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COLLAPSING THREE-DIMENSIONAL CLOSED ALEXANDROV

SPACES WITH A LOWER CURVATURE BOUND

AYATO MITSUISHI AND TAKAO YAMAGUCHI

Abstract. In the present paper, we determine the topologies of three-dimen-
sional closed Alexandrov spaces which converge to lower dimensional spaces in
the Gromov-Hausdorff topology.
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1. Introduction

The purpose of the present paper is to determine the topologies of collapsing
three-dimensional Alexandrov spaces.

Alexandrov spaces are complete length spaces with the notion of curvature
bounds. In this paper, we deal with finite dimensional Alexandrov spaces with
a lower curvature bound (see Definition 2.2). Alexandrov spaces naturally appear
in convergence and collapsing phenomena of Riemannian manifolds with a lower
curvature bound ([SY00], [Y 4-dim]), and have played important roles in the study
of collapsing Riemannian manifolds with a lower curvature bound.

For a positive integer n, D > 0, κ ∈ R, let us consider the following two families:
Mn(D,κ) is the family of all isometry classes of complete n-dimensional Riemann-
ian manifolds M whose diameters and sectional curvatures satisfy diam (M) ≤ D
and sec(M) ≥ κ. An(D,κ) is the family of all isometry classes of n-dimensional
Alexandrov spaces with diam ≤ D and curvature ≥ κ. It follows from the def-
inition of Alexandrov spaces that Mn(D,κ) ⊂ An(D,κ). By Gromov’s precom-
pactness theorem, An(D,κ) has a nice property that

⋃
k≤nAk(D,κ) is compact in

the Gromov-Hausdorff topology, while
⋃

k≤nMk(D,κ) is precompact. Therefore,
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it is quite natural to study the convergence and collapsing phenomena in An(D,κ).
Thus, the following problem naturally appears:

Problem 1.1. Let {Mn
i }∞i=1 be a sequence in An(D,κ) converging to an Alexan-

drov space X. Can one describe the topological structure of Mi by using the
geometry and topology of X for large i ?

In this paper, we consider Problem 1.1 for n = 3 when Mi has no boundary. We
exhibit previously known results related to Problem 1.1. Let us fix the following
setting: Mi := Mn

i ∈ An(D,κ) converges to X as i → ∞, and fix a sufficiently
large integer i.

If the non-collapsing case arises, i.e. dimX = n, Perelman’s stability theorem
[Per II] (cf. [Kap Stab]) shows that Mi is homeomorphic to X.

In the collapsing case, we know the following results in the general dimension: If
Mi and X are Riemannian manifolds, then Yamaguchi proved that there is a locally
trivial fiber bundle (smooth submersion) fi : Mi → X whose fiber is a quotient of
torus by some finite group action ([Y91], [Y conv]). Fukaya and Yamaguchi proved
that if Mi are Riemannian manifolds and X is a single-point set, then π1(Mi) has
a nilpotent subgroup of finite index [FY]. This statement also goes through even if
Mi is an Alexandrov space ([Y conv]).

In the lower dimensional cases, we know the following conclusive results: In di-
mension three, Shioya and Yamaguchi [SY00] gave a complete classification of three-
dimensional closed (orientable) Riemannian manifolds Mi collapsing in M3(D,κ).
It is also proved that volume collapsed closed orientable Riemannian three-manifolds
Mi with no diameter bound are graph-manifolds or have small diameters and finite
fundamental groups ([SY05], [Per Ent]). For more recent works, see Morgan and
Tian [MT], Cao and Ge [CaGe], Kleiner and Lott [KL]. In dimension four, Ya-
maguchi [Y 4-dim] gave a classification of four-dimensional orientable closed Rie-
mannian manifolds Mi collapsing in M4(D,κ).

1.1. Main results. To state our results, we fix notation in this paper. Dn is a
closed n-disk. D1 is written as I, called a (bounded closed) interval. Pn is an
n-dimensional real projective space. Tn is an n-dimensional torus. K2 is a Klein
bottle, Mö is a Mobius band. K2×̃I is an orientable (non-trivial) I-bundle over
K2. K2×̂I is a non-orientable non-trivial I-bundle over K2. A solid Klein bottle
S1×̃D2 is obtained by R × D2 with identification (t, x) = (t + 1, x̄). Here, we
consider D2 as the unit disk on the complex plane and x̄ is the complex conjugate
of x. Note that a solid Klein bottle is homeomorphic to Mö× I.

A compact Alexandrov space without boundary is called closed. We classify all
three-dimensional closed Alexandrov spaces collapsing to lower dimensional ones. It
turns out that there is a strange phenomenon which does not occur in the manifold
case. This phenomenon can be typically seen in the following example.

Example 1.2. Let S1×R2 be a flat manifold with product metric. For the isometric
involution α defined by

α(eiθ, x) = (e−iθ,−x),

we consider the quotient space Mpt := S1 × R2/〈α〉 which is an Alexandrov space
with non-negative curvature. This space Mpt has the two topologically singular
points, i.e. non-manifold points, p+ := [(1, 0)] and p− := [(−1, 0)], which corre-
spond to fixed points (1, 0) and (−1, 0) of α. We consider a standard projection
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p : Mpt → R2/x ∼ −x = K(S1
π) from Mpt to the cone K(S1

π) over the circle S1
π

of length π. This is an S1-fiber bundle over K(S1
π) except the vertex o ∈ K(S1

π).
Remark that the fiber p−1(∂B(o, r)) over a metric circle at o is topologically a Klein
bottle. The fiber p−1(o) over the origin is an interval joining the topologically sin-
gular points p+ and p−. Thus, we may regard Mpt as a circle fibration, with the
singular fiber p−1(o), over the cone K(S1

π). We rescale the “circle orbits” of Mpt

as Mpt(ε) := (εS1)× R2/〈α〉. Then, as ε → 0, Mpt(ε) collapse to the cone K(S1
π).

We obtain the following results.
An essential singular point of an Alexandrov space is a point at which the space

of directions has radius not greater than π/2.

Theorem 1.3. Let M3
i be a sequence of three-dimensional closed Alexandrov spaces

with curvature ≥ −1 and diamMi ≤ D. Suppose that Mi converges to an Alexan-
drov surface X without boundary. Then, for sufficiently large i, Mi is homeomor-
phic to a generalized Seifert fiber space over X. Further, singular orbits may occur
over essential singular points in X.

Here, a generalized Seifert fiber space is a Seifert fiber space in a generalized
sense, which possibly has singular interval fibers just as in Example 1.2. For the
precise definition, see Definition 2.48.

To describe the topologies of M3
i converging to an Alexandrov surface with non-

empty boundary, we define the notion of generalized solid tori and generalized solid
Klein bottles. Let K(A) be the cone over a topological space A, obtained from
A × [0,+∞) smashing A × {0} to a point. Let K1(A) be the closed cone over A,
obtained from A× [0, 1] smashing A× {0} to a point. We put ∂K1(A) := A× {1}.

Definition 1.4. We will construct a certain three-dimensional topological orbifold
whose boundary is homeomorphic to a torus or a Klein bottle.

We first observe that the closed cone K1(P
2) over P 2 can be regarded as a

“fibration”1 over I as follows. Let Γ ∼= Z2 be the group generated by the involution
γ on R3 defined by γ(v) = −v. Then R3/Γ = K(P 2).

We consider the following families of surfaces in R3,

A(t) := {v = (x, y, z) |x2 + y2 − z2 = t2, |z| ≤ 1},
B(t) := {v = (x, y, z) |x2 + y2 − z2 = −t2, x2 + y2 ≤ 1},

and set

D(t) :=

{
A(t)/Γ if t > 0,

B(t)/Γ if t ≤ 0.

Then D(t) is homeomorphic to a Mobius band for t > 0 and is homeomorphic to a
disk for t ≤ 0. Remark that

⋃
t∈[−1,1] ∂D(t) is homeomorphic to S1× I. The union

D(1) ∪
⋃

t∈[−1,1] ∂D(t) ∪ D(−1) corresponds to P 2 × {1} = ∂K1(P
2) ⊂ K1(P

2).

Define a projection

(1.1) π : K1(P
2) ≈

⋃
t∈[−1,1]

D(t) → [−1, 1] as π(D(t)) = t.

This is a “fibration” stated as above.

1In fact, it is NOT a Serre fibration, because the fibers D2 and Mö are not weak homotopy
equivalence.
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For a positive integer N ≥ 1, let us consider a circle S1 = [0, 2N ]/{0} ∼ {2N}.
Let Ij be a sub-arc in S1 corresponding to [j−1, j] ⊂ [0, 2N ] for j = 1, . . . , 2N . We
consider a sequence Bj of topological spaces such that each Bj is homeomorphic
to K1(P

2). We take a sequence of projections πj : Bj → Ij obtained as above such

that there are homeomorphisms φj : π
−1
j (j) ≈ π−1

j+1(j) for all j = 1, . . . , 2N . Then

we obtain a topological space Y :=
⋃2N

j=1 Bj glued by φj ’s. Define a projection

(1.2) π : Y =

2N⋃
j=1

Bj → S1 by π(π−1
j (t)) = t

for any t ∈ S1. By the construction, Y has 2N topologically singular points.
Remark that the restriction π|∂Y : ∂Y → S1 is a usual S1-fiber bundle. Then we
obtain a topological orbifold Y whose boundary ∂Y is homeomorphic to a torus or
a Klein bottle. If ∂Y is a torus, then Y is called a generalized solid torus of type N .
If ∂Y is a Klein bottle, then Y is called a generalized solid Klein bottle of type N .
We regard a solid torus S1 ×D2 and the product S1 ×Mö as generalized solid tori
of type 0. We also regard a solid Klein bottle S1×̃D2 and non-trivial Mö-bundle
S1×̃Mö over S1 as generalized solid Klein bottles of type 0. Note that S1×̃Mö is
homeomorphic to a non-orientable I-bundle K2×̂I over K2.

For a two-dimensional Alexandrov space X, a boundary point x ∈ ∂X is called
a corner point if diamΣx ≤ π, in other words, if it is an essential singular point.

Theorem 1.5. Let {Mi}∞i=1 be a sequence of three-dimensional closed Alexandrov
spaces with curvature ≥ −1 and diamMi ≤ D. Suppose that Mi converges to an
Alexandrov surface X with non-empty boundary. Then, for large i, there exist a
generalized Seifert fiber space Seifi (X) over X and generalized solid tori or gen-
eralized solid Klein bottles πi,k : Yi,k → (∂X)k over each component (∂X)k of ∂X
such that Mi is homeomorphic to a union of Seifi (X) and Yi,k’s glued along their
boundaries, where the fibers of Seifi (X) over a boundary points x ∈ (∂X)k are
identified with ∂π−1

i,k (x) ≈ S1.

It should be remarked that in Theorem 1.5, the fiber of πi,k : Yi,k → (∂X)k may
change at a corner point of (∂X)k and that the type of Yi,k is less than or equal to
half of the number of corner points in (∂X)k.

Corollary 1.6. Under the same assumption and notation of Theorem 1.5, for large
i, there exists a continuous surjection fi : Mi → X which is a θ(i)-approximation
satisfying the following:

(1) fi : f
−1
i (intX) → intX is a generalized Siefert fibration.

(2) For x ∈ ∂X, f−1
i (x) is homeomorphic to a one-point set or a circle. The

fiber of fi may change over a corner point in ∂X.
(3) For any collar neighborhood ϕ : (∂X)k × [0, 1] → X of a component (∂X)k

of ∂X, which contains no interior essential singular points, f−1
i (imageϕ)

is a generalized solid torus or a generalized solid Klein bottle.

Using the same notation as in Corollary 1.6, we remark that, for x ∈ (∂X)k,

f−1
i (ϕ({x} × [0, 1])) ≈ D2 if f−1

i (x) ≈ {pt},
f−1
i (ϕ({x} × [0, 1])) ≈ Mö if f−1

i (x) ≈ S1.

The structure of Mi collapsing to one-dimensional space is determined as follows.
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Theorem 1.7. Let M3
i be a sequence of three-dimensional closed Alexandrov spaces

with curvature ≥ −1 and diamMi ≤ D. Suppose that M3
i converges to a circle.

Then, for large i, Mi is homeomorphic to a total space of an Fi-fiber bundle over
S1, where the fiber Fi is homeomorphic to one of S2, P 2, T 2 and K2.

To describe the structures of Mi converging to an interval I, we prepare certain
topological orbifolds. First, we provide

B(pt) := S1 ×D2/〈α〉.
Here, the involution α is the restriction of the one provided in Example 1.2. Remark
that ∂B(pt) ≈ S2. We also need to consider three-dimensional open Alexandrov
spaces L2 and L4 with two-dimensional souls S2 and S4 respectively, where S2

(resp. S4) is homeomorpshic to S2 or P 2 (resp. to S2). For their definition, see
Example 2.63. The space Li (i = 2, 4) has i topologically singular points, which are
contained in Si. We denote by B(Si) a metric ball around Si in Li. Here we point
out that ∂B(S2) ≈ S2 (resp.≈ K2) if S2 ≈ S2 (resp. if S2 ≈ P 2), and ∂B(S4) ≈ T 2.

Theorem 1.8. Let M3
i be a sequence of three-dimensional closed Alexandrov spaces

with curvature ≥ −1 and diamMi ≤ D. Suppose that M3
i converges to an interval.

Then, for large i, Mi is the union of Bi ∪ B′
i glued along their boundaries. ∂Bi is

homeomorphic to one of S2, P 2, T 2 and K2. The topologies of Bi (and B′
i) are

determined as follows:

(1) If ∂Bi ≈ S2, then Bi is homeomorphic to one of D3, P 3 − intD3, B(S2)
with S2 ≈ S2.

(2) If ∂Bi ≈ P 2, then Bi is homeomorphic to K1(P
2).

(3) If ∂Bi ≈ T 2, then Bi is homeomorphic to one of S1×D2, S1×Mö, K2×̃I,
and B(S4).

(4) If ∂Bi ≈ K2, then Bi is homeomorphic to one of S1×̃D2, K2×̂I, B(pt),
and B(S2) with S2 ≈ P 2.

Corollary 1.9. Let Mi be a sequence of three-dimensional closed Alexandrov spaces
with curvature ≥ −1 and diameter ≤ D. Suppose Mi converges to a point. Then,
for large i, Mi is homeomorphic to one of

• generalized Seifert fiber spaces in the conclusion of Theorem 1.3 with a base
Alexandrov surface having non-negative curvature,

• spaces in the conclusion of Theorem 1.5 with a base Alexandrov surface
having non-negative curvature,

• spaces in the conclusion of Theorems 1.7 and 1.8, and
• closed Alexandrov spaces with non-negative curvature having finite funda-
mental groups.

We remark that all spaces appearing in the conclusions of Theorems 1.3, 1.5, 1.7
and 1.8 and Corollary 1.9 actually have sequences of metrics as Alexandrov spaces
collapsing to such respective limit spaces described there.

By Corollary 1.9, to achieve a complete classification of the topologies of col-
lapsing three-dimensional closed Alexandrov spaces, we provide a version of the
“Poincaré conjecture” for three-dimensional closed Alexandrov spaces with non-
negative curvature.

For Alexandrov spaces A and A′ having boundaries isometric to each other,
A ∪∂ A′ denotes the gluing of A ∪ A′ via an isometry φ : ∂A → ∂A′. Note that
A ∪∂ A′ is an Alexandrov space (see [Pet Appl]).
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Conjecture 1.10. A simply connected three-dimensional closed Alexandrov space
with non-negative curvature is homeomorphic to an isometric gluing A ∪∂ A′ for
A and A′ chosen in the following list (1.3) of non-negatively curved Alexandrov
spaces:

(1.3) D3,K1(P
2), B(pt), B(S2), B(S4).

We also remark that any connected sum of those spaces admits a metric of
Alexandrov space having a lower curvature bound by some constant.

Conjecture 1.11. A simply connected three-dimensional closed Alexandrov space
with curvature ≥ 1 is homeomorphic to a three-sphere S3 or a suspension Σ(P 2)
over P 2.

The organization of this paper and basic ideas of the proofs of our results are as
follows:

In Section 2, we review some basic notation and results on Alexandrov spaces.
We provide a three-dimensional topological orbifold having a circle fiber structure
with singular arc fibers, and call it a generalized Seifert fiber space. At the end of
this section, we prove fundamental properties on the topologically singular point
set.

In Section 3, for any n ∈ N, we consider n-dimensional closed Alexandrov spaces
Mn

i collapsing to a space Xn−1 of co-dimension one. Assume that all points in
X are almost regular, except finite points x1, . . . , xm. For any fixed p ∈ {xα}, we
take a sequence pi ∈ Mi converging to p. By Yamaguchi’s Fibration Theorem 2.25,
for large i, there is a fiber bundle πi : Ai → A, where A is a small metric annulus
A = A(p; r, R) around p and Ai is some corresponding domain. Here, r and R are
small positive numbers so that r � R.

Although Ai is not a metric annulus in general, it is expected that Ai is home-
omorphic to a standard annulus A(pi; r, R). Moreover, we may expect that there
exist an isotopy φ : Mi × [0, 1] → Mi such that, putting φt := φ(·, t),

(1.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ0 = idMi

,

φ1

(
B

(
pi,

r +R

2

)
∪Ai

)
= B(pi, R), and

φ1(x) = x if x �∈ B(pi, R+ δ)

for any fixed δ > 0.
If we consider the case that all Mi are Riemannian manifolds, then we can obtain

a smooth flow Φt of a gradient-like vector field V of the distance function distpi

from pi. Then, by using integral curves of V , we can obtain such an isotopy φ from
idMi

satisfying the property (1.4).
We will prove that such an argument of flow goes through on Alexandrov spaces

Mi as well. To do this, we first prove a main result, Flow Theorem 3.2, in this
section. Theorem 3.2 implies the existence of an integral flow Φt of a gradient-like
vector field of a distance function distpi

on A(pi; r, R) in a suitable sense. This
flow leads to an isotopy φ satisfying the property (1.4). Theorem 3.2 is important
throughout the paper.

In Sections 4 – 8, we prove Theorems 1.3, 1.5, 1.7 and 1.8 and Corollaries 1.6 and
1.9. To explain the arguments used in those proofs, let us fix a sequence Mi = M3

i

of three-dimensional closed Alexandrov spaces in A3(−1, D) converging to X of
dimension ≤ 2.
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In Section 4, we consider the case that dimX = 2 and ∂X = ∅. Let p1, . . . , pm be
all δ-singular points in X for a fixed small δ > 0. Let us take a converging sequence
pi,α → pα (i → ∞) for each α = 1, . . . ,m. Let us fix any α and set p := pα,
pi := pi,α. We take r = rp > 0 such that all points in B(p, 2r) − {p} are (2, ε)-
strained. Then, all points in an annulus A(pi; εi, 2r − εi) are (3, θ(i, ε))-strained.
Here, εi is a sequence of positive numbers converging to zero. Then, by Fibration
Theorem 2.25, we have an S1-fiber bundle πi : Ai → A(p; r, 2r). On the other
hand, by the rescaling argument 2.27, we obtain the conclusion that Bi := B(pi, r)
is homeomorphic to a solid torus or B(pt). Here, we can exclude the possibility
that Bi is topologically a solid Klein bottle. Theorem 3.2 implies that there exists
an isotopy carrying the fiber π−1

i (∂B(p, r)) to ∂Bi. If Bi ≈ S1 ×D2 then we can
prove an argument similar to [SY00] that Bi has the structure of a Seifert fibered
torus in the usual sense, extending π. If Bi ≈ B(pt), then by some new observation
on the topological structure of B(pt), we can prove that Bi has the standard “circle
fibration” structure provided in Example 1.2, compatible with π. In this way, we
obtain the structure of a generalized Seifert fiber space on Mi.

In Section 5, we consider the case that dimX = 2 and ∂X �= ∅. Take a de-
composition of ∂X to connected components

⋃
β(∂X)β. Put X0 := X − U(∂X, r)

for some small r > 0. By Theorem 1.3, we have a generalized Seifert fibration
πi : Mi,0 → X0 for some closed domain Mi,0 ⊂ Mi. For any fixed β, we take points
pα in (∂X)β so fine that {pα} contains all ε-singular points in (∂X)β. Let pi,α ∈ Mi

be a sequence converging to pα. Deform a metric ball B(pi,α, r) to a neighborhood
Bi,α of pi,α by an isotopy obtained in Theorem 3.2. Because of the existence of
∂X, we need a bit more complicated construction of flows of gradient-like vector
fields of distance functions.

In Section 6, we consider the case that X is isometric to a circle S1() of length .
If Mi has no ε-singular points, by Fibration Theorem 2.25, we obviously obtain the
conclusion of Theorem 1.7. But, in general, Mi has ε-singular points. Therefore,
we use Perelman’s Morse theory to construct a fibration over S1.

In Section 7, we consider the case that X is isometric to an interval [0, ] of some
length . We use rescaling arguments around the end points of interval X and an
argument similar to Theorem 1.7 to prove Theorem 1.8.

In Section 8, we consider the case of dimX = 0 and prove Corollary 1.9.
For three-dimensional Alexandrov spaces with non-empty boundary collapsing

to lower dimensional spaces, considering their doubles, one could make use of the
results in the present paper to obtain the structure of collapsing in that case. This
will appear in a forthcoming paper.

2. Preliminaries

2.1. Definitions, conventions and notation. In the present paper, we use the
following notation.

• θ(δ) is a function depending on δ = (δ1, . . . , δk) such that limδ→0 θ(δ)
= 0. θ(i, δ) is a function depending on δ ∈ Rk and i ∈ N such that
limi→∞,δ→0 θ(i, δ) = 0. When we write A < θ(δ) for a non-negative num-
ber A, we always assume that θ(δ) is taken to be non-negative.

• X ≈ Y means that X is homeomorphic to Y . For metric spaces X and Y ,
X ≡ Y means that X is isometric to Y .
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• For metric spaces X and Y , the direct product X × Y has the product
metric if nothing is stated.

• For continuous mappings f1 : X1 → Y , f2 : X2 → Y and g : X1 → X2, we
say that g represents f1 and f2 if f1 = f2 ◦ g holds.

• Denote by d(x, y), |x, y|, and |xy| the distance between x and y in a metric
space X. Sometimes we mark X as lower index |x, y|X .

• For a subset S of a topological space, S is the closure of S in the whole
space.

• For a metric space X = (X, d) and r > 0, denote the rescaling metric space
rX = (X, rd).

• For a subset Y of a metric space, denote by distY the distance function from
Y . When Y = {x} we denote distx := dist{x}. For a subset Y of a metric
space X and a subset I of R+, define a subset B(Y ; I) := BX(Y ; I) :=
dist−1

Y (I) ⊂ X. For special cases, we denote and call those sets in the
following way: B(Y, r) := B(Y ; [0, r]) the closed ball, U(Y, r) := B(Y ; [0, r))
the open ball, A(Y ; r′, r) := B(Y ; [r′, r]) the annulus, and ∂B(Y, r) :=
B(Y ; {r}) the metric sphere. For Y = {x}, we set B(x, r) := B({x}, r),
U(x, r) := U({x}, r) and A(x; r′, r) := A({x}; r′, r).

• For a topological space X, the cone K(X) over X is obtained from X ×
[0,∞) by smashing X×{0} to a point. An equivalent class [(x, a)] ∈ K(X)
of (x, a) ∈ X × [0,+∞) is denoted by ax or often simply written by (x, a).
A special point (x, 0) = 0x ∈ K(X) is denoted by o or oX , called the origin
of K(X). A point v ∈ K(X) is often called a vector. K1(X) denotes the
(unit) closed cone over X, i.e.

K1(X) := {ax ∈ K(X) |x ∈ X, 0 ≤ a ≤ 1}.

K1(X) is homeomorphic to the join between X and a single-point.
• For a metric space X, K(X) often denotes the Euclidean metric cone, which
is equipped with the following metric: for two points (x1, r1), (x2, r2) ∈
X × [0,∞) the distance between them is defined by

d((x1, r1), (x2, r2))
2 := r21 + r22 − 2r1r2 cosmin{d(x1, x2), π}.

And for v ∈ K(X), we put |v| := d(x, o) and call it the norm of v. Define
an inner product 〈v, w〉 of v, w ∈ K(X) by 〈v, w〉 := |v||w| cos∠vow.

• When we write Mn marked upper index n, this means that M is an n-
dimensional Alexandrov space.

For a curve γ : [0, 1] → X in a metric space X, the length L(γ) of γ is defined by

L(γ) := sup
0=t0<t1<···<tm=1

m∑
i=1

d(γ(ti−1), γ(ti)) ∈ [0,+∞].

A metric space X is called a length space if for any x, y ∈ X and ε > 0, there exists
a curve γ : [0, 1] → X such that γ(0) = x, γ(1) = y and 0 ≤ L(γ) − d(x, y) ≤ ε.
A curve is called a geodesic if it is an isometric embedding from some interval.
Sometimes a geodesic γ defined on a bounded closed interval [0, ] is called a geodesic
segment. A geodesic defined on R is called a line; a geodesic defined on [0,+∞) is
called a ray. For a geodesic γ : I → X in a metric space X, we often regard γ itself
as the subset γ(I) ⊂ X.
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2.2. Alexandrov spaces. From now on, throughout this paper, we always assume
that a metric space is proper, namely, any closed bounded subset is compact. A
proper length space is a geodesic space, namely, any two points are jointed by a
geodesic.

For three points x0, x1, x2 in a metric space, the size of (x0, x1, x2) is size
(x0, x1, x2) := |x0x1| + |x1x2| + |x2x0|. The size of four points (x0;x1, x2, x3)
(centered at x0) is defined by the maximum of size (x0, xi, xj) for 1 ≤ i �= j ≤ 3,
denoted by size (x0;x1, x2, x3).

Definition 2.1. For three points x0, x1, x2 in a metric spaceX with size (x0, x1, x2)

< 2π/
√
κ, the κ-comparison angle of (x0;x1, x2), written by ∠̃κx1x0x2 or

∠̃κ(x0;x1, x2), is defined as follows: Take three points x̃i (i = 0, 1, 2) in κ-plane
M2

κ, which is a simply connected complete surface with constant curvature = κ,

such that d(xi, xj) = d(x̃i, x̃j) for 0 ≤ i, j ≤ 2 and put ∠̃κx1x0x2 := ∠x̃1x̃0x̃2.

Sometimes we write ∠̃ omitting κ in the notation ∠̃κ.

Definition 2.2. For κ ∈ R, a complete metric spaceX is called an Alexandrov space
with curvature ≥ κ ifX is a length space and, for every four points x0, x1, x2, x3 ∈ X
(with size (x0;x1, x2, x3) < 2π/

√
κ if κ > 0), we have the inequality

∠̃κx1x0x2 + ∠̃κx2x0x3 + ∠̃κx3x0x1 ≤ 2π.

The dimension of an Alexandrov space means its Hausdorff dimension. The
Hausdorff dimension and the topological dimension are equal to each other ([BGP],
[PP QG], [Pl]). Throughout this paper, we always assume that an Alexandrov
space is finite dimensional.

Remark 2.3. If X is an Alexandrov space with curvature ≥ κ, then the rescaling
space rX is an Alexandrov space with curvature ≥ κ/r2.

For two geodesics α, β : [0, ε] → X emanating at α(0) = β(0) = p ∈ X in an
Alexandrov space X, the angle ∠(α, β) at p is defined by

∠(α, β) := ∠p(α, β) := lim
s,t→0

∠̃(p;α(t), β(s)).

The set of all non-trivial geodesics emanating at p in an Alexandrov space X is
denoted by Σ′

pX. The angle ∠p at p satisfies the triangle inequality on this set.
Its metric completion is denoted by Σp = ΣpX, called the space of directions at
p. For a geodesic γ : [0, ] → X starting from x = γ(0) to y = γ(), we denote
γ+(0) = γ′(0) = γ′

x = γ+
x =↑yx the direction of γ at x. By xy, we denote some

segment xy = γ : [0, |xy|] → X joining from γ(0) = x to γ(|xy|) = y. For a subset
A ⊂ X, the closure of a set of all directions from x to A is denoted by A′

x, i.e.

A′
x := {ξ ∈ Σx | ∃ai ∈ A such that lim

i→∞
|xai| = |x,A| and lim

i→∞
↑ai
x = ξ}.

When x ∈ A, we put Σx(A) := A′
x. For x, y ∈ X, we denote as y′x := {y}′x.

Or sometimes we denote by y′x an element that belongs with y′x. For x ∈ X and
y, z ∈ X − {x}, we denote by ∠yxz the angle ∠(xy, xz) = ∠(↑yx, ↑zx) between some
fixed segments xy, xz.
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Definition 2.4. A (k, δ)-strainer at x ∈ M is a collection of points {p±α }kα=1 =
{p+α , p−α |α = 1, . . . , k} satisfying the following:

∠̃p+αxp+β > π/2− δ(2.1)

∠̃p+αxp−β > π/2− δ(2.2)

∠̃p−αxp−β > π/2− δ(2.3)

∠̃p+αxp−α > π − δ(2.4)

for all 1 ≤ α �= β ≤ k.
The length of a strainer {p±α} at x is min1≤α≤k{|p+α , x|, |p−α , x|}. The (k, δ)-

strained radius of x, denoted by (k, δ)-str.radx, is the supremum of lengths of
(k, δ)-strainers at x. A (k, δ)-strained radius (k, δ)-str.radA of a subset A ⊂ M is
defined by

(k, δ)-str.radA := inf
x∈A

(k, δ)-str.radx.

If there is a (k, δ)-strainer at x, then x is called (k, δ)-strained. Denote by Rk,δ(M)
the set of all (k, δ)-strained points inM . Rk,δ(M) is an open subset. Put Sk,δ(M) :=
M−Rk,δ(M). Any point in Sk,δ(M) is called a (k, δ)-singular point. When we con-
sider an n-dimensional Alexandrov space Mn and δ is sufficiently small with respect
to 1/n, we simply say δ-strained, δ-singular, etc., instead of (n, δ)-strained, (n, δ)-
singular, etc., and we omit writing Rδ(M), Sδ(M) instead of Rn,δ(M), Sn,δ(M).
For an n-dimensional Alexandrov space Mn, put R(Mn) :=

⋂
δ>0 Rδ(M

n) and
S(Mn) :=

⋃
δ>0 Sδ(M

n) = Mn −R(Mn).

Theorem 2.5 ([BGP], [OS]). For any n-dimensional Alexandrov space Mn, we
have dimH S(M) ≤ n− 1 and dimH S(M)− ∂M ≤ n− 2.

Here, the boundary ∂M of an Alexandrov space M is defined inductively in the
following manner.

Definition 2.6. A one-dimensional Alexandrov space M1 is a manifold, and the
boundary of M1 is the boundary of M1 as a manifold. Now let Mn be an n-
dimensional Alexandrov space with n > 1. A point p in Mn is called a boundary
point if Σp has a boundary point. The set of all boundary points is denoted by ∂Mn,
called the boundary of Mn. Its complement is denoted by intMn = Mn − ∂Mn,
called the interior of Mn. A point in intMn is called an interior point of Mn.
∂Mn is a closed subset in Mn ([BGP], [Per II]).

A compact Alexandrov space without boundary is called a closed Alexandrov
space, and a non-compact Alexandrov space without boundary is called an open
Alexandrov space.

Definition 2.7. For an n-dimensional Alexandrov space Mn, we say that p ∈ M
is a topologically regular point (or a manifold-point) if there is a neighborhood of p
which is homeomorphic to Rn or Rn−1 × [0,∞). p is called a topologically singular
point if p is not a topologically regular point. We denote by Stop(M) the set of all
topologically singular points.

Definition 2.8. For an Alexandrov space M , a point p ∈ M is called an essential
singular point if radΣp ≤ π/2. A set of whole essential singular points in M
is denoted by Ess(M). We define the set of interior (resp. boundary) essential
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singular points Ess(intM) (resp. Ess(∂M)) as follows:

Ess(intM) := Ess(M) ∩ intM,

Ess(∂M) := Ess(M) ∩ ∂M.

Remark that if dimM = 1, then Ess(intM) = ∅ and Ess(∂M) = ∂M .

Remark 2.9. By Theorem 2.36 and Stability Theorem 2.34, we can check the fol-
lowing:

Stop(M) ⊂ Ess(M) ⊂ S(M).

For small δ � 1/n, any (n, δ)-regular point in an n-dimensional Alexandrov
space Mn is an interior point.

Theorem 2.10 ([BGP, Corollary 12.8]). An (n− 1, δ)-regular interior point in an
n-dimensional Alexandrov space is an (n, δ′)-regular point. Here, δ′ → 0 as δ → 0.

The boundary of an Alexandrov space is determined by its topology:

Theorem 2.11 ([BGP, Theorem 13.3(a)], [Per II]). Let M1,M2 be n-dimensional
Alexandrov spaces with homeomorphism φ : M1 → M2. Then φ(∂M1) = ∂M2.

2.3. The Gromov-Hausdorff convergence. For metric spaces X and Y , and
ε > 0, an ε-approximation f from X to Y is a map f : X → Y such that

(1) |d(x, x′)− d(f(x), f(x′))| ≤ ε for any x, x′ ∈ X,
(2) Y = B(Image (f), ε).

The Gromov-Hausdorff distance dGH(X,Y ) between X and Y is defined by the
infimum of those ε > 0 so that there exist ε-approximations from X to Y and from
Y to X. We say that a sequence of metric spaces Xi, i = 1, 2, . . . , converges to a
metric space X as i → ∞ if dGH(Xi, X) → 0 as i → ∞.

For two pointed metric spaces (X, x), (Y, y), a pointed ε-approximation f from
(X, x) to (Y, y) is a map f : BX(x, 1/ε) → Y such that

(1) f(x) = y,
(2) |d(x′, x′′)− d(f(x′), f(x′′))| ≤ ε for x′, x′′ ∈ BX(x, 1/ε),
(3) BY (y, 1/ε) ⊂ B(Image (f), ε).

The pointed Gromov-Hausdorff distance dGH((X, x), (Y, y)) between (X, x) and
(Y, y) is defined by the infimum of those ε > 0 so that there exist pointed ε-
approximations from (X, x) to (Y, y) and from (Y, y) to (X, x).

For an n-dimensional Alexandrov space Xn, the (Gromov-Hausdorff) tangent
cone TxX of X at x is defined by the pointed Gromov-Hausdorff limit of (1/riX, x)
for some sequence (ri) converging to zero. Thus, TxX is an n-dimensional non-
compact Alexandrov space with non-negative curvature. Also, TxX is isometric to
the metric cone K(Σx) over the space of directions Σx.

For a locally Lipschitz map f : X → M between Alexandrov spaces and a curve
γ : [0, a] → X starting at p = γ(0) with direction γ+ at p, we say that f has the
directional derivative df(γ+) in the direction γ+ if there exists the limit

df(γ+) := (f ◦ γ)+ :=
d

dt
f ◦ γ(0+).

A distance function on an Alexandrov space has the directional derivative in any
direction.
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For a local Lipschitz function f on a metric space, the absolute gradient |∇f |p
of f at p is defined by

|∇f |p := |∇f |(p) := max

{
lim sup
x→p

f(x)− f(p)

d(x, p)
, 0

}
.

Definition 2.12. f is called regular at p if |∇f |p > 0. Such a point p is a regular
point for f . Otherwise, f is called critical at p.

Let X be an Alexandrov space and U be an open subset of X. Let f : U → R

be a locally Lipschitz function. For λ ∈ R, f is said to be λ-concave if for every
segment γ : [0, ] → U , the function

f ◦ γ(t)− λ

2
t2

is concave in t. A 0-concave function is said to be concave. f is said to be semi-
concave if for every x ∈ U there are an open neighborhood V of x in U and a
constant λ ∈ R such that f |V is λ-concave.

For a semiconcave function f on a finite dimensional Alexandrov space, the
gradient vector ∇f of f is defined in the tangent cone:

Definition 2.13 ([PP QG]). Let X be a finite dimensional Alexandrov space. Let
f : U → R be a semiconcave function defined on an open neighborhood U of p. A
vector v ∈ TpX is called the gradient of f at p if the following hold:

(i) For any w ∈ TpX, we have dpf(w) ≤ 〈v, w〉.
(ii) dpf(v) = |v|2.

The gradient of f at p is denoted by ∇pf for short.

Remark that ∇pf is uniquely determined in the following manner: If |∇f |p = 0,
then ∇pf = op, and otherwise

∇pf = dpf(ξmax)ξmax,

where ξmax ∈ Σp is the uniquely determined unit vector such that dpf(ξmax) =
maxξ∈Σp

dpf(ξ).
We can show that the absolute gradient |∇f |(p) of f is equal to the norm |∇pf |

of gradient vector ∇pf in TpX.

2.4. Ultraconvergence. We will recall the notion of ultrafilters and ultralimits.
For more details, we refer to [BH]. A (non-principle) ultrafilter ω on the set of
natural numbers N is a finitely additive measure on the power set 2N of N that has
values 0 or 1 and contains no atoms. For each sequence {yi} = {yi}i∈N in a compact
Hausdorff space Y , an ultralimit limω yi = y ∈ Y of this sequence is uniquely
determined by the requirement ω({i ∈ N | yi ∈ U}) = 1 for all neighborhoods
U of y. If f : Y → Z is a continuous map between topological spaces, then
limω f(yi) = f(limω yi).

For a sequence {(Xi, xi)} of pointed metric spaces, consider the set of all se-
quences {yi} of points yi ∈ Xi with limω |xiyi| < ∞ and provide the pseudometric
|{yi}{zi}| = limω |yizi| on the set. The ultralimit (X, x) = limω(Xi, xi) of {(Xi, xi)}
is defined to be the metric space arising from this pseudometric, and the equivalence
class of a sequence {yi} is denoted by (yi). The ultralimit of a constant sequence
{(X, x)} of a metric space (X, x) is called the ultrapower of (X, x) and is denoted by
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Xω = (Xω, x). The natural map X � y �→ (y) = (y, y, y, . . . ) ∈ Xω is an isometric
embedding.

We review a relation between the ultraconvergence and the usual convergence.
A sequence (εi) of positive numbers is said to be a scale if limi→∞ εi = 0.

Lemma 2.14. For a real number A and a function h : R+ → R, the following are
equivalent:

(i) lim inf
t↘0

h(t) ≥ A.

(ii) For any scale (o) = (ti), we have lim
ω

h(ti) ≥ A.

Proof. ((i) ⇒ (ii)). We assume (i). Then, for any ε > 0, there is t0 > 0 such that

inf
0<t≤t0

h(t) > A− ε.

Let us take any scale (ti). Then there is i0 such that, for all i ≥ i0, we have

h(ti) ≥ inf
0<t≤t0

h(t).

Therefore, taking an ultralimit, we have

lim
ω

h(ti) ≥ A− ε.

The above inequality holds for all ε > 0. Then we obtain (ii).
((ii) ⇒ (i)). We assume (ii). We take a sequence (ti) tending to 0 such that

lim
i→∞

h(ti) = lim inf
t↘0

h(t).

Then, taking an ultralimit, we obtain (i):

A ≤ lim
ω

h(ti) = lim
i→∞

h(ti) = lim inf
t↘0

h(t).

�
Let (Xi, xi) and (Yi, yi) be sequences of pointed metric spaces and let fi :

(Xi, xi) → (Yi, yi) be a sequence of maps. Then the ultralimit fω = limω fi of
{fi} is defined by

lim
ω

Xi � aω = (ai) �→ fω(aω) := (fi(ai)) ∈ lim
ω

Yi

if it is well-defined. For instance, if fi is an Li-Lipschitz map with Lω := limω Li <
∞, then the ultralimit fω is well-defined and Lω-Lipschitz. If fi : (Xi, xi) → (Yi, yi)
is a pointed τi-approximation with τω := limω τi < ∞, then the ultralimit fω
is well-defined and a τω-approximation. Remark that if fi : (Xi, xi) → (Yi, yi)
and gi : (Yi, yi) → (Zi, zi) have the ultralimits fω := limω fi and gω := limω gi,
then limω(gi ◦ fi) = gω ◦ fω. For aω = (ai), a

′
ω = (a′i) ∈ limω Xi, we have

|fω(aω), fω(a′ω)| = limω |fi(ai), fi(a′i)|.
For a pointed metric space (X, x) and a scale (o) = (εi), we define the blow-up

X
(o)
x = (X

(o)
x , ox) of (X, x) by

(X(o)
x , ox) := lim

ω
(1/εiX, x).

For a map f : (X, x) → (Y, y) between pointed metric spaces, we consider a sequence
{fi} of maps defined by

fi = f : (1/εiX, x) → (1/εiY, y).

The blow-up f
(o)
x : X

(o)
x → Y

(o)
y of f is defined by f

(o)
x := limω fi if it is well-defined.
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Let X be an Alexandrov space and x ∈ X, and let (o) = (εi) be a scale. We
consider the exponential map at x:

expx : (dom(expx), ox) � (γ, t) �→ expx(γ, t) := γ(t) ∈ (X, x).

Here, dom(expx) ⊂ TxX is the domain of expx. Since expx is locally Lipschitz, the
blow-up of expx is well-defined and written by

exp(o)x := (expx)
(o)
ox : (TxX, ox) → (X(o)

x , ox).

The domain of exp
(o)
x is the blow-up of (dom(expx), ox), which is identified as

(TxX, ox).

Lemma 2.15 ([L], [BGP]). Let (o) = (εi) be an arbitrary scale.

(i) Let X be a (possibly infinite dimensional) Alexandrov space. Then exp
(o)
x

is an isometric embedding.

(ii) If X be a finite dimensional Alexandrov space. Then exp
(o)
x : K(Σx) → X

(o)
x

is surjective, for any x ∈ X.

Proof. (i) By the definition of the angle between geodesics, for any (γ, s) and (η, t) ∈
Σ′

x × [0,∞), we have

|γ(sεi), η(tεi)|X
εi

i→∞−→ |sγ, tη|K(Σx).

(ii) By [BGP], the Gromov-Hausdorff tangent cone TxX and the cone K(Σx)
over a space of directions are isometric to each other. More precisely, the scaled
logarithmic map

logx = exp−1
x :

(
1

εi
X, x

)
→

(
1

εi
TxX, ox

)
is a τi-approximation for some sequence {τi} of positive numbers converging to

zero, and expx ◦ logx = id. Then we have, for each (xi) ∈ X
(o)
x ,

exp(o)x (logx(xi)) = (expx ◦ logx(xi)) = (xi).

Therefore, exp
(o)
x is surjective. �

2.5. Preliminaries from the geometry of Alexandrov spaces. In this subsec-
tion, we review the basic facts on the geometry and topology of Alexandrov spaces.
We refer mainly to [BGP], [Per II].

2.5.1. Local structure around an almost regular point. Burago, Gromov and Perel-
man proved that a neighborhood of an almost regular point is almost isometric to
an open subset of Euclidean space.

Theorem 2.16 ([BGP], [OS]). For n ∈ N, there exists a positive number δn > 0
satisfying the following: Let X be an n-dimensional Alexandrov space with curvature
≥ −1. For 0 < δ ≤ δn, if x ∈ X is an (n, δ)-strained point with a strainer
{pα}α=±1,...,±n of length , then the two maps

ϕ := (d(pα, ·))α=1,...,n(2.5)

ϕ̃ :=

(
1

Hn(B(pα, r))

∫
B(pα,ε)

d(y, ·)dHn(y)

)
α=1,...,n

(2.6)
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on B(x, r) for small r > 0 are both (θn(δ) + θn(r/))-almost isometries, where ε
is so small with ε � r/. Here, θn(δ) is a positive function depending on n and δ
such that limδ→0 θn(δ) = 0.

Lemma 2.17 ([Y conv, Lemma 1.8]). Let M be an n-dimensional Alexandrov space
and δ be taken in Theorem 2.16. For any (n, δ)-strained point p ∈ M , there exists
r > 0 satisfying the following: For every q ∈ B(p, r/2) and ξ ∈ Σq there exists
x, y ∈ B(p, r) such that

|xq|, |yq| ≥ r/4,(2.7)

|x′
q, ξ| ≤ θ(δ, r),(2.8)

∠̃xqy ≥ π − θ(δ, r).(2.9)

Lemma 2.18 ([Y conv, Lemma 1.9]). Let M , p, r and δ be taken in Lemma 2.17.
For every q ∈ M with r/10 ≤ |pq| ≤ r and for every x ∈ M with |px| � r, we have

|∠xpq − ∠̃xpq| < θ(δ, r, |px|/r).
2.5.2. Splitting Theorem. The Splitting Theorem is an important tool to study the
structure of non-negatively curved spaces.

Theorem 2.19 (Splitting Theorem [Milka]). Let X be an Alexandrov space of
curvature ≥ 0. Suppose that there exists a line γ : R → X. Then there exists an
Alexandrov space Y of curvature ≥ 0 such that X is isometric to the product Y ×R.

Theorem 2.20. If an Alexandrov space Σ of curvature ≥ 1 has the maximal di-
ameter π, then Σ is isometric to the metric suspension Σ(Λ) over some Alexandrov
space Λ of curvature ≥ 1.

Corollary 2.21. If an n-dimensional Alexandrov space Σ of curvature ≥ 1 has the
maximal radius π, then Σ is isometric to a unit n-sphere of constant curvature = 1.

Remark 2.22 ([M]). The Splitting Theorem and Corollary 2.21 hold even for infinite
dimensional Alexandrov spaces.

2.5.3. Convergence and collapsing theory. Yamaguchi proved the following two the-
orems (Theorems 2.24 and 2.25) for Alexandrov spaces converging to an almost
regular Alexandrov space, which are counterparts of the Fibration Theorem [Y91]
in the Riemannian geometry.

Definition 2.23. A surjective map f : X → Y between Alexandrov spaces is called
an ε-almost Lipschitz submersion if f is an ε-approximation, and for any x, y ∈ X
setting θ := ∠x(y

′
x,ΣxΠx), we have∣∣∣∣ |f(x)f(y)||xy| − sin θ

∣∣∣∣ < ε

where Πx := f−1(f(x)).
A surjective map f : X → Y is called an ε-almost isometry if for any x, y ∈ X

we have ∣∣∣∣ |f(x)f(y)||xy| − 1

∣∣∣∣ < ε.

Theorem 2.24 (Lipschitz submersion theorem [Y conv]). For n ∈ N and η > 0,
there exist δn, εn(η) > 0 satisfying the following. Let Mn, Xk be Alexandrov
spaces with curvature ≥ −1, dimMn = n, and dimXk = k. Suppose that δ-strain
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radius of X > η. Then if the Gromov-Hausdorff distance between M and X is
less than ε ≤ εn(η), there is a θ(δ, ε)-almost Lipschitz submersion f : M → X.
Here, θ(δ, ε) denotes a positive constant depending on n, η and δ, ε and satisfying
limδ,ε→0 θ(δ, ε) = 0.

When M is almost regular (and X has non-empty boundary), Theorem 2.24
deforms as Theorem 2.25 below. Let X be a k-dimensional complete Alexandrov
space with curvature ≥ −1 having nonempty boundary. Let X∗ be another copy
of X. Take the double dbl (X) = X ∪ X∗ of X. The double dbl (X) is also
an Alexandrov space of curvature ≤ −1. A (k, δ)-strainer {(ai, bi)} of dbl(X) at
p ∈ X is called admissible if ai, bj ∈ X for 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1 (bk may be in
X∗ if p ∈ ∂X for instance). Let RD

δ (X) be the set of all admissible (k, δ)-strained
points in X.

Let Y be a closed domain of RD
δ (X). For a small ν > 0, we put

Yν := {x ∈ Y | d(x, ∂X) ≥ ν},

and we put

∂0Yν := Yν ∩ {d∂X = ν}, int0Yν := Yν − ∂0Yν .

The admissible δ-strained radius δD-str.rad x at p ∈ X is the supremum of
the length of all admissible δ-strainers at p. The admissible δ-strained radius
δD-str.rad (Y ) of a subset Y ⊂ X is

δD-str.rad (Y ) := inf
p∈Y

δD-str.rad p.

Theorem 2.25 (Fibration Theorem ([Y 4-dim, Theorem 1.2])). Given k and μ >
0, there exist positive numbers δ = δk, εk(μ) and ν = νk(μ) satisfying the following:
Let Xk be an Alexandrov space with curvature ≥ −1 of dimension k. Let Y ⊂
RD

δ (X) be a closed domain such that δD-str.rad (Y ) ≥ μ. Let Mn be an Alexandrov
space with curvature ≥ −1 of dimension n. Suppose that Rδn(M

n) = Mn for some
small δn > 0. If dGH(M,X) < ε for some ε ≤ εk(μ), then there exist a closed
domain N ⊂ M and a decomposition

N = Nint ∪Ncap

of N into two closed domains glued along their boundaries and a Lipschitz map
f : N → Yν such that

(1) Nint is the closure of f−1(int0 Yν) and Ncap = f−1(∂0Yν);
(2) both the restrictions fint := f |Nint

: Nint → Yν and fcap := f |Ncap
: Ncap →

∂0Yν are
(a) locally trivial fiber bundles (see Definition 2.37);
(b) θ(δ, ν, ε/ν)-Lipschitz submersions.

Remark 2.26. If ∂X = ∅, then Ncap = ∅ in the statement of Theorem 2.25.

The following theorem is a fundamental and important tool to study a local
structure of collapsing Alexandrov spaces.

Theorem 2.27 (Rescaling Argument [Y ess], [SY00], [Y 4-dim]). Let Mi, i =
1, 2, . . . , be a sequence of Alexandrov spaces of dimension n with curvature ≥ −1
and let X be an Alexandrov space of dimension k with curvature ≥ −1 and k < n.
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Let pi ∈ Mi and p ∈ X. Assume that (Mi, pi) converges to (X, p), and r > 0 is a
small number depending on p. Assume the following:

Assumption 2.28. For any p̃i with d(pi, p̃i) → 0 and for any sufficiently large i,
B(p̃i, r) has a critical point for distp̃i

Then there exist a sequence δi → 0 of positive numbers and p̂i ∈ Mi such that

• d(pi, p̂i) → 0 as i → ∞;
• for any limit Y of ( 1

δi
Mi, p̂i), we have dimY ≥ k + 1;

• dimS ≤ dimY − dimX, where S is a soul of Y .

Remark 2.29. If a sequence of B(pi, r) metric balls does not satisfy Assumption
2.28, then by the Stability Theorem 2.34, B(p̃i, r) (resp. U(p̃i, r)) is homeomorphic
to the closed coneK1(Σp̃i

) (resp. the open coneK(Σp̃i
)) over the space of directions

Σp̃i
for some p̃i ∈ Mi with d(pi, p̃i) tending to zero.

Fukaya and Yamaguchi proved the following.

Theorem 2.30 ([FY], [Y conv]). For n ∈ N, there exists εn > 0 satisfying the
following. Suppose that an n-dimensional Alexandrov space Mn with curvature
≥ −1 and diamMn < εn. Then, the fundamental group π1(M

n) is almost nilpotent;
i.e. π1(M

n) has a nilpotent subgroup of finite index.

Remark 2.31 ([Y conv]). In Fibration Theorems 2.24 and 2.25, the fiber is con-
nected and has an almost nilpotent fundamental group.

2.5.4. Perelman’s Morse theory and stability theorem. In this section, we mainly
refer to [Per II].

Definition 2.32 ([Per II]). Let f = (f1, . . . fm) : U → Rm be a map on an open
subset U of an Alexandrov space X defined by fi = d(Ai, ·) for compact subsets
Ai ⊂ X. The map f is said to be (c, ε)-regular at p ∈ U if there is a point w ∈ X
such that:

(1) ∠((Ai)
′
p, (Aj)

′
p) > π/2− ε.

(2) ∠(w′
p, (Ai)

′
p) > π/2 + c.

Theorem 2.33 ([Per II]). Let X be an finite dimensional Alexandrov space, let
U ⊂ X be an open subset, and let f be (c, ε)-regular at each point of U . If ε is
small compared with c, then we have:

(1) f is a topological submersion (see Definition 2.37).
(2) If f is proper in addition, then the fibers of f are MCS-spaces. Hence f is

a fiber bundle over its image.

Here, a metrizable space X is called an n-dimensional MCS-space if any point
p ∈ X has an open neighborhood U and there exists an (n−1)-dimensional compact
MCS-space Σ such that (U, p) is a pointed homeomorphic to the cone (K(Σ), o),
where o is the apex of the cone. Here, we regarded the (−1)-dimensional MCS-space
as the empty-set and its cone as the single-point set.

Perelman proved the Stability Theorem:

Theorem 2.34 (Stability Theorem [Per II] (cf. [Kap Stab])). Let Xn be a compact
n-dimensional Alexandrov space with curvature ≥ κ. Then there exists δ > 0 de-
pending on X such that if Y n is an n-dimensional Alexandrov space with curvature
≥ κ and dGH(X,Y ) < δ, then Y is homeomorphic to X.
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In addition, let A ⊂ X be a compact subset, and let A′ ⊂ Y be a compact
subset. Then there exists δ > 0 depending (X,A) satisfying the following. Suppose
that there is a δ-approximation f : Y → X such that f(A′) ⊂ A and f |A′ is
a δ-approximation. If t ∈ (0, sup dA) is a regular value of dA, then S(A, t) is
homeomorphic to S(A′, t). Here, we say that t is a regular value if dA is regular on
S(A, t).

In particular, every point in a finite dimensional Alexandrov space has a cone
neighborhood over its spaces of directions.

Theorem 2.35 ([Per II]). If an n-dimensional Alexandrov space Σn of curvature
≥ 1 has diameter greater than π/2, then Σ is homeomorphic to a suspension over
an (n− 1)-dimensional Alexandrov space of curvature ≥ 1.

Theorem 2.36 ([Per II], [Pet Appl], [GP]). If an n-dimensional Alexandrov space
Σn of curvature ≥ 1 has radius > π/2, then Σ is homeomorphic to an n-sphere.

2.5.5. Preliminaries from Siebenmann’s theory in [Sie].

Definition 2.37. A continuous map p : E → X between topological spaces is
called a topological submersion (or called a locally trivial fiber bundle) if for any
y ∈ E there are an open neighborhood U of y in the fiber p−1(p(y)), an open
neighborhood N of p(y) in X, and an open embedding f : U ×N → E such that
p◦f is the projection U×N → N . We call the embedding f : U×N → E a product
chart about U for p, and the image f(U ×N) a product neighborhood around y.

A surjective continuous map p : E → X of topological spaces is called a topo-
logical fiber bundle if there exists an open covering {Uα} of X, a family {Fα} of
topological spaces, and a family {ϕα : p−1(Uα) → Uα × Fα} of homeomorphisms
such that projUα

◦ ϕα = p|p−1(Uα) holds for each α. Here, projUα
is the projection

from Uα × Fα to Uα.

A finite dimensional topological space Y is said to be a WCS-set [Sie, §5] if it
satisfies both (1) and (2):

(1) Y is stratified into topological manifolds; i.e. it has a stratification

Y ⊃ · · · ⊃ Y (n) ⊃ Y (n−1) ⊃ · · · ⊃ Y (−1) = ∅,
such that Y (n) − Y (n−1) is a topological n-manifold without boundary.

(2) For each x ∈ Y (n) − Y (n−1) there are a cone C with a vertex v and a
homeomorphism ρ : Rn × C → Y onto an open neighborhood of x in Y
such that ρ−1(Y (n)) = Rn × {v}.

From the definition, we can see that an MCS-space is a WCS-set.

Theorem 2.38 (Union Lemma [Sie]). Let p : E → X be a topological submersion
and F = p−1(x0) the fiber over x0 ∈ X. We assume that F is a WCS-space. Let
A1 and A2 be compact sets in F . Let ϕi : Ui ×Ni → E be a product chart about Ui

for an open neighborhood Ui of Ai in F , and i = 1, 2. Then there exists a product
chart ϕ : U ×N → E about U ⊃ A1 ∪ A2 in F such that

ϕ =

{
ϕ1 near A1 × {x0},
ϕ2 near (A2 − U1)× {x0}.

Theorem 2.39 ([Sie]). Let p : E → X be a topological submersion. We assume
that p is proper and all fibers of p are WCS-spaces. Then p is a topological fiber
bundle over p(E).
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We provide the following lemma that will be used in Section 5.

Lemma 2.40. Let f : E → [0, 1] be a fiber bundle and the fiber F := f−1(0) be a
WCS-space. Let U ⊂ F be an open subset and A ⊂ U be a closed subset. Suppose
that ϕ : U× [0, 1] → E is a product chart about U for f . Then there exists a product
chart χ : F × [0, 1] → E such that

χ = ϕ on A× [0, 1].

In particular, E − ϕ(A× [0, 1]) is homeomorphic to (F −A)× [0, 1].

Proof. We may assume that E = F × [0, 1] and f is the projection onto [0, 1]. Let
ϕ : U×[0, 1] → F×[0, 1] be a product chart about U . Using Union Lemma 2.38 and
the compactness of [0, 1], we will construct an extension of ϕ|A×[0,1] to a product
chart defined on F × [0, 1].

By Union Lemma 2.38, for any t ∈ [0, 1], there exist an open neighborhood Nt

of t in [0, 1] and a product chart

ψ(t) : F ×Nt → E

such that
ψ(t)|A×Nt

= ϕ|A×Nt
.

By the Lebesgue number lemma, there is n ∈ N such that, setting Ik := [k/n,
(k + 1)/n], {Ik}k=0,1,...,n−1 is a refinement of an open covering {Nt}t∈[0,1] of [0, 1].
Namely, for k = 0, 1, . . . , n− 1, there is tk ∈ [0, 1] such that Ik ⊂ Ntk . Let us set

ψk := ψ(tk)|F×Ik .

For t ∈ Ik, let us define a homeomorphism ψk
t : F → F by the equality

ψk(x, t) = (ψk
t (x), t).

Gluing these local product charts ψk, we construct the required product chart χ as
follows. We inductively define a homeomorphism χk

t : F → F by

χ0
t = ψ0

t for t ∈ I0,

χk
t = ψk

t ◦ (ψk
k/n)

−1 ◦ χk−1
k/n for t ∈ Ik, k ≥ 1.

For k = 0, 1, . . . , n− 1 and (x, t) ∈ F × Ik, we define

χ(x, t) := (χk
t (x), t).

One can easily check that
χ = ϕ on A× [0, 1].

Namely, χ : F × [0, 1] → E satisfies the conclusion of the lemma. �
2.6. Differentiable structures of Alexandrov spaces. Otsu and Shioya [OS]
proved that any Alexandrov space has a differential structure and a Riemannian
structure in a weak sense.

Definition 2.41 ([Per DC]). Let U ⊂ Mn be an open subset of an Alexandrov
space M . A locally Lipschitz function f : U → R is called a DC-function if for any
x ∈ U there exist two (semi-)concave functions g and h on some neighborhood V of
x in U such that f = g−h on V . A locally Lipschitz map f = (f1, . . . , fm) : U → Rm

is called a DC-map if each fi is a DC-function.

In [KMS, §2.6], the authors formulated a general concept of structure on topo-
logical spaces.
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Definition 2.42 ([KMS]). For an integer n ≥ 0, we consider the family

F = {F(U ;A) |U ⊂ Rn is an open subset and A ⊂ U a subset }
such that

(i) each F(U ;A) is a class of maps from U to Rn;
(ii) if A ⊃ B, then F(U ;A) ⊂ F(U ;B);
(iii) if f ∈ F(U ;A), g ∈ F(V ;B), and f(U) ⊂ V , then

g ◦ f ∈ F(U ;A ∩ f−1(B)).

The following are examples of F = {F(U ;A)}.
(Class C1) Let C1(U ;A) be the class of maps from U to Rn which are C1 on A;

i.e. they are differentiable on A and their derivatives are continuous on A.
(Class DC) Let DC(U ;A) be the class of maps from U to Rn which are DC on

some open subset O ⊂ Rn with A ⊂ O ⊂ U .
Let X be a paracompact Hausdorff space, Y ⊂ X a subset, and F as above.

We call a pair (U,ϕ) a local chart of X if U is an open subset of X and if ϕ is a
homeomorphism from U to an open subset of Rn. A family A = {(U,ϕ)} of local
charts of X is called an F-atlas on Y ⊂ X if the following (i) and (ii) hold:

(i) Y ⊂
⋃

(U,ϕ)∈A U .

(ii) If two local charts (U,ϕ), (V, ψ) ∈ A satisfy U ∩ V �= ∅, then
ψ ◦ ϕ−1 ∈ F(ϕ(U ∩ V );ϕ(U ∩ V ∩ Y )).

Two F-atlases A and A′ on Y ⊂ X are said to be equivalent if A ∪ A′ is also
an F-atlas on Y ⊂ X. We call each equivalent class of F-atlases on Y ⊂ X an
F-structure on Y ⊂ X.

Assume that Y = X. Then, an F-structure on Y ⊂ X is simply called an F-
structure on X. If there is an F-structure on X, then X is a topological manifold.
We call a space equipped with an F-structure an F-manifold. Notice that F-
manifolds for F = C1 are nothing more than C1-differentiable manifolds in the
usual sense.

Let Mn be an n-dimensional Alexandrov space. Fix a number δ > 0 with
δ � 1/n. By Theorem 2.16, for any x ∈ M−Sδ(M), we obtain a local chart (U, ϕ̃),
U = U(x, r). The family A0 of all the (U, ϕ̃)’s on M induces:

Theorem 2.43 ([OS]). There exists a C1-structure on M−S(M) ⊂ M containing
A0.

Theorem 2.44 ([Per DC]). There exists a DC-structure on M − Sδ(M) ⊂ M
containing A0.

Thus, M − Sδ(M) is a DC1-manifold with singular set S(M) in the following
sense.

Definition 2.45 ([KMS, §5]). A paracompact topological manifold V with a subset
S ⊂ V is said to be a DC1-manifold with singular set S if V possesses a DC-atlas
A on V which is also a C1-atlas on V − S ⊂ V . We say that each local chart
compatible with the atlas A is a DC1-local chart.

Let V ′ be an another DC1-manifold with singular set S′. A map f : V → V ′

is called a DC1-map if for any DC1-local chart (U ′, ϕ′) of V ′, (f−1(U ′), ϕ′ ◦ f)
is a DC1-local chart of V . A homeomorphism f : V → V ′ is called a DC1-
homeomorphism if f and f−1 are DC1-maps.
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Using Otsu’s method [O], Kuwae, Machigashira and Shioya [KMS] proved that
an almost regular Alexandrov space has a smooth approximation by a Riemannian
manifold.

Theorem 2.46 ([KMS]; cf. [O]). For any n ∈ N, there exists a positive number
εn > 0 depending only on n satisfying the following: If C is a compact subset in
an n-dimensional Alexandrov space M with curvature ≥ −1 and it is ε-strained
for ε ≤ εn, then there exist an open neighborhood U(C), a C∞-Riemannian n-
manifold N(C) with C∞-Riemannian metric gN(C), and a θ(ε)-isometric DC1-
homeomorphism f : U(C) → N(C) such that gN(C)(df(v), df(w)) = 〈v, w〉 + θ(ε)
for any v, w ∈ ΣxU(C) and x ∈ U(C). Here, 〈·, ·〉 is the inner product of TxM .

Remark 2.47. Otsu [O] proved this theorem for any Riemannian manifold M with
a lower sectional curvature bound and having small excess.

We will review the proof of Theorem 2.46 in the proof of Theorem 3.2 in Section 3.
It is important and needed in our proof of Theorem 3.2.

2.7. Generalized Seifert fiber spaces. To describe results obtained in the
present paper we define the notion of a generalized Seifert fiber space.

Definition 2.48. Let M3 and X2 be, respectively, a three-dimensional and a
two-dimensional topological orbifold possibly with boundaries. A continuous map
f : M → X is called a generalized Seifert fibration if there exists a family {cx}x∈X

of subsets of M such that the following properties hold:

• The index set of {cx} is X. Each x ∈ X, f−1(x) = cx.
• Each cx is homeomorphic to a circle or a bounded closed interval. cx are
disjoint and ⋃

x∈X

cx = M.

• For each x ∈ X, there exists a closed neighborhood Ux of x such that Ux

is homeomorphic to a disk, and putting Vx := f−1(Ux), Vx satisfies the
following.
(i) If cx is topologically a circle, then f |Vx

: Vx → Ux is a Seifert fibered
solid torus in the usual sense.

(ii) If cx is topologically a bounded closed interval, then there exist home-

omorphisms φ̃x : Vx → B(pt) and φx : Ux → K1(S
1
π), which preserve

the structure of circle fibration with singular fiber. Namely, the fol-
lowing diagram commutes:

(Vx, cx)
φ̃x−−−−→ (B(pt), p−1(o))

f |Vx

⏐⏐� ⏐⏐�p

(Ux, x)
φx−−−−→ (K1(S

1
π), o)

Here, B(pt) = S1 × D2/Z2 is the topological orbifold defined after
Theorem 1.7 and p is a canonical projection.

• If ∂X has a compact component C, then there is a collar neighborhood N
of C in X such that f |f−1(N) is a usual circle fiber bundle over N .

We say that a three-dimensional topological orbifold M is a generalized Seifert
fiber space over X if there exists a generalized Seifert fibration f : M → X. Each
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fiber f−1(x) = cx of f is often called an orbit of M . An orbit cx is called singular if
Vx is a usual Seifert solid torus of (μ, ν)-type with μ > 1 or if cx is homeomorphic
to an interval.

2.8. Soul Theorem from [SY00] with complete classification. In this sub-
section, we recall the Soul Theorem for open three-dimensional Alexandrov spaces
of non-negative curvature, obtained in [SY00]. Also, we classify the geometry and
topology of open three-dimensional Alexandrov spaces of non-negative curvature
having two-dimensional soul together with some new precise arguments. The Soul
Theorem is very important to determine the topology of a neighborhood around a
singular point in a collapsing three-dimensional Alexandrov space.

Definition 2.49. LetMn be an n-dimensional non-compact Alexandrov space with
non-negative curvature. For a ray γ : [0,∞) → M in M , we define the Busemann
function bγ : M → R with respect to γ as follows:

bγ(x) := lim
t→∞

d(γ(t), x)− t

for x ∈ M . Fix a point p ∈ M and define the Busemann function b : M → R with
respect to p by

b(x) := inf
γ

bγ(x)

for x ∈ M . Here, γ runs over all the rays emanating from p. The Busemann
functions bγ and b are concave on M .

We denote by C(0) the set of all points attaining the maximum value of b:

C(0) := b−1(max
M

b).

Since b is concave, C(0) is an Alexandrov space possibly with boundary of dimension
less than n. If C(0) has no boundary, we call it a soul of M . Inductively, if C(k),
k ≥ 0, has the non-empty boundary, we define C(k + 1), the set of all points
attaining the maximum value of the distance function dist∂C(k) from the boundary
∂C(k):

C(k + 1) := dist−1
∂C(k)(max

C(k)
dist∂C(k)).

Since dist∂C(k) is concave on C(k), C(k+1) is also an Alexandrov space of dimension
< dimC(k). Since M has finite dimension, this construction stops, i.e. ∂C(k) = ∅
for some k ≥ 0. Then we call such C(k) a soul of M .

Proposition 2.50 ([Per II]; cf. [Pet Semi, §2]). For any open Alexandrov space M
of non-negative curvature and its soul S, there is a Sharafutdinov retraction from
M to S. In particular, S is homotopic to M .

2.8.1. Soul Theorem. We recall that a non-compact Alexandrov space without
boundary is called open. In this section, we state the Soul Theorem for open three-
dimensional Alexandrov spaces of non-negative curvature obtained in [SY00]. We
also define examples of open three-dimensional Alexandrov spaces of non-negative
curvature which are not topological manifolds and study those topologies.

First, we shall prove a rigidity result for the case that a soul has codimension
one. This is a generalization of [SY00, Theorem 9.8(2)].

Theorem 2.51. Let M be an n-dimensional open Alexandrov space and let S be
a soul of M . Suppose that dimS = n − 1 and S has a one-normal point. Let
B = B(S, t) be a metric ball around S of radius t > 0. Then, the metric sphere
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Ŝ := ∂B equipped with the induced intrinsic metric is an Alexandrov space of non-
negative curvature. Also, Ŝ has an isometric involution σ such that Ŝ/σ is isometric

to S and M is isometric to Ŝ × R/(x, t) ∼ (σ(x),−t).

Proof. Let us denote by

π : M → S

a canonical projection. Namely, for x ∈ M , we set π(x) ∈ S to be the nearest
point from x in S. We use rigidity facts on the π, referring to [SY00, §9] and
[Y 4-dim, §2], for proving the theorem.

Assertion 2.52. Ŝ satisfies the following convexity property: For x, y ∈ Ŝ with
|xy| < 2t, any geodesic γ between x and y in M is contained in Ŝ. In particular, Ŝ
with the induced intrinsic metric is an Alexandrov space of non-negative curvature.

Proof of Assertion 2.52. Since |xy| < 2t, γ does not intersect S. From the total
convexity of B, we have γ ⊂ B. Let us consider a curve γ̄ := π ◦ γ on S. Let σs

denote a unique ray emanating from γ̄(s) containing γ(s). By [Y 4-dim, Proposi-
tion 2.1],

Π :=
⋃

s∈[0,|xy|]
σs

is a flatly immersed surface in M . Moving γ along with Π, we obtain a curve γ̂
contained in Ŝ. This is a lift of γ̄ via π : Ŝ → S. Therefore, we obtain L(γ̂) =

L(γ̄) ≤ L(γ) = |xy|. Suppose that γ is not contained in Ŝ. From the construction
of γ̂ and [Y 4-dim, Proposition 2.1], one can show that L(γ̂) < L(γ). This is a
contradiction. Therefore, γ̂ must coincide with γ. �

Now, we denote by d̂ the induced intrinsic metric on Ŝ. Assertion 2.52 says that

(Ŝ, d̂) is an Alexandrov space of non-negative curvature. Let us denote by π̂ : Ŝ → S

the restriction of π on Ŝ. Let Stwo (resp. Sone) denote the set of all two-normal

(resp. one-normal) points in S. We set Ŝtwo := π̂−1(Stwo) and Ŝone := π̂−1(Sone).

Then, π̂ : Ŝtwo → Stwo is a two-to-one map, and π̂ : Ŝone → Sone is a one-to-one
map.

Let us consider Sreg := S ∩ M reg
δ for a small δ > 0, which is open dense in S.

Note that since any one-normal point is an essentially singular point [SY00], Sreg

is contained in Stwo. By [Pet Para], Sreg is convex, and hence, it is connected. We

set Ŝreg := π̂−1(Sreg). The restriction

π̂ : Ŝreg → Sreg

is a double covering. We define an involution σ on Ŝreg as the non-trivial deck

transformation of π̂ : Ŝreg → Sreg. By using [Y 4-dim, Proposition 2.1], we conclude
that σ is a local isometry. Hence, there is a continuous extension of σ on the whole

Ŝ. We denote it by the same notation σ. Then, σ on (Ŝ, d̂) is also a local isometric

involution. We note that σ on Ŝone is defined as the identity. From the construction,

σ is bijective. Therefore, σ is an isometry on Ŝ with respect to d̂. We now fix the

metric d̂ on Ŝ. By construction, Ŝ/σ and S are isometric to each other.

Let us consider the quotient space N := Ŝ × R/(x, s) ∼ (σ(x),−s), which is
an open Alexandrov space of non-negative curvature. We define ϕ : N → M as
sending [x, t] ∈ N to x ∈ Ŝ. By construction, ϕ is an isometry. �
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Example 2.53 ([SY00, p. 39]). For a non-negatively curved closed Alexandrov sur-
face S and p1, p2 . . . , pk ∈ S (k ∈ Z≥0), we denote by L(S; k) = L(S; p1, p2 . . . , pk)
an open three-dimensional Alexandrov space of non-negative curvature (if it exists)
satisfying the following:

(1) p1, p2, . . . , pk are essential singular points in S, and S is isometric to a soul
of L(S; k). Hereafter, S is identified as a soul of L(S; k).

(2) {p1, . . . , pk} is the set of all topological singular points in L(S; k).
(3) There is a continuous surjection π : L(S; k) → S such that for x ∈

S−{p1, . . . , pk}, π−1(x) is the union of two rays emanating from x perpen-
dicular to S; and for x ∈ {p1, . . . , pk}, π−1(x) is the unique ray emanating
from x perpendicular to S.

(4) The restriction π : π−1(S−{p1, . . . , pk}) → S−{p1, . . . , pk} is a line bundle.

Proposition 2.54 ([SY00, Proposition 9.5]; cf. [Y 4-dim, §17]). If k ≥ 1, then any
space L(S; k) is one of L(S2; 2), L(P 2; 2) and L(S2; 4).

Remark 2.55. There is an error in Proposition 9.5 (and Theorem 9.6) in [SY00].
Actually, a space L(S; 1) cannot exist, and a space L(S; 2) can have a soul homeo-
morphic to P 2. See [Y 4-dim, §17].

Proof of Proposition 2.54. Since k ≥ 1, by Theorem 2.68, S is homeomorphic to
S2 or P 2. Moreover, if S ≈ S2, then we have k ≤ 4; and if S ≈ P 2, then k ≤ 2.

We consider the case that S ≈ P 2. Suppose that k = 1. Let p ∈ S be a
unique topological singular point in L(S; 1). Let π : L(S; 1) → S be a surjection
obtained in Example 2.53. For a neighborhood B of p in S homeomorphic to D2,
the restriction

π : π−1(B) → B

is fiber-wise isomorphic to π0 : D2 × R/Z2 → D2/Z2 such that p ∈ B corresponds
to the origin of D2/Z2. Here, D2 × R/Z2 denotes the quotient space of D2 × R

by an involution (x, t) �→ (−x,−t), D2/Z2 denotes the quotient space of D2 by
an involution x �→ −x which is homeomorphic to a disk, and π0 is a canonical
projection π0 : [x, t] �→ [x]. In particular, ∂π−1(B) is homeomorphic to a Mobius
strip S1×̃R. On the other hand, B′ := S− intB is homeomorphic to Mö. Then, the
restriction π : π−1(B′) → B′ is a line bundle over Mö. In particular, it is trivial over
∂B′. Namely, we have ∂π−1(B′) ≈ S1 × R. This contradicts ∂π−1(B) ≈ S1×̃R.
Therefore, we obtain that if S ≈ P 2, then k = 2.

By a gluing argument as above, if S ≈ S2, then k = 2 or 4. �

Explicitly, we determine the topology of L(S; k).

Corollary 2.56. L(S2; 2) is isometric to Ŝ2 × R/(x, s) ∼ (σ(x),−s), where Ŝ2 is
a sphere of non-negative curvature in the sense of Alexandrov with an isometric
involution σ such that Ŝ2/σ is isometric to the soul S2 of L(S2; 2).

L(P 2; 2) is isometric to K2 × R/(x, s) ∼ (σ(x),−s), where K2 is a flat Klein
bottle with an isometric involution σ such that K2/σ is isometric to the soul P 2 of
L(P 2; 2).

L(S2; 4) is isometric to T 2×R/(x, s) ∼ (σ(x),−s), where T 2 is a flat torus with
an isometric involution σ such that T 2/σ is isometric to the soul S2 of L(S2; 4).

Proof. To prove this, it suffices to determine the topology of a metric sphere around
the soul of any L(S; k). For any L(S; k), we denote by B(S; k) a metric ball around
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S. Let us denote by π a canonical projection

π : B(S; k) → S.

Namely, for x ∈ S, π(x) is the nearest point from x in S.
We consider the case that S ≈ S2 and k = 2. Let p1, p2 ∈ S be the topological

singular points of L(S2; 2) in S. We divide S into D1 and D2 such that each Di is a
disk neighborhood of pi and D1∩D2 is homeomorphic to a circle. Then, for i = 1, 2,
there is a homeomorphism ϕi : π−1(Di) → D2 × [−1, 1]/(x, s) ∼ (−x,−s). The
gluing part π−1(D1 ∩D2) of π

−1(D1) and π−1(D2) is homeomorphic to a Mobuis
band Mö. Since the space D2 × [−1, 1]/∼ is homeomorphic to K1(P

2), we obtain
that B(S2; 2) = π−1(D1) ∪ π−1(D2) is homeomorphic to K1(P

2) ∪Mö K1(P
2) (see

Remark 2.62 below). Then, ∂B(S2; 2) is homeomorphic to a gluing of two copies
of P 2 − int(Mö) ≈ D2. Therefore, ∂B(S2; 2) ≈ S2.

We consider the case that S ≈ P 2 and k = 2. Let p1, p2 ∈ S be the topological
singular points of L(P 2; 2) in S. We take a disk neighborhood D of {p1, p2} in S.
Let us divide D into D1 and D2 such that each Di is a disk neighborhood of pi and
D1 ∩D2 is homeomorphic to an interval. Then, π−1(D1 ∩D2) is homeomorphic to
D2. Hence, π−1(D) = π−1(D1)∪π−1(D2) is homeomorphic to K1(P

2)∪D2 K1(P
2)

(see Lemma 2.61). By Lemma 2.61, ∂π−1(D) is homeomorphic to a Klein bottle.
Since π is a non-trivial I-bundle over ∂Di for i = 1, 2, it is a trivial I-bundle over
∂D. Then, π−1(∂D) ≈ S1 × I. Let us set A := ∂B(P 2; 2) ∩ π−1(D). Since D
has singular points p1 and p2 of the projection π, A is connected, and hence A is
homeomorphic to S1 × I.

Let us set D′ := S − intD which is homeomorphic to Mö. Then, π−1(D′) is
homeomorphic to a total space of an I-bundle over Mö, which is Mö× I or Mö×̃I.
Let us set A′ to be ∂B(P 2; 2) ∩ π−1(D′). Therefore, if π−1(D′) ≈ Mö × I, then
A′ is a disjoint union of two Mobius bands; and if π−1(D′) ≈ Mö×̃I, then A′ is
homeomorphic to S1 × I. Then, ∂B(P 2; 2) = A ∪ A′ is homeomorphic to a Klein
bottle if π−1(D′) ≈ Mö×I and is homeomorphic to S1×I∪∂S

1×I, which is a torus
or a Klein bottle if π−1(D′) ≈ Mö×̃I. Suppose that ∂B(P 2; 2) is homeomorphic to
T 2. By Theorem 2.51, there is an involution on T 2 having only two fixed points.
This is a contradiction (see [N, Lemma 3]). Therefore, ∂B(P 2; 2) ≈ K2.

We consider the case that S ≈ S2 and k = 4. Let p1, p2, p3, p4 ∈ S be all topo-
logical singular points of L(S2; 4). Let D and D′ be domains in S homeomorphic to
a disk such that intD (resp. intD′) contains p1 and p2 (resp. p3 and p4), D∩D′ is
homeomorphic to a circle and S = D∪D′. Let us denote ∂B(S2; 4)∩π−1(D) (resp.
∂B(S2; 4) ∩ π−1(D′)) by A (resp. A′). By repeating an argument similar to the
case that L(S; k) = L(P 2; 2), we obtain that A and A′ are homeomorphic to S1×I.
Then, ∂B(S2; 4) = A ∪ A′ is homeomorphic to a torus or a Klein bottle. Suppose
that ∂B(S2; 4) is homeomorphic to K2. By Theorem 2.51, there is an involution
on K2 having only four fixed points. This is a contradiction (see [N, Lemma 2]).
Therefore, ∂B(S2; 4) ≈ T 2. �

Remark 2.57. Since involutions on closed surfaces are completely classified [N], the
topology of each L(S; k) is unique.

For any space L(S; k), we denote a metric ball around S in L(S; k) by B(S; k).
The topology of any B(S; k) is as follows.
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Corollary 2.58. B(S2; 2) is homeomorphic to S2 × [−1, 1]/Z2, B(P 2; 2) is home-
omorphic to K2 × [−1, 1]/Z2, and B(S2; 4) is homeomorphic to T 2 × [−1, 1]/Z2.
Here, all Z2-actions correspond to ones of Corollary 2.56.

Theorem 2.59 (Soul Theorem (Theorem 9.6 in [SY00])). Let Y be a three-
dimensional open Alexandrov space and S be its soul. Then we have the follow-
ing:

(1) If dimS = 0, then Y is homeomorphic to R3, or the cone K(P 2) over the
projective plane P 2, or Mpt, which is defined in Example 1.2.

(2) If dimS = 1, then Y is isometric to a quotient (R×N)/Λ, where N is an
Alexandrov space with non-negative curvature homeomorphic to R2 and Λ
is an infinite cyclic group. Here, the Λ-action is diagonal.

(3) If dimS = 2, then Y is isometric to one of the normal bundle N(S) =
L(S; 0) over S, L(S; 2) and L(S; 4).

We will define examples of L(S2; 2), L(P 2; 2) and L(S2; 4) in Example 2.63.

Example 2.60 ([SY00, Example 9.3]). Let Γ be a group of isometries generated by
γ and σ on R3. Here, γ and σ are defined by γ(x, y, z) = −(x, y, z) and σ(x, y, z) =
(x+1, y, z). Then we obtain an open non-negatively curved Alexandrov space R3/Γ.
This space is isometric to Mpt in Example 1.2.

We denote by B(pt) a metric ball B(p0, R) around a soul p0 of Mpt = R3/Γ for
large R > 0. Remark that B(pt) is homeomorphic to S1 × D2/(x, v) ∼ (x̄,−v).
We can check that B(pt) is one of K1(P

2)∪D2 K1(P
2). Here, K1(P

2)∪D2 K1(P
2)

denotes the gluing K1(P
2) ∪ϕ K1(P

2) of two copies K1(P
2) along domains A1

and A2 homeomorphic to D2 contained in ∂K1(P
2) ≈ P 2 via a homeomorphism

ϕ : A1 → A2. We show that the topology of K1(P
2) ∪D2 K1(P

2) does not depend
on the choice of the gluing map.

Lemma 2.61. For any domains A1 and A2 which are homeomorphic to D2 con-
tained in ∂K1(P

2) and any homeomorphism ϕ : A1 → A2, there is a homeomor-
phism

ϕ̃ : K1(P
2) ∪ϕ K1(P

2) → K1(P
2) ∪id K1(P

2).

Here, id : A0 → A0 is the identity of a domain A0 which is homeomorphic to D2

contained in ∂K1(P
2). In particular, any such gluing is homeomorphic to B(pt).

Proof. Let X1, X2 and Y1 = Y2 be spaces homeomorphic to K1(P
2). Let us take

domains A1 ⊂ ∂X1, A2 ⊂ ∂X2 and A0 ⊂ ∂Y1 = ∂Y2 which are homeomorphic to
D2. Let us take any homeomorphism ϕ : A1 → A2.

Now let us fix a homeomorphism ϕ1 : A1 → A0. Then there is a homeomorphism
ϕ̂1 : ∂X1 → ∂Y1 which is an extension of ϕ1. By using the cone structures of X1

and Y1, we obtain a homeomorphism ϕ̃1 : X1 → Y1 which is an extension of ϕ̂1.
Let us set ϕ2 := ϕ1 ◦ ϕ−1 : A2 → A0. By an argument similar to the above, we
obtain a homeomorphism ϕ̃2 : X2 → Y2 which is an extension of ϕ2. We define a
map ϕ̃ : X1 ∪ϕ X2 → Y1 ∪idA0

Y2 by

ϕ̃(x) =

{
ϕ̃1(x) if x ∈ X1,

ϕ̃2(x) if x ∈ X2.

This map is well-defined and a homeomorphism. �
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Remark 2.62. We define a spaceK1(P
2)∪MöK1(P

2) in a way similar toK1(P
2)∪D2

K1(P
2). Let us consider domains A1, A2 ⊂ ∂K1(P

2) ≈ P 2 which are homeomor-
phic to a Mobius band Mö, and take a homeomorphism ϕ : A1 → A2. Then,
we denote K1(P

2) ∪ϕ K1(P
2) by the gluing K1(P

2) ∪Mö K1(P
2) for some glu-

ing map ϕ. By an argument similar to the proof of Lemma 2.61, the topology of
K1(P

2)∪MöK1(P
2) does not depend on the choice of the gluing map. We can show

that any such gluing is homeomorphic to S2 × [−1, 1]/(v, t) ∼ (σ(v),−t). Here, S2

is regarded as {v = (x, y, z) ∈ R3 | |v| = 1} and σ is an involution defined as
σ : (x, y, z) �→ (−x,−y, z). Further, it is homeomorphic to B(P 2; 2) (see Corollary
2.58).

K1(P
2)∪∂ K1(P

2) denotes the gluing of two copies of K1(P
2) via a homeomor-

phism on ∂K1(P
2). This space has the same topology as K1(P

2)∪idK1(P
2), where

id is the identity on ∂K1(P
2), which is homeomorphic to the suspension Σ(P 2) over

P 2. The proof is done by using the cone structure as in the proof of Lemma 2.61.

Example 2.63. We will define open Alexandrov spaces L2 and L4 as follows.
Later, we show that Lk is isometric to an L(S; k) for k = 2, 4.

Recall that Mpt is defined as

Mpt := S1 × R2/(x, y)
α∼(x̄,−y)

in Example 1.2. We consider a closed domain M ′
pt of Mpt as

M ′
pt := S1 × [−, ]× R/α

for some  > 0. Then, M ′
pt is a convex subset of Mpt, and hence it is an Alexandrov

space of non-negative curvature with boundary ∂M ′
pt ≡ S1 × R.

We denote by L4 one of the open Alexandrov spaces of non-negative curvature
defined as

L4(ϕ) = M ′
pt ∪ϕ M ′

pt

for an isometry ϕ on ∂M ′
pt. Here, we use the following notation: For Alexandrov

spaces A and A′ whose boundaries are isometric to each other in the induced inner
metric with an isometry ϕ : ∂A → ∂A′, A∪ϕ A′ denotes the gluing of A and A′ via
ϕ.

We will show that L4 is L(S2; 4) (Lemma 2.64).
Let U2,1 be the Alexandrov space defined by

U2,1 := S1 × R2/(x, y)
β∼(−x,−y).

Let us set
U ′
2,1 := S1 × [−, ]× R/β ⊂ U2,1

which is a convex subset of U2,1, and hence it is an Alexandrov space of non-negative
curvature with boundary ∂U ′

2,1 ≡ S1×R. Let us set S(U ′
2,1) := S1× [−, ]×{0}/β.

Note that S(U ′
2,1) is isometric to a Mobius band Mö and U ′

2,1 is isomorphic to an
R-bundle over S(U ′

2,1).
We define open Alexandrov spaces L2,1, L2,2 and L2,3 of non-negative curvature

as

L2,1 := L2,1(ϕ) = M ′
pt ∪ϕ U ′

2,1,

L2,2 := L2,2(ϕ) = M ′
pt ∪ϕ D2 × R, and

L2,3 := L2,3(ϕ) = M ′
pt ∪ϕ Mö× R.
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Here, ϕ denotes a gluing isometry between the corresponding boundaries, D2 de-
notes a two-disk of non-negative curvature, and Mö is a flat Mobius band.

Let us define an Alexandrov space A of non-negative curvature

A := [−a, a]× [−b, b]× R/(v, s) ∼ (−v,−s).

Here, v ∈ [−a, a]× [−b, b] and s ∈ R. The boundary ∂A is isometric to S1 ×R. We
define an open Alexandrov space L2,4 of non-negative curvature as

L2,4 = L2,4(ϕ) = A ∪ϕ A

for some isometry ϕ on ∂A.
We will prove that L2,1 and L2,3 are L(P 2; 2) and L2,2 and L2,4 are L(S2; 2)

(Lemma 2.65).
From now on throughout this paper, we denote by L2 one of L2,1, L2,2, L2,3 and

L2,4.

Lemma 2.64. L4 is L(S2; 4).

Proof. Recall that L4 = L4(ϕ) = M ′
pt ∪ϕ M ′

pt. We identify ∂M ′
pt as S

1 × R via an
isometry [ξ, , s] �→ [ξ, s]. The isometry ϕ : ∂M ′

pt → ∂M ′
pt is written as

ϕ[ξ, , s] = [f(ξ), , g(s)]

for some isometries f on S1 and g on R. Then, g(s) = (±1) · s+ g(0).
Let us define E := [−, ] × R/(s, t) ∼ (−s,−t). Obviously, there is a canonical

projection π : M ′
pt → E defined by [ξ, s, t] �→ [s, t]. Here, ξ ∈ S1, s ∈ [−, ] and

t ∈ R. The map π is a line bundle over E − {[0, 0]}.
For a ∈ R, let us define S′

pt(a) ⊂ M ′
pt as

S′
pt(a) := S1 × {(t, at/) | t ∈ [−, ]}

/
α.

S′
pt(a) is homeomorphic to a disk. Then, by using the fibration π : M ′

pt → E, we
obtain that M ′

pt is homotopic to S′
pt(a) for any a ∈ R.

By choosing a with respect to g(0), we obtain that L4 is homotopic to the gluing
S′
pt(a)∪∂S

′
pt(−a) which is homeomorphic to S2. Thus, a soul of L4 is homeomorphic

to a sphere. Since M ′
pt has only two topological singular points in its interior, L4

has only four topological singular points. Therefore, L4 is L(S2; 4). �

Lemma 2.65. L2,1 and L2,3 are L(P 2; 2), and L2,2 and L2,4 are L(S2; 2).

Proof. We will use the same notation as in the proof of Lemma 2.64.
Let us consider L2,1 = L2,1(ϕ) = M ′

pt ∪ϕU2,1. Recall that U
′
2,1 ⊂ U2,1 is isomor-

phic to a line bundle over S(U ′
2,1), where S(U ′

2,1) is a subset of U ′
2,1 homeomorphic

to Mö. By using the bundle structure of U ′
2,1 and the fibration π, we obtain that

L2,1 is homotopic to the gluing S′
pt∪∂ S(U

′
2,1), which is homeomorphic to P 2. Since

L2,1 has only two topological singular points, it follows that L2,1 is L(P 2; 1).
Let us take L2,2 = L2,2(ϕ) = M ′

pt∪ϕD
2×R. By using the fibration π, we obtain

that L2,2 is homotopic to the gluing S′
pt(a)∪∂D

2 for some a, which is homeomorphic

to S2. Also, L2,2 has only two topological singular points. This implies that L2,2

is L(S2; 2).
Let us take L2,3 = L2,3(ϕ) = M ′

pt ∪ϕ Mö × R. By using π, we obtain that L2,3

is homotopic to the gluing S′
pt(a)∪∂ Mö for some a, which is homeomorphic to P 2.

Since L2,3 has only two topological singular points, it follows that L2,3 is L(P 2; 2).
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Let us take L2,4 = L2,4(ϕ) = A ∪ϕ A. Recall that A = [−a, a] × [−b, b] ×
R/(x, y, s) ∼ (−x,−y,−s). Let us consider a subset S′ := [−a, a]× [−b, b]×{0}/∼
of A, which is homeomorphic to a disk. Let us set E := [−b, b]×R/(y, s) ∼ (−y,−s).
There is a canonical projection π′ : A → E defined by π′([x, y, s]) = [y, s]. By using
it, we obtain that L2,4 is homotopic to S′∪∂S

′, which is homeomorphic to S2. Since
L2,4 has only two topological singular points, it follows that L2,4 is L(S2; 2). �
2.9. Classification of Alexandrov surfaces from [SY00]. We recall a result for
a classification of Alexandrov surfaces by quoting [SY00].

Proposition 2.66 (The Gauss-Bonnet Theorem [SY00, Proposition 14.1]). If X
is a compact Alexandrov surface, then we have

ω(X) + κ(∂X) = 2πχ(X).

Proposition 2.67 (The Cohn-Vossen Theorem [SY00, Proposition 14.2]). If X is
a non-compact Alexandrov surface, then we have

2πχ(X)− πχ(∂X)− ω(X)− κ(∂X) ≥ 0.

Theorem 2.68 ([SY00, Corollary 14.4]). Let X be a non-negatively curved Alexan-
drov surface. Then, the following hold:

(1) X is homeomorphic to either R2, R≥0 × R, S2, P 2, D2 or isometric to
[0, ]×R, [0, ]×S1(r), R≥0×S1(r), R×S1(r), R×S1(r)/Z2, a flat torus,
or a flat Klein bottle for some , r > 0.

(2) intX contains at most four essential singular points, and denoting by n the
number of essential singular points in intX, we have the following for some
, r > 0.
(a) If n ≥ 1, X is either homeomorphic to R2, S2, P 2, D2 or isometric

to dbl (R≥0 × R≥0) ∩ {(x, y) | y ≤ h}.
(b) If n ≥ 2, X is either homeomorphic to S2 or isometric to dbl (R≥0 ×

[0, h]), dbl (R≥0 × [0, h]) ∩ {(x, y) |x ≤ } or dbl ([0, ]× [0, h])/Z2.
(c) If n ≥ 3, then X is homeomorphic to S2.
(d) If n = 4, X is isometric to A ∪φ B, where A and B are isometric to

dbl ([0, ]×[0,∞))∩{(x, y) | y ≤ a} and dbl ([0, ]×[0,∞))∩{(x, y) | y ≤
b} for some a, b > 0, respectively, and φ : ∂A → ∂B is some isometry.

2.10. A fundamental observation. In this subsection, we prove fundamental
propositions on the sets of topologically singular points of Alexandrov spaces.

First, we note the following proposition on the number of topologically singular
points of a three-dimensional closed Alexandrov space. Let us consider a (2n+ 1)-
dimensional manifold X such that its boundary ∂X is homeomorphic to the disjoint
union

⊔m
i=1 P

2n of the projective spaces. Then we see that m is even. Indeed, we
consider the double dbl(X) and its Euler number:

0 = χ(dbl(X)) = 2χ(X)− χ(∂X) = 2χ(X)−m.

Proposition 2.69. Let M be a three-dimensional closed Alexandrov space. Then
the number of topologically singular points of M is even.

Proof. Since M is compact, Stop(M) is a finite set. By Theorem 2.34, there exists
r > 0 such that for any p ∈ Stop(M) we have (B(p, r), p) ≈ (K1(P

2), o). Therefore,

M0 := M −
⋃

p∈Stop(M)

U(p, r)
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is a manifold with boundary ∂M0 ≈
⊔

p∈Stop(M) P
2. By the above argument,

�Stop(M) is even. �

We also prepare the following proposition.

Proposition 2.70. Let (Mi, pi) be a sequence of n-dimensional pointed Alexandrov
spaces of curvature ≥ −1 converging to (X, p). If diamΣp > π/2, then Σpi

is
homeomorphic to a suspension over an Alexandrov space of curvature ≥ 1, for
large i.

Proof. Suppose that the conclusion fails. Then we have some sequence {Mn
i } such

that (Mi, pi) converges to (X, p) and each Σpi
does not have topological suspension

structure over any Alexandrov space of curvature ≥ 1. It follows from Theorem
2.35 that diam (Σpi

) ≤ π/2. The convergence of spaces of directions is lower semi-
continuous:

lim inf
i→∞

Σpi
≥ Σp.

Then we have diam (Σp) ≤ π/2. This is a contradiction. �

3. Smooth approximations and flow arguments

3.1. Flow Theorem.
A bijective map f : X → Y between metric spaces is called bi-Lipschitz if both

f and f−1 are Lipschitz.

Definition 3.1. Let M be a topological space. A continuous map Φ : M×R → M
is called a flow if it satisfies

Φ(x, 0) = x,

Φ(x, s+ t) = Φ(Φ(x, s), t)

for any x ∈ M and s, t ∈ R. Remark that, for each t ∈ R, the map

Φt = Φ(·, t) : M → M

has the inverse map Φ−t.
Let M be a metric space. If a flow Φ is a Lipschitz map from M × R to M ,

then we call it a Lipschitz flow. Remark that for any Lipschitz flow Φ, Φ(·, t) is
bi-Lipschitz for each t ∈ R.

By using the proof of Theorem 2.46, we obtain the following theorem. This is a
main tool for the proof of our results throughout the present paper.

Theorem 3.2 (Flow Theorem). For any n ∈ N, there exists a positive number
εn depending only on n satisfying the following: Let C be a compact subset and S
be a closed subset in an n-dimensional Alexandrov space M with curvature ≥ −1.
Suppose that C ∩ S = ∅ and C is ε-strained and distS is (1 − δ)-regular on C for
δ > 0, where 0 < ε ≤ εn and δ is smaller than some constant. Then there exist
a neighborhood U(C) of C and a Lipschitz flow Φ : M × R → M satisfying the
following:

(i) For any x ∈ U(C), putting Ix := {t ∈ R |Φ(x, t) ∈ U(C)}, Φ(x, t) is a

5
√
δ + θ(ε)-isometric embedding in t ∈ Ix.
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(ii) The speed with which Φ leaves S is almost one. Namely,

d

dt

∣∣∣∣
t=0+

distS ◦ Φ(x, t) > 1− 5
√
δ − θ(ε)(3.1)

at any x ∈ U(C).

Proof of Theorem 3.2. To prove this, we must remember the proof of Theorem 2.46
in reference to [KMS] and [O].

For a while, x denotes an arbitrary point in C. We set

v(x) :=
∇distS
|∇distS |

∈ ΣxM.

Since dS is (1− δ)-regular, we have

(3.2) (distS)
′
x(v(x)) = − cos∠(S′

x, v(x)) > 1− δ.

We fix a point q(x) ∈ S such that

|xq(x)| = |xS|.
Then, by (3.2), we have

∠(q(x)′, v(x)) ≥ ∠(S′, v(x)) > π − δ′.

Here, δ′ := π − cos−1(−1 + δ). Note that limδ→0
δ′√
δ
= 1

2
√
2
.

We put  := min{ε-str. rad (C), d(S,C)}. We fix positive numbers s and t with
s � t � . Take a maximal 0.2s-net {xj | j = 1, . . . , N} of C. Fix any j ∈
{1, . . . , N}. We take ε-strainer {qαj |α = ±1, . . . ,±n} at xj of length ≥ . We may
assume that {qαj } satisfies the following:

q+1
j = q(xj).(3.3)

Since t � , {qαj } is also θ(ε)-strainer at any x ∈ B(xj , 10t). It follows from s � t
and [Y conv, Lemma 1.9] that

(3.4) |∠̃qαj xy − ∠qαj xy| < θ(ε)

for any x ∈ B(xj , s) and y ∈ B(x, s).
We denote by Ej the standard n-dimensional Euclidean space. Define a map

fj = (fα
j )

n
α=1 : B(xj , 10t) → Ej

by

fα
j (y) =

1

Hn(B(qαj , ε
′))

∫
z∈B(qαj ,ε′)

d(y, z)− d(xj , z) dHn(z)(3.5)

where ε′ � ε. This map is a θ(ε)-almost isometric DC1-homeomorphism, which is
actually a DC1-coordinate system.

Lemma 3.3 ([O, Lemma 5]). There is an isometry F k
j : Ek → Ej satisfying the

following:

|F k
j ◦ fk(y)− fj(y)| < θ(ε)s,(3.6)

|dF k
j ◦ dfk(ξ)− dfj(ξ)| < θ(ε)(3.7)

for any j and k, and y ∈ B(xj , s) ∩B(xk, s) and ξ ∈ Σy.

Remark that each fj has the directional derivative dfj .
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Proof of Lemma 3.3. We first recall how to define F k
j ’s. The property (3.6) is

proved in the same way to the original proof of [O, Lemma 5] in our situation. We
only prove (3.7).

Fix any j and k. For α = 1, . . . , n, take yαk ∈ xkq
−α
k and y−α

k ∈ xkq
α
k such that

|xky
α
k | = |xky

−α
k | = s.

Then we have

〈fk(yαk ), fk(y
β
k )〉 = s2δαβ + θ(ε, s/)

for all α, β = 1, . . . , n. Here, 〈·, ·〉 is the standard inner product on Ek. Since s � ,
θ(ε, s/) = θ(ε). Then, we have

|fk(yαk )− seαk | < θ(ε).

Here, {eαk}nα=1 is an o.n.b on Ek. In a similar way, we have

|fk(y−α
k ) + seαk | < θ(ε).

We define vectors vα, wα ∈ Ej (α = 1, . . . , n) by

vα :=
1

2s
{fj(yαk )− fj(y

−α
k )}.

Then, we have

〈vα, vβ〉 =δαβ + θ(ε).

Then, {vα} is an almost orthonormal basis. By Schmidt’s orthogonalization we
obtain an orthonormal basis {ẽα} of Ej such that

|ẽα − vα| < θ(ε).

We now define an isometry F k
j : Ek → Ej by changing the orthonormal basis

and the translation:

F k
j (v) = fj(xk) +

n∑
α=1

〈v, eαk 〉ẽα.

Then, we have

F k
j (fk(x)) = fj(x) + s�v(θ(ε))

for all x ∈ B(xj , s). Here, �v(c) is a vector whose norm is less than or equal to |c|.
We prove (3.7). For any y ∈ B(xj , s) ∩ B(xk, s) and ξ ∈ Σy, by Lemma 2.17,

there exists z ∈ M such that

(3.8) |yz| = t and ∠(ξ, ↑zy) = θ(ε).

Then, we have

∠̃qαj yz = ∠((qαj )′, z′) + θ(s/t).

Since s � t, we have θ(s/t) = θ(ε). Therefore,

dyf
α
j (ξ) =

1

Hn(B(qαj , ε
′))

∫
w∈B(qαj ,ε′)

− cos∠(w′
y, ξ) dHn(w)(3.9)

= − cos ∠̃qαj yz + θ(ε).(3.10)
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On the other hand,

dF k
j ◦ dfk(ξ) = dF k

j

((
− cos ∠̃qαj yz

)
α=1,...,n

)
+ �v(θ(ε))(3.11)

=
∑
α

− cos ∠̃qαj yz · ẽα + �v(θ(ε)).(3.12)

Therefore, we have (3.7). �
Set Vj := B(0, 0.4s) ⊂ Ej for all j.

Next, we perturb {F k
j } to a family {F̃ k

j } satisfying the following.

Lemma 3.4 ([O, Lemma 6]). For any j and k with d(xj , xk) < 0.9s, there exists

a θ(ε)-almost isometric C∞ map F̃ k
j : Vk → Ej satisfying the following:

F̃ j
j = id on Ej and(3.13)

F̃ l
j(v) = F̃ k

j ◦ F̃ l
k(v)(3.14)

for any j and k with d(xj , xk) < 0.9s and v ∈ Vl ∩ F̃ k
l (Vk) ∩ F̃ j

l (Vj).

Moreover, we can obtain this perturbed {F̃ k
j } also satisfying (3.6) and (3.7). That

is, we have

|F̃ k
j ◦ fk(y)− fj(y)| < θ(ε)s,(3.15)

|dF̃ k
j ◦ dfk(ξ)− dfj(ξ)| < θ(ε)(3.16)

for any j and k, and y ∈ B(xj , s) ∩B(xk, s) and ξ ∈ Σy.

Proof. We only review the first step of construction of F̃ k
j ’s by induction referring

to the proof of [O].

Let us first review how to construct F̃ k
j ’s. Let φ : [0,∞) → [0,∞) be a C∞-

function such that

φ = 1 on [0, 1/2],

φ = 0 on [1,∞), and

−4 ≤ φ′ ≤ 0.

Set
ψj(v) := φ(|v|/0.8s)

for v ∈ Vj .

We set F̃ 1
j = F 1

j and F̃ j
1 = (F̃ 1

j )
−1, and define F̃ 2

j : U2 → Rn for j ≥ 2 by

F̃ 2
j (v) := ψ1 ◦ F̃ 2

1 (v) · F̃ 1
j ◦ F̃ 2

1 (v) + (1− ψ1 ◦ F̃ 2
1 (v)) · F 2

j (v)

for v ∈ V2. By construction, F̃ 2
j is smooth and satisfies (3.15) and (3.16).

For v ∈ V2, we have

φ1 ◦ F̃ 2
1 (v) = 1 + θ(ε)|v|,

‖d(φ1 ◦ F̃ 2
1 )‖C1 = θ(ε).

Therefore, we have, for any v ∈ V2 and w ∈ TvE2 with |w| = 1,

dF̃ 2
j (w) = d(F̃ 1

j ◦ F̃ 2
1 )(w) + θ(ε)

= d(F 1
j ◦ F 2

1 )(w) + θ(ε)

= dF 2
j (w) + θ(ε).



2372 AYATO MITSUISHI AND TAKAO YAMAGUCHI

Thus, we have

‖dF̃ 2
j − dF 2

j ‖ < θ(ε)

at any v ∈ V2.
Therefore, for a segment c : [0, t0] → V2 between v and y, we have

|F̃ 2
j (v)− F̃ 2

j (w)| =
∣∣∣∣∫ t0

0

dF̃ 2
j (c

′(t))dt

∣∣∣∣ ≥ 0.9|v − w|.

Thus, F̃ 2
j is injective. �

By the chain rule (3.13), an equivalence relation ∼ on the disjoint union
⊔

j Vj

is defined in the following natural way: Vj � y ∼ y′ ∈ Vk ⇐⇒ F̃ k
j (y

′) = y. Set
N :=

⊔
Vj/∼. We denote by π the projection

π :

N⊔
j=1

Vj → N.

We denote by Ṽj := π(Vj) the subset of N corresponding to Vj , and by πj the
restriction of π

πj : Vj → Ṽj .

We define f̃j := π−1
j . Then N is a C∞-manifold with atlas {(Ṽj , f̃j)}j , and F̃ k

j :

f̃k(Ṽk ∩ Ṽj) → f̃j(Ṽk ∩ Ṽj) is the associate transformation.

Define maps f (j) : B(xj , s) → Ej (j = 1, . . . , N) by

f (1)(x) := f1(x),

f (2)(x) := ψ1 ◦ f (1)(x) · F̃ 1
2 ◦ f (1)(x) + (1− ψ1 ◦ f (1)(x))f2(x),

· · ·

Set V̂j := f (j)−1(Vj). Then we have

f (j) = F̃ k
j ◦ f (k)

on V̂j ∩ V̂k. Indeed, for instance, f
(2) = F̃ 1

2 ◦ f (1) on B1 ∩B2. For the general case,

we refer to [O, pp. 1272-1273]. Set U :=
⋃

j V̂j . A homeomorphism f : U → N is

defined to be the inductive limit of π ◦ f (j).
By [O, Lemma 8], we obtain the following properties of f (j):

|fj(x)− f (j)(x)| < θ(ε)s,(3.17)

|dfj(ξ)− df (j)(ξ)| < θ(ε)(3.18)

for all x ∈ B(xj , 0.4s) and ξ ∈ Σx.

Let {χj}j be a smooth partition of unity such that supp (χj) ⊂ Ṽj . The desired
Riemannian metric gN on N is defined by

(3.19) (gN )x(v, w) :=
∑
j

χj(x)〈df̃j(v), df̃j(w)〉

for any x ∈ N and v, w ∈ TxN .
Up to here, we reviewed the construction of a smooth approximation f : U → N

by [KMS] (and [O]). Next, we construct the desired flow.
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We first remark that

Lemma 3.5. For each j, f (j)−1 : Vj → V̂j is differentiable. Hence, f and f−1 are
also differentiable.

Proof. Since f (j) is differentiable, for any scale (o), the following diagram commutes:(
V̂j

)(o)

x

(f(j))
(o)

x−−−−−−→ (Vj)
(o)
y

ρ̂(o)

⏐⏐� ⏐⏐�ρ(o)

TxM −−−−→
dxf(j)

TyEj

where y := f (j)(x) and ρ̂(o) and ρ(o) are canonical isometries. We will omit the
symbol (o) to write ρ̂ := ρ̂(o) and ρ := ρ(o).

Since f (j) is θ(ε)-isometric,
(
f (j)

)(o)
x

and
(
f (j)−1

)(o)
y

are also. We define a map

A : TyEj → TxM by

A := ρ̂ ◦
(
f (j)−1

)(o)

y
◦ ρ−1.

Then we have

A ◦ dxf (j) = idTxM ,

dxf
(j) ◦A = idTyEj

.

Namely, A =
(
dxf

(j)
)−1

is determined independently of the choice of (o). By its

construction, A = dy(f
(j)−1) is well-defined. Thus f (j)−1 is differentiable.

Since f is the composition of differentiable map f (j) and smooth map πj , f and
f−1 are also differentiable. �

Set yj := y+1
j . Remark that yj can be taken to satisfy the following:

(3.20)

{
|xjyj | = t,

∠Sxyj ≥ ∠̃Sxyj > π − δ′ − θ(ε, s/t)

for all x ∈ B(xj , s).
Now, let us forget the construction of fj above. We will use the following nota-

tion:

(3.21) fj := f (j).

We set

Yj(x) :=
�⏐yj

x
∈ ΣxM,

Zj(x) :=
fj(y

+1
j )− fj(x)

|fj(y+1
j )− fj(x)|

∈ Ej ,

for all x ∈ B(xj , s).
We recall that fj is θ(ε)-isometric on B(xj , t). It follows from (3.10) that we

have

(3.22) dfj(Yj(x)) = Zj(x) + �v(θ(ε))

for any x ∈ B(xj , 0.4s).
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Since

∠x(S
′, Yj) + ∠x(S

′, Yk) + ∠x(Yj , Yk) ≤ 2π,

we have

∠(Yj(x), Yk(x)) < 2δ′ + θ(ε)

for all x ∈ B(xj , s) ∩B(xk, s). Then, we have

d(Yj , Yk)
2 < 2(1− cos(2δ′ + θ(ε)))

≤ 2δ′2 + θ(ε).

Therefore, we obtain

dfj(Yk(x)) = dfj(Yj(x)) + �v(
√
2δ′ + θ(ε))(3.23)

= Zj(x) + �v(
√
2δ′ + θ(ε)).(3.24)

Note that Zj is smooth on Vj ⊂ Ej . We define a smooth vector field W̃j on

Ṽj ⊂ N by

W̃j(x) := df̃−1
j (Zj(x)).

We next prove the following.

Lemma 3.6. For any x ∈ Ṽj ∩ Ṽk, we have

|W̃j(x)− W̃k(x)|N < 4
√
2δ′ + θ(ε).

Proof. At first, we see

|W̃j − W̃k|2N =

N∑
�=1

χ�

∣∣∣df̃� (W̃j − W̃k

)∣∣∣2
E�

=

N∑
�=1

χ�

∣∣∣dF̃ j
� (Zj)− dF̃ k

� (Zk)
∣∣∣2
E�

.

By (3.24), we have

dF̃ k
� (Zk) = dF̃ k

� (dfk(Yk)) + �v(θ(ε))

= df�(Yk) + �v(θ(ε))

= Z� + �v(2
√
2δ′ + θ(ε)).

Therefore, Lemma 3.6 is proved. �

We next define a smooth vector field W̃ on N by

W̃ (x) :=
N∑
j=1

χj(x) W̃j(x).(3.25)

By Lemma 3.6, we have

|W̃ − W̃j | =
∣∣∣∣∣∑

�

χ� · W̃� − W̃j

∣∣∣∣∣
≤
∑
�

χ�|W̃� − W̃j | < 4
√
2δ′ + θ(ε)

on Ṽj ⊂ N .
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We consider an integral flow Φ̃ of W̃ , namely,

dΦ̃

dt
(x, t) = W̃ (Φ̃(x, t)).

We now define a flow Φ on U by

Φ(x, t) := f−1
(
Φ̃(f(x), t)

)
.

Lemma 3.7. The conclusion (ii) of Theorem 3.2 holds:

d

dt

∣∣∣∣
t=0+

distS ◦ Φ(x, t) > 1− 5
√
δ − θ(ε),

(d̃S)
′(W̃ (x̃)) > 1− 5

√
δ − θ(ε)

for all x ∈ U .

Proof. By Lemma 3.5, f is differentiable. Therefore, the flow curve

Φ(x, ·) : Ix → U

is differentiable for any x ∈ U . Then x ∈ Vj for some j. Then, we have

d

dt

∣∣∣∣
t=0

dS ◦ Φ(x, t) = (dS ◦ f−1)′
(

d

dt
f ◦ Φ(x, t)

)
= (dS ◦ f−1)′

(
W̃ (f(x))

)
= (dS ◦ f−1

j )′ ◦ df̃j(W̃ )

= (dS ◦ f−1
j )′ ◦ df̃j(W̃j + 4

√
2�v(δ′ + θ(ε)))

= (dS ◦ f−1
j )′(Zj + 4

√
2�v(δ′ + θ(ε)))

= (dS ◦ f−1
j )′(dfj(Yj) + 4

√
2�v(δ′ + θ(ε)))

> d′S(Yj)− 4
√
2δ′ − θ(ε)

> 1− δ − 4
√
2δ′ − θ(ε)

> 1− 5
√
δ − θ(ε).

�

Lemma 3.8. The conclusion (i) of Theorem 3.2 holds: For any x ∈ U , Φ(x, t) is

a 5
√
δ + θ(ε)-isometric embedding in t ∈ Ix. Here, Ix := {t ∈ R |Φ(x, t) ∈ U}.

Proof. By the construction of W̃ , we have |W̃ | ≤ 1+ θ(ε). Indeed, for any t, t′ ∈ Ix
with t < t′, we obtain

d
(
Φ̃(f(x), t′), Φ̃(f(x), t)

)
≤
∫ t′

t

∣∣∣W̃ (
Φ̃(f(x), s)

)∣∣∣ ds
≤ |1 + θ(ε)|(t′ − t).

Then we have

d (Φ(x, t′),Φ(x, t))

t′ − t
=

|Φ(x, t′),Φ(x, t)|∣∣∣Φ̃(f(x), t′), Φ̃(f(x), t)∣∣∣ ·
∣∣∣Φ̃(f(x), t′), Φ̃(f(x), t)∣∣∣

t′ − t

≤ 1 + θ(ε).
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By Lemma 3.7, for t < t′ in Ix, we obtain

d (Φ(x, t′),Φ(x, t)) ≥ d(S,Φ(x, t′))− d(S,Φ(x, t))

=

∫ t′

t

(dS)
′(W )ds ≥ (1− 5

√
δ − θ(ε))(t′ − t).

This completes the proof of Lemma 3.8. �

Combining Lemmas 3.8 and 3.7, we obtain the conclusions of Theorem 3.2. �

Definition 3.9. LetM be an Alexandrov space, f : M → R be a Lipschitz function
and Φ : M × R → M be a Lipschitz flow. Let M ′ be a subset of M . We say that
Φ is gradient-like for f on M ′ if there exists a constant c > 0 such that for any
x ∈ M ′ we have

lim inf
t→0

f(Φ(x, t))− f(x)

t
> c.

We denote by

Φ � f on M ′

this situation.

In this notation, we obtained in Theorem 3.2 a gradient-like flow Φ for distS on
U(C) with a constant c = 1− 5

√
δ − θ(ε).

3.2. Flow and fibration. We will find a nice relation between Fibration Theorems
2.24 and 2.25 and Flow Theorem 3.2. We first recall an important property of
Yamaguchi’s fibration.

Proposition 3.10 (cf. Lemma 4.6 in [Y conv]). Let M and X be Alexandrov
spaces and π : M → X be a θ(δ, ε)-Lipschitz submersion as in Theorem 2.24. Let
(o) = (εi) be an arbitrary scale. We denote by Hx a set of horizontal directions to
the fiber π−1(π(x)) at x. Then for any x ∈ M , the restriction of the blow-up

π(o)
x ◦ exp(o)x : Hx → X

(o)
π(x)

satisfies the following: For any Y , Z ∈ Hx, we have∣∣∣∣∣∣π(o)
x ◦ exp(o)x (Y ), π(o)

x ◦ exp(o)x (Z)
∣∣∣− |Y, Z|

∣∣∣ < θ(δ, ε).

Here, the set of horizontal directions is defined in [Y conv, §4] as

Hx := {ξ ∈ y′x | |xy| ≥ σ}

for some small number σ > 0 with ε � σ.

Proof of Proposition 3.10. We will use the following notation: θ denotes a variable
constant θ(δ, ε). We set x̄ = π(x) for any x ∈ M .

Let us take Y ∈ Hx. By the definition of Hx, there is a point y ∈ M such that

|xy| ≥ σ, ∠(y′, Y ) < θ.

Then, by Lemma 4.6 in [Y conv], for any Ȳ ∈ ȳ′ ⊂ Σx̄X, we have

(3.26)
|π(γY (t)), γȲ (t)|

t
< θ
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for any small t > 0. Here, γξ denotes the geodesic from γξ(0) tangent to ξ ∈ Σγ(0).
Let (o) = (εi) be an arbitrary scale. From (3.26), we have

(3.27) |π(o)
x ◦ exp(o)x (Y ), exp

(o)
x̄ (Ȳ )| = lim

ω

|π(γY (εi)), γȲ (εi)|
εi

< θ.

We next take any Z ∈ Hx. Then there exists z ∈ M such that

|xz| ≥ σ, ∠(z′, Z) < θ.

Then, for any Z̄ ∈ z̄′ ⊂ Σx̄X, we have

(3.28) |π(o)
x ◦ exp(o)x (Z), exp

(o)
x̄ (Z̄)| < θ.

On the other hand, by Lemma 4.7 in [Y conv], we have

|∠(Y, Z)− ∠(Ȳ , Z̄)| < θ.

It follows together with (3.26), (3.27) and (3.28) that we obtain

||π(o)
x ◦ exp(o)x (Y ), π(o)

x ◦ exp(o)x (Z)| − |Y, Z|| < θ.

This completes the proof. �

Theorem 3.11. For any n ∈ N, there is a positive number ε = εn satisfy-
ing the following: Let Mn be an n-dimensional Alexandrov space without bound-
ary with curvature ≥ −1 and p be a point of Mn. Let Xn−1 be an (n − 1)-
dimensional non-negatively curved Alexandrov space. Assume that X is given by
the Euclidean cone K(Σ) over a closed Riemannian manifold Σ of curvature ≥ 1.
If dGH((M,p), (X, p0)) < ε, where p0 is the origin of the cone X, then there exists a
small r = rp > 0 such that a metric sphere ∂B(p, r) is homeomorphic to an S1-fiber
bundle over Σ.

Proof. dGH((M,p), (X, p0)) < ε implies dGH(BM (p, 1/ε), BX(p0, 1/ε)) < ε. Take
a small number r > 0 such that r � 1 � 1/ε. Since Σ is a closed Riemannian
manifold, A(p0; r/2, 2) is a Riemannian manifold ≈ Σ × [r/2, 2] with boundary
≈ Σ× {r/2, 2}.

Let C be an annulus C := A(p; r/2, 2). Since dGH(C,A(p0; r/2, 2)) < ε, C is
(n − 1, ε)-strained. Since M has no boundary points, Theorem 2.10 implies that
C is (n, θ(ε))-strained. Therefore by Theorem 2.25, there exists a θ(ε)-Lipschitz
submersion π : M1 → A(p0; r/2, 2) which is actually an S1-fiber bundle. Here, M1

is some closed domain in M near C containing A(p; r, 1).
Set S := π−1(∂B(p0, r)). Let Φ = Φ(x, t) be a gradient-like flow for distp

obtained by Theorem 3.2 on an annulus around p.
We are going to prove

Lemma 3.12. The flow Φ is gradient-like for distp0
◦ π. Namely, we obtain the

following:

lim inf
t→0+

distp0
◦ π ◦ Φ(x, t)− distp0

◦ π(x)
t

> 1− θ(ε)(3.29)

for any x ∈ M1.

If it is proved, then S is homeomorphic to ∂B(p, r) by a standard flow argument.
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Proof of Lemma 3.12. Let us set x̄ := π(x) for any x ∈ M1. We set

V :=
d

dt

∣∣∣∣
t=0+

Φ(x, t) ∈ TxM.

By Theorem 3.2 (ii), we have

V � ∇distp

and |V | � 1. Here, A � A′ means that d(A,A′) < θ(ε).
We set ξ := V/|V | and recall that ξ ∈ Hx. It follows together with (3.27) that

there exists q ∈ M with |xq| ≥ σ such that any ξ̄ ∈ q̄′ ⊂ Σx̄X satisfies

π(o)
x ◦ exp(o)x (ξ) � exp

(o)
x̄ (ξ̄)

for each scale (o).
Let us take η ∈ p′x ⊂ ΣxM . Then we have

∠(ξ, η) > π − θ(ε).

Since η ∈ Hx, there exists η̄ ∈ Σx̄X such that

π(o)
x ◦ exp(o)x (η) � exp

(o)
x̄ (η̄).

By Proposition 3.10, we obtain

(3.30) ∠(ξ̄, η̄) > π − θ(ε).

On the other hand, from Lemma 4.3 in [Y conv], π is θ(ε)-close to an ε-
approximation from (M,p) to (X, p0). This implies

∠̃q̄x̄p0 > π − θ(ε).

We take an arbitrary direction ζ̄ ∈ p′0 ⊂ Σx̄X. Then, we have

(3.31) ∠(ζ̄ , ξ̄) > π − θ(ε).

By (3.30) and (3.31), we have

ξ̄ � ∇distp0
.

Summarizing the above arguments, we obtain

lim
ω

d(p0, π ◦ Φ(x, εi))− d(p0, x̄)

εi
= (distp0

)′x̄ ◦ (exp(o)x̄ )−1 ◦ π(o)
x ◦ exp(o)x (V )

� (distp0
)′x̄(ξ̄)

� (distp0
)′x̄(∇distp0

)

= 1.

It follows from Lemma 2.14 that we obtain (3.29). �

As mentioned above, by Lemma 3.12, we have ∂B(p, r) ≈ S. This completes the
proof of Theorem 3.11. �

Remark 3.13. Kapovitch proved a statement similar to Theorem 3.11 for collapsing
Riemannian manifolds M ([Kap Rest, Theorem 7.1]).

Perelman and Petrunin proved the existence and uniqueness of a gradient flow of
any semiconcave function, especially of any distance function ([Pet QG], [PP QG]).
Note that the gradient “flow” is not a flow in the sense of Definition 3.1, because
the gradient flow is defined on M × [0,∞).
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Remark 3.14. One might ask why we do not use the gradient flow of a distance
function to prove Theorem 3.11. The reason is that the gradient flow may not be
injective.

For instance, we consider the cone X = K(S1
θ ) over a circle S1

θ with length
θ < 2π. X is expressed by the quotient of a set

X0 = {reit ∈ C | r ≥ 0, t ∈ [0, θ]}

by a relation r ∼ reiθ for r ≥ 0. By [reit] ∈ X we denote the equivalent class of
reit ∈ X0. We fix r > 0 and take p := reiθ/2. Let a > 0 be a sufficiently small
number such that Sa ∩ ∂X0 = ∅. Here, we denote by Sa the circle centered at p
with radius a in C. We take b with a < b < r such that Sb ∩ ∂X0 �= ∅ and take
x1, x2 with x1 �= x2 in Sb ∩ ∂X0 near p. Then [x1] = [x2] in X. We put points
yi ∈ pxi ∩ Sa in X0 and set geodesics γi := [yi][xi] in X for i = 1, 2. In particular,
γi (i = 1, 2) are the gradient curves for d[p] in X. This case says that d[p]-flow does
not injectively send [Sa] := {[z] ∈ X |x ∈ Sa} to [Sb].

3.3. Flow arguments.

Theorem 3.15. For a positive integer n, there is a positive constant εn satisfying
the following: Let Mn be an n-dimensional Alexandrov space with curvature ≥ −1.
Let A1, A2, . . . , Am ⊂ M be closed subsets and C ⊂ M be an (n, ε)-strained compact
subset with Ai∩C = ∅ for all i = 1, 2, . . . ,m and for ε ≤ εn. Suppose the following:
For each x ∈ C and 1 ≤ i ≤ m, there is a point w = w(x) ∈ M such that

(3.32) ∠x(A
′
i, w

′) > π − δ.

Here, c (< π/2) is a positive constant bigger than some constant. Then there exist
an open neighborhood U of C and a Lipschitz flow Φ on M such that

(3.33)
d

dt

∣∣∣∣
t=0+

dAi
(Φ(x, t)) > 1− 5δ − θ(ε)

for all i = 1, . . . ,m and x ∈ U .

Proof. We can show the following: There exists a precompact open neighborhood U
of C such that each x ∈ U is (n, θ(ε))-strained, and there is a point w = w(x) ∈ M
such that

|xw(x)| > ,(3.34)

∠̃Aiyw(x) > π − δ − θ(ε),(3.35)

for all y ∈ B(x, r) and i = 1, . . . ,m. Here, r and  are positive numbers with r � .
Since U is (n, θ(ε))-strained, there is a smooth approximation f : U → N which

is a θ(ε)-isometry for some Riemannian manifold N . By an argument similar to the

proof of Theorem 3.2, we can construct a smooth vector field W̃ and its integral
flow Φ̃ on N such that

d

dt

∣∣∣∣
t=0+

distAi
◦ f−1(Φ̃(x, t)) = dist′Ai

◦ df−1(W̃ )

> 1− 5δ − θ(ε).

Then, the pull-back flow Φt := Φ̃t ◦ f satisfies the conclusion of Theorem 3.15. �
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Corollary 3.16. Let Mn, A1, A2, . . . , Am and C be the same as in the assumption
of Theorem 3.15 and satisfy the following: All dAi

are (1− δ)-regular at x, m ≤ n
and

(3.36) |∠x(A
′
i, A

′
j)− π/2| < μ

for any x ∈ C and 1 ≤ i �= j ≤ m.
If ν := δ + μ is smaller than some constant depending on m, then there are a

Lipschitz flow Φ and a neighborhood U of C satisfying the following:

(3.37)
d

dt

∣∣∣∣
t=0+

dAi
(Φ(x, t)) > 1− 5

√
δ − θ(ε)− θm(ν)

for any x ∈ U and i = 1, . . . ,m.

Proof. Let us consider a smooth approximation

f : U → N

for some neighborhood U of C and a Riemannian manifold N . By Lemmas 3.7 and
3.8, we obtain smooth vector fields W̃i on N such that

|W̃i| ≤ 1 + θ(ε),(3.38)

(dAi
)′(Wi) > 1− 5

√
δ − θ(ε)(3.39)

on N for all i = 1, · · · ,m. Here, Wi := df−1(W̃i).
Let us define ϕm(ν) ∈ (π/2, π) by

cosϕm(ν) =
1− (m− 1) cos(π/2− ν)

√
m
√
1 + (m− 1) cos(π/2− ν)

.

Note that cosϕm(ν) → 1/
√
m as ν → 0.

Let us consider a vector field

W̃ := (W̃1 + W̃2 + · · ·+ W̃m)/|W̃1 + W̃2 + · · ·+ W̃m|.

Since |∠(A′
i, A

′
j)− π/2| < μ, we have

|∠(Wi,Wj)| < 10δ + μ+ θ(ε).

Putting W := df−1(W̃ ), we obtain

cos∠(Wi,W ) ≥ cos(ϕm(ν) + θ(ε))

for ν = 10δ + μ. Then we have

(dAi
)′(W ) ≥ (dAi

)′(Wi)− |W,Wi|
≥ 1− 5

√
δ − cos(ϕm(ν))− θ(ε).

We consider the gradient flow Φ of the vector field W on U , which is the desired
flow. �
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4. The case that dimX = 2 and ∂X = ∅
In this and the next sections, we study the topologies of three-dimensional closed

Alexandrov spaces which collapse to Alexandrov surfaces. First, we exhibit exam-
ples of three-dimensional Alexandrov spaces (which are closed or open) collapsing
to Alexandrov surfaces.

We denote a circle of length ε by S1
ε . We often regard S1

ε as {x ∈ C | ‖x‖ =
ε/2π}, and x̄ denotes the complex conjugate for x ∈ C.

Example 4.1. Recall that Mpt is obtained by the quotient space Mpt := S1 ×
R2/(x, y) ∼ (x̄,−y). Mpt have collapsing metrics dε and ρε as follows.

Recall that a collapsing metric provided Example 1.2. The quotient (Mpt, dε) :=
S1
ε × R2/(x, y) ∼ (x̄,−y) has a metric dε of non-negative curvature collapsing to

K(S1
π) = R2/y ∼ −y as ε → 0.

We consider an isometry defined by

K(S1
ε ) � [t, v] �→ [t,−v] ∈ K(S1

ε ).

Here, t ≥ 0 and v ∈ S1
ε . Note that K(S1

ε ) collapses to R+ as ε → 0. We consider a
metric ρε on Mpt of non-negative curvature defined by taking the quotient of the
direct product S1 ×K(S1

ε ):

(Mpt, ρε) := S1 ×K(S1
ε )/(x, t, v) ∼ (x̄, t,−v).

Then, (Mpt, ρε) collapses to [0, π] × R+ as ε → 0. Here, [0, π] is provided as
S1/x ∼ x̄.

Example 4.2. Let Σ(S1
ε ) be the spherical suspension of S1

ε , which has curvature
≥ 1. Any point in Σ(S1

ε ) is expressed as [t, v] parametrized by t ∈ [0, π] and v ∈ S1
ε .

We consider an isometry

α : Σ(S1
ε ) � [t, v] �→ [π − t,−v] ∈ Σ(S1

ε ).

Then, we obtain a metric dε on P 2 of curvature ≥ 1 defined by taking the quotient
Σ(S1

ε )/〈α〉. We set P 2
ε := (P 2, dε). Note that P 2

ε collapses to [0, π/2] as ε → 0.
Then, K(P 2

ε ) collapses to K([0, π/2]) ≡ R+ × R+ as ε → 0.
Remark that K(P 2

ε ) is isometric to the quotient space R×K(S1
ε )/〈σ〉 defined as

follows: Let σ be an involution defined by

σ(x, tv) �→ (−x, t(−v))

for x ∈ R, t ≥ 0 and v ∈ S1
ε . We sometimes use this expression in the paper.

Example 4.3. Let us consider the direct product S1 × Σ(S1
ε ) and an isometry

β : S1 × Σ(S1
ε ) � (x, t, v) �→ (x̄, t,−v) ∈ S1 × Σ(S1

ε ).

Then, the quotient space Nε := S1 × Σ(S1
ε )/〈β〉 has non-negative curvature, and

Nε collapses to [0, π]× [0, π] as ε → 0.

Let us start the proof of Theorem 1.3.

Proof of Theorem 1.3. Fix a sufficiently small δ > 0. Then there are only finitely
many (2, δ)-singular points x1, . . . , xk in X. For sufficiently small r > 0, consider
the set X ′ := X − (U(x1, r) ∪ · · · ∪ U(xk, r)). By Theorem 2.10, there exists
a (3, θ(i, δ))-strained closed domain M ′

i ⊂ Mi which is converging to X ′. From
Theorem 2.25, we may assume that there exists a circle fiber bundle π′

i : M
′
i → X ′

which is a θ(i, δ)-almost Lipschitz submersion. Here, θ(i, δ) is a positive constant
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such that limi→∞,δ→0 θ(i, δ) = 0. We fix a large i and use the notation θ(δ) = θ(i, δ)
for simplicity.

Fix any (2, δ)-singular point p ∈ {x1, . . . , xk} ⊂ X and take a sequence pi ∈
Mi converging to p. Since the Flow Theorem implies that B(pi, r) is not con-
tractible, applying the rescaling argument Theorem 2.27, we have points p̂i ∈
B(pi, r) with d(pi, p̂i) → 0 and a scaling constant δi such that any limit space
(Y, y0) of limi→∞( 1

δi
B(p̂i, r), p̂i) is a three-dimensional open Alexandrov space of

non-negative curvature. We may assume that pi = p̂i. We denote by S a soul of
Y . By Theorem 2.27, we have dimS ≤ 1.

From Theorem 3.11, the boundary ∂B(pi, r) is homeomorphic to a torus T 2 or a
Klein bottle K2. It follows from the Soul Theorem 2.59 and the Stability Theorem
2.34 that B(pi, r) is homeomorphic to the orbifold B(pt) if dimS = 0 or a solid
torus S1 ×D2 or a solid Klein bottle S1×̃D2 if dimS = 1.

We first consider the case of dimS = 1; namely, S is a circle. In this case, we
obtain the following conclusion.

Lemma 4.4. If dimS = 1, then B(pi, r) is homeomorphic to S1 ×D2.

Proof. Put Bi := B(pi, r), B := B(p, r) and εi := dGH(Bi, B). Suppose that Bi

is homeomorphic to a solid Klein bottle S1×̃D2. Take ri → 0 with εi/ri → 0

such that lim( 1
ri
Bi, pi) = (TpX, o). Let πi : B̃i → Bi be a universal covering and

p̃i ∈ π−1
i (pi). Let Γi

∼= Z be the deck transformation group of πi. Passing to a
subsequence, we have a limit triple (Z, z,G) of a sequence of triples of pointed spaces

and isometry groups ( 1
ri
B̃i, p̃i,Γi) in the equivariant pointed Gromov-Hausdorff

topology (cf. [FY]). Z is an Alexandrov space of non-negative curvature because
of ri → 0, and G is abelian. Note that Z/G = lim( 1

ri
Bi, pi) = (TpX, o). Using the

G-action, we find a line in Z ([ChGr]). Then, by the Splitting Theorem, there is
some non-negatively curved Alexandrov space Z0 such that Z is isometric to the
product R × Z0. We may assume that Z0 is a cone by taking a suitable rescaling
{ri}. We denote by G0 the identity component of G. By [FY, Lemma 3.10], there
is a subgroup Γ0

i of Γi such that:

(1) ( 1
ri
B̃i, p̃i,Γ

0
i ) converges to (Z, z,G0).

(2) Γi/Γ
0
i
∼= G/G0 for large i.

Since dimTpX = 2 and dimZ = 3, we have dimG = 1. This implies G ∼= R ×H
for some finite abelian group H. Since TpX = Z0/H, H must be cyclic. Here, G-
action is component-wise: G0

∼= R acts by translation of the line R and H acts on
Z0 independently. By Stability Theorem 2.34, Z is simply-connected. Therefore,
Z0 is homeomorphic to R2.

Take a generator γi of Γi. From our assumption, γi is orientation reversing
on B̃i. Consider Γ′

i := 〈γ2
i 〉 ∼= Z. Then Γ′

i acts on B̃i preserving orientation.

Taking a subsequence, we have a limit triple (Z, z,G′) of a sequence {( 1
ri
B̃i, p̃i,Γ

′
i)}.

By an argument similar to the above, G′ ∼= R × H ′ for some finite cyclic group
H ′. Let limi→∞ γi = γ∞ ∈ G, which implies that γi(xi) → γ∞(x∞) under the

Gromov-Hausdorff convergence 1
ri
B̃i � xi → x∞ ∈ Z. Then γ∞ is represented by

(0, φ) ∈ R×H. Then, for large i, we have

(4.1) Z/G = (Z/G′)/(G/G′) = (Z0/H
′)/〈[φ]〉 = TpX.
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Since Z0/H
′ is the flat cone over a circle or an interval, and [φ] ∈ H/H ′ acts on a

Z0/H
′ reversing orientation, (Z0/H

′)/〈φ〉 cannot be TpX. This is a contradiction.
�

By Lemma 4.4, B(pi, r/2) must be homeomorphic to a solid torus. From Flow
Theorem 3.2, (π′

i)
−1(∂B(p, r)) and ∂B(pi, r/2) bound a closed domain homeomor-

phic to T 2 × [0, 1], and this provides a circle fiber structure on ∂B(pi, r/2). By
[SY00, Lemma 4.4], it extends to a topological Seifert structure on B(pi, r/2) over
B(p, r/2) which is compatible to the circle bundle structure on A(pi; r/2, r).

In the case of dimS = 0, Bi is homeomorphic to B(pt). We must prove that

Lemma 4.5. If dimS = 0, then Bi has the structure of circle fibration with a
singular arc fiber satisfying:

(1) it is isomorphic to the standard fiber structure on B(pt) = S1 ×D2/Z2;
(2) it is compatible to the structure of circle fiber bundle π′

i near the boundary.

Proof. Recall that B(pt) = S1 ×D2/Z2, where Z2-action on S1 × D2 is given by
the involution σ̂ defined by σ̂(x, y) = (x̄,−y). Let p+ := (1, 0), p− := (−1, 0) be the

fixed points of σ̂. Putting Û := S1 ×D2 \ {p+, p−}, and U := Û/Z2, let π̂ : Û → U
be the projection map. Fix a homeomorphism fi : S1 × D2/Z2 → Bi, and set

Ui := fi(U). Take a Z2-covering π̂i : Ûi → Ui such that there is a homeomorphism

f̂i : Û → Ûi together with the following commutaitve diagram:

Û
f̂i−−−−→ Ûi

π̂

⏐⏐� ⏐⏐�π̂i

U −−−−→
fi

Ui

Consider the length-metric on Ûi induced from that of Ui via π̂i, and the length-

metrics of U and Û for which both fi and f̂i become isometries. Note that Ui =

Ûi/σ̂i, where σ̂i := f̂i ◦ σ̂ ◦ (f̂i)−1. σ̂i extends to an isometry on the completion B̂i

of Ûi. Let π̂i : B̂i → Bi also denote the the projection. Then we have the following
commutative diagram:

(4.2)

R×D2 f̃i−−−−→ B̃i

π

⏐⏐� ⏐⏐�πi

S1 ×D2 f̂i−−−−→ B̂i

π̂

⏐⏐� ⏐⏐�π̂i

S1 ×D2/Z2 −−−−→
fi

Bi,

where πi : B̃i → B̂i is the universal covering, and f̃i is an isometry covering

f̂i. Here we consider the metric on R × D2 induced by that of S1 × D2. Let
σ, λ : R×D2 → R×D2 be defined as

σ(x, y) = (−x,−y), λ(x, y) = (x+ 1, y).

Since σ covers σ̂, σ is an isometry. Put

σi := f̃i ◦ σ ◦ (f̃i)−1, λi := f̃i ◦ λ ◦ (f̃i)−1.
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From construction, the group Λi generated by λi is the deck transformation group
of πi : B̃i → B̂i. Let Λ be the group generated by λ. Let Γi (resp. Γ) be the group
generated by σi and Λi (resp. by σ and Λ). Obviously we have an isomorphism
(Γi,Λi) � (Γ,Λ). Note that

(4.3) σλσ−1 = λ−1.

Let us consider the limit of the action of (Γi,Λi) on B̃i. We may assume that

(B̃i, p̃i,Γi,Λi) converges to (Z, z0,Γ∞,Λ∞), where Z = R×L, Λ∞ = R×H, L is a
flat cone and H is a finite cyclic group acting on L. Let σ∞ ∈ Γ∞ and λ∞ ∈ Λ∞ be
the limits of σi and λi under the above convergence. Note that σ∞ : R×L → R×L
can be expressed as σ∞(x, y) = (−x, σ′

∞(y)), where σ′
∞ is a rotation of angle /2

and  is the length of the space of directions at the vertex of the cone L. Note that
TpX = (L/H)/σ′

∞.
As discussed above, from the action of H on L, we can put a Seifert fibered torus

structure on ∂B̂i. Namely, if λ∞(reiθ) = rei(θ+ν�/μ), then ∂B̂i has a Seifert fibered
torus structure of type (μ, ν) that is σ̂i-invariant (see [SY00, Lemma 4.4]). From
(4.3), we have σ∞λ∞σ∞ = λ−1

∞ . This yields that λ2
∞ = 1. Thus (μ, ν) is equal to

(1, 1) or (2, 1).

We shall show (μ, ν) = (1, 1) and extend the fiber structure on ∂B̂i to a σ̂i-

invariant fiber structure on B̂i which projects down to the generalized Seifert bundle
structure on Bi.

Let B and B̂ be the r-balls in the cone TpX = (L/H)/σ′
∞ and L/H around the

vertices op and ôp respectively. Consider the metric annuli

A := A(op; r/4, r), Â := A(ôp; r/4, r).

Applying the equivariant Fibration Theorem (Theorem 18.4 in [Y 4-dim]), we have

a Z2-equivariant S
1-fibration ĝi : Âi → Â for some closed domain Âi of B̂i, which

gives rise to an S1-fibration gi : Ai → A for some closed domain Ai of Bi.
We denote by B(π′

i) and B(gi) the closed domain bounded by (π′
i)

−1(S(p, r))
and (gi)

−1(S(op, r/2)) respectively, and set

A(π′
i, gi) := B(π′

i) \B(gi).

By Flow Theorem 3.2, there is a Lipschitz flow Φ : ∂B(π′
i) × [0, 1] → A(π′

i, gi)
such that Φ(x, 0) = x. Let Φ1 : ∂B(π′

i) → ∂B(gi) be the homeomorpshism defined
by Φ1(x) = Φ(x, 1). Obviously the π′

i-fibers of (π′
i)

−1(S(p, r)) and the (Φ1)
−1-

images of gi-fibers of (gi)
−1(S(op, r/2)) are isotopic to each other. Namely, we

have an isotopy ϕt of ∂B(πi), 0 ≤ t ≤ 1, such that ϕ0 = id and ϕ1 sends every
π′
i-fiber to the (Φ1)

−1-image of a gi-fiber. Define Ψ : A(π′
i, gi) → A(π′

i, gi) by

Ψ(Φ(x, t)) = Φ(ϕt(x), t).

This joins the two fiber structures of π′
i and gi. Thus we obtain a circle fibration

π′′ : M ′′
i → X ′′ gluing the fibrations π′

i : M ′
i → X ′ and gi, where X ′′ = X −

(U(x1, r/4) ∪ · · · ∪ U(xk, r/4)).
Let Vμ,ν = S1 ×D2 denote the fibered solid torus of type (μ, ν).
From now on, for simplicity, we denote B(gi) by Bi, and use the same notation as

in (4.2). In particular, we have the Z2-equivariant homeomorphism f̂i : Vμ,ν → B̂i.

Using f̂i, we have a fiber structure on ∂Vμ,ν induced from the ĝi-fibers which is
isotopic to the standard fiber structure of type (μ, ν).
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Assertion 4.6. (μ, ν) = (1, 1) and there is a σ̂-equivariant isotopy of ∂V1,1 joining
the two fiber structures on ∂V1,1.

Proof. First suppose (μ, ν) = (1, 1). On the torus ∂V1,1 = S1 × ∂D2, let m =
m(t) = (1, eit) and  = (t) = (eit, 1) denote the meridian and the longitude. Fix

a meridian mi and a longitude i of ∂B̂i such that each fiber of ĝi transversally
meets mi. Here we may assume that all the longitudes of ∂B̂i discussed below are
ĝi-fibers.

Set hi := (f̂i)
−1 for simplicity. We now show that hi(i) is σ̂-equivariantly

ambient isotopic to . Recall that π̂ : ∂V1,1 = S1 × ∂D2 → K2 = S1 × ∂D2/σ̂ is
the projection. Since hi(i) is homotopic to , π̂(hi(i)) is homotopic to π̂(), and
hence is ambient isotopic to π̂(). Namely, there exists an isotopy ϕt, 0 ≤ t ≤ 1, of
K2 such that

ϕ0 = id, ϕ1(π̂(hi(i))) = π̂().

Let ϕ̂t : ∂V1,1 → ∂V1,1 be the lift of ϕt such that ϕ̂0 = id. Note that ϕ̂1(hi(i)) = .
Therefore we may assume that hi(i) =  from the beginning.

Next we claim that hi(mi) is σ̂-equivariantly ambient isotopic to m while keeping
 fixed. Namely, we show that there exists an isotopy ϕ̂t, 0 ≤ t ≤ 1, of ∂V1,1 such
that

ϕ̂0 = id, ϕ̂1(hi(mi)) = m, ϕ̂|� = 1�.

To show this, we proceed in a way similar to the above. Since hi(mi) is homotopic
to m, π̂(hi(mi)) is homotopic to π̂(m), and hence is ambient isotopic to π̂(m).
Here the construction of isotopy is local (see [E]). Hence approximating m near the
intersection point  ∩m via a PL-arc for instance, we can choose such an isotopy
ϕt, 0 ≤ t ≤ 1, of K2 such that

ϕ0 = id, ϕ1(π̂(hi(mi))) = π̂(m), ϕt|π̂(�) = 1π̂(�).

Let ϕ̂t : ∂V1,1 → ∂V1,1 be the lift of ϕt such that ϕ̂0 = id. Note that ϕ̂1 sends hi(mi)
to m and ϕ̂t is the required isotopy. Therefore we may assume that hi(mi) = m
from the beginning.

For a small ε > 0, let ′ = (eit, eiε) and ′′ = (eit, e−iε) (resp. m′ = (eiε, eit)
and m′′ = (e−iε, eit)) be longitudes near  (resp. meridians near m). Let ′i and ′′i
(resp. m′

i and m′′
i ) be longitudes (resp. meridians) near i (resp. near mi) such

that ′i, 
′′
i , m

′
i and m′′

i bound a regular neighborhood of i∪mi. In a way similar to
the above, taking a σ̂-equivariant ambient isotopy, we may assume that hi(

′
i) = ′,

hi(
′′
i ) = ′′, hi(m

′
i) = m′ and hi(m

′′
i ) = m′′.

Let D (resp. Di) be the small domain bounded by , ′, m and m′ (resp. i,
′i, mi and m′

i ). Identify D = I0 × [0, 1], Di = Ii × [0, 1], where I0 ⊂ m, Ii ⊂ mi

are arcs, and define ki : D → D by ki(x, t) = hi(f̂i(x), t). From what we have
discussed above, ki|∂D = 1∂D. It is then standard to obtain an isotopy ψt of D
which sends ki to 1D keeping ∂D fixed. Extending ψt σ̂-equivariantly, we obtain a
σ̂-equivariant isotopy of ∂V1,1 which sends the hi-image of I-fibers of Di to I-fibers
of D keeping the outside D fixed. Applying this argument to the other domains
bounded by longitudes ′, ′′, σ̂(′), σ̂(′′) and meridians m′, m′′ of ∂V1,1, we finally
construct a σ̂-equivariant ambient isotopy ϕt of ∂V1,1 sending the hi-images of the
ĝi-fibers in ∂Bi to the corresponding longitudes of ∂V1,1.

Finally we show that the case (μ, ν) = (2, 1) never happens. Let us fix a gi-fiber,
say ki, and a standard (2, 1)-fiber, say k, on the fibered torus ∂V2,1 of type (2, 1).
Since hi(ki) is homotopic to k in T 2, in a way similar to the above discussion,
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we have a σ̂-equivariant ambient isotopy ϕ̂t of ∂V2,1 such that ϕ̂0 = id and ϕ̂1

sends hi(ki) to k. In S1 × ∂D2, k is described as k(t) = (e2it, eit), and hence
σ̂ ◦ k(t) = (e−2it, ei(t+π)). Therefore the images Im(σ̂ ◦ k), Im(k) of σ̂ ◦ k and k
respectively must meet at σ̂ ◦ k(−π) = k(2π). On the other hand,

σ̂ ◦ k = σ̂ ◦ ϕ̂1(hi(ki)) = ϕ̂1 ◦ σ̂(hi(ki)), k = ϕ̂1(hi(ki)).

It turns out that Im(σ̂(hi(ki))) = Im(hi(σ̂i(ki))) meets Im(hi(ki)). This implies
that Im(σ̂i(ki)) meets Im(ki), a contradiction to the fact that gi is a Z2-equivariant
fibration.

This completes the proof of the assertion. �

Obviously the standard fiber structure on ∂V1,1 extends to a standard σ̂-invariant
fiber structure on V1,1. Now it becomes easy to extend the fiber structure defined

by ĝi-fibers on ∂̂Bi to a σ̂i-equivariant fiber structure on B̂i of type (1, 1) via hi,
which projects down to a generalized Seifert bundle structure on Bi and on Mi for
large i which is compatible to the fiber structure of π′

i. This completes the proof of
Lemma 4.5. �

This completes the proof of Theorem 1.3. �

5. The case that dimX = 2 and ∂X �= ∅
Let {Mi | i = 1, 2, . . . } be a sequence of three-dimensional closed Alexandrov

spaces with curvature ≥ −1 having a uniform diameter bound. Suppose that Mi

converges to an Alexandrov surface X with non-empty boundary.
In this section, we provide decompositions of X into X ′ ∪ X ′′ and of Mi into

M ′
i ∪ M ′′

i such that M ′
i fibers over X ′ in the sense of a generalized Seifert fiber

space and M ′′
i is the closure of the complement of M ′

i . We will prove that each
component of M ′′

i has the structure of a generalized solid torus or a generalized
solid Klein bottle, and the circle fiber structure on its boundary is compatible to
the circle fiber structure induced by the generalized Seifert fibration.

From now on, we denote by C one of the components of ∂X. Since a two-
dimensional Alexandrov space is a manifold, C is homeomorphic to a circle. Let us
fix a small positive number ε. To construct the desired decompositions of X and
Mi, we define a notion of an ε-regular covering of C.

Definition 5.1. Let {Bα, Dα}1≤α≤n be a covering of C by closed subsets in X.
We say that {Bα, Dα}1≤α≤n is ε-regular if it satisfies the following:

(1)
⋃

1≤α≤n Bα ∪Dα − C is (2, ε)-strained.

(2) Each Bα is the closed metric ball Bα = B(pα, rα) centered at pα with radius
rα > 0 such that

|∇dpα
| > 1− ε on B(pα, 2rα)− {pα},

Bα ∩Bα′ = ∅ for all α �= α′.

Also, the sequence p1, p2, . . . , pn is consecutive in C.
(3) Dα forms

Dα := B(γα, δ)− int(Bα ∪Bα+1),

where γα := p̂αpα+1 with pn+1 := p1. Here, δ > 0 is a small positive
number with δ � minα rα.
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(4) For any x ∈ Dα, we have

∠̃pαxpα+1 > π − ε.

For x ∈ Dα − C and y ∈ C with |xy| = |xC|, we have

|∇dC |(x) > 1− ε,

|∠̃pαxy − π/2| < ε, and

|∠̃pα+1xy − π/2| < ε.

The existence of an ε-regular covering of C will be proved in Section 9. We fix
an ε-regular covering

{Bα, Dα | α = 1, 2, . . . , n}
of C.

We consider a closed neighborhood X ′′
C of C defined as

(5.1) X ′′
C :=

n⋃
α=1

Bα ∪Dα.

We set

X ′′ :=
⋃

X ′′
C and X ′ := the closure of X −X ′′.

This is our decomposition X = X ′ ∪X ′′.
Since intX ′ has all interior (2, ε)-singular points of X, by Theorem 1.3 we obtain

a generalized Seifert fibration

(5.2) π′
i : M

′
i → X ′

for some closed domain M ′
i ⊂ Mi. Let us denote by Xreg the complement of a small

neighborhood of the union of ∂X and the set of all interior (2, ε)-singular points
in X. By Theorem 2.25, we may assume that π′

i is both a circle fibration and a

θ(ε)-Lipschitz submersion on Xreg. Recall that π′
i
−1

(Xreg) is (3, θ(ε))-regular, for
large i.

We set M ′′
i := Mi − intM ′

i . We will determine the topology of M ′′
i in the

following subsections.

5.1. Decomposition of M ′′
i .

Let us denote by M reg
i a (3, θ(ε))-regular closed domain of Mi which contains

π′
i
−1

(Xreg). By Theorem 2.46, we obtain a smooth approximation

(5.3) fi : U(M reg
i ) → N(M reg

i )

for a neighborhood U(M reg
i ) of M reg

i and some Riemannian manifold N(M reg
i ).

Let us take pα,i ∈ Mi converging to pα ∈ C ⊂ ∂X, and γα,i a simple arc joining
pα,i and pα+1,i converging to γα. By the definition of regular covering, we may
assume that

A

(
N⋃

α=1

γα,i; δ/100, 10max rα

)
is (3, θ(ε))-regular.

From now on, we fix any index α ∈ {1, . . . , N} and use the following notation:
p := pα, p

′ := pα+1, B := Bα, B
′ := Bα+1, γ := γα and γ′′ := γα−1; and pi := pα,i,

p′i := pα+1,i, γi := γα,i and γ′′
i := γα−1,i. To avoid a disordered notation, we assume

that all rα are equal to each other, and set r := rα.
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Let δ′ be a small positive number with δ′ � δ. We will construct an isotopy of
B(pi, r + δ′) which deforms the metric ball B(pi, r − δ′) to some domain Bi such
that

Bi ≈ B(pi, r);(5.4)

∂Bi − U(γi ∪ γ′′
i , 3δ/2) = π′

i
−1

(∂B(p, r)− U(γ ∪ γ′′, 3δ/2));(5.5)

∂Bi ∩B(γi ∪ γ′′
i , δ) = ∂B(pi, r − δ′) ∩B(γi ∪ γ′′

i , δ).(5.6)

Bi

pi

Di

γi

γi′′
Di′′

Figure 1. A domain near the corner

In Figure 1, the broken line denotes the metric sphere S(pi, r−δ′), and the wavy
line denotes the pull-back of metric levels with respect to γ′′, γ and p in X by π′

i.
Suppose that we construct such an isotopy and obtain a domain Bi = Bα,i

satisfying (5.5) and (5.6) for a moment. We consider the domain

(5.7) Di = Dα,i := B(γα,i, 3δ/2) ∪ π′
i
−1

(A(γα; δ, 2δ))− int (Bα,i ∪Bα+1,i).

Then we obtain a decomposition of M ′′
i :

M ′′
i,C :=

N⋃
α=1

Bα,i ∪Dα,i,(5.8)

M ′′
i =

⋃
C⊂∂X

M ′′
i,C .(5.9)

Now we construct an isotopy which deforms B(pi, r − δ′) to Bi satisfying (5.5)
and (5.6). From now on throughout this paper, we use the following notation. For

any set A ⊂ M reg
i , we set Ã := fi(A). We denote by U(A) a neighborhood of A

in U(M reg
i ) and by N(A) the image of U(A) by the approximation fi. Namely,

N(A) = Ũ(A). For any point x ∈ A, we set x̃ := fi(x) ∈ Ã. For any function

φ : A → R, we define φ̃ : Ã → R by

(5.10) φ̃ := φ ◦ f−1
i .

Let Ṽ be a gradient-like smooth vector field for a Lipschitz function d̃istpi
on

N((B(pi, r) ∪B(p′i, r) ∪B(γi, 2δ)) ∩M reg
i ) obtained by Lemma 3.7.
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We take a Lipschitz function h defined on B(pi, r + δ′) such that

h̃ is smooth,

0 ≤ h ≤ 1,

supp (h) ⊂ B(pi, r + δ′)− U(γi ∪ γ′′
i , δ/2),

h ≡ 1 on B(pi, r + δ′)− U(γi ∪ γ′′
i , δ).

We consider a smooth vector field h̃ · Ṽ and its integral flow Φ̃, and we define the
pull-back flow Φt := f−1

i ◦Φ̃t◦fi. Then by construction and Theorem 3.11, the flow

Φ transversally intersects π′
i
−1(∂B(p, r)−U(γ ∪ γ′′, δ)). Then we can construct an

isotopy by using the flow Φ, which provides a closed neighborhood Bi of pi satisfying
(5.4), (5.5) and (5.6).

5.2. The topologies of the balls near corners. We first prove that ∂Bi is
homeomorphic to a closed 2-manifold.

Lemma 5.2. ∂Bi ≈ ∂B(pi, r) is a closed 2-manifold.

Proof. If Bi does not satisfy Assumption 2.28, we have some sequence p̂i with
|p̂ipi| → 0 such that ∂B(p̂i, r) ≈ Σp̂i

, where we may assume that p̂i = pi. Since Mi

has no boundary, ∂B(pi, r) is homeomorphic to S2 or P 2.
If Bi satisfies Assumption 2.28, there exist a sequence δi → 0 and p̂i with |p̂ipi| →

0 such that the limit (Y, y0) of (
1
δi
B(p̂i, r), p̂i) has dimension three. Here, we may

assume that p̂i = pi. Then, by Soul Theorem 2.59 and Stability Theorem 2.34,
∂B(pi, r) is homeomorphic to S2, P 2, T 2 or K2. �

From (5.5) and the construction of Bi, we have

(5.11) ∂Bi − U(γi ∪ γ′′
i , δ) ≈ S1 × I.

Now, we put Fi and F ′′
i as follows:

(5.12) Fi := ∂Bi ∩B(γi, δ) and F ′′
i := ∂Bi ∩B(γ′′

i , δ).

Then, by Lemma 5.2, Fi and F ′′
i are 2-manifolds with boundaries homeomorphic

to S1. By the generalized Margulis lemma [FY], Fi has an almost nilpotent funda-
mental group. Hence Fi is homeomorphic to D2 or Mö.

Therefore, we obtain the following assertion:

Lemma 5.3. ∂Bi is homeomorphic to S2, P 2 or K2.

We now determine the topology of Bi.

Lemma 5.4. Bi is homeomorphic to D3, Mö×I or K1(P
2). Moreover, if diamΣp>

π/2, then Bi is not homeomorphic to K1(P
2).

Proof. We first consider the case that diamΣp > π/2. Then by Proposition 2.70,
Σpi

is topologically a suspension over a one-dimensional Alexandrov space Λ of
curvature ≥ 1. Since ∂Σpi

= ∅, Λ is a circle. Hence pi is a topologically regular
point. Note that, in this situation, any x ∈ B(p, r) has diamΣx > π/2. Therefore,
intBi is topologically a manifold, and Bi is not homeomorphic to K1(P

2).
From now on we assume that diamΣp ≤ π/2. If Bi does not satisfy Assump-

tion 2.28, then there exists p̂i such that lim |pip̂i| = 0 and B(p̂i, r) ≈ K1(Σp̂i
) which

is homeomorphic to D3 or K1(P
2), where we may assume that pi = p̂i.
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Suppose that Bi satisfies Assumption 2.28. By Theorem 2.27, there is a sequence
δi of positive numbers tending to zero and points p̂i (where we may assume that
p̂i = pi) such that

• any limit (Y, y0) of (
1
δi
Bi, pi) as i → ∞ is a three-dimensional open Alexan-

drov space of non-negative curvature;
• denoting by S a soul of Y , we obtain dimS ≤ 1.

Then, by Soul Theorem 2.59, Y is homeomorphic to R3, K(P 2) or Mpt if dimS = 0
or an R2-bundle over S1 if dimS = 1. Therefore, Bi is homeomorphic to D3,
K1(P

2) or B(pt) if dimS = 0 or S1×D2 or S1×̃D2 ≈ Mö× I if dimS = 1. By the
boundary condition (Lemma 5.3), Bi is actually not homeomorphic to S1 ×D2. It
remains to show that

(5.13) Bi is not homeomorphic to B(pt).

We prove (5.13) by contradiction. Suppose that there is a homeomorphism
fi : B(pt) → Bi. We will use the notation in the proof of Lemma 4.5. Recall
that B(pt) is obtained by the quotient space of S1 ×D2 by the involution σ̂. We

consider the corresponding space B̂i with an involution σ̂i such that its quotient is
Bi. By the argument of the proof of Lemma 4.5, we obtain the following commu-
tating diagram:

R×D2 f̃i−−−−→ B̃i

π

⏐⏐� ⏐⏐�πi

S1 ×D2 f̂i−−−−→ B̂i

π̂

⏐⏐� ⏐⏐�π̂i

B(pt) −−−−→
fi

Bi

Here, the horizontal arrows are homeomorphisms, π and πi are the universal cov-
erings, and π̂ and π̂i are the projections by involutions σ̂ and σ̂i, respectively. We
may assume that (B̃i, p̃i,Γi,Λi) converges to (Z, z0,Γ∞,Λ∞) with Z = R × L,
Λ∞ = R×H, L is a flat cone over a circle and H is a finite abelian group acting on
L. Note that all elements of H are orientation preserving on L. Recall that σ∞ is
expressed as σ∞(x, y) = (−x, σ′

∞(y)) and σ∞ is orientation preserving on L. There-
fore, [σ′

∞] is orientation preserving on L/H. We remark that (L/H)/[σ′
∞] = TpX.

Then, L/H has no boundary. Indeed, to check this, we suppose that L/H has non-
empty boundary. Then L/H is the cone over an arc. Since [σ′

∞] is a non-trivial
isometry on L/H, [σ′

∞] is the reflection with respect to the center line. Therefore,
[σ′

∞] does not preserve orientation. This is a contradiction.
Thus, L/H is the cone over a circle. It turns out that σ′

∞ is a half rotation of L,
and hence so is [σ′

∞] for L/H. This implies TpX has no boundary, and we obtain
a contradiction. We conclude (5.13), and complete the proof of Lemma 5.4 �

Next, we will divide Di into two pieces Di = Hi ∪Ki depending on the topology
of Fi. We will also determine the topology of Hi, Ki, and Di.
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5.3. The case that Fi is a disk. We consider the case that Fi ≈ D2. Then, we
divide Di into Hi and Ki as follows:

Hi := Di − U(γi, δ),

Ki := Di ∩B(γi, δ).

5.3.1. The topology of Ki. We prove that

Assertion 5.5. Ki is homeomorphic to D3.

Ki is contained in a domain Li defined by

(5.14) Li := A(pi; r − δ′, |pp′| − r/2) ∩B(γi, δ).

Since (dpi
, dγi

) is (c, θ(ε))-regular near Li ∩ S(γi, δ), by Theorem 2.33 and Lemma
2.40, Li is homeomorphic to Fi × [0, 1] ≈ D3. On the other hand, we can take a
closed domain Ai ⊂ intKi such that Ai ≈ D3 and

(5.15) K0
i := B(γi, δ/2)− (U(pi, 2r) ∪ U(p′i, 2r)) ⊂ intAi.

By Theorem 2.33 and Lemma 2.40, Ki ≈ K0
i . Remark that F ′

i := ∂B′
i ∩B(γi, δ) is

homeomorphic to D2. Indeed, if we assume that F ′
i ≈ Mö, then ∂Ki ≈ P 2. Then,

by the embedding (5.15), we have

P 2 ≈ ∂K0
i ⊂ intAi ≈ R3.

This is a contradiction. Therefore, F ′
i ≈ D2 and ∂K0

i ≈ ∂Ki ≈ S2. By Theorem
2.33, ∂K0

i is locally flatly embedded in Ai ≈ D3. Therefore, by the generalized
Schoenflies theorem, we conclude Ki ≈ K0

i ≈ D3.

5.3.2. The topology of Hi.

Assertion 5.6. Hi is homeomorphic to S1 ×D2 and the circle fiber structure on
Hi induced by the standard one on S1 ×D2 is compatible to π′

i.

Let us define a domain Q ⊂ X by

(5.16) Q := A(γ; δ − δ′, 2δ + δ′)− (U(p, r − 2δ′) ∪ U(p′, r − 2δ′)).

Note that Q is homeomorphic to a two-disk without (2, ε)-singular points. Then

Qi := π′
i
−1

(Q) is topologically a solid torus, and Hi is contained in the interior of
Qi.

We will construct an isotopy ϕ : Qi × [0, 1] → Qi satisfying

ϕ(·, 0) = idQi
,(5.17)

ϕ(Qi, 1) = Hi,(5.18)

ϕ : ∂Qi × [0, 1] → Qi − intHi is bijective.(5.19)

If we obtain such a ϕ, then by (5.18), we conclude Hi ≈ Qi ≈ S1 × D2. And by
(5.19), we can obtain the circle fiber structure of Hi over Q which is compatible to
the generalized Seifert fibration π′

i.
Next we use the conventions as in (5.10).

Lemma 5.7. There is a smooth vector field X̃ on N(Qi − Hi) such that it is
gradient-like:

• for d̃pi
and d̃p ◦ π′

i on N(B(pi, r + δ′) ∩Qi −Hi),

• for d̃p′
i
and d̃p′ ◦ π′

i on N(B(p′i, r + δ′) ∩Qi −Hi),
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• for d̃γi
and d̃γ ◦ π′

i on N(B(γi, δ + δ′) ∩Qi −Hi), and

• for −d̃γi
and −d̃γ ◦ π′

i on N(Qi −Hi − U(γi, 2δ − δ′)).

Proof. Let us take gradient-like smooth vector fields Ṽ , Ṽ ′ and W̃ for d̃pi
, d̃p′

i
and

d̃γi
on N(Qi −Hi). We prepare a decomposition of Qi − intHi as follows:

(5.20) Qi − intHi =

8⋃
α=1

Aα.

See Figure 2. Here, we define

A1 := (Qi − intHi) ∩ (B(γi, δ)− U({pi, p′i}, r + δ′)) ,

A2 := (Qi − intHi)− (U(γi, 2δ − δ′) ∪ U({pi, p′i}, r + δ′)) ,

A∗
3 := B(pi, r + δ′) ∩B(γi, δ + δ′),

A∗
4 := B(pi, r + δ′) ∩A(γi; δ + δ′, 2δ − δ′),

A∗
5 := B(pi, r + δ′)− U(γi, 2δ − δ′).

Similarly, we put

A∗
6 := B(p′i, r + δ′) ∩B(γi, δ + δ′),

A∗
7 := B(p′i, r + δ′) ∩ A(γi; δ + δ′, 2δ − δ′),

A∗
8 := B(p′i, r + δ′)− U(γi, 2δ − δ′).

We define A3, A4, · · · , A8 by

Aα := A∗
α ∩Qi − intHi for α = 3, 4, . . . , 8.

A5

A4

A3 A1

Hi

A2 A8

A7

A6

Figure 2. The decomposition of Qi

We take smooth functions hα (α = 1, . . . , 8) on N(Qi −Hi) such that

0 ≤ hα ≤ 1,

hα ≡ 1 on Ãα,

supp (hα) ⊂ B(Ãα, δ
′/100).

We define a vector field X̃ as

X̃ := h1W̃ − h2W̃

+ h3(Ṽ + W̃ ) + h4Ṽ + h5(Ṽ − W̃ )

+ h6(Ṽ
′ + W̃ ) + h7Ṽ

′ + h8(Ṽ
′ − W̃ ).
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Then, we can show that X̃ satisfies the conclusion of Lemma 5.7 as follows. We
will prove it only on N(A3).

We consider the integral flow Φ̃ of X̃ and the pull-back Φt := f−1
i ◦ Φ̃t ◦ fi. It

suffices to show that

Φ � distpi
(5.21)

Φ � distγi
(5.22)

Φ � distp ◦ π′
i(5.23)

Φ � distγ ◦ π′
i(5.24)

on N(A3). We can write

X̃ = αṼ + βW̃

for smooth functions α, β ≥ 0 with 1 ≤ α+ β ≤ 3 on N(A3). By a direct calculus,
we have

|X̃| ≥
√
2− θ(ε),

∠(X̃, Ṽ ) < γ + θ(ε), ∠(X̃, W̃ ) < γ + θ(ε)

on N(A3). Here, cos γ = 1/
√
10.

Let us set

X :=
d

dt

∣∣∣∣
t=0+

Φ(x, t) ∈ TxMi.

Then we have

X(x) = df−1
i (X̃(x̃)).

We set

V := df−1
i (Ṽ ), W := df−1

i (W̃ ).

Then we obtain

V � ∇dpi
, W � ∇dγi

.

Here, A � A′ means |A,A′| < θ(ε).
Since fi is a θ(ε)-almost isometry, we have

|X| � |X̃|, |V,X| � |Ṽ , X̃|, ∠(V,X) � ∠(Ṽ , X̃).

Hence, we obtain

|X| ≥
√
2− θ(ε),

∠(p′i, X) ≥ ∠(p′i, V )− ∠(V,X) > π − γ − θ(ε).

Therefore, we have

(dpi
)′(X) = −|X| cos∠(p′i, X) ≥ 1/

√
5− θ(ε).

This implies (5.21).
For any fixed scale (o), we set

dπ′
i := (exp

(o)
π′
i(x)

)−1 ◦ (π′
i)

(o)
x ◦ exp(o)x .

By Proposition 3.10, we have

∠(p′, dπ′
i(X)) < γ + θ(ε), |dπ′

i(X)| >
√
2− θ(ε).
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Therefore, we obtain

(distp ◦ π′
i)

(o)
x (exp(o)x (X)) = −|dπ′

i(X)| cos∠π′
i(x)

(p′, dπ′
i(X))

> 1/
√
5− θ(ε).

Thus, we obtain (5.23).
In a similar way to the above, we can prove (5.22) and (5.24). �

By Lemma 5.7, we obtain an isotopy ϕ based on Φ satisfying (5.17) through
(5.19).

Therefore, we conclude that if Fi ≈ D2, then Di ≈ D3.

5.4. The case that Fi is a Mobius band. We consider the case that Fi ≈ Mö.
We prove that

Lemma 5.8. Di is (3, θ(ε))-strained.

Proof. We first define a domain Li similar to (5.14):

Li := A(pi; r/2, |pp′| − r/2) ∩B(γi, 3δ).

To prove Lemma 5.8, it suffices to show that

(5.25) Li is (3, θ(ε))-regular.

By Theorem 2.33 and Lemma 2.40, we have Li ≈ Mö×I. Let L̂i be the orientable
double cover which is homeomorphic to (S1 × I)× I. Since L̂i is a covering space

of Li, L̂i has the metric of Alexandrov space with Li ≡ L̂i/〈σ〉 for an isometric

involution σ on L̂i.
Since the projection L̂i → Li is a local isometry, to prove (5.25), it suffices to

show that

(5.26) L̂i is (3, θ(ε))-regular.

Li converges to the following closed domain L∞ in X:

L∞ = A(p; r/2, |pp′| − r/2) ∩B(γ, 3δ).

We may assume that L̂i converges to some two-dimensional space Y 2. Note that
L∞ is 1-strained, and hence Li and L̂i are also 1-strained. Therefore,

(5.27) Y is 1-strained.

From the form of L∞, we have that Y 2 is a two-disk having no ε-singular points.
Indeed, if Y has a boundary-point in the sense of Alexandrov space, then from an
argument similar to the proof of Assertion 5.5, L̂i contains a domain homeomorphic
to D2 × I or Mö × I. This is a contradiction, and hence Y has no boundary. By
this and (5.27), Y is 2-strained. Therefore, L̂i is 3-strained; this is the assertion
(5.26). This implies (5.25) and completes the proof of Lemma 5.8. �

By Lemma 5.8 and Theorem 3.2, we have a Lipschitz flow Φ which is gradient-like
for distpi

near Di. We divide Di into Hi and Ki as follows:

Ki := the union of flow curves of Φ

starting from Fi in B(γi, 2δ)− intB′
i.

Hi := Di − intKi.



COLLAPSING THREE-DIMENSIONAL ALEXANDROV SPACES 2395

Note that the union of flow curves of Φ starting from ∂Fi is contained in
A(γi; δ − δ′′, δ + δ′′) for some small δ′′ > 0. By the construction, Ki ≈ Mö× I.

We will prove that

Assertion 5.9. Hi is homeomorphic to S1 ×D2 and the circle fiber structure on
Hi induced by one on S1 ×D2 is compatible to π′

i.

Proof. Let Qi be a closed neighborhood of Hi obtained in a way similar to the
construction of Qi in subsection 5.3. We actually define

Q := A(γ; δ − δ′′, 2δ + δ′)− U({p, p′}, r − 2δ′),

Qi := π′
i
−1

(Q).

We prepare a decomposition of Qi− intHi =
⋃8

α=1 Aα in a way similar to (5.20) in
Lemma 5.7. Actually, we define A5, A2, A8 as in Lemma 5.7, and other Aα’s are
defined by

A1 := (Qi − intHi) ∩ (B(γi, δ + δ′′)− U({pi, p′i}, r + δ′)) ,

A3 := (Qi − intHi) ∩B(pi, r + δ′) ∩B(γi, δ + δ′′),

A6 := (Qi − intHi) ∩B(p′i, r + δ′) ∩B(γi, δ + δ′′),

A4 := (Qi − int (Hi ∪A3 ∪ A5)) ∩B(pi, r + δ′),

A7 := (Qi − int (Hi ∪A6 ∪ A8)) ∩B(p′i, r + δ′).

Since ∇distpi
and ∇distγi

are almost perpendicular to each other on Qi − intHi,
we can obtain a flow Φ which has nice transversality as in Lemma 5.7. We can
also construct an isotopy from the identity to some homeomorphism which deforms
Qi to Hi inside Qi. Therefore, we obtain a circle fibration of Hi over Q which
is compatible to the generalized Seifert fibration π′

i. This completes the proof of
Assertion 5.9. �

Therefore, we conclude that if Fi ≈ Mö, then Di ≈ Mö× I.

Proof of Theorem 1.5. It remain to show that each component M ′′
i,C of M ′′

i has the
structure of a generalized solid torus or generalized solid Klein bottles. This is clear
from Sections 5.3 and 5.4. �
5.5. Proof of Corollary 1.6. To prove Corollary 1.6, we show elementary lemmas.
We define the mapping class group MCG(F ) of a topological space F to be the set
of all isotopy classes of homeomorphisms of F .

Lemma 5.10. Let F be a topological space. For any element γ of the mapping
class group MCG(F ), we fix a homeomorphism ϕγ : F → F such that ϕγ ∈ γ. Let
us set B = F × [0, 1] and π : B → [0, 1] a projection. For any homeomorphisms
fi : F → π−1(i), for i = 0, 1, there exist γ ∈ MCG(F ) and a homeomorphism
h : F × [0, 1] → B respecting π such that, for every x ∈ F , h(x, 0) = f0(x) and
h(x, 1) = f1 ◦ ϕγ(x).

Proof. Let us set Ft = π−1(t) = F ×{t}. Let us define the translation χt : F0 → Ft

by χt(x, 0) = (x, t), and set a homeomorphism f̃t = χt ◦ f0 : F → Ft. Note that

f̃0 = f0. Let us take an element γ ∈ MCG(F ) represented by a homeomorphism

f−1
1 ◦ f̃1 of F . Then, there is a homeomorphism gt : F → F , for 0 ≤ t ≤ 1, such
that

g0 = id and f̃1 ◦ g1 = f1 ◦ ϕγ .
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Therefore, setting ht = f̃t ◦ gt : F → Ft, we obtain

h0 = f0 and h1 = f1 ◦ ϕγ .

Hence, defining h : F × [0, 1] → B by h(x, t) = ht(x), h satisfies the desired
condition. �

Lemma 5.11. Let Y be a generalized solid torus or a generalized solid Klein bottle.
Let π : Y → S1 be a projection as in (1.2). Then, there is a continuous surjection

η : Y → [0, 1]

such that η−1(1) = ∂Y and, setting

Φ = (π, η) : Y → S1 × [0, 1],

Φ is an S1-bundle over S1 × (0, 1]. Further, for every x ∈ S1, Φ−1(x, 0) is a one
point set or a circle, and the homeomorphic type of the fiber Φ−1(x, 0) changes if
and only if that of π−1(x) changes.

Proof. Let us take ordered points t1, t2, . . . , t2N−1, t2N ∈ S1 changing the fiber of π.
Then, for a small ε > 0, setting Ik = [tk − ε, tk + ε] ⊂ S1, π−1(Ik) is homeomorphic
to K1(P

2).
We regard K1(P

2) =
⋃

t∈[−1,1] D(t) as in Definition 1.4. Let us define a contin-

uous surjection θ : K1(P
2) → [0, 1] by

θ(x, y, z) =

{
z2 if t > 0,

x2 + y2 if t ≤ 0.

This is well defined. (θ is like the square of the distance function from the center
of each surface D(t). If t ≤ 0, then the center means a point D(t) ∩ {x2 + y2 = 0}
of disk D(t), and if t > 0, then the center means a centric circle D(t) ∩ {z = 0}
of a Mobius band D(t).) Let us fix a homeomorphism ϕk : K1(P

2) → π−1(Ik)
respecting π. We define a continuous surjection

ηk = θ ◦ ϕ−1
k : π−1(Ik) → [0, 1].

Thus, a continuous surjection from the disjoint union of π−1(Ik)’s to [0, 1] is defined
and satisfies the desired property.

It remains to show that the domain of the ηk’s can extend to the whole Y ,
satisfying the desired property. Let Jk := [tk + ε, tk+1 − ε] ⊂ S1 be the interval
between Ik and Ik+1. Let us set Fk = π−1(tk + ε) which is homeomorphic to D2

or Mö. Let Gk = π−1(tk+1 − ε) which is homeomorphic to Fk.
Suppose that Fk ≈ D2. We recall that D(−1) ⊂ ∂K1(P

2) is defined as

{(x, y, z) ∈ R3 |x2 + y2 − z2 = −1, x2 + y2 ≤ 1}/(x, y, z) ∼ −(x, y, z).

We identify this as D2 = {(x, y) |x2 + y2 ≤ 1} by a map

D(−1) � [x, y, z] �→ (x, y) ∈ D2.

Then, via ϕk, the map ηk : Fk → [0, 1] can be identified as the map

θ′ : D2 → [0, 1]; (x, y) �→ x2 + y2,

namely, ηk = θ′◦ϕ−1
k . Similarly, ηk+1 = θ′ ◦ϕ−1

k+1. Here, ϕk and ϕk+1 are restricted

on D2 ⊂ ∂K1(P
2). Let r : D2 → D2; (x, y) �→ (x,−y) be the reflection with respect

to the x-axis. We note that θ′ ◦r = θ′ and r represents a unique non-trivial element
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of the mapping class group MCG(D2) (∼= Z2) of D2. By using Lemma 5.10, we
obtain a homeomorphism

ϕ′
k : D2 × Jk → π−1(Jk),

respecting projections π and D2 × Jk → Jk such that ϕ′
k = ϕk on Fk and either

ϕ′
k = ϕk+1 on Gk, or

ϕ′
k = ϕk+1 ◦ r on Gk.

Hence,

η′k = θ′ ◦ (ϕ′
k)

−1 : π−1(Jk) → [0, 1]

satisfies

η′k = ηk on Fk and η′k = ηk+1 on Gk.

Therefore, if the fiber of π on Jk is a disk, then ηk and ηk+1 extend to the map η′k
on π−1(Jk), satisfying the desired property.

Next, we assume that Fk ≈ Mö. We recall that D(1) is

{(x, y, z) |x2 + y2 − x2 = 1, |z| ≤ 1}/(x, y, z) ∼ −(x, y, z).

Let us identify D(1) ⊂ ∂K1(P
2) as Mö defined by

Mö = S1 × [−1, 1]/(x, s) ∼ (−x,−s)

via a map

D(1) � [x, y, z] �→
[

(x, y)√
x2 + y2

, z

]
∈ Mö.

Then, ηk is identified as a projection

θ′′ : Mö � [x, s] �→ s2 ∈ [0, 1],

via ϕk. Namely, ηk = θ′′ ◦ ϕ−1
k on Fk. We can see that ηk+1 = θ′′ ◦ ϕ−1

k+1 on
Gk. Let us fix a homeomorphism r : Mö → Mö defined by r[x, s] = [x̄, s], where
x̄ is the complex conjugate of x in S1 ⊂ C. Then, r reverses the orientation of
∂Mö. Hence, r represents a unique non-trivial element of the mapping class group
MCG(Mö) ∼= Z2, and we note that θ′′ ◦ r = θ′′. By Lemma 5.10, there exists a
homeomorphism

ϕ′′
k : Mö× Jk → π−1(Jk),

respecting projections π and Mö× Jk → Jk, such that ϕ′′
k = ϕk on Fk and either

ϕ′′
k = ϕk+1 on Gk, or

ϕ′′
k = ϕk+1 ◦ r on Gk.

Since θ′′ = θ′′ ◦ r, we obtain a continuous surjection

η′′k = θ′′ ◦ (ϕ′′
k)

−1 : π−1(Jk) → [0, 1]

satisfying

η′′k = ηk on Fk and η′′k = ηk+1 on Gk.

By summarizing the above, we obtain a continuous surjection

η : Y → [0, 1]

satisfying the desired condition. �
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Proof of Corollary 1.6. We may assume that X has only one boundary component
∂X. By Theorem 1.5, there are decompositions

Mi = M ′
i ∪M ′′

i and X = X ′ ∪X ′′

satisfying the following:

(1) X ′′ is a collar neighborhood of ∂X. We fix a homeomorphism ϕ : ∂X ×
[0, 1] → X ′′ such that ϕ(∂X × {0}) = ∂X and ϕ(∂X × {1}) = ∂X ′.

(2) M ′
i is a generalized Seifert fiber space over X ′ ≈ X. We fix a fibration

f ′
i : M

′
i → X ′ of it.

(3) M ′′
i is a generalized solid torus or a generalized solid Klein bottle. We fix

a projection πi : M
′′
i → ∂X ≈ S1 as (1.2) in Definition 1.4.

(4) The maps f ′
i , πi and ϕ are compatible in the following sense. For any

x ∈ ∂X,

π−1
i (x) ∩ ∂M ′′

i = (f ′
i)

−1(ϕ(x, 1))

holds.

By Lemma 5.11, we obtain a continuous surjection

ηi : M
′′
i → [0, 1]

such that

(5) η−1
i (1) = ∂M ′′

i .
(6) Setting gi = (πi, ηi) : M

′′
i → ∂X × [0, 1], the restriction of gi on

g−1
i (∂X × (0, 1])

is an S1-bundle.
(7) For every x ∈ ∂X, g−1

i (x, 0) is one point set or a circle. The fiber of gi
changes at x ∈ ∂X if and only if the fiber of πi changes at x.

Then, the map

f ′′
i = ϕ ◦ gi : M ′′

i → X ′′

satisfies

f ′
i = f ′′

i on M ′
i ∩M ′′

i .

Therefore, the gluing fi : Mi → X of maps f ′
i and f ′′

i defined by

fi =

{
f ′
i on M ′

i

f ′′
i on M ′′

i

is well-defined. The map fi satisfies the topological condition desired in Corol-
lary 1.6.

From the proof of Theorem 1.5 and the construction of X ′′, for any ε > 0 and
large i, we can take πi : M

′′
i → ∂X as an ε-approximation and ϕ : ∂X× [0, 1] → X ′′

satisfying ∣∣ |ϕ(x, t), ϕ(x′, t′)| − |x, x′|
∣∣ < ε

for any x, x′ ∈ ∂X and t, t′ ∈ [0, 1]. Then, one can show that fi is an approximation.
�
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6. The case that X is a circle

Let {M3
i } be a sequence of closed three-dimensional Alexandrov spaces with

curvature ≥ −1 and uniformly bounded diameter. Suppose that Mi converges to a
circle X. We will prove Theorem 1.7.

Proof of Theorem 1.7. We first show

Lemma 6.1. For large i, Σx ≈ S2 for all x ∈ Mi. In particular, Mi is a topological
manifold.

Proof. Indeed, by Proposition 2.70, we may assume that diamΣxi
is almost π for

each xi ∈ Mi. It follows from Theorem 2.35 and ∂Mi = ∅ that Σxi
is homeomorphic

to the suspension over a circle, which is 2-sphere. Therefore, by Theorem 2.34, Mi

is a topological manifold. �

By taking a rescaling, we may assume that Mi converges to the unit circle
X = S1 = {eiθ ∈ C | θ ∈ [0, 2π]}. We take points p+ := 1 and p− := −1 ∈ S1, and
prepare points p+i and p−i ∈ Mi converging to p+ and p−, respectively. Let us set
q+ :=

√
−1 and q− := −

√
−1 ∈ S1, and take q+i , q

−
i ∈ Mi such that q±i → q±.

Let us take δi the diameter of a part of ∂B(pi, π/2) which is GH-close to q+ ∈ S1.
We consider metric balls

B+
i := B(p+i , i − δi) and B−

i := B(p−i , i − δi).

Here, i = |p+i , p−i |/2. By the construction, B+
i ∩B−

i = ∅. We prove the next

Lemma 6.2. B±
i is homeomorphic to F±

i × [0, 1]. Here, F±
i is homeomorphic to

S2, P 2, T 2 or K2.

Proof. We will prove this assertion only for B+
i . Let us set Bi := B+

i and pi := p+i .
By Lemma 6.1, Mi is a manifold. We will implicitly use this fact throughout the

following argument.
Remark that

(6.1) ∂Bi is disconnected.

If Bi does not satisfy Assumption 2.28, then there exists a sequence p̂i ∈ Mi

where we may assume that p̂i = pi and ∂Bi ≈ Σpi
≈ S2. Hence ∂Bi is connected.

This is a contradiction.
Therefore, Bi must satisfy Assumption 2.28. Then, by Theorem 2.27, there exist

εi → 0 and points p̂i ∈ Mi, where we may assume that p̂i = pi, such that a limit
(Y, y0) := limi→∞( 1

εi
Bi, pi) exists and has dimension ≥ 2. We remark that Y has

a line, because ∠̃q+i piq−i → π. It follows from Theorem 2.19 that Y is isometric to
S×R for some non-negatively cured Alexandrov space S of dimension at least one.

If dimS = 2, then by Theorem 2.34, S has no boundary and the topology of
Bi can be determined. By the remark (6.1), S is compact and, hence, S is either
homeomorphic to S2 or P 2 or is isometric to a flat torus or a flat Klein bottle.
Again, by using Theorem 2.34, we conclude that Bi ≈ S × I.

If dimS = 1, then by Theorems 1.3 and 1.5, the topology of Bi can be deter-
mined. It follows from (6.1) that S is compact. Hence S is isometric to a circle
or an interval. If S is a circle, then Y has no singular point. Then we can use
Theorem 2.25, and therefore we conclude that Bi is homeomorphic to T 2 × I or
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K2 × I. If S is an interval, then by Theorem 1.5, Bi is homeomorphic to S2 × I,
P 2 × I or K2 × I.

This completes the proof of Lemma 6.2. �

Recall that q±i are points in Mi converging to q± = ±
√
−1 ∈ S1. Let us consider

D±
i := B(q±i , π/2)− int (B+

i ∪B−
i ).

Let us set

S±
i := B±

i ∩D+
i .

By Lemma 6.2, S±
i ≈ F±

i .

Lemma 6.3. There is a homeomorphism φi : F+
i × [0, 1] → D+

i such that
φi(F

+
i × {0}) = S+

i and φi(F
+
i × {1}) = S−

i .

Proof. Let Wi be the component of S(pi, i) converging to q =
√
−1 ∈ S1. Recall

that δi = diamWi. Then δi → 0.
Let us take qi ∈ Wi and consider any limit Y of a rescaling sequence:

(6.2) (
1

δi
Mi, qi) → (Y, q∞).

Let γ±
∞ be rays starting at q∞ which are limits of geodesics qip

±
i . Since ∠̃p+i qiz−i →

π, γ∞ := γ+
∞ ∪ γ−

∞ is a line in Y .
Let W∞ be the limit of Wi under the convergence (6.2). By the choice of δi,

diamW∞ = 1. We will prove that

Assertion 6.4. Y is isometric to W∞ × R. In particular, dimY ≥ 2.

Proof of Assertion 6.4. Let us consider functions

f±
i (·) := d̃i(p

±
i , ·)− d̃i(p

±
i , qi),

b±(·) := lim
t→∞

d(γ±
∞(t), ·)− t.

Here, d̃i is the original metric of Mi multiplied by 1/δi. The functions b± are the
Busemann functions of the rays γ±

∞. Then, we can show that f±
i converges to

b±. Therefore, we obtain W∞ = (b+)−1(0). This completes the proof of Assertion
6.4. �

By Assertion 6.4, dimW∞ = 1 or 2. If dimW∞ = 2, then by Theorem 2.34, we
have a homeomorphism

φi : D
+
i ≈ W∞ × [−1, 1]

with respect to functions f±
i and b±. Namely,

φi((f
±
i )−1(t)) = (b±)−1(t)

whenever t is near {−1, 1}. In particular,

S+
i = (f+

i )−1(1) ≈ (b±)−1(0) = W∞ ≈ (f−
i )−1(1) = S−

i .

In this case, W∞ ≈ S2, P 2, T 2 or K2.
If dimW∞ = 1, then W∞ is a circle or an interval. If W∞ is a circle, then by

Theorem 2.25 and some flow argument, there is a circle fiber bundle

πi : D
+
i → W∞ × [−1, 1]

such that π−1
i (W∞ × {±1}) = S±

i . In this case, S±
i ≈ T 2 or K2.
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If W∞ is an interval, then by using Theorem 1.5 and some flow argument, we
have a homeomorphism

φi : D
+
i → S+

i × [−1, 1]

such that φi(S
±
i ) = S+

i × {±1}. In this case, S±
i ≈ S2, P 2 or K2.

This completes the proof of Lemma 6.3. �

Let Fi be a topological space homeomorphic to F±
i ≈ S±

i . By Lemmas 6.2 and
6.3, we obtain homeomorphisms

ϕ±
i : Fi × [0, 1] → B±

i ,

ψ±
i : Fi × [0, 1] → D±

i

such that they send the boundaries to the boundaries. Therefore, Mi = B+
i ∪B−

i ∪
D+

i ∪D−
i is an Fi-bundle over S1. �

7. The case that X is an interval

Let {Mi} be a sequence of three-dimensional closed Alexandrov spaces of cur-
vature ≥ −1 with diamMi ≤ D. Suppose that Mi converges to an interval I.
Let ∂I = {p, p′}, and let pi, p

′
i ∈ Mi converge to p, p′, respectively. We divide Mi

into Mi = Bi ∪ Di ∪ B′
i, where Bi = B(pi, r), B

′
i = B(p′i, r) for small r > 0, and

Di := Mi − int (Bi ∪B′
i).

Proof of Theorem 1.8. In a way similar to the proof of Lemma 6.3, we can prove
that there exists a homeomorphism φi : Fi × I → Di such that φi(Fi × 0) = ∂Bi

and φi(Fi × 1) = ∂B′
i, where Fi is homeomorphic to one of S2, P 2, T 2 and K2.

Next, we will find the topologies of Bi (and B′
i). If Bi does not satisfy Assump-

tion 2.28, then Bi is homeomorphic to D3 or K1(P
2). Hence, we may assume that

there exist sequences δi → 0 and p̂i such that a limit (Y, y0) = limi→∞
1
δi
(Bi, p̂i)

exists, where we may assume that p̂i = pi and Y is a non-compact non-negatively
curved Alexandrov space of dimY ≥ 2.

If dimY = 3 with a soul S ⊂ Y , then Theorem 2.59 implies Bi is homeomorphic
to one of the following:

• D3, K1(P
2) and B(pt) if dimS = 0,

• S1 ×D2 and S1×̃D2 if dimS = 1, and
• B(N(S)) and B(S2) and B(S4) if dimS = 2.

Here, N(S) is a non-trivial line bundle over a closed surface S of non-negative
curvature and B(N(S)) is a metric ball around S in N(S), and B(Si) is a metric
ball around Si in Li = L(Si) for i = 2, 4 (see 2.8.1). B(N(S)) is homeomorphic
to one of the non-trivial twisted I-bundles over a closed surface S with connected
boundary. We determine the topology of B(N(S)) as follows: If S ≈ S2, N(S) is
isometric to S × R, which is a contradiction. If S ≈ P 2, we have the line bundle
N(Ŝ) induced by the double covering π : Ŝ → S. Since N(Ŝ) = Ŝ × R, we

find that N(S) = Ŝ × R/(x, t) ∼ (σ(x),−t), where σ is the involution on Ŝ with

Ŝ/σ = S. Thus B(N(S)) is a twisted I-bundle over P 2, which is homeomorphic to
P 3 − intD3. If S is homeomorphic to either T 2 or K2, then N(S) is a complete
flat three-manifold. By [W, Theorem 3.5.1] we obtain that B(N(S)) is a twisted
I-bundle over T 2, which is homeomorphic to Mö×S1, an orientable I-bundle K2×̃I
over K2, and a non-trivial non-orientable I-bundle K2×̂I over K2.
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If dimY = 2 and ∂Y = ∅, then Y is either homeomorphic to R2 or isometric to
a flat cylinder or a flat Mobius strip.

Suppose that Y ≈ R2. Let us denote by m the number of essential singular
points in Y . Then m ≤ 2. When m ≤ 1, Theorem 1.3 together with Lemma 4.5
implies that Bi ≈ S1 ×D2 or B(pt). If m = 2, then Y is isometric to the envelope
dbl (R+ × [0, ]) for some  > 0. Let B be a closed ball around {0}× [0, ] in Y . By
Theorem 1.3, Bi is a generalized Seifert fiber space over B and its boundary ∂Bi

is homeomorphic to T 2 or K2. We may assume that Bi has actually two singular
orbits over two singular points (0, 0) and (0, ) in Y . Here, a singular orbit is either
a (2, 1)-type fiber corresponding to the core of U2,1 or the interval fiber of Mpt in
this case. The topology of Bi is determined as follows: When two singular orbits
are both (2, 1)-type, intBi is homeomorphic to U ′

2,1 ∪∂ U ′
2,1. Since U ′

2,1 is an R-

bundle over Mö, intBi is an R-bundle over K2. By the boundary condition, Bi is
homeomorphic to K2×̃I if ∂Bi ≈ T 2 or K2×̂I if ∂Bi ≈ K2. When singular fibers
of Bi are (2, 1)-type and an interval, intBi is homeomorphic to U ′

2,1 ∪∂ M ′
pt. Then

Bi is homeomorphic to one of B(S2) ⊂ L2,1 with S2 ≈ P 2. When Bi has two
singular interval fibers, intBi is homeomorphic to M ′

pt ∪∂ M ′
pt, which is L4. Then

Bi is homeomorphic to B(S4).
If Y is a flat cylinder, then ∂Bi is not connected, and hence this case cannot

happen.
If Y is isometric to a flat Mobius strip, then Bi is an S1-bundle over Mö. There-

fore, we have Bi ≈ Mö× S1 or K2×̃I.
If dimY = 2 and ∂Y �= ∅, then Y is either isometric to a flat half cylinder

S1()× [0,∞) or [0, ]×R or homeomorphic to an upper half plane R2
+ = R× [0,∞).

If Y is a flat half cylinder, then ∂Y has no essential singular point. Therefore,
Bi is a fiber bundle over S1 with the fiber homeomorphic to D2 or Mö. In other
words, this is a generalized solid torus of type 0 or a generalized solid Klein bottle
of type 0.

If Y ≡ [0, ]×R, then ∂Bi is not connected, and hence this case cannot happen.
Suppose that Y is homeomorphic to R2

+. Let us set m := �Ess (intY ) and
n := �Ess (∂Y ). Then m ≤ 1 and n ≤ 2.

If m = 0 and n ≤ 1, then by Lemma 5.4, Bi is homeomorphic to one of D3,
Mö× I or K1(P

2).
If m = 0 and n = 2, then Y is isometric to R+ × [0, ] for some  > 0. Let

B := [0, c]× [0, ] for some c > 0. By Corollary 1.6, there is a continuous surjective
map

π : Bi → B.

We may assume that Bi has two topologically singular points converging to the
corners (0, 0) and (0, ) of Y . We divide B into two domains,

Aj = [0, c]× {y ∈ [0, ] | (−1)j(y − /2) ≥ 0} ⊂ B,

for j = 1, 2. Since Bi has two topologically singular points, π−1(Aj) ≈ K1(P
2).

Then, Bi is homeomorphic to K1(P
2) ∪D2 K1(P

2) if π−1(A1 ∩ A2) ≈ D2 or
K1(P

2) ∪Mö K1(P
2) if π−1(A1 ∩ A2) ≈ Mö. By Lemma 2.61 and Remark 2.62,

Bi is homeomorphic to B(pt) or B(S2) ⊂ L2,2 with S2 ≈ S2.
If m = 1, then n = 0 and Y is isometric to a cut envelope R × [0, h]/(x, y) ∼

(−x, y) for some h > 0. Let B := Y ∩ {(x, y) |x ≤ r} which is homeomorphic to
D2. By Theorem 1.5, there is a generalized Seifert fibration πi : Wi → B such that
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Bi is homeomorphic to a gluing of Wi and Fi × [−r, r] via a homeomorphism

∂Fi × [−r, r] ⊃ ∂Fi × {x} �→ π−1
i (x) ⊂ π−1

i ({(x, h) ∈ B | x ∈ [−r, r]})
for all x ∈ [−r, r]. Here, Fi is D2 or Mö. We may assume that Wi contains a
singular orbit over the singular point (0, 0) ∈ intB. If the singular orbit is a circle,
then Wi is isomorphic to a Seifert solid torus V2,1 of (2, 1)-type. Remark that Wi

can be regarded as an I-bundle over Mö, which corresponds to the preimage of the
Seifert fibration over {0} × [0, h] ⊂ B. Then, Bi is isomorphic to an I-bundle over
Mö ∪∂ Fi. Therefore, it is P 2×̃I ≈ P 3 − intD3 if Fi ≈ D2 or K2×̂I if Fi ≈ Mö.
If the singular orbit is an interval, then Theorem 1.3 shows that Wi is isomorphic
to M ′

pt. Recall that Bi is homeomorphic to the union Wi ∪ Fi × I. Therefore, Bi

is homeomorphic to B(S2) ⊂ L2,2 with S2 ≈ S2 if Fi ≈ D2 or B(S2) ⊂ L2,3 with
S2 ≈ P 2 if Fi ≈ Mö.

This completes the proof of Theorem 1.8. �

8. The case that X is a single-point set

Lemma 8.1. If M is a three-dimensional non-negatively curved closed Alexandrov
space, then a finite covering of M is T 3, S1 × S2 or simply-connected.

Proof. We may assume that |π1(M)| = ∞. Then a universal covering M̃ of M has

a line. Thus, M̃ is isometric to the product Rk ×X0, where 1 ≤ k ≤ 3 and X0 is a
(3− k)-dimensional non-negatively curved closed Alexandrov space.

• If k = 3, then M̃ is the Euclidean space. Then a finite covering of M is T 3.
• If k = 2, then X0 is a circle. Then M̃ is not simply-connected. This is a
contradiction.

• If k = 1, then X0 is homeomorphic to S2. Then a finite covering of M is
homeomorphic to S1 × S2.

�
Proof of Corollary 1.9. Let {Mi} be a sequence of three-dimensional closed Alexan-
drov spaces of curvature ≥ −1 with diamMi ≤ D, which converges to a point {∗}.
Let δi := diamMi. Then the rescaled space 1

δi
Mi is an Alexandrov space with

curvature ≥ −δ2i having diameter one. Then, the limit Y of the rescaled sequence
1
δi
Mi is a non-negatively curved Alexandrov space of dimension ≥ 1. If dimY = 1,

then Mi is homeomorphic to a space in the conclusion of Theorems 1.7 and 1.8.
If dimY = 2 and ∂Y = ∅, then Mi is homeomorphic to a generalized Seifert fiber
space having at most 4 singular fibers. If dimY = 2 and ∂Y �= ∅, then Mi is home-
omorphic to a space in the conclusion of Theorem 1.5 with at most 4 topologically
singular points. If dimY = 3, then by the Stability Theorem, Mi is homeomorphic
to Y . In this case, the topology of Y is already obtained in Lemma 8.1. �

9. Appendix: ε-regular covering of the boundary

of an Alexandrov surface

Let X be an Alexandrov surface with non-empty compact boundary ∂X. Let us
denote C by a component of ∂X. The purpose of this section is to prove Lemma
9.9, which states the existence of an ε-regular covering of C, used in Section 5.

We will first prepare a division of C by consecutive arcs γ1, γ2, . . . , γn with ∂γα =
{pα, pα+1} and pn+1 = p1. We next prove that this division makes the desired
regular covering {Bα, Dα}α=1,2,...,n of C.
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For ε > 0, we define

Sε(∂X) := {p ∈ ∂X |L(Σp) ≤ π − ε},
where L(Σp) is the length of Σp. Note that Sε(∂X) is a finite set. We set

Rε(∂X) := ∂X − Sε(∂X)

and

Sε(C) := Sε(∂X) ∩ C and Rε(C) := Rε(∂X) ∩ C.

We review fundamental properties.

Lemma 9.1. For ε > 0 and p ∈ Rε(∂X), there exists δ > 0 such that for every
x ∈ B(p, δ)− ∂X, we have

|∇d∂X |(x) > cos ε.

Proof. Suppose the contrary. Then, there are a sequence δi → 0 and xi ∈ B(p, δi)−
∂X such that |∇d∂X |(xi) ≤ cos ε. Taking a subsequence, we consider the limit
x∞ ∈ B(op, 1) ⊂ TpX of xi under the convergence ( 1

δi
X, p) → (TpX, op).

If |∂TpX, x∞| > 0, then

|∇d∂TpX |(x∞) > − cos
(
π − ε

2

)
= cos

(ε
2

)
.

By the lower-semicontinuity of angles,

lim inf
i→∞

|∇d∂X |(xi) ≥ |∇d∂TpX |(x∞).

This implies a contradiction.
When |∂TpX, x∞| = 0, we take y∞ ∈ B(op, 1)− U(∂TpX, 1/2) such that

|∂TpX, y∞|
|x∞, y∞| = cos∠x∞y∞∂TpX > cos

(ε
2

)
.

We take a sequence yi ∈ B(p, 3δi
2 ) − U(∂X, δi

4 ) such that yi → y∞ under the

convergence ( 1
δi
X, p) → (TpX, op). Since the distance function d∂X is λ-concave for

some λ on intX,

|∂X, yi| − |∂X, xi|
|xi, yi|

≤ λ

2
|xiyi|+ (d∂X)′xi

(↑yi
xi
)

≤ λ

2
|xiyi|+ |∇d∂X |(xi).

Remark that xiyi ⊂ intX (Remark 9.2, later). It is obvious that

|∂X, yi| − |∂X, xi|
|xiyi|

→ |∂TpX, y∞|
|x∞, y∞| (as i → ∞).

Therefore, we conclude that

cos(ε/2) ≤ cos ε.

This is a contradiction. Therefore, we have the conclusion of Lemma 9.1. �

Remark 9.2. The interior of an Alexandrov space is strictly convex. In fact, let
p, q ∈ intM . For every x, y ∈ int (pq) (the relative interior), Σx ≡ Σy ([Pet Para]).
If x is near p, then x ∈ intM , and hence ∂Σx = ∅. Then ∂Σy = ∅. Therefore,
pq ⊂ intM .
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Corollary 9.3. For any ε, s > 0, there is δ1 > 0 such that

|∇d∂X | > cos ε

on B(∂X, δ1)− (∂X ∪ U(Sε(∂X), s)).

Proof. The proof is provided by Lemma 9.1 and the Lebesgue covering lemma. �
Lemma 9.4. For any ε > 0, there is δ2 > 0 such that

B(∂X, δ2)− ∂X

is (2, ε)-strained.

Proof. For any p ∈ ∂X, there is δp > 0 such that

B(p, δp)− {p}
has no ε′-critical point for dp, where, ε

′ � ε. Therefore, B(p, δp) − ∂X is (1, ε′)-
strained, and hence this is (2, ε)-strained. Since ∂X is compact, there is δ > 0
such that, for any p ∈ ∂X, there exists q ∈ ∂X with B(p, δ) ⊂ B(q, δq). Therefore,
B(∂X, δ)− ∂X is (2, ε)-strained. �

From now on, we use the notation ∠̃(A;B,C) defined as follows. Let A, B and
C be positive numbers satisfying a part of the triangle inequality: B + C ≥ A
and A + C ≥ B. If A + B ≥ C, then taking a geodesic triangle �abc in the
hyperbolic plane H2 with side lengths |ab| = C, |bc| = A and |ca| = B, we set

∠̃(A;B,C) := ∠bac. Otherwise, ∠̃(A;B,C) := 0.
Let us start to construct a division of C ⊂ ∂X to construct an ε-regular covering.

Let us fix a small positive number ε > 0.

Lemma 9.5. For any p ∈ ∂X, there is s > 0 such that for any q ∈ B(p, s)∩
∂X − {p} and x ∈ p̂q − ({q} ∪ U(p, |pq|/2)), we have

∠̃(|pq|; |px|, L(x̂q)) > π − ε.

Here, p̂q is an arc joining p and q in ∂X. In particular,

∠̃pxq > π − ε.

Proof. Suppose the contrary. Then, there are p ∈ ∂X, si → 0, qi ∈ S(p, si) ∩ ∂X
and xi ∈ p̂qi − ({qi} ∪ U(p, |pqi|/2)) such that

∠̃(|pqi|; |pxi|, L(x̂iqi)) ≤ π − ε.

Taking a subsequence, we may assume that qi, xi converges to q∞, x∞, respectively,
under the convergence ( 1

si
X, p) → (TpX, op). Then, q∞ ∈ ∂TpX, |op, q∞| = 1 and

x∞ ∈ opq∞.
If x∞ �= q∞, then

lim
i→∞

∠̃(|pqi|; |pxi|, L(x̂iqi)) = ∠̃opx∞q∞ = π.

This is a contradiction.
Otherwise, x∞ = q∞. We take r∞ ∈ ∂TpX such that

q∞ ∈ opr∞, |op, r∞| > 3/2.

We choose ri ∈ ∂X such that ri → r∞ as i → ∞ under the convergence ( 1
si
X, p) →

(TpX, op). Since x̂iri is a quasigeodesic containing qi, by the comparison theorem
for quasigeodesics [PP QG], we have

∠̃(|pqi|; |pxi|, L(x̂iqi)) ≥ ∠̃(|pri|; |pxi|, L(x̂iri)).
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Since L(x̂iri)/si → |x∞r∞| ([PP QG]), we obtain

∠̃(|pri|; |pxi|, L(x̂iri)) → ∠̃opx∞r∞ = π.

This is a contradiction. �
Lemma 9.6. For p ∈ Rε(∂X), there is s > 0 such that for any q ∈ B(p, s)∩
∂X − {p} and x ∈ p̂q − {p, q}, we have

∠̃(|pq|; |px|, L(x̂q)) > π − ε or ∠̃(|pq|;L(p̂x), |xq|)) > π − ε.

In particular, ∠̃pxq > π − ε.

Proof. Suppose the contrary. Then there are p ∈ ∂X, si → 0, qi ∈ S(p, si) ∩ ∂X
and xi ∈ p̂qi − {p, qi} such that

∠̃(|pqi|; |pxi|, L(x̂iqi)) ≤ π − ε and(9.1)

∠̃(|pqi|;L(p̂xi), |xiqi|)) ≤ π − ε.(9.2)

We may assume that qi and xi converge to q∞ and x∞, respectively, under the
convergence ( 1

si
X, p) → (TpX, op). Then, q∞ ∈ ∂TpX, |opq∞| = 1 and x∞ ∈ opq∞.

If q∞ �= op, then by the same argument as in the proof of Lemma 9.5, we have

∠̃(|pqi|; |pxi|, L(x̂iqi)) → π.

This is a contradiction to (9.1).
Otherwise, q∞ = op. We take r∞ ∈ ∂TpX ∩ S(op, 1) − {q∞} and ri ∈ ∂X

such that ri → r∞. Since x̂iri is a quasigeodesic containing p, by the comparison
theorem for quasigeodesics, we have

∠̃(|pqi|;L(p̂xi), |xiqi|)) ≥ ∠̃(|riqi|;L(r̂ixi), |xiqi|)).
Since L(r̂ixi)/si → |r∞op|, we obtain

∠̃(|riqi|;L(r̂ixi), |xiqi|)) → ∠̃q∞opr∞ > π − ε.

This is a contradiction to (9.2). �
Definition 9.7. Let γ = p̂q be an arc joining p and q in ∂X. We say that γ is
strictly ε-strained by ∂γ = {p, q} if

∠̃pxq > π − ε for all x ∈ int γ,(9.3)

and if setting ξ and η as the directions of quasigeodesics x̂p and x̂q at x, respectively,
we have

∠(ξ, ↑px) < ε and ∠(η, ↑qx) < ε.(9.4)

Remark that an arc p̂q in Lemma 9.6 is strictly ε-strained by {p, q}. Indeed, we
assume that ∠̃(|pq|; |px|, L(x̂q)) > π − ε for some x ∈ int p̂q. We obtain ∠̃pxq ≥
∠̃(|pq|; |px|, L(x̂q)) > π − ε. Let ξ and η be the directions of x̂p and x̂q at x,
respectively. Since dimX = 2, ξ and η attain the diameter of Σx, i.e.

∠(ξ, η) = L(Σx).

Hence, we have

∠(ξ, η) = ∠(ξ, ↑px) + ∠(↑px, η)
= ∠(ξ, ↑px) + ∠(↑px, ↑qx) + ∠(↑qx, η)
≥ ∠(↑px, ↑qx) ≥ ∠̃pxq > π − ε.



COLLAPSING THREE-DIMENSIONAL ALEXANDROV SPACES 2407

Since L(Σp) ≤ π, we obtain

∠(ξ, ↑px) + ∠(↑qx, η) < ε.

In particular, (9.4) holds.
Let us fix a component C of ∂X. By Lemma 9.5 and �Sε(C) < ∞, there is s > 0

such that for every p ∈ Sε(C), taking q+, q− ∈ S(p, s) ∩ C, we have

∠̃(|pq±|; |px|, L(x̂q±)) > π − ε

for all x ∈ β±
p − (U(p, s/2) ∪ {q±}), where β±

p := p̂q±.
Let us consider the set

(9.5) C − U(Sε(C), s) = C −
⋃

p∈Sε(C)

int (β+
p ∪ β−

p ).

This consists of finitely many arcs. We prove that each component K of it is divided
into finitely many strictly ε-strained arcs.

Lemma 9.8. Let K be an arc in Rε(C) with ∂K = {p, q}. There are consecutive
arcs γα = p̂αpα+1, α = 1, 2, . . . , n with p1 = p and pn+1 = q such that each γα is
strictly ε-strained by {pα, pα+1}.

Proof. By repeatedly using Lemma 9.6, we have a set Φ of consecutive arcs starting
from p contained in K,

Φ = {γ1, γ2, . . . , γn}
such that each γα is strictly ε-strained by ∂γα. Here, “consecutive arcs starting
from p” means that each γα forms γα = p̂αpα+1 ⊂ K and p1 = p.

In what follows, Φ denotes any such finite sequence of arcs as above. Let us set

L(Φ) :=
n∑

α=1

L(γα).

We consider the value  := supΦ L(Φ). Since γα are consecutive and contained in
K, we have  ≤ L(K). To prove the lemma, we show that there exists Φ with
L(Φ) = L(K).

If  = L(K), then there is Φ = {γα}1≤α≤n such that pn is arbitrarily close to
q. If there is Φ with L(Φ) = L(K), then the proof is done. Otherwise, by using
Lemma 9.6 for q, we can take Φ such that γn+1 := p̂nq is strictly ε-strained by
∂γn+1. Then we obtain an extension

Φ̃ := Φ ∪ {γn+1}

of Φ with L(Φ̃) = L(K). This is a contradiction. Therefore, if  = L(K), then
there is Φ attaining L(Φ) = L(K).

We assume that  < L(K). By a similar argument as above, we have Φ =
{γα}1≤α≤n such that L(Φ) = . Again, by a similar argument as above, we have

an extension Φ̃ of Φ. Hence L(Φ̃) > . This is a contradiction. �

By Lemma 9.8 and the decomposition (9.5), we obtain a division of C:

(9.6) C =

⎛⎝ ⋃
p∈Sε(C)

β+
p ∪ β−

p

⎞⎠ ∪
(⋃

K

nK⋃
i=1

γK
α

)
,
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where β±
p := p̂q± and K denotes any arc component of C − U(Sε(C), s). For

each K, γK
α (1 ≤ α ≤ nK) expresses a strictly ε-strained arc by ∂γK

α , obtained in
Lemma 9.8.

By using a division (9.6) of C, we prove the existence of an ε-regular covering of
C.

Lemma 9.9. There is an ε-regular covering of C.

Proof. Let us fix a division of C obtained as (9.6). Fixing a component K, we write
n = nK , γα = γK

α . Each γα forms γα = p̂αpα+1. We take a small positive number
r such that

|∇dpα
| > 1− ε on B(pα, 2r)− {pα} for all α,(9.7)

Bα ∩Bα′ = ∅ for all α �= α′,(9.8)

where Bα := B(pα, r).
By the condition (9.3), there is a small positive number δ with δ � r such that,

setting

Dα := B(γα, δ)− int (Bα ∪Bα+1),

we have

∠̃pαxpα+1 > π − ε

for all x ∈ Dα. Further, by (9.3) and (9.4), δ can be chosen that for every x ∈ Dα

and y ∈ C with |xC| = |xy|, we have

|∠pαxy − π/2| < 2ε and |∠pα+1xy − π/2| < 2ε.

To use later, we set

ΦK := {Bα}1≤α≤n ∪ {Dα}1≤α≤n−1.

For p ∈ Sε(C), there are unique components K+ and K− of C−U(Sε(C, s)) with
β±
p ∩K± �= ∅. We take unique elements q± ∈ β±

p ∩K±. Recall that s > 0 is a small
positive number satisfying the conclusion of Lemma 9.5 for p, and |∇dp| > 1− ε on
B(p, s) − {p}. For q± ∈ K±, we provided numbers r± satisfying (9.7) and (9.8),
above. Let us set

Bp := B(p, s/2) and D±
p := B(β±

p , δ)− int (Bp ∪B(q±, r±)).

If we retake δ small enough, we have

|∠pxq± − π/2| < ε

for all x ∈ D±
p .

Thus, we obtain an ε-regular covering

{Bp, D
±
p }p∈Sε(C) ∪

⋃
K

ΦK

of C. �
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