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DYNAMICS AND ZETA FUNCTIONS

ON CONFORMALLY COMPACT MANIFOLDS

JULIE ROWLETT, PABLO SUÁREZ-SERRATO, AND SAMUEL TAPIE

Abstract. In this note, we study the dynamics and associated Zeta functions
of conformally compact manifolds with variable negative sectional curvatures.
We begin with a discussion of a larger class of manifolds known as convex co-
compact manifolds with variable negative curvature. Applying results from dy-
namics on these spaces, we obtain optimal meromorphic extensions of weighted
dynamical Zeta functions and asymptotic counting estimates for the number of
weighted closed geodesics. A meromorphic extension of the standard dynam-
ical Zeta function and the prime orbit theorem follow as corollaries. Finally,
we investigate interactions between the dynamics and spectral theory of these
spaces.

1. Introduction

Conformally compact manifolds are a class of non-compact manifolds with vari-
able curvature, introduced by C. Fefferman and C. R. Graham [F-G85] to study
conformal invariants. A conformally compact manifold is an open manifold with
compact boundary whose Riemannian metric is conformally compact. These met-
rics generalize the Poincaré model of hyperbolic space, so conformally compact
metrics are also known as Poincaré metrics. This paper focuses on the dynamics
of those conformally compact manifolds with variable curvature, for the purpose of
further applications to their spectral theory.

In 2001, Perry [Pe01] demonstrated a prime orbit theorem for the geodesic flow on
convex co-compact hyperbolic manifolds which predicts the asymptotic behavior of
the number of prime orbits of the associated flow in the spirit of the prime number
theorem. Perry’s proof relies on a detailed study of the associated Selberg Zeta
function and properties of its divisor demonstrated in joint work with Patterson
[P-P-E01]. The first pole of the Zeta function is identified as a spectral quantity, and
although not explicitly stated in [Pe01], he proves that it is equal to the topological
entropy of the geodesic flow. The argument of Perry relies on an accurate use of the
relationship between the Selberg Zeta function and the resolvent of the Laplacian
on hyperbolic manifolds. Such a strong relationship does not hold as soon as the
curvatures vary. However, another proof of this result is possible using purely
dynamical methods based on Parry and Pollicott’s prime orbit theorem for Axiom
A flows restricted to a basic set [P-P83] (see also [Fr86]). Even though the studies
of [P-P83] and [Fr86] are restricted to compact manifolds, most of their arguments
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only need to apply the fact that the flow restricted to a compact invariant subset
can be encoded by a finite subshift, as described in the original work of Bowen
[Bow73]. Therefore, the results of Parry-Pollicott and Fried can be extended to
negatively curved manifolds with infinite volume, provided the non-wandering set
of their geodesic flow is compact, and the flow restricted to this set is Axiom A. One
goal of this paper is to increase communication between dynamics and geometric
analysis.

Convex co-compact hyperbolic manifolds are complete hyperbolic manifolds
whose closed geodesics are contained in a compact set. One may also look at
convex co-compact manifolds with variable (negative) curvature, which we define as
follows.

Definition 1.1. A Riemannian manifold (M, g) has pinched negative curvature if
there exist constants 0 < a ≤ b such that the sectional curvatures Kg of M satisfy

−b2 ≤ Kg ≤ −a2 < 0.

A Riemannian manifold is convex co-compact if it is (1) complete, (2) has pinched
negative curvature, and (3) if there exists a compact subset of M which contains
all closed geodesics.

In §2, we present in detail the notions of conformally compact and convex co-
compact. We provide a complete proof of the following result because, even though
it may be well-known by experts, we could not locate a published proof.

Theorem 1.2. Let (M, g) be a conformally compact manifold with negative sec-
tional curvatures. Then (M, g) is convex co-compact. The converse is true if M is
a surface or if g has constant sectional curvatures.

Remark 1.3. Convex co-compact manifolds with unbounded negative curvatures
appear in the literature. However, our focus is conformally compact manifolds with
negative curvatures. Theorem 1.2 implies in particular that they automatically have
pinched negative curvature, making the above definition sufficient for our purposes.

Basic notions from dynamics are presented in §3.
Connections between the dynamics and spectral theory on hyperbolic manifolds

originate in Selberg’s trace formula for compact locally symmetric spaces [Se56]. It
has been a subject of major research since then; the work of Sullivan and of Lax
and Phillips has been of particular influence. The Selberg trace formula is based
on the use of a weighted dynamical Zeta function; these functions have turned out
to be a powerful tool. Dynamical Zeta functions for convex co-compact hyperbolic
manifolds were first introduced and studied by Patterson in [P89], and in the late
1980s, Guillopé and Zworski generalized Selberg’s trace formula to infinite area
Riemann surfaces with finite geometry [G-Z99]. This was further extended to higher
dimensions by Guillarmou and Naud in [G-N06].

On compact manifolds with variable negative curvature, Duistermaat and
Guillemin established an asymptotic trace formula using the wave kernel [D-G75],
which also gives a relation between the spectrum and dynamics, even though it
is harder to control. Very few results are known for more general non-compact
manifolds with variable curvature, such as the conformally compact or convex co-
compact manifolds. As a first step, we study dynamical weighted Zeta functions
on such manifolds.
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In §4, we use dynamical studies of Axiom A flows to demonstrate the following
properties of a large class of dynamical Zeta functions. Let Lp be the set of primitive
closed geodesics, and L be the set of all closed geodesics. For γ ∈ L such that
γ = kγp with γp ∈ Lp, let lp(γ) = l(γp).

Theorem 1.4. Let (M, g) be a conformally compact manifold whose sectional cur-
vatures satisfy −b2 ≤ Kg ≤ −a2 < 0, with non-Abelian fundamental group and
non-arithmetic length spectrum. Let U : L → R be a weight which derives from the
Hölder potential W , and ℘(W ) be the pressure of W (with respect to the geodesic
flow). Then the weighted Zeta function

ZU (s) = exp

⎛
⎝ ∑

γ∈Lp

∑
k∈N

1

k
e−kslp(γ)+U(kγ)

⎞
⎠

converges absolutely on R(s) > ℘(W ). It admits a meromorphic extension to the
half plane R(s) > ℘(W )− λα

2 , where λ ∈ [a, b] is the expansion factor of the geodesic
flow on the non-wandering set, and α ∈ (0, 1] is the Hölder exponent of W . This
extension is in general optimal. Moreover, with the exception of a simple pole at
℘(W ), this extension is analytic and non-vanishing in an open neighborhood of
{R(s) ≥ ℘(W )}.

Based on the extension of the weighted Zeta functions, we demonstrate the
following weighted prime orbit theorem. Let LT be the set of geodesics γ of length
at most T .

Theorem 1.5 (Weighted Prime Orbit Theorem). Let (M, g) be a conformally
compact manifold with negative sectional curvatures, with non-Abelian fundamental
group and non-arithmetic length spectrum. Let U : L → R be a weight such that
logU derives from the Hölder potential W , with ℘(W ) > 0. Then,

∑
γ∈LT

U(γ) ∼ e℘(W )T

℘(W )T
when T → ∞.

Finally, we obtain the following meromorphic extension for the particular case of
the Selberg Zeta function used in [G-Z99] and [G-N06], by relating it to a weighted
Zeta function which satisfies the hypotheses of the previous theorem.

Let WSBR denote the Sinai-Bowen-Ruelle potential of the geodesic flow, and for
γ ∈ L, let Pk

γ denote the k-times Poincaré map about γ.

Theorem 1.6. Let (M, g) be a conformally compact manifold whose sectional cur-
vatures satisfy −b2 ≤ Kg ≤ −a2 < 0, with non-Abelian fundamental group and
non-arithmetic length spectrum. The weighted Zeta function

Z̃(s) = exp

⎛
⎝ ∑

γ∈Lp

∑
k∈N

e−kslp(γ)

k
√

| det(I − Pk
γ )|

⎞
⎠

is an analytic non-zero function on the half plane R(s) > ℘(−WSBR

2 ). It admits a
meromorphic extension to the half plane

R(s) > ℘(−WSBR

2
)− inf

{
λa

b
,
λ

2

}
,
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where λ is the expansion factor of the geodesic flow on the non-wandering set.
Moreover, with the exception of a simple pole at ℘(−WSBR

2 ), this extension is an-

alytic and non-vanishing in an open neighborhood of {R(s) ≥ ℘(−WSBR

2 )}. If

℘(−WSRB

2 ) > 0, then we have the counting estimate

∑
γ∈LT

| det(I − Pγ)|−
1
2 ∼

exp
(
℘(−WSRB

2 )T
)

℘(−WSRB

2 )T
when T → ∞.

The proof suggests that this meromorphic extension to the half plane R(s) >
℘(−WSBR

2 ) − inf
{
λa
b , λ

2

}
may also be optimal. As an application of these results,

we prove that the topological entropy of the geodesic flow varies analytically under
analytic perturbations of the Riemannian metric.

Theorem 1.7 (Analyticity of the entropy). Let (M, g) be a real-analytic convex co-
compact manifold with pinched negative curvature, and (gα)α∈(−ε,ε) be an analytic
perturbation of g by metrics of negative sectional curvatures. Then the topological
entropy h(gα) of the geodesic flow on (M, gα) is an analytic function of α.

We wish to emphasize that these results are proven using only dynamical meth-
ods. In particular, we require neither pseudo-differential analysis nor semi-classical
methods.

In the final section of the paper, §5, we explore connections between the dynamics
and spectral theory on convex co-compact, conformally compact and asymptotically
hyperbolic manifolds. We show the following relationship between the dynamics
and the bottom of the spectrum of the Laplacian on convex co-compact manifolds
with variable curvature.

Theorem 1.8. Let (M, g) be a convex co-compact manifold of dimension n + 1
whose sectional curvatures satisfy −b2 ≤ Kg ≤ −a2 < 0 and with non-Abelian
fundamental group. Let hg be the topological entropy of the geodesic flow on SgM
restricted to its non-wandering set. If hg > na

2 , then the bottom of the spectrum
λ0(g) of the Laplacian Δg satisfies

hg(na− hg) ≤ λ0(g) ≤
(nb)2

4
.

If hg ≤ na
2 , then we have

(na)2

4
≤ λ0(g) ≤

(nb)2

4
.

It can be hoped that there exist further relationships between the dynamics and
the spectral theory on conformally compact manifolds, similar to what has been
proven for hyperbolic manifolds. For manifolds with infinite volume and variable
curvature, one does not expect a Selberg trace formula. Nevertheless, an asymptotic
version of Selberg’s trace formula was obtained for compact perturbations of convex
co-compact hyperbolic manifolds in [Ro09].

Remark 1.9. Combining Theorem 1.6 with Theorem 1.1 of [Ro09] would give in-
teresting new relations between the spectrum and the dynamics of asymptotically
hyperbolic manifolds. Unfortunately, we have detected a subtle gap in the proof
of Theorem 1.1 of [Ro09], which makes the long time estimate of the asymptotic
trace formula unusable. The Ehrenfest time estimate in formula (1-2) on p. 379 of
[Ro09] appears to be missing a contribution from non-closed geodesics which tend
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toward infinity. This will be described in detail in [Ro12]. Apart from the long time
estimate of the non-singular remainder term, Theorem 1.1 of [Ro09] is correct, and
in particular, the remainder estimate does not affect the singular part, which was
used by Borthwick and Perry in [B-P09] to show that on compact perturbations of
hyperbolic manifolds, the resonances determine the length spectrum.

This paper which focuses on the dynamics is meant to be a first step toward
discovering relationships between the dynamics and spectral theory on conformally
compact manifolds.

2. Conformally compact and convex co-compact manifolds

In this section, we recall the definitions of conformally compact and convex co-
compact manifolds and demonstrate connections between these two notions.

Definition 2.1. Let M be the interior of a smooth closed (n + 1)-manifold with
smooth closed n-boundary ∂M . Let g be a complete metric on M . We say that g
is conformally compact if there is a smooth positive function x : M → (0,∞) such
that

(1) x vanishes to first order on the boundary

lim
p→∂M

x(p) = 0 and lim
p→∂M

dx(p) �= 0;

(2) the (incomplete) metric ḡ = x2g extends to a smooth metric, which we will
still write ḡ, on M̄ = M ∪ ∂M .

Such a smooth function x defined at least in a neighborhood N of ∂M so that
x : N → [0,∞), ∂M = x−1({0}), and dx �= 0 on ∂M is called a boundary defining
function. If (M, g) is conformally compact and x2g is a smooth metric on M̄ , we
will call ∂M equipped with the induced conformal family of metrics the conformal
boundary of M . We define a conformally compact manifold to be a complete Rie-
mannian manifold M equipped with a conformally compact metric g. Conformally
compact manifolds have strictly negative sectional curvatures at infinity. More
precisely, we have the following.

Proposition 2.2. Let (M, g) be a complete metric on a compact manifold M with
non-empty boundary ∂M . Assume that g is conformally compact, and let x : M →
(0,∞) be a boundary defining function such that ḡ = x2g is a smooth metric on
M̄ = M ∪ ∂M . Then for any point p∞ ∈ ∂M , we have

lim
p→p∞

Kg(p) = −|dx|2ḡ(p∞),

where Kg(p) is any of the sectional curvatures of (M, g) at the point p.

Proof. The formulæ given in [Be87], p. 58, to compute the (4, 0)-curvature tensor
of g = ḡ

x2 imply the asymptotic expansion

Rg = − 1

x4
ḡ 
 |dx|2ḡ ḡ +O

(
1

x3

)

when x → 0, where 
 is the Kulkarni-Nomizu product. Therefore, the sectional
curvatures are asymptotic modulo O(x) to the function −|dx|2ḡ on ∂X as x → 0. �



2464 JULIE ROWLETT, PABLO SUÁREZ-SERRATO, AND SAMUEL TAPIE

The simplest example of a conformally compact manifold is the real hyperbolic
n-space, which is conformally equivalent to the Euclidean metric on the unit ball.
The next natural set of examples are infinite volume convex co-compact hyperbolic
manifolds, which are quotients of hyperbolic n-space by a discrete group, such that
in the quotient all closed geodesics remain in a compact set. Another special set
of examples of conformally compact manifolds are the asymptotically hyperbolic
manifolds, whose definition is originally due to Mazzeo and Melrose (see [M-M87]).
We will now describe the larger class of convex co-compact manifolds with variable
(negative) curvature and relate them to conformally compact manifolds.

Recall that a Hadamard manifold (M, g) is a simply connected n-manifold with
non-positive sectional curvatures. The universal cover of any Riemannian manifold
with negative sectional curvatures is a Hadamard manifold. The visual boundary,
which we will note ∂vM , is defined to be the set of equivalence classes of geodesic
rays, where two rays are equivalent when they remain at finite distance from each
other. There is a natural topology on M̄v = M ∪ ∂vM , described as the cone
topology in [E72], p. 495. Equipped with this topology, M̄v is homeomorphic to

the closed unit ball in Rn. Any isometry acting on M̃ extends continuously to an
action on the visual boundary ∂M̃ . Let Γ be the fundamental group of M acting
on M̃ by isometries. We denote by ΛΓ its limit set, which is the smallest closed
non-empty Γ-invariant subset in ∂M̃ . It is also the intersection with ∂M̃ of the
closure of the orbit by Γ of any point in M̃ . It follows from Proposition 2.6 of [E72]

that the end points in ∂vM̃ of lifts of closed geodesics in M are dense in ΛΓ. We
write CH(ΛΓ) for the convex hull of ΛΓ in M̃ . The set

C(M) := CH(ΛΓ)/Γ

is called the convex core of M .
The visual boundary of a Hadamard manifold M is sometimes also called its

“conformal boundary”. Actually, the following proposition shows that the concept
of visual boundary generalizes the conformal boundary to all Hadamard manifolds.

Proposition 2.3. Let (M, g) be a conformally compact simply connected manifold
with negative sectional curvatures. Then there is a canonical homeomorphism Iv
between the compact spaces M̄ = M ∪ ∂M and M̄v = M ∪ ∂vM .

Proof. Let ḡ = x2g be a smooth metric on M̄ = M ∪ ∂M , where x2 is a boundary
defining function for ∂M . Let O ∈ M be a fixed origin point. Then, any vector
X ∈ TOM defines a unique point ξv(X) = [γX ] ∈ ∂vM which is the equivalence class
of the geodesic ray γX which starts at O with tangent vector X. Let ξc(X) ∈ ∂M
be the end point of γX in ∂M . The next lemma follows immediately from the
definition of x as a boundary defining function.

Lemma 2.4. Let O, O′ be two points of M , and X ∈ TOM , X ′ ∈ TO′M such
that the distance between the geodesic rays γX and γX′ remains bounded up to ∂M .
Then dḡ(γX(t), γX′(t)) → 0 as t → ∞.

This ensures that if γX′ ∈ [γX ], then γX and γX′ end at the same point of ∂M .
Therefore the map

Iv : ξv = ξv(X) ∈ ∂vM �→ ξc(X)

is well defined and invertible. It follows from Proposition 1.3 of [E72] that Iv extends
the identity on M to a homeomorphism Iv : M̄v = M ∪ ∂vM → M̄ = M ∪ ∂M. �
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In the following, we will use ∂M to denote both the visual and the conformal
boundary of simply connected manifolds, which will be implicitly identified by the
above homeomorphism. We introduce a few more definitions relevant to negatively
curved manifolds with non-trivial topology.

Definition 2.5. The set RΓ = ∂M̃\ΛΓ is called the regular set. It is the maximal

subset of ∂M̃ on which Γ acts freely discontinuously. We will call ∂vM = RΓ/Γ
the visual boundary of M .

A smooth curve γ inM converges to a point ξ ∈ ∂vM if and only if each of its lifts
γ̃ converge to a point ξ̃ ∈ RΓ which is a lift of ξ. We call M̄v = M ∪ ∂vM equipped
with this topology the visual closure ofM . The following proposition defines convex
compactness, which will be a crucial concept in this paper. The name “convex co-
compact” was first used by D. Sullivan [Su79] for hyperbolic manifolds. Convex
co-compactness is strongly related to the notion of geometric finiteness, which has
also been introduced for hyperbolic 3-manifolds. Geometrically finite manifolds of
pinched negative curvature have been defined in detail by B. Bowditch in [Bowd95];
we shall not give here a complete definition of this notion. We will only be interested
in the following.

Proposition 2.6 (Convex co-compactness [Bowd95]). Let (M, g) be a complete
Riemannian manifold with pinched negative curvature. The following assertions
are equivalent:

(1) the manifold M is geometrically finite without parabolic cusp in the sense
of [Bowd95];

(2) the visual closure M̄v = M ∪ ∂vM of M is compact;
(3) the convex core C(M) is compact;
(4) there exists a convex compact subset K ⊂ M such that all closed geodesics

of M are contained in K;

(5) there exists a convex compact subset K ⊂ M whose interior
◦
K is homeo-

morphic to M .

The manifold (M, g) is said to be convex co-compact if it satisfies one of these
properties.

This result is well known, even though we could not locate it in the literature.
It follows directly from the arguments of [Bowd95]. We include a proof for com-
pleteness.

Proof. The equivalence between (1), (2) and (3) is exactly given by Theorem 6.1
of [Bowd95]. We will prove (5) ⇒ (4) ⇒ (3) and (2) ⇒ (5).

(5) ⇒ (4): Assume that there exists a convex compact subset K ⊂ M whose

interior
◦
K is homeomorphic to M . Let γ ⊂ M be a closed geodesic. Since

◦
K is homeomorphic to M , there is a closed curve α ⊂

◦
K which represents

the homotopy class of γ. Since K is convex, there is a closed geodesic
γ′ ⊂ K which is homotopic to α. Since in a negatively curved manifold,
each homotopy class contains a unique closed geodesic, we have γ = γ′ ⊂ K.

(4) ⇒ (3): Let Γ be the fundamental group of M acting on M̃ by isometries
and ΛΓ its limit set. Let K be a convex compact set which contains all
closed geodesics. Therefore, the lift K̃ ⊂ M̃ of K to the universal cover is
a Γ-invariant convex subset of M̃ , and its closure for the visual topology
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contains all points on ∂vM̃ which are end points of lifts of closed geodesics.
Therefore since these points are dense in ΛΓ and since K̃ is convex, it
contains CH(ΛΓ). This implies that the convex core C(M) is contained in
K and is therefore compact.

(2) ⇒ (5): Let M be a complete n-manifold with negatively pinched curvature
such that its visual closure M̄v = M ∪ ∂vM is compact. We denote by Γ
the fundamental group of M acting on M̃ by isometries. There exists a
compact K1 ⊂ M which is homeomorphic to M̄v. Let K̃1 ⊂ M̃ be the
lift of K1 to the universal cover; K̃1 is homeomorphic to the closed unit
ball of Rn+1 via a Γ-equivariant homeomorphism. Hence its convex-hull
K̃2 = CH(K̃1) is also homeomorphic to the closed unit ball of Rn+1 via a Γ-
equivariant homeomorphism. Moreover, by Proposition 2.5.4 of [Bowd95],

K̃2 is contained in an r-neighbourhood of K̃1, where r > 0 only depends on
the upper bound on the sectional curvatures. Therefore, K2 = K̃2/Γ is a
convex set, homeomorphic toM , which is contained in the r-neighbourhood
of K1. Hence K2 is compact, which concludes our proof. �

When (M, g) is convex co-compact, it follows from the preceding proof that the
convex core C(M) is also the intersection of all convex subsets C ⊂ M whose

interiors
◦
C are homeomorphic to M .

To prove our results, we will require that our manifolds have enough complexity:
their fundamental groups should not be generated by the class of a single geodesic.
This property can be stated in many ways for convex co-compact manifolds.

Proposition 2.7. Let (M, g) be a complete convex co-compact Riemannian man-
ifold with pinched negative curvature, and Γ = π1(M). Then the following are
equivalent:

(1) Γ is abelian;
(2) the limit set ΛΓ is finite;
(3) the cardinality of ΛΓ is 2;
(4) Γ = π1(M) is generated by the class of a single closed geodesic.

Proof. Let (M, g) be a complete convex co-compact Riemannian manifold with
pinched negative curvature. The equivalence (1) ⇔ (2) is valid for any manifold
with negative curvature. Indeed, if Γ is abelian, the fixed points (at most two) of
any element of Γ are invariant by Γ; therefore the limit set is contained in these
points. The converse comes immediately from the classification of isometries for
negatively curved spaces; cf. [Bowd95].

Since (M, g) is convex co-compact, Γ = π1(M) cannot contain any parabolic
element. Therefore, (2) ⇔ (3).

Finally, since Γ = π1(M) acts discretely on the universal cover of M , we have
(3) ⇔ (4). �

We will now show that for manifolds with constant negative curvature, convex
compact and conformally compact are equivalent notions.

Proposition 2.8. Let (M, g) be a real hyperbolic n dimensional manifold. Then g
is conformally compact if and only if (M, g) is convex co-compact.

Proof. First, we let (M, g) = Hn/Γ be a convex co-compact hyperbolic manifold.
By Proposition 2.6, its visual closure is compact. Therefore, the construction of



DYNAMICS ON CONFORMALLY COMPACT MANIFOLDS 2467

paragraph 3.1 of [P-P-E01] applies and shows that (M, g) is conformally compact.
We will prove below that in Theorem 1.2 a conformally compact manifold with
pinched negative curvature is always convex co-compact, which ends the proof of
this proposition. �

For surfaces with variable negative curvature, convex co-compact and confor-
mally compact are actually equivalent notions:

Proposition 2.9. Let (S, g) be a complete (open) Riemannian surface with pinched
negative curvature. Then g is conformally compact if and only if (S, g) is convex
co-compact.

Proof. Let (S, g) be a complete open Riemannian surface with boundary and
pinched negative curvature. Then, there exists a unique hyperbolic metric gH on
S conformally equivalent to g; i.e. gH = u2g, where u is a positive function on M .
Since the curvature of (S, g) is bounded, it follows from Yau’s Schwarz Lemma (cf.
[Yau73], Theorem 1, p. 373) that u is pinched between positive constants. Then, if
x is a boundary defining function, x/u and ux are also boundary defining functions,
so it follows directly from the definition that (S, g) is conformally compact if and
only if (S, gH) is.

Thus, we are reduced to showing that a complete, open hyperbolic surface (S, gH)
is conformally compact if and only if it is convex co-compact, but this follows from
the preceding proposition. �

The case of manifolds with arbitrary dimension and variable negative curvature
is less understood. We first observe the following useful relationship between the
two notions conformally compact and convex co-compact for manifolds of arbitrary
dimension. Although we expect this result is known, we have not seen a proof in
the literature.

Proof of Theorem 1.2. Let (M, g) be a conformally compact manifold with negative
sectional curvatures. Since the sectional curvatures are negative, they are pinched
on any compact subset. Let x : M → (0,∞) be a boundary defining function.
By the compactness of ∂M , and since dx �= 0 on ∂M , it follows from Proposition
2.2 that the sectional curvatures are also pinched and negative in a neighborhood
of ∂M . Consequently, (M, g) has pinched negative curvature. It follows from
Corollary 5 of Bahuaud [Ba09] that for ε > 0 sufficiently small,

Kε :=
{
x−1[ε,∞)

}
contains all closed geodesics ofM . Therefore, the first assertion of the theorem then
follows from Proposition 2.6 (4). In case M is a surface or if g has constant sectional
curvatures, the converse statement follows from Propositions 2.8 and 2.9. �
Remark 2.10. By Proposition 2.2, the sectional curvatures of any conformally com-
pact manifold converge to a limit at each point of the boundary. This is obviously
not satisfied by all convex co-compact manifolds with negative curvature. One of
the simplest examples is given by the complex hyperbolic space Hn

C
, which is home-

omorphic to the interior of the unit ball. Its canonical metric is Einstein, and at
any point, the sectional curvatures span the interval [−4,−1]. Thus, there is no
scalar function to which the sectional curvatures converge at the visual boundary.
Any convex co-compact manifolds which are also complex hyperbolic (quotients of
Hn

C
) do not satisfy Proposition 2.2 and are not conformally compact.



2468 JULIE ROWLETT, PABLO SUÁREZ-SERRATO, AND SAMUEL TAPIE

We conclude this section with physical motivation to study conformally compact
manifolds. Recall that a Riemannian metric is Einstein if the Ricci and metric
tensors satisfy the relationship

Ric = cg,

for some constant c. A metric which is both conformally compact and Einstein
is called a Poincaré Einstein metric; it follows from Proposition 2.2 that c < 0.
Examples of the Poincaré Einstein metrics which arise in AdS/CFT correspondence
in string theory include the hyperbolic analogue of the Schwarzschild metric, and
in dimension 4, the Taub-BOLT metrics on disk bundles over S2. For these and
further examples, see M. Anderson [A05].

3. The geodesic flow

Let (M, g) be a complete Riemannian manifold with unit tangent bundle SgM ,
and let Sg

xM denote its fiber over a point x ∈ M . We will omit the metric g when no
confusion shall arise. The geodesic flow on (M, g) is the map Φg : SgM×R → SgM
which maps v ∈ SxM and t ∈ R to

Φt(v) = γ̇v(t),

where γv is the geodesic starting from x with initial tangent vector v, and γ̇v(t) is its
tangent vector at the point γv(t). The orbit of a vector v ∈ SxM is {Φt(v)|t ∈ R}.
The restriction of the canonical projection to the orbit of v is bijective onto the
geodesic γv ⊂ M . Therefore, we will often identify an orbit of the flow with the
geodesic in M onto which it projects.

Definition 3.1. Let (M, g) be a complete Riemannian manifold. A vector v ∈ SgM
is non-wandering for the geodesic flow Φg if for all neighbourhoods O of v in SM ,
there exists a sequence (tn) ∈ RN with tn → +∞ when n → +∞ such that for all
n ∈ N,

O ∩ Φg
tnO �= ∅.

The set of non-wandering vectors of SM (for the geodesic flow) denoted by Ω(g) is
called the non-wandering set.

Let Ω ⊂ SM be a closed Φt-invariant set. The flow is called uniformly hyperbolic
on Ω if there exists λ > 0 such that for each v ∈ Ω, T (SM)v splits into a direct
sum

T (SM)v = Es
v ⊕ Eu

v ⊕ Ev,

such that Ev is the tangent space of {Φt(v)}t∈R, and for all t ≥ 0,

||dΦt(ξ)|| ≤ e−λt||ξ|| if ξ ∈ Es
v ,(3.2)

||dΦ−t(ξ)|| ≤ e−λt||ξ|| if ξ ∈ Eu
v .(3.3)

The constant λ is called the expansion factor of the flow on Ω.
These definitions are local, depending only on properties of the flow at a point

or restricted to a closed set, respectively. We shall see that certain aspects of the
dynamics of compact manifolds which depend only on these local conditions can be
extended to infinite volume manifolds. For example, the hyperbolicity factor λ is
related to the curvature pinching constants as follows. If the sectional curvatures
Kg satisfy −b2 ≤ Kg ≤ −a2 on a Φt-invariant subset Ω ⊂ SM , then the geodesic
flow is uniformly hyperbolic on Ω, with expansion satisfying a ≤ λ ≤ b. This follows
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from Theorem 3.9.1 of [Kl82], p. 364, which holds for complete manifolds, so we
can use it for convex co-compact manifolds.

The following definition lists properties of the geodesic flow on convex co-compact
manifolds which are crucial for our arguments.

Definition 3.4. Let (M, g) be a Riemannian manifold and (Φt)t∈R be its geodesic
flow.

(1) The geodesic flow satisfies S. Smale’s Axiom A [Sm67] if its non-wandering
set Ω(g) is compact, the flow is uniformly hyperbolic on Ω(g) and the
periodic orbits of the flow are dense in Ω(g).

(2) Let B ⊂ SM be a closed set of the unit tangent bundle. The flow is
topologically transitive on B if for any open U and V ⊂ B, there exists
t > 0 such that Φt(U) ∩ V �= ∅.

(3) The flow is topologically mixing on B if for any open U and V ⊂ B, there
exists T > 0 such that for all t > T , Φt(U) ∩ V �= ∅.

We emphasize the fact that we do not require the flow to be topologically tran-
sitive or mixing on the whole tangent bundle, but only when restricted to a closed
subset, which in our applications will be the non-wandering set.

A basic hyperbolic set B ⊂ Ω of an Axiom A flow Φt is a closed subset of the
non-wandering set Ω such that Φt|B is topologically transitive. This definition of
basic set is due to R. Bowen [Bow73].

Some of our proofs rely on the following observation, which gathers results from
Section 3 of [E73].

Proposition 3.5 (Eberlein). Let (M, g) be a convex co-compact manifold with
pinched negative curvature whose fundamental group is not Abelian. Then its
geodesic flow is an Axiom A flow whose unique basic hyperbolic set is the non-
wandering set Ω(g). Moreover, the flow is topologically transitive on Ω(g).

Eberlein proved in Theorem 6.2 of [E73] that if (M, g) is any complete manifold
with pinched negative curvature and non-Abelian fundamental group, and if there
exist two closed geodesics γ, γ′ such that 
(γ)/
(γ′) /∈ Q, then the geodesic flow
is topologically mixing on its non-wandering set. A complete characterization was
obtained in [Dal00].

Theorem 3.6 (Dalb’o, 2000). Let (M, g) be a complete Riemannian manifold with
pinched negative curvature and non-Abelian fundamental group. Then the geodesic
flow is topologically mixing on its non-wandering set if and only if the length spec-
trum is non-arithmetic, i.e. if the lengths of all closed geodesics generate a dense
subgroup of R.

It has been shown that the length spectrum of a complete manifold (M, g) with
pinched negative curvature and non-Abelian fundamental group is non-arithmetic
when: eitherM is compact or M is a surface or M has constant sectional curvatures
or if the fundamental group of M contains a parabolic element.

The references for these results are given in [Dal00], p 982. Therefore, for a gen-
eral convex co-compact manifold with pinched negative curvature and non-Abelian
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fundamental group, it is in general unknown whether the geodesic flow is topologi-
cally mixing or not.1

3.1. The critical exponent, entropy and pressure. Let (M, g) be a complete
manifold with pinched negative curvature, with fundamental group Γ acting by
isometries on the universal cover (M̃, g). Given two points x, y ∈ M̃ , the Poincaré
series of Γ (in x and y) is

P (x, y, s) :=
∑
γ∈Γ

exp (−sdg(x, γy)) ,

where dg is the Riemannian distance induced by g. The critical exponent δ(Γ) is
defined so that the Poincaré series converges for s > δ(Γ) and diverges for s < δ(Γ).
It can be easily checked that the critical exponent is well defined and does not
depend on the base points x and y.

This critical exponent is strongly related to the topological entropy of the geodesic
flow. Let us recall its definition: for any large T > 0 and small δ > 0, a finite set
Y ⊂ SX is called (T, δ) separated if, given ξ, ξ′ ∈ Y, ξ �= ξ′, there is t ∈ [0, T ] with
d(Φtξ,Φtξ

′) ≥ δ. Here the distance on SX is given by the Sasaki metric.

Definition 3.7. Let (X, g) be convex co-compact with pinched negative curvature.
Let Ω ⊂ SX be the non-wandering set of the geodesic flow. The topological entropy
of the geodesic flow is

h(g) := lim
δ→0

lim sup
T→∞

log sup#{Y ⊂ Ω : Y is (T, δ) separated}
T

.

Otal and Peigné proved in [O-P04] the following.

Theorem 3.8 (Otal-Peigné, 2004). Let (M, g) = (M̃, g)/Γ be a convex co-compact
manifold with pinched negative curvature. Then the critical exponent of the Poincaré
series of Γ and the topological entropy of the geodesic flow restricted to the non-
wandering set coincide.

Actually, Otal and Peigné proved that topological entropy and critical exponent
coincide for general complete manifolds with pinched negative curvature. The defi-
nition of the topological entropy has to be slightly adapted when the non-wandering
set is non-compact. We will not do it here, since we have seen in Theorem 1.2 that
the non-wandering set of a conformally compact manifold with negative curvature
is always compact.

Given a homeomorphism φ : X → X on a compact metric space and a probability
measure μ which is invariant by φ, one can define the metric entropy of μ with
respect to φ, denoted by hμ(φ).

For the reader’s convenience we will recall the classical notions of metric entropy
and pressure of a diffeomorphism (or a flow) which we will need to state our results.
A more detailed description of these concepts can be found in [Bow75].

1The authors thank B. Schapira for pointing out that the geodesic flow is still not known to
be mixing on convex co-compact manifolds with variable curvature, even though most experts
believe that it should be.
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Definition 3.9. Let X be a compact topological space, φ be a homeomorphism
on X and μ be a (Borel) probability measure on X invariant under φ. Let C =
(C1, . . . , Cn) be a finite μ-measurable partition ofX. The entropy of C (with respect
to μ) is

Hμ(C) = −
n∑

i=1

μ(Ci) log(μ(Ci)).

If D = (D1, . . . , Dm) is another partition of X, we define

C ∨ D = {Ci ∪Dj ;Ci ∈ C, Dj ∈ D}.

Definition 3.10. Let C be a finite measurable partition of (X,μ) and φ be a
measurable homeomorphism such that μ is invariant under φ. Then

hμ(φ, C) = lim
n→∞

1

n
Hμ

(
C ∨ φ−1(C) ∨ · · · ∨ φ−n+1(C)

)

exists and is called the entropy of μ with respect to φ and C.

The existence of this limit is proved in Lemma 1.19 of [Bow75]. The metric
entropy of μ with respect to φ is now

hμ(φ) = sup
C

hμ(φ, C),

where C runs over all finite measurable partitions of (X,μ). We will mainly use
the following two concepts. These are not the original definitions; however they are
shown to be equivalent to the original one in Chapter 2 of [Bow75].

The standard variational principle (cf. [Bow75], Section 2) states that the topo-
logical entropy htop(φ) of φ is the supremum of the metric entropies for all prob-
ability measures invariant by φ. We will also use the notion of pressure, which
generalizes the topological entropy defined above.

Definition 3.11. Let X be a compact metric space, φ a homeomorphism on X
and f : X → R a Hölder map. The pressure of f with respect to φ is

℘(f) = sup
μ
{hμ(φ) +

∫
X

fdμ},

where μ runs over all probability measures on X invariant under φ, and hμ is the
measure theoretic entropy of φ with respect to μ. When (Φt)t∈R is a flow on X, the
pressure of any Hölder map f : X → R is the pressure of f with respect to φ = Φ1.

In particular, the variational principle mentioned above states that the topolog-
ical entropy

htop(φ) = ℘(0).

A detailed description of the concepts of entropy and pressure, together with its
dynamical applications, can be found in [Bow75].

In the special case of the geodesic flow on a convex co-compact manifold with
pinched negative curvature, the non-wandering set is a compact set invariant under
the flow, and the entropy is equivalently given by the length spectrum asymptotics.
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Proposition 3.12. Let (M, g) be a convex co-compact manifold with pinched neg-
ative curvature, (Φt) its geodesic flow, L the set of its closed geodesics and Ω(g) its
non-wandering set.

(1) The topological entropy h(g) of Φ restricted to Ω(g) is given by

h(g) = lim
T→∞

log# {γ ∈ L; 
g(γ) ≤ T}
T

,

where L is the set of all closed geodesics of (M, g) and 
g is the length
induced by g on L.

(2) With this notation, h(g) = 0 if and only if π1(M) is Abelian.

Proof. Let (M, g) satisfy the hypotheses of the proposition. We have seen in the
previous section that the geodesic flow on (M, g) is Axiom A, with Ω(g) its unique
basic set. Therefore, the first assertion is a direct application of Theorem 4.11 of
[Bow73].

If π1(M) is Abelian, then it follows from Proposition 2.7 that it is generated by
the homotopy class of a single closed geodesic of length 
. Therefore,

# {γ ∈ L; 
g(γ) ≤ T} ∼ 
T when T → ∞,

where we have used the notation f(t) ∼ g(t) when t → ∞ ⇐⇒ limt→∞
f(t)
g(t) = 1

whenever f, g : R → R with g(t) > 0 for all t sufficiently large. By item (1), this
implies that h(g) = 0.

If π1(M) is not Abelian, then it follows from Proposition 2.7 that its limit set
is infinite. This implies that π1(M) contains two hyperbolic elements γ1, γ2 with
distinct fixed points on the visual boundary which are not conjugate within π1(M),
and hence they generate a free group F2 = 〈γ1, γ2〉. Moreover, since M is convex
co-compact, all closed geodesics are contained in a compact set K. Therefore, there
exists an lmin > 0 such that all closed geodesics have length at least lmin. Let d
be the diameter of K and γ be a closed geodesic whose homotopy class γ ∈ F2,
and such that γ can be expressed by a word in γ1, γ2 of length T . By lifting to the
universal cover, one can see that the length of γ satisfies 
(γ) ≤ (lmin+2d)T . Since
each conjugacy class of the fundamental group corresponds exactly to one closed
geodesic, this implies

# {γ ∈ L; 
g(γ) ≤ (lmin + 2d)T} ≥ O(2T ).

Therefore, h(g) > 0 by item (1). �

4. Zeta functions and asymptotic counting estimates

S. Smale introduced the Zeta function associated to a general dynamical system
[Sm67] with the idea that Selberg’s techniques from analytic number theory [Se56]
could be applied to dynamical settings. Bowen [Bow73] made significant contri-
butions through his work in symbolic dynamics, which encodes the dynamics of
the geodesic flow or a more general Axiom A flow into somewhat easier to manage
symbolic dynamics. If the flow is mixing, then the Zeta function can be written in
terms of symbolic Zeta functions. This is one of the main technical tools used by
Pollicott [Po86], Haydn [Hay90] and several other authors to study dynamical Zeta
functions and asymptotic counting estimates for the number of closed geodesics.
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The dynamical Zeta function is also a crucial way to link the closed geodesics of
hyperbolic manifolds with its spectral theory. Perry [Pe01] used a spectral interpre-
tation of the poles of the dynamical Zeta function to prove the prime orbit theorem
on convex co-compact hyperbolic manifolds in dimension n. By considering a suit-
ably weighted dynamical Zeta function, Guillarmou and Naud [G-N06] generalized
Perry’s result by producing a larger asymptotic expansion for the geodesic length
counting function, which is explicitly determined by the pure point spectrum of the
Laplacian. This result will be discussed in §5.

In this section, we will focus on counting estimates obtained from (weighted)
dynamical Zeta functions through purely dynamical methods. Most results which
we use, especially from the works of Bowen, Parry, Pollicott and Haydn, rely on
symbolic dynamics. Nevertheless, we have chosen to avoid a technical presentation
of symbolic dynamics in this note. A complete and self-contained description of
symbolic dynamics and its applications to Zeta functions can be found in [P-P-Ast].

Let Lp be the set of primitive closed orbits of the geodesic flow and lp(γ) be the
primitive period (or length) of γ ∈ Lp. The weighted Zeta function of [G-N06] is

Z̃(s) = exp

⎛
⎝ ∑

γ∈Lp

∑
k∈N

e−kslp(γ)

k
√

| det(I − Pk
γ )|

⎞
⎠ ,

where Pk
γ is the k-times Poincaré map of the geodesic flow around the primitive

closed orbit γ. The behavior of this Zeta function is governed by the Sinai-Bowen-
Ruelle potential.

Definition 4.1. For any ξ ∈ S1M , we denote by Eu(ξ) its unstable manifold. The
Sinai-Bowen-Ruelle potential at ξ is defined by

WSBR(ξ) :=
d

dt

∣∣
t=0

log det dΦt|Eu
ξ
,

where the determinant of dΦt|Eu
ξ

: Eu
ξ → Eu

Φtξ
is computed with respect to or-

thonormal bases of Eu
ξ and Eu

Φtξ
for the Riemannian metric.

This potential, introduced by Bowen and Ruelle (see [B-R75], section 4), gives
the instantaneous rate of expansion at ξ. Its regularity depends on the regularity of
the unstable foliation, which is in general not smooth. However, when the sectional
curvature is negatively pinched, then the unstable foliation is Hölder.

Proposition 4.2. Let M be a smooth complete (n + 1)-manifold with pinched
negative curvature: −b2 ≤ Kg ≤ −a2 < 0. Then the Sinai-Bowen-Ruelle potential
WSBR is a Hölder map on the unit tangent bundle S1M . Its Hölder exponent can
be taken to be α = inf{ 2a

b , 1}. Moreover, the pressure of WSBR satisfies

h(g)− nb

2
≤ ℘

(
−WSBR

2

)
≤ h(g)− na

2
,

where h(g) is the topological entropy of the geodesic flow.

Proof. Let M be a complete (n + 1) dimensional manifold with pinched negative
curvature: −b2 ≤ Kg ≤ −a2 < 0. Since the flow Φt is smooth, the Hölder exponent
of WSBR is the same as the Hölder exponent of the unstable foliation. It was shown
in [H-P75] that when the curvature is 1

4−pinched, i.e. a
b > 1

2 , then the unstable

foliation is at least C1. Moreover, as observed in [Ha94], it follows from the proof of
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Theorem 3.2.17 of [Kl82] that when the curvature is not 1
4−pinched, the unstable

foliation is α−Hölder where α can be taken to be 2a
b , which concludes the proof of

our first statement.
Since WSBR is Hölder, we can compute its pressure. It follows from Theorem

3.9.1 of [Kl82] that

na ≤ d

dt

∣∣
t=0

log det dΦt|Eu
ξ
≤ nb.

Therefore, for every probability measure μ on S1M invariant by the geodesic flow
Φ, we have

−
∫
M

nb

2
dμ+ hμ(Φ) ≤ −

∫
M

WSBR

2
dμ+ hμ(Φ) ≤ −

∫
M

na

2
dμ+ hμ(Φ),

where hμ(Φ) is the entropy of the measure μ with respect to the geodesic flow. This
implies immediately that

h(g)− nb

2
≤ ℘

(
−WSBR

2

)
≤ h(g)− na

2
,

where h(g) is the topological entropy of the geodesic flow. �

We will call weight a map U : L → R. A weighted dynamical Zeta function (for
the geodesic flow on Ω) can be defined at least formally as

ZU (s) = exp

⎛
⎝ ∑

γ∈Lp

∑
k∈N

1

k
e−kslp(γ)+U(kγ)

⎞
⎠

for some weight U : L → R. For a special class of weights, we will show that such a
weighted Zeta function converges to an analytic function on a half plane and admits
a meromorphic extension to a strictly larger half plane.

Definition 4.3. Let U : L → R be a weight. We say that U derives from a Hölder
potential if there is a Hölder map W : Ω → R such that for every geodesic γ ∈ L,

U(γ) =

∫
γ

W (ξ)dγ(ξ),

where dγ is the induced Riemannian measure on γ ⊂ Ω.

4.1. Proof of Theorem 1.4. By Theorem 1.2, (M, g) is convex co-compact with
pinched negative curvature. By the results of the previous section, the geodesic
flow on SgM is Axiom A and its non-wandering set Ω is a hyperbolic basic set.
Moreover, since the length spectrum is non-arithmetic, it follows from Theorem
3.6 that the flow is topologically weak-mixing on Ω(g). The extension property for
the Zeta function then follows from Theorem 11 of Haydn [Hay90]. It follows from
Section 6 of [Po86] that the extension to the half plane R(s) > ℘(W ) − λα

2 is in
general optimal (this was observed by Haydn). �

When the weight function is trivial, we recover the Selberg Zeta function

Z(s) = exp

⎛
⎝ ∑

γ∈Lp

∑
k∈N

e−kslp(γ)

k

⎞
⎠ ,
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which was used to prove the eponymous trace formula for weakly symmetric spaces
[Se56]. As long as it converges, this dynamical Zeta can also be represented as the
following Euler product:

Z(s) =
∏
γ∈Lp

(
1− e−slp(γ)

)−1

.

Corollary 4.4 (Extension of the dynamical Zeta function). Let (M, g) be a con-
formally compact manifold with negative sectional curvatures and with non-Abelian
fundamental group and non-arithmetic length spectrum. Then there exist positive
constants a and b such that the sectional curvatures satisfy

−b2 ≤ Kg ≤ −a2 < 0,

and the dynamical Zeta function

Z(s) = exp

⎛
⎝ ∑

γ∈Lp

∑
k∈N

e−kslp(γ)

k

⎞
⎠

converges absolutely for R(s) > h. It admits a meromorphic extension to R(s) >
h − λ

2 , where λ ∈ [a, b] is the expansion factor of the geodesic flow on the non-
wandering set Ω(g). Moreover, with the exception of a simple pole at h, this exten-
sion is analytic and non-vanishing in an open neighborhood of {R(s) ≥ h}, where
h is the topological entropy of the geodesic flow.

Remark 4.5. Is this extension for unweighted dynamical Zeta functions optimal? It
is not clear whether the examples constructed by Pollicott in [Po86] can be adapted
to get convex co-compact manifolds whose standard dynamical Zeta function has
an essential singularity. Nevertheless, C. Guillarmou showed in [Gui05] that for
generic asymptotically hyperbolic n-manifolds, the resolvent of the Laplacian has an
essential singularity in (n/2−N). In the case of non-constant curvature, connections
between the resolvent and the Zeta function are much less explicit. Nonetheless,
the local trace formula of [Ro09] relates the regularized trace of the wave group
to the length spectrum, and [B-P09] proved that the resonances determine the
length spectrum [B-P09], which suggests that there may be connections between
the meromorphic extension of the dynamical Zeta function and the meromorphic
extension of the resolvent. In particular, we expect that for generic conformally
compact manifolds the extension to R(s) > h− λ

2 should be optimal.

Remark 4.6. When the flow is not topologically weak mixing, it is possible to es-
tablish a meromorphic extension of the dynamical Zeta function; this follows from
the work of Parry and Pollicott [P-P83]. It allows the authors to prove a suitably
written Prime Orbit Theorem; cf. Theorem 2 of [P-P83]. We will not deal with the
(hypothetical) case of non-mixing geodesic flows in this paper since it is expected
that the geodesic flow on any convex co-compact manifold with pinched negative
curvature is mixing.

4.2. Proof of Theorem 1.5. This theorem will be a direct consequence of The-
orem 1.4 and the following lemma, which is based on the Wiener-Ikehara [W67]
proof of the Prime Number Theorem and arguments of [P-P83].

Lemma 4.7. Let (M, g) be a convex co-compact manifold whose geodesic flow is
topologically mixing, and let L be the set of its closed geodesics. Let w : L → [0,∞)
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be a positive map such that the dynamical Zeta function

Z(s) = exp
∑
γ∈Lp

∑
N

e−ksl(γ)w(γ)k

k

converges absolutely for R(s) > η for some η > 0 and admits a non-vanishing
analytic extension to an open neighborhood of R(s) = η with the exception of a
simple pole at s = η. Then

∑
γ∈LT

w(γ) ∼ eηT

ηT
when T → ∞.

Proof. Let

N(γ) = eηl(γ), Λ(γ) = logN(γ),

and

ζ(s) := exp

⎛
⎝∑

Lp

∑
N

1

k
N(γ)−ksw(γ)k

⎞
⎠ .

By assumption, ζ has a simple pole at s = 1 and admits a non-vanishing analytic
extension (with the exception of the pole at 1) to an open neighborhood ofR(s) = 1.
Repeating the arguments in pp. 588–589 of [P-P83], it follows that when the flow
is topologically mixing, ∑

N(γ)≤x

w(γ) ∼ x

log x
.

�

Remark 4.8. We note that the counting estimate for the length spectrum L is
equivalent to that for Lp. This follows from the calculation

ehx

hx
+ o

(
ehx

hx

)
≤ #{γ ∈ L|l(γ) ≤ x} ≤

[x]∑
k=1

#
{
γ ∈ Lp|l(γ) ≤

x

k

}

≤ ehx

hx
+

xehx/2

hx/2
+ o

(
ehx/2

hx/2

)
.

An analogous calculation gives the equivalence of the weighted prime orbit the-
orem for L and Lp.

An immediate corollary of the weighted prime orbit theorem (which follows by
taking the trivial weight function 1) gives the asymptotic growth of the number of
closed geodesics.

Theorem 4.9 (Prime Orbit Theorem). Let (M, g) be a conformally compact man-
ifold with negative sectional curvature, with non-Abelian fundamental group and
non-arithmetic length spectrum. Then the length spectrum counting function satis-
fies

#{γ ∈ L : l(γ) ≤ T} ∼ ehT

hT
when T → ∞.

Remark 4.10. The Prime Orbit Theorem also follows from the work of Roblin
[Rob03], which applies in a much more general setting. The results of [Rob03] are
based purely on ergodic theory, without the use of Zeta functions.
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We now want to apply these results to Selberg’s weighted Zeta function used in
[G-N06]:

Z̃(s) = exp

⎛
⎝ ∑

γ∈Lp

∑
k∈N

e−kslp(γ)

k
√

| det(I − Pk
γ )|

⎞
⎠ ,

where Pk
γ is the k-times Poincaré map of the geodesic flow around the primitive

closed orbit γ, described at the beginning of this section. However, the weight

γ �→ 1√
| det(I − Pk

γ )|

does not derive from a Hölder potential. To be able to deal with such weighted Zeta
functions, we prove now that when two weights are asymptotically exponentially
close, their associated weighted Zeta functions have similar extension properties.

Theorem 4.11. Let (M, g) be a convex co-compact manifold with non-arithmetic
length spectrum, and let L be the set of its closed geodesics. Let w, v : L → [0,∞)
be two weights such that there exist constants C, ε > 0 with

v(γ) = w(γ)(1 + r(γ)), |r(γ)| ≤ Ce−εl(γ), ∀γ ∈ L.
Let

Z(s) = exp

⎛
⎝∑

γ∈L

e−sl(γ)w(γ)

k(γ)

⎞
⎠ and Z∗(s) = exp

⎛
⎝∑

γ∈L

e−sl(γ)v(γ)

k(γ)

⎞
⎠

be the weighted dynamical Zeta functions associated to w and v, where k(γ) is
defined to be k if γ = kγp for some γp ∈ Lp. Assume that Z converges absolutely
for R(s) > η for some η ∈ R and admits a non-vanishing analytic extension to an
open neighborhood of R(s) = η with the exception of a simple pole at s = η.

(1) Z∗ converges absolutely for R(s) > η and admits a non-vanishing analytic
extension to an open neighborhood of R(s) = η with the exception of a
simple pole at s = η.

(2) If η > 0, then w and v satisfy the following counting estimates:

∑
γ∈LT

w(γ) ∼ eηT

ηT
and

∑
γ∈LT

v(γ) ∼ eηT

ηT
when T → ∞.

Proof. By hypothesis, we may write

Z∗(s) = exp
∑
γ∈L

e−sl(γ)w(γ)

k(γ)
(1 + r(γ)), |r(γ)| ≤ Ce−εl(γ).

So, we have

Z∗(s) = Z(s)Zε(s), Zε(s) = exp
∑
γ∈L

e−sl(γ)w(γ)r(γ)

k(γ)
.

By hypothesis,
|Zε(s)| ≤ eCZ(s+ ε).

By the absolute convergence of Z for R(s) > η, it follows that Zε converges abso-
lutely and is therefore analytic for R(s) > η − ε. This implies (1). The statement
(2) follows immediately from the preceding lemma. �
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4.3. Proof of Theorem 1.6. Let

Z(s) := exp
∑
γ∈L

e−sl(γ)w(γ)

k(γ)
,

where L is the set of all closed geodesics and

w(γ) = exp

(∫
γ

−WSBR

2

)
.

Similarly, we write

Z̃(s) = exp
∑
γ∈L

e−sl(γ)p(γ)

k(γ)
, where p(γ) = | det(I − Pγ)|−1/2.

If the dimension of the manifold is n+1, and the sectional curvatures are bounded
above by −a2, then Pγ has expanding eigenvalues λ1, . . . , λn, and contracting eigen-
values λn+1, . . . , λ2n, and

| det(I − Pγ)| =
2n∏
1

|1− λi| =
n∏

i=1

|λi|
n∏

j=1

∣∣∣∣1− 1

|λj |

∣∣∣∣
2n∏

k=n+1

|1− λk|.

By Theorem 3.9.1 of [Kl82],

|λi|−1 ≤ e−al(γ), i = 1, . . . , n,

and

|λi| ≤ e−al(γ), i = n+ 1, . . . , 2n.

Therefore, there exists a constant C > 0 such that

| det(I − Pγ)| =
n∏

i=1

|λi|(1 +R(γ)) |R(γ)| ≤ Ce−al(γ), for all γ.

By the definition of WSBR,

exp

(∫
γ

W

)
=

n∏
i=1

|λi|.

Thus, it also follows that

p(γ) = w(γ)(1 + r(γ)), |r(γ)| ≤ Ce−al(γ) for all γ with l(γ) � 1.

Applying Theorem 1.4 to Z implies that it admits a non-vanishing analytic exten-
sion to an open neighborhood of

{s ∈ C : R(s) ≥ ℘(−WSBR/2)},

with the exception of a simple pole at ℘(−WSBR/2). Moreover,

(4.12) Z̃(s) = Z(s)Za(s),

where

Za(s) =
∑
γ∈L

e−sl(γ)w(γ)r(γ)

k(γ)
.
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By the proof of Theorem 4.11 and the estimate on r(γ), Za converges absolutely and
is therefore non-vanishing and analytic for R(s) > ℘(−WSBR/2)− a. By Theorem
1.4, Z admits a meromorphic extension to{

R(s) > ℘(−WSBR/2)−
λα

2

}
,

where λ is the expansion factor of the geodesic flow on the non-wandering set Ω,
and α is the Hölder exponent of W . By Proposition 4.2,

α = inf

{
2a

b
, 1

}
.

Since a ≤ λ ≤ b, λα
2 ≤ a. It follows from (4.12) and the absolute convergence of Za

for R(s) > ℘(−WSBR/2)− a that Z̃ extends meromorphically to{
R(s) > ℘(−WSBR/2)−

λα

2

}
.

In case ℘(−WSBR

2 ) > 0, the counting estimate follows from Theorem 4.11. �
The arguments already pointed out in Remark 4.5 strongly suggest that this

extension may be optimal for general conformally compact manifolds, even though
we could not provide a full proof of this.

4.4. Applications. We can apply the meromorphic extension of the dynamical
Zeta function to show that the entropy of the geodesic flow on a convex co-compact
manifold changes analytically under an analytic perturbation of the original met-
ric generalizing the work of A. Katok, G. Knieper, M. Pollicott and H. Weiss
[K-K-P-W89]. Recall that for a real-analytic Riemannian manifold (M, g), an an-
alytic perturbation of g is a family (gα)α∈(−ε,ε) for some ε > 0 such that the map
α �→ gα is (real-)analytic.

4.4.1. Proof of Theorem 1.7. Let (M, g) be a real-analytic convex co-compact man-
ifold with negative curvatures, and (gα)α∈(−ε,ε) be an analytic perturbation of g.
As long as the sectional curvatures of gα remain strictly negative, the manifold
(M, gα) remains convex co-compact: this follows from Theorem 1.7, p. 401, of
[Br-H99]. This implies that there exists a compact set K ⊂ M such that all closed
geodesics of (M, gα)−ε<α<ε are contained in K. Moreover, it follows from Section
2 of [Bow73] that the dynamics of the geodesic flow on the non-wandering set of
a compact manifold can be encoded by the symbolic dynamics of a shift over a
finite set. By Corollary 4.4, the dynamical Zeta functions of the (M, gα) extend
meromorphically to the half plane Re s > h(gα) −K, where K depends smoothly
on the metric, with a simple pole in h(gα).

Therefore, the proof of Theorem 1 of [K-K-P-W89] can be reproduced verbatim,
and hence the map α �→ h(gα) is analytic. �

A convex co-compact hyperbolic 3-manifold M = H3/Γ admits a family of ana-
lytic deformations, isomorphic to the Teichmüller space of its visual boundary (see
[Mar07], p. 243, and references given there). Theorem 1.7 above can be used to
show that along any analytic path of hyperbolic structures on M , the entropy is
analytic.
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Corollary 4.13. Let M = H3/Γ be a convex co-compact hyperbolic 3-manifold.
Let (ρα)α∈(−ε,ε) be an analytic family of convex co-compact faithful discrete repre-

sentations of Γ into PSL2(C), with ρ0 = id. Let Mρα(Γ) = H3/ρα(Γ) and gα be
the hyperbolic metric on each of these manifolds induced by the covering. Then the
topological entropy α �→ h(gα) is an analytic function.

Proof. Let M = H3/Γ be a convex co-compact hyperbolic 3-manifold, and let
(ρα)α∈(−ε,ε), Mρα(Γ) and gα be as in the statement above. By Theorem 4.2 of [T10],
there exists an analytic family of metrics g̃α on M such that for all α ∈ (−ε, ε), the
Riemannian manifolds (M, g̃α) and (Mρα(Γ), gα) are isometric. By Theorem 1.7,
the entropy α �→ h(g̃α) is analytic, which concludes the proof of this corollary. �
Remark 4.14. G. Contreras has shown in [C92] that for compact manifolds with
a hyperbolic flow, the pressure function and metric entropy both are Cr in a Cr

neighborhood of the flow. His proof extends to convex co-compact manifolds, but
does not provide the analyticity of the entropy. The analyticity of the entropy for
convex co-compact hyperbolic 3-manifolds had been previously obtained for many
special cases in [AR97].

5. Interactions between dynamics and the Laplace spectrum

Recall the Laplace operator Δ on an (n+ 1) dimensional Riemannian manifold
(M, g); with respect to local coordinates (x1, . . . , xn+1)

Δ = −
n∑

i,j=1

1√
det(g)

∂

∂xi
gij

√
det(g)

∂

∂xj
.

Given a complete manifold (M, g), there is a canonical, unique self-adjoint operator
(also denoted Δ) on L2(M) extending the Laplacian on smooth functions with
compact support [Su87].

The spectral theory of conformally compact manifolds was inspired by Lax-
Phillips [L-P-82], who studied the Laplacian on convex co-compact hyperbolic man-
ifolds. This work was fundamental to Mazzeo in [M88] and [M91], who proved the
following important result for the spectral theory of conformally compact manifolds
which we recall below.

Theorem 5.1 (Mazzeo). Let (M, g) be an (n+1) dimensional conformally compact
manifold. Define α2

0 := inf{limp→∞ κ(p)}, where the infimum is taken over all
sectional curvatures. Then, the essential spectrum of the Laplacian is absolutely

continuous and is
[
α2

0n
2

4 ,∞
)
. There are no embedded eigenvalues except possibly

at α2
0n

2/4.

A connection between pure point spectrum and entropy of the geodesic flow was
established by D. Sullivan in [Su79], where he showed that, for hyperbolic (n+ 1)-
manifolds, the pure-point spectrum σpp(Δ) is non-empty if and only if the entropy
of the geodesic flow h(g) satisfies h(g) > n/2. This result was further improved by
Guillarmou-Naud, who demonstrated the following [G-N06].

Theorem 5.2 (Guillarmou-Naud, 2006). Let M = Hn+1/Γ be a convex co-compact
hyperbolic manifold whose entropy satisfies h > n/2. Then

# {γ ∈ Lp : l(γ) ≤ T} = li(ehT ) +
∑

βn(h)<αi<h

li(eαit) +O
(
eβn(h)T

T

)
,
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where li(x) =
∫ x

2
dt/ log(t) and βn(h) = n

n+1 (
1
2 + h). The coefficients αi are in

bijection with σpp(Δ) by αi(n− αi) = λi ∈ σpp(Δ).

In the more general case we consider, that of convex co-compact manifolds with
variable curvature, there are few known results for the spectral theory. Our final
result is inspired by [Su79] and the above result of Mazzeo.

Proof of Theorem 1.8. Let (M, g) be a convex co-compact manifold of dimension
n + 1 whose sectional curvatures κ satisfy −b2 ≤ Kg ≤ −a2 < 0. Let Γ be

the fundamental group of M acting on the universal cover (M̃, g) by isometries,

and ΛΓ ⊂ ∂vM̃ its limit set. Since the fundamental group of M is not Abelian,
the Patterson-Sullivan construction (cf. [O-P04], p. 20) shows that there exists a
family of finite positive measures (σx)x∈M̃ , supported by ΛΓ, satisfying the following
properties:

(1) (σx) is Γ-equivariant: for all γ ∈ Γ and all x ∈ M̃ , σγ−1x = γ∗σx;

(2) for all x, y ∈ M̃ , the measures σx and σy are absolutely continuous with
respect to each other and satisfy for all ξ ∈ ΛΓ

dσx

dσy
(ξ) = e−hgBξ(x,y),

where Bξ(., .) is the Busemann function in ξ and hg is the topological en-
tropy of the geodesic flow of (M, g) restricted to its non-wandering set.

Let o ∈ M̃ be fixed; we define the map φ̃ : M̃ → (0,∞) by

(5.3) φ̃(x) =

∫
ΛΓ

dσx(ξ) =

∫
ΛΓ

e−hgBξ(x,0)dσ0(ξ).

It follows from the Γ-equivariance of (σx) that φ̃ is Γ equivariant. Therefore, it

induces a well-defined positive map φ : M = M̃/Γ → (0,∞). We could not find a
complete proof of the following classical lemma.

Lemma 5.4. If the sectional curvatures of g satisfy −b2 ≤ Kg ≤ −a2 < 0, then

for all ξ ∈ ∂vM̃ and o ∈ M̃ , the Busemann function x �→ Bξ(x, o) satisfies

na ≤ ΔgBξ(., x) ≤ nb.

Proof. Let ξ∈∂vM̃ and o∈M̃ be fixed. For all x ∈ M̃ , we denote by (γx,ξ(t))t∈(0,∞)

the geodesic ray (parameterized with unit speed) which starts in x and ends in ξ.
For all v ∈ TxM , we write Y s

v (t) the stable Jacobi vector field along γx,ξ with
Y s
v (0) = v. A detailed definition of stable Jacobi fields can be found in [H-IH77],

p. 482. It follows from Proposition 3.1 of [H-IH77] that

∇Bξ(., o)(x) = −γ′
x,ξ(0) and ∇v∇Bξ(., o)(x) = −(Y s

v )
′(0)

for all v ∈ TxM . Since

ΔgBξ(., o)(x) = −Trace(v �→ ∇v∇Bξ(., o))(x),

the Rauch Comparison Theorem (cf. [Kl82], p. 216) implies: na ≤ ΔgBξ(., x) ≤
nb. �
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By a straightforward computation, this lemma implies that for all x ∈ M̃ and
ξ ∈ ∂vM̃ , we have

hg(na− hg)e
−hgBξ(x,o) ≤ Δg(e

−hgBξ(.,o))(x) ≤ hg(nb− hg)e
−hgBξ(x,o).

This implies in particular that on M ,

Δφ(x) ≥ hg(na− hg)φ(x).

Since φ is positive, Theorem 2.1 of [Su87] implies that the bottom of the spectrum
of Δg satisfies λ0(Δg) ≥ hg(na− hg).

When hg ≤ na
2 , this lower bound can be improved as follows. For any δ ≥ hg,

it is shown in [Rob11], p. 100, that there exists a family of finite positive measures

(μδ
x)x∈M̃ , supported by M̃ ∪ ∂vM̃ , satisfying the following properties:

(1) (μδ
x) is Γ-equivariant: for all γ ∈ Γ and all x ∈ M̃ , μδ

γ−1x = γ∗μδ
x;

(2) for all x, y ∈ M̃ , the measures μδ
x and μδ

y are absolutely continuous with

respect to each other and satisfy for all ξ ∈ M̃ ∪ ∂vM̃

dμδ
x

dμδ
y

(ξ) = e−δBξ(x,y),

where Bξ(x, y) = dg(x, ξ)− dg(y, ξ) if ξ ∈ M̃ , and Bξ(., .) is the Busemann

function in ξ when ξ ∈ ∂vM̃ .

Moreover, it also follows from the proof of Proposition 3.1 of [H-IH77] that for

all ξ ∈ M̃ ∪ ∂vM̃ , we have

ΔgBξ ≥ naBξ.

Therefore, the map φδ : M̃ → (0,∞) defined by

φδ(x) =

∫
M̃∪∂vM̃

dμδ
x(ξ)

is positive, G-equivariant and satisfies

Δgφ
δ ≥ δ(na− δ)φδ.

Since the map δ �→ δ(na− δ) is increasing on [0, na2 ], Theorem 2.1 of [Su87] implies
that we have

λ0(Δg) ≥
(na)2

4
.

The upper bound for λ0(Δg) comes purely from the essential spectrum. It follows
from [Eich84] that when (M, g) is a convex co-compact (n+1)-manifold with infinite
volume, with −b2 ≤ −a2 < 0, then the essential spectrum of M contains the half

line (− (nb)2

4 ,∞). �
Since the upper bound on the bottom of the spectrum depends only on the

essential spectrum, it can be improved to λ0(Δg) ≤ (nβ)2

4 if the sectional curva-

tures satisfy Kg ≥ −β2 > −b2 on the complement of a compact set. When M is
conformally compact, Theorem 5.1 of Mazzeo improves this bound.
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5.1. Concluding remarks. Let us first remark that Theorem 1.8 is by no means
optimal. In particular, it does not give a dynamical criterion for the existence of
an isolated eigenvalue. Such a criterion may come from a further application of the
study of the weighted Zeta function given in Theorem 1.6.

The counting estimates for the number of closed geodesics given in the prime or-
bit theorems can presumably be refined in a similar way to Theorem 1 of [PoSh98],
where M. Pollicott and R. Sharp adapt the work of D. Dolgopiat to negatively
curved compact surfaces. The results announced in [St10] extend this work of Pol-
licott and Sharp to Axiom A flows which satisfy some non-integrability conditions.
These conditions are satisfied by the geodesic flow on complete convex co-compact
surfaces and compact manifolds with pinched negative curvature. However, it is still
unknown whether the geodesic flow on convex co-compact manifolds of dimension
at least 3 satisfies Stoyanov’s non-integrability condition. Stoyanov’s work gives an
asymptotic expansion for the number of closed geodesics as a sum of exponential
terms, which may be compared to the result of Guillarmou-Naud quoted in our
introduction. If the counting estimates for weighted geodesics could be refined, it
would presumably lead to conditions for the existence of several distinct eigenvalues
in the pure point spectrum of the Laplacian.
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[Rob03] Thomas Roblin, Ergodicité et équidistribution en courbure négative (French, with
English and French summaries), Mém. Soc. Math. Fr. (N.S.) 95 (2003), vi+96.
MR2057305 (2005d:37060)

[Rob11] Thomas Roblin, Comportement harmonique des densités conformes et frontière de
Martin (French, with English and French summaries), Bull. Soc. Math. France 139
(2011), no. 1, 97–128. MR2815030 (2012f:31011)

[Ro09] Julie Rowlett, Dynamics of asymptotically hyperbolic manifolds, Pacific J.
Math. 242 (2009), no. 2, 377–397, DOI 10.2140/pjm.2009.242.377. MR2546718
(2011e:58045)

[Ro12] J. Rowlett, Errata to “Dynamics of asymptotically hyperbolic manifolds”, Pacific
J. Math. 268 (2014), no. 2, 493–506. MR3227445

[Se56] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Rie-
mannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.)
20 (1956), 47–87. MR0088511 (19,531g)

[Sm67] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967),
747–817. MR0228014 (37 #3598)

[St10] Luchezar Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlin-
earity 24 (2011), no. 4, 1089–1120, DOI 10.1088/0951-7715/24/4/005. MR2776112
(2012f:37060)

[Su79] Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions,

Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR556586 (81b:58031)

http://www.ams.org/mathscinet-getitem?mr=661875
http://www.ams.org/mathscinet-getitem?mr=661875
http://www.ams.org/mathscinet-getitem?mr=2355387
http://www.ams.org/mathscinet-getitem?mr=2355387
http://www.ams.org/mathscinet-getitem?mr=961517
http://www.ams.org/mathscinet-getitem?mr=961517
http://www.ams.org/mathscinet-getitem?mr=1087800
http://www.ams.org/mathscinet-getitem?mr=1087800
http://www.ams.org/mathscinet-getitem?mr=916753
http://www.ams.org/mathscinet-getitem?mr=916753
http://www.ams.org/mathscinet-getitem?mr=2097356
http://www.ams.org/mathscinet-getitem?mr=2097356
http://www.ams.org/mathscinet-getitem?mr=727704
http://www.ams.org/mathscinet-getitem?mr=727704
http://www.ams.org/mathscinet-getitem?mr=1085356
http://www.ams.org/mathscinet-getitem?mr=1085356
http://www.ams.org/mathscinet-getitem?mr=993330
http://www.ams.org/mathscinet-getitem?mr=993330
http://www.ams.org/mathscinet-getitem?mr=1813434
http://www.ams.org/mathscinet-getitem?mr=1813434
http://www.ams.org/mathscinet-getitem?mr=1829645
http://www.ams.org/mathscinet-getitem?mr=1829645
http://www.ams.org/mathscinet-getitem?mr=842051
http://www.ams.org/mathscinet-getitem?mr=842051
http://www.ams.org/mathscinet-getitem?mr=1646052
http://www.ams.org/mathscinet-getitem?mr=1646052
http://www.ams.org/mathscinet-getitem?mr=2057305
http://www.ams.org/mathscinet-getitem?mr=2057305
http://www.ams.org/mathscinet-getitem?mr=2815030
http://www.ams.org/mathscinet-getitem?mr=2815030
http://www.ams.org/mathscinet-getitem?mr=2546718
http://www.ams.org/mathscinet-getitem?mr=2546718
http://www.ams.org/mathscinet-getitem?mr=3227445
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0228014
http://www.ams.org/mathscinet-getitem?mr=0228014
http://www.ams.org/mathscinet-getitem?mr=2776112
http://www.ams.org/mathscinet-getitem?mr=2776112
http://www.ams.org/mathscinet-getitem?mr=556586
http://www.ams.org/mathscinet-getitem?mr=556586


2486 JULIE ROWLETT, PABLO SUÁREZ-SERRATO, AND SAMUEL TAPIE
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