e—Td
m/( )= 20 (V) = P + (Vo) - 5l p

1
:_\/4_n / —d?*|H? - 5|zﬂ2 — (Vo, L*Vp) — 27alH|? — 72|H|?
Iy E

1 _
+(yt) = Slt)e

1 /( 2 2 1 1 L2) —
>— —|H|*(a+71)"— z|z7 — e
T o (FEP s 2 = 5l =y

X2

4d,u

where condition (ii) is used in the last inequality. Choosing 7 = —a and y = z gives
D(QVZ )F > 0. That is, X is F-stable. O

Recall that H{(X) is the closure of N,(X) with respect to the norm || |[1 ¢, where
N.(X) is the set of smooth normal vector fields with compact support. When ¥
is a smooth self-shrinker with polynomial volume growth and its second funda-
mental form A is of polynomial growth, it is easy to see that |H|. and |y*|. are
finite. Hence H and y all belong to H}(X). For any V € H}(X), the integral

2
Jo (VEVI2 = [(A, V)2 = LV [2) e~ " dp is finite and

@) W= [V AP - gvE) e

if 3 has no boundary. We also obtain the following equivalent condition for F-
stability in the complete noncompact case.

Theorem 5. Let ¥ C R™ be an n-dimensional smooth complete noncompact self-

shrinker satisfying H = —XTL. Suppose that the second fundamental form A of
¥ is of polynomial growth and X has polynomial volume growth. The following
statements are equivalent:

() Y is F-stable.
(ii) [o(V,—L*V) __du > 0 for any admissible vector field V in H(X).

Remark 2. The conditions can be weakened to that the integrals fz -4 du and
Js |A\2e* £ du are finite. Admissible vector fields are characterized by (23]).

Proof. (i) = (ii) Assume to the contrary that there is an admissible vector field
V in H§ (D) satisfying (V, —L+V). < 0. Here V may not be compact supported.
For j € N, consider smooth functions ¢; : Rt J{0} — R that satisfy 0 < ¢; < 1,
¢; =1 on [0,5), ¢; = 0 outside [0,j + 2) and |¢}| < 1. Define cutoff functions
Yi(X) = ¢j(p(X)), where X € ¥ and p(X) is the distance function from a fixed
point p € ¥ to X with respect to the metric g;;. Let V;(X) = ¢;(X)V(X); then
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we have

VAV =D (Ve )V + 4, VA V]
=1
< 2|V PV + 20 P VEV
<2V]E42iViVR

Here {e;} is an orthonormal basis for Tx¥. Since the second fundamental form
A of ¥ is of polynomial growth and V € H}(X), the weighted L? inner product
(V,—L*+V), is finite. Using the dominant convergence theorem and the admissible
condition, it follows that

lim (V;, —=L*V})e = (V,=L*V), and lim (V;, H). = lim (V},y). = 0.
j—o0 Jj—o0 Jj—o0
For any small positive €, choose a sufficiently large j such that
1
<‘/}a _LJ_‘/J'>6 < §<‘/7 _LJ—V>8 < Oa
[(Vj, H)e| < e[Hle, and Jpax [(Visy™)el <e.
ytle=
For any real value 7 and constant vector y in R™, we get

D*Fy, y,m)
o [ (02 = 2 ) = PP ) - SR )
Var Je T Y T2
< (—g VLVt 2relHl, = 7 HE + ey~ 3l
1 (—1<v LAV), + & — (r|H|. — 2 + 2 — Ty, - e)2>
\/4:_7.(_774 2 Y € € 2 2 e .
Choosing € < #5(V,LV),, we get D?F(y, , ;) < 0 for every 7 and y. This
contradicts the stability of F'.

(ii) = (i) From the standard spectral theory, a smooth normal vector field V' €
H{(X) can be decomposed as aH + 21 + Vj, where Vp is an admissible vector field.
Here we use the fact that V, H, and z belong to H§(X) to conclude that Vp
belongs to H (), too. The remaining part of the proof is essentially the same as
the proof of (ii) = (i) in Theorem [4 O

4. CLASSIFICATION OF STABLE PRODUCT SELF-SHRINKERS
In this section, we discuss the F-stability of product self-shrinkers.

Theorem 6. The n-plane is the only complete smooth F-stable product self-shrinker
in R™ whose volume and second fundamental form are of polynomial growth.

Proof. The mean curvature H of 3 x X5 is equal to (Hy, Ha) € R™ x R™2 and

Y1 X Yo is a self-shrinker because H; = —XTlL and Hy = —%. Since a smooth
minimal self-shrinker must be a plane through 0 (Corollary 2.8 in [6]), there are
only two cases, namely ¥; X Yo with Hy # 0, Hy # 0 or X7 x R™ with H; # 0,
needing to be excluded. By Theorem [ and Theorem [, it suffices to construct an

2
admissible vector field V' with f21x22<V7 —L+V)e~ = dp < 0.
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For the first case, let V' = (aHy,bHz), where a and b would be chosen later. Note
that V' is not a zero vector field since H; # 0 for ¢ = 1,2. The first integral in the
admissible condition is

_1x)?
/ (V.H)e™ i dp
ElXEQ

X112 _1x512

|
- / / (alHy? + b Haf?)e~ "4 o= "4 dpugdyny
5, /5,

1Xq12 |Xo|2 1xq12 X592
:a/ |Hq|%e™ K dm/ e 1 dpz + b/ e dul/ |Ha|?e™ E dpz.
31 o 3 2

Ix2]

7 dp = 0. Recall

that H; and y;- are vector-valued eigenfunctions of L;- for y; € R™:, where L;- is the
corresponding operator on ¥;, ¢ = 1,2. Hence the second integral in the admissible
condition for y = (y1,y2) € R™M ™2 ig

/ (Viyh)e
21 XEQ

Ixq12 X2

|x512 1x112
:a/ (Hy,y1)e” * dm/ et duy+b | e dul/ (Ha,y2)e” 4 dug
N 5 SN s

=0.

Now choose nonzero constants a and b such that le wx, (Vo H)e™

1x|2

4du

Hence V is an admissible vector field and the weighted L? inner product (V, =LV,
can be computed as

[ wertve
31X

2
- aHy. bHy), —(aHy, bHy))e "1 d
(aHy,bH), —(aHy, bHy))e™ 2 dy
31X

2 2 2 2
:_G,Q/ |H1‘267|Xi‘ dlul/ 67|X42‘ d,LLQ—bQ/ ef%dul/ |H2‘267%d,u2
Y o 21 P

<0.

X2

4dﬂ

It shows that 31 x X9 is F-unstable.

For the second case, choose V' = s(H1,0), where s is the first component coor-
_1xa?

dinate function in R™2. Using the fact that fan se” 4 dug = 0, the first integral
in the admissible condition is

V, Hye 2 dy — Sy Hi e " dp =
(V,H)e n= se” % duy [ |Hil%e 1y =0
31 xR"2 R™2 Y

and the second integral in the admissible condition is

2 X512 1X112
/ (V,yh)e du=/ sem 1 duz/ (Hyyi)e 4 dm =0
o1 xR"2 Rn72 bo

for y = (y1,y2) € R™ ™2, Therefore, the smooth normal vector field V' = s(Hy,0)
is an admissible vector field and belongs to Hg(X). Using the fact LY H = H, direct
computation shows that V is a vector-valued eigenfunction of L1 with eigenvalue
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% and the weighted L? inner product

n 1,9 _1x2
(V,—L~V), = - ——|V]fe™a du < 0.
1 xRn2

Hence ¥; x R™ is F-unstable. O

5. THE UNSTABILITY OF ANCIAUX’S EXAMPLES

5.1. Anciaux’s examples. Let ((-,-)) = > dz; ® dz; be the standard Hermit-

=1
ian inner product on C", where z; = x; + /—1vy;, i = 1,...,n are the standard
complex coordinates. It gives the standard Riemannian metric (-,-) = Re((:,-)) =
S (dz?+dy?) and standard symplectic form w(-, ) = —Im((-,-)) = Y| dz;Ady;
on C". We have w(-,-) = (J-,-), where J(%) = 6%,1 and J(%) = _8%7:'

Recall that an immersion ¢ from an (n — 1)-dimensional manifold M into S*"~!
is said to be Legendrian if oy = 0, where a(-) = w(X, ) is the contact 1-form
on S?"~! induced from the standard symplectic form w on C" and X is the position
vector for points in S?*~!. Moreover, da = 2w and on a Legendrian (M) we have
(Jy,2) = w(y,2) = da(y,2) = 0, (JXM,y) = w(XM,y) = a(y) = 0 for all y,
z € T(M). Fory € Top(M) C T(S?"~1), we always have (XM y) = 0, therefore it
follows that y, Jz, XM and JXM are mutually orthogonal for any y, z € Ty (M).
It is easy to see that the complex scalar product v of a smooth regular curve
v : I — C* and ¢ is a Lagrangian submanifold in C", i.e., w|yy = 0. Anciaux
proved the following result in [2].

Lemma 1 (Anciaux [2]). Let ¢ : M — S*~1 be a minimal Legendrian immersion
forn >2 and v : I — C* be a smooth reqular curve parameterized by its arclength
s. Then the immersion

yxkp: I x M —C»
(s,0) = (s)i(o)

is a Lagrangian. Moreover, v x ¢ satisfies the self-shrinker equation
1 1
H+S(yxy)==0
if and only if v satisfies the following system of ordinary differential equations:

= cos(0 — ¢),
(25) {9'<s) —¢/(s) = (5 —2)sin(6 - @),

ﬁ\
—
w
&z
|

where the curve v is denoted as 1(s)e'®®) and 6 is the angle between the tangent
vector of v and the positive z-axis. From [2H]), we can derive a conservation law

2
4

(26) r"e” T sin(f — ¢) = E,

where 0 < E < Epae = (22 is a constant determined by the initial data

(r(s0), 0(50) — b(s0)). B
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5.2. The unstability for general variations. Because Anciaux’s complete non-
compact examples are contained in a ball of finite radius, their F-functional values
will be infinite. Hence we will only discuss the closed cases.

Theorem 7. Anciauz’s closed embedded examples as described in Lemma [ are
F-unstable.

To prove the result, we first set up the notation and derive a few lemmas. Any
point p € ¥ = yx (I x M) can be represented as y(sg)q for some sy € I and

q € Y(M). Choose a local normal coordinate system z',..., 2"~ at ¢. Denote

Ug = aX =7 XM ¢ = 85::’7 and u; = gf = ~ye; for i = 1,..., — 1, where XM
is the p051t10n vector of (M) and X = yvXM. The induced metric on ¥ in the

ULy ..., Uy_1,Us basis has

(27) gss=1, gjs=0s; =0, gjx=r>hjx, and hjr(q) = d;x

for j,k =1,...,n—1. The Levi-Civita connections on ¥ and (M) are denoted by
V and VM| respectively. Define

No ={V|V = J(yw), w € I(Ty(M))}.
For V € Ny, the operator (V, —L1V), can be simplified as below.

Lemma 2. Assume that X is a closed Lagrangian self-shrinker as in Lemmalll and
V' € Ny is represented by J(yw). The second fundamental forms of ¥ in C™ and
Y(M) in S*~1 are denoted by A* and AMS, respectively. Then we have

(28) (i) {AZ, V)2 = [(AMS, Jw)|* + 2sin®(0 — ¢)|w]?,
(29) (ii) [V1V]2 = |[VMw|? + 2cos®(6 — ¢)|w|?,

2
(iil) (V, =L*V), = —/ (%7‘2 — 24 4sin*(0 — gb)) eTr"_lds/ lw|d s
8! M

2
G0+ [ [ (9 - (A 0 ) dinr
¥ M

Proof. (i) For V' € Ny, it can be represented by J(yw) for some vector field w €
(T (M)). Using vy = 72 and v'7 = re'(?=®) we conclude that
?2xM
T 9k ozl
,0XM _
(1) (A%, V) = Re((y 77 J(yw))) = rsin(0 — ¢){ex, w),

(A%, V) = Re((y" XM, J(qyw))) = Re(y"F((X M, Jw))) = 0

for k,1 =1,..,n — 1. Here the second equalities of the second and third equations
of (B follow from the fact that ey, Jw, X and JXM are mutually orthogonal.

Combining 7)) and @I, it gives

(45, V) = Re(( J(yw))) = r*Re((A}], Jw)) = r* (43", Jw),

n—1
(AZ V)P =D (AR V +2Z AR V)25 + (AL, V)
k,l=1

=|<AM’S,Jw>\2+2sm (9—¢)|w\2 at p.

(ii) Since ¥ is a Lagrangian, {Juqa}a=1,.. n—1,s is an orthogonal basis at p for
the normal bundle. We now calculate the projections of (Vﬂ;ﬂJ(vw))a:l,m,n,l,s
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on Ju; and Ju,. Using the properties that w, Jey, XM and JXM are mutually
orthogonal, v7 = r2 and /7 = re*(?=9) we can show that

(Vs I w), Juj) = Re<<i’ya‘2kw i761>> (V w, €;),

(32) (Vi J(%u)7 Jus) = —Re((iyw, -2 so iy XM)) = —rcos(0 — ¢)(w, ex),
(Vi J(yw), Ju;) = Re((iv'w, ive;)) = rcos(d — ¢)(w, e;),
(Vi J (yw), Jus) = Re((in'w, iy’ X)) = 0.

From ([B2), it follows that
VAV = (VI (yw), Vi, J (yw)) g7

n—1
1
=> (Ve (v w),VikJ(Ww»T—g+<V55J(vw),ViSJ(vw)>
k=1
n—1 Ju. n—1 1 n—1 T

= [ 3 (W), 0 Sk s g2 | 5 T ), 2

J,k=1 k=1 j=1

n—1 n—1
=D (VMw,e;)* + ) 2co8*(0 — ¢)(w, e;)

J,k=1 j=1

=|VMw|? + 2cos?(0 — ¢)|wl|?.

7,2
(iii) Plugging (28) and ([29) into (24)), and using e~ == dug = e Tr" Ydsduyyr,
we get

(V.=L*V).

-/ (IVLVIQ (AR V)2 - l|V|2) =
) 2

:// (|VMw\2 —i—26052(6‘—g25)|w|2 — (|<AM’S,Jw>\2+2sin2(6‘—gz§)|w|2)
~yJM

1 2
- §r2|w|2)e_7r”_1d,uM ds

1 e
:—/ <—r2—2—|—4sin2(9—¢)> eTr"_ldS/ lw|*dpas
4+ \2 M

4 e%wlds/ (VM wf2 = [(AME, Ju) ) dus.
o M

Thus (iii) is proved. O

To further simplify (V, —L+V)., we need to derive some integral equalities on
the curve 7.

Lemma 3. Let v : I — C* be a closed smooth regular curve parameterized by
the arclength s and satisfying 23). That is, v x 1 in Lemma [ defines a closed
self-shrinker. Then one has

1 2
(33) /(—7‘2 —n)r" e Tds =0
y 2
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and

1 .2 4 cos?(§ — r2
(34) /( — E)rn_le_Tds = —/ s e) (0 ¢)7""_16_7618.
¥ ¥

2r2  pd rd

Remark 3. The equality ([B3]) will be used to simplify (B0) while the equality (34)
will be used to simplify {8 for Lagrangian variations.

Proof. Equality [33) follows from a simplification of (),

r2 2
0 :// (r? —2n)e” Tr" Ydupds = /(T2 —2n)e_Tr"_1ds/ dus,
vIM ¥ M

and [, duar # 0. Recall from Proposition [I] that we have

Lf=Af-— %<X7Vf> = e#div(e_#Vf).

Hence
1 1x12 1x |2 1

(35) / L(—=)e” 1 dus = / div(e™ T V——=)dus =0,

s X[ > | X[?
since ¥ = (). On the other hand,

1 —LIX]2  2VIX|]?2  -2n+|X|*2 8IXT)?

(36) L(3) = 1 6 = I 6

| X| | X| | X| | X | X

by equation () and V|X|? =2XT.
Combining ([B5), (36), and |X | = Re (re'®=9) = rcos(f — ¢), it gives

_9 2 2 cos2(0 — 2
0 :// ( n:—r n 8r COS6( gb))e*Tr"*ld,uMds
vJIM T r

/(—271—0—1"2 n 8r2 cos?( — ¢)
.

r4 76

2
)6777""71615/ dppys.
M

Then the equality ([B4) follows since [, duns # 0. O

Next, we want to find a vector field wq in I'(T4(M)) with nice special properties
that will be needed in proving Theorem [ and Theorem [8

Lemma 4. Let ¢ : M"~ ' — S?~1 C C" be a minimal Legendrian immersion.
Then there exists a nonzero vector field wq in T(TW(M)) satisfying

S92 — (A%, o) ) _
fM ‘wO‘Qdﬂ o
for any z,y € TY(M).

Remark 4. The condition (VMwy,y) = (Véwwo, ) implies that -5 .J(ywo) induces
a Lagrangian variation.

Proof. Define

(37) 1 and <Vi\/lw0,y>:<vywo,x>

f(y) = /MuvMyP AN Ty 2)dy

fory € T(Ty(M)). Let Ey,. .., Ea, be the standard basis for C" with E,y, = JE,
for a =1,...,n. We claim that there exists a 8y in {1,...,2n} such that wy = E;O

is a nonzero vector field satisfying f(wo) < [ M lwo|?dp, where E;} is the projection
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of Eg, into the tangent space of ¢(M). For fixed ¢ € (M), choose a local normal
coordinate system z',..., 2"~ ! at ¢. Denote 9; = %. We have

0 0
(38)  (VH(E]).0i) = (55 (Bs — B§),0) = —(5  FF,0;) = (Fs, A,
Since the map w is a Legendrian immersion into S?”~!, the space spanned by
{01,...,0,_1,XM} is a Lagrangian plane in C". It gives
(39) AR = A (A XM XM = A4S — 5 XM at g

and the second fundamental form A%’S of the submanifold ¢ (M) in S*"~! is or-
thogonal to JX™ because

0

(AN TXM) = (o

kj >

9;), JXMy = —(9;, JOy) = 0.

Recall that 1 is a minimal immersion in S>*~! and hence HMS = 0. Combining
the equations (B8] and ([39), the first term of f (E;) can be simplified as

IVM(ES)? ZI (g, Ag;°) — (Bg, 81, X))
J,k=1
= [(Bp, AMP) 2 — 2(Bg, HY®) (B, XM) + (n — 1)(Bg, XM)?
(40) = [(Bp, AMS) + (n = 1)(Eg, XM)? at q.

Since 9; and XM are orthogonal, we have (JAMS)T = JAMS and the second
term of f (E;) can be simplified as

(41)  (AMS J(E})) = —(JAMS EJ) = —(JAMS, Eg) = (AMS JEg).
Combining (0) and {Il) gives

(42)  F(E]) = / ({Eas AMS)2 4 (1 = 1)(Bas XM — |(Bagms AMS)?) s,
M

(43) F(EL,,) = /M ({Basns AM)2 4 (= 1) (Bt X2 = [(Ears AMS)P) dp

for a =1,...,n. Summing [@2) and @3] over a« = 1,...,n gives

n

2n
T —(n — M\2 —(n —
(44) Y (FBD+ F(ELL)) = ( 1);_1/M<Eﬁ,X )dp = ( 1)/Mdu

a=1

since | XM| = 1.

On the other hand, we have 2211 |E] | :Z Y= (B, 0;)2 = Z;:ll 10, =
n — 1 at g because 91,...,0,_1 is an orthonormal ba31s for Ty (M). Plugging it
into ([#4), we get

2n
> [ (9MEDE - ave JEDE du—z / B Pp.
B=1

Therefore, there exists a Sy in {1,...,2n} such that Eﬁo is a nonzero vector field
and

/M (IVM(BL) — [(AME, J(EL))P) di < /M B Pdu
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which is exactly the first inequality in (7). Using (38) and the fact that (Eg,, A% )
is symmetric for j, k, it follows that the vector field wg = E[—';O also satisfies the
second condition in (B7]). O

Now we are ready to prove Theorem [7}

Proof of Theorem[ll By Theorem [, it suffices to construct an admissible vector
field V satisfying [,(V,—L+V)e~ = J(yw), where w €
T(T(M)) would be chosen later. Because H is parallel to Jus (see [2], p. 40), the

2
first integral [ (V, H )e*%du in the admissible condition is equal to zero. The
second integral in the admissible condition is

12 _2
Vem i du=1i | yve"Tr" " ds | wdupy.
2 v M

Recall that the construction of + in [2] is made by m > 1 pieces I'y,..., Iy,
which each corresponds to one period of curvature function. (When = is the circle
S'(v/2n), we may take m = 2.) Every piece I'; is the same as I'; up to a rotation.
Suppose the rotation index of v is [. Then we have

2 m 2
/’ye*TrnfldSZ g / e~ Triet?ds
¥ j=1"Ts

r2 ; ;207
:/ eiTrneZd)(l_Fel%_'_..._'_
'y

(m (m—=1)1

2™ ds = 0,

(m 1)1

since 1+ et 4 -+ + ¢t = 0 for m > 1. Therefore, the second integral in
the admissible Condltlon is equal to zero.

For the case n > 3, we choose w = wy satisfying (37) and Vy = J(vywy). Plugging
the first inequality of (37) into [BU) and using (B3], the weighted L? inner product
(Vo, —L*+ V). becomes

2
/(VO, — L Vo)e T dp
b

1 2
S—/ <—r2—3+4sin2(9—¢)> eTrnflds/ lwo|?dpns
v \2 M
:_/((n—3+4sm (0 — ¢))>e r"T 1ds/ lwo |*dpuar
v M

<0.

For the case n = 2, the only minimal Legendrian curves in S® are great cir-
cles. They are totally geodesic in S?. Therefore, the weighted L? inner product
(V,—L*V). can be simplified as

/<v L V)e Fdp

/e—ér / VS ] _( r? — 2+ 4sin®(0 — ¢)> \w|2dﬂs1)d5
2l

2
/677 |VS w|2—4sin2(9—¢)|w|2d,ugl)ds.
.
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Here we use ([B3) again to get the last equality. Finally, by choosing w to be the
tangent vector of the great circle, which is a parallel vector field, we can make the
weighted L? inner product negative. This completes the proof. (Il

5.3. The unstability for Lagrangian variations. Since Anciaux’s examples are
Lagrangian, it is natural to investigate whether these examples are still unstable
under the more restricted Lagrangian variations, that is, for variations from the
deformation of Lagrangian submanifolds. A simple calculation shows that a vector
field V' induces a Lagrangian variation if and only if the associated one form ay =
w(V,+) is closed, i.e.

(45) (VxV,JY) = (VyV,JX),

where V1 is the normal connection on N¥ and X, Y € TE. For this question, we
can prove the following results.

Theorem 8. Let X be an n-dimensional closed embedded Lagrangian self-shrinker
as in Lemmalll Then X is F-unstable under Lagrangian variations for the following
cases:

(i) n=2o0rn>T,
(11) 2<n<7 and E € [\/ PTnEmaaszma:E];
where E and Ep,q, are described in (20)).
Because (Vi V, Ju;) # (VﬁjV, Jug) for V' € Ny, it does not induce a Lagrangian

variation. Thus to prove the theorem, we need to consider variations different from
those in §5.21 We now define a new set N1 by

N, ={V|V = %J(’yw), where w € I'(T¢(M)) satisfies
(VM. y) = (Vé‘/[w,:w, for all z,y € Ty (M)}.

For V € Ny, written as V = 5 J(yw), we claim that V satisfies the equation (FH)
and hence indeed induces a Lagrangian variation. Noting that 7/ = €%, (V, Ju,) =
0, and r’ satisfying (25]), we therefore have

(VE Vi) = =2 (), T(ep)) + 576/, T(3e)
LA
(VA Vdu) = ~(V.VE Jug) = 5 (), T(ey)) =~ 20 =D gy ),

1, 0
(Vo Vo Juj) = T—2<a—xkt7(7w)w](7€j)> = (VMw,e;)

k

= (Vﬁfw,ew = (Vi‘jV, Jug).

Thus ({3 is satisfied.
For V € Nj, the operator (V,—L*V), can be simplified as in the following
lemma.
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Lemma 5. Assume that X is a closed Lagrangian self-shrinker as in Lemma [l and
V € Nj is represented by T%J(ww). The second fundamental forms of ¥ in C™ and
of (M) in S*"~1 are denoted by A¥ and AMS, respectively. Then we have

(46) () [{A%, V) = 1AM, Jup? + 2 sin®(6 — )|l

. 1 2cos?(0 — ¢
(47) (i) |VLV|2 = 74—4|V]V[w\2 + %mﬁ

)

(i) (V,—L V), = — /

~

(17‘2 — 24 4sin*(0 — gzﬁ)) e%rn_sds/ lw|dpr
2 M
(48) —I—/e%r"%ds/ (IVMw|* — [(AME, Jw)|?) dp.

v M

Proof. (i) For V € Ny, denoting Vy = J(yw) € Ny, we then have V = % V4. Using
equation (28)) gives

1 1 2
(A% V)2 = (A%, V)2 = 2 [(AMS, Jw)[* + = sin*(0 — 6)[w].
(i) From equation (32]), we conclude that

<vi J(yw), Ju;) = 2<V$kJ(vw>,Juj> (VMw,ej),

(19) (V5T (), Ju) = 5 (Vi J(w), Jus) = = cos(l = 9)(w,e;),
—2r/

1
<V1J[S ﬁj(’yw)7 Ju8> = <J(’7w)7 JU’S> + T_2<vts J(’Yw% Ju5> =0
Using ([@9) and [@H), a computation at p leads to

IVV|? = <VL J(yw), VE, L T (qw))g™?

Ug p 2
n—1 1 1
=S (Vh, (), Vi g Tl g + (Vi (), Vi 5 ()
k=1
= 1 Juj o =,y 1 1
= 22 (Vg Ow), =2+ D (Vi 5 J (), Jus)* |
Jk=1 k=1
n—1
1 Ju
+D (Vi 5 (yw), =)
j=1
n—1
:r_z <V£;[w ej)? Zcos (0 — ) {(w, e;)?
k=1
1 om, 2, 2cos”(0 ¢) 2
= IV 4 2=y
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2
(iii) Plugging (@6) and (@7) into (24), and using e~ == dug = e~ Tr" Ydsduyy,
we get

(V,—L*V),

-/ (WLVP (A, V)2 - 1|V|2) =
) 2

:// (|VMw\2+2c052(9—¢)|w|2—(|<AM’S,Jw>\2+2sin2(9—gzﬁ)|w|2)
~vJM

1 r2
- 57‘2 |w|2) e Tr" Sduyrds

1 _p2
——/ <—r2—2+4sin2(9—¢)> eTr"_5ds/ lw|dpr
v \2 M

2
+/eTr"_5ds/ (IVMw[® — [(AMS, Jw)|?) dp.
0% M
Thus (iii) is proved. O

Proof of TheoremB. By Theorem [ it Sufﬁces to construct an admissible

Lagrangian variation V satisfying [,(V, =LV )e~ = dp<0. Assume V =1 J(yw)
€ Ny, where w € T'(Ty(M)) will be chosen later. Similar to the proof of Theorem
[, V is an admissible Lagrangian variation.

We now further specify V', so that fE<V, —LLV>6_¥du < 0. When n > 3, we
choose w = wy satisfying 7). Then Vi = -5J(yw) is in Ny. From @7) and @),
the weighted L? inner product (Vi, —L1V;),. becomes

/(%a_Ll‘/l>67
b
L o5 =5 2
—r? — 3+ 4sin®*(0 — ¢) ds | |wo|*dpuns
2 M

1x]2

4d‘u

((n—3—|—4sm (9 ¢) 4COS2(0_¢)))6_%7""_5dS/ |w0|2dMM
M

||
Q\Q\Q\

((n— 7+ 8sin?(0 — ¢))) 421"”75ds /M lwo |2 dpiar,

where ([B4) is used to conclude the first equality. Thus to prove Lagrangian un-
stability, it suffices to show that f(s) = n — 7 4 8sin*(f — ¢) is nonnegative
and positive at some point. For m > 7, this is clearly true. Because we have
sin(f — ¢) > % from (26]), f(s) is nonnegative and positive somewhere when

2 <n< 7 and E c [\/ 7_TTL-Em,az;Eimam]'

In the case n = 2, the only minimal Legendrian curves in S* are great circles
which are totally geodesic. Choosing w; to be the tangent vector of the great
circle, we have |Vslw1| =0 and |wi| = 1. The vector field V4 = -5J(ywy) gives a
Lagrangian variation and the weighted L? inner product (V;, —L1V}). in @8] can
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be simplified as

/<V1, —LtViYe™
>

—[/ <%r2—2+4sin2(0—¢)> e_rT _3ds/ lw|?dpg:
1 E
—2 ~r?+2 0 —¢)— ) Trids.
7r/7 <2r (sin?( ) — cos? ?)) Tr°ds

Using (B4), it follows that

| 2

dp

r2

/ %ﬁe*%r*‘gds = / 2 (sin®(0 — ¢) — cos?(0 — ¢)) e~ Tr3ds.
gl g

2
Therefore, (Vi, —L*+V}), = —27 f7 r?e~Tr~3ds < 0, and concludes the Lagrangian
unstability in Theorem [ O
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