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MINIMAL IMMERSIONS OF COMPACT BORDERED RIEMANN

SURFACES WITH FREE BOUNDARY

JINGYI CHEN, AILANA FRASER, AND CHAO PANG

Abstract. Let N be a complete, homogeneously regular Riemannian man-
ifold of dimN ≥ 3 and let M be a compact submanifold of N . Let Σ be a
compact orientable surface with boundary. We show that for any continuous
f : (Σ, ∂Σ) → (N,M) for which the induced homomorphism f∗ on certain
fundamental groups is injective, there exists a branched minimal immersion
of Σ solving the free boundary problem (Σ, ∂Σ) → (N,M), and minimizing
area among all maps which induce the same action on the fundamental groups
as f . Furthermore, under certain nonnegativity assumptions on the curvature
of a 3-manifold N and convexity assumptions on the boundary M = ∂N , we
derive bounds on the genus, number of boundary components and area of any
compact two-sided minimal surface solving the free boundary problem with
low index.

1. Introduction

Let M be a closed submanifold of a Riemannian manifold N . A branched im-
mersion u : (Σ, ∂Σ) → (N,M) of a surface Σ with nonempty boundary ∂Σ is a
minimal surface with free boundary in M if u(Σ) has zero mean curvature and u(Σ)
is orthogonal to M along u(∂Σ) ⊆ M . In this article, we study the free bound-
ary problem for minimal immersions of compact bordered Riemann surfaces. The
purpose is twofold. In the first part, we prove a general existence theorem for com-
pact bordered Riemann surfaces of any topological type in complete Riemannian
manifolds, assuming certain incompressibility conditions. In the second part, we
investigate controlling the topology of free boundary minimal surfaces of low in-
dex in 3-manifolds, under certain nonnegativity assumptions on the curvature and
convexity assumptions on the boundary of the 3-manifold. Our existence result is:

Theorem 1.1. Let N be a complete, homogeneously regular Riemannian manifold
of dimN ≥ 3 and let M be a compact submanifold of N . Then,

(i) if Σ is a compact, connected orientable surface of genus g and with k ≥ 1
boundary components that is not a disk, and f : Σ → N is a continuous
map with f (∂Σ) ⊂ M such that

f∗ : π1(Σ)× π1(Σ, ∂Σ) → π1(N)× π1(N,M)

is injective, then there exists a branched minimal immersion (Σ, ∂Σ) →
(N,M) solving the free boundary problem, and minimizing area among all
maps (Σ, ∂Σ) → (N,M) that induce the same action as f on the funda-
mental groups;
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(ii) there exists a generating set {γj} for ker i∗, where

i∗ : π1(M) → π1(N)

is the homomorphism induced by the inclusion, such that each γj is freely
homotopic to the boundary of an area minimizing disk that solves the free
boundary problem.

The disk case, part (ii) of the above theorem, was already proved by Ye [27] using
a different method. Existence results for disk type solutions in various settings have
been studied by Meeks and Yau [19], Jost [9–11], Struwe [25], Kuwert [12], Fraser
[6], among others. Embedded free boundary solutions of prescribed topological type
in 3-manifolds with mean convex boundary were produced by Jost [10] assuming a
Douglas type condition. Recently Li [13] proved the existence of embedded solutions
of controlled topological type in 3-manifolds with no convexity assumption on the
boundary.

We take the Sacks-Uhlenbeck approach of working with the perturbed energy.
The analytic foundation is already established in the interior [22] and in the bound-
ary [6] settings. Following the ideas of Schoen and Yau [24] and Sacks and Uhlen-
beck [23] for closed surfaces, for each conformal structure on the bordered surface
we produce an energy minimizing map which induces the same action on the fun-
damental group as a given continuous map f : (Σ, ∂Σ) → (N,M), and then we
minimize over all conformal structures to produce a branched minimal surface.
The key point is to understand the limiting behavior of the conformal structures
in the boundary setting. The incompressibility assumptions on the fundamental
groups prevent degeneration when we minimize over all conformal structures, in
the form of pinching of an interior or boundary circle or of a curve with endpoints
on the boundary.

When the ambient manifold has positive curvature, there are some strong restric-
tions on the topology of stable or index one minimal surfaces. In the second part
of the paper, we investigate the relationship between the topology of free boundary
minimal surfaces and the geometry of the ambient manifold, such as nonnegativity
of the curvature and convexity of the boundary, by means of the second variation
formula. One of the reasons we are interested in understanding the topology of min-
imal surfaces in a Riemannian manifold is because it provides information about
the ambient manifold (e.g. see [26]).

For closed minimal surfaces in 3-manifolds of positive Ricci curvature, it is con-
jectured that there should exist a bound on the genus of any minimal surface in
terms of its Morse index, and it is known that any index 1 surface must have genus
at most three ([3], [21]). For minimal surfaces with free boundary in 3-manifolds
with nonnegative Ricci curvature and weakly convex boundary, we obtain a bound
on the genus and number of boundary components of any index 1 free boundary
minimal surface. Also, there is a bound on the area of stable or index 1 solutions
in terms of the topology of the surface and a positive lower bound on the ambient
scalar curvature.

Now we state the theorem.

Theorem 1.2. Let N be a 3-dimensional Riemannian manifold with smooth bound-
ary ∂N . Suppose Σ is a compact orientable two-sided surface of genus g and with
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k ≥ 1 boundary components, solving the free boundary problem (Σ, ∂Σ) → (N, ∂N).

(i) Suppose Ric(N) ≥ 0 and ∂N is weakly convex. If Σ has index 1, then:
a) g + k ≤ 3 if g is even;
b) g + k ≤ 4 if g is odd.

(ii) Suppose the scalar curvature R(N) ≥ 0 and ∂N is weakly mean convex.
If Σ is stable, then Σ is either a disk or a totally geodesic and flat cylinder.
If Σ has index 1, then:
a) k ≤ 5 if g is even;
b) k ≤ 7 if g is odd.

(iii) Suppose N has scalar curvature R ≥ R0 > 0 and ∂N is weakly mean convex.
Then:
a) if Σ is stable, then it is a disk and Area(Σ) ≤ 2π

R0
;

b) if Σ has index 1, then Area(Σ) ≤ 2π(7−(−1)g−k)
R0

.

Li [14] proved an area bound and a rigidity result for free boundary minimal
surfaces in strictly convex domains in R3. These area estimates are free boundary
analogs of the area estimates for closed stable and index 1 minimal surfaces in
3-manifolds of positive scalar curvature of Marques and Neves [17]. The rigidity
result for stable surfaces in part (ii) can be viewed as the free boundary analog of
results of Schoen and Yau for compact ambient manifolds ([24], Theorem 5.1), and
Fischer-Colbrie and Schoen for complete ambient manifolds ([5], Theorem 3). Li
has independently proved a rigidity result for stable free boundary surfaces ([15],
Proposition 2.2).

2. Existence of minimizing harmonic maps in a conjugacy class

Throughout this paper the terms “fundamental group” and “relative fundamen-
tal group” will implicitly refer to some base point ∗. Since the isomorphism class
of the fundamental group of a path-connected space is not affected by the choice of
base point, without ambiguity, we will write π1( · ) and π1(· , ·) while omitting the
base point.

Any continuous map f gives rise to a homomorphism f∗ : π1( · , ∗) → π1( · , f(∗)),
which we will call the induced map of f . We shall say two maps f and g induce
the same action on the fundamental group if there exists a path λ from f(∗) to
g(∗), such that f∗ = λ−1

∗ ◦ g∗ ◦ λ∗, or, equivalently, if f∗ and g∗ represent the same
homomorphism after identifying the fundamental groups with different base points
through an isomorphism

Iλ : π1( · , f(∗)) → π1( · , g(∗)), σ 	→ λ · σ · λ−1.

In this case, we will briefly say f∗ is conjugate to g∗ and will write f∗ ∼ g∗ for
short.

Finally, we recall that the relative fundamental group πn(X,A, ∗) for a triple
{∗} ⊂ A ⊂ X is a group only for n ≥ 2. When n = 1, it is the set of homotopy
classes of paths from the base point ∗ to a varying point in A.

Let N , M and Σ be as defined in Theorem 1.1. Given a continuous map f : Σ →
N with f(∂Σ) ⊆ M , denote by f∗ the induced homomorphism as indicated in each
of the following situations:

1) Σ is not a disk, f∗ : π1(Σ)× π1(Σ, ∂Σ) → π1(N)× π1(N,M),
2) Σ is a disk D, f∗ : π1(∂D) → π1(M).
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We will use the terminology “the conjugacy class of f∗” to denote the set of maps for
which the induced homomorphisms on the above fundamental groups are conjugate
to f∗.

Suppose a conformal structure on Σ is fixed, a Riemannian metric compatible
with this conformal structure is given, and this metric defines an area element dμ.
Let N ↪→ RK be a C∞ isometric embedding for sufficiently large K. Set

W 1,p(Σ, N) = {u ∈ W 1,p(Σ,RK) | u(x) ∈ N a.e. x ∈ Σ}.
For α > 1, we define the α-energy

Eα(u) =

∫
Σ

(
1 + |∇u|2

)α
dμ

on the admissible space

Wα = {u ∈ W 1,2α(Σ, N) | u(∂Σ) ⊆ M, u∗ ∼ f∗}.
Note that by the Sobolev embedding theorem, each u in W 1,2α(Σ, N) is continuous.

Proposition 2.1. Eα attains the infimum at some uα ∈ Wα, ∀α > 1.

Proof. Let Iα = infWα
Eα. Let {uα

k} be an Eα-minimizing sequence of maps; that
is, Eα(u

α
k ) → Iα. By the uniform boundedness ‖∇uα

k‖2α2α ≤ Eα(u
α
k ) ≤ c and

‖uα
k |∂Σ‖∞ ≤ supy∈M |y| the family {uα

k} is uniformly bounded in W 1,2α(Σ, N).
From the Sobolev embedding

W 1,2α(Σ, N) ↪→ C0,α−1
α (Σ, N)

the sequence {uα
k} is equicontinuous, so the Arzelà-Ascoli theorem yields a sub-

sequence, which we still denote by {uα
k}, that converges uniformly to a map uα

in C0,β(Σ, N) for any β ∈
[
0, α−1

α

)
, and uα(∂Σ) ⊆ M . Furthermore, when k is

sufficiently large, uα
k is homotopic to uα, and hence (uα)∗ ∼ (uα

k )∗ ∼ f∗. On the
other hand, from the weak compactness of the unit ball in W 1,2α(Σ, N), a subse-
quence of {uα

k} converges weakly to some u′
α in W 1,2α(Σ, N). It follows that the

two limits from the strong convergence and the weak convergence agree, that is,
uα = u′

α ∈ W 1,2α(Σ, N). So uα is in Wα. Now from the lower semi-continuity of
the α-energy, we have Eα(uα) = Iα. �

Next we consider convergence of a sequence of critical maps of Eα as α → 1.
Notice that for a sequence of minimizing maps uα of Eα we have a uniform energy
bound. Let f0 be a smooth map in the homotopy class of f , which exists since
C∞(Σ, N) is dense in C0(Σ, N). Then f0 ∈ Wα for all α > 0. Since uα minimizes
Eα on Wα, we have∫

Σ

(
1 + |∇uα|2

)α
dμ ≤

∫
Σ

(
1 + |∇f0|2

)α
dμ.

Then for α ∈ (1, 2), we get that the energy of uα is uniformly bounded as∫
Σ

|∇uα|2 dμ <

∫
Σ

(1 + |∇uα|2) dμ ≤
∫
Σ

(
1 + |∇uα|2

)α
dμ ≤

∫
Σ

(
1 + |∇f0|2

)2
dμ.

Lemma 2.2. Let uα be a sequence of critical maps of Eα with E(uα) ≤ B. Then
a subsequence uα → u strongly in L2(Σ,RK), weakly in W 1,2(Σ,RK), and E(u) ≤
limα→1 E(uα).
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Since N is allowed to be noncompact, we impose suitable conditions on N . A
complete Riemannian manifold N is homogeneously regular if its injectivity radius
is bounded from below and its sectional curvature is bounded (see [18], p. 623,
[20]). With this condition, and the assumption that the boundary of the surface
lies in a compact submanifold of N , we can derive the main estimate for critical
maps of the α-energy at interior points of Σ in a similar manner as in the case of
closed surfaces in compact manifolds (Proposition 3.2 of [22]), and as for the free
boundary problem (Proposition 1.7 of [6]). We then have the following convergence
result for critical maps of small energy.

Lemma 2.3 ([22], [6]). Let uα : Σ ∩ Dr → N with uα(∂Σ ∩ Dr) ⊂ M be critical
maps of Eα such that uα(Σ ∩Dr) meets M orthogonally along uα(∂Σ ∩Dr) for a
sequence α → 1, that converge in L2(Σ,RK). Then there exists ε > 0 such that if
E(uα) < ε, then {uα} → u in C1(Σ ∩ D r

2
, N) and u : Σ ∩ D r

2
→ N is a smooth

harmonic map such that u(Σ ∩Dr) meets M orthogonally along u(∂Σ ∩D r
2
).

We can now deduce global convergence of critical maps of the α-energy away
from a finite number of points.

Theorem 2.4 ([22], [6]). Let uα : Σ → N with uα(∂Σ) ⊂ M be critical maps
of Eα for a sequence α → 1, that converge in L2(Σ,RK), with E(uα) < B.
Then there exists a finite set of points {z1, · · · , zl} of Σ such that uα → u in
C1(Σ− {z1, · · · , zl}, N) and u : (Σ, ∂Σ) → (N,M) is a smooth harmonic map sat-
isfying the free boundary condition. Furthermore, when Σ is not a disk, if each uα

induces the same action on the fundamental group as f , then so does u.

Proof. The convergence part is Theorem 4.4 in [22] and Theorem 1.15 in [6]. We
need only verify that the induced map of uα on the fundamental group is preserved
in the limiting process, regardless of a finite set of points where bubbling may occur.

Choose, as generators of π1(Σ), k + 2g loops through a base point ∗ in Σ such
that all of these curves {γj} stay away from the points {z1, · · · , zl} where the C1

convergence fails. Since uα → u in C1(Σ−{z1, · · · , zl}, N), uα(∪jγj) is homotopic
to u(∪jγj) for α sufficiently close to 1. It follows that there exists a path connecting
uα(∗) and u(∗) such that uα(γj) can be deformed to u(γj) along the same path for
each j. Therefore by definition, u induces the same action as uα, and thus f ,
on π1(Σ). On the other hand, π1(Σ, ∂Σ) is the set of free homotopy classes of
paths from a fixed point ∗ ∈ ∂Σ to a varying point on ∂Σ, and for each class a
representative can be chosen away from the points {z1, · · · , zl}. Therefore u induces
the same action as uα for α sufficiently close to 1, and thus f , on π1(Σ, ∂Σ). �
Remark. When Σ is a disk D, to show the action on π1 is preserved in the limit,
the argument above cannot be applied as a blowup point may be on the generator
of π1(∂D), and so we need a different argument. See Section 4.

The convergence may fail at a finite number of interior or boundary points where
bubbling occurs. Thus the homotopy class of {uα} can be altered in the limiting
process. However, under stronger conditions on the topology ofN andM , we obtain
the existence of a harmonic map in any homotopy class. This can be interpreted
as the free boundary analog of Theorem 5.1 in [22].

Theorem 2.5. Let N , M and Σ be as in Theorem 1.1. If in addition π2(N) = 0
and π2(N,M) = 0, then there exists a minimizing harmonic map satisfying the free
boundary condition in every free homotopy class of maps in C0 (Σ, ∂Σ;N,M).
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Proof. Let uα be a minimizing map of Eα in a fixed homotopy class of f for a
sequence α → 1. Then {uα} has uniformly bounded energy by the note after
Proposition 2.1. By Theorem 2.4, there exists a subsequence such that uα →
u in C1(Σ − {z1, · · · , zl}, N) and u : (Σ, ∂Σ) → (N,M) is a smooth harmonic
map satisfying the free boundary condition. We claim that under the topological
assumptions of the theorem, uα → u in C1(Σ, N).

At each point zi where the C1 convergence fails, center a small disk Dρ in Σ
about zi of radius ρ, where ρ is small enough so that zj /∈ D̄ρ for j �= i. First,
assume zi is an interior point, and choose ρ small enough so that Dρ ∩ ∂Σ = ∅.
Let η(r) be a smooth function that is 1 for r ≥ 1 and 0 for r ≤ 1

2 , and as in [22],
Theorem 5.1, define a modified map ûα by

(2.1) ûα(z) = expu(z)

(
η
(
|z|/ρ

)
exp−1

u(z) (uα(z))
)
,

where exp is the exponential map on N . Then ûα agrees with uα outside Dρ and
with u on Dρ/2, and ûα → u in C1(Dρ, N). By assumption, π2(N) = 0, and so uα

and ûα are homotopic.
If zi is a boundary point, let A ⊂ ∂Σ be the segments of the intersection of ∂Σ

with the annulus {ρ
2 < |z| < ρ}. For the map defined in (2.1), ûα(A) may not lie in

M , however we can modify the map so that it does satisfy the boundary condition.
Since uα → u in C1 on D̄ρ−Dρ/2 and u(∂Σ) ⊂ M , we may choose a neighborhood

Ωα of A in D̄ρ − Dρ/2 that lies in a tubular neighborhood of ∂Σ and so that the
nearest point projection from ∂Ωα ∩ int(Σ) to ∂Σ is one-to-one, such that ûα(Ωα)
lies in a tubular neighborhood of M in N , with |Ωα| → 0 as α → 1. On Ωα, we
redefine ûα to map each geodesic segment between a point z of ∂Ωα − A and its
nearest point in ∂Σ proportionally to the geodesic segment in N between ûα(z)
and its nearest point in M . This modified ûα is piecewise smooth since u, uα, the
exponential map, and the nearest point projection maps are smooth. Moreover,
since uα → u in C1 on D̄ρ − Dρ/2, |∇ûα| is bounded independent of α on Ωα,
and since |Ωα| → 0 we have limα→1 Eα(ûα|Ωα

) = 0. Finally, since ûα = uα on
the half circle {|z| = ρ}, the assumption π2(N,M) = 0 implies that there exists
a homotopy between the disk uα(Dρ) ∪ ûα(Dρ) and a disk in M , relative to the
boundary uα(Dρ ∩ ∂Σ)∪ ûα(Dρ ∩ ∂Σ). Hence the two disks bound a 3-dimensional
disk in N and there exists a homotopy between uα and ûα relative to the half circle
{|z| = ρ}, mapping the boundary Dρ ∩ ∂Σ into M .

Therefore in either case, whether zi is an interior or boundary point of Σ, we
have defined a map ûα homotopic to uα such that

lim
α→1

Ẽα(ûα|Dρ
) = E(u|Dρ

),

where Ẽα(u) =
∫
Σ

(
(1 + |∇u|2)α − 1

)
dμ. Since uα is minimizing for Eα in its

homotopy class, Eα(uα|Dρ
) ≤ Eα(ûα|Dρ

). Therefore,

lim sup
α→1

E(uα|Dρ
) ≤ lim sup

α→1
Ẽα(uα|Dρ

) ≤ lim
α→1

Ẽα(ûα|Dρ
) = E(u|Dρ

) ≤ πρ2‖u‖21,∞.

Choose ρ sufficiently small so that πρ2‖u‖21,∞ < ε/2, where ε is as in Lemma 2.3.
Then for α sufficiently close to 1, we have E(uα|Dρ

) < ε, and by Lemma 2.3, uα → u

in C1 on Dρ. Hence uα → u in C1(Σ, N) and u is in the same free homotopy class
as f . �
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We will need the following convergence result for harmonic maps with respect
to varying conformal structures on Σ.

Theorem 2.6. Let ui : (Σ, ∂Σ) → (N,M) be a harmonic map satisfying the free
boundary condition for a conformal structure ci on Σ, where Σ is not of disk
type. Suppose ci converges to a conformal structure c in the C∞-topology and
E(ui, ci) ≤ B. Then there exist a subsequence {ui} and a finite set of points
{z1, · · · , zl} such that ui → u in C1(Σ − {z1, · · · , zl}, N), where u : (Σ, ∂Σ) →
(N,M) is a smooth harmonic map satisfying the free boundary condition, and
E(u, c) ≤ lim inf i→∞ E(ui, ci). Furthermore, if each ui induces the same action
on the fundamental group as f , then so does u.

Proof. The convergence for varying conformal structures on a closed surface lying in
a bounded set is shown in [23], Theorem 2.3, and the argument carries through for
bordered surfaces. The argument that the induced map of ui on the fundamental
group is preserved in the limiting process is as in the proof of Theorem 2.4 above. �

3. Minimal surfaces of nondisk type

Recall that the Euler characteristic of a surface of genus g with k boundary
components is χ(Σ) = 2 − 2g − k. On the disk D, there is only one conformal
structure, and any smooth harmonic map u : D → N with u(∂D) ⊂ M and
meeting M orthogonally along u(∂D) is conformal, and hence a branched minimal
immersion. When Σ is not a disk, that is, when χ(Σ) ≤ 0, in order to produce
a branched minimal immersion, we must vary the conformal structure on Σ. Let
M(Σ) denote the space of conformal structures on Σ with the C∞-topology. Given
a conformal structure c ∈ M(Σ), let g be a Riemannian metric compatible with c
and dμ be the area element induced by g. We then consider

E : W 1,2(Σ, N)×M(Σ) → R,

where

E(u, c) =

∫
Σ

|∇gu|2g dμ.

By virtue of the conformal invariance of the energy functional, this is independent
of the choice of the metric g and is well defined. We note that E(·, c) is lower
semi-continuous in u, and E(u, ·) is continuous in c.

For each conformal structure c we have produced, by Proposition 2.1 and Theo-
rem 2.4, when Σ is not a disk, a smooth harmonic map uc in the admissible space

Wf = {u ∈ W 1,2(Σ, N) | u(∂Σ) ⊆ M, u∗ ∼ f∗}
such that E(uc, c) = infu∈Wf

E(u, c) (note that for f ∈ W 1,2(Σ, N), f∗ can be
defined as in section 1, Schoen-Yau [24]). Now we define a functional on the space
of conformal structures Ē : M(Σ) → R by

Ē(c) = inf
u∈Wf

E(u, c) = E(uc, c).

Lemma 3.1. Ē is continuous on M(Σ).

Proof. Let ci → c be a sequence of conformal structures. Suppose Ē(ci) = E(ui, ci)
and Ē(c) = E(u, c) for some ui, u ∈ Wf . Let K = lim inf E(ui, ci), and let
{(uik , cik)} be a subsequence such that E(uik , cik) → K. By Theorem 2.6 there
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exists a further subsequence, which we continue to denote by {uik}, and u0 ∈ Wf

such that E(u0, c) ≤ limk→∞ E(uik , cik). Then,

E(u, c) = lim
i
E(u, ci)

≥ lim sup
i

E(ui, ci) (since ui is minimizing for ci)

≥ lim inf
i

E(ui, ci)

= lim
k

E(uik , cik)

≥ E(u0, c)

≥ E(u, c) (since u is minimizing for c).

It follows that Ē(c) = E(u, c) = limi E(ui, ci) = limi Ē(ci). �

Suppose infM(Σ) Ē is attained at c ∈ M(Σ). Let u be a minimizing harmonic
map with respect to c. Then for any pair (u′, c′) ∈ Wf ×M(Σ), we have

E(u, c) = inf
Wf

E(·, c) = Ē(c) ≤ Ē(c′) = inf
Wf

E(·, c′) ≤ E(u′, c′).

The relationship between such a minimizing pair and the minimal immersion
problem is illustrated in the following (cf. Theorem 1.8, [22], and Corollary 1.5,
[23]).

Theorem 3.2. If (u, c) is a critical point of E on Wf×M(Σ), then u is a branched
minimal immersion.

Proof. Any variation of the metric arises from a composition of a conformal change
in the metric, and a curve in M(Σ). Hence by the conformal invariance of E, the
fact that c is a critical point of E(u, ·) onM(Σ) implies that E is critical with respect
to any variation of the initial metric induced by c. The computation of Sacks and
Uhlenbeck ([22], p. 6) shows that u is weakly conformal in the interior of Σ. Then
by Gulliver, Osserman, and Royden [7], u is a branched minimal immersion. �

Corollary 3.3. If (u, c) is a minimizer of E on Wf × M(Σ) with respect to all
smooth variations of c preserving the action on the fundamental group, then u
minimizes area among all branched immersions having the same action.

Let D(Σ) denote the topological group of diffeomorphisms of Σ onto itself with
the C∞-topology of uniform convergence on compact sets of all differentials. Let
M(Σ) denote the space of conformal structures on Σ. There is a natural action

M(Σ)×D(Σ) → M(Σ)

by pulling back metrics. The Riemann moduli space of Σ is defined as the quotient

R(Σ) = M(Σ)/D(Σ)

consisting of equivalent conformal structures with respect to this action.
Let {ci} be an Ē-minimizing sequence, i.e. Ē(ci) → inf Ē. If a subsequence

converges to a conformal structure c, then Ē(c) = inf Ē by Lemma 3.1. In fact it
suffices to have a weaker condition that {ci} converges in the moduli space R(Σ).

Lemma 3.4. Let {ci} be an Ē-minimizing sequence. If there exist diffeomorphisms
φi ∈ D(Σ) and c ∈ M(Σ), such that φ∗

i ci → c in the C∞-topology, then there exists
a minimizing conformal structure for Ē.
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Proof. Let ui be a minimizing harmonic map for φ∗
i ci which induces the same action

as f ◦ φi. Then ui ◦ φ−1
i induces the same action as f and we have

Ē(ci) ≤ E(ui ◦ φ−1
i , ci) = E(ui, φ

∗
i ci) ≤ E(uci ◦ φi, φ

∗
i ci) = E(uci , ci) = Ē(ci),

where uci denotes a minimizing harmonic map for ci which induces the same action
as f . Therefore,

(3.1) E(ui, φ
∗
i ci) = Ē(ci).

By Theorem 2.6, there exists a subsequence uik such that uik → u in C1 on Σ
minus a finite set of points, and since φ∗

i ci → c, we have

(3.2) E(u, c) ≤ lim inf E(uik , φ
∗
ik
cik).

For sufficiently large k, u ◦ φ−1
ik

induces the same action as uik ◦ φ−1
ik

on the fun-
damental group by the proof of Theorem 2.6, and hence is in the admissible space
Wf , since ui ◦ φ−1

i induces the same action as f . Then we have

Ē((φ−1
ik

)∗c) ≤ E(u ◦ φ−1
ik

, (φ−1
ik

)∗c)

= E(u, c)

≤ lim inf E(uik , φ
∗
ik
cik)

= lim inf Ē(cik)

= inf
M(Σ)

Ē,

where the first equality is by conformal invariance of the energy, the second in-
equality is by (3.2), the second equality is by (3.1), and the third equality follows
since {cik} is a minimizing sequence of Ē. Therefore

Ē((φ−1
ik

)∗c) = inf
M(Σ)

Ē.

This proves the existence of a minimizing conformal structure. In fact, for all large
k, (φ−1

ik
)∗c are Ē-minimizers. �

Thus by Theorem 3.2, Corollary 3.3 and Lemma 3.4, the minimal area problem is
reduced to the convergence problem in the moduli space R(Σ). We will now prove
part (i) of Theorem 1.1. Throughout we let {ci} be an Ē-minimizing sequence of
conformal structures, and ui will denote a minimizing map for ci, with E(ui, ci) <
B.

I. Σ is not a cylinder.
Assume that Σ is a surface with χ(Σ) < 0. For each conformal structure ci

in the minimizing sequence, consider the doubled conformal surface. Applying the
compactification theorem of the moduli space of conformal structures for the closed
doubled conformal surfaces (Lemma 4 of Abikoff [1]), there is a subsequence of {ci}
(which we continue to denote by {ci}) and there are diffeomorphisms φi of Σ such
that either φ∗

i ci → c in C∞, or (Σ, φ∗ci) converges to a Riemann surface with nodes
Σ∞ corresponding to pinching a set of homotopically nontrivial simple closed curves
in the doubled surface to nodes wm, m = 1, . . . , n. In the first case, by Lemma 3.4
we are done. In the second case, we have curves γm in Σ which are pinched, each
of which is either a closed curve (possibly a boundary component) or a curve with
its endpoints on ∂Σ (corresponding to a closed curve in the doubled surface that
crosses ∂Σ, and must be reflection invariant across ∂Σ). We may then argue as in
[23], Theorem 4.3. We may choose a nested sequence {Dm

j } of closed neighborhoods
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of γm such that Dm
j converges to the node wm of Σ∞, and for each fixed j, the

change in the conformal structure on Σ as (Σ, φ∗
i ci) → Σ∞ is restricted to the

interior of
⋃n

m=1 D
m
j ([2]). Let Σj = Σ −

⋃n
m=1 D

m
j . By Theorem 2.6, there is a

subsequence {u(1)
i } of {ui} that converges in C1(Σ1−{p1, . . . , p�1}, N) to a smooth

harmonic map defined on Σ1. Given {u(j−1)
i }, by Theorem 2.6, a subsequence

{u(j)
i } of {u(j−1)

i } converges in C1(Σj − {p1, . . . , p�j}, N) to a smooth harmonic
map. Since E(ui, ci) < B, by Lemma 2.3, �j < 4B/ε. Consider the diagonal

sequence {u(i)
i } which converges to a harmonic map u in C1(Σ′

∞−{p1, . . . , p�}, N),
with � ≤ 4B/ε, where Σ′

∞ is the punctured Riemann surface Σ−{w1, . . . , wn}. Since
E(ui, ci) < B for all i, E(u) < B, and by Theorem 1.6 of [22] and Theorem 1.10 of

[6], u can be extended to a smooth harmonic map u : Σ̃∞ → N satisfying the free

boundary condition, where Σ̃∞ = Σ′
∞∪{q1, . . . , qs, (qs+1, q

′
s+1), . . . , (qn, q

′
n)} is the

bordered Riemann surface obtained by adding a point qm at the punctures of Σ′
∞

corresponding to the nodes wm ∈ Σ∞ resulting from the pinching of components
of ∂Σ, and adding a pair of points (qm, q′m) at the two punctures of Σ′

∞ (which
may be boundary points) corresponding to each node wm ∈ Σ∞ resulting from the
pinching of a closed curve inside Σ or a closed curve in the doubled surface that
crosses ∂Σ. Now let γ be a curve homotopic to γm, for any fixed m between 1 and
n, chosen to lie in Dm

j for j sufficiently large and so as not to contain any of the

points p1, . . . , p�. Since γ ⊂ Σ̃∞ is homotopically trivial (either as a closed curve or
a curve relative to the boundary), it follows that u(γ) is homotopically trivial. But

limi→∞ u
(i)
i (γ) = u(γ), so u

(i)
i (γ) is homotopically trivial for i sufficiently large.

Since γ is homotopically nontrivial in Σ, this contradicts our assumption that the
induced map on the fundamental groups is injective. Therefore the second case
cannot occur.

II. Σ is a cylinder.
A cylinder with a conformal structure can be represented by a parallelogram

spanned by the vectors (1, 0) and ξ in R
2 with sides corresponding to one of the two

generators identified. Two cylinders given by ξ1, ξ2, with the same corresponding
sides identified, represent conformally equivalent cylinders if ξ2 = τξ1 for some
τ ∈ PSL(2,Z).

Given our minimizing sequence of conformal structures ξi, and associated min-
imizing harmonic maps ui, there exist elements τi ∈ PSL(2,Z) such that τiξi lies
in the fundamental domain of PSL(2,Z). If Im(τiξi) ≤ b < ∞ for all i, then a
subsequence of {τiξi} converges to η, and by Lemma 3.4 we are done.

Otherwise, suppose that κi = Im(τiξi) → ∞. Let ηi = τiξi. Then vi = ui ◦ τ−1
i :

(Σ, ηi) → N is harmonic and E(vi, ηi) = E(ui, ξi) ≤ B. We consider the following
two cases:

a) If the sides corresponding to ηi are identified, then on any cylinder S1× [0, κ)
we can find a subsequence of {vi} which converges in C1(S1×[0, κ)−{z1, . . . , zn}, N)
to a harmonic map v : S1× [0, κ) → N with E(v) < B. Since κ was arbitrary, using
a diagonal sequence argument as above, we obtain a harmonic map v : S1×[0,∞) →
N with E(v) < B. But S1 × [0,∞) is conformally D̄−{p} for some p ∈ D, and by
Theorem 1.6 in [22], v extends to a smooth harmonic map v : D → N providing a
homotopy of vi(S

1 × {q}) � v(S1 × {q}) to a point for suitable q and i sufficiently
large. This implies that the generator τ−1

i (S1 × {q}) of (Σ, ξi) is mapped by ui,
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and hence also by f , to a loop homotopic to zero, contradicting the assumption
that f∗ : π1(Σ) → π1(N) is injective.

b) If the sides corresponding to (0, 1) are identified, then on any strip [0, 1] ×
(−κ, κ) we can find a subsequence of {vi} which converges in C1([0, 1]× (−κ, κ)−
{z1, . . . , zn}, N) to a harmonic map v : [0, 1]× (−κ, κ) → N) with E(v) < B. Since
κ was arbitrary, we can obtain a harmonic map v : [0, 1]× R → N with E(v) < B.
But [0, 1] × R is conformally D̄ − {p1, p2} for some p1, p2 ∈ ∂D, and by Theorem
1.10 in [6], v extends to a smooth harmonic map v : D̄ → N providing a homotopy
of vi([0, 1]× {q}) � v([0, 1]× {q}) to a point for suitable q and i sufficiently large.
This contradicts the assumption that f∗ : π1(Σ, ∂Σ) → π1(N,M) is injective.

We have proved part (i) of Theorem 1.1.

4. Minimizing disks

Now we prove part (ii) of Theorem 1.1, that there exists a generating set {γj}
for ker i∗, where i∗ : π1(M,x0) → π1(N, x0) is the homomorphism induced by
the inclusion, such that each γj is freely homotopic to the boundary of an area
minimizing disk that solves the free boundary problem (D, ∂D) → (N,M). We
will need the following lemma.

Lemma 4.1. Let u ∈ W 1,2α(D, ∂D;N,M) be a critical map of Eα. Then u satisfies

(4.1)

∫
D

(
−
(
1 + |∇u|2

)α
+ α

(
1 + |∇u|2

)α−1|∇u|2
)
z dxdy = 0,

where z = x+ iy is the complex coordinate on the disk D.

Proof. Writing u = u(z, z̄), we have |∇u|2 = |ux|2 + |uy|2 = 4uz · uz̄ and

Eα(u) =

∫
D

(
1 + 4uz · uz̄

)α i

2
dzdz̄.

Given a complex number β, let

ϕβ(z) =
z − β

1− β̄z
.

Let β(t) be a differentiable curve in C with

|β(t)| < 1, β(0) = 0.

Then ϕt = ϕβ(t) is a family of automorphisms of the unit disk, which map the
boundary to the boundary. Now we define a variation of u by

D
ϕt−→ D

u−→ N,

z 	→ w = ϕt(z) 	→ u(w, w̄),

where

z = ϕ−1
t (w) =

w + β

1 + β̄w
.

Then we have
∂w

∂z
=

1− |β|2
(1− β̄z)2

,
∂z

∂w
=

1− |β|2
(1 + β̄w)2

,

and using β(0) = 0, we compute

(4.2)
∂

∂t

(∂w
∂z

)∣∣∣∣
t=0

= 2β̄′(0)z,
∂

∂t

( ∂z

∂w

)∣∣∣∣
t=0

= −2β̄′(0)w.



2498 JINGYI CHEN, AILANA FRASER, AND CHAO PANG

We have

Eα(u ◦ ϕt) =

∫
D

(
1 +

∂w

∂z

∂w̄

∂z̄
|∇u|2

)α
∂z

∂w

∂z̄

∂w̄

i

2
dwdw̄.

We compute

∂w

∂z

∂w̄

∂z̄
=

(1 + β̄w)2(1 + βw̄)2

(1− |β|2)2 , and
∂

∂t

(
∂w

∂z

∂w̄

∂z̄

)∣∣∣∣
t=0

= 2β̄′(0)w + 2β′(0)w̄.

Using this and (4.2), we have

d

dt
Eα(u ◦ ϕt)

∣∣∣
t=0

=

∫
D

(
1 + |∇u|2

)α(− 2β̄′(0)w − 2β′(0)w̄
) i

2
dwdw̄

+

∫
D

α|∇u|2
(
1 + |∇u|2

)α−1(
2β̄′(0)w + 2β′(0)w̄

) i

2
dwdw̄

= β′(0)

∫
D

2
(
−

(
1 + |∇u|2

)α
+ α

(
1 + |∇u|2

)α−1|∇u|2
)
z̄ dxdy

+ β̄′(0)

∫
D

2
(
−
(
1 + |∇u|2

)α
+ α

(
1 + |∇u|2

)α−1|∇u|2
)
z dxdy.

Since β′(0) is arbitrary, we get (4.1). �

Corollary 4.2. Let uα be a sequence of critical maps of Eα for a sequence α → 1.
If uα → u in C1(D̄ − {p}, N), where p ∈ ∂D and each uα is nontrivial, then u is
not a constant map.

Proof. From (4.1), taking the imaginary part, and using the fact that
∫
D
y dxdy =

0, we have∫
D

(
−
(
1 + |∇uα|2

)α
+ 1 + α

(
1 + |∇uα|2

)α−1|∇uα|2
)
y dxdy = 0.

Note that the integrand is similar to that in the variation formula for the sphere
derived by Sacks and Uhlenbeck (Lemma 5.3, page 20, [22]). Thus by the same
argument, we have for 1 ≤ α ≤ 2,

α

2
(α−1)|∇uα|4 ≤

−
(
1 + |∇uα|2

)α
+ 1 + α

(
1 + |∇uα|2

)α−1|∇uα|2(
1 + |∇uα|2

)α−2 ≤
(
α−1)|∇uα|4.

Without loss of generality, we can assume p is the point (0, 1) ∈ ∂D ⊂ R2.
Dividing D into the upper half disk D+ and the lower half disk D−, we have

α

2

∫
D+

(
1 + |∇uα|2

)α−2|∇uα|4 y dxdy ≤ −
∫

D−

(
1 + |∇uα|2

)α−2|∇uα|4 y dxdy.

Assume u is a constant map. Then uα cannot converge to u in C1(D,N) (Theorem
1.8 in [6]). Therefore p is a blowup point; that is (by Lemma 1.16 and p. 957 in
[6]),

bα = max
z∈D

|∇uα(z)| = |∇uα(zα)| → ∞,

where limα→1 zα = p. Consider the rescaled maps ũα(z) = uα(zα + b−1
α z). As

α → 1, the domains of ũα exhaust either the whole plane or a half plane, and (a
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subsequence) {ũα} converges in C1 on compact subsets to a nontrivial harmonic
map ũ. If DR(0) denotes the disk of radius R centered at the origin in the plane
or the half plane, then we have

1

4
E(ũ|DR(0)) ≤ lim

α→1

1

4

∫
DR(0)

|∇ũα|2 dxdy

= lim
α→1

1

4

∫
DR/bα (zα)

|∇uα|2 dxdy

= lim
α→1

1

4

∫
DR/bα (zα)

(
|∇uα|2 −

|∇uα|2
1 + |∇uα|2

)
dxdy

= lim
α→1

1

4

∫
DR/bα (zα)

|∇uα|2
1 + |∇uα|2

· |∇uα|2 dxdy

≤ lim
α→1

α

2

∫
DR/bα(zα)

(
1 + |∇uα|2

)α−1 |∇uα|2
1 + |∇uα|2

· |∇uα|2 y dxdy

= lim
α→1

α

2

∫
DR/bα(zα)

(
1 + |∇uα|2

)α−2|∇uα|4 y dxdy

≤ lim
α→1

α

2

∫
D+

(
1 + |∇uα|2

)α−2|∇uα|4 y dxdy

≤ lim
α→1

−
∫

D−

(
1 + |∇uα|2

)α−2|∇uα|4 y dxdy

= 0,

where the first equality is by the conformal invariance of the energy functional, the
second equality follows since bα → ∞, in the second inequality we have used y > 1

2
on DR/bα(zα), and the last equality follows since u is a constant map and uα → u in

C1 on D−, so |∇uα|2 → 0 uniformly. This contradicts the fact that ũ is nontrivial.
Therefore u is not a constant map. �

Now we come back to the specific setting of minimizing disks. Given a basepoint
x0 ∈ M , let

i∗ : π1(M,x0) → π1(N, x0)

be the homomorphism induced by the inclusion i of M in N . Recall that two
elements γ and γ′ in π1(M,x0) determine the same free homotopy class of closed
curves in M if and only if they belong to the same orbit π1(M,x0)γ = π1(M,x0)γ

′

under the usual action of π1(M,x0) on π1(M,x0). That is, the set of free homotopy
classes of closed curves in M is in one-to-one correspondence with the set of orbits
π1(M,x0)γ ⊂ π1(M,x0) (for further details see [22] p. 19). Given an element γ in
ker i∗, let Γ be its associated free homotopy class. Let

WΓ = {u ∈ W 1,∞(D, ∂D;N,M) : [u(∂D)] = Γ},
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where we use the notation [u(∂D)] for the free homotopy class of u(∂D), and define

E(Γ) = min {E(u) : u ∈ WΓ} = lim
α→1

min {Ẽα(u) : u ∈ WΓ},

where Ẽα(u) =
∫
Σ
((1 + |∇u|2)α − 1)dμ. Note that E(Γ) = 0 if and only if Γ is

trivial, and E(Γ) > ε0 otherwise ([6], Theorem 1.8).

Lemma 4.3. Let γ ∈ ker i∗ and let Γ = π1(M,x0)γ be its associated free homotopy
class. Then either Γ can be represented by the boundary of an area minimizing
disk solving the free boundary problem, or for any δ > 0 there exist nontrivial free
homotopy classes Γ1 = π1(M,x0)γ1, Γ2 = π1(M,x0)γ1, where γ1, γ2 ∈ ker i∗, such
that

π1(M,x0)γ ⊂ π1(M,x0)γ1 + π1(M,x0)γ2, E(Γ1) + E(Γ2) < E(Γ) + δ.

Proof. Since γ ∈ ker i∗ there exists f : (D, ∂D) → (N,M) such that [f(∂D)] = Γ.
As in the proof of Proposition 2.1, there exists a minimizing map uα of Eα on
WΓ. By Theorem 2.4 there exists a sequence α → 1 such that uα → u in C1 on
D minus a finite set of points, and u : (D, ∂D) → (N,M) is a (possibly trivial)
harmonic map satisfying the free boundary condition. If the set of points where
the convergence fails is empty, then u is nontrivial, and hence is an area minimizing
disk solving the free boundary problem with [u(∂D)] = Γ. Otherwise there exists a
point p at which uα fails to converge to u in C1. Note that p cannot be an interior
point. If p is an interior point, then as in the proof of Theorem 2.5 we can define
a modified map ûα by (2.1) with ûα|∂D = uα|∂D, so ûα ∈ WΓ and by the same
argument as in the the proof of Theorem 2.5 we have uα → u in C1(Dρ(p), N).
Therefore, p ∈ ∂D.

Now observe that given ρ > 0, we can find a neighborhood B of p in D̄, with
|B| < ρ, that contains no other points where the convergence fails, and such that
there is a conformal diffeomorphism h : D − B̄ → B leaving ∂B ∩ D fixed. The
existence of B and h can be seen in the following way. Let ϕ : D → H be a
conformal map from the open disk D to the upper half plane H such that p is
mapped to the origin and two nearby points q and q′ ∈ ∂D on either side of p
are mapped to 1 and −1. We may choose q and q′ sufficiently close to p so that
B := ϕ−1(D+), where D+ = D ∩ H̄, has area less than ρ and contains no other
points where the convergence fails. Let S : D̄+ → H − D+ be the conformal
map S(z) = 1/z̄, which is the identity map on the half circle. Then we may take
h = ϕ−1 ◦ S ◦ ϕ.

Using the construction from Theorem 2.5, we can define a map ûα that agrees
with uα outside B and with u on some neighborhood of p in B, and so that
limα→1 Ẽα(ûα|B) = E(u|B). Now define

u1
α =

{
uα on D −B,
ûα on B,

u2
α =

{
ûα ◦ h on D − B,
uα on B.
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Let Γ1 and Γ2 be the free homotopy classes of u1
α(∂D) and u2

α(∂D) respectively.
Then Γ ⊂ Γ1 + Γ2. By the conformality of h, we have

lim
α→1

Ẽα(u
1
α) = lim

α→1
Ẽα(uα|D−B) + E(u|B),

lim
α→1

Ẽα(u
2
α) = lim

α→1
Ẽα(uα|B) + E(u|B).

Choose ρ sufficiently small so that E(u|B) ≤ ‖u‖21,∞|B| < ‖u‖21,∞ρ < δ/6. Then if
α is sufficiently close to 1, we have

Ẽα(u
1
α) ≤ Ẽα(uα|D−B) +

δ

3
,

Ẽα(u
2
α) ≤ Ẽα(uα|B) +

δ

3
,

and

(4.3) E(Γ1) + E(Γ2) ≤ Ẽα(u
1
α) + Ẽα(u

2
α) ≤ Ẽα(uα) +

2δ

3
< E(Γ) + δ,

where the last inequality follows since {uα} is a minimizing sequence for E(Γ). We

may assume δ < 1
2 min{ε, ε0}. By Lemma 2.3, Ẽα(u

2
α) ≥ Ẽα(uα|B) ≥ E(uα|B) ≥ ε

for α close to 1, and so

E(Γ1) ≤ Ẽα(u
1
α) ≤ E(Γ) + δ − ε < E(Γ).

Therefore Γ1 �= Γ and Γ2 is nontrivial. It remains to show that Γ1 is nontrivial.
For α sufficiently close to 1, we have

Ẽα(u
1
α) ≥ Ẽα(uα|D−B) ≥ E(u|D−B)−

δ

6
> E(u)− δ

3
.

If u is nontrivial, then E(u) ≥ ε0 ([6] Theorem 1.8), and so

Ẽα(u
1
α) > E(u)− δ

3
≥ ε0 −

δ

3
> δ.

If u is trivial, by Corollary 4.2 there must be a second point p′ �= p where the
convergence uα → u fails, and p′ ∈ ∂D − B. Then by Lemma 2.3, Ẽα(u

1
α) ≥

Ẽα(uα|D−B) ≥ E(uα|D−B) ≥ ε for α close to 1. In either case, we have Ẽα(u
1
α) > δ,

and then by equation (4.3),

E(Γ2) ≤ Ẽα(u
2
α) < E(Γ) + δ − Ẽ(u1

α) < E(Γ) + δ − δ = E(Γ).
Therefore, Γ2 �= Γ and Γ1 is nontrivial. �

Theorem 4.4. There exists a generating set {γj} for ker i∗ such that each γj is
freely homotopic to the boundary of an area minimizing disk that solves the free
boundary problem.

Proof. Let {Γj} be the free homotopy classes that can be represented by the bound-
ary of an area minimizing disk that solves the free boundary problem. Let P ⊂ ker i∗
be the subgroup generated by the elements γ ∈ Γj based at x0. Suppose P is a
proper subgroup. Let I = inf E(Γ) over all free homotopy classes Γ with elements
γ ∈ Γ, γ /∈ P . Then there exists Γ such that E(Γ) < I + ε0/2.

By assumption, Γ cannot be represented by the boundary of an area mini-
mizing disk that solves the free boundary problem, and so by Lemma 4.3 there
exist nontrivial Γ1 and Γ2 with π1(M,x0)γ ⊂ π1(M,x0)γ1 + π1(M,x0)γ2 and
E(Γ1) + E(Γ2) < E(Γ) + ε0/2. Since Γ1 and Γ2 are nontrivial, E(Γj) ≥ ε0 for
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j = 1, 2. This implies E(Γj) < E(Γ)− ε0/2 < I. Therefore, by assumption the sets
π1(M,x0)γj are both in P , and so

π1(M,x0)γ ⊂ π1(M,x0)γ1 + π1(M,x0)γ2 ⊂ P,

a contradiction. Therefore P = ker i∗, and so the elements {γ ∈ Γj} based at
x0 form a generating set for ker i∗ such that each Γj can be represented by the
boundary of an area minimizing disk that solves the free boundary problem. �
Remark. Note that two distinct elements of this generating set for ker i∗ may be
freely homotopic to the boundary of the same area minimizing disk.

5. Topology of minimal surfaces of low index

Let N be a compact 3-manifold with smooth boundary ∂N . Suppose Σ is a
compact orientable two-sided minimal surface inN with boundary ∂Σ in ∂N solving
the free boundary problem (Σ, ∂Σ) → (N, ∂N). We will investigate controlling the
genus and the number of boundary components of Σ for stable and index 1 minimal
surfaces, under certain curvature and boundary assumptions on N .

Let A denote the second fundamental form, and ν denote the unit normal vector
field of Σ in N . Let η denote the outward unit conormal of Σ and T be the unit
tangent vector along ∂Σ. The index form is the quadratic form

I(f, f) =

∫
Σ

(
|∇f |2 −

(
Ric(ν) + |A|2

)
f2

)
dμ+

∫
∂Σ

〈∇νν, η〉 f2 ds

for any normal variational vector field fν. The index of Σ is defined as the number
of negative eigenvalues of the associated bilinear form. A function f ∈ W 1,2(Σ,R)
is an eigenfunction of the index form with eigenvalue λ if I(f, g) = λ〈f, g〉L2 for all
g ∈ W 1,2(Σ,R):∫

Σ

(
∇f · ∇g − (Ric(ν) + |A|2)fg

)
dμ+

∫
∂Σ

〈∇νν, η〉 fg ds = λ

∫
Σ

fg dμ.

Integrating by parts gives

−
∫
Σ

(
Δf + (Ric(ν) + |A|2)f + λf

)
g dμ+

∫
∂Σ

(∂f
∂η

+ 〈∇νν, η〉 f
)
g ds = 0.

Equivalently f solves the following Robin-type boundary value problem:{
Δf +

(
Ric(ν) + |A|2

)
f = −λf in Σ,

∂f
∂η + 〈∇νν, η〉 f = 0 on ∂Σ.

Let h > 0 be a first eigenfunction. We want to use a specific function f orthogonal
to h to obtain information about the topology of Σ in the second variation formula
(index form) above. Using arguments as in [8] and [16], page 274, we have the
following:

Lemma 5.1. There exists a conformal map f : Σ → S2 such that
∫
Σ
fh dμ = 0

and f has degree ≤ [ g+3
2 ].

Proof. By gluing a disk on each boundary component of Σ, we may view Σ as a
domain in a compact surface Σ̄ of genus g. There exists a conformal map from this
closed surface to the sphere

ψ : Σ̄ → S2
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of degree ≤
[
g+3
2

]
(see [4]). Let G be the group of conformal diffeomorphisms of

S2. We claim there exists ϕ ∈ G such that∫
Σ

(ϕ ◦ ψ)h dμ = 0.

To see this, recall that the conformal transformation group G contains a subgroup
which is homeomorphic to B3. That is, given a ∈ B3 that is not the origin,
let θ(a) = a/|a| ∈ S2, and let ϕ(t) be the one parameter family of conformal
transformations of the ball B3 that are dilations on the sphere fixing the opposite
poles θ(a) and −θ(a). In the group ϕ(t) there is a unique conformal automorphism
ϕa that maps the origin to a. Define H : B3 → B3 by

H(a) =
1∫

Σ

h dμ

∫
Σ

(ϕa ◦ ψ)h dμ.

As a approaches the boundary ∂B3,

ϕa(S
2 \ {−a}) → a,

and so ∫
Σ

(ϕa ◦ ψ) dμ → a

∫
Σ

h dμ.

Therefore, H extends continuously to a map H : B3 → B3 which is the identity
map on ∂B3. By a standard argument in topology, H must be surjective. Therefore
there exists a ∈ B3 such that H(a) = 0, as claimed. �

Now we prove Theorem 1.2.

Proof of Theorem 1.2. Let Σ be a solution to the free boundary problem (Σ, ∂Σ) →
(N, ∂N). Choose a local orthonormal frame {e1, e2, e3} along Σ such that e1 = T
is the positively oriented unit tangent vector, e2 = η is the outward unit conormal
along ∂Σ, and e3 = ν is the globally defined unit normal to Σ. For 1 ≤ i < j ≤ 3,
let Rijij denote the sectional curvature of N for the section ei ∧ ej . Let R =
R1212 +R1313 +R2323 be the scalar curvature of N , and let

(5.1) R33 = R1313 +R2323

be the Ricci curvature for e3 = ν. Let K denote the Gauss curvature of Σ. From
the Gauss equation and the fact that Σ is minimal, we have

(5.2) K = R1212 −
1

2
|A|2.

First we assume that Σ has index 1. Let h ≥ 0 be a first eigenfunction of the
index form of Σ. By Lemma 5.1 there exists a conformal map f : Σ → S2 of degree
≤ [ g+3

2 ] such that
∫
Σ
fh dμ = 0. Since Σ has index 1 and the component functions

fi of f are orthogonal to h, we have

I(fi, fi) =

∫
Σ

(
|∇fi|2 −

(
R33 + |A|2

)
f2
i

)
dμ+

∫
∂Σ

〈∇νν, η〉 f2
i ds ≥ 0.
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Summing over i, and using
∑3

i=1 |fi|2 = 1, we get∫
Σ

(
|∇f |2 −

(
R33 + |A|2

))
dμ+

∫
∂Σ

〈∇νν, η〉 ds ≥ 0.

Since f : Σ̄ → S2 is conformal,∫
Σ

|∇f |2 dμ <

∫
Σ

|∇f |2 dμ = 2Area(f(Σ)) = 2Area(S2) · deg(f) ≤ 8π
[g + 3

2

]
.

Therefore

(5.3)

∫
Σ

(R33 + |A|2) dμ < 8π
[g + 3

2

]
+

∫
∂Σ

〈∇νν, η〉 ds.

Now we prove the three parts of the theorem.

Part (i). Ric(N) ≥ 0 and ∂N is weakly convex.

From (5.1) and (5.2) we have

(5.4) R33 + 2K = R11 +R22 − |A|2.

Inserting (5.4) into (5.3), we get

(5.5)

∫
Σ

(R11 + R22 − 2K) dμ < 8π
[g + 3

2

]
+

∫
∂Σ

〈∇νν, η〉 ds.

By the Gauss-Bonnet theorem,∫
Σ

K dμ+

∫
∂Σ

kg ds = 2πχ(Σ) = 2π(2− 2g − k),

where kg is the geodesic curvature of ∂Σ in Σ. Recall that kg = −〈∇TT, η〉, so

(5.6)

∫
Σ

K dμ−
∫
∂Σ

〈∇TT, η〉 ds = 2π(2− 2g − k).

Inserting (5.6) into (5.5), and using the assumption that Ric(N) ≥ 0, we get

4π(2g + k − 2) < 8π
[g + 3

2

]
+

∫
∂Σ

〈∇νν, η〉 ds+ 2

∫
∂Σ

〈∇TT, η〉 ds.

Since η is orthogonal to ∂N and ∂N is weakly convex, we get

g +
k

2
− 1 <

[g + 3

2

]
.

Since [g + 3

2

]
=

g + 3− 1+(−1)g

2

2
,

it follows that

g + k +
1 + (−1)g

2
< 5.

From this we obtain i) g + k ≤ 3 if g is even, ii) g + k ≤ 4 if g is odd.
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Part (ii). R ≥ 0 and ∂N is weakly mean convex.

Adding (5.1) and (5.2), we have

(5.7) R33 +K = R− 1

2
|A|2.

Inserting (5.7) into (5.3), we obtain

(5.8)

∫
Σ

(R−K +
1

2
|A|2) dμ < 8π

[g + 3

2

]
+

∫
∂Σ

〈∇νν, η〉 ds.

Then using the nonnegative scalar curvature assumption and (5.6), we get

−2π(2− 2g − k) < 8π
[g + 3

2

]
+

∫
∂Σ

〈∇νν, η〉 ds+
∫
∂Σ

〈∇TT, η〉 ds.

Since ∂N is weakly mean convex we obtain

g +
k

2
− 1 < 2

[g + 3

2

]
.

Then

g +
k

2
− 1 < g + 3− 1 + (−1)g

2
.

From this we obtain i) k ≤ 5 if g is even, ii) k ≤ 7 if g is odd.
We now assume that Σ is stable; that is, I(f, f) ≥ 0 for all f ∈ W 1,2(Σ). Taking

f to be a nonzero constant function, we obtain∫
Σ

(R33 + |A|2) dμ ≤
∫
∂Σ

〈∇νν, η〉 ds.

Using (5.7) we get ∫
Σ

(R−K +
1

2
|A|2) dμ ≤

∫
∂Σ

〈∇νν, η〉 ds.

By (5.6) we get

(5.9)

∫
Σ

(
R+

1

2
|A|2

)
dμ− 2π(2− 2g − k) ≤

∫
∂Σ

〈∇νν, η〉 ds+
∫
∂Σ

〈∇TT, η〉 ds.

Then since R ≥ 0 and ∂N is weakly mean convex, we get

g +
k

2
− 1 ≤ 0.

Therefore the only possibilities for (g, k) are (0, 1) or (0, 2), and Σ must be a disk
or a cylinder.

If Σ is a cylinder, from the above we must have R = 0 and |A|2 = 0 on Σ, and
I(1, 1) = 0. Therefore f = 1 satisfies the Jacobi equation

Δf + (Ric(ν) + |A|2)f = 0.

This implies Ric(ν) = 0, and then from (5.7), K = 0. So Σ is a totally geodesic
flat cylinder.
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Part (iii). We now derive the area estimates.

If Σ has index 1, from (5.8) and (5.6) we get

R0 ·Area(Σ) ≤ 8π
([g + 3

2

]
− 1

2

(
g +

k

2
− 1

))
,

and so

Area(Σ) ≤ 2π(7− (−1)g − k)

R0
.

If Σ is stable, from (5.9) we get

R0 ·Area(Σ) ≤ 4π
(
−
(
g +

k

2
− 1

))
.

Then (g, k) has to be (0, 1) and Σ is a disk. Therefore,

Area(Σ) ≤ 2π

R0
.

This completes the proof of Theorem 1.2. �

Remark. Let N be a compact orientable 3-manifold with boundary ∂N �= ∅. Theo-
rems 1.1 and 1.2 imply that if there exists a continuous map from a bordered surface
with g = 0 and k ≥ 3 or g ≥ 1 and k ≥ 1, satisfying the incompressibility assump-
tion in Theorem 1.1, then N admits no metric of nonnegative scalar curvature, for
which ∂N is weakly mean convex.

In particular, the assumption is satisfied when π1(N) contains a subgroup ab-
stractly isomorphic to the fundamental group of a compact orientable surface with
g ≥ 1 and k ≥ 1 or g = 0 and k ≥ 3, and π1(N, ∂N) = 0. Precisely, the first
condition asserts the existence of a compact surface of the same topological type
in N , which is incompressible. The second condition can be used to deform each
boundary circle of this surface to some loop in ∂N by adding a cylinder to the
surface. Thus we obtain a compact orientable surface in N with boundary in ∂N
satisfying the incompressibility condition.
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