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TOPOLOGICAL BIRKHOFF

MANUEL BODIRSKY AND MICHAEL PINSKER

Abstract. One of the most fundamental mathematical contributions of Gar-
rett Birkhoff is the HSP theorem, which implies that a finite algebra B satisfies
all equations that hold in a finite algebra A of the same signature if and only
if B is a homomorphic image of a subalgebra of a finite power of A. On the
other hand, if A is infinite, then in general one needs to take an infinite power
in order to obtain a representation of B in terms of A, even if B is finite.

We show that by considering the natural topology on the functions of A
and B in addition to the equations that hold between them, one can do with
finite powers even for many interesting infinite algebras A. More precisely, we
prove that if A and B are at most countable algebras which are oligomorphic,
then the mapping which sends each term function over A to the corresponding
term function over B preserves equations and is Cauchy-continuous if and only
if B is a homomorphic image of a subalgebra of a finite power of A.

Our result has the following consequences in model theory and in theo-
retical computer science: two ω-categorical structures are primitive positive
bi-interpretable if and only if their topological polymorphism clones are iso-
morphic. In particular, the complexity of the constraint satisfaction problem
of an ω-categorical structure only depends on its topological polymorphism
clone.

1. Introduction

The algebraic result we present has a motivating application in model theory,
which in turn has implications for the study of the computational complexity of
constraint satisfaction problems in theoretical computer science. We start our in-
troduction with this model-theoretic perspective on our result, and describe the
central algebraic theorem of this article later in the introduction, in Section 1.2.

1.1. The model-theoretic perspective. A countable structure Γ is called ω-
categorical iff all countable models of the first-order theory of Γ are isomorphic
to Γ. A substantial amount of information about an ω-categorical structure Γ
is already coded into the automorphism group Aut(Γ) of Γ, viewed abstractly as
a topological group whose topology is the topology of pointwise convergence. In
particular, Ahlbrandt and Ziegler [AZ86] proved that two countable ω-categorical
structures are first-order bi-interpretable if and only if their automorphism groups
are isomorphic as topological groups. The concept of interpretation we use here is
standard [Hod93] and will be recalled in Section 4.
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Recently, the following variant of the theorem of Ahlbrandt and Ziegler has been
shown, replacing the automorphism group by the endomorphism monoid (which, of
course, contains more information about the original structure than the automor-
phism group) [BJ11]: two ω-categorical structures Γ and Δ without constant endo-
morphisms are existential positive bi-interpretable (i.e., bi-interpretable by means of
existential positive first-order formulas) if and only if their endomorphism monoids
End(Γ) and End(Δ) are isomorphic as abstract topological monoids, i.e., iff there
exists a bijective function ξ : End(Γ) → End(Δ) which sends the identity function
on Γ to the identity on Δ, which satisfies ξ(f ◦g) = ξ(f)◦ξ(g) for all f, g ∈ End(Γ),
and such that both ξ and its inverse are continuous.

In the same paper, it is stated as an open problem whether this statement can be
modified further to characterize primitive positive bi-interpretability if one replaces
the endomorphism monoid by the polymorphism clone. A primitive positive inter-
pretation is a first-order interpretation where all the involved formulas are primitive
positive, i.e., of the form ∃x1, . . . , xn(φ1∧· · ·∧φm) where φ1, . . . , φm are atomic for-
mulas. A polymorphism of a structure Γ is a homomorphism from Γk to Γ for some
finite k ≥ 1; the polymorphism clone Pol(Γ) of Γ is the set of all polymorphisms of
Γ and contains, in particular, at least the information of End(Γ), which is the unary
fragment of Pol(Γ). In general, a (concrete) clone is a set of finitary functions on
a fixed set which contains all projections and which is closed under composition; it
is not hard to see that Pol(Γ) is a clone in this sense. Moreover, Pol(Γ) is a closed

subset of the topological space OΓ =
⋃

k≥1 Γ
Γk

of all finitary functions on Γ, just

like Aut(Γ) is a closed subset of the space of all permutations on Γ and End(Γ)
is a closed subset of the space of unary functions on Γ. The topology of OΓ is

obtained by viewing this space as the sum space of the spaces ΓΓk

, and each ΓΓk

as
a power of Γ, which itself is taken to be discrete. Similarly to automorphism groups
and endomorphism monoids, where we distinguish between the concrete permuta-
tion groups and transformation monoids on the one hand and abstract topological
groups and topological monoids with their laws of composition and topology on
the other hand, polymorphism clones can be viewed abstractly as topological clones
carrying an algebraic and a topological structure. The topology on Pol(Γ) is in-

herited from the space OΓ; note that for countably infinite Γ each ΓΓk

, and in fact
also OΓ, is homeomorphic to the Baire space and that therefore the space Pol(Γ) is
a closed subspace of the Baire space. The algebraic structure of Pol(Γ) is that of
a multi-sorted algebra with operations that correspond to the composition of the
elements of Pol(Γ) and constant symbols corresponding to the projections. We can
avoid a formal description of this ghastly structure here (and refer the interested
reader, for example, to [Tay93] or the survey paper [GP08]) since we only need the
very natural notion of a homomorphism between clones C ,D : these are functions
ξ : C → D which send every projection in C to the corresponding projection in
D , and such that ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)) for all n-ary f ∈ C and
all m-ary g1, . . . , gn ∈ C . In particular, two polymorphism clones Pol(Γ),Pol(Δ)
are isomorphic as topological clones iff there exists a bijection ξ from Pol(Γ) onto
Pol(Δ) such that both ξ and its inverse are continuous clone homomorphisms. The
above-mentioned problem in [BJ11] asked whether for two ω-categorical structures
Γ,Δ having isomorphic polymorphism clones and being bi-interpretable is one and
the same thing.
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Besides the theoretical interest they might have, primitive positive interpreta-
tions are additionally motivated by an application in theoretical computer science:
every relational structure Γ with a finite signature defines a computational problem,
called the constraint satisfaction problem of Γ and denoted by CSP(Γ), and it is
known that when a relational structure Δ has a primitive positive interpretation in
a relational structure Γ, then CSP(Δ) has a polynomial-time reduction to CSP(Γ).
Very general and deep complexity classification results rely on this fact; see for
example the collection of survey articles in [CKV08]. More on this application can
be found in Section 6.

In this paper, we give an affirmative answer to the question from [BJ11] about
primitive positive interpretability. A reduct of a structure Δ′ is a structure on the
same domain obtained by forgetting some relations or functions of Δ′. We prove
the following.

Theorem 1. Let Γ and Δ be finite or countable ω-categorical structures. Then:

• Δ has a primitive positive interpretation in Γ if and only if Δ is a reduct
of a finite or ω-categorical structure Δ′ such that there exists a continuous
homomorphism from Pol(Γ) into Pol(Δ′) whose image is dense in Pol(Δ′).

• Γ and Δ are primitive positive bi-interpretable if and only if their polymor-
phism clones are isomorphic as topological clones.

It follows from this theorem and the remarks above that the computational
complexity of the constraint satisfaction problem for a relational structure in a
finite language only depends on its topological polymorphism clone.

Corollary 2. Let Γ and Δ be finite or countable ω-categorical relational structures
with finite signatures. If Pol(Γ) and Pol(Δ) are isomorphic as topological clones,
then CSP(Γ) and CSP(Δ) are polynomial-time equivalent.

1.2. Topological Birkhoff. To prove Theorem 1 we show an algebraic result
which is of independent interest and which can be seen as a topological version
of Birkhoff’s HSP theorem.

An algebra is a structure with a purely functional signature. The clone of an
algebra A with signature τ , denoted by Clo(A), is the set of all functions with
finite arity on the domain A of A which can be written as τ -terms over A. More
precisely, every abstract τ -term t induces a function tA on A, and Clo(A) consists
precisely of the functions of this form.

Let A, B be algebras of the same signature τ . The assignment ξ from Clo(A)
to Clo(B) which sends every element tA of Clo(A) to tB is a well-defined function
if and only if for all τ -terms s, t we have that sB = tB whenever sA = tA. In that
case, it is in fact a surjective homomorphism between clones; we then call ξ the
natural homomorphism from Clo(A) onto Clo(B).

When C is a class of algebras with common signature τ , then P(C) denotes
the class of all products of algebras from C, Pfin(C) denotes the class of all finite
products of algebras from C, S(C) denotes the class of all subalgebras of algebras
from C, and H(C) denotes the class of all homomorphic images of algebras from C.
A pseudovariety is a class V of algebras of the same signature such that V = H(V) =
S(V) = Pfin(V), i.e., a class closed under homomorphic images, subalgebras, and
finite products. The pseudovariety generated by a class of algebras C (or by a single
algebra A) is the smallest pseudovariety that contains C (contains A, respectively).
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For finite algebras, Birkhoff’s HSP theorem takes the following form (see Exercise
11.5 in combination with the proof of Lemma 11.8 in [BS81]).

Theorem 3 (Birkhoff). Let A,B be finite algebras with the same signature. Then
the following three statements are equivalent:

(1) The natural homomorphism from Clo(A) onto Clo(B) exists.

(2) B ∈ HSPfin(A).
(3) B is contained in the pseudovariety generated by A.

When A and B are of arbitrary cardinality, then the equivalence of (2) and
(3) still holds. However, if one wants to maintain equivalence with item (1), then
another version of Birkhoff’s theorem states that one has to replace finite powers
by arbitrary powers in the second item, that is, one has to replace HSPfin(A) by
HSP(A). The third item has to be adapted using the notion of a variety of algebras,
i.e., a class of algebras of common signature closed under the operators H, S and
P.

Our topological variant of Birkhoff’s theorem shows that one can keep finite
powers for a large class of infinite algebras if one additionally requires that the nat-
ural homomorphism from Clo(A) onto Clo(B) is Cauchy-continuous (with respect
to the metric of the Baire space) when we view Clo(A) and Clo(B) as topological
clones as described above.

A permutation group G on a countable set A is called oligomorphic iff for each
finite n ≥ 1, the componentwise action of G on An has finitely many orbits. In
our context it is worth noting that the theorem of Ahlbrandt and Ziegler implies
that being oligomorphic is a property of the abstract topological group G , i.e.,
for isomorphic permutation groups G and H one is oligomorphic iff the other
one is. For a characterization by abstract properties see [Tsa]. An algebra A
is called oligomorphic iff the unary invertible operations in Clo(A), that is, the
unary bijective operations whose inverse is also in Clo(A), form an oligomorphic

permutation group. We call it locally oligomorphic iff the topological closure Clo(A)
in the space OA of all finitary functions on the domain ofA is oligomorphic. Clearly,
oligomorphic algebras are also locally oligomorphic; the algebra on a countable set
A which has all unary operations on A which are not permutations is an example
which shows that the two notions are not equivalent.

One of the motivations for oligomorphic groups is the theorem of Engeler, Sveno-
nius, and Ryll-Nardzewski (see e.g. the textbook [Hod93]): the automorphism group
of a countable structure Γ is oligomorphic if and only if Γ is ω-categorical. This
implies that any polymorphism algebra of Γ, i.e., any algebra on the domain on
Γ whose functions are precisely the elements of Pol(Γ) indexed in some arbitrary
way, is oligomorphic if and only if Γ is ω-categorical. Note that such polymorphism
algebras are oligomorphic if and only if they are locally oligomorphic, since their
clone Pol(Γ) is always a closed subset of OΓ. It is not hard to see that all algebras in
the pseudovariety generated by an oligomorphic (locally oligomorphic) algebra are
again oligomorphic (locally oligomorphic). In this paper, we will prove the equiva-
lence of (1) and (2) in the following theorem, which is a topological characterization
of pseudovarieties of oligomorphic algebras. As mentioned above, the equivalence
of (2) and (3) holds for arbitrary algebras A,B and is well known from Birkhoff’s
work.
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Theorem 4. Let A,B be locally oligomorphic or finite algebras with the same
signature. Then the following three statements are equivalent:

(1) The natural homomorphism from Clo(A) onto Clo(B) exists and is Cauchy-
continuous.

(2) B ∈ HSPfin(A).
(3) B is contained in the pseudovariety generated by A.

Primitive Positive 
Interpretability

Topological 

Clones

Pseudo-
varieties

Question from B.-Junker
(Theorem 1)

Topological Birkhoff
(Theorem 4)

Theorem 19

Figure 1. Topological clones, primitive positive interpretations,
and pseudovarieties.

Note that Theorem 3 really is a special case of Theorem 4, since the topology of
any clone on a finite set is discrete, and hence the natural homomorphism from the
clone of a finite algebra to that of another algebra is always (Cauchy-) continuous.

We will see in Section 4 how to derive Theorem 1 from Theorem 4 and a cer-
tain correspondence between primitive positive interpretations and pseudovarieties;
confer also Figure 1.

1.3. Related work. Pseudovarieties consisting of finite algebras have been stud-
ied by many researchers in many different contexts and are important in particular
in formal language theory. There is also an equational characterization for pseu-
dovarieties of finite algebras, the Eilenberg-Schützenberger theorem [ES76]. The
topology used in subsequent publications [Ban83,Rei82] concerning pseudovarieties
of finite algebras is different from the topology that we use here; also note that our
results are about pseudovarieties that also contain infinite algebras.

[MP11], in connection with pioneering work on homomorphism-homogeneous
structures [CN06], introduces the notion of weakly oligomorphic for relational struc-
tures via their endomorphism monoid. It could make sense to use their notion for
algebras as another weakening of “oligomorphic” rather than “locally oligomor-
phic”. In fact, every locally oligomorphic algebra would then be weakly oligomor-
phic, and yet it is quite possible that Theorem 4 holds and can be proven by our
same methods even for the class of weakly oligomorphic algebras. However, we gave
preference to “locally oligomorphic” with its more group theoretic flavor.

In our proof of Theorem 4 we will work with the closure Clo(A) of Clo(A) in
OA rather than with Clo(A) itself, allowing for a certain compactness argument.
Even when the functions of A are assumed to form, say, a closed set, Clo(A) can
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be topologically complicated: [GPS13] gives an example of a (topologically) closed
algebra A which has only unary operations and for which Clo(A) is not a Borel
set.

1.4. Outline of the paper. This introduction is followed by Section 2, in which
we will provide the proof of Theorem 4. We then give some examples in Sec-
tion 3 which examine the differences between continuous and non-continuous clone
homomorphisms in our context. Section 4 brings us back to the model-theoretic
perspective in more detail and links Theorems 1 and 4. We will provide concrete
instances of Theorem 1 in Section 5. In Section 6 we discuss applications to con-
straint satisfaction problems; the discussion will be followed by a concrete example
in Section 7. We conclude the paper with an outlook and open problems in Sec-
tion 8.

1.5. Further conventions. All ω-categorical structures in this paper are assumed
to be countable.

If F is a set of finitary functions on a set and k ≥ 1, then we write F (k) for the
k-ary functions in F ; this applies in particular to Pol(Γ) and Clo(A).

For an n-tuple a and 1 ≤ i ≤ n, we write ai for the i-th component of a. We do
not always distinguish between the domain of a structure and the structure itself,
so we write things like “a ∈ Γ” to refer to an element of Γ. In the case of algebras,
however, we also write A for the domain of A.

When we write fg for a composite of unary functions f, g, we mean that g is
applied first.

2. Pseudovarieties and topological clones

2.1. Continuity of the natural homomorphism. The following lemma shows
the easy direction of the equivalence of Theorem 4, namely that (2) implies (1).

Proposition 5. Let A and B be countable algebras of the same signature τ . If
B ∈ HSPfin(A), then the natural homomorphism from Clo(A) onto Clo(B) exists
and is Cauchy-continuous.

Proof. We show the statement for the cases where B is a finite product of A,
or a subalgebra of A, or a homomorphic image of A; the full statement then
follows by combining the three. It is well known that in all three cases, the natural
homomorphism exists; this is because products, subalgebras, and homomorphic
images of A satisfy at least the equations between τ -terms that hold in A. It thus
remains to show that the natural homomorphism ξ from Clo(A) onto Clo(B) is
Cauchy-continuous.

Assume first that B = An for some finite n ≥ 1. Let U be an open set from the
subbasis of the topology on Clo(An)(k), where k ≥ 1; that is, there exist a k-tuple
a ∈ (An)k and a value v ∈ An such that U consists precisely of those k-ary terms of
An which send a to v. Now viewing a as a matrix in Ak×n, denote for all 1 ≤ i ≤ n
by ci the i-th column of a. Then ξ−1[U ] consists of those k-ary terms of A which
send ci to vi, for all 1 ≤ i ≤ n.

Assume now that B is a subalgebra of A. Then the preimage of any subbasis
set U of Clo(B)(k) is equal to U , and hence also open in Clo(A)(k).

Finally, let B be a homomorphic image of A. Then B is isomorphic to A/∼ for
a congruence relation ∼ of A, and we may assume B = A/∼. Let U be a subbasis
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set of the topology of Clo(B)(k), so U consists of those functions in Clo(B)(k)

which send a certain tuple a of (A/∼)k to some v ∈ (A/∼). Then a function
f ∈ Clo(A)(k) is an element of ξ−1[U ] iff for any fixed k-tuple c ∈ Ak such that
ci ∈ ai for all 1 ≤ i ≤ n, f(c) ∈ v. �

2.2. The converse. We will now show that (1) implies (2) in Theorem 4.
Let X,Y be countably infinite sets, and let G be a group acting on Y . We equip

the set Y X of all functions from X to Y with the topology of the Baire space,
i.e., we consider Y as a discrete space and give Y X the product topology. Now
define an equivalence relation ∼G on Y X which identifies two functions f, g ∈ Y X

iff there exists α ∈ G such that f = αg. We then consider the factor space Y X/∼G

with the quotient topology, and also write Y X/G for this space; therefore, a subset
O ⊆ Y X/G is open iff

⋃
O is open in Y X .

Proposition 6. Let X,Y be countably infinite sets, and let G be a group which acts
on Y . Then Y X/G is compact if and only if the action of G on Y is oligomorphic.

Proof. We first prove that if the action of G is oligomorphic, then Y X/G is compact.
Say without loss of generality that X = ω. Pick for every n ≥ 1 and every orbit of
the componentwise action of G on Y n a representative tuple of this orbit in such a
way that being a representative of an orbit is closed under taking initial segments;
this can be done inductively. Write R for the set of representatives. When we
partially order R by saying for a, b ∈ R that a is smaller than or equal to b if and
only if a is an initial segment of b, then R becomes a finitely branching tree, the
branches of which are elements of Y X . Consider the subspace B of Y X of those
functions which are branches of R; in other words, for f ∈ Y X we have f ∈ B if
and only if the restriction f�n of f to {0, . . . , n} is in R, for all n ≥ 1. Then B
is compact by Tychonoff’s theorem as it is homeomorphic with a closed subspace
of

∏
n∈ω k(n), where k(n) is the (finite) number of representatives of length n.

Moreover, G · B := {αf |α ∈ G ∧ f ∈ B} is dense in Y X , and so (G · B)/G is
dense in Y X/G. But no two elements f, g of B satisfy f ∼G g, and so (G · B)/G
is homeomorphic to B. Hence, Y X/G has a dense compact subset, proving that
Y X/G is compact itself.

For the other direction, assume that the action of G is not oligomorphic. Pick an
n ≥ 1 such that the componentwise action of G on Y n has infinitely many orbits,
and enumerate these orbits by (Oi)i∈ω. Now for all i ∈ ω, let Ui consist of all classes
[f ]∼G in Y X/G with the property that f�n belongs to Oi; this is well defined since
for all f, g ∈ Y X with f ∼G g we have that f�n belongs to Oi iff g�n belongs to Oi.
Then Y X/G is the disjoint union of the Ui. But each Ui is open, and hence Y X/G
is not compact. �

We remark that the space Y X/G is not Hausdorff, which explains that it can
have a dense compact subset which is not equal to the whole space – some readers
might have wondered about this.

Lemma 7. Let X,Y be countable sets, and let G be a group with an oligomorphic
action on Y . Let S be a closed subset of Y X which is invariant under G, i.e.,
G · S ⊆ S. Then S/G is compact.

Proof. S/G is a closed subspace of the compact space Y X/G. �

For a structure Δ, we write Emb(Δ) for the set of self-embeddings of Δ.
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Corollary 8. Let Δ be an ω-categorical structure. Then the following spaces are
compact:

• Emb(Δ)/Aut(Δ);
• End(Δ)/Aut(Δ);

• Pol(k)(Δ)/Aut(Δ), for all k ≥ 1.

Moreover, if A is a locally oligomorphic algebra and G is the group of all invertible

unary bijections in Clo(A), then Clo(A)
(k)

/G is compact, for all k ≥ 1.

Proof. Emb(Δ), End(Δ) and Pol(k)(Δ) are closed subsets of ΔΔ and ΔΔk

, respec-
tively, which are invariant under Aut(Δ). Since Δ is ω-categorical, the action of
Aut(Δ) on Δ is oligomorphic by the theorem of Engeler, Svenonius, and Ryll-
Nardzewski (see [Hod93]), and hence the first statement follows Lemma 7. The
argument for the second statement is identical. �

Note that Pol(Δ)/Aut(Δ) is never compact since it is the disjoint union of the

spaces Pol(k)(Δ)/Aut(Δ).

Notation 9. Let D be a set, and let f be a k-ary function on D for some k ≥ 1. If
C ∈ Dm×k for some m ≥ 1, then we write f(C) for the tuple of size m obtained by
applying f to each row of the matrix C.

Lemma 10. Let A,B be algebras of the same signature, where A is locally oligo-
morphic. Assume that the natural homomorphism ξ from Clo(A) onto Clo(B) exists
and is Cauchy-continuous. Then for all finite F ⊆ B and all k ≥ 1 there exist an

m ≥ 1 and C ∈ Am×k such that for all f, g ∈ Clo(k)(A) we have that f(C) = g(C)
implies ξ(f)�F = ξ(g)�F .

Proof. We denote the unique continuous extension of ξ to Clo(A) by ξ̄. So ξ̄ is a

continuous mapping from Clo(A) into Clo(B). Moreover, it is a homomorphism: if

f ∈ Clo(A)
(n)

and g1, . . . , gn ∈ Clo(A)
(l)
, where n, l ≥ 1, then there exist sequences

(f i)i∈ω and (gij)i∈ω of functions in Clo(A)(n) and in Clo(A)(l) which converge to f
and gj , respectively, and so

ξ̄(f(g1, . . . , gn)) = ξ̄( lim
i→∞

(f i(gi1, . . . , g
i
l))) = lim

i→∞
ξ(f i(gi1, . . . , g

i
n))

= lim
i→∞

ξ(f i)(ξ(gi1), . . . , ξ(g
i
n)) = ξ̄(f)(ξ̄(g1), . . . , ξ̄(gn)).

We will prove the existence of m ≥ 1 and C ∈ Am×k such that for all f, g ∈
Clo(A)

(k)
we have that f(C) = g(C) implies ξ̄(f)�F = ξ̄(g)�F ; the lemma then

clearly follows.

Recall that the basic open sets of Clo(A)
(k)

are precisely sets of the form

OD,a := {f ∈ Clo(A)
(k) | f(D) = a},

for l ≥ 1, a matrix D ∈ Al×k and a vector a ∈ Al; the basic open sets of Clo(B)
(k)

are defined similarly. Call a basic open set O of Clo(A)
(k)

an island iff ξ̄(f)�F =
ξ̄(g)�F for all f, g ∈ O. From the definition of the basic open sets it is clear that for

f ∈ Clo(A)
(k)

, the set of all h ∈ Clo(B)
(k)

which agree with ξ̄(f) on F is open in

Clo(B). Hence, the continuity of ξ̄ implies that every f ∈ Clo(A)
(k)

is contained
in a basic open island.
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Write G for the group of unary invertible bijections in Clo(A). Then G is
oligomorphic as A is locally oligomorphic. Observe next that for any basic open

island OD,a of Clo(A)
(k)

, the set G · OD,a = {αf |α ∈ G ∧ f ∈ OD,a} is an open

subset of Clo(A)
(k)

which is invariant under G . Hence, it defines an open subset

VD,a of Clo(A)
(k)

/G , namely the set of all ∼G -classes which have a representative
in OD,a. So every class [f ]∼G is contained in some set VD,a for a basic open island

OD,a. Since Clo(A)
(k)

/G is compact by Proposition 6, there are finitely many
basic open islands OD1,a1

, . . . , ODn,an
such that the corresponding sets VDi,ai

cover

Clo(A)
(k)

/G . We then have that Clo(A)
(k)

is covered by the sets G · ODi,ai
. Set

m := l1 + · · · + ln, where li denotes the number of rows of Di, for 1 ≤ i ≤ n.
Let C be the matrix of dimension m× k which is obtained by superposing the Di.

To see that C satisfies the desired property, let f, g ∈ Clo(A)
(k)

. Assume wlog
that f ∈ G · OD1,a1

; then there exists α ∈ G such that f(D1) = α(a1). Since
f(C) = g(C), we have f(D1) = g(D1), and so also g(D1) = α(a1). Hence, α−1f
and α−1g are in OD1,a1

, implying ξ̄(α−1f)�F = ξ̄(α−1g)�F since OD1,a1
is an island.

Thus, ξ̄(f)�F = ξ̄(g)�F since ξ̄ is a homomorphism. �

Definition 11. We say that an algebra A of signature τ is finitely generated iff
there exists a finite subset F of the domain of A such that the only subalgebra of
A containing F is A itself; in other words, every element a of A can be written as
tA(b1, . . . , bk) for some k ≥ 1, a k-ary τ -term t, and b1, . . . , bk ∈ F .

Proposition 12. Let A,B be algebras of the same signature τ , where A is locally
oligomorphic and B is finitely generated. If the natural homomorphism from Clo(A)

onto Clo(B) exists and is Cauchy-continuous, then B ∈ HSPfin(A).

Proof. Let F = {b1, . . . , bk} be a set of generators of B, and let m ≥ 1 and
C ∈ Am×k be given by Lemma 10. Let S be the subalgebra of Am gener-
ated by the columns c1, . . . , ck of C; so the elements of S are precisely those
of the form tA

m

(c1, . . . , ck), for a k-ary τ -term t. Define a function μ : S → B
by setting μ(tA

m

(c1, . . . , ck)) := tB(b1, . . . , bk). Then μ is well defined, for if
tA

m

(c1, . . . , ck) = sA
m

(c1, . . . , ck), then tB(b1, . . . , bk) = sB(b1, . . . , bk) by the prop-
erties of C. Since B is generated by F , μ is onto. We claim that μ is moreover a
homomorphism; it then follows that B is the homomorphic image of the subalgebra
S of Am, and so B ∈ HSPfin(A). To this end, let f be any function symbol of τ ,
let n be its arity, and let s1, . . . , sn ∈ S. Write si = tA

m

i (c1, . . . , ck) = tSi (c1, . . . , ck)
for all 1 ≤ i ≤ n. Then

μ(fS(s1, . . . , sn)) = μ(fS(tS1 (c1, . . . , ck), . . . , t
S
n(c1, . . . , ck)))

= μ(fS(tS1 , . . . , t
S
n)(c1, . . . , ck))

= μ((f(t1, . . . , tn))
S(c1, . . . , ck)) = (f(t1, . . . , tn))

B(b1, . . . , bk)

= fB(tB1 (b1, . . . , bk), . . . , t
B
n (b1, . . . , bk))

= fB(μ(s1), . . . , μ(sn)).

�

Proposition 13. Let B be an algebra which is locally oligomorphic. Then B is
finitely generated.
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Proof. Let G be the permutation group of invertible unary bijections of Clo(B).
Since B is locally oligomorphic, the action of G on B has finitely many orbits.
Picking a representative from each orbit one obtains a generating set for B. �

Theorem 4 now follows from Propositions 5, 12, and 13. Note that in the the-
orem, it would have been sufficient to assume that B be finitely generated rather
than locally oligomorphic, but since we are mainly interested in polymorphism
clones of ω-categorical structures we have chosen to formulate the theorem as it is.
The following is the stronger variant which follows from Propositions 5 and 12.

Theorem 14. Let A,B be countable algebras with the same signature, where A is
locally oligomorphic and B is finitely generated. Then the following three statements
are equivalent:

(1) The natural homomorphism from Clo(A) onto Clo(B) exists and is Cauchy-
continuous.

(2) B ∈ HSPfin(A).
(3) B is contained in the pseudovariety generated by A.

3. Pseudovariety examples

We now give two examples examining the continuity condition on the natural
homomorphism in Theorem 4. The first example is due to Keith Kearnes [Kea07]
and demonstrates that there are oligomorphic algebras A such that the variety
generated by A contains finite members which the pseudovariety generated by A
does not contain.

Proposition 15. There are algebras A,B with common signature such that

• A is locally oligomorphic;
• B is finite;
• B ∈ HSP(A);

• B /∈ HSPfin(A).

Hence, the natural homomorphism from Clo(A) onto Clo(B) exists but is not con-
tinuous.

Proof. Let the signature τ consist of unary function symbols (fi)i∈ω and (gi)i∈ω.
Let A be any algebra on ω with signature τ such that the functions fA

i form a
locally oligomorphic permutation group, such that no gAi is injective, and such that
fA
0 is contained in the topological closure of {gAi }i∈ω. Let B be the τ -algebra on
{0, 1} such that fB

i is the identity function for all i ∈ ω and such that gBi is the
constant function with value 0. It is easy to see that the natural homomorphism
from Clo(A) onto Clo(B) exists. However, it is not continuous since fA

0 is contained
in the topological closure of {gAi }i∈ω, but fB

0 is not contained in the topological
closure of {gBi }i∈ω. �

We remark that one can easily modify the previous example to obtain algebras
A,B with finite signature and the same properties. On the other hand, by taking
an uncountable signature, one can make A even oligomorphic.

The next example becomes relevant when one has (concrete) clones without a
signature of a corresponding algebra; this is for example the case for polymorphism
clones of structures, as in Theorem 1 and in the following sections. It shows that
when we are given two such clones C ,D , then it might happen that there exists
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a homomorphism from C onto D which is not continuous, as well as a continuous
clone homomorphism onto D . In other words, when we make algebras out of C and
D by matching the functions in C and D with an appropriate functional signature τ ,
then we might do so in such a way that the natural homomorphism from C onto D
exists and is continuous, and in another way such that the natural homomorphism
from C onto D exists but is not continuous.

Proposition 16. There are algebras A,B such that

• A is oligomorphic;
• B is finite;
• there exists a non-continuous clone homomorphism from Clo(A) onto
Clo(B);

• there exists a Cauchy-continuous clone homomorphism from Clo(A) onto
Clo(B).

Proof. Let B be as in Proposition 15. Let A be the algebra on ω which has the
following three sets of functions:

F1 := {f ∈ ωω | f(0) = f(1) = 1 and (∀n ≥ 2 f(n) ≥ 2) and f is not surjective},
F2 := {f ∈ ωω | f(0) = f(1) = 1 and f�[2,∞) is a permutation on [2,∞]},
F3 := {f ∈ ωω | f(0) = 0 and f(1) = 1 and f is a permutation on ω}.
Now observe that if f ∈ Fi and g ∈ Fj , then f ◦ g ∈ Fmin(i,j). The function

which sends all elements of F1∪F2 to the constant function ofB and all elements of
F3 to the identity induces a continuous homomorphism from Clo(A) onto Clo(B).
On the other hand, the function which sends all elements of F1 to the constant
unary function of Clo(B) and all elements of F2 ∪ F3 to the identity in Clo(B)
induces a non-continuous homomorphism from Clo(A) onto Clo(B). �

4. Primitive positive interpretations

In this section we prove Theorem 1. Our definition of interpretations follows
[Hod93] and is standard, and will be recalled in the following. Let τ be a signature,
and let Γ be a τ -structure. If δ(x1, . . . , xk) is a first-order τ -formula with k free
variables x1, . . . , xk, we write δ(Γ

k) for the k-ary relation that is defined by δ on Γ.
An atomic τ -formula is called unnested iff it is of the form x0 = x1, of the form

x0 = f(x1, . . . , xn), or of the form R(x1, . . . , xn), for some n-ary function symbol
f ∈ τ or relation symbol R ∈ τ , and variables x0, x1, . . . , xn. It is straightforward
to see that every atomic τ -formula is equivalent to a primitive positive τ -formula
whose atomic subformulas are unnested (see Theorem 2.6.1 in [Hod93]).

Definition 17. A σ-structure Δ has a (first-order) interpretation I in a τ -structure
Γ iff there exists a natural number d ≥ 1, called the dimension of I, and

• a τ -formula δI(x1, . . . , xd) – called the domain formula,
• for each unnested atomic σ-formula φ(y1, . . . , yk) a τ -formula φI(x1, . . . , xk)
where the xi denote disjoint d-tuples of distinct variables – called the defin-
ing formulas,

• a surjective map h : δI(Γ
d) → Δ – called the coordinate map,

such that for every unnested atomic σ-formula φ and all tuples ai ∈ δI(Γ
d),

Δ |= φ(h(a1), . . . , h(ak)) ⇔ Γ |= φI(a1, . . . , ak) .



2538 MANUEL BODIRSKY AND MICHAEL PINSKER

If the formulas δI and φI are primitive positive (existential positive), we say
that the interpretation I is primitive positive (existential positive). Note that the
dimension d, the set S := δI(Γ

d), and the coordinate map h determine the defining
formulas up to logical equivalence; hence, we sometimes denote an interpretation
by I = (d, S, h).

4.1. Primitive positive interpretations and pseudovarieties. For ω-categori-
cal structures Γ, primitive positive interpretability in Γ can be characterized in
terms of the pseudovariety generated by a polymorphism algebra of Γ. Via the
results of the previous section, pseudovarieties also correspond to topological clones
– so they provide the link between primitive positive interpretations and topological
clones, which will be used to prove Theorem 1 in Section 4.2 (confer also Figure 1).

Definition 18. Let Γ be a structure and A an algebra. Then A is called a poly-
morphism algebra of Γ iff A and Γ have the same domain, and the set of operations
of A is precisely the set of polymorphisms of Γ.

Clearly, every structure Γ has a polymorphism algebra, which can be obtained
by assigning function names to the polymorphisms in some arbitrary way.

Theorem 19. Let Γ be a finite or ω-categorical structure, and let Δ be an arbitrary
structure. Then the following are equivalent:

(1) for every polymorphism algebra C of Γ there is an algebra B ∈ HSPfin(C)
such that Clo(B) ⊆ Pol(Δ);

(2) there is a polymorphism algebra C of Γ and an algebra B ∈ HSPfin(C) such
that Clo(B) ⊆ Pol(Δ);

(3) Δ has a primitive positive interpretation in Γ.

The equivalence between (1) and (2) emphasizes the fact that for our purposes,
it does not matter in what way we assign function names to the polymorphisms of
Γ. Theorem 19 already appeared in the survey article [Bod08]; it was inspired by
results obtained in the context of constraint satisfaction problems for finite struc-
tures [BKJ05]. Since we need Theorem 19 in a more detailed form (Proposition 21),
we provide its full proof here.

Let Γ be a τ -structure with domain D, and R ⊆ Dk a k-ary relation. We say that
R is primitive positive definable in Γ iff there exists a primitive positive τ -formula
φ(x1, . . . , xk) such that for all (c1, . . . , ck) ∈ Dk it is true that (c1, . . . , ck) ∈ R
if and only if Γ satisfies φ(c1, . . . , ck). We say that a τ -formula φ with k free
variables is preserved by a function f : Dl → D (over Γ) iff for all t11, . . . , t

k
l ∈ D, if

Γ |= φ(t1i , . . . , t
k
i ) for all i ≤ l, then Γ |= φ(f(t11, . . . , t

1
l ), . . . , f(t

k
1 , . . . , t

k
l )). Note that

f is a polymorphism of Γ if and only if f preserves all atomic unnested τ -formulas
over Γ. We say that a relation R ⊆ Dk (a function g : Dk → D) is preserved by f
iff f is a polymorphism of the structure (D;R) (of (D; g)).

We need the following characterization of primitive positive definability in ω-
categorical structures Γ; for finite structures Γ, this is due to [Gei68,BKKR69].

Theorem 20 (from [BN06]). Let Γ be finite or ω-categorical. Then a relation R has
a primitive positive definition in Γ if and only if R is preserved by all polymorphisms
of Γ.

For example, when D is the domain of an ω-categorical structure Γ and C is a
polymorphism algebra of Γ, then an equivalence relation R ⊆ D2 is a congruence
of C if and only if R is primitive positive definable in Γ.
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Proof of Theorem 19. The implication from (1) to (2) follows from the existence of
a polymorphism algebra C of Γ.

(2) ⇒ (3). Write τ for the signature of C. There exists a finite number d ≥ 1,
a subalgebra S of Cd with domain S, and a surjective homomorphism h from S
to B. We claim that Δ has the primitive positive interpretation I := (d, S, h) in
Γ. All operations of C preserve S (viewed as a d-ary relation over Γ), since S is
a subalgebra of Cd. Theorem 20 implies that S has a primitive positive definition
δ(x1, . . . , xd) in Γ, which becomes the domain formula δI .

Let ψ be an unnested atomic formula over the signature of Δ and with k free
variables x1, . . . , xk. Let R ⊆ Cdk be the relation defined by

(a11, . . . , a
d
1, . . . , a

1
k, . . . , a

d
k) ∈ R ⇔ Δ |= ψ(h(a11, . . . , a

d
1), . . . , h(a

1
k, . . . , a

d
k)) ,

and let f ∈ τ be arbitrary. By assumption, fB preserves ψ. Since h is a homomor-
phism, it follows that fC preserves R. We conclude that all polymorphisms of Γ
preserve R. Since Γ is ω-categorical and by Theorem 20, the relation R has a prim-
itive positive definition in Γ, which becomes the defining formula for ψ(x1, . . . , xk).
So I is indeed a primitive positive interpretation of Δ in Γ.

To prove (3) ⇒ (1), suppose that Δ has a primitive positive interpretation
I = (d, S, h) in Γ. Let C be a polymorphism algebra of Γ, and let τ be the

signature of C. We have to show that HSPfin(C) contains a τ -algebra B such
that all operations in B are polymorphisms of Δ. The set S is preserved by all
operations of Clo(C) = Pol(Γ), because it is primitive positive definable in Γ by
the domain formula of I (Theorem 20). Therefore, S induces a subalgebra S of Cd.
Let K be the kernel of the coordinate map h of I. Then for all tuples a, b ∈ S,
the 2d-tuple (a, b) satisfies =I in Γ if and only if (a, b) ∈ K. Since =I is primitive
positive definable in Γ, it is preserved by all operations of C by Theorem 20. It
follows that K is a congruence of S. As a consequence, h induces a τ -algebra B on
its image, which equals the domain of Δ, in such a way that h is a homomorphism
from S onto B: let f ∈ τ be m-ary, and let c1, . . . , cm be arbitrary elements of
Δ. Then pick a1, . . . , am ∈ S such that h(ai) = ci, and define fB(c1, . . . , cm) :=
h(fS(a1), . . . , f

S(am)). This is well defined since the kernel K of h is a congruence
of S, and by definition of B, h is a homomorphism from S onto B. It remains to
verify that for all f ∈ τ , fB is a polymorphism of Δ, i.e., every unnested atomic
formula φ over Δ is preserved by fB. From the definitions of φI and fB, one easily
sees that fB preserves φ over Δ if and only if fC preserves φI over Γ. Since fC

is a polymorphism of Γ, and since φI is a primitive positive τ -formula over Γ, fC

indeed preserves φI , and hence fB preserves φ. �

The proof of Theorem 19 above gives more information about the link between
polymorphism algebras and primitive positive interpretations, and we state it ex-
plicitly.

Proposition 21. Let Γ be a finite or ω-categorical structure with domain D, and
let Δ be an arbitrary structure with domain B. Then for all d ≥ 1, S ⊆ Dd, and
h : S → B the following are equivalent:

(1) For every polymorphism algebra C of Γ the set S induces a subalgebra S of
Cd, the kernel of h is a congruence of S, and the homomorphic image B
of S under h satisfies Clo(B) ⊆ Pol(Δ);

(2) Δ has the primitive positive interpretation (d, S, h) in Γ.
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4.2. Primitive positive interpretations and topological clones. We can now
show the first part of Theorem 1.

Proposition 22. Let Γ be finite or ω-categorical, and Δ be arbitrary. Then Δ has
a primitive positive interpretation in Γ if and only if Δ is the reduct of a finite or
ω-categorical structure Δ′ such that there exists a continuous clone homomorphism
from Pol(Γ) to Pol(Δ′) whose image is dense in Pol(Δ′).

Proof. Let C be a polymorphism algebra of Γ.
Suppose first that Δ has a primitive positive interpretation in Γ. By Theorem 19

there is an algebra B in the pseudovariety generated by C such that all operations
of B are polymorphisms of Δ. Since Γ is finite or ω-categorical, C is finite or
oligomorphic, and the algebra B is finite or oligomorphic as well. By Theorem 4
the natural homomorphism ξ from Clo(C) onto Clo(B) exists and is continuous.
Let Δ′ be the structure with the same domain as B that contains all relations and
all functions preserved by all operations of B. Since Clo(B) ⊆ Pol(Δ′), it follows
that Δ′ is finite or ω-categorical by the theorem of Engeler, Svenonius, and Ryll-
Nardzewski. Moreover, it is easy to see and well known that Pol(Δ′) = Clo(B), so
the image of ξ is dense in Pol(Δ′). Since all operations of B are polymorphisms of
Δ, all relations and functions of Δ are relations and functions of Δ′, and this shows
that Δ is indeed a reduct of Δ′.

To prove the converse, let Δ′ be a finite or ω-categorical structure such that Δ
is a reduct of Δ′, and such that there is a continuous homomorphism ξ from Pol(Γ)
to Pol(Δ′) whose image is dense in Pol(Δ′). Let B be the algebra with the same
domain as Δ, the same signature τ as C, and where f ∈ τ denotes the operation
ξ(fC) of Pol(Δ′). Then Clo(B) = Pol(Δ′) since the image of ξ is dense in Pol(Δ′).
Hence, B is finite or locally oligomorphic since Δ′ is finite or ω-categorical. We
can therefore apply Theorem 4 to infer B ∈ HSPfin(C). By Theorem 19, Δ′ has a
primitive positive interpretation in Γ. It follows that in particular Δ has a primitive
positive interpretation in Γ. �

In Section 5 we will present an example showing that in Proposition 22 we cannot
simply require the continuous clone homomorphism ξ to be surjective. In particular,
the image of a closed oligomorphic clone under a continuous homomorphism need
not be closed.

How do we recognize whether two structures Γ and Δ have isomorphic topological
polymorphism clones?

Definition 23. Two structures Γ and Δ such that Γ has a primitive positive
interpretation in Δ and Δ has a primitive positive interpretation in Γ are called
mutually primitive positive interpretable.

We will see in Section 5 that there are ω-categorical structures Γ and Δ that
are mutually primitive positive interpretable and have non-isomorphic topological
polymorphism clones. To characterize the situation where Γ and Δ have isomorphic
topological polymorphism clones, we need the following stronger notion.

Definition 24. Two structures Γ and Δ are called primitive positive bi-interpreta-
ble1 iff there is an interpretation I = (d1, S1, h1) of Δ in Γ and an interpretation

1Here we follow the analogous definition for first-order bi-interpretability as introduced
in [AZ86].
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J = (d2, S2, h2) of Γ in Δ such that the (1 + d1d2)-ary relation RIJ defined by

x = h1(h2(y1,1, . . . , y1,d2
), . . . , h2(yd1,1, . . . , yd1,d2

))

is primitive positive definable in Δ and the (1 + d1d2)-ary relation RJI defined by

x = h2(h1(y1,1, . . . , y1,d1
), . . . , h1(yd2,1, . . . , yd2,d1

))

is primitive positive definable in Γ.

In the following, we write h1 ◦ h2 for the function defined by

(y1,1, . . . , y1,d2
, . . . , yd1,1, . . . , yd1,d2

)

�→ h1(h2(y1,1, . . . , y1,d2
), . . . , h2(yd1,1, . . . , yd1,d2

)) .

Proposition 25. Let Γ and Δ be finite or ω-categorical. Then the following are
equivalent:

(1) Pol(Γ) and Pol(Δ) are isomorphic as topological clones.
(2) Γ has a polymorphism algebra A, and Δ has a polymorphism algebra B

such that HSPfin(A) = HSPfin(B).
(3) Γ and Δ are primitive positive bi-interpretable.

Proof. We prove (1) ⇒ (2) ⇒ (3) ⇒ (1). Let A be a polymorphism algebra
of Γ with signature τ , and suppose that Pol(Γ) and Pol(Δ) are isomorphic via a
homeomorphism ξ. Let B be the algebra with the same domain as Δ and signature
τ such that fB = ξ(fA) for all f ∈ τ . Then B is a polymorphism algebra of Δ, and

it follows from Theorem 4 that HSPfin(A) = HSPfin(B). Thus (1) indeed implies
(2).

(2) ⇒ (3). Suppose that Γ has a polymorphism algebra A and Δ has a poly-

morphism algebra B such that HSPfin(A) = HSPfin(B). So there is a d1 ≥ 1, a
subalgebra S1 of Ad1 , and a surjective homomorphism h1 from S1 to B. Similarly,
there is a d2 ≥ 1, a subalgebra S2 of Bd2 , and a surjective homomorphisms h2 from
S2 to A. By Proposition 21, I := (d1, S1, h1) is an interpretation of Δ in Γ and
J := (d2, S2, h2) is an interpretation of Γ in Δ. Because the statement is symmetric
it suffices to show that RIJ is primitive positive definable in Δ. Theorem 20 asserts
that this is equivalent to showing that h1◦h2 is preserved by all operations fB of B.
So let k be the arity of fB, let D be the domain of Δ, and let bi = (bi1,1, . . . , b

i
d1,d2

)

be elements of Dd1d2 , for 1 ≤ i ≤ k. Then

fB((h1 ◦ h2)(b
1), . . . , (h1 ◦ h2)(b

k))

= h1

(
fA(h2(b

1
1,1, . . . , b

1
1,d2

), . . . , h2(b
k
1,1, . . . , b

k
1,d2

)),

. . . , fA(h2(b
1
d1,1, . . . , b

1
d1,d2

), . . . , h2(b
k
d1,1, . . . , b

k
d1,d2

))
)

= (h1 ◦ h2)(f
B(b1, . . . , bk)) .

(3) ⇒ (1). Suppose that Γ and Δ are primitive positive bi-interpretable via an
interpretation I = (d1, S1, h1) of Δ in Γ and an interpretation J = (d2, S2, h2) of Γ
in Δ. Let A be a polymorphism algebra of Γ, and B be a polymorphism algebra of
Δ. Then by Proposition 21 S1 induces an algebra S1 in Ad1 and h1 is a surjective
homomorphism from S1 to an algebra B′ satisfying Clo(B′) ⊆ Pol(Δ). Similarly,
S2 induces in Bd2 an algebra S2 and h2 is a homomorphism from S2 onto an algebra
A′ such that Clo(A′) ⊆ Pol(Γ). By Theorem 4 the natural homomorphisms ξ1 from
Clo(A) onto Clo(B′) and ξ2 from Clo(B) onto Clo(A′) exist and are continuous.
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We will verify that ξ2ξ1 is the identity on Clo(A); the proof that ξ1ξ2 on Clo(B)
is the identity is analogous. It then follows that ξ1 and ξ2 are isomorphisms and
homeomorphisms between Clo(A) and Clo(B).

Write τ for the signature of A. Write C for the τ -algebra on the domain of A
obtained by setting fC := (ξ2ξ1)(f

A) for all f ∈ τ . Let f ∈ τ be k-ary; we show
fC = fA. Let a1, . . . , ak ∈ Γ be arbitrary. Since h2 ◦ h1 is surjective onto Γ, there
are bi = (bi1,1, . . . , b

i
d1,d2

) ∈ Γd1d2 such that ai = h2 ◦ h1(b
i). Then

fC(a1, . . . , ak) = fC(h2 ◦ h1(b
1), . . . , h2 ◦ h1(b

k))

= h2

(
fB′

(h1(b
1
1,1, . . . , b

1
d1,1), . . . , h1(b

k
1,1, . . . , b

k
d1,1)),

. . . , fB′
(h1(b

1
1,d2

, . . . , b1d1,d2
), . . . , h1(b

k
1,d2

, . . . , bkd1,d2
))

)

= h2 ◦ h1(f
A(b1, . . . , bk))

= fA(h2 ◦ h1(b
1), . . . , h2 ◦ h1(b

k))

= fA(a1, . . . , ak),

where the second and third equations hold since h2 and h1 are algebra homomor-
phisms, and the fourth equation holds because fA preserves h2 ◦ h1. This follows
from Theorem 20 and the assumption that RJI is primitive positive definable in Γ.
Hence, fA = fC = ξ2ξ1(f

A) for all f ∈ τ , which is what we had to show. �
The following fact has been proven recently for finite algebras, independently by

Marković, Maroti, and McKenzie [MMM] and by Davey, Jackson, Pitkethly, and
Szabó [DJPS]. An algebra A is called finitely related iff there exists a structure Γ

with the same domain as A and with finite relational signature such that Clo(A) =
Pol(Γ). We present a generalization to all locally oligomorphic algebras.

Corollary 26. Let A and B be finite or locally oligomorphic algebras such that
Clo(A) and Clo(B) are isomorphic as topological clones. Then A is finitely related
if and only if B is finitely related.

Proof. Suppose that A is finitely related; that is, there exists a structure Γ with
finite relational signature such that Clo(A) = Pol(Γ). Let Δ be the relational
structure with the same domain as B that has all relations that are preserved by
all operations of B. Then Pol(Δ) = Clo(B), and thus it suffices to show that Δ
has a reduct Δ′ with finite signature and the same polymorphisms as Δ.

Note that the automorphisms of Γ and Δ are exactly the unary invertible op-
erations in Clo(A) and Clo(B), respectively. Since A and B are finite or locally
oligomorphic, Γ and Δ are finite or ω-categorical. By Proposition 25, Γ and Δ are
primitive positive bi-interpretable. Let I1 and I2 be the corresponding interpre-
tations of Γ in Δ and Δ in Γ, respectively. Let σ be the signature of Δ, and let
σ′ ⊆ σ be the set of all relation symbols that appear in all the formulas of I1; since
the signature τ of Γ is finite, σ′ is finite as well. Let Δ′ be the σ′-reduct of Δ. We
will show that there is a primitive positive definition of Δ in Δ′; by Theorem 20,
this implies that Δ and Δ′ have the same polymorphisms.

Let ψ be an atomic σ-formula with k free variables x1, . . . , xk. We specify an
equivalent primitive positive σ′-formula. Suppose that the interpretation I1 of Γ
in Δ is d1-dimensional and that the interpretation I2 of Δ in Γ is d2-dimensional.
Let φ(x, y1,1, . . . , yd1,d2

) be the primitive positive formula that defines RI2I1 in
Δ. Note that the primitive positive τ -formula ψI2 has kd2 free variables; we can
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assume without loss of generality that ψI2 only contains unnested atomic formulas
as conjuncts. Let (ψI2)I1 be the primitive positive σ′-formula obtained from ψI2 by
replacing each conjunct ψ′ of ψI2 by (ψ′)I1 and then pushing existential quantifiers
to the front. Then the formula

∃y11,1, . . . , ykd1,d2

( ∧

i≤k

φ(xi, y
i
1,1, . . . , y

i
d1,d2

)

∧ (ψI2)I1(y
1
1,1, . . . , y

1
d1,d2

, . . . , yk1,1, . . . , y
k
d1,d2

)
)

is a primitive positive σ′-formula that defines ψ(x1, . . . , xk) over Δ
′. �

5. Primitive positive interpretation examples

Example 1. Let Γ be the structure with domain N2 and a single binary relation
M := {((u1, u2), (v1, v2)) | u2 = v1 and u1, u2, v1, v2 ∈ N}. Then Γ and the struc-
ture Δ := (N; =) are primitive positive bi-interpretable. The interpretation I of Γ
in Δ is 2-dimensional, the domain formula is true, and the coordinate map h is the
identity. The interpretation J of Δ in Γ is 1-dimensional, the domain formula is
true, and the coordinate map g sends (x, y) to x. Both interpretations are clearly
primitive positive. Then g(h(x, y)) = z is definable by the formula x = z, and
h(g(u), g(v)) = w is primitive positive definable by

M(w, v) ∧ ∃p (M(u, p) ∧M(w, p)) .

Example 2. An instructive example of two structures Γ and Δ that are not prim-
itive positive bi-interpretable, even though they are mutually primitive positive
interpretable, is

Γ :=
(
N2; {((u1, u2), (v1, v2)) |u1 = v1 and u1, u2, v1, v2 ∈ N}

)

and Δ := (N; =). The two structures are not even first-order bi-interpretable.
To see this, observe that the binary relation of Γ is an equivalence relation and
that Aut(Γ) has a proper closed normal subgroup that is distinct from the one-
element group, namely the set of all permutations that setwise fix the equivalence
classes of this equivalence relation. On the other hand, Aut(Δ) is the symmetric
permutation group of a countably infinite set, which has no proper closed normal
subgroup that is distinct from the one-element group (it has exactly four proper
normal subgroups [SS33], of which only the one-element subgroup is closed).

Example 3. The image of a continuous homomorphism ξ from Pol(Γ) to Pol(Δ)
might be dense in Pol(Δ) without being surjective, for ω-categorical structures Γ
and Δ. The basic idea of this example is due to Dugald Macpherson and can be
found in [Hod93] (on page 354). Let Γ be the structure (Q;<,P, P4) where

• < is the usual strict order of the rational numbers,
• P ⊆ Q is such that both P and Q := Q \ P are dense in (Q;<), and
• P4 is the relation {(x1, x2, x3, x4) ∈ Q4 | x1 = x2 or x3 = x4}.

It is a well-known fact that all polymorphisms of Γ are essentially unary2 since they
have to preserve P4 (see e.g. Lemma 5.3.2 in [Bod12]). The substructure Δ induced
by P in Γ has the primitive positive interpretation (1, P, id) in Γ. Indeed, since

2A function f : Dl → D is called essentially unary iff there exists an i ≤ l and a function
g : D → D such that f(x1, . . . , xl) = g(xi) for all x1, . . . , xl ∈ D.
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all functions of Pol(Γ) are essentially unary, the mapping which sends every unary
function f of Pol(Γ) to f�P induces a function ξ from Pol(Γ) to Pol(Δ) which is a
continuous homomorphism and whose image is dense in Pol(Δ). We claim that ξ
is not surjective.

A Dedekind cut (S, T ) of P is a partition of P into subsets S, T with the property
that for all s ∈ S, t ∈ T we have s < t. Those cuts are obtained by choosing either an
irrational number r ∈ R \Q or an element r ∈ Q, and setting S := {a ∈ P | a < r}
and T := {a ∈ P | a > r}. Let (S1, T1) be a Dedekind cut obtained from an element
q in Q, and let (S2, T2) be a Dedekind cut obtained from an irrational number i.
By a standard back-and-forth argument, there exists an α ∈ Aut((P,<)) that maps
S1 to S2 and T1 to T2. Suppose for contradiction that there is β ∈ Aut(Γ) with
β�P = α. Then s < β(q) < t for all s ∈ S2, t ∈ T2, contradicting the irrationality
of i.

Example 4. We adapt the previous example to demonstrate that Δ might have a
primitive positive interpretation in an ω-categorical structure Γ, but Δ is not the
reduct of an ω-categorical structure Δ′ such that there is a surjective homomor-
phism from Pol(Γ) to Pol(Δ′).

Let Γ be the structure (Q;<,P,E) where < is the usual ordering of Q, P is a
dense subset of Q such that Q \ P is also dense in Q, and E is a subset of P 2

such that (P,E) induces the random graph. Then the structure Δ := (P ;<,E)
has the primitive positive interpretation (1, P, id) in Γ. Let Δ′ be any ω-categorical
structure such that Δ is the reduct of Δ′ and such that there is a continuous clone
homomorphism ξ from Pol(Γ) to Pol(Δ). We claim that ξ cannot be surjective.

6. Constraint satisfaction problems

Primitive positive interpretations play an important role in the study of the com-
putational complexity of constraint satisfaction problems. For a structure Γ with
finite relational signature τ , the constraint satisfaction problem for Γ (denoted by
CSP(Γ)) is the computational problem of deciding whether a given primitive posi-
tive τ -sentence (that is, a primitive positive formula without free variables) is true
in Γ. For example, when Γ = ({0, 1, 2}; �=), then CSP(Γ) is the 3-coloring prob-
lem. When Γ = (Q;<), then CSP(Γ) is the acyclicity problem for finite directed
graphs. Many computational problems studied in qualitative reasoning in artificial
intelligence, but also in many other areas of theoretical computer science, can be
formulated as constraint satisfaction problems for ω-categorical structures.

The subclass of problems of the form CSP(Γ) for finite Γ has attracted con-
siderable interest in recent years. Feder and Vardi [FV99] conjectured that such
CSPs are either in P or are NP-complete. A very fruitful approach to this conjec-
ture is the so-called universal-algebraic approach. One of the basic insights of this
approach is that for finite Γ, the complexity of CSP(Γ) only depends on the pseu-
dovariety generated by any of the polymorphism algebras of Γ. For ω-categorical
Γ, the same statement follows from Theorem 19 and the following, which can be
seen as a different formulation of results obtained in [BKJ05].

Theorem 27 (from [Bod08]). Let Γ and Δ be structures with finite relational
signatures. If there is a primitive positive interpretation of Γ in Δ, then there is a
polynomial-time reduction from CSP(Γ) to CSP(Δ).
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For finite structures Γ, this also shows that the complexity of CSP(Γ) is captured
by the abstract polymorphism clone of Γ; see Theorem 3. In other words, if Γ and
Δ are such that their abstract polymorphism clones are isomorphic, then CSP(Γ)
and CSP(Δ) are polynomial-time equivalent.

Corollary 2 gives a generalization of this fact for ω-categorical structures: the
complexity of CSP(Γ) only depends on the topological polymorphism clone of Γ.
In the following we explain that this is not only a fact of theoretical interest, but
that Theorem 1 also provides a practical tool to prove the hardness of CSP(Γ). An
example will be given in Section 7.

Note that all algebras with domain of size at least two and with the property
that all their operations are projections have, up to isomorphism, the same abstract
clone, which we denote by 1. For 1 ≤ i ≤ k, we denote the element of 1 which
correponds to the k-ary projection onto the i-th coordinate by πk

i . So {πk
i | i, k ∈

N, i ≤ k} is the set of elements of the abstract clone 1. Note that the topology on
1 is the discrete topology since 1 has only finitely many elements for each arity.

An example of a structure whose polymorphism clone is isomorphic to 1 is the
structure ({0, 1}; 1IN3), where 1IN3 := {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. The CSP for
this structure is the well-known positive 1-IN-3-3SAT problem, which can be found
in [GJ78] and which is NP-complete.

Theorem 28. Let Γ be an ω-categorical structure. Then the following are equiva-
lent:

(1) All finite structures have a primitive positive interpretation in Γ.
(2) The structure ({0, 1}; 1IN3) has a primitive positive interpretation in Γ.
(3) Γ has a polymorphism algebra C such that the pseudovariety generated by C

contains a two-element algebra A, all of whose operations are projections.
(4) There exists a continuous homomorphism from Pol(Γ) to 1.

If one of those conditions applies and if Γ has a relational signature, then Γ has a
finite signature reduct Γ′ such that CSP(Γ′) is NP-hard.

Proof. The equivalence of (1) and (2) with (4) follows from Theorem 1, and the
equivalence of (3) with (4) from Theorem 4. We remark that the equivalence
between (1), (2) and (3) can also be found in [Bod12].

To prove the statement about NP-hardness, let Γ′ be the reduct of Γ that contains
exactly those relations that appear in the formulas of the primitive positive inter-
pretation of ({0, 1}; 1IN3) in Γ. Note that Γ′ has finite signature and still interprets
({0, 1}; 1IN3) primitively positively. NP-hardness of CSP(Γ′) now follows from the
mentioned fact that CSP(({0, 1}; 1IN3)) is NP-hard and from Theorem 27. �

7. Constraint satisfaction example

Consider the structure Γ = (Q; Betw) where Betw is the ternary relation {(x, y, z)
∈ Q3 | x < y < z∨z < y < x}. Then CSP(Γ) is a well-known NP-complete problem
known as the Betweenness problem [Opa79,GJ78]. Applying the method presented
in Section 6, we will show NP-hardness of this problem by exhibiting a continuous
clone homomorphism ξ from Pol(Γ) to 1.

In the following, for k ≥ 1 and x, y ∈ Γk, we write �=(x, y) iff xj �= yj for all
1 ≤ j ≤ k.
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Claim. Let k ≥ 1 and let f ∈ Pol(Γ) be k-ary. Then one of the following holds:

(1) there is 1 ≤ d ≤ k such that f(x) < f(y) for all x, y ∈ Γk with �=(x, y) and
xd < yd;

(2) there is 1 ≤ d ≤ k such that f(x) > f(y) for all x, y ∈ Γk with �=(x, y) and
xd < yd.

Since d is clearly unique for each f , setting ξ(f) := πk
d defines a function ξ from

Pol(Γ) onto 1. It is straightforward to check that ξ is a homomorphism. To see
that ξ is continuous, observe that for 1 ≤ d ≤ k the preimage of any πk

d under
ξ equals the intersection of Pol(Γ) with the set of all k-ary functions on Γ which
satisfy either (1) or (2). Since the set of functions satisfying (1) or (2) is closed, so
is ξ−1[{πk

i }].
So we are left with the proof of the claim above. Observe first that either

f(0, . . . , 0) < f(1, . . . , 1) or f(0, . . . , 0) > f(1, . . . , 1) holds: for if the two values
were equal, this would contradict Betw(f(0, . . . , 0), f(1, . . . , 1), f(2, . . . , 2)). We
will now show that f(0, . . . , 0) < f(1, . . . , 1) implies (1); then by symmetry of the
statements, f(0, . . . , 0) > f(1, . . . , 1) implies (2).

Observe the following: whenever a, a′, b, b′ ∈ Γk are so that �=(a, a′), �=(b, b′), and
ai < a′i iff bi < b′i for all 1 ≤ i ≤ k, then f(a) < f(a′) iff f(b) < f(b′). To see this,
suppose without loss of generality that f(a) < f(a′) and f(b) ≥ f(b′). Pick for all
1 ≤ i ≤ k any ci < min(ai, a

′
i, bi, b

′
i) if ai < a′i, and ci > max(ai, a

′
i, bi, b

′
i) otherwise.

Pick moreover di < min(ai, a
′
i, bi, b

′
i) if ai > a′i, and di > max(ai, a

′
i, bi, b

′
i) other-

wise. Now Betw(ci, ai, a
′
i) for all 1 ≤ i ≤ k and f(a) < f(a′) imply f(c) < f(a);

likewise, Betw(ai, a
′
i, di) for all 1 ≤ i ≤ k and f(a) < f(a′) imply f(a′) < f(d), and

so f(c) < f(d). However, the same argument with b and b′ yields f(d) < f(c), a
contradiction.

Now suppose that (1) does not hold, and let c0 ∈ Γk be arbitrary. We will
inductively define tuples c1, . . . , ck ∈ Γk such that f(c0) ≥ f(c1) ≥ · · · ≥ f(ck)
and such that c0i < cki for all 1 ≤ i ≤ k, which contradicts our observation since
f(0, . . . , 0) < f(1, . . . , 1). For 0 ≤ j < k, we define cj+1 from cj as follows. Consider
x, y ∈ Γk witnessing the failure of (1) for d = j; that is, �=(x, y), xj < yj , and

f(x) ≥ f(y) hold. Select t ∈ Γk such that �=(cj , t) and such that cji < ti iff xi < yi
for all 1 ≤ i ≤ k. Then cjj < tj , and the observation shows that f(cj) ≥ f(t). For

1 ≤ i ≤ k, set cj+1
i := cji + k if ti > cji , and cj+1

i := cji − 1 otherwise. By our
observation, f(cj) ≥ f(cj+1); since in the process every coordinate is increased by
k at least once, and decreased by 1 at most k − 1 times, we have c0i < cki for all
1 ≤ i ≤ k.

8. Discussion

Our results demonstrate that many properties of an ω-categorical structure Γ
are already determined by the polymorphism clone of Γ viewed as a topological
clone, i.e., viewed as an abstract algebraic structure additionally equipped with
the topology of pointwise convergence. One might ask which properties of Γ are
captured by the abstract algebraic structure of the polymorphism clone of Γ without
the topology. Observe that for finite Γ, the two concepts coincide.

We would like to point out that there is considerable literature about ω-
categorical structures where the topology on the automorphisms is uniquely deter-
mined by the abstract automorphism group; this is for instance the case if Aut(Γ)
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has the so-called small index property, that is, all subgroups of countable index are
open. (This is equivalent to saying that all homomorphisms from Aut(Γ) to S∞,
the symmetric group on a countably infinite set, are continuous.) The small index
property has for instance been shown

• for Aut(N; =) by Dixon, Neumann, and Thomas [DPT86];
• for Aut(Q;<) and for the automorphism group of the atomless Boolean
algebra by Truss [Tru89];

• for the automorphism groups of the random graph [HHLS93];
• for all ω-categorical ω-stable structures [HHLS93];
• for the automorphism groups of the Henson graphs by Herwig [Her98].

An example of two ω-categorical structures (with infinite relational signature)
whose automorphism groups are isomorphic as abstract groups but not as topo-
logical groups can be found in [EH90].

It is well known that every Baire measurable homomorphism between Polish
groups is continuous (see e.g. [Kec95]). So let us remark that there exists a model
of ZF+DC where every set is Baire measurable [She84]. For the structures Γ that
we need to model computational problems as CSP(Γ), it therefore seems fair to
assume that the abstract automorphism group of Γ always determines the topo-
logical automorphism group (thanks to Todor Tsankov for pointing this out to
us; consistency of this statement with ZF has already been observed in [Las91]).
However, this does not answer the question as to in which situations the abstract
polymorphism clone determines the topological polymorphism clone.

In Theorem 3, if B ∈ HSPfin(A), then B is in fact a homomorphic image of a
subalgebra of An, where n = |A||B|; that is, we have an explicit bound for the size
of the power of A we have to take in order to represent B. Peter Cameron has
asked us whether a bound was known also in the locally oligomorphic case, i.e., in
Theorem 4. By its nature of a compactness argument, our proof does not provide
such a bound, and it would be interesting to find out whether a bound could also
be given in our case.
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[BN06] Manuel Bodirsky and Jaroslav Nešetřil, Constraint satisfaction with countable homo-
geneous templates, J. Logic Comput. 16 (2006), no. 3, 359–373, DOI 10.1093/log-
com/exi083. MR2239084 (2007g:68061)

[Bod08] Manuel Bodirsky, Constraint satisfaction problems with infinite templates. In Heribert
Vollmer, editor, Complexity of Constraints (a collection of survey articles), volume
5250 of Lecture Notes in Computer Science, pages 196–228. Springer, 2008.

http://www.ams.org/mathscinet-getitem?mr=831437
http://www.ams.org/mathscinet-getitem?mr=831437
http://www.ams.org/mathscinet-getitem?mr=729943
http://www.ams.org/mathscinet-getitem?mr=729943
http://www.ams.org/mathscinet-getitem?mr=2781087
http://www.ams.org/mathscinet-getitem?mr=2781087
http://www.ams.org/mathscinet-getitem?mr=2137072
http://www.ams.org/mathscinet-getitem?mr=2137072
http://www.ams.org/mathscinet-getitem?mr=0300895
http://www.ams.org/mathscinet-getitem?mr=0300895
http://www.ams.org/mathscinet-getitem?mr=2239084
http://www.ams.org/mathscinet-getitem?mr=2239084


2548 MANUEL BODIRSKY AND MICHAEL PINSKER

[Bod12] Manuel Bodirsky, Complexity classification in infinite-domain constraint satisfaction.
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