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WELL-POSEDNESS FOR THE FIFTH-ORDER KDV EQUATION
IN THE ENERGY SPACE

CARLOS E. KENIG AND DIDIER PILOD

ABSTRACT. We prove that the initial value problem (IVP) associated to the
fifth-order KdV equation

(0.1) Oru — 8211, = claxuaiu + cg@w(uagu) + cg(%;(us)7

where z € R, t € R, u = u(z,t) is a real-valued function and «a, c1, c2, c3
are real constants with o # 0, is locally well-posed in H*(R) for s > 2. In
the Hamiltonian case (i.e. when ¢; = ¢2), the IVP associated to (0.1) is then
globally well-posed in the energy space H?(R).

1. INTRODUCTION

Considered here is the initial value problem (IVP) associated to the fifth-order
Korteweg-de Vries equation

Ou — O3u = 10, udu + 20, (u0?u) + c30, (u?)
u('a O) = Uo,

where z € R, t € R, u = u(z,t) is a real-valued function and ¢y, ca, c3 are real
constants. Such equations and their generalizations

(1.2) Opu — O2u + B@gu = coul,u + claxuaiu + czax(uaiu) + 30, (u®)

arise as long-wave approximations to the water-wave equation. They have been
derived as second-order asymptotic expansions for unidirectional wave propagation
in the so-called Boussinesq regime (see Craig, Guyenne and Kalisch [5], Olver [31],
Craig and Groves [0] and the references therein), the first-order expansions being
of course the Korteweg-de Vries (KdV) equation,

(1.3) Oy + BAZu = coud,u.

The equation in (IJ]) was also proposed by Benney [2] as a model for interaction
of short and long waves.
When ¢; = ¢o, the Hamiltonian

(1.4) H(u) = %/R ((8§u)2 — cru(Oyu)? + %uﬂdm
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as well as the quantity
(1.5) M(u) = / u?de,
are conserved by the flow of (ITI). Indeed,Rit is easy to check that
H' (u)p = /}R (Opu — %1(6‘95102 + 10, (udpu) + c3u®)pdz =: (grad H(u), @) .
Thus the equation in () has the form dyu = d,grad H(u), so that

%H(u) = (grad H(u), Ou) 12 = (grad H (u), 0,grad H(u))L2 =0.

Moreover in the special case where c3 = ¢; = —10a and c3 = 10, the equation in
(1) is the equation following KdV in the KdV hierarchy discovered by Lax [20]
and written as

(1.6) Oru — O2u + 100,ud?u + 100, (ud?u) — 100, (u®) = 0.

Therefore equation (L)) is completely integrable and possesses an infinite number
of conservation laws. We refer to the introductions in [9], [33], [34] for more details
on this subject.

Our purpose is to study the IVP (L)) in classical L?-based Sobolev spaces H*(R).
We shall say that the IVP is locally (resp. globally) well-posed in the function space
X if it induces a dynamical system on X by generating a continuous local (resp.
global) flow.

First, it is worth mentioning that without dispersion (i.e. when o = 0) and
when ¢; # 0 or ¢a # 0, the IVP () is likely to be ill-posed in any H*(R) (see
the comments in the introduction of [33]). This is in sharp contrast with the KdV
equation. Indeed, when 8 = 0 in ([3]), we obtain the Burgers equation, which is
still well-posed in H*(R) for s > 3/2 by using standard energy methods. However,
the direct energy estimate for equation (1)) (after fixing ¢3 = 0 for simplicity)
gives only

d
(L) okl S ||a§u|\Lgo|\a’;u(t)||2Lz+\/axuagﬂuagﬂudx.
R

Observe that the last term on the right-hand side of (7)) has still higher-order
derivatives and cannot be treated by using only integration by parts. To over-
come this difficulty, Ponce [33] used a recursive argument based on the dispersive
smoothing effects associated to the linear part of (1)), combined with a parabolic
regularization method, to establish that the IVP (L) is locally well-posed in H*(RR)
for s > 4. Later, Kwon [25] improved Ponce’s result by proving local well-posedness
for () in H*(R) for s > 5/2. The main new idea was to modify the energy by
adding a correction lower-order cubic term to cancel the last term on the right-
hand side of (7). Note that he also used a refined Strichartz estimate derived by
chopping the time interval into small pieces whose lengths depend on the spatial
frequency. This estimate was first established by Koch and Tzvetkov [24] (see also
Kenig and Koenig [18] for an improved version) in the Benjamin-Ono context.

On the other hand, it was prove by the second author in [32], by using an
argument due to Molinet, Saut and Tzvetkov for the Benjamin-Ono equation [30],

1Strictly speaking the result was proved only in the case where c3 = 0, but as observed in the
introduction of [9], the cubic term 9 (u3) in () is well behaved and no cancellations occur, so
that the proof remains true even when c3 # 0.



WELL-POSEDNESS FOR THE FIFTH-ORDER KDV EQUATION 2553

that in the case ¢y # 0, the flow map associated to (L)) fails to be C? in H*(R),
for any s € R. This result was improved by Kwon [25], who showed that the flow
map fails to be even uniformly continuous in H*(R) when s > g (and s > 0 in the
completely integrable case). Those results are based on the fact that the dispersive
smoothing effects associated to the linear part of ([II)) are not strong enough to
control the high-low frequency interactions in the nonlinear term 9, (ud%u). As a
consequence, one cannot solve the IVP (ILI)) by a Picard iterative method imple-
mented on the integral equation associated to (1)) for initial data in any Sobolev
space H*(R) with s € R.

However, the fixed point method may be employed to prove well-posedness for
(I in other function spaces. For example in [20], [21I], Kenig, Ponce and Vega
proved that the more general class of IVPs,

{ Ou+ 0¥y = P(u, 0pu,...,0%9u), x, teR, jEN,

(1.8) u(0) = 1o,

where
P:R¥t R (or P:C¥T! - C),

is a polynomial having no constant or linear terms, is well-posed in weighted Sobolev
spaces of the type H¥(R) N H'(R; x%dx) with k, | € Z,, k > kg, | > I for some
ko, lo € Z4. We also refer to [32] for sharper results in the case of small initial data
and when the nonlinearity in (L8] is quadratic. Recently, Griinrock [9], respectively
Kato [I6], used variants of the Fourier restriction norm method to prove well-
posedness in }AI;S (R) for 1 < r < % and s > 1 + 2% respectively, in H**(R) for
s > max{—},—2a — 2} with =3 < a < —1 and (s,a) # (—,—%). The spaces
f]ﬁ (R) and H**(R) are respectively defined by the norms H@Hﬁg = |{€)°P|| .~ with
r+ 5 =1and [[ollaee = [(€)°I¢]*l| -

Nevertheless, the L2-based Sobolev spaces H*(R) remain the natural? spaces to
study well-posedness for the fifth-order KdV equation. Our main result states that
the IVP (L)) is locally well-posed in H*(R) for s > 2.

Theorem 1.1. Assume that s > 2. Then, for every ug € H*(R), there exists a
positive time T = T(||ug||g=) and a unique solution u to ([LI)) in the class

(1.9) O([-T, T); H*(R)) N F*(T) N B(T).

Moreover, for any 0 < T' < T, there exists a neighborhood U of ug in H*(R) such
that the flow map data-solution

(1.10) S5 U — C([-T',T'); H*(R)), uo — u,
15 continuous.

Remark 1.2. The short-time Bourgain space F*(T) := F;(T) and the energy space
B?*(T) are defined in Subsection

Remark 1.3. The result of Theorem [[T]is also valid for equation (I2) and the proof

is similar.

2When the equation in (ZI)) is Hamiltonian (4.e. when c¢1 = c2), the space H2(R) is the natural
space where the Hamiltonian H in ([4) is well defined.
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Remark 1.4. For sake of simplicity, we assume that c¢g = 0 in the proof of Theorem
LT since the cubic term 9, (u?®) has low-order derivative when compared to the two
other nonlinear terms in ([I]). Nevertheless, we indicate in the appendix what
modifications are needed to deal with the case c3 # 0.

Remark 1.5. Observe that at this level of regularity (s > 2), the limits of smooth
solutions are still weak solutions to the equation in (LTI).

Remark 1.6. As a byproduct of the proof of Theorem [[L1] we obtain a priori esti-
mates on smooth solutions of (L) in H*(R) for s > 2 (see Proposition 6.2 below).
In other words, the flow map data-solutions in H*(R) satisfy

(1.11) 197 (o) [ e o < lluollae,

for any s > 2 and where T depends only on |[ug||z=. However, we were not able to
prove well-posedness at this level of regularity.

In the Hamiltonian case, the conserved quantities H and M defined in (L4)-
(LE) provide a control on the H2-norm and allow us to prove that the IVP (L)) is
globally well-posed in H?(R).

Corollary 1.7. In the case ¢; = cq, the results of Theorem [l are true for T > 0
arbitrarily large.

Remark 1.8. Corollary [T remains true for equation (I2) (still in the case ¢; = ¢3).

Remark 1.9. In [34], Saut proved the existence of global weak solutions in the
Hamiltonian case. However, Corollary [[.7] is the first existence result of global
strong solutions for the fifth-order KdV equation in the Hamiltonian case

Remark 1.10. In his study of stability of solitary waves for Hamiltonian fifth-order
water-wave models of the form ([2)) with quadratic nonlinearitiesE Levandosky
assumed well-posedness in H?(R) (cf. Assumption 1.1 in [27]). Therefore, Corollary
[ provides an affirmative answer to this issue. We also refer to [1]], [28] for further
results on stability /instability of such fifth-order water-wave models.

We now discuss the main ingredients in the proof of Theorem [[LI1 We follow
the method introduced by Ionescu, Kenig and Tataru [15] in the context of the
KP1 equation, which is based on the dyadic Bourgain spaces F and their dual
N¢Z, defined in subsection We refer to [], [23] for previous works using similar
spaces to prove a priori bounds for the 1D cubic NLS at low regularity and also to
[11], [12], [29] for applications to other dispersive equations.

The F? spaces enjoy an X *’-type structure but with a localization in small time
dependent intervals whose length is of order 27** when the spatial frequency of
the function is localized around 2*. This prevents the time frequency modulatio
|7 — w(&)] to be too small, which allows for suitable o, @« = 2 in our case, to prove
a bilinear estimate of the form (cf. Proposition 1] for a precise statement)

(1.12) H(f?zuagvHN_g(T) + Ham(u@iv)HN;(T) S lull gy llvl

F3(T)»

3Except of course in the completely integrable case.

4The question of existence of solitary waves for such models with nonhomogeneous nonlinear-
ities was addressed in [22].

5Here, w(€) = €5 denotes the dispersive symbol of the linear equation.
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as soon as s > 1. Of courseﬁ we cannot conclude directly by using a contraction
argument since the linear estimate

requires the introduction of the energy norm ||u|| g (7, instead of the usual H*-norm
of the initial data ||ug|| g+, in order to control the small time localization appearing
in the Fj-structure. Therefore it remains to derive the frequency localized energy
estimate

(1.14)  ullge oy S luollFre + (1 + l[ullps )l ms oy (1l By + 1l B )

which is true if s > 2 and llul| e s is small. The main new difficulty in our case is
that after using suitable frequency localized commutator estimates, we are not able
to handle directly the remaining lower-order terms (see Lemma [57 and Remark
B below). This is the price to pay for the choice of @ = 2 which enabled us to
derive the bilinear estimate (LIZ). Then, we modify the energy by adding a cubic
lower-order term to Hu||?3b,(T) in order to cancel those terms. This can be viewed as
a localized version of Kwon’s argument in [25].

We deduce the a priori bound (LII) by combining ([I2)—-(TI4) and using a
scaling argument. To finish the proof of Theorem [[LI, we apply this method to
the difference of two solutions. However, due to the lack of symmetry of the new
equation, we only are able to prove the corresponding energy estimate for s > 2.
Finally, we conclude the proof by adapting the classical Bona-Smith argument [3].

We have learned that Guo, Kwak and Kwon [I3] have also worked on the same
problem and obtained the same results as ours (in Theorem [[I] and Proposition
6.2). They also used the short-time X** method. However, instead of modifying
the energy as we did, they put an additional weight in the X*° structure of the
spaces in order to derive the key energy estimates.

Finally, we believe that the technique employed here may be useful to deal with
other higher-order nonlinear dispersive equations presenting the same kind of diffi-
culties as the fifth-order KdV equation, as for example the other equations in the
KdV hierarchy. We plan to address this issue in a forthcoming paper.

The rest of the paper is organized as follows: In Section 2, we introduce the
notation, define the function spaces and prove some of their basic properties as well
as the main linear estimates. In Section 3, we derive the L? bilinear and trilinear
estimates, which are used to prove the bilinear estimates in Section 4 and the energy
estimates in Section 5. The proof of Theorem [[T]is given in Section 6. We conclude
the paper with an appendix explaining how to treat the cubic term 9, (u®), which
we omit in the previous sections to simplify the exposition.

2. NOTATION, FUNCTION SPACES AND LINEAR ESTIMATES

2.1. Notation. For any positive numbers a and b, the notation a < b means that
there exists a positive constant ¢ such that a < c¢b. We also denote a ~ b when
a < band b < a. Moreover, if o € R, a4, respectively a_, will denote a number
slightly greater, respectively lesser, than a.

For a1, as, az € R, it will be convenient to define the quantities @,z > Gmed >
Amin t0 be the maximum, median and minimum of a1, as and ag respectively. For
ay, as, az, ags € R, we define the quantities ayae > Gsup > Gthg > Gmin t0 be

6This would be in contradiction with the C2-ill-posedness results in [32].



2556 C. E. KENIG AND D. PILOD

the maximum, sub-maximum, third-maximum and minimum of a1, a2, a3 and a4
respectively. Usually, we use k; and j; to denote integers and N; = 2%, L; = 27
to denote dyadic numbers.

For u = u(x,t) € §(R?), Fu = U will denote its space-time Fourier transform,
whereas Fyu = (u)"=, respectively Fru = (u)™t, will denote its Fourier transform
in space, respectively in time. Moreover, we generally omit the index x or ¢ when
the function depends only on one variable. For s € R, we define the Bessel and
Riesz potentials of order —s, J2 and D2, by

Jiu=F,((1+¢*)2Fu) and Diu=TF,; ' (|¢]*Fpu).

The unitary group €92 associated to the linear dispersive equation

(2.1) O — Pu =0
is defined via Fourier transform by
(2.2) ey = gt (eitw(f)’fzuo),

where w(€) = €5,

For k € Z,, let us define

Iy={¢eR : 2871 < g < 2k 1)
if k>1and
Iy={¢eR : [¢| <2}
Throughout the paper, we fix an even smooth cutoff function ny : R — [0,1]
supported in [—8/5,8/5] and such that 7 is equal to 1 in [-5/4,5/4]. For k €
ZN[1,400), we define the functions 7 and n<j respectively by
k
(23)  m(©=m@ ") -m@ VY =027 and e =)
§=0

Then, (n;)k>o0 is a dyadic partition of the unity satisfying supp n, C Ij.

Let (x)k>0 be another nonhomogeneous dyadic partition of the unity satisfying
suppnx C I and 17 = 1 on supp 7.

Finally, for k € Z N [1,4+00), let us define the Fourier multipliers Py, P<o and
P<j. by

k
Pou = 3";1(77;@5‘}11), Poou = 3";1(7703’”), and P<j = P<o + Z P;.
j=1

Then it is clear that P<o+ Z;ﬁ? P, = 1. Often, when there is no risk of confusion,
we also denote Py = P<.

2.2. Function spaces. For 1 < p < oo, LP(R) is the usual Lebesgue space with
the norm || - ||z», and for s € R, the Sobolev space H*(R) is defined via its usual
norm (6] - = 756152

Let f = f(x,t) be a function defined for € R and ¢ in the time interval [T, T,
with 7" > 0 or in the whole line R. Then if X is one of the spaces defined above,
we define the spaces L} X, and L{ X, by the norms

1

i, = (15 0na)* ana itags, = ([ 156 0lar)’,

when 1 < p < oo, with the natural modifications for p = oc.
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We will work with the short-time localized Bourgain spaces introduced in [I5].
First, for k € Z,, we introduce the [}-Besov type space X of regularity 1/2 with
respect to modulations,

Xi = {o € I2(R?) : suppo € I x R and [¢]|x, < oo},
where
too
(2.4) I8]lx = D 27 2|lns (1 — w(€))$(&, 7)1z -
j=0
Let o > 0 be fixed. For k € Z,, we introduce the space F} , possessing a Xj-
structure in short-time intervals of length 27,
Fro={f € L*(R;I*(R)) : suppF(u) C Ix x R and | fl|,.. < oo},

where

(2.5) 1fllF0 = Sup 15 (10 (2°* (- = ) f) | x..-

Its dual version Ny, o is defined by
Nio = {f € L®°(R; H *(R)) : suppTF(f) C I x R and Il < oo},
where

(2.6) 171w, = sup (7 = w(€) +i2°%) " F (o (2 (- = D)) .,

Now for s € R, we define the global F? and N; spaces from their frequency
localized versions Fj, , and Nj o by using a nonhomogeneous Littlewood-Paley de-
composition as follows:

+oo 1

7 Fi={f e L*®LA®) : Iflr; = (D213, )" < oo}
k=0

and
400 1

28) Ni={rer=®a®) : Ifln; = (Y 2PfI%,.)" <o}
k=0

We also define a localized (in time) version of those spaces. Let T be a positive
time and Y denote FS or N5. If f: R x [-T,T] — C, we define

Iflly @y =it {||flly : f:R*—Cand fi, .. =f}
Then,
Fi(T) = {f e L*(-T, T L(R)) = |If]

F(T) < 00}7
and similarly
Ni(T) = {f € L2(=T.TEH (R) : |Ifllvery < oo
Finally for s € Ry and T > 0, we define the energy space B*(T) by

BT) = {f € L=(-T, T L*(R)) : |f|

Bs(T) < 00}7
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where

(2.9)

1
= (IlP<o (- HL2+Z22’“ sup [P (1) 3:)
T,T

)

2.3. First properties. Following [I5], we state some important properties of the
F3(T) spaces. First, we show that F3(T) < L>°([-T,T]; H*(R)).

Lemma 2.1. LetT >0, s € Ry and o € Ry. Then it holds that
(2.10) I fllzse s S I f sy
forall f € F3(T).

Proof. Let f € F2(T). We choose fe F? such that

(2.11) finn =f and ||fllr: <20 fllpscr).
It follows that for every ¢ € [T, T],
- = ~ 1
(2.12) LG = 10l S (32210 0l3:)
k=0

where fy = Pgofand fi = Puf for any k € ZN [1,400).
Now fix t € [-T,T] and k € Z,. The Fourier inversion formula gives that

(2.13) TL(FIE) = [ T~ M) (€ e

On the other hand, the definition X} in ([24) and the Cauchy-Schwarz inequality
in 7 implies that

(214) | [ lotenar], s el

R L
for all ¢ € Xj. Therefore, it is deduced from (2.3, 2I3) and ([2I4) that
(2.15) GOl S 1 el

for all k € Z. Then, estimate (ZI0) follows by gathering (ZIT)), (Z12)), ZI0) and
taking the supreme over t € [T, T].

Then, we derive an important property involving the space X (see [15]).

Lemma 2.2. Let « > 0 and [, k € Z; be given. Then, if [al] denotes the integer
part of al, we have that

— _ —4
(216) 2¥ |fncgan(r = w(©) [ o6, (1 +2 =) |, ol
&, 7
and
@11 3 2Hnyr—uie) [ lo(e )l (2= e S ol
j>[al] Ler

for all ¢ € Xj.
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Proof. We fix [ = [al]. We begin by proving estimate (2.I6). Following [29], we use
that (nx)r>0 is the dyadic partition of the unity and the Cauchy-Schwarz inequality
in 7/ to get that

1:=2% (- w(©) / [#(6, )27 (14 2o =) |
al = —4
=27% ngm—w(s))Z / na(7' = w(E)le(&, P (1427 =) Tar'||
— JR &
< 2_%[ Z N ga 22an _w(g))¢(§a)HL2 12 )
&,
where

~ _ —4 _1
I a(&,7) = || (7 = w(@) (1427 = 7)) (7" = w(©) 77| o -
Now, we get trivially that
Ipu(¢,m) S298272 <11,

which concludes the proof of ([216) recalling the definition of the space X}, in ([24)).
Next, we turn to the proof of estimate ([ZI7). The mean value theorem yields

(1 = w(€)) —n; (7" —w(€))| S 27| — 7],
which implies that

(218) 37 24|y (r—w(e /|¢ e 2t (1e2-lr—r) ar|| < In+1n,
>l Lg -

where
I, =Y 2% | [ (- — w(€))s(€, )] * [2-&1(1+2—“l|-\)—4](7)]L2

g>I £,7

and

11 —22 (r— (f))/R‘¢(57TI)|2_QZ\T—T'|(1+2_O‘l|7'—7'/|)_4d7'/ o
j>l &,

Applying Young’s theorem on convolution (L2 * L1 — L2), we get that
(2.19) Mo 328 nj(m = w(€)é(& Mz < 19lx,-

i>l
To deal with I, we proceed as in the proof of estimate (Z16) and obtain that

I, <2 122—l
j>l

Y

- w Zm 123 (-~ €66 -,
&, 7

where
Taa€7) = [l = w(©)lr = 71(1+ 27 = ) 7 = w(©) ]
In the case where j > ¢ + 5, we have that
Jaa(§m) S 227407,
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since |7 — 7/| ~ 27. In the case where ¢ > j — 4, we get that
T

Jaa(&r) S 278||| |1+ 27 - )Y . S 2722,

Then, after summing in j, we deduce that in both cases

+00
(2:20) Iy S 32 23 |ng (7 = w(@)e(&, M) 2 = llellx,-

q=0 7
Estimate (ZI7)) follows gathering ([ZI8)—(220), which concludes the proof of Lemma
O
Corollary 2.3. Letk € Zy, a > 0,t € R and v € §(R). Then it holds that
(2.21) [T C = D) ]|, S T x

for all f such that F(f) € Xy.
Proof. Since 7 € §(R?), we have that

‘?[V(Qak(- —1))f] (5,7)‘ = ’3"(]0)(6, ) % [e‘iz(')Q—ak§(2—ak(.))](T)‘

Therefore estimate ([221)) follows by using the definition of X and applying esti-

mates (2I6)—(2I7) to the right-hand side of (2:22]). O
Corollary 2.4. Letk € Zy, a > 0,t € R and v € §(R). Then it holds that
(223) [[(r—w(©) +2°) T[22 (= D)1, S 7 —w() +i25) TP,
for all f such that F(f) € Xy.
Proof. We have that

[(r = w(€) +25) 71T [y(2 (- = ) f] ||,

S 270N 23|y (r — w(€)F [y 2 (- — 1) f]]] 2
(2.24) jg[;k] I g ez,

+ Y 2yl — w@)F [ = D)

j>[ak]

(2.22)

We treat the first term on the right-hand side of (Z24)) by using Lemma as in
the proof of Corollary 23] and the second term by using Lemma and duality.
This implies estimate ([223)). O

Remark 2.5. For s € Ry, the classical dyadic Bourgain space X 5,31 (introduced
for instance in [35]) is defined by the norm

+oo 1
11z = (1FP0hIBe, + 22215 (PAI, )
k=1

Thus, if f € X®2:1, one may deduce after applying estimate (Z2I)) to each P f,
taking the supreme in ¢ and summing in &, that || f|rs < ||f||X5,%,1, for any o > 0.
In other words, we have that

X551 < FS < L®(R; HY(R)).
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More generally for any k € Z, and a > 0, we define the set Sy o of k-acceptable
time multiplication factors (cf. [I5]) as

10
Ska = {mk R=R : mills,. = ZQ_jak||8jmk||Lac < oo}.

j=0
Corollary 2.6. Letk € Zy, o > 0 and my, € Sk o. Then it holds that
(2.25) ImefllF. S Ilmells,. | fllp..
and
(2.26) e f v S lImellseollfll v o

Proof. We prove estimate (Z258]). The proof of estimate (2:26) would follow in a
similar way. Arguing as in the proof of Corollary it suffices to prove that

(2.27) |Fe [ (o2 (- = D)(D)]| < lmlls, . 27 (1 + 27K |77,

for all £, 7 € R.
It follows from the definition of the Fourier transform that

1T [ (Y022 ¢ = )] oo S ()0 (275 = D)l 14
< 27 lmie] e ol -

By again using basic properties of the Fourier transform and the Leibniz rule, we
deduce that

270 |7 AT [me (o (2 (- = )] (7))
S 2700 ma (Yo (2°F (- — 1)]

(2.28)

[

(2.29) )
<20 22 RO 1.
j=0
Estimates [228)—(229) and the definition of Sk, imply estimate (Z27)), which
concludes the proof of Corollary O

The next corollary of Lemma will be useful in the proof of the bilinear and
energy estimates (cf. Sections E and []).

Corollary 2.7. Let « > 0,t € R and I, k € Z, be such that | +5 > k. Then it
holds that

(2:30) 2% [n<ton(r = w@)F 0@ ¢ =2 S 1l

and

(2:31) > 28 |mi(r — w@)F @ = DNfll 2 SN f e
3>[al) '

forall f € Fiq.
Proof. Observe that
(2% (- =) f =no(2* (- = 1))no(2** =9 (- =) f.
Moreover, it follows from Corollary that
[F [0 =) F] | xr S W1l

Therefore, we conclude estimates ([Z.30) and (231) by applying 216 and 2I7),
arguing as was done in the proof of Corollary 2.3 O
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Remark 2.8. Estimate ([2.30) can be viewed as a consequence of the uncertainty
Heisenberg principle. It is of fundamental importance in the proof of the short-time
bilinear estimates (cf. Section M), since it allows us to consider only regions where
the modulation |7 —w(€)| is not too small, and therefore to avoid the regions giving
trouble in the low-high frequency interactions (cf. [32]).

2.4. Linear estimates. In this subsection, we derive the linear estimate associated
to the spaces F3(T') (cf. [I9]).

Proposition 2.9. Assume s € Ry, a >0 and T € (0,1]. Then we have that
(2.32) lull 7z (ry S Nullgs(ry + 1 fllnvz ry

for all w € B*(T) and f € NZ satisfying

(2.33) ou—Pu=f, on Rx[-T,T).

Remark 2.10. Observe that when working in the classical Bourgain space X0.3:1 (T)
defined in Remark 2.5 one would obtain an estimate of the form

ol ey S 10O ar= + 171 ey gy

Here, we need to introduce the energy norm ||ul|gs(r) instead of [[u(0)| z-, since
we are working on very short time intervals whose lengths depend on the spatial
frequency.

We first derive a homogeneous and a nonhomogeneous linear estimate in the
spaces Xp.

Lemma 2.11 (Homogeneous linear estimate). Let a > 0 and k € Z4. Then it
holds that

5
(2.34) ||5"[770(2akt)etawu0] ka < uoll e,
for all ug € L?(R) such that supp F,(ug) € I.
Proof. A direct computation shows that

Fno(2* )P u] (¢, 7) = 27*7o (2% (7 — w(€))) o (6).
Thus, it follows from the definition of X} and Plancherel’s identity that

235) [T e[|y < 372072 n; ()27 K52 ol 2
7>0

Moreover, it is clear since 7y € S(R) that
ln; ()27 *70(27% )| o < 27 [Im; ()X +27F1- N7,
< 27k91/2 ;min(1, 24(@k=9)),
which combined with (Z35]) implies estimate ([234)). O

Lemma 2.12 (Nonhomogeneous linear estimate). Let « > 0 and k € Z,. Then it
holds that

(2.36)  ||Fno(27*1) / % (., 8)ds] |, S (|7 — w(©) +i2°%) 7T,

for all f such that suppF(f) € I, x R.
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Proof. Straightforward computations yield
(2.37)

F[o(2°¢) / =992 (.. 5)ds] (€, 7)

0

=T [Uo(Qakt)/ ‘

7 _ itw(€)

F(f)(E 7)d7](7)

r (T —w(g))
— 9—akz> (g—ak, % ?(f)(§7 ) 7) — ak eitw(f) . M =
e [ WM E) R —w(©)
) /R ) F(f)(E7)d

Now, we observe that

M2k = 7)) = M —w(©)
i = () (7 - + 27

S22k = F) T 27k (L 2R — w(g))

270ck

(2.38)

Indeed, in the case where |7 — w(&)| > 2%, then |7 — w(€) + 27| < |7 — w()|
and estimate (Z38)) follows directly from the fact that 7y € S(R) and the triangle
inequality. Now we deal with the case where |7 — w(¢)| < 2°%. We deduce by
applying the mean value theorem to the even function 7y that

7027 (r = 7)) = 0 (27" (1 — w(€)))| < 27 *[AH27*O) |7 — w(©)],

for some 0 €|t — 7|, |7 —w(&)|[ or O €]|r —w(§)|,|T — 7|, depending on whether
|7 =7 < |t —w(§)| or |T—w(&)| < |7 —7|. Thus, since 7}, € S$(R), the left-hand side
of [Z38) can be bounded by 27 (1 + 2*ak|0|)74. This implies estimate ([2.38) in
this case by using the assumption on 6.

On the one hand, we deduce from Lemma that
(2.39)

7)| k K F(HE )
271 4+ 27| — d < ||l—— .

[ / S ek (2 by = )y, 5 |,
On the other hand, it follows, arguing as in the proof of Lemma 2.11] and using
estimate (Z.I4), that

_4 F T
H2_ak(1 +27%|7 — w(€)|) e |7 |_ (ngi_ i)2|ak: THXk

e o |
<N 202y ()27 (1 + 270 | 4||L2H/ |7 — +@2”"“| 7l
7=>0
(2.40) . (k=) 7l
< v o 4(ak—j T
;2 27 min(1,2 H/ 17— +z2ak\ HL%
< S

7 — w(€) + i20F ka
Finally, we conclude the proof of Proposition 2121 by gathering Z30)—(240). O

A proof of Proposition is now in sight.
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Proof of Proposition 29l Let u, f:R x [-T,T] satisfy ([233]). First, we choose an
extension f of f on R? satisfying
(2.41) 1fllvg < 201 vy )

Fix 0 € C§°(R) such that 0(¢t) =1if ¢t > 1 and 6(¢t) =0if t < 0. For k € Z,, we
define

J’(V'k — 0(2a/€+10(t + T + 2—01/(7—10))9( _ 2ak+10(t _ T _ 2_ak_10))Pk.}7~
Then, it follows from (2Z26]) and the definition of # that
(2.42) [ frll o S IPeSIN 0

supp fr C R x [T —27F=10 7 4 9=oh=10]  and fk‘[q’ﬂ = P.f.
Moreover, for all k € Z,, we also extend Pru on R? by defining 1y (t) as

N0 (29%+5 (¢ — T))(e(t_T)aiPku(T) + f; e(t_s)aiﬁ(s)ds) it ¢>1T,
Pru(t ) if te[-T,T],
no (22K 5t +T)) (e (tHT)0; py(=T) + [* e(t_s)aifk(s)ds) if t<-T.

Next, we show that
(2.43) kllpe.. < [ T HfTr 10 (2°%(t — t1)) Uk)HX

tLEe|—

It is clear from the definition that 1y, is supported in R x [T'—272k=5 T 4 2-ak=3],
Thus, if t, > T, we get

10 (27 (t — th)) iy = no(2°*(t — t))mo(2°* (t — £,) )tk
for some #;, € [T — 2% T}, so that ([22I]) implies

sup [|F[n0(2** (- — t))a] ||, < S sw [F [0 (2% (- = &))ar] | , -
tp>T i €[-T,T]

We could argue similarly for ¢ < T, which implies estimate ([2.43).
Now we fix ty, € [T, T]. Observe that

|| F [10(2°% (- — t) )iy ||Xk = ||F [0 (2** )ik (- + t1.)] HXk
and by the Duhamel principle that

o2 4) i (t+ti) = o () (2°4) (€% Pau(ti)+ / =985 (2°%5) s+ 1) ds ),
0

where my € S . Thus, we deduce from estimates (2.25]), (234) and (2.36]) that
1m0 (2% )ik (- + )]
S Ptz + [ (r = w(€) +i2°%) T F (@ (2°%) fi (- + t)| -

Finally, we define u = Zk€Z+ u. Then, it is clear that u extends u outside of
[T, T]. Moreover, arguing as in the proof of Lemma [6.3] we get that

(2.45) 1Pils S S lawls,.
|k—k'|<3, k/€Z,

Therefore, we conclude the proof of estimate (232)) by gathering ([2:20]), 241)-
[243), taking the supreme in ¢ € [T, T] and summing over k € Z.. ]

(2.44)
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2.5. Strichartz estimates. We recall the Strichartz estimates associated to {etag}
proved by Kenig, Ponce and Vega in [19].

Proposition 2.13. Let 2 < gq, r < 400 and 0 < s < % satisfy —s + % + % = %
Then,

(2.46) Hcheta;uo”LgL; S lluoll 2,
for all ug € L*(R).

As a consequence, we obtain a Strichartz estimate in the context of the Bourgain
spaces F3(T).

Corollary 2.14. Assume 0 <T <1, a >0 and ¢ > 0. Then, it holds that

3_«a
(2.47) 1Dz *ullrzre < llullpgr)
and
3_ 3_«a %
(2.48) D3 “”yzw' (DD Pelidz 1) S gy,
k>0

for any v € FE(T).
Proof. Let 0 < T <1,a>0,e>0and u € FS(T). Choose u € F¢ such that
re < 2llul

ﬂ‘[*T,T]:u and  [|u] F<(T)

For k € Z4, we denote uy, = Piu (recall that Py = P<g). Then we deduce us-

ing the Sobolev embedding W€ " (R) — L>°(R), the square function theorem and
Minkowski’s inequality that

1

-~ 2

ID3ull g e SIDETE L1y S (o2 IDETIZ, )
k>0

where ¢’ and r(> 1/¢’) will be chosen later. Therefore, according to the definition
of F¢ in (27), it suffices to prove that

(2.49) | D Ukl gy S 2P e o

for all k > 0 in order to prove estimate (Z.47). Indeed, it is enough then to choose
r and € such that r¢’ > 1 and ¢

Next, we prove estimate ([249). For k¥ > 0, we chop the interval [T, T]
into subintervals I; of length 27°%. Let [-T,T] = U;I; where |I;| ~ 27°* and
n0(2°%(- — ¢;)) = 1 on I; (here c¢; denotes the center of I;). Note that the number
of intervals I; is of order 2°*T. Let 2 < ¢ be so that —% + % + % = % Then, we
deduce, applying Holder’s inequality in time, that

1
1Dl 15 1, = (Z [Df (@ = e 1)
J

1
(ZHDMWO C=elzg o)
1

Due to the Fourier inversion formula, we have that

(2.50)

3

Dt (x, )no(2°5(t — ¢;)) = ¢ /R Dﬁetaisg(e—saino(zak(s—cj))ak(-,s))(T)ei”dr.
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Thus, Minkowski’s inequality, estimate (Z.4€]), Plancherel’s identity and the Cauchy-
Schwarz inequality in ¢ imply that

(2.51)
||D§€ik||L}.L; N / DS et (=% o (2 (s — ¢i))ur)ll g 1y 07
< oF(E-9) 22‘1/2“77 e_'82n0(2ak(‘ - Cj))ﬂk)(g’T)HLg '
q>0 )

Then, we observe that

Fe™ %m0 (2% (- — ¢))an) (€, 7) = F (o (2°F(- = ¢))x ) (€, 7 + w(€)),
which together with (251 and the definition of Fj o in (2) implies that

3

3_ 33y~
(2.52) 1Dz k]l ey oy < 2G| .-
Finally, we deduce by combining ([250) and ([2352) that
3 ay3_ 3y
1Dtz 0y S 28059 @

which yields estimate ([2.49]) since % = 1 — 5=. The proof of estimate (ZAJ) is
similar. O

Next, we derive a bilinear Strichartz estimate for the group {e’562 , which is an
extension of the one proved in [10] for the Airy equation (see also Lemma 3.4 in [14]
for the dispersion generalized Benjamin-Ono equation). Let ¢ € C™ be an even
function such that |, ,, =0, (., _,, = land 0 < ( < 1. We define [2|; = ((z)|z|.

Lemma 2.15. For s € R, we define the bilinear operator J° by
l/\ ~
T ) © = [ [P - e Fa ) ne)ds.
§=&1+4&2
Then, it holds that
(2.53) [92(e"%2 uy, %2 uy) Mz, S luallzelluzllze,
for any uy, us € L*(R).
Proof. For a fixed t € R, we get by using Plancherel’s identity that

5
92 )
1 5 a5y - 2
— [ el el e a6 maeds | de
RTJE=61+¢82

= / e ELm) £ (& &y my)dEdEy dn,
R3
where the phase function ¢ is given by

¢(§7§1ﬂ71) = g]? + (5 - 51)5 - 77? - (5 - 771)55
and f is defined by
f(€7£17771)

= ||&]* - |§—§1|4\1%H771|4 € —m|* \ 1(&0)w2(€ — §1)u (1) ua(§ — m)-
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Now, observe that for (£,£&;) fixed, the function ¢1(n1) := ¢(§,&1,m1) has only
two simple roots, 7, = &, and 1 = £ — &1, in the support of f. Moreover,
65 (m)] =5|(nf — (€ —m)*)| =5 insupp f
and
61 (&)] = [91(& — &) = B|¢ — (€ = &)
Therefore, it follows from the Fourier inversion formula, Fubini’s theorem and
Plancherel’s identity that

||32(et82uhetc’?iuQ)HzLi,t = C/R3 So(A(&,€1,m)) f (€, & )dmdEdEy

J(€,61,6) | [(§,6,6—E61)
<
~4J|¢@M+|¢@fm

S Hu1||%§”u2||2L§'

)dsde,

3. L? BILINEAR AND TRILINEAR ESTIMATES

3.1. L? bilinear estimates. Recall that w(¢) = £°. Then we define the resonance
functions  := Q(&1,&2) by

(3.1) 0(&1,82) = w(&) + w(ée) —w(& + &2).

We first state a technical lemma (see Lemma 3.1 in [§]).
Lemma 3.1. If || ~ Ny, & ~ Ny and |& + &| ~ N, then
(3.2) 1| ~ Nz Nmin-

Proof. A direct computation shows that

(3.3) Q&1, &) = —561&(& + &) (G + && + &),
which implies (32, since

(3.4) €1+ 616 + €2 ~ max{€7, €2}

For k € Z; and j € Z,, let us define Dy, ; by
(3.5) D;w-:{(ﬁ,T):ﬁEIk and |7 + w(&)] §2j}.
We derive a useful lemma (see also Lemma 2.3 in [7]).

Lemma 3.2. Assume that k1, ko, k3 € Zy, j1, jo, j3 € Zy and f; : R? - R, are
L? functions supported in Dy, j, fori=1,2,3.

(a) Then it follows that

(36) [ G 2) - 2ol 2 oo ol il

(b) Let us suppose that kmin < kmaz — 5. If we are in the case where (k;, j;) =

(Kmin, Jmaz) for some i € {1,2,3}, then it holds that

(3.7) Aﬂﬁ*ﬁfﬁSQm”HM”T%””T%WWﬁhﬁhhmﬁhz
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If moreover ky,in > 1, then
(3.8)

/2 (fl % f2) fs < 2(j1+j2+j3)/22_j7nu.:l;/22_(3k7naw+k7nin)/2||f1||L2||f2HL2||f3||L2.
R

In all the others cases, we have that

B9) [ (o) - o S 20y By o ol il

(¢) In the case |kmin — kmaz| < 10, kpmin > 10, then we have that
(3.10) /2 (f1 % f2) - f3 S 2Imin/2oimea/dg=kmea /|| £ || o] fo| 2| fo| 2
R

Proof. First, we begin with the proof of item (a). We observe that

(3.11) Ii:/R2 (f1*f2)'f3:/R2 (J?1>'<f3)'f2:/]R2 (};*fB)'fla

where ﬁ({,r) = fi(=&,—71). Therefore, we can always assume that j1 = Jjmin.
Moreover, let us define ff(f,@) = fi(&,0 + w(€)), for i = 1,2,3. In view of the
assumptions on f;, the functions fzu are supported in the sets

Di . ={(£,0): €€}, and |0] < 27}

kisji

We also note that ||f;||zz = | flﬁ |lz2. Then, it follows by changing variables that
(312) I= / FE(E1,01) f3 (€0, 02) o (E1 + E2, 01 + 02 + Q(E1, &2))dE1dExdB, dB,
R4

where (&1, &2) is defined in B1]). For:=1,2,3, we define F;(§) = ( fR ff(ﬁ, 9)2d0) %.
Thus, it follows by applying the Cauchy-Schwarz and Young inequalities in the 6
variables that

I< [ 1@ P Pal6 + €)dadse
(3.13) R

< Qfmin/2 /Rz‘ F1 (&) Fa(§2) F3(61 + £2)d&rdés.

Estimate (30) is deduced from ([BI3) by applying the same arguments in the £
variables.
Next we turn to the proof of item (b). According to [BII]), we can assume

that js = Jmaz. Moreover, it is enough to consider the two cases ki = ko
and ky;, = k3 (since by symmetry the case k.. = k1 is equivalent to the case
kmin = k2)

We prove estimate [B9) in the case j3 = jmaz and kmin = k2. It suffices to prove
that if g; : R — R are L? functions supported in Iy, for i = 1,2 and g : R> — R,
is an L? function supported in Iy, x [—273,273], then

B T = [ o@mn(@ + 6060 ) dads

satisfies that

(3.15) J(91,92,9) S 27wl gull 2]l g2l 2 N9l 2o



WELL-POSEDNESS FOR THE FIFTH-ORDER KDV EQUATION 2569

Indeed, if estimate ([BI0) holds, let us define g¢;(&) = ff(fi,gi), i = 1,2, and
g(&,Q) = f§(5,91 + 02 + Q), for 6; and 6y fixed. Hence, we would deduce by
applying ([BI5) and the Cauchy-Schwarz inequality to (BI2) that

12l [ 100575 02) 1 dbdse

S 27 2Hman 2Ot 2|t ) e 1Rz,

which is estimate ([B.3]) in this case. To prove estimate (BI%]), we apply twice the
Cauchy-Schwarz inequality to get that

(3.16)

J(91,92,9) < ||91HL2||92HL2(/RZ 9(& +§2,Q(§1,§2))2d§1d§2)5~

Then we change variables (£, &5) = (§&1 + &2, &2) so that

BN o) < ol lonles ([ o606 - 6.6 2adss)
We observe that

0
a—géﬂ(ﬁi - ,8)

since 2¥1 ~ 2kmaez by the frequency localization. Then, the change of variables
pp =& and pp = Q& — &4,&5) in (BI0) yields (BIH), which concludes the proof
of estimate (39) in this case.

To prove estimate [B.8)) in the case (kmin, Jmaz) = (k3,73) and k3 > 1, we observe
by arguing as above that it suffices to prove that

(3.18) J(91,92,9) S 27 Chmestomimd 2|y |12 |l g 2 g1l 2

where J(g1,92,9) is defined in (BI4). First, we change variables & = & and
&b =& + & so that

= 5l(e9)" = (¢ — &3)"| ~ 2,

Harvgns) = [ ol€0ima(es — €aleh Q6. & — €0)dsidss

The Cauchy-Schwarz inequality implies that

(3.19) J(g1,92,9) < ||91HL2||92HL2(/R2 g(&5, (&1, & —fi))Qdfidfé) g
We compute that
9
731

since [£]] ~ 2Kmas and |g5| ~ 2Fmin due to the frequency localization. Therefore
estimate (BI8) is deduced by performing the change of variables uj = Q(&1,&5—¢&1)
and ph = & in (BI9). On the other hand, by writing

= [ Gt

and arguing as in (310), we get estimate B0 in the case (kmin, jmaz) = (K3, 73)-

Q61,6 — &)

=5|(&1)* — (&5 — &1)*] ~ 2%FmasFhmin,
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Estimate (B10) is stated in Lemma 2.3 (c) of [7], and its proof follows closely the
one for the dispersion generalized BO in [II]. However, for the sake of complete-
ness we will derive it here. According to [BI1)), we may assume that jma. = Js-
Furthermore, we have following (812) that

3
(3.20) I=; /gz FE(EL,00) (2, 09) (61 + €0, 01 + O3 + Q(E1, &) )dE1 dEodb dOs
=11 + Iy + I,
where
Ry = {(£1,&2.01,65) €R* : & & <0},
Ro = {(&1,&,01,02) €R* : & & > 0and |& — &| < R},
Rz = {(£1,&,01,02) eR* : & & > 0and |& — &| > R},

and R is a positive number which will be chosen later.
First we prove that

(3.21) I S 2Umintmed)[2=2hmaz | £ 2| fo| 2| f3 ] 2
which would imply that
(3.22) Iy S 2Imin/2gimealdg=kmaz|| £ || o | fo 2 | fa ] 2

after interpolating with estimate (3.0]).
To prove [B21]), we argue as for (3], so that it suffices to prove

(3.23) J(g1,92,9) S 272" gullz2llgall 2 gl e,

where J(g1, g2, g) is defined as in (3.14). By symmetry, we can always assume that
|€1] < |&2]. We apply twice the Cauchy-Schwarz inequality and perform the change
of variables (&1,&5) = (&1,&1 + &2) to obtain that

G20 Janom) < lalelols ( [ o606 - 6) )"
R2
Now observe that
a ! ! ! ! ! ! ! ! ! ! P
‘3_6/19(51762 - f1)| = 5|(§2)4 - 4(52)351 + 6(52)2(51)2 - 452(51)3‘ ~ 24k”‘“‘7

due to the frequency localization and the restriction & - &, < 0 (which is a conse-
quence of the assumptions & - & < 0 and [£1] < |&|). Therefore, the change of

variables (p1, pg) = (Q(&1, &5 — €1), &) in B.2) yields estimate B.23).
To deal with I, we get as in (BI3) that

I < 2min/? / _ BERER(E + &) de.
&1—&2|<R

Then, we obtain by letting (£1,&5) = (§&1 — &2,&2) and applying twice the Cauchy-
Schwarz inequality that

I, < 9min? / FL(€] + E) Fy(€h) Fa(€] + 265)de) e
(3.25) &11<R

S 2 PRV full el ol 2 | fll -
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Next, we observe that in the region Rs,

1 1
et -ed)* = (16—l |8+ S+ g +€]]) 2 cRY2Hner/2 2 9,
since R will be chosen large enough. Thus, the Cauchy-Schwarz inequality implies
that
I3 S R7Y22730mas /2| £y 1
3.26 5
B2 ]| [ erec 16— EHE 6001+ w(E)) aléan 02 + wlea))dcadt |,

01+0,=10 &0

)

where the definition of |-|; is given just before Lemmal[ZT5l By Plancherel’s identity,
the L?-norm of the integral on the right-hand side of ([3.28]) is equal to

. 1

H/ e_u(el+ez>/ €4 —€3]2 Fi (1, 0 +w(€)) o (6, 02+w(§2))d§1d01d02H .

01,02 §1+&2=¢ Lg
This implies after changing variables 7; = 0; +w(¢;) for i = 1,2 and using Minkow-
ski’s inequality that

Iy S RV 8kmar 2| £

5 5
X / n<i (1)<, (72) |72 (92 F L (fr (- 1)), €02 F Nl )| 2 dmadr,
T1,T2

where the bilinear operator J? is defined in Lemma 215l Therefore, we deduce from
estimate (253 and the Cauchy-Schwarz inequality that
(3.27) Is 5 R—1/22—3k7naw/22j7rtin/22jmﬁd/2Hf1||L2 ||f2||L2 Hf3||L2~

Finally, we conclude estimate (3.I0) by gathering estimates (3.20), (3:22)), (3.25),
BZ17) and choosing R = 2~ 3kmas/227mea/2,

This finishes the proof of Lemma |

As a consequence of Lemma [B.2] we have the following L? bilinear estimates.

Corollary 3.3. Assume that ki, ko, k3 € Zy, j1, jo, j3 € Zy and fi : R? — R,
are L? functions supported in Dy, ;, fori=1,2.

(a) Then it follows that
(3.28) [1Ds - (Fr5 ) [l 2 S 22200 2 2| o

(b) Let us suppose that ki < kmaz — 5. If we are in the case where (k;, j;) =
(Kmin, Jmaz) for some i € {1,2,3}, then it holds that

(3.29) Hles‘js . (fl " fz) HL2 < 2(j1+j2+j3)/22_j'rrLed/22_2kmam||f1HL2||f2||L2'

If moreover kyin > 1, then
(3.30)
R R I e e e e e TA P VA T

In all the others cases, we have that
331 Loy (i o)l s S 200525900 20 s 29 nee | .

Proof. The proof of Corollary B3 follows directly from Lemmal3.2/by using a duality
argument. ([l
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3.2. L? trilinear estimates. Now, we prove the L? trilinear estimates. In this
case, the resonance function € := Q(&;, &2, &3) is given by

(3.32) Q(61,6,&) = w(&) +w(ba) + w(€s) — w(é + &+ &3).

Lemma 3.4. Assume that k1, ko, ks, ks € Zy, j1, jo, j3, ja € Z4, and f; :
R? — R are L? functions supported in Dy, j, fori=1,2,3,4.

(a) Then it follows that
(3.33)

2 (f1# fax fa) - fa S 2Umim R RoUmintdna) 2| £ || ol fol 2| fl| 2 | fall -
R

(b) Moreover, let us suppose that kipg < kmaz — 5. If we are in the case where
(ki, Ji) = (Kthd, Jmaz) for some i € {1,2,3,4}, then it holds that

T AT EOR:
. R
< 9U1+iz+is+ia) /29— dmax/29ktna/29—2kmax ||f1 ||L2 Hf2||L2 ||f3||L2 Hf4||L2

and

(3.35) /2 (fr*fax fs) - fa
. R
S 9(1+i2+is+5a)/29=Tmed/29kmin/29—2kmazs ||f1||L2 Hf2||L2 ||f3||L2 Hf4||L2-

In all the others cases, we have that

(3.36) /R2 (fl * fa *f3) “fa

S Uittt 2y Imax [ Bgkmin (2= 2mas | £ || a | fo | 2 | fall p2 | fall o

Proof. Estimate ([333]) can be proved exactly as estimate ([B.6]). To prove part (b),
we follow closely the arguments of Guo for the mBO equation [12]. Let us define

(3.37) fi:/ (fu* fax f3) - fa-
R2
Observe that

(3.38) TZ/Rz(fl*ﬁ*fz;)'fSZ/RZ(J?z*ﬁ*fz;)'f1=Az(ﬁ*ﬁ*f4)'f2,

where ﬁ(f,r) = fi(=&,—7). Therefore, we can always assume that jnae = Ja-
Moreover, we introduce ff(f,ﬂ) = fi(&,0 + w(§)), for i = 1,2,3. In view of the
assumptions on f;, the functions ff are supported in the sets

D’ﬁ%’ji = {(579) 1€ €I, and 6] < 23'71}_

We also note that || f;||z2 = | ff |lz2. Then, it follows by changing variables that
(3.39)

I= /RG P&, 01) FE (€2, 00) F1(E3, 03) F2 (&1 + € + E3,01 + O + O3 + Q& &2, &) ) dv,
where dv = d€;d¢>dé3df1df2d03 and Q(&;, &) is defined in ([B32).

Since kipg < kmaz — 5 by hypothesis, we always have that kp,q ~ ksup. Thus,
we only need to treat the following cases: k4 ~ kmaz, ka = king and kg = kppin -
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Case ky ~ kpmar- By symmetry, we can assume that k1 < ky < k3 < k4 in this case.
For g; : R — R, L? functions supported in I, for i = 1,2,3 and g : R? — R, an
L? function supported in Iy, x [—274,274], let us define

(3.40) J(g1,92,93:9):= /R3 91(61)92(£2)93(€3) g (§1+62+83, &1, &2, &) )dEr dEadEs.
Then, arguing as in ([B.I6]), it suffices to show that

(3.41) J(91, 92,93, 9) S 27 HKmar2bmin/2) g || 12| gal p2||gs | 22 |9l 22

in order to prove ([B.30]) in this case. To prove estimate ([B.41]), we change variables
(&1,85,85) = (&1, 82,81+ &2 + &) and apply twice the Cauchy-Schwarz inequality in
the & and &} to deduce that

1

1
(3.42) J(91792a93a9)5H92HL2H93HL2/ 91(61)(/ 9(5579)2d§éd€3)2d§1-
leg | ~2* R
‘We observe that

O ~
by using the frequency localization. Thus estimate (.41 is deduced by performing
the change of variables (2, p3) = (2,&5) in the inner integral on the right-hand
side of (3.42) and by applying the Cauchy-Schwarz inequality in the variable ;.

= 5[(&)" — (& — & + &) ~ 2*mer

Case ky ~ kpyin. In this case, we can assume without loss of generality that k4 <
k1 < ko < k3. It suffices to show that estimate (3.41I]) remains valid in this case.
First, we change variables (£],£5,64) = (&1,&,&1 + &o + &) so that |¢]] ~ 2Ftra,
|&4] ~ 2kmas | |¢4| ~ 28min and J becomes

J(glag2ag37g)
= /RS 91(61)92(€3) g3 (€5 — &1 — €5)g(€5, QEL, €5, € — &) — &)))dEq dhdes.

Thus the Cauchy-Schwarz inequality in &] implies that
(3.43)

J(glag2793vg)
< [ mllor(€iantss — & €l

9(6 Q&L 6,6 — & — &)z, dEadh.

Moreover, we have that

8 /! !/ /! ! ! ’ / ’ , o
g e 6.6 — & — €| =5l(6D)" — (6 6 )| ~ 2,

due to the frequency localization, so that we deduce through the change of variable
/!
wy = that

(3.44) o€, e €265 — €1 = &), = 27 llg(E, )l
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Therefore, we deduce by inserting (3.44]) into ([B.43)) and applying twice the Cauchy-
Schwarz inequality that

J(g1:92,93,9) £ 272" ||gul| 2 lgal| 2l g3 2 / (&5, )l 2dgs

€4 |~2kmin

S 27 mas2bmin/2| gy | 12| gol| 2 g5 2 N9 o2
which is exactly (B4I]).

Case ky = kipq. Estimate (334) follows, arguing exactly as in the case k4 = kpin.-
On the other hand, estimate [B35]) can also be proved by applying the arguments
of the cases k4 ~ kpmaz Or kg = kmin, depending on whether j,,.q = 71, j2 or j3 and
using the symmetry relation (3.38). a

As a consequence of Lemma 3.4 we have the following L? trilinear estimates.

Corollary 3.5. Assume that ki, ko, ks, ka € Zy, j1, j2, j3, ja € Z4 and
fi :R? 5 Ry are L? functions supported in Dy, j, fori=1,2,3.

(a) Then it follows that
(3.45) ||1p,, ,, - (frxfoxfs)|| o S 20minthenal29Umintina) 2| £y || ol fo| 2| fol| 2

(b) Let us suppose that king < kmaz — 5. If we are in the case where (k;, j;) =
(Kthds Jmaz) for some i € {1,2,3,4}, then it holds that

||1Dk4,j4 ’ (fl * f2 * f3)HL2

3.46 T .
(3.46) < Qir-+ia+istin) 29 —dmax/20kena/29=2kmas || £l | foll 2 | Fsll o2
and
(347) H]'Dk4»j4 '(fl*f2*f3)HLz
’ < 9(i1+i2+is+ia)/29—imed/29kmin/29—2kmaz FArR AR
In all the others cases, we have that
(3.48) 110s,5, - (frx fox fa) | 2
’ < 9(i1+i2+is+5a)/29—imax/29kmin /29— 2kmaz I Fulle2 Nl fall oz || fsll e

Proof. Corollary follows directly from Lemma [34] by using a duality argument.
O

4. SHORT TIME BILINEAR ESTIMATES

The main results of this section are the following bilinear estimates in the F3(T)
spaces. Note that to overcome the high-low frequency interaction problem (cf. [32]),
we need to work with o = 2 (see Lemma (3] below). Therefore, we will fix v = 2
in the rest of the paper and denote respectively F5(T), N5(T), Fy, N3, Fy o and
Ny2 by F*(T), N*(T), F*, N*, F;, and Ni. The main results of this section are
the bilinear estimates at the H* and L? level.

Proposition 4.1. Let s > 1 and T € (0, 1] be given. Then, it holds that

(4.1) ||aw(ua§7))||Ns(T) S luf Fs(T)||”||F1(T) + HU||F1(T)HU| Fs(T)
and
(4.2) 10:ud0llns(ry S lullps ol ery + lull ey [0l 2o oy

for allu, ve F*(T).
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Proposition 4.2. Let T € (0,1] be given. Then, it holds that

(4.3) (|02 (ud20) || No () + 1102 (0OZw) || Ny S Nlwll 2y vl oy
and
(4.4) 102 (02ud2v) || no(ry S Nullpzery vl Fo(ry,

for allu € F3(T) and v € F(T).
We split the proof of Propositions 1] and into several technical lemmas.

Lemma 4.3 (high x low — high). Assume that k, k1, ko € Z satisfy |k —ka| < 3
and 0 < k1 <max(k, ko) — 5. Then,

(45) ||Pkal’ (Uklazvlw) HNk 5 ||uk?1 HFkl ||vk2 ||Fk2
and
(46) HPk (aﬂfukl 82’0/?2) ||Nk /S ||uk1 ||Fk1 Hvkz ||Fk2’

for all ug, € Fy, and vk, € Fy,.

Remark 4.4. In the case ki = 0, the function ug € Fy is localized in spatial low
frequencies corresponding to the projection P<g, since we choose to use a non-
homogeneous dyadic partition of the unity to define the function spaces F'* and N°
(see Section 2).

Remark 4.5. Lemma [3] still holds true under the assumptions k, ki, ko € Z4,
|k — k1] <3 and 0 < ky < max(k, k1) — 5. The proof is exactly the same; therefore
we will omit it.

Proof of Lemma 3l We prove only estimate (1), since the proof of estimate (.6
is similar (and even easier). First, observe from the definition of Ny, in (Z6]) that

(A7) [[Pede (ur, 0ok |, S sup [ (7 = w(€) + i22%) 2 fi ok fi |,
S

where
Sry = |F (2% — tr))ur, )| and  fr, = [F (70 (2% (- — te))vk,) |-
Now, we set
fkqu(f’ T) = 77§2I~c(7— - w(f))fh (E’ T) and fkiyji (E’ T) = MNj; (T - w(f))fh (57 7—)7
for j; > 2k. Thus, we deduce from (A7) and the definition of X} that
(4.8) ||Pkaz (uklcﬁ%) ||Nk f, tsup 23k Z 27j/2‘|1Dk,j : fk1,j1 * fk2,j2 ”L;Ta
’ JyJ1,52>2k

where Dy, ; is defined in (B3). Here, we use that since | (7 —w() +i22k)_1’ <272k
the sum from j = 0 to 2k — 1 appearing implicitly on the right-hand side of (£7)
is controlled by the term corresponding to j = 2k on the right-hand side of ([&J]).
Therefore, according to Corollary 2.7 and estimate (4.8) it suffices to prove that

(49) 2% 3 271, - (frvis * Fraie) |z S 22 W s iall 222 i 22

Jj=2k

with j1, jo > 2k, in order to prove estimate (Z3]).
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But, we deduce from estimates (3.29) and ([B.31) that

2% Z 2_j/2|‘1Dk,j ’ (fkl»jl * szdz)HLgT
J>2k ’

S 23% Z 2m/2=2kon /2 ka17j1 ||L22j2/2||fk27j2 ||L2’
Jj>2k
which implies estimate ([£.9]) after summing over j. This finishes the proof of Lemma
4.9 ([l

Lemma 4.6 (high x high — high). Assume that k, ki, ko € Z, satisfy k > 20,
|k — ko| <5 and |ky — k2| < 5. Then,

(4'10) ||Pkaw (uklaivkz) HNk 5 ||uk71 HFkl Hvkz ||Fk2
and
(411) ||Pk‘(azuk18§vk‘2) ||Nk S ||uk1 ||Fk1 Hvkz ||Fk2’

for all uy, € Fy, and vy, € Fi,.

Proof. Once again we prove only estimate (£I0). Arguing as in the proof of Lemma
[43] it is enough to prove that

(4'12) 23k Z 2_j/2||1Dk,j ) (fkhjl * fk2,j2)HL2 f, 2j1/2‘|fk17j1||L22j2/2‘|fk2,j2”112a
i>2k o
where fy, ;, is localized in Dy, ;, with j; > 2k for i =1, 2.
We deduce by applying estimate [B28]) to the left-hand side of ([IZ) that
23" Z 27]‘/2H1Dk,j : (fk17j1 * fb,jz)”LgT

j>2k

(4.13) _ _
<2 ST 279/298 290min 2 2 e gl e

j>2k
According to Lemma [3.I] and the frequency localization, we have that
(4.14) 2Jmae ~, max{2imed 25K,
Finally, we observe that (£13]) and (£14) imply estimate ([@.I2]). This is clear in the
cases where jqe = j1 Or j2 by using that 2/mes > 25% and summing over j > 2k.
In the case where j,q: = j, we have from ([@I4]) that either 2/ ~ 2°% or 27 ~ 2Jmed,
When 27 ~ 2% estimate ([@IZ) follows directly from (@I3) since we do not need

to sum over j, whereas when 27 ~ 2/med_ we can use one of the cases 2/mar = 271
or 2Jmaez = 272 to conclude. O

Lemma 4.7 (high x high — low). Assume that k, ki, ko € Z, satisfy ke > 20,
|k1 — ko] <3 and 0 < k < max(ky,ks) — 5. Then,

(4.15) (| Peds (ur, 030k, ) ||y, S B22°2Fllugy |5, 10, 1 7y
(4.16) [P (Ot Ok, ) ||y, S K22l |1, ks N 5y
and

(4.17) || P (O un, O30, ) ||y, S K222 [lun, ||y, vk, |

for all uy, € Fy, and vy, € F,.
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Remark 4.8. Tt is interesting to observe that the restriction s > 1 in Proposition

[l appears in estimate ([@I7).
Remark 4.9. Note that in the case k = 0, by convention Py = P<.

Proof. We prove estimate (£.17), since estimates (£10]) and ([4.16]) could be proved
in a similar way. Let v : R — [0, 1] be a smooth function supported in [—1, 1] with
the property that

272(37—171):1, VzelR
meZ

We observe from the definition of Ny, in (Z8]) that
|| P8 (e, v, ) HNk
(4.18) Sswp [[(r—w© + i) R, Y e

treER |m‘§22(’€27k’)

where

T8y = 1F (o2 (- = 1))y (2252 (- = ty,) — m)un, )|
and

fi =15 (1022 (- — ti)y (272 (- — t) — m)ur, )|,
fori=1,2.

Now, we set

T on, (6 7) = N<an, (T — w(€)) i) (6, 7) and fi7 ;= ;. (T — w(&)) £} (€, 7),
for j; > 2ky. Thus, we deduce from (AI8]) and the definition of X}, that

[P0 (ur, 0ok, ) |,
419 — —j m m
(4.19) < tkeﬂs{l,lgmel25k22 2k Z Z 2 J/2||1Dk,j Sy g % sz,j2||L§7T-

720 j1,52>2k2
Therefore, according to Lemma and estimate ([£I9]) it suffices to prove that
(4.20)
X . 4 4
22 3271, (Fil g Fi) s S K2 P G e 2 20 £ e,
j=0 '

with j1, jo > 2ks, in order to prove estimate ([@I7).
In the cases jmaz = J1 OF Jmaz = Jo, say for example jq. = j1, we deduce from
estimate ([B31)) that

93k2 227/2“15:” : (f;?f,jl * flg,jg)HL’g,T

3=>0
S ok N0 i 207 2 fin | e
j>0
< kz2j1/2||f,?},j1||L22j2/2||f;?;j2||m + 2k Z 2*j/22j1/2||f;?},j1\|L22j2/2||f£;,j2\|m,

Jj>2ko

which implies estimate (£I9]) by summing over j.
In the case jmar = j, we have that 27 ~ max{2/med |Q|}, where Q is defined
in BI)). If 27 ~ 29med then we are in one of the above cases, whereas in the case
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27 ~ |Q|, we deduce from ([3.2) that j < 4ks + k + 5. Therefore, we get from (3.29)
that

3k —j/2 m m
2y 271, - (fi 8] PP
Jj=20 1
< 2k2k227j/22(j+j1+j2)/227jmed/2Hfﬁjl 2l fi2 e
which yields (@A), since jmeq > 2k2. O
Lemma 4.10 (low x low — low). Assume that k, ki, ks € Zy satisfy 0 <
k, kl, kQ S 100. Then,

(4.21) || P (wr, vk, ) ||, S N |7y 10k |7
and
(4.22) [Py (Dwur, 30k, || v, S s 7, 0k | 7y

for all u, € Fy, and vy, € F,.

Proof. Once again we prove only estimate (£21]). Arguing as in the proof of Lemma
43 it is enough to prove that

(423) Z 2- J/2H1Dk j (fkl g1 ¥ fk27]2) ||L2 < 2J1/2||fk1 21 ||L22J2/2||fk2 2J2 ”L2

7>0
where f, j, is localized in Dy, ;, with j; > 0 for 4 = 1, 2, which is a direct conse-
quence of estimate (3.25). O

Finally, we give the proof of Proposition [£.Il Note that the proof of Proposition
would be similar.

Proof of Proposition A1l We only prove estimate ([£2), since the proof of estimate
(#1) would be similar. We choose two extensions @ and ¢ of v and v satisfying

(4.24) i pe <20

and 3]

Fs < Fs(T)-

Therefore 9, 4027 is an extension of 9,ud%v on R?, and we have from the definition
of N*(T) and Minkowski inequality that

ouolery = (S22 (Y IA0 PPN )

k>0 k1,k2>0

=

where we took the convention Py = P<g. Moreover, we denote
Alz{(k1,k2)EZ2 |k2—k|<3and0<k1<maxk‘k2 }
Agz{(kl,kQ)GZQ |]€1 |<3and0<k2<maxk Ifl 5}
A3: (kl,kQ)EZ%’_ : |k1 kQ‘S5, \kl—k|§5andk220}
A4 = (k‘l,kz) S Z?‘_ : |k1 — kz‘ <3, 0<L k< max(kl,kig) — 5 and kz > 20},
As = {(ki1,ko) € Z% : 0<k, ki, ko < 100}.
Note that for a given k € Z, some of these regions may be empty and others may
overlap, but due to the frequency localization, we always have that

5 1
ool S (X 20 (X IROPLE0 P ) )

j=1 k>0 (k1,k2)€A;

5
=: ZS]

j=1

-

(4.25)
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To handle the sum S7, we use estimate (£.8) and the Cauchy-Schwarz inequality
to obtain that

k—5 1
- . 2\ 2 _ -
(426) 55 (32 (X 1Pl IPlR) ) S lallpos 7] 5,
k>0 k1 =0

where we assumed without loss of generality that max(k, k) = k. Similarly, we
deduce from Remark that

(4.27) Sz S @]l ps [|9]] o+
Estimate (ZI1]) leads to

(4.28) 8o 5 (o 2#IPwald,, I1PaIE,) " S laleo ol

k>0

Next, we deal with the sum Sy. Without loss of generality, assume that max(k;, ko)
= ky. It follows from estimate (£17) and the Cauchy-Schwarz inequality in ko that

ka—5 o 1
Sy 5 ( Z 221@(572)( Z k222k2”Pk2aHFk2 Z HPI@'ﬁHFk/) ) 2
k=0

k2>20 |k'—k2|<3
(4.29) N N
< (X Py, )" (X 2 IPal, )
k220 k22>0
SCIPATI

since s > 1. Finally, it is clear from estimate ([£22) that
(4.30) S5 S il pol|oll o
Therefore, we conclude the proof of estimate (£.2) by gathering [@24)-@30). O

5. ENERGY ESTIMATES

As indicated in the introduction we assume for sake of simplicity that c3 = 0.
We also recall that, due to the short-time bilinear estimates derived in the last
section, we need to work with o = 2 in the definition of the spaces F?, F5(T) and
F}. o, and therefore we will omit the index a = 2 to simplify the notation.

5.1. Energy estimates for a smooth solution. Due to the linear estimate
([232), we need to control the norm || - || gs(7) of a solution u to (L)) as a function
of ||uol|zs and [|ul| ps(7). However, we are not able to estimate ||ul|gs(y directly.
We need to modify the energy by a cubic term to cancel some bad terms appearing
after a commutator estimate (see Remark [5.1] below).

Let us define ¢(&) := &1/ (€), where 7 is defined in (2.3) and ’ denotes the deriva-
tive, i.e. n/(§) = d%n(f). Then, for k > 1, we define ¥ (£) = 1(27%¢). We also de-
note by Q. the Littlewood-Paley multiplier of symbol ¢y, i.e. Qru = F,* (z/;kfr"wu).
From the definition of n in ([Z3]), we observe that

d

(5.1) Ve(§) =277 (277¢) = %(n(z—’%)) = &N ().
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Finally, we define the new energy by

Er(u)(t) =||Pou(-,t)||22 + a/ (uPp 8, 'uQr0; M) (z,t)dx

(5.2) B

+ [3/ (qu(?;lquﬁglu) (z,t)dz,
R

for any k > 1, and

(5.3) B (u) = [|P<ou(-,0)[72 + > 2% sup  Ei(u)(ts),
1 th€[-T,T]

where a and § are two real numbers which will be fixed later. This modified energy
may be seen as a localized version of the one introduced by Kwon in [25].

Remark 5.1. The L2-bilinear estimates] do not permit us to control
‘/ Pkaszkaszklazudxdt’ and ‘/ P,0,vQ 10y v Py, Oy udxdt|,
Rx[0,T] Rx[0,T7]
which are lower-order terms appearing after a commutator estimate in Lemma [5.7]
without losing a 2 factor. The modified energy in (53) is introduced to cancel
those two terms after performing integrations by parts in the proof of Proposition

B3l

The next lemma states that when [|u|ze g5 is small, then Ef(u) and Hu||QBS(T)
are comparable.
Lemma 5.2. Let s > % Then, there exists 0 < §y such that
1
2
forallu e B*(T)NC([-T,T]; H*(R)) satisfying ||ulrse mrs < do-
Proof. First observe that, due to the Sobolev embedding H*(R) — L>*°(R),

| [P0 000, ) (o) S Nullagr: Y Pt
R
|k—k'|<3

s 3
(5-4) el () < B (w) < SllulBe ),

for all k£ > 1. It follows that

Bi(u)(t) > [ Pru(t)|[Z> — clallull g a;

Pe(w)(®)llz Y I Pwulte)]7:

k=<3
— clBlllull g g || P (w) (1)1,
for any ¢ € [-T,T] and k > 1. Thus, if we choose |ul[zsems < do with Jo small

enough, we obtain that

B(w)(t) > SNPe®)f — 55 s |IPuCu) (i) 3

50 tk+16[—T,T]

1
— = sup |[[Py(w)(te-1)ll7z,
50 tpe—1€[—T,T]

which implies the first inequality in (B.4]) after taking the supreme over ¢ € [T, T
and summing in k > 1. The second inequality in (54) follows similarly. |

"In the form of Lemma [5.5] below.
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Proposition 5.3. Assume s > 1 and T € (0,1]. Then, if u € C([-T,T]; H*(R))
is a solution to (L) with c3 =0, we have that

(65 ) S 0+ ol ol e + (1l o)l g o Bl
g g Nl
As a corollary to Lemma [5.2] and Proposition[5.3] we deduce an a priori estimate
in || - || gs ¢y for smooth solutions to (L.

Corollary 5.4. Assume s > 1 and T € (0,1]. Then, there exists 0 < g < 1 such
that
(5.6)

[[ul

2y S ol + (14 Nl s Vel by

for all solutions u to (1) with cz3 = 0 and satisfying u € C([-T,T]; H*(R)) and
bl 3 < do.
LPH

oy + 241

We split the proof of Proposition [£.3] into several lemmas.

Lemma 5.5. Assume that T € (0,1], k1, ko, k3 € Zy and u; € Fy, for j =1,2,3.
(a) In the case kmin < kmaz — 5, it holds that

3
(5.7) ‘/ u1u21L3dxdt’ < 27Fmer T sl -
Rx[0,T] =1 /
If moreover kpyin > 1, we also have that
3
(5.3) [ wusuadsdt] £ 2 Bk T gl
Rx[0,7] i1 ’

(b) In the case |kmin — kmaz| < 10, it holds that

3
(5.9) ‘ /R o ulungdxdt‘ < 27 Thmas/4 H ||uj||ij-
x[o,

j=1
The following technical result will be needed in the proof of Lemma

Lemma 5.6. Assume k € Z4 and I C R is an interval. Then
(5.10) sup 292 ||n; (r = w(E)F L1 (O] o S IF()llx
JELy

for all f such that F(f) € Xy.

Proof. Fix j € Z,. We can also assume that j > 5. By writing
F=3 5 ng(r = w(@)FNE D] =D fa,
q>0 q>0

we have that

(5.11)  272|n;(r —w(E)F L) 2 <2772 [Ini(r = w@)F s () )| -
q=>0

On the one hand, Plancherel’s identity implies that

(5.12) 2772 % lny(r = w(@)F WO o)l 2 S D 2 Inglr — w(@)F ()] o

q>j—5 q>j—5
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On the other hand, we have that |F;,(17)(7)| < &, since I is an interval of R. Thus,

I

we deduce by applying the Cauchy-Schwarz inequality in 7’ that

22 |Ini(r = w@)FA1(1) £)] 2
q=0

j—4 ! _w
5.19) <273 Jas(r—wie) [ e =g
o R T &

|7

j—4
S 292 ng(r = w(©)F()| Lo
q=0

since |7 — 7/| ~ 27 in this case.
We deduce estimate (5.10) by gathering (5.11)-(E.13) and taking the supreme in
J. O

Proof of Lemma B8l Assume without loss of generality that k1 < ko < k3. More-
over, due to the frequency localization, we must have |ky — k3| < 4. We first prove
estimate (57). Let 8 : R — [0,1] be a smooth function supported in [—1, 1] with
the property that

Zﬁg(ac—m) =1, VzeR
meZ
Then, it follows that

3
(5.14) ‘~/R><[O,T] U1U21L3d.1?dt‘ ,S‘ Z ‘/ﬂ@ zl;[l (,8(22k3t — m)l[O,T]ui)dxdt‘.

m|<C22%k3

Now we observe that the sum on the right-hand side of (&) is taken over the two
disjoint sets

A={meZ : B(2%kst — m)lp ) = B(2%kat — m)}
and
B={mezZ: B(2%kst — m)ly, ) # B(2%%3t —m) and B(2%kst — m)1or #0}.
To deal with the sum over A, we set
Fi gy = Moy (7 — w(E))|F(BE@Ht — m)uy)|
and
ity = ni(r —w(€)|F (Bt — myuy)|, for j > 2ks

for each m € A and ¢ € {1,2,3}. Therefore, we deduce by using Plancherel’s
identity and estimates (B.1), (8:9) that

. 2k
Z ‘/RQE(BQ 3t—m)1[_T7T]ui)dmdt‘

meA

5.15) Sop 2 N[ g g e

me J1,92,93>2k3

3
Ssup 27 M [T D0 2721

mEA =1 >0k

L2-
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This implies, together with Lemma 2.2] that

3 3
(5.16) > ’ /R2 [T (2%t - m)l[O,T]Ui)dIdt‘ S22 )] [[ujl 7, -
i1 =1

meA

Now observe that #B < 4. We set
gt ;=i (1 —w(©)|F (B2t —m)1jg.1yus) |,

for i € {1,2,3}, j > 0 and m € B. Then, we deduce by arguing as above and using
Lemma that

3
Z }/R‘z il;[l(ﬁ(QQkSt — m)l[o,T]ui)dxdt‘

meB

’S sup Z /]R? ggivjl *gz;jz 'g/?;jsdng

B .
meD ;. ja,js>0

3
—2k —Jmed/2 20 m

< sup 27" E 9—dmea/ H sup 9di/ g ;.12

J1,J2,J320 i1 Ji€Z4

3
<2720 T sl -

Jj=1

(5.17)

Note that in the last step of (5.I7), we use the fact that 2/mes ~ max(2/med Q) to
control the sum over j,,q,. Indeed, the case 2/maz ~ 2Jmed ig trivial, whereas in the
case 2/maz ~ Q) we observe from [B.2) that jae < 5ks + 6.

We deduce estimate (B.7) by gathering (5I4)-(EIT). Note that estimate (B.8))

is obtained arguing as in (BI4)—-(EI7) and by using (B.8)) instead of (BI1) and the
fact that 27mas > 24%39k1 (cf. Lemma [B.1)).

Finally, we give only a sketch of the proof of estimate (9], since it follows
the same lines as the proof of estimate (5.7)). Note that under the assumption
|Emin — kmea| < 4, we have that 281 ~ 2F2 ~ 2F3 Moreover, we can assume that
k1 > 10, since the proof is trivial otherwise by using ([B:6). We introduce the same
decomposition as in (BI4) and split the summation domain in A and B. The
estimates for the sum over the regions A and B follow by using (BI0) instead of
@7) and 33) and the fact that 29mes > 23%3 (cf. Lemma [31). O

Lemma 5.7. Assume that T € (0,1], k, k1 € Z, satisfy k1 < k —6, u € Fy, and
v € FO. Then, it holds that
(5.18)
| / Pyv Py, (020 Py, ) dadt
Rx[0,T]

1
—= / Py;0,v Py, 0,0 Py, Opudzdt
2 Jrx0,1]

+ / PL0wvQudsvPy, dpudedi| < Ok k)| Poulli, S 1Pl
Rx[0,7] k' —k|<3
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and

’/ PoPy, (Pklawuaiv)dxdt —|—/ Py, 0, v P05 Py, Oyudzxdt
(5.19) Rx[0,T] Rx[0,T]

SOk k)l[Prullr, Y (1Pl
k' —k|<3
where O(k, k1) = 221, Moreover, if ky > 1, we can choose O(k, ky) = 2F127F/2,

Proof of Lemma [57 'We first prove estimate (5I8). After integrating by parts, we
rewrite the term on the left-hand side of (B.I8) as

_ / Pkamv@Pk, Pklu} 851) — Qkaszklazu) dxdt,
Rx[0,T]

where [A, B] = AB— BA denotes the commutator of A and B. Now, straightforward
computations using (G]) lead to

9([Pk, Prau] 020 — QkBIUP;ﬁ@Iu) (€,7)

= C/R2 m(é-’fl)?(Pklaiu)(ghTl)?(v)(f — 5177— — Tl)dé-ld'rl,

where

(e, )] = [2EL =8 _Z}) SEZ 8 gy <1,

due to the Taylor-Lagrange theorem and the frequency localization on £ and &;.
Therefore estimate (B.I8) follows arguing exactly as in the proof of Lemma
To prove estimate (5.19), we first observe by integrating by parts that

/ P05 Py 0, v Py, Oyudzdt = —/ kaPkaikalawudzdt
Rx[0,T] Rx[0,T]

— / kaPkﬁvaklaiudxdt.
Rx[0,T]
First, we apply estimates (7)) and (B8] to obtain that
]/ Py Pdyv Py, O2udadt| S 0k, k)| Pyl | Prol?,
Rx[0,7)
On the other hand, we observe that

/ Pyv Py (020Py, 0yu)dxdt — / Pv P00 Py, Oyudxdt
Rx[0,T Rx[0,T

- / Pyo([Pr, Py O] 620 ) dadt.
Rx[0,T]

An easy computation gives

F([Pe, Pra0au)020) (&, 7)
= c/ (&, &) F(Pe, 0gu) (&1, 71)F(0,0) (€ — &1, 7 — 11)dErdr,
RQ

where

)| = ‘771@(5) —ne(§ —&1)

|7’7L(§,§1 61

(6_51) S/ 17
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due to the mean value theorem and the frequency localization on £ and £;. We finish
the proof of estimate (5.19) arguing exactly as in the proof of Lemma [57] O

Lemma 5.8. Assume that T' € (0,1], ki, ko, k3, ks € Zy, and u; € Fy, for
7=1,2,3,4. If kinhg < kpmaz — 5, then it holds that

4
(5.20) [ wusuuadsdt] £ 272 T gl
Rx[0,T] i1 J
If instead, kpin < ktha ~ Ksub ~ kmaz, then it holds that
4
(5.21) ‘ / ’LL1’U,2’U,3’U/4d.TIdt} < 27 kmas gkmin/2 H llujll 7. -
Rx[0,T] i=1 ’

Proof. The proof of estimates (.20)-(GE.2I) follows by arguing exactly as in the

proof of (). To prove estimate (B20), we use estimates (B.30)—(B.36) instead
of estimates B1) and BA). To prove estimate (5.2I), we use estimate (B33)

and observe that due to the frequency localization Q ~ 25kmaz 50 that jmae >
S5kmas — C, where C' is a fixed positive constant depending only on the frequency
localization and 2 was defined in ([B3.32)). O

Now we give the proof of Proposition

Proof of Proposition 53l Let u € C([-T,T]; H*(R)) be a solution to (1)) with
c3 = 0. We choose an extension u of v on R? satisfying

(5.22) Ul =u and |4l

—T,T]

ps < 2|[ullps ().

Then, for any k € Z N[1,+00) and ¢ € [T, T}, we differentiate Ej(u) with respect
to t and deduce using (1)) that

(538 2 Fe() = 9u(u) + 8uw) + aLh(u) + 0N () + BLA(w) + AR (u),

where

Ti(u) = 2¢1 / Pkqu[)x((@wu)Q)d:c,
R
i (u) = ZCg/Pkquﬁw (u@iu)d:c,
R
Li(u) = / OouP0,; 'uQr 0y fudr + / uPL03uQr0y tudx
R R

+/qu8;1qu8;ludx,
R

N,ﬁ(u) =c / 5x((8xu)2)Pka;1qua;1udx + / ’U,Pk;((axu)z)@kam_ludl‘
R R
+c1 / uPLO; ' uQy, ((amu)z)dx + co / Oy (u@iu)Pkaz_lquam_ludx
R R
+ ¢ / ulPy, (u@iu)@k(?;lud;v + ¢ / qu(’?;lqu (u@iu)dw,
R R

L2 (u) = /Rﬁiquﬁgjlqu(‘);ludx + Q/RUPkﬁ;lquﬁgjludm,
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and
(5.24)

N2 (u) :cl/3z((8mu)2)Pk8;1qu6x—1uda:+2c1/qu(((?Iu)?)Pka;ludx
R R

+02/8I (u@iu)Pkax—lqua;ludx—i-202/qu(uaiu)Pkaz—ludx.
R R

Now, we fix t;, € [T, T]. Without loss of generality, we can assume that 0 < ¢, <
T. Therefore, we obtain by integrating (5.:23]) between 0 and ¢, that

Ey(w)(tx) — Ex(w)(0)
5.25
OB <] [ (sulu) + 8ul) + a8k (w) + N w) + L3 (w) + 8Ew)) ]
[0,tx]
Next we estimate the right-hand side of ([Z.25]).
Estimates for the cubic terms. We deduce after some integration by parts that
L} (u) = / 8§qu8quk8;1udx+2/ D3uPuQrudr + / D2uPLO; 'uQrOrudz
R R R
+ / (ﬁupk@iqu@;ludaj + 2/ 3mqu8§quudx + / quﬁiquﬁwudx
R R R
+ / (ﬁupk@;lqu@iudaj + 2/ 3mququ8§udx + / quﬁqukﬁiudx
R R R
= 5/ 8§’ququud:17 — 5/ Oy u PO, uQ 0 udr.
R R
Similarly it holds that

Li(u) = 5/RﬁgquUPkudx — 5/ﬂ{<8quk8quk8xudx.

We choose o = —2% and 8 = %. Then it follows, after performing a dyadic
decomposition on u, that

7
(5.26) ‘ /[0 . (Jk(u) + Jr(u) + ozL,lg(u) + Bﬁi(u))dt‘ < ZTj(k),

for each k > 1, with

)

= Y / (PeuPe(@2uPe, 0u) + PedyuPyd uPy, Oyu) drds
0<k1<k—6 Rx[0,tx]

)

(k)= > ‘/MM Pkﬁzu([Pk,Pklu]ﬁiu—Qkamqulﬁmu)dxdt
0<k1<k—6 it

)

TS(k) = Z ’/ P’?’U,Pklaxupkzaiudt
k1>k—5,ky>0 Y RX[0:tk]

)

k)= Y ’ / P20, uPy, uPy, 0%udt
k1>k—5,ky>0 Y RX[0:tk]

T5(k) = Z ‘ / P, 0,uPp0pu(Qp0yu 4+ PypOyu)dudt
k—5<ky<k+4 < RX[0:tr]

b
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Ts(k) = Z ‘/ Pklﬁgquu(Qku—i—Pku)dx‘
k<k—5 Rx[0,tr]
and
T (k) = Z / Py, 2uPpu(Qru + Pyu) dx‘.
k—d<k,<k+4 < RX[0;tr]
Clearly, Lemma 5.7 and the Cauchy-Schwarz inequality imply that

Ti(k)+Ta(k) S Y. 29| Pyils, > IIPeul%,
0<k1<k—6 |k—k/|<3

Slallpee Y I1PeallE,, -
|k—k'|<3

(5.27)

Similarly, we get by applying estimate (57 if k&; = 0 and estimate (B.8) if k1 > 0
that

(5.28) To(k) S lall gy D> I1PwElE,, -
k—k|<3
Now, estimate (.9) leads to
(5.29) Ts (k) + Tr (k) S lfall 5 || Petl 7, -
To estimate T5(k), when k > 1 is given, we denote
Blz{(k,kl)EZﬁ_ : |k—k1\§3and0§k2§max(k,k1)—5},
By = (k,kl)EZi_ : |k—k1\§5and ‘kg—k1|g5},
Bs = (k,kl)EZi : |k:2—k:1|§3and1§k;§max(k1,k‘2)—5}.

Thus, we deduce from the frequency localization that

3
Tg(k)zz Z ‘/RXM P,fqulﬁqukzﬁiudt’.

j=1 (k1,k2)€B;

To estimate the sum over By, we use estimate (1) in the case ko = 0 and estimate
(E8) in the case ky > 1. Tt follows that

> | renean.u] Sl Y IRl
(k1,kz)eBy Y R*[0tk] |k —k|<3

The sum over B is treated by using estimate (5.9]), which gives

> [ Punoap. G Sl S IRl
(k1,ka)eBy Y RX[0:tx] k' —k|<3

Finally, estimate (5.8]) (recall here that k > 1) yields

/ P,?qulﬁmquzaiudt‘ S22 MR D 2 Pyl -
(k1,k2)EB3 Rx[0,tx] k1>k+5

Moreover, observe that the same estimates also hold for T4 (k) (with an even better
bound when the sum is taken over Bs). This implies that

Ts(k) + Tu(k) < llull .5 > P,
|k —k|<3

+2 | Plle Y 2P g,
k1>k+5

(5.30)
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Therefore, we deduce by gathering (5.26)—(E.30), taking the supreme over tj €
[0,T], summing in k and using (5.22]) that

T2 ]/ n(Jk(u)+3k(u)+aa,1(u)+ﬂz§(u))dt]
E>1 tr€[0,T] " J[0,tx]

(5:31) <Y 2| s | Pl + Y 2M VBl D 2% Pyl
k>1 k>1 k1>k+5
Sl o elloecry + el g g lelloe -

Note that we use that s > 1 and apply the Cauchy-Schwarz inequality in k and k;
to obtain the last inequality in (5.3T]).

Estimates for the fourth-order terms. We estimate the fourth-order term corre-
sponding to N7 (u). After some integration by parts in (5.24)), we get that

4
(5.32) NE(w)dt] S 3 Xi(k),
] i=1

‘ [O,tk
for each k£ > 1, with

X1(k) = ’ / (8xu)2Pk8;1quudxdt‘ + ‘ / w0z uPyuPrudrdt
RX[0,tx] RX[0,tx]

+ ‘ / uamqu(‘)mqu(?;ludxdt‘,
Rx[0,¢x]

)

(k) = | / Py ((0p)?) Pod; udzdt
RX[0,tx]

X3(k) = ‘ / DpuPy, (uﬁxu)Pk(?;ludxdt‘
RX[O,tk]
and
X (k) = | / uPy (ud,u) Peudad|
RX[O,tk]

We use the Strichartz estimate (247) with o = 2, estimate (2I0) and Holder’s
inequality to deduce that

(5.33)

> 2% sup Xi(k) S (lullzzree + 100l L2 poe ) 10null 1z 00 Y 2% Preul|7s0 12
k>1 tr€[0,T) k>1

S (el gy + Nl gyl s o

2
Bs(T)

To deal with X5 (k), we perform dyadic decompositions over u and d,u. Then
4

X2(l€) < Z Z ’ / R (Pklamupkzaxu) Pka;p_IUde'dt
5=1 (k1,ka)eD, 7 RX[0tk]

b

where

)

)

(ki ko) €Z2 ¢ |k —ki| <3 and 0 < ko < max(k, ki) — 5

(534) Dy = (kl,k2)621 : |/<:—k2\§3and0§k‘1§max(k,k2)—5
: {( )EZZ : |k—ki| <5and |ko — ki| <5},

{(kﬁl,k‘g)EZi : |k52—k;1|SSandlSkgmaX(kl,k‘g)—S}.
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By using Holder’s inequality and the Cauchy-Schwarz inequality, we can bound the
sum over D1 U Dy by

e, 1Dl e 32 IPoulip
Ik —k|<3
Thus, it follows from estimates (ZI0) and (248) that

Z ‘ / uPy (Pg, 0y uPy, 0yu) Pkar_ludfcdt‘
(k1,k2)eD UDy Y RX[0:tk

Sl oy 0l ey S0 1Pl s
Ik —k|<3

A similar bound holds over Ds. In the region D4, we have that

/ uP, (Pklﬁ uPy, 0y u)Pkﬁ udmdt’
(k}l,k}Q)ED4 Rx 0 tk]

Sl g 2 Pl Do 22 Pullig e | Peyull s
k1 >k+5

Hence, we deduce after taking the supreme of t; over [0,7], summing over k €
Zy N[1,+00) and using estimate ([2:48) that

. 9%ks Xo(k) < e (T)-
B39 3 s Xalh) S eyl ol
Similarly, we get that
5.36 2265 sup  Xs(k < Jul? 5 ul|%,
(5.36) S oup X0(6) S Fullge el
To deal with X4 (k), we use the following decomposition:
Xu(k) < Z / Py, uPy (u@wu)Pkudzdt‘
k1 >k—7 Rx[0,tr]
4
(5.37) +y ’ / Py uP, (Pk2u81Pk3u)Pkudxdt‘
=1 (b ko kg)e By BX (0]
4
=: ZX47]'(I€)
§=0
where
F1 :{(kl,k27k3)ezg 0< ki <k-— 8, |]€ — k3| < 37 0<ky < IIlaX(k,kg)—5}7
= (kl,]{ig, 3)€Z3 0< ki <k-— 8, |k‘ — ]{i2| <3, 0<L ks < maX(k‘,kg)—5},
B3 ={(k1,ko,k3)€Z% : 0< ky <k—38, |k—ko| <5, |k— ks| <5},
Ey (k17k27k3)€Z :0<k <k-8, |k‘2—k‘3|§3, 1§k§max(k‘2,k3)—5}.
Observe that, according to estimates (ZI0) and (Z471),
Xeoh)= Y ‘ / ud,uPy (Pklquu)dxdt‘
k—7<k<k+3 “Rx[0:tx

(5.38)

= O 7 PTR Sy Ve
k' —k[<7
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Now, by using estimate (5.20]), we get that

(5.39) Xua(k) + Xao(k) S [l i l@llpor > |PwalE,,.
Ik —k|<3
Over the region Fj3, we deduce from estimates ([Z.10) and (Z48) that
(5.40) Xaa®) Sl g gyl g gy O Pl
k' —k|<5

Finally, estimate (ZI0)) gives
(5.41)  Xaa(k) S llull oy g 1Peull e Y IPrullng 2 | ProOaull 12 1o
k3>k+5

Thus, we deduce from (E37)-EAT) that
(5.42)

2% sup Xa(k) S [lul 4.
E>1 t, €[0,T]

Therefore, we conclude by gathering (B32)—(2.30) and (542) that
N,%(u)dt‘

2oty + ull oy Nl g g sl -

ol

22k‘$ Sup

(5.43) k=1 tkem]‘ 0.t4]

S Ml g o el ey + Nl pos oy llull oy o o il -

By using the same arguments, we could obtain a similar bound for N}C(u)

We finish the proof of Proposition [(£.3] by recalling the definition of the energy

in (B3) and gathering estimates (2.25]), (B31) and (B43)).

5.2. Energy estimates for the differences of two solutions. In this subsec-
tion, we assume that s > 2. Let u; and us be two solutions to the equation (LI
with ¢3 = 0 in the class (L9 satisfying u1(-,0) = 1 and ua(-,0) = ¢3. Then by

setting v = u; — ug, we see that v must satisfy
(5.44) O = 321) + 261695U18§’U + 26169511351@ + o0, (ulﬁiv) + 028;5(11331@),

with v(-,0) = ¢ 1= 1 — @2. As in subsection [5.I] we introduce the energy E%(v)

associated to (.44). For k > 1,

Erp(v)(t) = Pov(-, 1) ]|22 + &/R (w1 Pu0; 'vQ0; ') (z, t)dz

(5.45) R
+ 6/ (ur Py0; "o PO, ') (2, t)da
R
and
(5.46) Ef(v) = [|P<ov(-,0)[[72 + 27 sup  Ey(v)(ty),

E>1 tr€[—T,T]

where o and E are two real numbers which will be fixed later. As in Lemma [5.2]

we can compare E3(v) with [|v] g () if |lur]|zge s is small enough.
Lemma 5.9. Let s > % Then, there exists 0 < §; such that

1 ~. 3
(5.47) Sl < Bi (o) < Sl

2
B*(T)

for allv € B*(T') as soon as ||ui||zeems < 01
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Proposition 5.10. Assume T € (0,1] and s > 2. Then, if v is a solution to (5.44),
we have that

Ep(v) £ (1 + lleall 30l

A8 unll g ) Qs ey + il ooy (oo + el
and
(5.49) E:SF(U) ST+ ||801HH%+)H<PH12HS + ||UHF0(T)||U2\ Fs+2(T)||U\ Fs(T)

+ (14 T (ur) + i (u2)) (D (un) + T3 (uz)) T3 (v),
where

5 (u) == max{||u||F5(T), ||u||Bs(T)}.

As a corollary to Lemmal5.9and Proposition[5.10, we deduce an a priori estimate
in [| - || gs(ry for the solutions v to the difference equation (5.44).

Corollary 5.11. Assume T € (0,1]. Then, there exists 0 < 61 < 1 such that
(5.50)

[0l Bo(ry S ||¢||%2+(1+||U1HF%+(T))(||u1HF2(T)+||u2HF2(T))(H’UH2B°(T)+H’UH%‘0(T))
and

o]

2Bs(T) S lellze + ol poerylluzll ps+2 ey vl po ()

5.51
(>80 + (1 + D5 (ur) + T (u2)) (D5 (ur) + Ti(u2) ) T (0)?,

for all solutions v to (A4l with Hu1||L°CH§+ < d1.

T

Proof of Proposition 510, We argue as in the proof of Proposition B3l First, we
choose extensions U, ; and Uy of v, u; and uy over R? satisfying

(5.52) 9]

F's S 2||U||F6(T) and ||’II;| F's S 2||U7;H1.7'5(T)7 1= 1,2

Then, for any k € Z, N[1,+00) and t € [T, T], we differentiate Ej(v) with respect
to t and deduce using (5.44]) that

(653 5 Belv) = Tilo) +3u(v) + GLR) + ANEw) + L) + ANR(),

where

5k(v) :401/kaPk(awulﬁiv)dx—Fllcl/kaPk(axvé‘iuQ)d:c,
R R

gk(v) = 202/ kaPkﬁw(ulaﬁv)dx—l—QcQ/ kaPkaw(vailm)dm,
R R

Ll(v) = /RaiulPk(?;vaka;lvdx + /}RulPkainka;lvdx

—l—/ulPk(‘);vak@;lvdw,
R
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if,i(v) = /R(‘?z((8zu1)2)Pk8;1va8;1vdx + 261/11& u1Pk8;1 (Bmulé‘ﬁv)Qké‘;lvdx
+ 2¢q /RulPk(?;l (8zv8£u2)Qk8;1vdx + 201/R ulpkﬁ‘;vakagl (Bmulé‘gv)dx
+ 2¢ /R w1 Py0, 'wQr 0, (0,v02us)dz + 2 i 9 (u103u1) P, 'vQy0; vda
+ co /RulPk (ulé‘zv) Qké‘;lvdx + co /R uy Py (v@%uz)Qkar_lvdx

+02/u1Pk va(uu? v)dw—i—cz/ulPk va(vazug)
R R

L2 (v /a uy Pp0, v Pp0;, vdw+2/u1Pk6 vPL0;, tuda,

R

and

(5.54)

Ni(v) =c / Oy ((amul)z)Pka;lka(?;lvda: + 4¢q / up Ppo; ! (amulﬁiv)Pka;lvd:E
R R

+ 4c¢q / ulPka;l(amvaiuz)Pkaglvdx —1—02/81; (ulaiul)Pkam—lka8m—ludw
R R

+ 2co / u1 Py, (ul(‘)iv)Pkaw_lvdag + 2¢o / uy Py, (Uag’uQ)Pka;lvdJ?.
R R

Now, we fix t, € [-T,T]. Without loss of generality, we can assume that 0 < ¢ <
T. Therefore, we obtain by integrating (5.53]) between 0 and ¢, that

Bi(v)(tr) — Ex(v)(0)
(5.55) T q ~71 ~Nl AT2 AN2
<| [ @)+ 3ulv) + GLL) + GNL(v) + BLR() + BN (0) di.
[0,tk
Next we estimate the right-hand side of ([@53]).
Estimates for the cubic terms. We deduce after some integration by parts that

Zi(v) = 5/R(3‘§U1kakadx - 5/Raxu1Pk8vak8mvdx

and
Ei(v) = 5/ 3uy PrvPrvds — 5/ Oz POy vPLoyvdx.
R R

We choose a = —2% and E = %. Then it follows, after performing a dyadic
decomposition on v, that

9
656 | a0 43w +aZie) + R 5 T

for each k > 1, with

’_fl(k) = / kaPk(Pklc“) u18 ’U) + PL,0,vPL0, kalé) ul)
O<k <k—6 RXOtk]
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b

P.o,v ( [Pk, Pklul] 831) — QrOzv Py, (’9zu1) dxdt

0<k1<k—6 /RX[O,tk]

Tvg(k‘) = Z ‘/ P,?kalamulPkﬁivdt’,
k1>k—5,ko>0 Y RX[0:tk]

Ty(k) = Z ’/ P,famvpklulpkzaivdt},
k1 >k—5,ke>0 7 RX[0:tk]

)

Ti(k)= Y / P2vPy, 0,0 Py, 02usdt
k1,k2>0 RX[O,tk]

To(k)= > / P20, Py, v Py, 02ugdt
k1,ka>0 RX[O,tk]

)

b

Trk)y= Y ‘ /R o ]Pklazulpkaxv(Qkazv+Pk8mv)dxdt

k—5<k1<k+4
Tvg(k) = Z ’/ Pklagulka(ka—kka)d;v‘
ki<k—5 RX[O,tk]
and
Tg(k) = Z ’ / Pklagulpkv(ka + ka)dajl.
k—d<ky<k+4a 7 RX[0:tk]
Clearly, Lemma [5.7] and the Cauchy-Schwarz inequality imply that

Tk +Ta(k) S Y. 2%2|Pyanle, Y. 1P«Dl,
0<k1<k—6 |k—k'|<3

Slallae > 1P,
|k—k'|<3
Similarly, we get by applying estimate (57 if k&; = 0 and estimate (B.8) if k&1 > 0
that

(5.58) Ts(k) Sl g D>, I1PwllE,,-
[k—k’|<3

(5.57)

Now, estimate (5.9) leads to
(5.59) Ty (k) + To(k) S Il g 11 P31, -
Arguing exactly as in ([B.30), we get that

Ty(k) + Ta(k) S 0I5 Y I1Pwtls, | Pedls,

|k'—k|<3
(5.60) +lmll,s Y 1Pl
|k'—k|<3
+ 27k||Pkm|Fk Z 23k1/2HPI€161||Fk1 ||PIC1:J||Fk1'
k12>k+5

This implies after taking the suprem of ¢; over [0,7] and summing in k € Z; N
[1,400) that

(5.61) > 2% sup (Tg(k)+T4(k))§||ﬂ1||Fg\|5|
]CZ]. tkE[OyT]

wo + e 9] g+ 7] pe
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whenever s > 1 and

(5.62) > sup (Talh) + To(k)) S =530
kthkG[O,T]

at the L?-level. Note that to obtain (5.62]), we need to modify the first term on the
right-hand side of (5.60) by putting all the derivatives on || Py 1]l £, -

To bound T5(k) and Tg(k), we split the domain of summation over the {D;}i=1
defined in (5.34). For example, we explain how to deal with Tg(k). We have that

4
(5.63) To(k) = Z Z ’/ P20, 0Py, v Py, 2usdt|.
J=1(k1,k2)€D; Rx[0,tx]

By using estimates ([5.7)) when k2 = 0, (B.8]) when k2 > 1 and the Cauchy-Schwarz
inequality in ko, we deduce that

/ P28,0P, Py, 8§u2dt‘
Rx[0,tx]

(k1,k2)€D,
k ~ ~
(5.64) S > 2522 Piollp, Y |PedlF,
0<ks<max(k,k')—5 lk—k/|<3
Slsllye Y, 1P,
[k—k'|<3

We treat the summation over Dy similarly. Estimate (5.7)) when k; = 0, estimate
(BE8) when k1 > 1 and the Cauchy-Schwarz inequality in kq imply that

/ P20,0P,vP,, 8§u2dt‘
Rx [O,tk]

(k1,k2)ED2
_k ~ ~ Ko (1~
(5.65) S Y rRRle, Y IR G,
0<k; <max(k,k2)—5 [k—k2|<3
Slollee Y I1PD]R 2% s,
lk—ka|<3

Estimate (59) gives that

(5.66) > ‘/ P,?@vaklka28§qut’§||ﬂ2\|F% S P},
(k1,ks)eDg ¥ RX10tk] |k—k'|<3

Finally, it follows from estimate (B.8]) that

Z ‘/ P,f@vaklkazaiqut‘
(o7)  (wkeps TR

SIPOlE Y 282 Pl | P ia| -
ko>k+5
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Thus, we conclude by gathering (5.63)—(5.67), taking the supreme over t; € [0,T],
and summing in k € Z4 N [1, 400) that

(5.68) Y2 sup (Ts(k) + To(k)) < el 913

FS
E>1 tr€[0,T]

whenever s > 1 and

(5.69) > sup (Talh) + To(k)) S ]2 530
kthkG[O,T]

at the L%-level.
Therefore, we deduce by gathering (E57)-(E61) and (5.68) that

22%3 sup ‘ /[0 o (ﬁk(v) + 3k (v) + aLL(v) + EE%(U))dt’

( ) E>1 t,€[0,T
5.70
N (HUlHF%(T) + ||u2||F%(T))HU + ||U1||F (T)H’UH HU”FS(T)
+ [Juzl| ps+2 (0l o1y [v]| Fs (1)
if s > 1, whereas
sup| / V) +30) + GEL () + B3 (0))
(5.71) k>1 thOT] [0,t5]

S (lualle2ery + lugll p2 ) 10l 7o )

at the L? level.

Estimates for the fourth-order terms. We estimate the fourth-order term corre-
sponding to N%(v). After some integration by parts in (5.54)), we get that

5
NE(w)dt| 57 Xi(k)
=1

(5.72) ’
[O,tk]

for each k > 1, with

X1 (k) = ‘/ (‘3 ul) P,o,; kavdxdt’ —l—’/ w1 0puq PrvPyudxdt
Rx O tk] R

% [0,tx]
+ ‘/ ulawulP,ﬂ
Rx[0,tx]

)Nfg(k) = ‘ / ulPk8;1(8Iv8£u2)Pk8;1vda:dt
Rx[0 tk]

)

)

Xg(k) = ‘ / U1Pk8;1(axulail})Pka;LUdedt
Rx Otk]

Kk =| / ur Py (v0%u2) PL0; v
Rx|[0 tk]

and

)~(5(k) = ‘/ ulPk(ulﬁiv)Pkaglvdxdt‘.
Rx Otk]
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We use the Strichartz estimate (2.47) with o = 2, estimate ([2.10) and Holder’s
inequality to deduce that

22k sup X (k)
>1 1, €[0,T]

(5.73) S (luillzz o + 102wl 2 oo ) 102w [l L2, L0 Z22ks\lpkvllimg
k>1

5 (Hu1‘|F%+(T) + ||u1||F%+(T))HU1HF%+(T)”U 7 )a

for any s > 0.~
To handle X5(k), we perform the following decomposition:

(5.74)

4
5=1 (kn ko kg) e Fy 7 RX[0:k]

ki, ko, k3 €Z3 :0< ki <k+3, U{i—k‘3| <3, 0< ks Smax(k;,kg)—

( ) 5¢,
F2=§(/€17k2, 3)623 1 0<ki <k+3, [k—ko| <3, 0< ks <max(k,ko)—5

{( )€

={(

Fy =1 (k1,ko, k3 20§k1§k‘+3, |k — ko| <8, |k—k3|§8},
4 khkg,kg)ez . O S kl S k+3, ‘kg—k3| S 37 1 S k S max(kg,kg)—S}.

By applying Holder’s inequality, we can bound )?271(]{5) by

(5.75) Yo Pawlg, > 2°2|| Piyvll 12 1.

0<k1<k+3 0<ko<max(k,k3)—5
X > [ Pryuall sz [ Prvll s r2,
lh—ka| <3

which implies after using the Sobolev embedding, the Cauchy-Schwarz inequality
and estimate (248) that

(5.76) > 2% sup ]X2 1(k) S fuall

k>1  tE0T

F2+(T)|| HF4+ (T) 3(T)>»

for any s > 0. On the other hand, by putting the L L2 norm on Py,v and the
L2.L% norm on Pyyus in (575), we get that

(5.77) Z sup  Xo1(k) < Jluall s

> tRE€0.T] Pt T)H 2l g+ T)”v”B0

at the L? level. By using similar arguments, we get that

(5.78) D 2 sup . (Xo2(k) + X23(k)) S sl g o lu2l

E>1 tx€[0,

F;L+ s(T)>

for any s > 0. Finally, we use estimate (5:20) to bound )~(274(k) by

~ _ 3k ~ ~ ~
Z ||P/C1u1HFk12 2 HPkUHFk Z Z ||Pk2U||Fk222k3||Pk3u2HFk37
0<kr <k+3 max(kz,k3)>k+8 |ka—ks| <3
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which implies after summing over k € Z N [1,+o00) that

2
Fs»

(5.79) Y2 sup X (k) S [lin]|por sl p2 0]
E>1 tr€[0,T]

for all s > 0. Therefore, we conclude by gathering estimates (5.52)) and (B74)—(E79)
that

D2 sup Xo(k) S el g oy a2l 2y (10 sy + 1011 ()

(5.80)  k>1  WEOT]

Fllull g o 1ol g3+ o lluzllze oy 101l 8o (1),

for any s > 0, and

v 2 2
(5.81) ;tkzlf(fT] Xo(k) S Ml g+ g lw2lle2ery (0o ey + Iolory)

at the L? level. B
By using the same arguments as for Xa(k), we have that

> 2% sup )Nfs(k)S\lulllF%+(T)\|ul||F2<T>(||v\|23s(T)+||v||%s(T))
(5.82) k=1 tEOT]

el g gy 120 e o ey ol ey

for any s > 0, and

(5.83) ,;ltksel[lg,)ﬂ Xs(k) S ||U1HF%+(T)||U1HF2(T)(HUH%’D(T) + vl o))

at the L? level. B
To deal with X, (k) at the L? level, we observe after integrating by parts that

)?4(/@) < ‘/ Opur Py, (v@zug)Pkam_lvdxdt‘
RX[Oﬂfk]

+ ’ / u1 Py (8xv<9xu2)Pk8;10d$dt‘
RX[O,tk]

(5.84)
+ ‘ / u1 Py (v@xug) kadxdt‘
Rx [O,tk]

3
= Z )?4)j(/€).
j=1

Arguing exactly as for Xo(k) in (535]), we deduce that

(5.85)

Z 22ks sup ()?411(/&') + 5(:472(]6))
E>1 t€[0,T)

S et e g Nzl ol ey + e o 0 o g 2 eyl

for all s > 0, and

(5.50) S sup Kalh) S g o izlemcr ol
k>1 t€[0,T)
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at the L2 level. To estimate )?4,3(19) at the H*-level, we use the same decomposition
as for X4(k) in (5317). It follows that

22ks )’Z k < 2 .
I; tksel[l()I?T] 4,3( ) ~ ||u1||F%+(T)||u2||F%+(T)||/U||B* (T)

Flluzll gz v g 10l pgs o lwall ey llvll e )

g g 00 g gy 2 ey el ey

which implies, together with (584]) and (5:8H), that

(5.87)
2285 sup  X4(k)
i1 t:€[0,T]
<l g N2l g g 00 g 2l R
# (hnll g gy + T2l g 0l o (L3 ry + ol ) ol ey,

for all s > 0. _
Finally, we treat the term X5(k). After integrating by parts, we obtain that

)?5(14:) < ‘/ 8$u1Pk(u18$U)Pk8;1vdxdt‘
RX[0,tx]

+ ‘/ w1 Py (Bxulamv) Pk(?;lvdxdt‘
RX[O,tk]

(5.88)
+ ‘/ w1 Py (ulazv) kad:cdt‘
RX[OJ}C]

3
= Z)?5,](k)

By using the same arguments as above and arguing exactly as for X5 (k) in (535),
we deduce that

(5.89)

22ks  sup ()?5,1(k)+)~(5’2(k))
k:Zl tkE[O,T]

S lall e ol ez 0l oy + Tall s g 10l g 1 ey [0l 2

for all s > 0, and

(5.90) Y sup (Xsa(k)+ Xsa(k) S el g oy e 2 ey 0l o oy
k‘thke{O’T]

at the L? level. To handle )?573(143), we perform the same decomposition as for
X*(k) in (5.37). It follows that

2% sup Xa(k) S llwn] e
(591) kZl tkE[O>T]

(T)||”||F%+(T)||U1| () |lvllB=(7)

el g oy e oy (1l + 1003
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for any s > 0, and

692 2, 5 Kool S lurlpge gy llunll e o (0o + lolocr)
k>1 k )

at the L? level. Thus, we deduce from (5.89) and (5.91)) that

S 2% sup Xs(k ) Sl pge oy 100l o ol
(5.93) k=1 WElOT]

Bs

+luall pgs o luallpo ) (0l s oy + 1011 (1)
(1)

for any s > 0, and from (.90) and (5.92) that
Gon X s Ka(k) S lurll e o bl (o locr) + leliocr)

E>1 th[O,T]

at the L? level.

Therefore, we deduce from (B.72), (5.73), (581), (5-83), (5-86) and ([G.94) that
sup ﬂi(v)dt‘

E>1 t,€[0,T] [0,t]
Sl s oy (el e2ery + sl pery) (10lo ) + lolizor)

which together with (553 and (B7I) implies estimate (5.4])), since the bound for
the term corresponding to N},(v) would be similar.

Similarly, we deduce from (572), (&73), (R0), (E82), (E87) and (E93) that

22k sup ‘ ﬂ%(v)dt‘

= t,.€(0,7] ' J[0,t4]

< (il g oy + ol g 0 gy (s ey + Nl ey ol
+lwllpg+ g (lunllp2ery + e T))(”U”%‘S(T)“'HU Be (1)
g 1l g 2l e

which together with (B55) and (B70) implies estimate (5.49)).
This concludes the proof of Proposition [5.10 |

6. PROOF OoF THEOREM [I.1]

We recall, for the sake of simplicity, that we are proving Theorem [[.Tin the case
c3 = 0. The starting point is a well-posedness result for smooth solutions which
follows from Theorem 3.1 in [33].

Theorem 6.1. For all ug € H*®(R), there exist a positive time T and a unique
solution w € C([-T,T); H*(R)) to the initial value problem (LI). Moreover T =
T(||uol|g4) can be chosen as a nonincreasing function of its argument.

6.1. A priori estimates for smooth solutions. The main result of this subsec-
tion reads as follows.

Proposition 6.2. Assume s > %. For any M > 0, there exists a positive time

T =T(M) such that for any initial data ug € H>®(R)satisfying ||uo|lgs < M, the
solution u obtained in Theorem is defined on [—T,T) and satisfies

(6.1) uwe C([-T,T); H°(R)) and Hu||L%oH; < uol| s -
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The following technical lemma will be needed in the proof of Proposition

Lemma 6.3. Assume s € Ry, T >0 and u € C([-T,T); H*(R)). We define
(6.2) 50 (u) == max {||u]

Be (1), || (ud3u) ||N5(T’)’ H@xuaﬁuHNS(T,) b

for any 0 < T' < T. Then : T — A%, (u) is nondecreasing and continuous on
[0,T). Moreover

(6.3) lim A% (u) < ||w(0)||ms-
T'50
Proof. Tt is clear from the definition of B#®(T’) and the fact that u €

C([=T,T]; H*(R)) that : 7" + ||lu|| gs(7+) is nondecreasing and continuous on [0, 7]
and that

(6.4) Tim [l

Be(rr) S u(0)|[ s

In order to deal with the other components of A%, (u) in ([62), it suffices to prove
that given f € C([-T,T]; H*(R)),

(6.5) :T"€[0,T) = || fllys(r) is continuous and nondecreasing
and
(6.6) TI}QO Ilfllnsry = 0.
It is clear from the definition of N?® that
(6.7) Ifllve SNl z2ms

for any f € L?H:. Then, we deduce by applying estimate ([6.7) to f(x,t) =
X(—7,7)(t) f(2,t) that

(6.8) ey < WFllwve S M lezes S @2 lnse = 0,

T T —
which gives (6.4]).

Now, we turn to the proof of (G.5)). The fact that : 7" € [0,T) = || f| ns (7 is a
nondecreasing function follows directly from the definition of N*(T"). To prove the
continuity of : 7" € (0,T) + || f|| y+(7+) at some fixed time T € (0, 7)), we introduce
the scaling operator D, (f)(z,t) := f(x/r5,t/r), for r close enough to 1. Hence, we
have from (6.8)) and the triangle inequality that

I fll s crry = 1Dz s (Dl vy | < W F = Doy (F) | vy

1
S (T3S = Droyry(Dllegens =, 0
0

(6.9)

since f € C([-T,T]; H*(R)). Then, it remains to show that
(6.10) Lim [[Dy (N)lIws gy = [ fllve ()

to conclude the proof of (65). We observe that (EI0) would follow from the
inequalities

(6.11) I fll s () < lim inf IDr- ()| s ()
and

(6.12) hmjlllp | Dr ()l wvs ey < N Fllvs () -
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First, we begin with the proof of (GIIl). Let € be an arbitrarily small positive

number. For r close to 1, we choose an extension f, of D,.(f) outside of [—rT}, rT}]
satisfying

(6.13) Frlng oy = Do) and 1 follve < IDe(D) I ve iz + e

Note that since f € C([—T, T1; H*(R)), we have || Dy.(f)|| sy < M, where M is

a positive constant independent of r. We also observe that Dy /,.(f,) is an extension
of f outside of [—T7,T{], so that

(6.14) £l gy < ND1jr(fr)ll v
Moreover, we will prove that
(6.15) D1/ (fr)llve < ()l frllne,

where 7 is a continuous function defined in a neighborhood of 1 and satisfying
lim, 19 (r) = 1. Then estimate (G.I1]) would be deduced by gathering estimates

6.13), @.14) and @.15).

To prove estimate (615, we first fix & € Z,. Then, by definition,

(6:16) [|PxD1 s (fr)llny, = sup || (7 —w (&) +2%*) " F[no (2% (- = D) P D1y ()] | ., -
teR

We observe that
(2% (- = D) D1y (fr) = Duya (22 (- = 7)) fr),
where nj(t) = no(r~'t). Hence,
Fno (225 (- = D) PuDyye(F)] (& 7) = 17 Sme(OF [ (225 (- — 1) f] (/75 7/7),

so we deduce from the definition of X}, in ([24) that the right-hand side of (610])
is equal to

w(f))) 1 2k N F
(6.17)  r~3/5sup 2]/2 J e (r38)F ng (275 (- — 1)) fr
ZcR JZ;O (5)) + ZQQk‘ [ ] L2
Moreover, we use that
a2 + 24k ) )
‘r2a2 + 24k 1‘ =lt=r "1"20,2 + 24k < 4t=r,

for any a € Ry, k € Z, and r € [1/2,2], to bound the L? norm corresponding to a
fixed j € Zy in (©IT) by

T—w(ﬁ)))
(&) + 22|

©18) (1 =) 2 m(ri T2 ~DF]]|,

Now, the mean value theorem gives that

|7 (r(T — w(€))) = ny(T —w(&)| S |r — 1] . 27| (s(r — w(€)))|

se[l,r

Shre=1 > (- w(©)

13’ =3I<1,5' €24

(6.19)
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if r € [3/4,5/4]. Therefore, we deduce after gathering (6.16)-([6.19) and summing
over j € Z4 that

1Py (F) v

< p(r)sup (= w(g) + i22) e (2 ) F [ (22 (- = 1) ] .,
te

(6.20)

where ¢ is a continuous function defined in a neighborhood of 1 and satisfying
lim,_,; ¢(r) = 1. In order to deal with »j appearing on the right-hand side of
©20), we get from the fundamental theorem of calculus that

—1

62) =) - m@Re-D) = [ @D
where ~,(t) = tn(st). Moreover, we use that
no (2%t = (E+2-2727))) +no (2% (t — (t—2-277F))) =1

on the support of the integral on the right-hand side of (62I]). Hence, it follows
from Minkowski’s inequality and estimates (2.23) and (620) that

”Ple/r(ﬁ“)”Nk

< @(r)sup (7 = w(g) + i27) g (r5 O F [0 (2% (- = D) ] | .,
te

(6.22)

where ¢ is a function with similar properties as ¢. Moreover, we observe by arguing

as in (G19) that
(6.23) e (r5E) =@ SIrF =1 > ().
|k'—k|<1,k'€Z4

Thus, we deduce by gathering estimates ([6.22)) and ([@.23]) that

HPkD1/r(fr)||Nk
<) (1 + 5 = 1) Pufrlln,

(6:24) 4 &(r)|rs — 1| sup (7 = w(€) +i2%) 1 (©)F [no (2% (- = D) ] ||, .

+@(r)|rs - tsup (7 = w(€) +i2%) e (OF [mo(2%( ~ NSl

To deal with the second term on the right-hand side of (G24]), we notice that
|7 —w(§) + 2'22k|_1 < | —w(é) + 2'22(’“71)‘_1 and 79(22*=1(. — 7)) = 1 on the
support of 79(22#(- — t)). Then, it follows from estimate (Z23) that

(6.25) sup ||(r — w(©) +2%) 1 (©F a0 (2~ D] |, . S IPecrFolm -
teR

On the other hand, we have that |7 — w(¢) + 2'22k|_1 <A|r—w(é) + i22(k+1)|_1.
Moreover, we observe that

—i424.2720k+D)
22(k+1)/~ N n0(22(k+1)(t+3))d3 = /no(s)ds >0
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if ¢ lies in the support of 79(22*(- — t)). Therefore, we deduce from Minkowski’s
inequality and by using estimate (2.:23)) that

(6.26) sup ||(7' —w(&) + i22k)7177k+1(§)5r[770(22k(' _tN))J?T] ||Xk:+1 N ||Pk+1-}7’f‘||Nk+l'
Ter
We conclude the proof of estimate (GI0) by gathering estimates (©24)), (G.2H),
[620), summing over k € Z, and recalling the definition of N* in (23]).
The proof of estimate ([612)) follows in a similar way (it is actually easier). O

Proof of Proposition 6.2l Fix s > %. First, it is worth noticing that we can always
assume that the initial data ug have small H*-norm by using a scaling argument.

Indeed, if u is a solution to the IVP (1) on the time interval [0,7], then
ux(x,t) = Nu(lz, \°t) is also a solution to the equation (1)) with initial data
ux(+,0) = Aug(\-) on the time interval [0, \=5T]. For € > 0, let us denote by B*(e)
the ball of H*(R) centered at the origin with radius e. Since

(-, 0) [ S A2 (L + A% o]l 1+,

we can always force uy(-,0) to belong to B*(€) by choosing A ~ €3 ||u0||1;% There-
fore, it is enough to prove that if uy € B*(e), then Proposition holds with
T = 1. This would imply that Proposition holds for arbitrarily large initial
data in H*(R) with a time 7' ~ A% ~ ||u0||1_1,13_0

Now, fix ug € H*(R) N B*(e) and let u € C([-T,T); H*) by the solution to
(TI) given by Theorem where 0 < T < 1. We obtain by gathering the linear
estimate (Z32)), the bilinear estimates [@I)—-([@2) and the energy estimate (5.0)
that

(6.27) AT(w)* < lluollfre + (A7 (u) + A7 (1)?) AT (w)?,

for any o > s as soon as A% (u) < 5~0. Here, 5~0 is a small positive number choserl
such that ||u|psems < o as soon as A% (u) < go, where d is given by Corollary 5.4
Estimates (232), (627) with 0 = s, Lemma [6.3 and a continuity argument ensure
the existence of €, > 0 and C > 0 such that I'5.(u) < Cse provided ||ug|lms < € < €4
where I'S.(u) is defined by

(6.28) I3 (u) == max {||ul| g= (1), vl p=(1) }-
Thus, estimates (Z10), 232) and ([G27) yield
(6.29) lullegmg S T7(u) < lluolla-,

for all ¢ > s, provided |Jug|lms < € < €.

Therefore, using estimate ([6:29) with ¢ = 4 we can reapply the result of Theorem
a finite number of times and extend the solution u on the time interval [—1,1].
This concludes the proof of Proposition O

6.2. L?- Lipschitz bound for the difference of two solutions and unique-
ness. Let u; and us be two solutions of the equation (L)) defined on a time
interval [T, T] for some 0 < T < 1 and with respective initial data u;(-,0) = ¢1
and us(+,0) = 2. We also assume that o1, @ € B2(e) and

(6.30) I'2(u;) < Coe < Caey, fori=1,2,

8The choice is possible by using estimates ZI0) and (Z32).
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where T'2.(+) is defined in (6.28). Moreover, according to (ZI0), we can choose €
small enough such that ||u;|| s gz < d1 Where d; is given in Corollary B.111

Let us define v by v = u; — uz. Observe that v is a solution to equation (5.44])
and also to

0w = 00 + 10, (893 (uy + uz)(‘)wv) + 20, (u1020) + 20, (v0?us).

Then, we conclude by gathering estimates ([2.32)), ([A3)), ([{4)) and (E50) that there
exists 0 < €2 < €9 such that

(6.31) I7(0) £ lpr = allze,

provided u; and uy satisfy [630) with 0 < € < é.
We now state our uniqueness result.

Proposition 6.4. Let u; and uy be two solutions to the equation (1)) in the class
(@A) with s = 2, defined on a time interval [=T,T] for some T > 0 and satisfying
ui(+,0) = uz(-,0) = ¢. Then uy = ug on [T, T].

Proof. Let us define K := max {T'%(u1),T%(uz)}. As in the proof of Proposition
[6.2] we use the scaling property of (L)) and define u; x = \u;(Az, A5t), for i = 1,2
and A > 0, which are also solutions to the equation (ILI]) on the time interval [—S, 5]
with S = A7°T and with initial data oy = A%¢()\-). Moreover, since

3 3
lwillLee a2 + [luinllB2sy S AZ(1+ /\2)(||Ui||L;°Hg + |uill2ry) S A2(1+ MK,

for i = 1,2, we can always choose A = A(K) small enough such that

(6.32) [leallmz <€ [luinllp2(s) < C2¢/(3c) < Caa/(3c) and [u; A | F2(s) < C(K),

for ¢ = 1,2, and where c is the implicit constant appearing in the first inequality of

(634)) below.

Since |lui || p2(s) < 00, there exists n € Z such that
(6.33) ||P>nui7,\||p2(s) < Cq¢/3, i=1,2.
On the other hand, we deduce from ([232)), (68) and ([632) that

| Penuinllacs) S luinllpacs) +522% | P<nds (05uin)) | 1z
1
(634) + Sz 22”HP§7L81 (UL,\@%U@,\) HLgoLgc
S Coe/3+ 8725 fu; 5|1} prz-

By choosing S1 = S1(K) small enough, we deduce from (632)-(6.34) that u 1 and
uy,2 satisfy the smallness condition (630) on [—S1, S1], i.e.

I3 (usn) < Coe < Coen, fori=1,2.

This implies from (6.31]) that w3\ = ug  on [—S1,51]. By applying this argument
a finite number of times, we see that the equality holds in fact in [—S, S]. Then it
follows after changing variables that u; = ug on [T, T7. O



WELL-POSEDNESS FOR THE FIFTH-ORDER KDV EQUATION 2605

6.3. Existence. Let 2 < s < 4 and uy € H*(R). By using a scaling argument
as in the proof of Proposition [6.2] we can assume that ug € B*(¢), with € < €, <
min(es, g—jgg). Note here that €, will be determined later.

We will use the Bona-Smith argument (cf. [3]). Let p € S(R) with p > 0,
[pdx =1, and [aFp(z)de =0, k € Z;, 0 < k < [s] + 1. For any A > 0, define
poa(z) = Atp(A"1x). The following lemma, whose proof can be found in [3] (see
also Proposition 2.1 in [I7]), gathers the properties of the smoothing operators
which will be used in this section.

Lemma 6.5. Let s >0, ¢ € H*(R) and for any A > 0, ¢ = px * ¢. Then,

(6.35) [oallste S AT Pllms, Yo >0,

and

(636) ||¢_ (b/\HHS*ﬁ )\: 0(/\,8)7 v/8 € [0,8}
—0

Now we regularize the initial data by letting ug x = pa*ug. Since ug x € H*(R),
we deduce from Theorem that for any A > 0, there exist a positive time T and
a unique solution

uy € C([-Th, Ta); H*(R)) satisfying wux(-,0) = ug .

We observe that ||uga||as < ||uollms < e. Thus, it follows from the proof of
Proposition and estimate (6.35) that the sequence of solutions {uy} can be
extended on the time interval [—1,1] and satisfies

(6.37) I3 (uy) < Cge < min(Caéa, Cé€y),

(6.38) I (ux) S lluollas  and  T572(un) S [luollme+2 S A 2||uollae,

for all A > 0.
Then, we deduce from (31)) and (€30]) that for any 0 < A < A,

(6.39) T(ur —ur) S lluon —uonllz = o(A®).
A—0

Moreover, we obtain by gathering estimates ([2:32), (EI)-E2), (5.51), 6.37) and

choosing €; small enough that

(6.40) 5 (ux = un) S lluo = wo |z + T35 (ua) 1Y (ux — u),
since s > 2. This combined with (636), ([@38) and ([6.39) yields
(6.41) Jux —un e s ST (ur —un) — 0.

A—0

Therefore, we conclude that {uy} converges in the norm I'§ to a solution u of

(@I in the class (T3).

Remark 6.6. Observe that the convergence of {uy} in C([—1,1]; H}(R)) would be
enough to obtain that the limit u satisfies the equation (II]) in the weak sense.
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6.4. Continuity of the flow map data-solution. Observe that for s > 4, the
result was already proved in Theorem 3.1 in [33]. Then it is enough to prove it for
2 <s < 4. Let up € H*(R). Once again we can assume by using a scaling argument
that ug € B*(e) with 0 < e < & < €; and where €, was determined in the previous
subsection. Then, the solution v emanating from ug is defined on the time interval
[—1,1] and satisfies u € C([—1, 1]; H*(R)).

Let & > 0 be given. It suffices to prove that for any initial data vy € B*(e)
with [Jug — vollg= < &, where 6 = §(f) > 0 will be fixed later, the solution v €
C([-1,1]; H*(R)) emanating from vy satisfies
(6.42) o = vl sz < 6.

For any A > 0, we normalize the initial data u¢ and vy by defining ug x» = px *uo
and vg x = px *vp as in the previous subsection and consider the associated smooth
solutions uy, vy € C([—1,1]; H*(R)). Then it follows from the triangle inequality
that
(6.43) lu—vlrsems < llu—uxlpsems + lun — vallse s + llv — vallLsems-

On the one hand, according to (641]), we can choose Ay small enough so that
(6.44) llw = uxllzgem; + [lv = vaolLeom; < 20/3.
On the other hand, we get from (G35]) that

—(4—s —(4—
0,50 — Vo0t S Ag 47 [luo — voll s S Ag 4706

Therefore, by using the continuity of the flow map for smooth initial data (cf.
Theorem 3.1 in [33]), we can choose § > 0 small enough such that

(645) ||U)\0 _U)\OHLfCHgi S 9/3
Estimate (6.42)) is concluded by gathering (6.43)—(G.43).
7. APPENDIX: HOW TO DEAL WITH THE CUBIC TERM 0, (u?)

In this appendix, we explain what are the main modifications needed to deal
with the cubic term 9, (u?) (i.e. in the case where c3 # 0). As above, we fix o = 2
in the definition of the spaces F:(T'), Ni(T), F2, N&, Fj o, Nio and write those
spaces without the index « = 2, since there is no risk of confusion.

7.1. Short time trilinear estimate. In this subsection, we prove the trilinear
estimate for the nonlinear term 9, (u?).

Proposition 7.1. Let s > 0 and T € (0,1] be given. Then, it holds that
(7.1) 102 (wow) | wvs 7y S [ull po(ry [0l 7oyl

+ lollpocry lwll oy llul
for allu, v, we F*(T).

ror) + ||ull po(ry |0l oy l[v]| P (1)

Fs(T)

We split the proof of Proposition [[.1] into several technical lemmas depending
on the frequency interactions.

Lemma 7.2 (high x low x low — high). Assume that k, k1, ko, k3 € Z satisfy
k220, |k3—k| §5 and0§k1 §k2§k3—10 Then,

(72) ||Pkaz (uklvk2wk3) HN;c S, 273k/2”uk1 HFkl Hvk2HFk2 ”wk:s HFk;S’

for all ug, € Fi,, vi, € Fi, and wy, € Fy,.
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Proof. Arguing exactly as in the proof of Lemma [4.3] it suffices to prove that

2k Z 27j/2H1Dk,j ! (fkhjl * fk27j2 * fks,js)HLgT
(7.3) 3>2k ’

S 22 fry i 2222 frs o 122272 ) fiy sl 2

where the functions fy, j, are localized in Dy, j;,, with j; > 2k, for i = 1,2, 3.
But, we deduce from estimates (3.29) and ([B.31) that

2 3221, - (fors * fras * Fro)lz

Jj=2k
S 2" Z 27j/22k1/2272k2j1/2kal,jl ||L22j2/2‘|f/€2,j2||L22j3/2‘|f/€37j3||l12’
J=2k

which implies estimate (73] after summing over j. a

Lemma 7.3 (high x high x low — high). Assume that k, ki, ko, k3 € Z satisfy
]{?220, |k3—k| §5, ]{?3—10§k2§]€3 andogkl §k2—20. Then,

(7.4) ([ Prd (wr, vkywis) ||y, S 27w |, [[0ka |y ksl gy
for all ug, € Fi,, vi, € Fi, and wy, € Fy,.

Proof. Once again, it is enough to prove that estimate (Z.3) remains true in this

case. According to the frequency localization, we have that Q~ 25kmas  where Q is
defined in (332)). This yields jmas > bk — 20. Therefore, it follows from estimate

B27) that
2k Z 2_‘7/2“1Dk,j . (fkhjl * fk;27j2 * f’ijS)HL?,T

i>2k
(7.5)
< ok Z 9= 3/22(31+12+]3+J)/22(k1+k2)/22 (Gmaz+isub)/2 H ||fk

j>2k i=1

i:Ji

which provides the bound in estimate (Z3)) in both cases jmar = 7 and jmaz # Jmaz-
This finishes the proof of Lemma, [T.3] a

Lemma 7.4 (high x high x high — high). Assume that k, ki, ka, ks € Z4 salisfy
k‘ZQO, |k3—k| §5, k:3—10§k2 Skﬁ3 andk2—30§k1 S]{ig Then,

(7.6) || P (e oo wis) ||y, S Nk |1, 10 || oy N1k |
for all ug, € Fi,, vi, € Fi, and wy, € Fy,.

Proof. We argue exactly as in the proof of Lemma [(3] and observe that estimate
[T3) leads to estimate ([Z.3) even without using that jmaes > 5k — 20, which is not
always satisfied in this case. Instead, it is sufficient to use that j, j; > 2k for all
i=1,23. O

Lemma 7.5 (high x high x high — low). Assume that k, k1, ko, ks € Z satisfy
k3—5§k2§k3, k2—10§k1<k2 and20<k<k1—10. Then

(7.7) [P (wr, v wi ) |y S 2752 g, ||y, lons |, ksl

for all ug, € Fy,, vg, € Fi, and wy, € Fy,.
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Proof. We argue as in the proof of Lemma 7l Thus it is enough to prove that
22 B9k S 9 I L, (g * Sl * T )|z
(7.8) JZ0
SR 2220 i a2 2N R e,

where the functions fi" ; are localized in Dy, j,, with j; > 2ks, for i = 1,2,3.
According to estimate ([B:45), we can bound the left-hand side of ([Z8) by

92ks— kZQ 3/29(+iz+is+7)/29(k+k1) /29— (meﬂwb)/?Hka“jl

7>0 =1

Moreover, we have Q ~ 25kmas in this case, so that j,qe > bks — 20. This implies

estimate ([C8) in both cases j = jmaz and j # Jmaz- a

Lemma 7.6 (high x high x low — low). Assume that k, k1, ko, ks € Z4 salisfy
k‘ZQO, k3—5§k‘2§k‘3 and0<k1,k;<k2—10. Then

(7.9) [ Puda (wny onywns) ||y, S 2742 ||, owa |, ks | 7y
for all ug, € Fy,, vg, € Fi, and wy, € Fy,.

Proof. Following the proof of Lemma [(.5] we need to prove that estimate ([Z.8)) still
holds in this case. This is a direct consequence of estimates (3.47) and (348). O

Lemma 7.7 (low x low X low — low). Assume that k, ki, ko, k3 € Zy satisfy
0 S k, klv kQ, k3 S 200. Then,

(7.10) | PO (e, iy Wiy ) HNk S ks 17, 0k, |7y 1w || 7

for all ug, € Fy,, vg, € Fi, and wy, € Fy,.

Proof. It follows by arguing as in Lemma .10l |
Finally, we give the proof of Proposition [(.1]

Proof of Proposition [[ 1. Fix s > 0. We choose two extensions @, ¥ and w of u, v
and w satisfying

] pe < 2 ul

FS(T)7 H’ﬁ”ps S 2”’[)‘ FS(T) and ||1DHFS S 2||w\ FS(T)

Therefore 9, (40w) is an extension of 9, (uvw) on R?, and we have from the defini-
tion of N*(T") and Minkowski inequality that

1

Hax(UUU))HNS(T) < (Zz%s( Z ||pka (pklukaka3 )HN )2)5

k=0 k1,k2,k3 >0

Note that by symmetry, we can always assume that 0 < k; < ko < k3. Moreover,
we denote

Gy = (kl,k%kg)ezii : k2207 ‘k3—k|§5, 0§k1§k2§]€3—10},

Gy = (kl,k?g, 3)€Z3_ k> 20, U{ig — ]{il <5 |k}3 — kJ2| <10, 0L ki < k‘Q—QO},

Gz = (k17k27 3)€Zi : k> 20, ‘kg — kl <5 |]€3 — k2| < 10, |k1 — kg‘ < 30}7

Gy = (kl,k‘g, 3)€Zi : k3—5§]€2§k3, kg—logklng, 20§]€§k1—10},

G5:{(k1,k2, 3)621 : k3—5§k2§k3, 20§k,k1§k2—10},
{(kl,kg,k‘g)ez‘i :0< k‘, k?l, kz, ks < 200}.
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Note that for a given k € Z,, some of these regions may be empty and others
may overlap, but due to the frequency localization, we always have that
(7.11)

6 1
L - 2\ 2
10 (wow) [nvery < 30 (30220 X (1P (PP b)) )
i=1 k>0 (k1 ,k2,ks)EG;
We conclude the proof of Proposition [[.1] by applying respectively Lemmas [[.2H7. 7]
to each of the sums appearing on the right-hand side of ([ZIT)). O

7.2. Modifications to the energy estimates. We only explain how to deal with
the a priori estimates, since the modifications would be similar to derive estimates
for the differences of two solutions. The main point is to derive an analog to
Proposition 5.3 in the case where c3 # 0.

Proposition 7.8. Assume s > 2 and T € (0,1]. Then, if u € C([-T,T]; H*(R))
is a solution to (L)), we have that

(7.12) Ep(u) S (1+ lluollz:)

where

luol|Frs + (14 D% (u) + D (u)®) 5 (u)?,

'S (u) := max {HUHFS(T), ||u||Bs(T)}.

Proof. The proof of Proposition follows the same strategy as the one of Propo-
sition The unique difference is that we need to add the terms M}, (u), aM} (u)
and BM? (u) to the right-hand side of (E23)), where

Ki(u) = 2C3/ Pkqu(‘?z(u?’)dx,
R

_03/8 Pka qua udx+03/qu(u3)Qk8;1udx
R

+03/qu6x_1qu (u3)dx,
R

and
(7.13) M3 (u —03/8 Pka YuPLo, udx+203/qu(u3)Pk8;1udm.
R

Therefore, it suffices to bound

22%3 sup ’/ (K (u) + oD (u) + BM; (u dt’
[0,t]

k>1 t,€[0,T]

by the the terms appearing on the right-hand side of (7.12).
We first treat the fourth-order term corresponding to Xy (u). We perform the
same dyadic decomposition as in the proof of Proposition [[.Il Thus,

22k sup Kk(u)dt‘
E>1 t€[0,77 " J[0,tx]
(7.14)

6
Z Z 92ks Z sup ‘ / PruPy0y (Pry Py, uPr,u) dm‘.
i=1k>1 (k1,k2,k3)EG; te€[0,T] T JRX[0,]
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By using respectively estimate (5.20) for the sums over G5 and G5 and estimate
(EZ1)) for the sums over G5 and Gy, the corresponding terms on the right-hand side
of ([LI4) can be bounded by

(7.15) lull oyl g o gyl ey

In the regions G5 and Gg, we use estimates (ZI0) and ([2:48]) to bound the corre-
sponding terms by

(7.16) lell oy Nl s oy Il

Observe that ((I5]) and (ZI6) are controlled by the second term on the right-hand
side of (T12)).

Next, we deal with the fifth-order term corresponding to M3 (u) and observe that
the one corresponding to M4 (u) could be treated similarly. It follows from estimate

I0) that
[ o) P urio; uda] Sl [Pl [0 Pl e e
RX[0,t4] F27(T) :

which leads to the bound in (.I2]) after summing over k € Z4 N[1,4o00) and taking
the supreme over t, € [0, T]. Finally, to deal with the second term on the right-hand
side of (TI3)), we introduce a dyadic decomposition,

Dy (u®) = Z 0 (P, uPp,uPy,u),
k1,k2,ks
and use estimates (2.10) and (248) to obtain the right estimate.
This finishes the proof of Proposition [(.8l |
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