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THE SPACE OF ALMOST COMPLEX 2-SPHERES
IN THE 6-SPHERE

LUIS FERNANDEZ

ABSTRACT. The complex dimension of the space of linearly full almost complex
2-spheres of area 47d in the round 6-sphere is calculated to be d 4+ 8. Explicit
examples of these objects are constructed for every integer value of the degree,
d > 6,d # 7. Furthermore, it is shown that when d = 6 this space is isomorphic
to the group G2(C), and when d = 7 this space is empty. We also show that
the dimension of the space of nonlinearly full almost complex 2-spheres of area
4md in the round 6-sphere is 2d + 5.

1. INTRODUCTION

Octonionic multiplication in R® induces a cross product in the vector space,
isomorphic to R”, of imaginary octonions, by defining

z x y = Im(zy),

where octonionic multiplication between x and y is understood and Im( ) denotes
the octonionic imaginary part. In turn, this defines an almost complex structure in
56 c Im(0): if p € S and X, € T,,S%, define

Jp(Xp) =p x Xp.
Then J is an orthogonal almost complex structure in S°. Furthermore, it is a nearly
Kiihler structure in S® in the sense that (VxJ)X = 0 for any X € T'S, where V
denotes the Levi-Civita connection in S° [15].

A smooth map f from any almost complex manifold (M, J™) to S8 is almost
complez if it is a morphism from (M, JM) to (S°,J), i.e.,

df o JM = J o df.

The particular case of almost complex maps from S? = CP! to S° has been studied
by several authors (see for example [7}[8,10,15,23,24]). In particular, explicit
examples of these maps were found in [24], and a Weierstrass-like representation
was given in [§].

On the other hand, a map f : S? — S® is harmonic if Aszf = Af for some
function A : S — R (see [9] for example). A simple computation shows that
almost complex maps from S? to S% are, in particular, harmonic (see Section ).
This has several implications. The area of a harmonic map f : S? — S is graded
by the degree: Area(f(S?)) = 4md, where d is a positive integer [I], and the space
of linearly full (i.e., whose image does not lie in a proper subsphere of S¢) harmonic
maps of degree d from S? to S® can be given the structure of a complex projective
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variety [I0LI6] of dimension 2d+9 [I3l[14]. Therefore, the set of linearly full almost
complex maps from S? to SO of a given degree can be furnished with the structure
of a projective subvariety of the space of harmonic maps from 52 to S%, and the
following questions arise naturally: What is its dimension? Are there examples of
linearly full almost complex maps from S? to S® for every value of the degree?

In this paper we use standard techniques in the study of harmonic maps to show
that the set of linearly full almost complex maps from S? to S® is nonempty with
dimension d + 8 for d > 6, d # 7, and is empty otherwise. Furthermore, when
d = 6, this space is isomorphic to G3(C). In addition, explicit examples of linearly
full almost complex maps are found for every value of d > 6, d # 7. We also find
that the dimension of the space of nonlinearly full maps is 2d + 5.

The paper is organized as follows. In Section [2] we give a quick introduction of
the tools that will be used in subsequent sections. In Section [Bl we find criteria to
determine when a harmonic map from S? to 5% is almost complex, and we show that
two linearly full almost complex maps are SO(7,C)-congruent (in the appropriate
sense; see for example [I]) if and only if they are G2(C)-congruent. This fact will
be used in Section Ml to prove the statements regarding dimension explained above.
Finally, in Section Bl we construct explicit examples of linearly full almost complex
maps from 52 to S6.

2. PRELIMINARIES

2.1. The octonions. Let {1,i,]j,k, ¢, ie, je,ke} be an orthonormal basis of RS.

The (real) octonions, denoted by O, are the (nonassociative, noncommutative)

algebra over R with multiplication table, given in terms of this basis, by

i j k € ie je ke

i j k € ie je ke
k

1
1|1
i i -1 —-j ie —e —ke je
il -k -1 i je ke —e —ie
k| k j —-i -1 ke -—je ie —ke
€ | €

—ie —je —-ke -1 i j k
ie | ie e —-ke je -i -1 -k j

je | je ke € —ie —-j k -1 —i
ke | ke —je e € -k —j i -1

Similarly one defines the complez octonions as O ® C with the multiplication table
above. The real part of a real or complex octonion is the term involving 1; the
imaginary part is the sum of the remaining terms.

Let Im(0Q) and Im(Q) ® C denote the real and complex span, respectively, of
{i,j, k, €, i€, je,ke}. Then the formula

x x y = Im(xy)

defines a cross product in Im(0Q) = R” or Im(Q) ® C = C” with the following
properties: for u,v,w in O or O ® C,

1 1
(2.1) uUXv= §(uv —vu) and (u,v) = —i(uv + vu),
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where (, ) denotes the standard inner product of R” or its bilinear extension to
C7, ie.,

7
((ul,...,U7),(v1,...,v7)) = Zujvj

for u;,v; in Ror C, 1 <4 <7 We will use (, ) to denote the hermitian inner
product in C7, i.e.,

7
<(U1,...,U7),(’U1,...,U7)> = Zuj@j

for u;,v; € C, 1 < i < 7. Other properties of the cross product that we will use
extensively are the following:

(2.2) u X (vXw)+ (uxv)xw=2uw)v— (u,v)w— (w,v)u,
(2.3) u X (uxv) =(u,v)u — (u,u)v,
(2.4) (u,v X w) = (v,w X u) = (W, u X v).

The group of automorphisms of the octonions and complex octonions are Go
and G2(C), respectively, i.e., (gu)(gv)) = g(uv) for all g in G2 and G2(C) and all
u,v in O and O ® C, respectively. For a very clear and beautiful exposition of the
octonions and their properties, see for example [1920].

2.2. Almost complex maps from the 2-sphere to the 6-sphere. A map
f: 8% = S8 is almost complex if J o df = df o JSQ, where J denotes the almost
complex structure in S8 defined by
Jp(Xp) =P x Xp
for p € S¢ C Im(0) and X,, € T,S® C TpIm(0).
The standard complex structure of S2 22 CP* can be defined, similarly, using the
cross product in R3:

S2
Jg (Yo) = qx Y,
where ¢ € S? and Y, € T,52, and the cross product is given by
© % y = Im(zy),
where in this case quaternionic multiplication and imaginary parts are used. In
anct, this gives the simplest examples of almost complex maps from S? to S%: if
f:5% — 5% C R? = Im(H) is any holomorphic map, and if h : H — O is any linear
homomorphism of algebras, then A(Im(H)) C Im(Q) and h(z x y) = h(z) x h(y) for
x,y € Im(H), which implies that f := ho f will be an almost complex map since
Jodf = Jodhodf
dhoJ% od f because h is a linear homomorphism
= dho df o J5" because f is holomorphic
= dfoJS.
We will often identify ($2,J5") with CP' (or with C U {oo}) via a biholomorphic

map, for example, an appropriate stereographic projection.
In general, let z = x + iy be a local holomorphic coordinate in S?. Then

2 (0 0 2 (0 0
s2(9\_ O s2(9)\__9
J < 89;) ay and J ( 8y) o
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Therefore f : S? — S C R” = Im(Q) is almost complex if and only if

o (0(2)) - (3) 0 0 (0 () --0(2)

Using subscripts to indicate differentiation, this equation can be written as

[xfe=1[fy and fXx f,=—fs.
Differentiating again, and using (2.1]),

[ X foe= fxy and f x fyy = _fyacv

and adding these two equations we obtain

I x (fac:c +fyy) =0.

Thus (fez(2) + fyy(2)) is parallel to f(z) for all z € S%, and hence f is harmonic.
Using Harm(S2, S%) and Ac(S2,59%) to denote the set of harmonic maps and
almost complex maps, respectively, from S? to S8, we therefore have

Ac(S? 8% c Harm(S?, S%).

Recall [1] that the area of the image of a harmonic map from S? to S?" is
4md, where d is a positive integer called the degree of the harmonic map. We
will use Harm,(S?2, S¢) and Acy(S2, S°) to denote the subsets of Harm(S?, S¢) and
Ac(S?,59), respectively, of maps of degree d. Also, we will use Harm5(52,56)
and Ac£(52,56) to denote the subsets of linearly full maps, i.e., whose image is
not contained in any proper geodesic subsphere of S¢, and Harm&k)(52,56) and

Ac&k)(Sz, S6) to denote the subsets of those maps whose image is contained in a
k-dimensional subsphere but not in a (k — 1)-dimensional subsphere of S®. Tt is
known [9] that k£ has to be an even number. In addition, it is proved in [7, Lemma

4.3] that Acgl)(SQ, S6) is empty. Therefore
Acq(S?,8%) = Ac((f)(SQ, SOy U Acf;(Sz, S%) (disjoint union).

The set Harmg (82,5%) can be furnished with the structure of a complex al-
gebraic variety [16] of complex dimension 2d + 9 [13]; the complex dimension
of Harm&%)(52,56) is2d+9—(3—k)(2—k) for k = 1,2 [14]. Since the set
Acilc(SQ7 S6) is an algebraic subvariety of Harm{;(SQ, S6) [10], to find the dimension
of Acg(S 2 5%) we can use some of the common machinery in the study of harmonic
maps into spheres and projective spaces—namely harmonic sequences (see for ex-
ample [6L[7,25]), singularity type (see [ILALIGLIT]) and twistor lifts (see [1L9]). We
now give a quick introduction to these techniques.

2.3. Harmonic sequences. We describe the harmonic sequence of a harmonic
map for the specific case of linearly full maps from S? to S®. Details and proofs
can be found, for example, in [B[6,IT], and a more general description appears in
[25].

The idea is simple: given a linearly full harmonic map f : $? — S¢ c C7, differ-
entiate it and project the result over the space orthogonal to f to obtain the next
element of the sequence. This procedure is independent of the chosen coordinate
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modulo scalar multiplication, so it produces a sequence of smooth functions from
52 to CP°. More precisely, let fp : 5% — C7 be given inductively by the conditions

(2.5) fo = J,

af, 1 /of,
(26) fp+1 = 6_'];_ |fp|2 <8_];,fp>fpa _3§p§2a
(27) fpfl — _ ‘fp—1|2 8fp -9 S P S 37

fl? 0z

where (, ) and | | denote the hermitian product and associated norm, respectively,
in C7. Since f is assumed to be linearly full, the maps fp, =3 < p < 3, are not
identically zero, and their definition, away from the points where any of the f, is
zero, is independent of the holomorphic coordinate z chosen, modulo multiplication
by scalars. Thus, the maps ¢, = [f,], =3 < p < 3, are well defined in an open
subset of S2; furthermore, their definition can be extended over the points where
any of the f, is zero, giving maps ¢, : 5% — CPP. It is not hard to check that they
are harmonic [I1].

The sequence of maps ¢,, —3 < p < 3, is called the harmonic sequence of
f. Additionally, ¢_3 is holomorphic and ¢3 is antiholomorphic. Although the
sequence of functions f, defined above consists only of local representatives of the
harmonic sequence ¢, by a slight abuse of language we will also refer to it as ‘the
harmonic sequence of f’. Note that, although the functions ¢, do not depend on
the coordinate z used in the definition of the f,, the functions f, certainly do.

The maps f, satisfy the following properties which will be used extensively
throughout the paper (see, for example, [3]):

(2'8) f_p = (_1)p‘fp‘2ffpv
(2.9) [follf=pl = 1,
(2~10) (fpafq) = (_1)p 0—pa>

where §;; is the Kronecker delta. Together with (Z7)), this implies that f_3 is
holomorphic.

The map ¢_3, which is usually called the directriz curve of f, is characterized
by being totally isotropic, i.e., for every local representation f_3 of ¢_3,

Dif_g &f_3
Ozt ' 0z

)‘07 0<1,5<2

Furthermore [I], every holomorphic, linearly full, totally isotropic map = : S? —
CP® uniquely determines a harmonic map f : S — S® (defined using (Z8)) up to
composition with the antipodal map of S6. This implies that much of the study of
the set of harmonic maps (or, in particular, of almost complex maps) from S? to
56 can be translated to the study of totally isotropic curves in CP®. A very useful
tool in the study of these curves is the notion of singularity type, which we describe
in the next subsection.

2.4. Singularity type. A detailed account on the notion of singularity type of
holomorphic curves in CP" can be found in [4,[I7]. Let ¥ be a Riemann surface
and let

G:¥Y —CP"
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be a linearly full holomorphic curve. Locally, write G = [g(z)] = [go(2), - - ., gn(2)],
where z is a holomorphic coordinate in ¥ and where the g;, 0 < i < n, do not
vanish simultaneously. Then, for 0 < k < n — 1, the k™ associated curve of G is

the map oy : & — P(AF1C+) = CP() ! Jocally defined by

g okg
A=A A=,
81 52 0zk
A higher singularity of G is a point p where the derivative of any of the associated
curves of G is zero.

Writing o (z) = [o1(#)] locally, let r;(p) be the nonnegative integer defined by

0z

Note that all the r;(p) are zero except at a finite subset of ¥. The singularity type
of the original map G : ¥ — CP" is defined to be the set

0
ri(p) = Order of vanishing of (ak A ﬂ) at z = p.

{(p;ro(p),-..,mn-1(p)) | p is a higher singularity of G}.
The total ramification degree of oy, is defined by

rp = Z ri(p).

peES
If ) denotes the degree of oy, and writing d_1 = §,, = 0, we have the Plicker
formulas
Ok—1— 20k +0ky1=29—2—1, 0<k<n-—1,
where g is the genus of the surface X.

When G is the directrix curve of a linearly full almost complex 2-sphere in S°,
the Pliicker formulas greatly simplify. Let f : S2 — S% be a linearly full harmonic
map, and let @5, —3 < k < 3, be its harmonic sequence. Then ®_3 : §2 — CPS
is holomorphic and linearly full. Let o : S? — (CIP’(erl)*l, 0 < k < 5, be the
kth associated curve of ®_s, let 0 be the degree of oy, and let r, be the total
ramification degree of 0. The fact that fo is real implies [I]

05—k = 51@; k=0,1,2,

and then the Pliicker formulas read

—250+51 = —(2—|—7‘0),
(2.11) b =201 +02 = —(2+47m1),
01— 0y = —(2+T2).

This implies, in particular,
(212) 52 = 12+7“0+2T’1 +3T2.

On the other hand, if f;, =3 < j < 3, is the harmonic sequence of f, then
equations (2:6) and (7)) imply that
(213) gL :f_g/\f_g/\"'/\fk_g
is a local representation of ;. Hence the degree of o can be calculated using the
formula

1 02

2.14 = — 1 2 dz )
(2.14) Ok = 207 |oa 920 8 lok|” dz A dz
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Using (2.13) and (2.10), we have
lowl® = |f=a*|f-2l? - | fasl?,
and (28) and 27) imply, for 0 < k < 5, that
2

9 =
0z0z

1 fe-sl?

log(|f,3|2|f,2|2 T |fk73‘2)

so if we let
v =P/ —3<i <2,
then equation (29)) implies that v; = y_;_1, and therefore, for 0 < k < 2,
1

1
Op = — Ye—3 dZ Ndz = — Yo dZ Ndz
271 S2 271 S2

(see [0] for details). In the particular case when f € Acf;(Sz, 56), Lemma 5.2 of [7]
gives v9 = 272 (which also follows from the equality | f1|2|' f2]? = 2| f3|* obtained in
the proof of Proposition 3] below). Therefore, if f € Acé(S{ S9),

(2.15) 200 = 02,
which, using (2IT]), gives

(2.16) ro = ro,

and hence

(2.17) 0o =6+ 2rg + 1.

The last three equations have particular importance in what follows. On the one
hand, equation (Z.I3]) states that the degree of a linearly full almost complex map
from S? to SO is equal to the degree of its directrix curve, which is peculiar. On
the other hand, as we will see in Section M a map f € Acf; (S2,5%) is essentially
determined by its singularity type, which is restricted by equation (2.I7)). This fact
will be used to find an upper bound on the dimension of Acfic (52, 58%). A lower bound
on the dimension of ch;(SQ, S9) is implicit in [10], where a different approach is
used, as described in the next subsection.

2.5. Twistor lifts. We give a quick description of the twistor construction started
by Calabi in the 1960s. For details, see [1L[0]. Given a linearly full harmonic map
f: 8% — S its twistor lift is the map ¢ : S? — Z,, C Gr(n,C?*"*1) defined by

0 am
w(z)zspan<f78_£a"'787_£)7

where z is a holomorphic coordinate. The set Z,, is the submanifold of the Grass-
mannian of n-planes in C2"*+! consisting of isotropic n-planes, i.e., the set of
P € Gr(n,C**1) such that (u,v) = 0 for all w,v € P. It is a Kihler mani-
fold isomorphic to the homogeneous space SO(2n + 1,R)/U(n) [].

There is a projection m : Z, — S that can be defined as follows: given a
subspace P € Z,, define 7(P) as the unique real unit vector in C*"*! such that
{7(P), P\, Py, P3, Py, P», P3} is a positively oriented basis of C?"*! where the set
{P1, P2, P3} is a basis of P. This map is a Riemannian submersion with the metric
in Z,, induced by the standard metric of Gr(n, C2"*1).

If f:52 — S?" is harmonic and linearly full, then its twistor lift is holomorphic,
horizontal (i.e., its derivative is perpendicular to the fibers of 7) and linearly full (in
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the sense explained in [16]); conversely, if ¢ : S — Z,, is a holomorphic, horizontal
and linearly full map, then £ o ¢ are harmonic. The degree of a holomorphic
map 1 from S? to Z, is defined as the image under 1, of 1 € Hy(S?,Z) = Z in
Hy(Z,,Z) = Z. Note that if 1 is the twistor lift of f € Harm?/ (52, $%"), then
deg(v) = d [122].

If we let

HHg(SQ, Z,) = {Holomorphic, horizontal, full maps ¢ : S? — Z,, of degree d}

and
Harm{;’i(SQ, Sy = {d+mop:ah € HHZ;(SQ,Z”)},
then the last paragraph can be summarized by

Harmg(SQ, S§2m) = Harm£’+(S2, S2™) U Harm(; ™ (52, 5™).

n(n+1)
In [10,12,14] birational maps bg : CP N Z, were constructed which

translated the problem of finding holomorphic, horizontal, linearly full maps into
n(n+1)
Z,, into finding solutions of a differential system in CP = More precisely, for

the particular case n = 3, let E = {Ey, 1, Es, E3, E1, E3, E3} be a basis of C”
satisfying
(EOaEr) = (EO)ET) = (ErvEs) = (EraEs) =0, and (EraEs) =045, 75=1,2,3.

Define the birational map bg : CP® — Z; that takes

[s:a1:a2:a3:7'12:7'23:7'31]

to the 3-plane in C7 spanned by the vectors

3
(67 (671873 Tk \ =
SRt B= Y (TE+5)) B 15023,
k=1

where it is understood that 7;; = —7;.

Under this birational map the horizontality condition translates as follows [10,
13T4)18]. A map 1 : S? — Z3 is holomorphic, horizontal and linearly full if and
only if the map
’(;I:bgloi/}:[SZalZO[QI()égiTlQ:TQgZTgl]
satisfies
(2.18) iy — oy = 57— s'Tyy,  1<4,5 <3,

plus the open condition

(2.19) W <(ﬂ)/, (%)/ (%)/> £0,

S S S
where W denotes the Wronskian, and the dashes denote differentiation with respect
to a holomorphic coordinate in S?. In addition, the image of ¢ € HH(J;(SQ,Zg)
misses the subspace generated by {E1, Eo, E3} if and only if ¥ has degree exactly
d. In other words, if we define PDg(SQ,(C]P’G) C P(C[z]a)" by

PDZ;(SQ, CP%) = {¢) : S = CP® of degree d satisfying [2I8) and 2I9)},
then [10, Theorem 2]
{w € HIT(S2, 25) : spanc { By, Ba, Bs} ¢ z/)(SQ)} ~ pD/($2,CPY).
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Now let let {i,j, k, €, i€, je, ke} be an orthonormal basis of R” = Im(Q) satisfying
k=ixj, ie =ixe, je=1]j Xe, ke=k x €

(this is the standard basis of Im(Q)) and let E = {Ey, E1, Ea, E3, E1, Eo, E3} be
the basis of Im(0) ® C defined by
i+ e j—je k — ike
Ey = €, F, = —_—, Ey = —_—, E. = _,
0 1 NG 2 NG 3 NG
i—die - j+ije = k + ke
—_—, E = —, E e
V2 T2 ’ V2
Then the basis F satisfies the properties above. If we let
HHg(SQ,Zg)AC ={ye HHZ;(SQ, Z3) : wo 1 is almost complex},

then [10, Proposition 6] (note that the constraint there does not have the factor
“V/2" due to a different choice of the basis Z.20) and the ;)

(221) {¥ € HIH{(S%, Zy)ac : spanc { By, B, By} & 0(5%)}
= () € PD/(S?,CP°) : iv2a; = To3).
This last statement immediately gives a lower bound on the dimension of the variety
Achc(S2, S6) which will be used in Lemma EET] below.
We need one last observation regarding twistor lifts of maps f € Acg (52,89). If
= : 582 — CPC is the directrix curve of f, and if o5 : S2 — CP** denotes the 274

associated curve of 2, then oy = Plo ), where P1: Z3 C Gr(3,C7) — CP* is the
Pliicker embedding, which has degree 2 [22]. Therefore

0o = deg(o2) = 2deg(v)).
Using (2.T3)) this implies that if E is the directrix curve of f € Acf; (52, S%), then
(2.22) deg(E) = d.

(2.20)
E| =

3. CROSS PRODUCTS AND CONGRUENCE

In this section we state and prove some results that will be needed in the next
sections and have an interest of their own. The first proposition gives a convenient
criterion, in terms of cross products, to check whether a harmonic map from S? to
S6 is (&)-almost complex (we call a map f ‘(—)-almost complex’ if —f is almost
complex). As a byproduct we obtain all the cross products of elements in the
harmonic sequence of a (+)-almost complex map. In the second proposition we
show that if two almost complex maps are SO(7, C)-congruent, then they are G2(C)
congruent. Again, as a byproduct we obtain the cross products of the derivatives
of the directrix curve of an almost complex map.

The proofs are computational in nature. We will make extensive use of the

properties of the cross product given by (2.2)), (23) and (2.4)).

3.1. Characterizations of almost complex maps. This section is motivated
by the following question: What is a simple property that characterizes twistor
lifts of almost complex maps? In other words, HHi;(SQ7 Z3)ac is the subvariety of
HHg(SQ, Z3) of maps that satisfy which condition? Such a condition, namely the
vanishing of the torsion ‘III’, was found in [8, Theorem 4.7] (see also [7, Remark
4.1]). We find a slightly more general criterion here.
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Proposition 3.1. Let f : S2 — S° be a linearly full harmonic map and let z be a
holomorphic coordinate in S?. Then f is (&)-almost complex (i.e., f x f, = £f.)

if and only if the subspace
of 0*f O3f
PACY B2 9227 928

s closed under X.

j k 2 3
Proof. Since f is harmonic, (gng, gz ) =0,0<j,k <2, so spang {%, %, %

is a totally isotropic subspace, and it has dimension 3 because f is linearly full.
P

Let fi, —3 <k < 3, be the harmonic sequence of f. Then spang {%, %, %} =

spanc { f1, f2, f3}

If f is (+)-almost complex, then it is of type (I) in the classification of almost
complex curves in [7], so it satisfies (see equations (4.3), (4.4) and (5.1) of [7])

f X fl = :l:ifb
(3.1) [xfo = =ifa,
fxfs = Fifs.

Differentiating (BI) and using (20 it is easy to obtain
fix fa=+£2if5, fix f3=0, fax f3=0,

which proves the ‘only if’ part of the lemma.

The converse is not difficult to prove, but it is long. The idea is to use the
properties of the cross product and of the harmonic sequence. Suppose that f;x fi, €
spanc {f1, f2, f3}, 1 < j,k < 3. Note that f1 x fo # 0 since otherwise, using (271

and (23),

0
(fla;( f2) _ :;12 fox (fox f2) = ?P f2,

which is not possible since f1, fo # 0. Write f1 X fo = a1f1 + asfo + azfs. Then
23) implies

0:f0><

0= f1 x(f1 X f2) =asf1 X fo+aszf1 x f3,
0= fox (fi x fa) = —a1f1 X fa +azf2 X fs.
Since f1 x fo # 0, ag # 0. Therefore, writing

_a a
H:=f1 x fa, dyy == ——2, doz i= —
as asg
we have
(3.2) Jix fs=dizH and fy x f3 =dasH.
Now use (2.7) to find
Oda3 OH _ 9(f2 % f3) | f2]? fe?
H+d =— disH,
GE 85 G |f1|2f1><f3 |f 2 13
which implies
OH Odas \f2|
. dos— = — ——=d H.
(33 ng == (2 + (P
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Similarly,

0di3 OH _ O(f1 x f3) | f1]? | f3]?
3.4 ——H+d =— X f3—F=H
(3.4) BE; 1355 = BE |f0|2f0 I3 a2
and

OH _d(fixfo) A

(3.5) B e ‘f0|2f0 X [
Therefore

dosfox fo=0 (mod H) and dosfo X fs =0 (mod H),
so cross-multiplying these equations by fy and using (Z3]) we obtain
dasfo =0 (mod fo x H) and dezf3s =0 (mod fy x H),

which implies do3 = 0 since fy and f3 are linearly independent, and then equation
B3) implies d13 = 0. Therefore a; = as = 0, and using B.2), (4] and the fact
that |fo] = 1, we have

2
Jix fa=a3fs, Jix fs=0, Ja x f3 =0, f0><f3:—%agf3~
Lf1l?]f2]
Next, use (23) to find
—fa=fox (fox f3) = (%)2a§f&
| f1[?]f2]
which implies a3 = pliallf2l 1||f “f 2L with h = +i. Therefore, so far we have
R e T R A O A
and using (2.8]),

J-1 X foa=—hf_3, f-1x fo3=0, fo2 X fo3=0, Jox f-3=hf_3.
Now, ([Z2) implies

—2fo = f-3 % (fo x fa) + (f-3 x fo) X fa = —=2hf_3 X f3,
and therefore f_35 x f3 = —hfy. Differentiate and use (27 to obtain

|fo\2 Ofo _ Of-3xfs) _ |fs]?
LR T T e T e TRl
and then use (Z9)) to find f_3 x fo = _plhliRl f-1 and use ([Z8) to find f3x f_o =

[ fs]?
hfi. Also,

0= foox(f3x f2)=hfo2Xfi,
and therefore f_o X f1 = fo x f_1 =0.
Next, use (Z2) to obtain

2 2
2 5= foax(foax o) (foax fos)x fo —h'flf'f}' Foaxfs—— fll'f'(f' s
This implies
2 2

and therefore H := f; X fo = 2hf3.
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Finally, equation B3] gives fo X fao = hfa, and differentiating,

| fol? | fal? I(fo x f2) |fal?
_‘f_1|2f71><f2_‘f1|2f0><f1: 82 :_h|f1|2f17
which implies fy x f1 = hf; = +if1, as desired. O

The following condition will be very useful when we find examples in Section

Corollary 3.2. Let Z: 5% — CP° be a linearly full holomorphic map and let &(z)
be a local holomorphic representation of Z. Then Z is the directriz curve of an
almost complex map f : 5% — S if and only if € x & = 0.

Proof. Suppose that Z is the directrix curve of an almost complex map f : S? — S,
and let {f_s, f-2, f—1, fo, f1, fo, f3} be its harmonic sequence. If £ is any local
representation of Z, then £ is a multiple of f_3, and £’ is a linear combination of
f—3 and f_o. Therefore £ x & is a multiple of f_3 X f_o, which was computed to
be 0 in the proof of Proposition 311

Conversely, suppose that £ x £ = 0 for a given local holomorphic representation
. Since E is holomorphic, the same will be true for any local holomorphic represen-
tation, so we can assume that £ x £’ = 0 for every local holomorphic representation
¢. Differentiating we obtain & x £” = 0. Then we can use equation (23] to obtain

0=¢x (Ex&)=(§8)6-(§9¢,

0=¢"x(Ex&") =—(£¢"¢" +(€",£")¢,

0=¢ x(Ex&)=—(&)E + (£,
Since ¢ is linearly full, £, & and £ are linearly independent except at a few points,
and therefore (£@,¢() = 0, for i = 0,1,2. Differentiating these expressions we
find
(3.7) (€D ey =0 for0<i<j<3,

which implies that = is totally isotropic. Therefore = is the directrix curve of some
harmonic map f : S? — S% [1]. Note that, by the definition and properties of the
directrix curve,

;o of &°f *f of 0*f 03f
spanc {&,¢',¢"} = spang 97 972’ 05 = spallg¢ 927 022 98

so in view of Proposition B]it suffices to show that spanc {¢, &', £} is closed under
X. Since  x &' = € x " =0, it only remains to show that &' x &” € span¢ {&,¢&,¢"}.
To this end, note that equations (Z3)), [24) and B7) imply
(575/ X é-l/) — (5’,5/ X é—/l) _ (g”,gl X é—//) — O
and
(€ x "¢ xg")=—("&x(x"))=0
which implies that spang {&, &', €”, & x £} is a totally isotropic subspace of C7, and

as such it must have dimension at most 3. Since spanc {¢,¢’,¢”} has dimension 3,
it follows that & x & € spanc {£,£',¢"}. O

Most of the cross products of elements of the harmonic sequence were computed
in the proof of Proposition Bl For future use, we complete the table of cross
products.
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Lemma 3.3. Let {f_s3, f-2, f-1, fo, J1, J2, f3} be the harmonic sequence of f €
Acg(S’Q, SC6). Then the table of cross products (fi X f;)i; is given by

X | -3 -2 [ fo f1 fa /3
J-3] 0 0 0  —ifos —2if2 —=2if1 —ifo
f—2| O 0 if-s  if-o 0 —ifo —if1
R N U 0 if- ifo 0 —if2
Jo | if-s —if-2 —if-1 0 if1 ifa  —ifs

fi | 2if-2 0 —ifo —ifi 0 2if3 0
fo |2if-1  ifo 0 —ifa  —2f3 0 0
f3 ifo if1 ifa ifs 0 0 0

Proof. The remaining cross products can be found as follows. Use formulas (7))

and (Z9) to find

P O(f-3x fa) 8f— |f—1|2f
AP 0z o e

which gives f_3 X fi = —2if_5. Then use [2.8)) to find
[f=sPI i f3 X for = Fo1 X f3 = 2if—2 = 2i| [ fo-

Using ([2.9) and (B.6) we obtain f_1 X f3 = —ifa, foa X fo=1if_2, f-1 X fo=1if_1.
To find f_; x f1, differentiate fo x f1 = if1 and use ([Z.7) to obtain

[-3x fi=

| fol? _O(fox fi) .0ft |f1|2

|f_1|2f71><f17 82 77’82 ‘f |2f0,
which, using (29), gives f_1 x f; = ifo. Finally, differentiate f_5 x f; = 0 and use
(m to find f,Q X fg = —ifo. O

3.2. Congruence. The motivation is the following: if the directrix curves of two
linearly full harmonic maps from S? to S¢ are SO(7, C)-congruent, then they cer-
tainly have the same singularity type. Moreover, the set of directrix curves of
linearly full harmonic maps from S? to S with a given singularity type is a finite
union of SO(7,C) orbits [4]. Is this also true when we substitute ‘harmonic’ with
‘almost complex’ and ‘SO(7,C)’ with ‘G2(C)’?

This fact will be implied by the following: does SO(7,C)-congruence of twistor
lifts of almost complex maps imply G2(C)-congruence? Intuitively it seems that
this should be true. On the one hand its real counterpart is clearly true in view of
Proposition Bl On the other hand, if g € SO(7,C) and ¢ is the twistor lift of an
almost complex map with directrix curve expressed locally by [], then [g€] is the
directrix of the almost complex map whose twistor lift is g, and it is easy to see
that, if £ is suitably normalized,

¢ xg" =it and (g&') x (9€") = i(g€) = g(& x &").

This implies that g preserves all the cross products of the form &’(p) x £”(p), p € S?,
which should include all possible cross products within a basis of C”.

This heuristic idea is not easy to translate rigorously. Instead, we prove this
fact by calculating the cross products of the derivatives, up to order 6, of the
directrix curve. The proof is, surprisingly, an easy but lengthy computation using
the properties of the cross product.
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Lemma 3.4. Let f,, =3 < p < 3, be the harmonic sequence of a map [ €
Acg(SQ,SG’), and let € = f_3. Then the table of the bilinear products ((€®,¢0))),;
of the derivatives of & has the form

( , ) | f 5/ 5// 5/// 5(4) 5(5) 5(6)
13 0 0 0 0 0 0 -1
& 0 0 0 0 0 1 0
(3.8) §/’/’/ 0 0 0 0 -1 0 2b4;1
I3 0 0 0 1 0 —2b4qa —3by
D10 0 -1 0 2byy by 2byg
€10 1 0 2y by 2bss Ui
€O | 1 0 2byy 30y, 2bss by 2bgs
where by; = (€0, £0)) /2, and the table of cross products (€@ x £9)),; has the form
x | ¢ ¢ S A (O B O R0
13 0 0 0 —i&  —=2i¢" 0% (O
3 0 0 13 i’ —iby&  C15 O
" 0 —if 0 23 24 25 26
" Zf —Z{/ —_0?3 0 34 35 C'36
5(4) 22{’ ’L'b44§ _024 _034 0 045 046
€O | —c0 o5 0% 035 5 0 (56
€O | _c06  _o16 26 36 _c46 056

where C = 2220 Lfgf(k), and the complex functions L;j depend only on theAprod—
ucts b; and their derivatives. (Although we explain below how to find the C7, we
omit their explicit formulas as they are not relevant for the remainder of the paper.)

Proof. First notice that if {f_s, f—2, f—1, fo, f1, f2, f3} is the harmonic sequence of
the almost complex map f, then

(3.9) 5(i) = fi—z3 mod (f_3,f2,..., fi—3).

Using (Z10), this implies that (¢, £0)) =0 if i+ 5 < 6 and (€@, £0)) = (=1)"*!
if i + j = 6. Then notice that 0 = (£¢(),£®)) = 2(¢6) ¢®) and use the formula
(€@, £y = (04D W)y 4 (¢@) ¢U+D) to find the remaining bilinear products.

To find the cross product table, notice that if £ x €041 is known for 0 < i < k,
then £ x £€U) can be easily found, for 0 < i 4+ j < 2k + 2, using the formula

(g(i) % g(j))/ = 0D 5 ¢0) 4 D) 5 cGFD),

Hence it suffices to find §(i) X 5(”1) for 0 <7 <5.
Lemma B3] and equation B3) imply that £ x & = ¢ x &7 =0, & x &’ = i,
& x " =it £ x " =—i, and L3 =0 for k > 3. Therefore,

fN % EW _ ngf + L%?’f/ + ngfﬁ.
Use (Z3), 22), and B) to find
0=¢" % (6/, % 6/”) _ _L%‘Sﬁ/ % f// _ —iL%gg,
0= 5/ % (gl/ % é-l/l) 4 (é-l % 5//) % g/l/ _ L%Sgl X g/l +'L£ % g/// _ ZL%&&_’_g’
which gives L23 = 0, L2* = i. On the other hand,
if” _ (fl > 5///)/ _ 5// > 5/// + 5/ % 5(4)>
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and therefore ¢ x ¢(4) = —L23¢. Hence, using 2.2) and (B.8) again, we obtain
2basg’ = €W x (&' x €M) = L€ x €W = —2iLF¢’
since € x €@ = (€ x ") — ¢/ x ¢" = —2i¢'; this gives L3* = ibyy, and therefore
¢ x & = iby& 4 i€,

which, differentiating and using (ZId)), gives £’ x €& = bl & + iby& + i€ and
¢ x €W = —iby&. To find € x €W = Ei:o L3¢ proceed similarly to obtain

0 = &x (£ x&W)+ (£ x ") x €W = —iL3¢ — 2L —2¢,
0 = &x (" xEW)+ (¢ x &) x W =il +iL3E — ibaaLI*E + baaé,
—6W = € (€ x €W) =iL{le — LY — LY (ibag + i€”)
HLYN(LY'E + LY + L3 + L™ + Li'e™),
a8 = €W x (€ x €W) = 2ULTE + ibu L€ — L3 (b€ + ibaag’ +i€")

—L3N(L3'e + LY + L3'e" + L3 + L),
which leads to
" €W = b2, + 20, & + 2ibas” + i€,
To find ¥ x £€6) = 22:0 Le®) it is easier to use ([Z4) as follows:
—LE = (6,6W x £0)) = (€0 ¢ x eW) = —2i, so LE® = 2i,

L = (¢,6W % %) = (€9,¢ x W) =0, s0 L =0,

— L3+ dbygi = (£7,6W x €B)) = (€0 ¢" x €W) = ibyy — 2ibsa, so Li® = 5ibya,

L3P — 6byyi = (&7,6W x £0) = (£®), ¢ x W) = 2ibly, + ibl,, so L = 9ib),,
— L3 +10ib%, + 4ibss = (€@, W x €0)) =0, so L3> = 2i(5b3, + 2bas),

L% — 13ibygbly, 4 2iblsd = (€0, x €)Y =0, so L4 = i(13bysbly, — 2b%s5).
Finding L{® is trickier: first find & x £6) = (¢ x €®)) — ¢ x ¢6) and then
calculate £ x (& x £(9)) as above. The result is

€ x €60 = (=30 + 2bes — THF; + 11baaby)€ +i(Thaablyy + 2013)€’
+2i(263, + 3b),)€" + 9ibl, " + 5ibua&™® + 2i¢©).

Finally, finding £©) x £ is easy: compute £€®) x (€M) x £5)) and solve for
£6) x £€06) The long result is

€ x € = —i(11b, — 6baabes + 19b4abfy — 320346, — 3647 + 2b),b1))€
+i(15b3, by + 9By + 3baab4)E" + i(11b34 — 2066 + 25677 + baablf,)E"
+i(28baablyy — bY4)E" + (1163, + b, )EW + 5ib, €5 + 5ibyy O
(Il
This result—mamely that the cross products of the derivatives of the directrix

curve are completely determined by their bilinear products—has the following im-
mediate consequence.

Proposition 3.5. If v, x € HHg(SQ, Z3)ac and X = gy, where g € SO(7,C), then
g € Go(C).
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Proof. Let {fi}3__5 and {g;}3__5 be the harmonic sequences of 7 o and 7 o ¥,
respectively (see Section 2]), and let £ := f_5 and ¢ := g_5. Then ¢ = g¢. Write
€0 % gl) = Zzzo L;jf(k) and ¢ x ¢0) = Zz=0 M,ijC(k). Then Lemma [3.4]implies
that the sz and the M,ij depend only on the products (£@,¢0)) and (¢, ¢19)).
Since () = g€ i >0, and g is in SO(7,C), (€@, £0)) = (¢, ¢W)) for all i, > 0,
and therefore Lfg = M,ij for 0 <i,j,k < 6. Hence

6 6
gﬁ(i) « gf(j) — C(i) % C(j) — ZM;cﬂc(k) — ZL?QS(M — g(f(i) « f(j)).
k=0 k=0
Since £ is linearly full, this implies that g preserves all the pairwise cross products
of a basis, and therefore is in G2(C). O

Corollary 3.6. If nonempty, HHg(S’2,z’Z3)AC is isomorphic to Go(C).

Proof. Since G2(C) preserves cross products, Proposition Bl implies that G2(C)
acts on HHg(SQ, Z3)ac. This action is free since HHg(SQ, Z3)ac consists of linearly
full maps. On the other hand, any two elements of HHg(SQ, Z3)ac are SO(7,C)-
congruent [I], and therefore G5 (C)-congruent by Proposition 3.5l Hence G2(C) acts

simply transitively on HHg(SQ, Z3)Ac, and therefore these spaces are isomorphic.
O

4. DIMENSION
From Section 2l we know that
Acq(S?,8%) = Ac&2)(52, SOy u AC£(S2, S%) (disjoint union).

Using the tools from the previous sections, we will now find the dimension of each
one of the components.

4.1. Linearly full maps. Recall [I6] that Harm/ (52, 5%) has two disconnected
components, denoted Harm’™ (52, 56) and Harm/ ™ (52, 5%). Since the varieties
Harm£’+(52, S6) and HHg(SQ,Zg) are isomorphic as sets [I], we transfer the al-
gebraic structure of HH(J:(SQ, Z3) to Harmg’Jr(SQ, S6), making these two sets alge-
braically isomorphic. Similarly, since Acg (82,5%) c Harm£’+(5’2, S6), we assume
throughout that Acf; (52, S9) is algebraically isomorphic to HH{; (52, Z3) ac by trans-
ferring the algebraic structure of the latter to the former via the isomorphism above.
Therefore, to find the dimension of Acg(S 2 8%) we only need to find the dimension
of HHg(SQ, Z3)ac- It is very easy to get a lower bound, as follows.

Lemma 4.1. If nonempty, the dimension of Acg(SQ, S6) is at least d + 8.

Proof. Use (Z21)): The dimension of the variety PDg(SQ,(C}P’G) is 2d + 9 [13[14].
Since a; and 793 are polynomials of degree at most d, the condition V2o, = To3
imposes d + 1 additional (not necessarily independent) equations. Therefore, the
left hand side of (22I]), which is an open subset of HH(};(SQ, Z3) Ac, has dimension
greater than or equal to d+ 8. Hence, if HH(J:(SQ, Z3) Ac Is not empty, its dimension
must be at least d + 8. ([l
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To find an upper bound we use the following idea, which appears at the end
of []. Every harmonic map from S? to S® is determined, modulo SO(7,C) and
a finite number of choices, by its singularity type [2]. Thus, up to the action of
SO(7,C) and a finite group, every element of Harm/ (52, %) is determined by
ro + 71 + r2 complex numbers, where rg, r1, 7o satisfy d — 12 = rg + 211 + 3r3 (see
equations (2.12)) and ([222)). The maximum of rg + r; + 7o is then achieved when
r1 =1y =0, r9 = 2d — 12. Since the dimension of SO(7,C) is 21, the dimension of
Harm£’+(52, S6) should therefore be 2d — 12 + 21 = 2d + 9, which is correct.

The same idea was suggested by Bolton for the almost complex case: if = is the
directrix curve of f € Acilc(SQ7 S6), then, using ([Z.22)), equation (ZIT) reads

(4.1) d—6=2ryg+ 1,

where 79 and 71 are the total ramification degrees of Z and the first associated
curve of =, respectively. Hence, assuming that every element of Acﬁz (52,89) is
determined, modulo G2(C) and a finite number of choices, by its singularity type,
then we have ro +1r complex parameters, where rq, r; satisfy [@1l). The maximum
of ro +ry is then attained when ro = 0, ;1 = d — 6. Since the dimension of G5(C) is
14, the dimension of Acg(S2, S6) should be d — 6 + 14 = d + 8. We will now make
this idea more rigorous.

If ¢ € HHZ;(SQ,Zg)AC, let 2¥ : 62 — CP° denote the directrix curve of f =
7 o). Note that =¥ is the only curve such that &, ¢/, & € 1), where £ is a local
representation of Z¥. This implies that the map that takes 1) to =¥ is algebraic; it
is in fact an isomorphism, but we do not need it here.

Let
Sao = {(201,---»20d,) € (SH)™ 1 205 # 201, 1 < j < k < dp},
Yo = {11,y 214,) € (SHT iz £ 2, 1 < j <k < di}
and let Xg, 4, = X4, X Xg,. Let mg = (mo1, ..., moq,) and mq = (Ma1,..., M1, ),

where the m;; are positive integers satisfying
(42) 2(m01—|—~-~—|—m0d0)+m11+~-~—|—m1d1:d—6.

Consider the subsets of ¥4, 4, X HHg(SQ, Z3)Ac given by

Hmo,mi = {(201, ey 20dgy 2115 -+ 5 21y V) € Bdgdy X HH£(327Z3)AC

0 8
( g A UO ) E M0j 205, < 71 ) E mlkzlk}
0

for any local representations O'g’ and a’i” of the zeroth and first associated curves
Ug’ and Uf’ of Z¥, respectively, and where the parenthesis ( ) denotes the divisor of
zeros, and z is any holomorphic coordinate in S2. Since the maps ¢y — Z¥ and ¥ —

U;/’ are both algebraic, Hym, m, is an algebraic subvariety of 34, 4, X HHg; (52, Z3) Ac

If m; and 7y denote the projections over the 15¢ and 2°¢ factors of Y4, 4, X
HHg(SQ,Zg)AC, note that ma(Hmy,m,) is the variety (actually, it is just a con-
structible set) of maps 9 € HH(J: (82, Z3)ac such that the zeroth associated curve
of ¥ has dy singularities of orders mg1, . .. ,Mod,, and the first associated curve of
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=Y has d; singularities of orders myy, ..., moq4,. Therefore
HH)(S%, Z5)ac = |J m2(Hmom):
mo,my

where mg, m; satisfy (£2), so the union is finite. Hence the dimension of the
variety HHg(SQ, Z3)Ac 18 the maximum of the dimensions of the 73 (Hmg,m., )-

Theorem 4.2. When nonempty, the (pure) dimension of Acg(SQ, S6) is d + 8.

Proof. In view of Lemma [£.]] and the paragraph before it, we only need to prove
that the dimension of HHg(SQ, Z3)Ac is at most d + 8. First we find the dimension
of Hyng.m,- The dimension of m1(Hmg,m,) C T4, 1S at most do + di. Each fiber
of 71 is isomorphic to the set of maps ¢ € HHﬁ(SQ, Z3)Ac such that Z¥ has a given
singularity type. Since the set of maps ¢ € HHg(Sz, Z3) with a given singularity
type is a finite union of SO(7,C) orbits [2], Lemma implies that the fiber of
71 is a finite union of Go(C)-orbits, and therefore has dimension 14. Hence the
dimension of Hypy,m, is at most do + di + 14. On the other hand, the fiber of m,
consists of all the permutations of the zg; and zy;, so it is finite, and therefore the
dimension of ma(Hmg,m,) is at most do + dy + 14.

The maximum of dy+d; + 14 subject to the condition ([@2]) happens when dy = 0
and all the my;, 1 < j < d,, are 1. In this case, dy =d—6,sody+d1 +14 =d+38,
as desired. |

4.2. Nonlinearly full maps. As explained in Section [ if f € Holy (52, 5?) and

h : H — O is a homomorphism of algebras, then ho f € Ac((f)(Sz,SG), where
Hol, (52, 5?) denotes the variety of holomorphic maps of degree d from S? C Im(H)

to itself. It is easy to see that all the elements of Ac&Q)(SQ, S6) have this form: let

fe Acglz)(SZ, 56), and let V; be the smallest subspace of R” containing the image
of f. Then, if 2 = = + 4y is a holomorphic coordinate in S2, using subscripts to
denote derivatives, we have

Vf = Spalp {f7 fLEa fU}

Since

X fe= fy7 I x fy = —fz, and f, X fy = fz ¥ (f X faa) = (fa:vfm)f_ (fwaf)f17
the subspace Vy C Im(Q) is closed under x and therefore there is an isomorphism
of algebras h : H - R-1®V; € O. Then f = h™'o f € Holy(S? 5?) and
f = ho f. In particular, the set {Vy - f € Ac§2)(52,56)} is isomorphic to the
space of subalgebras of O that are isomorphic to H. This is the homogeneous space
G2/S0(4), which has real dimension 8. Although we do not know whether the

space Acy) (52, 5%) is a complex variety, we will use complex dimension instead of
real in order to have a more compact statement.

Theorem 4.3. The dimension of Ac((f)(SQ, S6) is 2d + 5.
Proof. By the observations above, the map
p: Ac(S%,8%) — G2/SO(4) C Gr(3,R")

defined by
p(f) = 3-dimensional subspace where f(S?) lies
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gives a fiber bundle with fiber Holy (52, S?) (see also [14]). Therefore
dime (Ac(? (2, 86)) =dime (Holy(S2, §2))+dimg (Go/SO(4)) =2d+1+4 = 2d+5.
O

It is worth noting the following curious fact: as opposed to the harmonic map case
(see [14]), the space of nonlinearly full almost complex maps has greater dimension
than the space of linearly full almost complex maps.

5. EXISTENCE AND EXAMPLES

In this section we construct examples of linearly full almost complex maps from
S? to SO of any degree d > 6, with d # 7. This is done by giving explicit formulas
for their directrix curves as in [I]. There cannot be linearly full, almost complex
maps of degree 7 because if d = 7, formula ([41]) gives 7o = 0, r; = 1, so the map
would be one-point ramified, which is impossible by [5].

Let {Eqy, E1, Eo, E3, Ey, Eo, E3} be the basis described in (Z20). For reference,
we give the cross product table in this basis:

XI EQ El E2 E3 El EQ Eg
Ey| 0 o —iFy —iE3 —iFE, iEs iEs
E, | —iE; 0 0 0 iE V2Es —\2E,
E, | iE, 0 0 V2E, —V2E; —iE, 0
Es | iEs 0 —V2E, 0 V2E, 0 —iE
E, | iEy —iEy V2E; —2E, 0 0 0
Ey | —iEy —V2E3;  iE, 0 0 0 V2E,
Es | —iEs  /2F, 0 iE 0 —V2E, 0

In [I], Barbosa finds examples of totally isotropic curves of the form
&= CLoEl+a[_22572EQ+CLg_1Z£71E3—|—agZ£E0—|—a[+1ZZ+1E3+ag+22Z+2E2+CL2522EE1,

where z is a holomorphic coordinate in S2. Note that all of these examples have
higher singularities only at 0 and oo, and at these points rg = —3,r7, =ro =0, so
they cannot be almost complex because they do not satisfy (2.10). In fact, equation
(1) says that the generic almost complex curve has ro = 0 at every point. This
suggests that we try solutions of the form

¢E=aoFk1+a12Es+ ag,lzg_lEg + (ngZEO + ag“z“lEg + agg,lz%_lEg + aggz%El.

This in fact works and gives solutions for even d = 2¢. By Corollary B2} it suffices
to solve the equation & x ¢ = 0, which gives an underdetermined system of 7
equations. One can actually take agy1 = age—1 = az¢ = 1 and solve for the other
a; to obtain

(€ —2)%(L—1) (-2 (¢ —2)(L—1) iv2(0 —2)

TR+ T Tiee— )y YT T ey T T

Note that these examples have higher singularities only at 0 and oo, and 79 = 0,
ry = £ — 3 at these points.

Finding examples for odd d = 2¢ 4+ 1 is trickier. The idea is to keep the singu-
larities at 0 and oo and create a single one at another point. This is achieved by

ao
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trying solutions of the form
&(z) = (bg + coz) E1 + (b1 + c12)z Eo + (be—1 + Cg_12)2271 Es+ (be + cez)ngo
+(bosr + cop12) 2T Es 4 (bao—1 + c2p—12) 2% T o + (bae + c202) 2% B

Again, the equation £ x £ = 0 leads to an underdetermined system of equations in
the b;, ¢;. One can take bg = by = ¢; = 1 and solve for the other variables to obtain

G () I (RS ) =3+ +2)
CT T e 0 YT Ty YT T -
b = —iv/3(L + 1), c@:—iﬁ“_;’)(”l), best = (0= 1),

_(e—1)? 5 B 00+ 1)* o (0=3)2(r+1)?
Co+1 = /+2 2(—1——m, C2Z—1——m,
by — -1+ 1) (0 =-3) -1+ 1)

T -1 0 T T iy )ee—1)

Note that in the case d = 7 (so £ = 3) the coefficient ¢¢ is 0, and the solution
obtained has degree 6.

For d odd, the examples above have higher singularities at 0 and oo, with ry = 0,
r1 =¢—3,and at £/(3 —{), with rg =0, r; = 1.

Theorem 5.1. Ford > 6, d # 7, the maps [€] : S? — S© defined above are directriz
curves of linearly full almost complex spheres in SS of degree d.

Proof. 1t is clear that all the curves are linearly full and have degree d, so it only
remains to check that they are solutions of the equation & x £ = 0. The expression
for £ x £’ in the even-dimensional case is as follows: If

E=apgF1 + a1z By + ag,lzé_lEg + agngO + zl+1E’3 + 225—1E2 + z%El,
then
Ex & = (2ilag —i(20 — 1ay +iay 4+ i(€ — Dag_1 —i(£ + 1)ae_1) 271 Ey
V2(0 = Dayae_1 — V2ara0_ 1 — zéaoag) 2R

\/§a0 ) + ilaya; — zalag) 'y

+
+ (-
+ (V2020 = Dag — il = Dagrag + ity yar) 22y
+ (mitar+V2(0+1) - V- 1)) MR
N

(-v2

f - 1 ag 1+ 2\/_&1@ 1 —iblay + Z(QE — 1)ag> Z3£72E2

+ (=2v3tar + V2ar — itar + i(C+ V)ar) 2B,

It is straightforward to check that the solution does work.
We omit the much lengthier odd-dimensional case. O

Corollary 5.2. The space AC(};(SQ, S6) is empty if d < 6 or d =7, and nonempty
otherwise. Its pure dimension is d + 8.

Proof. For d < 6, the set Harm§(52,56), and therefore Acg(Sz,SG), is empty [1].
The case d = 7 was explained at the beginning of this section. The remaining cases
are immediate consequences of Theorem and Theorem [B.1 O
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NOTE ADDED IN PROOF

After this paper was accepted for publication, some of the results above appeared,

independently, in [21].
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