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ABSTRACT. In the present paper, we determine the topologies of three-dimen-
sional closed Alexandrov spaces which converge to lower dimensional spaces in
the Gromov-Hausdorff topology.
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1. INTRODUCTION

The purpose of the present paper is to determine the topologies of collapsing
three-dimensional Alexandrov spaces.

Alexandrov spaces are complete length spaces with the notion of curvature
bounds. In this paper, we deal with finite dimensional Alexandrov spaces with
a lower curvature bound (see Definition 2.2)). Alexandrov spaces naturally appear
in convergence and collapsing phenomena of Riemannian manifolds with a lower
curvature bound ([SY00], [Y_4-diml|), and have played important roles in the study
of collapsing Riemannian manifolds with a lower curvature bound.

For a positive integer n, D > 0, k € R, let us consider the following two families:
M™(D, k) is the family of all isometry classes of complete n-dimensional Riemann-
ian manifolds M whose diameters and sectional curvatures satisfy diam (M) < D
and sec(M) > k. A"(D, k) is the family of all isometry classes of n-dimensional
Alexandrov spaces with diam < D and curvature > k. It follows from the def-
inition of Alexandrov spaces that M™(D, k) C A™(D,x). By Gromov’s precom-
pactness theorem, A"(D, ) has a nice property that J, ., A*(D, k) is compact in
the Gromov-Hausdorff topology, while Uk<n/\/lk(D, k) is precompact. Therefore,
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it is quite natural to study the convergence and collapsing phenomena in A™(D, k).
Thus, the following problem naturally appears:

Problem 1.1. Let {M[*}2°, be a sequence in A™(D, ) converging to an Alexan-
drov space X. Can one describe the topological structure of M; by using the
geometry and topology of X for large i ?

In this paper, we consider Problem [Tl for n = 3 when M; has no boundary. We
exhibit previously known results related to Problem [Tl Let us fix the following
setting: M, := M € A"(D, k) converges to X as i — oo, and fix a sufficiently
large integer 1.

If the non-collapsing case arises, i.e. dim X = n, Perelman’s stability theorem
[Per I1] (cf. [Kap Stab]) shows that M; is homeomorphic to X.

In the collapsing case, we know the following results in the general dimension: If
M; and X are Riemannian manifolds, then Yamaguchi proved that there is a locally
trivial fiber bundle (smooth submersion) f; : M; — X whose fiber is a quotient of
torus by some finite group action ([Y91], [Y_conv]). Fukaya and Yamaguchi proved
that if M; are Riemannian manifolds and X is a single-point set, then 71 (M;) has
a nilpotent subgroup of finite index [FY]. This statement also goes through even if
M; is an Alexandrov space ([Y_conv]).

In the lower dimensional cases, we know the following conclusive results: In di-
mension three, Shioya and Yamaguchi [SY00] gave a complete classification of three-
dimensional closed (orientable) Riemannian manifolds M; collapsing in M?(D, k).
It is also proved that volume collapsed closed orientable Riemannian three-manifolds
M; with no diameter bound are graph-manifolds or have small diameters and finite
fundamental groups ([SY05], [Per Ent]). For more recent works, see Morgan and
Tian [MT], Cao and Ge [CaGe], Kleiner and Lott [KL]. In dimension four, Ya-
maguchi [Y 4-dim| gave a classification of four-dimensional orientable closed Rie-
mannian manifolds M; collapsing in M*(D, k).

1.1. Main results. To state our results, we fix notation in this paper. D" is a
closed n-disk. D! is written as I, called a (bounded closed) interval. P" is an
n-dimensional real projective space. T™ is an n-dimensional torus. K? is a Klein
bottle, M¢ is a Mobius band. K?2x1I is an orientable (non-trivial) I-bundle over
K?. K?XI is a non-orientable non-trivial I-bundle over K2. A solid Klein bottle
S1xD? is obtained by R x D? with identification (t,x) = (¢ + 1,Z). Here, we
consider D? as the unit disk on the complex plane and Z is the complex conjugate
of . Note that a solid Klein bottle is homeomorphic to M6 x I.

A compact Alexandrov space without boundary is called closed. We classify all
three-dimensional closed Alexandrov spaces collapsing to lower dimensional ones. It
turns out that there is a strange phenomenon which does not occur in the manifold
case. This phenomenon can be typically seen in the following example.

Example 1.2. Let S’ xR? be a flat manifold with product metric. For the isometric
involution « defined by

a(e”,x) = (e, ~x),
we consider the quotient space My := S x R?/(a) which is an Alexandrov space
with non-negative curvature. This space My has the two topologically singular
points, i.e. non-manifold points, py := [(1,0)] and p_ := [(—1,0)], which corre-
spond to fixed points (1,0) and (—1,0) of @. We consider a standard projection
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p: My — R?*/x ~ —x = K(S}) from My to the cone K(S:) over the circle S}
of length w. This is an S!-fiber bundle over K (S.) except the vertex o € K(SL).
Remark that the fiber p~1(0B(0,7)) over a metric circle at o is topologically a Klein
bottle. The fiber p~!(0) over the origin is an interval joining the topologically sin-
gular points p4 and p_. Thus, we may regard My as a circle fibration, with the
singular fiber p~1(0), over the cone K(SL). We rescale the “circle orbits” of My,
as My (g) := (eS') x R?/(a). Then, as € — 0, M (e) collapse to the cone K(S}).

We obtain the following results.
An essential singular point of an Alexandrov space is a point at which the space
of directions has radius not greater than /2.

Theorem 1.3. Let M? be a sequence of three-dimensional closed Alexandrov spaces
with curvature > —1 and diam M; < D. Suppose that M; converges to an Alexan-
drov surface X without boundary. Then, for sufficiently large i, M; is homeomor-
phic to a generalized Seifert fiber space over X. Further, singular orbits may occur
over essential singular points in X .

Here, a generalized Seifert fiber space is a Seifert fiber space in a generalized
sense, which possibly has singular interval fibers just as in Example For the
precise definition, see Definition 2.48]

To describe the topologies of M} converging to an Alexandrov surface with non-
empty boundary, we define the notion of generalized solid tori and generalized solid
Klein bottles. Let K(A) be the cone over a topological space A, obtained from
A x [0,400) smashing A x {0} to a point. Let K;(A) be the closed cone over A,
obtained from A x [0, 1] smashing A x {0} to a point. We put 0K;(A4) := A x {1}.

Definition 1.4. We will construct a certain three-dimensional topological orbifold
whose boundary is homeomorphic to a torus or a Klein bottle.

We first observe that the closed cone Kj(P?) over P? can be regarded as a
“fibration”l] over I as follows. Let I & Zs be the group generated by the involution
v on R3 defined by v(v) = —v. Then R3/T" = K(P?).

We consider the following families of surfaces in R3,

At) = {v=(z,y,2) [2* +y* =2 =% || < 1},
B(t) = {v=(r,9,2)|a” +y* — 22 = 2,0 + y* < 1},
and set

AT it t > 0,
bt) := {B(t)/F if t < 0.

Then D(t) is homeomorphic to a Mobius band for ¢ > 0 and is homeomorphic to a
disk for ¢ < 0. Remark that (J,¢(_ ;) 9D(¢) is homeomorphic to St x I. The union

D(1) UUe(-1,119D(t) U D(—1) corresponds to P? x {1} = 0K,(P?) C K1(P?).
Define a projection
(1.1) T Ky(P)~ | D(t 1] as w(D(t)) = t.
te[—1,1]
This is a “fibration” stated as above.

Hn fact, it is NOT a Serre fibration, because the fibers D? and M6 are not weak homotopy
equivalence.
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For a positive integer N > 1, let us consider a circle St = [0,2N]/{0} ~ {2N}.
Let I; be a sub-arc in S* corresponding to [j —1,4] C [0,2N] for j =1,...,2N. We
consider a sequence B; of topological spaces such that each B; is homeomorphic
to K1(P?%). We take a sequence of projections 7; : Bj — I; obtained as above such
that there are homeomorphisms ¢; : W;l(j) ~ 77]74}1 (j) forall j =1,...,2N. Then

we obtain a topological space Y := Ujfl Bj glued by ¢;’s. Define a projection

2N
(1.2) T:Y = UBj — S by w(w{l(t)):t

j=1
for any t € S'. By the construction, Y has 2N topologically singular points.
Remark that the restriction 7|y : Y — S! is a usual S!-fiber bundle. Then we
obtain a topological orbifold Y whose boundary dY is homeomorphic to a torus or
a Klein bottle. If 9Y is a torus, then Y is called a generalized solid torus of type N.
If 9Y is a Klein bottle, then Y is called a generalized solid Klein bottle of type N.
We regard a solid torus S' x D? and the product S' x Mo as generalized solid tori
of type 0. We also regard a solid Klein bottle S'xD? and non-trivial Mé-bundle
S1XM6 over S' as generalized solid Klein bottles of type 0. Note that S'xMSJ is
homeomorphic to a non-orientable I-bundle K2x 1 over K?2.

For a two-dimensional Alexandrov space X, a boundary point & € 9X is called
a corner point if diam ¥, < 7, in other words, if it is an essential singular point.

Theorem 1.5. Let {M;}2, be a sequence of three-dimensional closed Alexandrov
spaces with curvature > —1 and diam M; < D. Suppose that M; converges to an
Alexandrov surface X with non-empty boundary. Then, for large i, there exist a
generalized Seifert fiber space Seif; (X) over X and generalized solid tori or gen-
eralized solid Klein bottles m;, : Yip — (0X) over each component (0X)y of 0X
such that M; is homeomorphic to a union of Seif; (X) and Y ;s glued along their
boundaries, where the fibers of Seif; (X) over a boundary points x € (0X)x are
identified with 871'1._7}%1 (x) ~ St.

It should be remarked that in Theorem [[L5] the fiber of m; i : Y; 1 — (0X)r may
change at a corner point of (0X);, and that the type of Y; j is less than or equal to
half of the number of corner points in (0.X ).

Corollary 1.6. Under the same assumption and notation of Theorem L5, for large
i, there exists a continuous surjection f; : M; — X which is a 0(i)-approzimation
satisfying the following:
1) fi: f[l(int X) — intX is a generalized Siefert fibration.
(2) For x € 90X, f;*(x) is homeomorphic to a one-point set or a circle. The
fiber of f; may change over a corner point in 0X.
(3) For any collar neighborhood ¢ : (0X )i x [0,1] = X of a component (0X )
of 0X, which contains no interior essential singular points, f[l(image ©)
is a generalized solid torus or a generalized solid Klein bottle.

Using the same notation as in Corollary [[L] we remark that, for 2 € (0X)y,
f7H e} x [0,1])) = D* if f;7H(z) =~ {pt},
F7H e} x [0,1])) = MB if f;H(z) ~ S

The structure of M; collapsing to one-dimensional space is determined as follows.
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Theorem 1.7. Let M3 be a sequence of three-dimensional closed Alezandrov spaces
with curvature > —1 and diam M; < D. Suppose that M3 converges to a circle.
Then, for large i, M; is homeomorphic to a total space of an F;-fiber bundle over
S, where the fiber F; is homeomorphic to one of S?, P2, T? and K?2.

To describe the structures of M; converging to an interval I, we prepare certain
topological orbifolds. First, we provide

B(pt) := S' x D?/{a).

Here, the involution « is the restriction of the one provided in Example[[.2l Remark
that OB(pt) ~ S%. We also need to consider three-dimensional open Alexandrov
spaces Lo and L4 with two-dimensional souls S; and S, respectively, where S,
(resp. S4) is homeomorpshic to S? or P? (resp. to S?). For their definition, see
Example[2Z.63l The space L; (¢ = 2,4) has i topologically singular points, which are
contained in S;. We denote by B(S;) a metric ball around S; in L;. Here we point
out that OB(S2) ~ S? (resp.~ K?) if Sy ~ S? (resp. if Sy ~ P?), and 0B(S,) ~ T?.

Theorem 1.8. Let M3 be a sequence of three-dimensional closed Alezandrov spaces
with curvature > —1 and diam M; < D. Suppose that Mf converges to an interval.
Then, for large i, M; is the union of B; U B! glued along their boundaries. 0B; is
homeomorphic to one of S%, P2, T? and K?. The topologies of B; (and B.) are
determined as follows:
(1) If OB; ~ S?, then B; is homeomorphic to one of D3, P3 —int D3, B(Ss)
with So ~ S2.
(2) If OB; =~ P2, then B; is homeomorphic to Ki(P?).
(3) If OB; =~ T?, then B; is homeomorphic to one of S* x D?, S' x M6, K?x1,
and B(Sy).
(4) If 0B; ~ K2, then B; is homeomorphic to one of S'xD?, K%*xI, B(pt),
and B(Ss) with Sy ~ P?.

Corollary 1.9. Let M; be a sequence of three-dimensional closed Alexandrov spaces
with curvature > —1 and diameter < D. Suppose M; converges to a point. Then,
for large i, M; is homeomorphic to one of

e generalized Seifert fiber spaces in the conclusion of Theorem [[3] with a base
Alexandrov surface having non-negative curvature,

e spaces in the conclusion of Theorem with a base Alexandrov surface
having non-negative curvature,

e spaces in the conclusion of Theorems [0 and L8, and

e closed Alexandrov spaces with non-negative curvature having finite funda-
mental groups.

We remark that all spaces appearing in the conclusions of Theorems [[.3] [L.5] 7]
and [[.8 and Corollary actually have sequences of metrics as Alexandrov spaces
collapsing to such respective limit spaces described there.

By Corollary [[L9] to achieve a complete classification of the topologies of col-
lapsing three-dimensional closed Alexandrov spaces, we provide a version of the
“Poincaré conjecture” for three-dimensional closed Alexandrov spaces with non-
negative curvature.

For Alexandrov spaces A and A’ having boundaries isometric to each other,
AUy A’ denotes the gluing of AU A’ via an isometry ¢ : A — 0A’. Note that
AUy A" is an Alexandrov space (see [Pet Appl]).
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Conjecture 1.10. A simply connected three-dimensional closed Alexandrov space
with non-negative curvature is homeomorphic to an isometric gluing A Ug A’ for
A and A’ chosen in the following list (L3) of non-negatively curved Alexandrov
spaces:

(1.3) D3, K, (P?), B(pt), B(S2), B(S4).

We also remark that any connected sum of those spaces admits a metric of
Alexandrov space having a lower curvature bound by some constant.

Conjecture 1.11. A simply connected three-dimensional closed Alexandrov space
with curvature > 1 is homeomorphic to a three-sphere S* or a suspension Y (P?)
over P2,

The organization of this paper and basic ideas of the proofs of our results are as
follows:

In Section [2] we review some basic notation and results on Alexandrov spaces.
We provide a three-dimensional topological orbifold having a circle fiber structure
with singular arc fibers, and call it a generalized Seifert fiber space. At the end of
this section, we prove fundamental properties on the topologically singular point
set.

In Section 3] for any n € N, we consider n-dimensional closed Alexandrov spaces
M} collapsing to a space X" ! of co-dimension one. Assume that all points in
X are almost regular, except finite points z1,...,z,,. For any fixed p € {z,}, we
take a sequence p; € M; converging to p. By Yamaguchi’s Fibration Theorem 2.25]
for large 4, there is a fiber bundle 7m; : A; — A, where A is a small metric annulus
A = A(p;r, R) around p and A; is some corresponding domain. Here, r and R are
small positive numbers so that r < R.

Although A; is not a metric annulus in general, it is expected that A; is home-
omorphic to a standard annulus A(p;;r, R). Moreover, we may expect that there
exist an isotopy ¢ : M; x [0,1] — M; such that, putting ¢, := ¢(-, ),

¢0 = ZdMn
r+ R

(1.4) o1 <B<pz-, T) uAi> = B(pi, R), and

¢1(x) =z if x & B(p;, R+ 9)

for any fixed § > 0.

If we consider the case that all M; are Riemannian manifolds, then we can obtain
a smooth flow ®; of a gradient-like vector field V' of the distance function dist,,
from p;. Then, by using integral curves of V', we can obtain such an isotopy ¢ from
idyy, satisfying the property (I4]).

We will prove that such an argument of flow goes through on Alexandrov spaces
M; as well. To do this, we first prove a main result, Flow Theorem [3.2] in this
section. Theorem implies the existence of an integral flow ®; of a gradient-like
vector field of a distance function dist,, on A(p;;r, R) in a suitable sense. This
flow leads to an isotopy ¢ satisfying the property (). Theorem is important
throughout the paper.

In Sections[]—[B we prove Theorems[[.3] [[.5] .7 and [[L8 and Corollaries and
To explain the arguments used in those proofs, let us fix a sequence M; = M3
of three-dimensional closed Alexandrov spaces in A%(—1, D) converging to X of
dimension < 2.
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In Section ] we consider the case that dim X = 2 and 0X = (). Let p1,...,p, be
all §-singular points in X for a fixed small § > 0. Let us take a converging sequence
Dia = Do (i = 00) for each a« = 1,...,m. Let us fix any « and set p := pq,
Di = Dio- We take 7 = 7, > 0 such that all points in B(p,2r) — {p} are (2,¢)-
strained. Then, all points in an annulus A(p;;e;, 2r — ¢;) are (3,0(i, €))-strained.
Here, €; is a sequence of positive numbers converging to zero. Then, by Fibration
Theorem 225 we have an S'-fiber bundle m; : A; — A(p;r,2r). On the other
hand, by the rescaling argument 2:27] we obtain the conclusion that B; := B(p;,r)
is homeomorphic to a solid torus or B(pt). Here, we can exclude the possibility
that B; is topologically a solid Klein bottle. Theorem implies that there exists
an isotopy carrying the fiber 7; '(0B(p,r)) to 0B;. If B; ~ S' x D? then we can
prove an argument similar to [SY00] that B; has the structure of a Seifert fibered
torus in the usual sense, extending 7. If B; &~ B(pt), then by some new observation
on the topological structure of B(pt), we can prove that B; has the standard “circle
fibration” structure provided in Example [[L2] compatible with 7. In this way, we
obtain the structure of a generalized Seifert fiber space on M;.

In Section Bl we consider the case that dim X = 2 and 0X # (). Take a de-
composition of X to connected components (Jz(0X)s. Put Xo := X —U(0X,r)
for some small » > 0. By Theorem [[L3] we have a generalized Seifert fibration
m; + M; 0 — X for some closed domain M; o C M;. For any fixed 3, we take points
Do In (0X) s so fine that {p,} contains all e-singular points in (0X)g. Let p; o € M;
be a sequence converging to p,. Deform a metric ball B(p; o, ) to a neighborhood
B; o of pi.o by an isotopy obtained in Theorem Because of the existence of
0X, we need a bit more complicated construction of flows of gradient-like vector
fields of distance functions.

In Section [6] we consider the case that X is isometric to a circle S*(¢) of length .
If M, has no e-singular points, by Fibration Theorem [2.25] we obviously obtain the
conclusion of Theorem [[L71 But, in general, M; has e-singular points. Therefore,
we use Perelman’s Morse theory to construct a fibration over S!.

In Section[7 we consider the case that X is isometric to an interval [0, ¢] of some
length ¢. We use rescaling arguments around the end points of interval X and an
argument similar to Theorem [[.7] to prove Theorem [L.8

In Section [§] we consider the case of dim X = 0 and prove Corollary

For three-dimensional Alexandrov spaces with non-empty boundary collapsing
to lower dimensional spaces, considering their doubles, one could make use of the
results in the present paper to obtain the structure of collapsing in that case. This
will appear in a forthcoming paper.

2. PRELIMINARIES

2.1. Definitions, conventions and notation. In the present paper, we use the
following notation.

e 9(4) is a function depending on § = (d1,...,d;) such that lims_,o60(d)
= 0. 6(i,6) is a function depending on § € R¥ and i € N such that
lim; 00 550 60(%,0) = 0. When we write A < () for a non-negative num-
ber A, we always assume that 6(J) is taken to be non-negative.

e X =~ Y means that X is homeomorphic to Y. For metric spaces X and Y,
X =Y means that X is isometric to Y.
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e For metric spaces X and Y, the direct product X x Y has the product
metric if nothing is stated.

e For continuous mappings f1 : X1 — Y, fo: Xo =Y and g : X; — X5, we
say that g represents fi and fs if fi = f2 0 g holds.

e Denote by d(z,y), |z, y|, and |zy| the distance between = and y in a metric
space X. Sometimes we mark X as lower index |z, y|x.

e For a subset S of a topological space, S is the closure of S in the whole
space.

e For a metric space X = (X, d) and r > 0, denote the rescaling metric space
rX = (X,rd).

e For a subset Y of a metric space, denote by disty the distance function from
Y. When Y = {z} we denote dist, := disty,). For a subset Y of a metric
space X and a subset I of Ry, define a subset B(Y;I) := Bx(Y;I) :=
disty'(I) € X. For special cases, we denote and call those sets in the
following way: B(Y,r) := B(Y; 0, r]) the closed ball, U(Y,r) := B(Y;0,7))
the open ball, A(Y;r',r) := B(Y;[r,r]) the annulus, and 0B(Y,r) :=
B(Y;{r}) the metric sphere. For Y = {z}, we set B(x,r) := B({z},r),
U(z,r) :=U({x},r) and A(z;r',r) := A({x}; ', r).

e For a topological space X, the cone K(X) over X is obtained from X X
[0, 00) by smashing X x {0} to a point. An equivalent class [(z,a)] € K(X)
of (z,a) € X x [0,+00) is denoted by az or often simply written by (x,a).
A special point (z,0) = 0x € K(X) is denoted by o or ox, called the origin
of K(X). A point v € K(X) is often called a vector. K;(X) denotes the
(unit) closed cone over X, i.e.

Ki(X):={ax e K(X)|z € X,0<a < 1}.

K1(X) is homeomorphic to the join between X and a single-point.

e For a metric space X, K(X) often denotes the Fuclidean metric cone, which
is equipped with the following metric: for two points (z1,71), (22,72) €
X % [0,00) the distance between them is defined by

d((z1,71), (z2, 7"2))2 = r% + Tg — 2ryrg cos min{d(z1, x2), 7}.

And for v € K(X), we put |v| := d(z, 0) and call it the norm of v. Define
an inner product (v, w) of v,w € K(X) by (v, w) := |v||w]| cos Zvow.
e When we write M"™ marked upper index n, this means that M is an n-
dimensional Alexandrov space.

For a curve v : [0, 1] — X in a metric space X, the length L() of 7 is defined by

m

L(v) = sup 1Zd(7(ti_1)w(ti)) € [0, +o0).

O=to<ty <+ <tm=15_

A metric space X is called a length space if for any x, y € X and € > 0, there exists
a curve v : [0,1] = X such that v(0) = z, v(1) = y and 0 < L(y) — d(z,y) < e.
A curve is called a geodesic if it is an isometric embedding from some interval.
Sometimes a geodesic 7y defined on a bounded closed interval [0, £] is called a geodesic
segment. A geodesic defined on R is called a line; a geodesic defined on [0, +00) is
called a ray. For a geodesic v : I — X in a metric space X, we often regard - itself
as the subset y(I) C X.
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2.2. Alexandrov spaces. From now on, throughout this paper, we always assume
that a metric space is proper, namely, any closed bounded subset is compact. A
proper length space is a geodesic space, namely, any two points are jointed by a
geodesic.

For three points xg, x1, z2 in a metric space, the size of (xg,x1,x2) is size
(xo,x1,22) = |xow1| + |T122| + |T2m0|. The size of four points (zo;x1,x2,x3)
(centered at ) is defined by the maximum of size (zg, z;, x;) for 1 < i # j < 3,
denoted by size (z¢; 21, 2, T3).

Definition 2.1. For three points xg, 1, 2 in a metric space X with size (xq, 1, x2)
< 2m/y/k, the k-comparison angle of (zo;w1,x2), written by 7 T1T0Ty OF
Zﬁ(mo;xl,xg), is defined as follows: Take three points Z; (i = 0,1,2) in x-plane
M2, which is a simply connected complete surface with constant curvature = &,
such that d(x;,z;) = d(&;,%;) for 0 < 4,57 < 2 and put /w1 2T0Ts = LF170s.
Sometimes we write / omitting ~ in the notation L.

Definition 2.2. For x € R, a complete metric space X is called an Alexandrov space
with curvature > k if X is a length space and, for every four points xg, x1, T2, z3 € X
(with size (xo; x1, 22, x3) < 27/+/k if £ > 0), we have the inequality

LT1XoTe + LXoxoxs + Lerzxor < 2.

The dimension of an Alexandrov space means its Hausdorff dimension. The
Hausdorff dimension and the topological dimension are equal to each other ([BGP],
[PP QG], [Pl]). Throughout this paper, we always assume that an Alexandrov
space is finite dimensional.

Remark 2.3. If X is an Alexandrov space with curvature > k, then the rescaling
space rX is an Alexandrov space with curvature > x/72.

For two geodesics a, 8 : [0,e] — X emanating at «(0) = S(0) = p € X in an
Alexandrov space X, the angle Z(«a, B) at p is defined by

@ 8) 1= 4yl0.B) i= lim Z(pialt), 5(s).

The set of all non-trivial geodesics emanating at p in an Alexandrov space X is
denoted by E;X . The angle Z, at p satisfies the triangle inequality on this set.
Its metric completion is denoted by ¥, = ¥,X, called the space of directions at
p. For a geodesic v : [0,¢] — X starting from = = v(0) to y = v(¢), we denote
vH(0) = ~'(0) = v, = v =1Y% the direction of v at z. By zy, we denote some
segment zy = v : [0, |zy|] = X joining from v(0) = x to y(|zy|) = y. For a subset
A C X, the closure of a set of all directions from = to A is denoted by AL, i.e.

Al :={¢ € ¥, |3a; € Asuch that lim |za;| = |z, A] and lim 1% = ¢}.
1— 00 1— 00

When z € A, we put X,(A4) := Al. For z,y € X, we denote as y, := {y}..
Or sometimes we denote by vy, an element that belongs with y/. For € X and
y,z € X — {z}, we denote by Lyzz the angle Z(zy,zz) = Z(1¥,1%) between some
fixed segments zy, xz.
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k _
a=1 —

Definition 2.4. A (k,§)-strainer at x € M is a collection of points {pF
{pt,p5 |a=1,... k} satisfying the following:

(2.1) Zp;'xp; >7/2—0
(2.2) Ipiapy >m/2-0
(2.3) Zp;:vpg >7n/2-6
(2.4) Iptapy >m—6

forall 1 <a#p <k

The length of a strainer {pE} at x is mini<o<i{|p?,z|,|p5,2|}. The (k,§)-
strained radius of z, denoted by (k,d)-str.radz, is the supremum of lengths of
(k,0)-strainers at . A (k,d)-strained radius (k,d)-str.rad A of a subset A C M is
defined by

(k,0)-strorad A := irelg (k,d)-str.rad .

If there is a (k, 0)-strainer at x, then z is called (k, ¢)-strained. Denote by Ry, 5(M)
the set of all (k, §)-strained points in M. Ry, s(M) is an open subset. Put Sy 5(M) :=
M — Ry, 5(M). Any point in Sk s(M) is called a (k, §)-singular point. When we con-
sider an n-dimensional Alexandrov space M™ and ¢ is sufficiently small with respect
to 1/n, we simply say d-strained, d-singular, etc., instead of (n, d)-strained, (n,d)-
singular, etc., and we omit writing Rs(M), Ss(M) instead of R, s(M), Sp,s(M).
For an n-dimensional Alexandrov space M™, put R(M™) := ()55, Rs(M") and
S(M™) :=UssoSs(M") = M™ — R(M™).

Theorem 2.5 ([BGP|, [0S]). For any n-dimensional Alezandrov space M™, we
have dimpg S(M) <n —1 and dimpg S(M) —OM <n —2.

Here, the boundary M of an Alexandrov space M is defined inductively in the
following manner.

Definition 2.6. A one-dimensional Alexandrov space M! is a manifold, and the
boundary of M' is the boundary of M! as a manifold. Now let M™ be an n-
dimensional Alexandrov space with n > 1. A point p in M™ is called a boundary
point if ¥, has a boundary point. The set of all boundary points is denoted by OM™,
called the boundary of M™. Its complement is denoted by int M"™ = M™ — OM™,
called the interior of M™. A point in int M™ is called an interior point of M™.
OM™ is a closed subset in M™ ([BGP], [Per I1]).

A compact Alexandrov space without boundary is called a closed Alexandrov
space, and a non-compact Alexandrov space without boundary is called an open
Alexandrov space.

Definition 2.7. For an n-dimensional Alexandrov space M", we say that p € M
is a topologically regular point (or a manifold-point) if there is a neighborhood of p
which is homeomorphic to R™ or R*~! x [0, 00). p is called a topologically singular
point if p is not a topologically regular point. We denote by Siop(M) the set of all
topologically singular points.

Definition 2.8. For an Alexandrov space M, a point p € M is called an essential
singular point if rad¥, < m/2. A set of whole essential singular points in M
is denoted by Ess(M). We define the set of interior (resp. boundary) essential
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singular points Ess(int M) (resp. Ess(0M)) as follows:
Ess(int M) := Ess(M) Nint M,
Ess(OM) := Ess(M) N oM.
Remark that if dim M = 1, then Ess(int M) = 0 and Ess(0M) = M.

Remark 2.9. By Theorem and Stability Theorem .34, we can check the fol-
lowing;:
Siop(M) C Ess(M) C S(M).

For small § < 1/n, any (n,d)-regular point in an n-dimensional Alexandrov
space M™ is an interior point.

Theorem 2.10 ([BGP| Corollary 12.8]). An (n — 1,6)-regular interior point in an
n-dimensional Alezandrov space is an (n,d’)-regular point. Here, 6" — 0 as 6 — 0.

The boundary of an Alexandrov space is determined by its topology:

Theorem 2.11 (|[BGP, Theorem 13.3(a)], [Per II|). Let M;, My be n-dimensional
Alezandrov spaces with homeomorphism ¢ : My — Ms. Then ¢p(OM;) = OMs.

2.3. The Gromov-Hausdorff convergence. For metric spaces X and Y, and
e > 0, an e-approximation f from X to Y is a map f: X — Y such that

(1) |d(z,2") — d(f(x), f(z"))| < e for any z,2’ € X,

(2) Y = B(Image (f), ).
The Gromov-Hausdorff distance dgp(X,Y) between X and Y is defined by the
infimum of those £ > 0 so that there exist e-approximations from X to Y and from
Y to X. We say that a sequence of metric spaces X;, ¢ = 1,2,..., converges to a
metric space X as ¢ — 0o if dgy(X;, X) — 0 as i — co.

For two pointed metric spaces (X, ), (Y,y), a pointed e-approzimation f from
(X,z) to (Y,y) is amap f: Bx(x,1/e) = Y such that

(1) flx) =y,

(2) |d(',2") —d(f(2), f(z"))] < e for o', 2" € Bx(z,1/¢),

(3) By (y,1/¢) C B(Image (f),e).
The pointed Gromov-Hausdorff distance dgmp((X,x),(Y,y)) between (X,z) and
(Y,y) is defined by the infimum of those e > 0 so that there exist pointed e-
approximations from (X, z) to (Y,y) and from (Y,y) to (X, z).

For an m-dimensional Alexandrov space X", the (Gromov-Hausdorff) tangent
cone T, X of X at x is defined by the pointed Gromov-Hausdorff limit of (1/r; X, x)
for some sequence (r;) converging to zero. Thus, T, X is an n-dimensional non-
compact Alexandrov space with non-negative curvature. Also, T, X is isometric to
the metric cone K (X,) over the space of directions .

For a locally Lipschitz map f: X — M between Alexandrov spaces and a curve
v :[0,a] = X starting at p = (0) with direction v+ at p, we say that f has the
directional derivative df (y1) in the direction v+ if there exists the limit

F(G) = (F o) = S f or(04).

A distance function on an Alexandrov space has the directional derivative in any
direction.
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For a local Lipschitz function f on a metric space, the absolute gradient |V f|,
of f at p is defined by

: f(x) - f(p)
Vil =I|Vflip) = max{hmsup—,O .
V1= [V1(9) msup 0
Definition 2.12. f is called regular at p if [V f], > 0. Such a point p is a reqular
point for f. Otherwise, f is called critical at p.

Let X be an Alexandrov space and U be an open subset of X. Let f: U — R
be a locally Lipschitz function. For A € R, f is said to be A-concave if for every
segment ~ : [0, ¢] — U, the function

for(t) - 52

is concave in t. A 0-concave function is said to be concave. f is said to be semi-
concave if for every x € U there are an open neighborhood V of z in U and a
constant A € R such that f|y is A-concave.

For a semiconcave function f on a finite dimensional Alexandrov space, the
gradient vector Vf of f is defined in the tangent cone:

Definition 2.13 ([PP QG]). Let X be a finite dimensional Alexandrov space. Let
f:U — R be a semiconcave function defined on an open neighborhood U of p. A
vector v € T, X is called the gradient of f at p if the following hold:

(i) For any w € T, X, we have d, f(w) < (v, w).
(i) dpf(v) = Jv]*.
The gradient of f at p is denoted by V, f for short.

Remark that V,, f is uniquely determined in the following manner: If |V f|, = 0,
then V, f = o, and otherwise

vpf = dpf(gmax)gmaxv

where &max € X, is the uniquely determined unit vector such that d,f(&max) =
maxfezp dpf(f)

We can show that the absolute gradient |V f|(p) of f is equal to the norm |V, f|
of gradient vector V,, f in T, X.

2.4. Ultraconvergence. We will recall the notion of ultrafilters and ultralimits.
For more details, we refer to [BH]. A (non-principle) wltrafilter w on the set of
natural numbers N is a finitely additive measure on the power set 2 of N that has
values 0 or 1 and contains no atoms. For each sequence {y;} = {y; };en in a compact
Hausdorff space Y, an witralimit lim,y; = y € Y of this sequence is uniquely
determined by the requirement w({i € N | y; € U}) = 1 for all neighborhoods
Uofy 1If f:Y — Zis a continuous map between topological spaces, then
lim,, f(y;) = f(limy, y5).

For a sequence {(X;,z;)} of pointed metric spaces, consider the set of all se-
quences {y;} of points y; € X; with lim,, |x;y;| < oo and provide the pseudometric
Hy:i}H{z:}| = limy, |y;2;| on the set. The ultralimit (X, x) = lim,, (X, z;) of {(X;, x;)}
is defined to be the metric space arising from this pseudometric, and the equivalence
class of a sequence {y;} is denoted by (y;). The ultralimit of a constant sequence
{(X, z)} of a metric space (X, z) is called the ultrapower of (X, x) and is denoted by
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X¥ = (X%, z). The natural map X >y — (y) = (y,v,y,...) € X¥ is an isometric
embedding.

We review a relation between the ultraconvergence and the usual convergence.
A sequence (g;) of positive numbers is said to be a scale if lim;_, . &; = 0.

Lemma 2.14. For a real number A and a function h : Ry — R, the following are
equivalent:
N e A
(4) hgn\lélf h(t) > A
(i) For any scale (0) = (t;), we have lim h(t;) > A.

Proof. ((i) = (i1)). We assume (7). Then, for any € > 0, there is ty > 0 such that
inf h(t)>A—e.

0<t<to
Let us take any scale (¢;). Then there is ig such that, for all ¢ > iy, we have
h(t;) > inf h(t).

0<1t§t0
Therefore, taking an ultralimit, we have
limh(t;)) > A—e.
w

The above inequality holds for all ¢ > 0. Then we obtain (ii).
((i7) = (i)). We assume (i7). We take a sequence (¢;) tending to 0 such that

lli)rgo h(t;) = hgn\lélf h(t).

Then, taking an ultralimit, we obtain (7):
A<l )=l ;) = lim inf .
< limh(t;) = lim h(t) im in h(t)
(]

Let (X;,z;) and (Y;,y;) be sequences of pointed metric spaces and let f; :
(Xi,x;) — (Yi,v:) be a sequence of maps. Then the witralimit f, = lim,, f; of
{fi} is defined by

limX; 3 ay, = (a;) = fu(aw) = (fi(a;)) € limY;

w w
if it is well-defined. For instance, if f; is an L;-Lipschitz map with L, := lim,, L; <
00, then the ultralimit f,, is well-defined and L,,-Lipschitz. If f; : (X;,z;) — (Yi, vi)
is a pointed m-approximation with 7, := lim, 7; < oo, then the ultralimit f,
is well-defined and a 7,-approximation. Remark that if f; : (X;,2;) — (Y, v:)
and g; : (Yi,v:) = (Zi,2;) have the ultralimits f, := lim, f; and g, := lim, g,

then lim,(g; © fi) = gw © fu. For a, = (a;),a, = (a}) € lim, X;, we have

|folaw), fulay)] =limy | fi(as), fi(as)].

For a pointed metric space (X, x) and a scale (0) = (¢;), we define the blow-up
x) = ( g(co),om) of (X, ) by

(X9, 0,) :=lim(1/e; X, z).
w

For amap f : (X, z) — (Y, y) between pointed metric spaces, we consider a sequence
{f:} of maps defined by
The blow-up ng") : Xg(oo) — Yy(o) of f is defined by ng") := lim,, f; if it is well-defined.
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Let X be an Alexandrov space and x € X, and let (0) = (¢;) be a scale. We
consider the exponential map at x:

€XPy ¢ (dom(expr)voz) =] (’Vat) = esz(’}/,t) = V(t) € (Xv LE)

Here, dom(exp, ) C T, X is the domain of exp,. Since exp,, is locally Lipschitz, the
blow-up of exp, is well-defined and written by

exp(®) = (expw)gz) (TeX,04) = (X9, 0).
The domain of expl” is the blow-up of (dom(exp,),0,), which is identified as
(Tp X, 0z).

Lemma 2.15 ([L], [BGP]). Let (o) = (gi) be an arbitrary scale.
(1) Let X be a (possibly infinite dimensional) Alexandrov space. Then expl”
is an isometric embedding.

(#1) If X be a finite dimensional Alexandrov space. Then expc(go) K(2,) — x4

is surjective, for any x € X.

Proof. (i) By the definition of the angle between geodesics, for any (v, s) and (n,t) €
X! % [0,00), we have
[v(sei), mlted)|x imoo
€i
(#4) By [BGP], the Gromov-Hausdorff tangent cone T, X and the cone K(X,)
over a space of directions are isometric to each other. More precisely, the scaled

logarithmic map
1 1 1
log, =exp, : | =X,z | = | =T:X, 0,
=3 E;

is a 7;-approximation for some sequence {7;} of positive numbers converging to
zero, and exp, olog, = id. Then we have, for each (z;) € Xéo),

expg’)

|57, tnlk(s.)-

(log, (xi)) = (exp, olog,(xi)) = (x:).
Therefore, expgo) is surjective. O
2.5. Preliminaries from the geometry of Alexandrov spaces. In this subsec-

tion, we review the basic facts on the geometry and topology of Alexandrov spaces.
We refer mainly to [BGP], [Per II].

2.5.1. Local structure around an almost reqular point. Burago, Gromov and Perel-
man proved that a neighborhood of an almost regular point is almost isometric to
an open subset of Euclidean space.

Theorem 2.16 ([BGP], [OS]). For n € N, there exists a positive number 0, > 0
satisfying the following: Let X be an n-dimensional Alexandrov space with curvature
> —1. For 0 < 6 < 6,, tf x € X is an (n,0)-strained point with a strainer
{Pata==1,. +n of length £, then the two maps

(25) Y= (d(pon'))a:l,...,n

26) 5im (m /B(pmt‘) d(y,-)d’H"(y)>a1 §

=1,...,
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on B(x,r) for small v > 0 are both (0,(5) + 0,(r/¢))-almost isometries, where €
is so small with ¢ < r/f. Here, 0,(8) is a positive function depending on n and §
such that lims_,q 0,,(6) = 0.

Lemma 2.17 ([Y_convl Lemma 1.8]). Let M be an n-dimensional Alexandrov space
and § be taken in Theorem [ZT0l For any (n,0)-strained point p € M, there exists
r > 0 satisfying the following: For every q € B(p,r/2) and § € X, there exists
x,y € B(p,r) such that

(2.7) g, lygl = r/4,
(2.8) |25, €1 < 6(6,7),
(2.9) Zrqy > —0(6,7).

Lemma 2.18 ([Y _convl Lemma 1.9]). Let M, p, r and ¢ be taken in Lemma 217
For every ¢ € M with r/10 < |pq| < r and for every x € M with |px| < r, we have

|Zxpg — prq\ < 0(0,r, |px|/T).

2.5.2. Splitting Theorem. The Splitting Theorem is an important tool to study the
structure of non-negatively curved spaces.

Theorem 2.19 (Splitting Theorem [Milka]). Let X be an Alexandrov space of
curvature > 0. Suppose that there exists a line v : R — X. Then there exists an
Alexandrov space Y of curvature > 0 such that X is isometric to the product Y X R.

Theorem 2.20. If an Alexandrov space X of curvature > 1 has the mazximal di-
ameter m, then X is isometric to the metric suspension 3(A) over some Alexandrov
space A of curvature > 1.

Corollary 2.21. If an n-dimensional Alexandrov space ¥ of curvature > 1 has the
mazimal radius 7, then X is isometric to a unit n-sphere of constant curvature = 1.

Remark 2.22 ([M]). The Splitting Theorem and Corollary [22T]hold even for infinite
dimensional Alexandrov spaces.

2.5.3. Convergence and collapsing theory. Yamaguchi proved the following two the-
orems (Theorems and 228) for Alexandrov spaces converging to an almost
regular Alexandrov space, which are counterparts of the Fibration Theorem [Y91]
in the Riemannian geometry.

Definition 2.23. A surjective map f : X — Y between Alexandrov spaces is called
an e-almost Lipschitz submersion if f is an e-approximation, and for any xz,y € X
setting 0 := Z,(y.,, 3,11,), we have

[f(2)f ()]

<e€
lzy|

—sinf

where II, := f~1(f(x)).
A surjective map f : X — Y is called an e-almost isometry if for any z, y € X

we have
lf @) fWl
|zy]
Theorem 2.24 (Lipschitz submersion theorem [Y conv]). Forn € N and n > 0,

there exist 0, €,(n) > 0 satisfying the following. Let M™, X* be Alezandrov
spaces with curvature > —1, dim M™ = n, and dim X* = k. Suppose that 6-strain

1’<5.
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radius of X > n. Then if the Gromov-Hausdorff distance between M and X is
less than € < e,(n), there is a 6(d,¢)-almost Lipschitz submersion f : M — X.
Here, 6(d,e) denotes a positive constant depending on n,n and 6, and satisfying
limg)s_m 9((5, E) =0.

When M is almost regular (and X has non-empty boundary), Theorem
deforms as Theorem below. Let X be a k-dimensional complete Alexandrov
space with curvature > —1 having nonempty boundary. Let X* be another copy
of X. Take the double dbl(X) = X U X* of X. The double dbl(X) is also
an Alexandrov space of curvature < —1. A (k,d)-strainer {(a;,b;)} of dbl(X) at
p € X is called admissible if a;,b; € X for 1 <i <k, 1<j<k—-1 (b may be in
X* if p € 0X for instance). Let RP(X) be the set of all admissible (k, §)-strained
points in X.

Let Y be a closed domain of RP(X). For a small v > 0, we put

Y, :={x €Y |d(z,0X) > v},

and we put
5‘0YV = YV n {daX = I/}, il’ltoYV = YV - 80YV.

The admissible é-strained radius éP-str.radz at p € X is the supremum of
the length of all admissible d-strainers at p. The admissible d-strained radius
dP-str.rad (Y) of a subset Y C X is

§P-str.rad (V) := inf 67-str.rad p.
peY
Theorem 2.25 (Fibration Theorem ([Y 4-dim| Theorem 1.2])). Given k and p >
0, there exist positive numbers § = i, e (p) and v = vi(u) satisfying the following:
Let X* be an Alezandrov space with curvature > —1 of dimension k. Let Y C
RP(X) be a closed domain such that Sp-str.rad (Y) > p. Let M™ be an Alexandrov
space with curvature > —1 of dimension n. Suppose that Rs (M™) = M™ for some
small 6, > 0. If dgug(M,X) < € for some ¢ < e,(p), then there exist a closed
domain N C M and a decomposition

N = Nint U Ncap

of N into two closed domains glued along their boundaries and a Lipschitz map
f+ N =Y, such that

(1) Nint is the closure of f~(intgY,) and Neap = f~1(D0Y,);

(2) both the restrictions fing = f|Ni, * Nint — Yo and feap := f|ne., * Neap —
0yY, are
(a) locally trivial fiber bundles (see Definition [Z37);
(b) 6(6,v,e/v)-Lipschitz submersions.

int

Remark 2.26. If 0X = 0, then Nga, = 0 in the statement of Theorem

The following theorem is a fundamental and important tool to study a local
structure of collapsing Alexandrov spaces.

Theorem 2.27 (Rescaling Argument [Y ess], [SY00], [Y 4-diml|). Let M;, i =
1,2,..., be a sequence of Alexandrov spaces of dimension n with curvature > —1
and let X be an Alexandrov space of dimension k with curvature > —1 and k < n.
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Let p; € M; and p € X. Assume that (M;,p;) converges to (X,p), and r > 0 is a
small number depending on p. Assume the following:

Assumption 2.28. For any p; with d(p;,p;) — 0 and for any sufficiently large i,
B(pi,r) has a critical point for disty,

Then there exist a sequence §; — 0 of positive numbers and p; € M; such that
i d(plvﬁl) —0asi— 005
e for any limit Y of (%Mi,ﬁi), we have dimY > k + 1;
e dimS < dimY —dim X, where S is a soul of Y.

Remark 2.29. If a sequence of B(p;,r) metric balls does not satisfy Assumption
228 then by the Stability Theorem 234, B(p;,r) (resp. U(p;, r)) is homeomorphic
to the closed cone K7(X;,) (resp. the open cone K(X3,)) over the space of directions

Yy, for some p; € M; with d(p;,p;) tending to zero.
Fukaya and Yamaguchi proved the following.

Theorem 2.30 ([EY], [Y conv]). For n € N, there exists €, > 0 satisfying the
following. Suppose that an n-dimensional Alexandrov space M™ with curvature
> —1 and diam M™ < €,,. Then, the fundamental group w1 (M™) is almost nilpotent;
i.e. T (M™) has a nilpotent subgroup of finite index.

Remark 2.31 ([Y_conv]). In Fibration Theorems 2.24] and 225 the fiber is con-
nected and has an almost nilpotent fundamental group.

2.5.4. Perelman’s Morse theory and stability theorem. In this section, we mainly
refer to [Per I1].

Definition 2.32 ([PerII]). Let f = (f1,...fm) : U = R™ be a map on an open
subset U of an Alexandrov space X defined by f; = d(A4,,-) for compact subsets
A; C X. The map f is said to be (¢, e)-regular at p € U if there is a point w € X
such that:

(1) Z((Ai)y, (Aj),) > /2 —€.

@) Z(w), (A))) > 7/2+ .
Theorem 2.33 ([Per II]). Let X be an finite dimensional Alexandrov space, let
U C X be an open subset, and let f be (c,e)-regular at each point of U. If € is
small compared with c, then we have:
(1) f is a topological submersion (see Definition 2237]).
(2) If f is proper in addition, then the fibers of f are MCS-spaces. Hence f is
a fiber bundle over its image.

Here, a metrizable space X is called an n-dimensional MCS-space if any point
p € X has an open neighborhood U and there exists an (n—1)-dimensional compact
MCS-space ¥ such that (U,p) is a pointed homeomorphic to the cone (K(X),0),
where o is the apex of the cone. Here, we regarded the (—1)-dimensional MCS-space
as the empty-set and its cone as the single-point set.

Perelman proved the Stability Theorem:

Theorem 2.34 (Stability Theorem [Per II| (cf. [Kap Stab])). Let X™ be a compact
n-dimensional Alexandrov space with curvature > k. Then there exists 0 > 0 de-
pending on X such that if Y™ is an n-dimensional Alexandrov space with curvature
>k and dgu(X,Y) <6, then Y is homeomorphic to X.
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In addition, let A C X be a compact subset, and let A’ C Y be a compact
subset. Then there exists 6 > 0 depending (X, A) satisfying the following. Suppose
that there is a 6-approximation f :' Y — X such that f(A') C A and f|a is
a d-approxzimation. If t € (0,supda) is a regular value of da, then S(A,t) is
homeomorphic to S(A’,t). Here, we say that t is a reqular value if da is reqular on

S(A,t).

In particular, every point in a finite dimensional Alexandrov space has a cone
neighborhood over its spaces of directions.

Theorem 2.35 ([Per1l]). If an n-dimensional Alezandrov space X" of curvature
> 1 has diameter greater than /2, then ¥ is homeomorphic to a suspension over
an (n — 1)-dimensional Alexandrov space of curvature > 1.

Theorem 2.36 ([Per II|, [Pet Appl], [GP]). If an n-dimensional Alexandrov space
X" of curvature > 1 has radius > w/2, then ¥ is homeomorphic to an n-sphere.

2.5.5. Preliminaries from Siebenmann’s theory in [Sie].

Definition 2.37. A continuous map p : E — X between topological spaces is
called a topological submersion (or called a locally trivial fiber bundle) if for any
y € E there are an open neighborhood U of y in the fiber p~!(p(y)), an open
neighborhood N of p(y) in X, and an open embedding f : U x N — E such that
po f is the projection U x N — N. We call the embedding f : Ux N — E a product
chart about U for p, and the image f(U x N) a product neighborhood around y.

A surjective continuous map p : E — X of topological spaces is called a topo-
logical fiber bundle if there exists an open covering {U,} of X, a family {F,} of
topological spaces, and a family {p, : p~}(Us) — U, X F,} of homeomorphisms
such that proj;; o ¢a = pl,-1(v,) holds for each a. Here, proj;; is the projection
from U, x F, to U,.

A finite dimensional topological space Y is said to be a W(CS-set [Sie, §5] if it
satisfies both (1) and (2):
(1) Y is stratified into topological manifolds; i.e. it has a stratification

YD...DY(T‘)DY(”*DD...DY(*I):®7

such that Y (") — Y(»=1 is a topological n-manifold without boundary.
(2) For each 2 € Y™ — Y (=1 there are a cone C' with a vertex v and a
homeomorphism p : R® x C — Y onto an open neighborhood of z in Y
such that p~1(Y(™) = R x {v}.
From the definition, we can see that an MCS-space is a WCS-set.

Theorem 2.38 (Union Lemma [Sie]). Let p: E — X be a topological submersion
and F = p~Y(xg) the fiber over xg € X. We assume that F is a WCS-space. Let
Ay and As be compact sets in F'. Let @; : U; X N; — E be a product chart about U;
for an open neighborhood U; of A; in F', and i = 1,2. Then there exists a product
chart o : U X N — E about U D Ay U As in F' such that

w1 near Ay x {xo},
g near (A —Uy) x {x0}.

Theorem 2.39 ([Si€]). Let p : E — X be a topological submersion. We assume
that p is proper and all fibers of p are WCS-spaces. Then p is a topological fiber
bundle over p(E).
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We provide the following lemma that will be used in Section

Lemma 2.40. Let f: E — [0,1] be a fiber bundle and the fiber F := f=1(0) be a
WCS-space. Let U C F be an open subset and A C U be a closed subset. Suppose
that ¢ : U x[0,1] — E is a product chart about U for f. Then there exists a product
chart x : F x [0,1] = E such that

X =¢ on AxI0,1].
In particular, E — (A x [0,1]) is homeomorphic to (F — A) x [0, 1].
Proof. We may assume that £ = F x [0,1] and f is the projection onto [0,1]. Let
v : Ux[0,1] = F'x[0,1] be a product chart about U. Using Union Lemma 238 and
the compactness of [0, 1], we will construct an extension of ¢|4x[0,1] to a product
chart defined on F' x [0, 1].

By Union Lemma [Z38 for any ¢ € [0, 1], there exist an open neighborhood Ny

of t in [0,1] and a product chart

v Fx N, » E
such that

w(t)‘Ath = S0|A><Nt~
By the Lebesgue number lemma, there is n € N such that, setting I := [k/n,
(k+1)/n], {Ix}r=0,1,....n—1 is a refinement of an open covering {N¢}+¢(0,1) of [0, 1].
Namely, for k = 0,1,...,n — 1, there is ¢ € [0, 1] such that I}, C Ny, . Let us set

Pk = ) gy,
For t € Iy, let us define a homeomorphism ¢F : F — F by the equality

'(/}k(x7t) = ('(/}f(x)v t)‘
Gluing these local product charts 1%, we construct the required product chart x as
follows. We inductively define a homeomorphism x¥ : F — F by
XY =P for t € Iy,
Xf:q/)fo(d);z/n)*loxﬁ/_nl fort € I,k > 1.
For k=0,1,...,n— 1 and (z,t) € F x I}, we define

X(z,t) = (xf(x), ).
One can easily check that
X =@ on A x [0,1].
Namely, x : F' x [0,1] — E satisfies the conclusion of the lemma. O

2.6. Differentiable structures of Alexandrov spaces. Otsu and Shioya [OS]
proved that any Alexandrov space has a differential structure and a Riemannian
structure in a weak sense.

Definition 2.41 ([Per DC]). Let U C M™ be an open subset of an Alexandrov
space M. A locally Lipschitz function f : U — R is called a DC-function if for any
x € U there exist two (semi-)concave functions g and h on some neighborhood V' of
2 in U such that f = g—hon V. Alocally Lipschitzmap f = (f1,..., fm) : U = R™
is called a DC-map if each f; is a DC-function.

In [KMS] §2.6], the authors formulated a general concept of structure on topo-
logical spaces.
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Definition 2.42 ([KMS]). For an integer n > 0, we consider the family
F={F(U;A)|U C R" is an open subset and A C U a subset }

such that

(i) each F(U;A) is a class of maps from U to R™;
(ii) if A D B, then F(U;A) C F(U; B);
(iii) if f € F(U;A), g€ F(V;B), and f(U) C V, then
gofeF(U; AN f~1(B)).
The following are examples of F = {F(U; A)}.
(Class C1) Let CY(U; A) be the class of maps from U to R"™ which are C'* on A4;
i.e. they are differentiable on A and their derivatives are continuous on A.
(Class DC) Let DC(U; A) be the class of maps from U to R"™ which are DC on
some open subset O C R™ with A C O C U.
Let X be a paracompact Hausdorff space, ¥ C X a subset, and F as above.
We call a pair (U, p) a local chart of X if U is an open subset of X and if ¢ is a

homeomorphism from U to an open subset of R”. A family A = {(U, )} of local
charts of X is called an F-atlas on Y C X if the following (i) and (ii) hold:

(i) Y C U(UW)EA U.
(ii) If two local charts (U, ¢), (V,¢) € A satisfy U NV # (), then

Yvopt e Flp(UNV);o(UNVNY)).

Two F-atlases A and A on Y C X are said to be equivalent if AU A’ is also
an F-atlas on Y C X. We call each equivalent class of F-atlases on Y C X an
F-structure on Y C X.

Assume that Y = X. Then, an F-structure on Y C X is simply called an F-
structure on X. If there is an F-structure on X, then X is a topological manifold.
We call a space equipped with an F-structure an F-manifold. Notice that F-
manifolds for 7 = C! are nothing more than C!-differentiable manifolds in the
usual sense.

Let M™ be an n-dimensional Alexandrov space. Fix a number 6 > 0 with
0 < 1/n. By Theorem [2ZT6] for any x € M — Ss(M), we obtain a local chart (U, @),
U =U(x,r). The family Ag of all the (U, $)’s on M induces:

Theorem 2.43 ([OS]). There exists a C*-structure on M —S(M) C M containing
Ap.

Theorem 2.44 ([Per DC]). There exists a DC-structure on M — Ss(M) C M
containing Ag.

Thus, M — Ss(M) is a DC'-manifold with singular set S(M) in the following

sense.

Definition 2.45 ([KMS] §5]). A paracompact topological manifold V' with a subset
S C V is said to be a DC-manifold with singular set S if V possesses a DC-atlas
A on V which is also a C'-atlas on V — S C V. We say that each local chart
compatible with the atlas A is a DC'-local chart.

Let V' be an another DC'-manifold with singular set S’. A map f:V — V'
is called a DC'-map if for any DC'-local chart (U’,¢’) of V', (f~1(U"),¢ o f)
is a DC'-local chart of V. A homeomorphism f : V — V' is called a DC'-
homeomorphism if f and f~' are DC'-maps.
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Using Otsu’s method [O], Kuwae, Machigashira and Shioya [KMS| proved that
an almost regular Alexandrov space has a smooth approximation by a Riemannian
manifold.

Theorem 2.46 ([KMS]; cf. [O]). For any n € N, there exists a positive number
en > 0 depending only on n satisfying the following: If C' is a compact subset in
an n-dimensional Alexandrov space M with curvature > —1 and it is e-strained
for e < e, then there exist an open neighborhood U(C), a C*°-Riemannian n-
manifold N(C) with C°°-Riemannian metric gn), and a 0(g)-isometric DC*-
homeomorphism f : U(C') — N(C) such that gn(c)(df (v),df (w)) = (v,w) + 6(¢)
for any v,w € X,U(C) and x € U(C). Here, (-,-) is the inner product of T, M.

Remark 2.47. Otsu [OQ] proved this theorem for any Riemannian manifold M with
a lower sectional curvature bound and having small excess.

We will review the proof of Theorem 2.46lin the proof of Theorem [3.2lin Section [3l
It is important and needed in our proof of Theorem

2.7. Generalized Seifert fiber spaces. To describe results obtained in the
present paper we define the notion of a generalized Seifert fiber space.

Definition 2.48. Let M? and X2 be, respectively, a three-dimensional and a
two-dimensional topological orbifold possibly with boundaries. A continuous map
f: M — X is called a generalized Seifert fibration if there exists a family {c,}sex
of subsets of M such that the following properties hold:

e The index set of {c,} is X. Each z € X, f~!(z) = c,.
e Each c, is homeomorphic to a circle or a bounded closed interval. c, are

disjoint and
U ¢y = M.
reX
e For each = € X, there exists a closed neighborhood U, of x such that U,
is homeomorphic to a disk, and putting V,, := f~1(U,), V, satisfies the
following.

(i) If ¢, is topologically a circle, then f|y. : V, — U, is a Seifert fibered
solid torus in the usual sense.

(ii) If ¢, is topologically a bounded closed interval, then there exist home-
omorphisms ¢, : V; — B(pt) and ¢, : U, — K1(S}), which preserve
the structure of circle fibration with singular fiber. Namely, the fol-
lowing diagram commutes:

(Vres) —"= (B(pt),p~(0))

| |

(U x) —=  (Ki(S1),0)
Here, B(pt) = S* x D?/Z, is the topological orbifold defined after
Theorem [[.7] and p is a canonical projection.
e If 0X has a compact component C, then there is a collar neighborhood N
of C'in X such that f|s-1(yy is a usual circle fiber bundle over N.

We say that a three-dimensional topological orbifold M is a generalized Seifert
fiber space over X if there exists a generalized Seifert fibration f : M — X. Each
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fiber f~1(z) = ¢, of f is often called an orbit of M. An orbit c, is called singular if
V. is a usual Seifert solid torus of (u,v)-type with p > 1 or if ¢, is homeomorphic
to an interval.

2.8. Soul Theorem from [SY00] with complete classification. In this sub-
section, we recall the Soul Theorem for open three-dimensional Alexandrov spaces
of non-negative curvature, obtained in [SY00]. Also, we classify the geometry and
topology of open three-dimensional Alexandrov spaces of non-negative curvature
having two-dimensional soul together with some new precise arguments. The Soul
Theorem is very important to determine the topology of a neighborhood around a
singular point in a collapsing three-dimensional Alexandrov space.

Definition 2.49. Let M™ be an n-dimensional non-compact Alexandrov space with
non-negative curvature. For a ray ~ : [0,00) — M in M, we define the Busemann
Junction by, : M — R with respect to 7y as follows:

by(x) = lim d(v(t), z) — ¢

for x € M. Fix a point p € M and define the Busemann function b : M — R with
respect to p by
b(z) := inf b, (x)
¥

for x € M. Here, v runs over all the rays emanating from p. The Busemann
functions b, and b are concave on M.
We denote by C(0) the set of all points attaining the maximum value of b:

C(0):=b"" (mjé}x b).

Since b is concave, C'(0) is an Alexandrov space possibly with boundary of dimension
less than n. If C'(0) has no boundary, we call it a soul of M. Inductively, if C(k),
k > 0, has the non-empty boundary, we define C(k + 1), the set of all points
attaining the maximum value of the distance function distsc ) from the boundary
oC (k):

Ck+1):= diStz;cl*(k)(Ig&’f distoc(x))-

Since distyc (y) is concave on C(k), C(k+1) is also an Alexandrov space of dimension
< dim C(k). Since M has finite dimension, this construction stops, i.e. dC(k) =0
for some k > 0. Then we call such C(k) a soul of M.

Proposition 2.50 ([Per I1]; cf. [Pet_Semil §2]). For any open Alezandrov space M
of mon-negative curvature and its soul S, there is a Sharafutdinov retraction from
M to S. In particular, S is homotopic to M.

2.8.1. Soul Theorem. We recall that a non-compact Alexandrov space without
boundary is called open. In this section, we state the Soul Theorem for open three-
dimensional Alexandrov spaces of non-negative curvature obtained in [SY00]. We
also define examples of open three-dimensional Alexandrov spaces of non-negative
curvature which are not topological manifolds and study those topologies.

First, we shall prove a rigidity result for the case that a soul has codimension
one. This is a generalization of [SY00, Theorem 9.8(2)].

Theorem 2.51. Let M be an n-dimensional open Alexandrov space and let S be
a soul of M. Suppose that dimS = n — 1 and S has a one-normal point. Let
B = B(S,t) be a metric ball around S of radius t > 0. Then, the metric sphere
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S:=0B equipped with the induced intrinsic metric is an Alexandrov space of non-
negative curvature. Also, S has an isometric involution o such that S/o is isometric
to S and M is isometric to S x R/(z,t) ~ (o(x), —t).

Proof. Let us denote by
T M — S

a canonical projection. Namely, for z € M, we set 7(z) € S to be the nearest
point from x in S. We use rigidity facts on the =, referring to [SY00, §9] and
[Y_4-diml, §2], for proving the theorem.

Assertion 2.52. S satisfies the following convexity property: For x,y € S with
|zy| < 2t, any geodesic v between x and y in M is contained in S. In particular, S
with the induced intrinsic metric is an Alexandrov space of non-negative curvature.

Proof of Assertion 252l Since |zy| < 2t, v does not intersect S. From the total
convexity of B, we have v C B. Let us consider a curve 4 := mo~y on S. Let o,
denote a unique ray emanating from %(s) containing 7(s). By [Y_4-diml Proposi-

tion 2.1],
II .= U O

s€[0,]zyl]
is a flatly immersed surface in M. Moving 7 along with II, we obtain a curve ¥
contained in §. This is a lift of 4 via 7 : § — S. Therefore, we obtain L(%) =
L(3) < L(y) = |zy|. Suppose that ~ is not contained in S. From the construction
of 4 and [Y 4-dim| Proposition 2.1], one can show that L(§) < L(y). This is a
contradiction. Therefore, 4 must coincide with ~. ]

Now, we denote by d the induced intrinsic metric on S. Assertion 252 says that
(S d) is an Alexandrov space of non-negative curvature. Let us denote by # : 5 — S
the restriction of m on S. Let Siwo (resp. Sone) denote the set of all two-normal
(resp. one-normal) points in S. We set Siwo 1= 7 (Stwo) and Sope 1= 7 “1(Sone)-
Then, 7 : Siwo — Siwe iS a two-to-one map, and 7 : Sone = Sone is a one-to-one
map.

Let us consider Syeg := S N M;® for a small § > 0, which is open dense in S.
Note that since any one-normal point is an essentially singular point [SYO00], S;eq
is contained in Sgwo. By [Pet Paral, Syeq is convex, and hence, it is connected. We

set Sreg = 77 (Sreg). The restriction

7t Sreg = Streg

is a double covering. We define an involution o on S’reg as the non-trivial deck
transformation of 7 : Sreg — Sreg. By using [Y_4-dim|, Proposition 2.1], we conclude
that o is a local isometry. Hence, there is a continuous extension of o on the whole
S. We denote it by the same notation ¢. Then, ¢ on (S’ , cf) is also a local isometric
involution. We note that o on S’OHe is defined as the identity. From the construction,
o is bljectlve Therefore, o is an isometry on S with respect to d. We now fix the
metric d on S. By construction, S /o and S are isometric to each other.

Let us consider the quotient space N := S x R/(z,s) ~ (o(x), —s), which is
an open Alexandrov space of non-negative curvature. We define ¢ : N — M as
sending [z,t] € N to x € S. By construction, ¢ is an isometry. (]
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Example 2.53 ([SY00, p. 39]). For a non-negatively curved closed Alexandrov sur-
face S and p1,ps...,px € S (k € Z>o), we denote by L(S; k) = L(S;p1,p2--.,Pk)
an open three-dimensional Alexandrov space of non-negative curvature (if it exists)
satisfying the following:

(1) p1, p2,-..,pr are essential singular points in S, and S is isometric to a soul
of L(S; k). Hereafter, S is identified as a soul of L(S; k).

(2) {p1,...,pk} is the set of all topological singular points in L(S; k).

(3) There is a continuous surjection 7 : L(S;k) — S such that for z €
S—{p1,...,pr}, 7 1(x) is the union of two rays emanating from x perpen-
dicular to S; and for z € {p1,...,px}, 7 1(x) is the unique ray emanating
from x perpendicular to S.

(4) The restriction 7 : m=(S—{p1,...,pr}) = S—{p1,...,px} is a line bundle.

Proposition 2.54 ([SY00, Proposition 9.5]; cf. [Y 4-diml, §17]). If k > 1, then any
space L(S;k) is one of L(S%;2), L(P?2) and L(S?;4).

Remark 2.55. There is an error in Proposition 9.5 (and Theorem 9.6) in [SY00].
Actually, a space L(S;1) cannot exist, and a space L(S;2) can have a soul homeo-
morphic to P2. See [Y 4-diml §17].

Proof of Proposition [Z54]. Since k > 1, by Theorem 268 S is homeomorphic to
52 or P2. Moreover, if S ~ 52, then we have k < 4; and if S ~ P2, then k < 2.

We consider the case that S ~ P2?. Suppose that £k = 1. Let p € S be a
unique topological singular point in L(S;1). Let = : L(S;1) — S be a surjection
obtained in Example 253l For a neighborhood B of p in S homeomorphic to D?,
the restriction

n:n Y (B) = B

is fiber-wise isomorphic to 7y : D? x R/Zy — D?/Zy such that p € B corresponds
to the origin of D?/Zy. Here, D? x R/Zy denotes the quotient space of D? x R
by an involution (z,t) — (—x,—t), D?/Zy denotes the quotient space of D? by
an involution x +— —z which is homeomorphic to a disk, and 7y is a canonical
projection g : [z,t] — [z]. In particular, d7—1(B) is homeomorphic to a Mobius
strip S'XR. On the other hand, B’ := S —int B is homeomorphic to M6. Then, the
restriction 7 : 77 1(B’) — B’ is a line bundle over Mé. In particular, it is trivial over
OB'. Namely, we have 97— 1(B’) ~ S x R. This contradicts dr~!(B) ~ S'xR.
Therefore, we obtain that if S ~ P2, then k = 2.

By a gluing argument as above, if S ~ S2, then k = 2 or 4. |

Explicitly, we determine the topology of L(S; k).

Corollary 2.56. L(52;2) is isometric to S? x R/(x,s) ~ (o(z), —s), where S2 is
a sphere of non-negative curvature in the sense of Alexandrov with an isometric
inwvolution o such that 8% /o is isometric to the soul S? of L(52;2).

L(P?;2) is isometric to K? x R/(x,8) ~ (o(x),—s), where K? is a flat Klein
bottle with an isometric involution o such that K?/o is isometric to the soul P? of
L(P?;2).

L(S?:4) is isometric to T?> x R/(x,8) ~ (o(x), —s), where T? is a flat torus with
an isometric involution o such that T? /o is isometric to the soul S* of L(S%;4).

Proof. To prove this, it suffices to determine the topology of a metric sphere around
the soul of any L(S; k). For any L(S; k), we denote by B(S; k) a metric ball around
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S. Let us denote by 7 a canonical projection
m: B(S;k) — S.

Namely, for z € S, w(x) is the nearest point from x in S.

We consider the case that S ~ S? and k = 2. Let p1,ps € S be the topological
singular points of L(5%;2) in S. We divide S into D and Dj such that each D; is a
disk neighborhood of p; and D1 N Dy is homeomorphic to a circle. Then, fori = 1,2,
there is a homeomorphism ¢; : 7= 1(D;) — D? x [-1,1]/(z,s) ~ (—x,—s). The
gluing part 7=1(Dy N Dy) of 7=1(D;) and 7=1(Ds) is homeomorphic to a Mobuis
band M. Since the space D? x [—1,1]/~ is homeomorphic to K;(P?), we obtain
that B(S?;2) = 7#~1(D;1) Un~1(Dy) is homeomorphic to Ki(P?) Unms K1 (P?) (see
Remark below). Then, OB(S5?;2) is homeomorphic to a gluing of two copies
of P2 —int(Mé&) ~ D?. Therefore, dB(S5?;2) ~ S2.

We consider the case that S ~ P? and k = 2. Let p1,p2 € S be the topological
singular points of L(P?;2) in S. We take a disk neighborhood D of {p1,p>} in S.
Let us divide D into Dy and D5 such that each D; is a disk neighborhood of p; and
D1 N Dy is homeomorphic to an interval. Then, 7=!(D; N D) is homeomorphic to
D?. Hence, 771(D) = 7= 1(D;) Ur~1(D3) is homeomorphic to K;(P?)Up: K;(P?)
(see Lemma 261). By Lemma 261l d71(D) is homeomorphic to a Klein bottle.
Since 7 is a non-trivial I-bundle over dD; for ¢ = 1,2, it is a trivial I-bundle over
dD. Then, n=1(0D) ~ S' x I. Let us set A := dB(P?%*2)Nx (D). Since D
has singular points p; and ps of the projection 7, A is connected, and hence A is
homeomorphic to S* x I.

Let us set D' := S — int D which is homeomorphic to M6. Then, 7~1(D’) is
homeomorphic to a total space of an I-bundle over M6, which is M6 x I or Mox 1.
Let us set A’ to be 9B(P?;2) N 7w~ 1(D’). Therefore, if 7=1(D’) ~ Mo x I, then
A’ is a disjoint union of two Mobius bands; and if 771(D’) ~ MoéxI, then A’ is
homeomorphic to S* x I. Then, B(P?;2) = AU A’ is homeomorphic to a Klein
bottle if 771(D’) ~ Mo x I and is homeomorphic to S x IUp S* x I, which is a torus
or a Klein bottle if 771(D’) ~ MéxI. Suppose that B(P?;2) is homeomorphic to
T?. By Theorem [Z5]], there is an involution on 72 having only two fixed points.
This is a contradiction (see [N, Lemma 3]). Therefore, 0B(P?;2) ~ K?.

We consider the case that S ~ S? and k = 4. Let p1,p2,p3,ps € S be all topo-
logical singular points of L(S?;4). Let D and D’ be domains in S homeomorphic to
a disk such that int D (resp. int D’) contains p; and ps (resp. p3 and py), DN D' is
homeomorphic to a circle and S = DUD'. Let us denote B(S?;4)N7~1(D) (resp.
dB(S%4) N7~ Y(D’)) by A (resp. A’). By repeating an argument similar to the
case that L(S; k) = L(P?;2), we obtain that A and A’ are homeomorphic to S x I.
Then, 0B(S?%;4) = AU A’ is homeomorphic to a torus or a Klein bottle. Suppose
that 9B(S?;4) is homeomorphic to K?. By Theorem 2511 there is an involution
on K? having only four fixed points. This is a contradiction (see [N, Lemma 2]).
Therefore, 0B(S5?;4) ~ T?. O

Remark 2.57. Since involutions on closed surfaces are completely classified [N|, the
topology of each L(S;k) is unique.

For any space L(S; k), we denote a metric ball around S in L(S; k) by B(S;k).
The topology of any B(S; k) is as follows.
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Corollary 2.58. B(S?;2) is homeomorphic to S? x [—1,1]/Za, B(P?%;2) is home-
omorphic to K2 x [—1,1]/Zs, and B(S?;4) is homeomorphic to T? x [—1,1]/Zs.
Here, all Zo-actions correspond to ones of Corollary 2.56.

Theorem 2.59 (Soul Theorem (Theorem 9.6 in [SY00])). Let Y be a three-
dimensional open Alexandrov space and S be its soul. Then we have the follow-
mng:
(1) If dim S = 0, then Y is homeomorphic to R3, or the cone K(P?) over the
projective plane P?, or My, which is defined in Example [2
(2) Ifdim S =1, then Y is isometric to a quotient (R x N)/A, where N is an
Alezandrov space with non-negative curvature homeomorphic to R? and A
is an infinite cyclic group. Here, the A-action is diagonal.
(3) If dim S = 2, then Y is isometric to one of the normal bundle N(S) =
L(S;0) over S, L(S;2) and L(S;4).

We will define examples of L(5?;2), L(P?;2) and L(S?;4) in Example 263

Example 2.60 ([SY00, Example 9.3]). Let I" be a group of isometries generated by
v and o on R3. Here, v and o are defined by v(z,y,2) = —(x,%, 2) and o(z,y,2) =
(r+1,y, z). Then we obtain an open non-negatively curved Alexandrov space R3/T.
This space is isometric to M}, in Example

We denote by B(pt) a metric ball B(po, R) around a soul pg of My, = R3/T for
large R > 0. Remark that B(pt) is homeomorphic to S* x D?/(x,v) ~ (Z,—v).
We can check that B(pt) is one of K;(P?)Up:z K1(P?). Here, K1(P?)Up: K1(P?)
denotes the gluing K;(P?) U, K;(P?) of two copies Ki(P?) along domains A;
and Ay homeomorphic to D? contained in 0K;(P?) ~ P? via a homeomorphism
¢ : A; — Ay. We show that the topology of K;(P?)Up: K;(P?) does not depend
on the choice of the gluing map.

Lemma 2.61. For any domains A, and Ay which are homeomorphic to D? con-
tained in OK,(P?) and any homeomorphism o : Ay — A, there is a homeomor-
phism

@ K1(P?) U, K1(P?) — K1(P?) Uig K1(P?).
Here, id : Ay — Ag is the identity of a domain Ay which is homeomorphic to D?
contained in OK,(P?). In particular, any such gluing is homeomorphic to B(pt).

Proof. Let X;, X5 and Y7 = Y5 be spaces homeomorphic to K, (PQ). Let us take
domains A; C 0X;, Ay C 0Xs and Ag C 9Y; = 3Ys which are homeomorphic to
D2. Let us take any homeomorphism ¢ : A; — As.

Now let us fix a homeomorphism ¢ : A; — Ag. Then there is a homeomorphism
p1 : 0X1 — 0Y7 which is an extension of ¢;. By using the cone structures of X;
and Y7, we obtain a homeomorphism ¢; : X; — Y; which is an extension of ;.
Let us set @9 := @1 0 30_1 : As — Ap. By an argument similar to the above, we
obtain a homeomorphism @9 : X9 — Y5 which is an extension of ¢s. We define a
map ¢ : X1 Uy Xo = Y Uja, Y2 by

B @1(17) iffEEXl,
SD(:I: N @2(%) if z € Xs.

This map is well-defined and a homeomorphism. O
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Remark 2.62. We define a space K1 (P?)Uys K1 (P?) in a way similar to K (P?)Upe
K1(P?). Let us consider domains Ay, Ay C 0K;(P?) ~ P? which are homeomor-
phic to a Mobius band Mo, and take a homeomorphism ¢ : A3 — As. Then,
we denote Ki(P?) U, K;(P?) by the gluing K;(P?) Ums K1 (P?) for some glu-
ing map ¢. By an argument similar to the proof of Lemma 26Tl the topology of
K1 (P?)Uys K1 (P?) does not depend on the choice of the gluing map. We can show
that any such gluing is homeomorphic to S? x [~1,1]/(v,t) ~ (o(v), —t). Here, S>
is regarded as {v = (z,y,2) € R? | [v] = 1} and o is an involution defined as
o:(z,y,2) = (—x,—y, 2). Further, it is homeomorphic to B(P?;2) (see Corollary

K1 (P?) Uy K1 (P?) denotes the gluing of two copies of K;(P?) via a homeomor-
phism on 9K (P?). This space has the same topology as K (P?)U;q K1(P?), where
id is the identity on 9K (P?), which is homeomorphic to the suspension X (P?) over
P2. The proof is done by using the cone structure as in the proof of Lemma 2611

Example 2.63. We will define open Alexandrov spaces L, and L, as follows.
Later, we show that Ly, is isometric to an L(S; k) for k = 2,4.
Recall that My is defined as

My == S x R?/(z,y) ~(z, —y)
in Example We consider a closed domain M of M as
M, = 8" x [-£,0] x R/«
for some £ > 0. Then, M, is a convex subset of My, and hence it is an Alexandrov
space of non-negative curvature with boundary oM’, = S! x R.

pt —
We denote by L4 one of the open Alexandrov spaces of non-negative curvature

defined as
Ly(p) = M;/)t Ue M;/)t

for an isometry ¢ on OM]. Here, we use the following notation: For Alexandrov
spaces A and A’ whose boundaries are isometric to each other in the induced inner
metric with an isometry ¢ : 04 — 0A’, AU, A’ denotes the gluing of A and A’ via

®.
We will show that Ly is L(S?;4) (Lemma [2.64]).

Let Us,; be the Alexandrov space defined by

Usy =S x R?/(z,y) ﬁ(—x, —y).
Let us set

Uy i=5"x [-£,0] xR/B C Usp
which is a convex subset of Us 1, and hence it is an Alexandrov space of non-negative
curvature with boundary oUs ; = S* xR. Let us set S(Uj ;) := S' x [, 4] x {0} /8.
Note that S(Us ;) is isometric to a Mobius band M6 and Us ; is isomorphic to an
R-bundle over S(Uj ;).

We define open Alexandrov spaces Lg 1, Lo 2 and Lo 3 of non-negative curvature

as

Lo :=Los(p) = M{)t Uy, Ué)l,
Ly := Laa(p) = M}, U, D? x R, and
Lo := Las(p) = M}, U, M6 x R.
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Here, ¢ denotes a gluing isometry between the corresponding boundaries, D? de-
notes a two-disk of non-negative curvature, and Mo is a flat Mobius band.
Let us define an Alexandrov space A of non-negative curvature

A:=[—a,a] x [-b,b] x R/(v, ) ~ (—v,—5).

Here, v € [—a,a] x [~b,b] and s € R. The boundary dA4 is isometric to S x R. We
define an open Alexandrov space L; 4 of non-negative curvature as

Loy =Loa(p) =AU, A

for some isometry p on JA.
We will prove that Lo and Lo g are L(P?2) and Las and Loy are L(S%;2)

(Lemma [Z65]).

From now on throughout this paper, we denote by Ly one of Ly 1, La2, Lo 3 and
Loy.

Lemma 2.64. Ly is L(S%4).

Proof. Recall that Ly = Ly(p) = M}, U, M],. We identify OM/ as S* x R via an
isometry [, £, 5] = [§, s]. The isometry ¢ : My, — OM; is written as

l&: 48] = [£(€): €, 9(s)]
for some isometries f on S' and g on R. Then, g(s) = (£1) - s + g(0).

Let us define E := [—¢,¢] x R/(s,t) ~ (—s,—t). Obviously, there is a canonical
projection m : M}, — E defined by [¢,s,t] — [s,t]. Here, £ € S*, s € [/, (] and
t € R. The map 7 is a line bundle over E — {[0,0]}.

For a € R, let us define S| (a) C My, as

Shi(a) == ' x {(t,at/0) |t € [-£,0]} Jo.

Spi(a) is homeomorphic to a disk. Then, by using the fibration 7 : M} — E, we
obtain that M is homotopic to S} (a) for any a € R.

By choosing a with respect to g(0), we obtain that L is homotopic to the gluing
57 (a)Us S} (—a) which is homeomorphic to S2. Thus, a soul of Ly is homeomorphic
to a sphere. Since M;In has only two topological singular points in its interior, Ly
has only four topological singular points. Therefore, Ly is L(S?;4). |

Lemma 2.65. Lo and Lo are L(P%2), and Ly and Lo 4 are L(S?;2).

Proof. We will use the same notation as in the proof of Lemma

Let us consider Ly 1 = Lo 1(p) = M}, U, Us 1. Recall that Uj ; C Us; is isomor-
phic to a line bundle over S(U) ), where S(Uj ;) is a subset of Uj ; homeomorphic
to M6. By using the bundle structure of Usa ‘and the fibration 711, we obtain that
Ly, is homotopic to the gluing S}, Us S(Us ;), which is homeomorphic to P?. Since
L, 1 has only two topological singular points, it follows that Lo ; is L(P?;1).

Let us take Ly o = Lo 2(p) = M U, D? xR. By using the fibration 7, we obtain
that Ls » is homotopic to the gluing S} (a)Us D? for some a, which is homeomorphic
to S2. Also, Ly has only two topological singular points. This implies that Lo o
is L(S%2).

Let us take Ly 3 = La3(p) = M}, U, M6 x R. By using 7, we obtain that Lg 3
is homotopic to the gluing S}’jt(a) Ug Mo for some a, which is homeomorphic to P2.
Since Ls 3 has only two topological singular points, it follows that Lo 3 is L(P?;2).
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Let us take Loy = Loa(p) = AU, A. Recall that A = [—a,a] X [—b,b] x
R/(x,y,s) ~ (—z,—y, —s). Let us consider a subset S’ := [—a,a] x [=b,b] x {0}/ ~
of A, which is homeomorphic to a disk. Let us set E := [—b,b]xR/(y, s) ~ (—y, —s).

There is a canonical projection 77’ : A — E defined by 7'([z,y, s]) = [y, s]. By using
it, we obtain that L 4 is homotopic to S'Us S’, which is homeomorphic to S?. Since
Ls 4 has only two topological singular points, it follows that Lo 4 is L(5%;2). O

2.9. Classification of Alexandrov surfaces from [SY(00]. We recall a result for
a classification of Alexandrov surfaces by quoting [SY00].

Proposition 2.66 (The Gauss-Bonnet Theorem [SY00, Proposition 14.1]). If X
is a compact Alexandrov surface, then we have

w(X) + k(0X) = 2mx(X).

Proposition 2.67 (The Cohn-Vossen Theorem [SY00, Proposition 14.2]). If X is
a non-compact Alexandrov surface, then we have

2x(X) — mx(0X) —w(X) — k(0X) > 0.

Theorem 2.68 ([SY0Q, Corollary 14.4]). Let X be a non-negatively curved Alexan-
drov surface. Then, the following hold:
(1) X is homeomorphic to either R?, R>o x R, 52, P%2, D? or isometric to
[0,0] xR, [0,0] x S*(r), Rso x S*(r), Rx SY(r), Rx SY(r)/Za, a flat torus,
or a flat Klein bottle for some £,r > 0.
(2) int X contains at most four essential singular points, and denoting by n the
number of essential singular points in int X, we have the following for some
£r > 0.
(a) If n > 1, X is either homeomorphic to R?, S?, P?, D? or isometric
to dbl (Rzo x Rz0) N {(z,y) |y < h}.
(b) Ifn>2, X is either homeomorphic to S? or isometric to dbl (Rsg x
0, ), dbl (Rso x [0, h]) N {(z,y) |z < £} or dbL([0,€] x [0, h])/Zs.
(c) Ifn >3, then X is homeomorphic to S*.
(d) If n =4, X is isometric to AUy B, where A and B are isometric to
dbl ([0, £]x[0,00))N{(x, y) |y < a} and dbI ([0, £]x[0,00))N{(z,y) [y <
b} for some a,b > 0, respectively, and ¢ : 0A — OB is some isometry.

2.10. A fundamental observation. In this subsection, we prove fundamental
propositions on the sets of topologically singular points of Alexandrov spaces.

First, we note the following proposition on the number of topologically singular
points of a three-dimensional closed Alexandrov space. Let us consider a (2n + 1)-
dimensional manifold X such that its boundary X is homeomorphic to the disjoint
union | |I*, P27 of the projective spaces. Then we see that m is even. Indeed, we
consider the double dbl(X) and its Euler number:

0 = x(dbl(X)) = 2x(X) — x(0X) = 2x(X) —m.
Proposition 2.69. Let M be a three-dimensional closed Alexandrov space. Then
the number of topologically singular points of M is even.
Proof. Since M is compact, Siop(M) is a finite set. By Theorem [Z34] there exists
r > 0 such that for any p € Siop(M) we have (B(p,r),p) ~ (K1(P?),0). Therefore,

My :=M — U U(p,r)
PEStop (M)
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is a manifold with boundary 0My = UpeSmP(M) P2, By the above argument,
#Stop (M) is even. O

We also prepare the following proposition.

Proposition 2.70. Let (M;,p;) be a sequence of n-dimensional pointed Alexandrov
spaces of curvature > —1 converging to (X,p). If diam¥, > w/2, then X, is
homeomorphic to a suspension over an Alexandrov space of curvature > 1, for
large i.

Proof. Suppose that the conclusion fails. Then we have some sequence { M} such
that (M;, p;) converges to (X, p) and each X,, does not have topological suspension
structure over any Alexandrov space of curvature > 1. It follows from Theorem
that diam (X,,) < 7/2. The convergence of spaces of directions is lower semi-
continuous:

liminf ¥, > X,.

11— 00

Then we have diam (X,) < 7/2. This is a contradiction. O

3. SMOOTH APPROXIMATIONS AND FLOW ARGUMENTS

3.1. Flow Theorem.
A bijective map f : X — Y between metric spaces is called bi-Lipschitz if both
f and f~1 are Lipschitz.

Definition 3.1. Let M be a topological space. A continuous map ® : M xR — M
is called a flow if it satisfies

®(z,0) =z,
O(z, s +t) = P(P(x,s),t)
for any x € M and s,t € R. Remark that, for each ¢t € R, the map
O, =D(,t): M —> M

has the inverse map ®_,.

Let M be a metric space. If a flow ® is a Lipschitz map from M x R to M,
then we call it a Lipschitz flow. Remark that for any Lipschitz flow ®, ®(-,t) is
bi-Lipschitz for each t € R.

By using the proof of Theorem [Z.46], we obtain the following theorem. This is a
main tool for the proof of our results throughout the present paper.

Theorem 3.2 (Flow Theorem). For any n € N, there exists a positive number
en depending only on n satisfying the following: Let C' be a compact subset and S
be a closed subset in an n-dimensional Alexandrov space M with curvature > —1.
Suppose that C NS = () and C is e-strained and distg is (1 — §)-regular on C for
6 >0, where 0 < ¢ < g, and § is smaller than some constant. Then there exist
a neighborhood U(C) of C and a Lipschitz flow ® : M x R — M satisfying the
following:

(i) For any x € U(C), putting I, := {t € R|®(x,t) € U(C)}, ®(z,t) is a

5V + 0(¢)-isometric embedding in t € I,,.
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(it) The speed with which ® leaves S is almost one. Namely,
a
dt

at any x € U(C).

distg o ®(x,t) > 1 — 5V6 — 0(e)
t=0+

(3.1)

Proof of Theorem 3.2l To prove this, we must remember the proof of Theorem 2.40]
in reference to [KMS] and [O].
For a while, x denotes an arbitrary point in C. We set

Vdistg
==X, M.
’U(.T) ‘Vdi8t5| € e

Since dg is (1 — d)-regular, we have
(3.2) (distg)(v(x)) = —cos £(S.,v(x)) > 1 — 4.
We fix a point ¢(z) € S such that
|zq(z)| = [S].
Then, by [B.2]), we have
Lg(@),0(@)) > LS, 0(@)) > 7 — 8.

Here, §' := 7 — cos™ (=1 + d). Note that lims_,o \‘}—/g = ﬁ

We put £ := min{e-str.rad (C),d(S,C)}. We fix positive numbers s and ¢ with
s € t < £. Take a maximal 0.2s-net {z;|j = 1,...,N} of C. Fix any j €
{1,..., N}. We take e-strainer {¢j' | = £1,...,£n} at z; of length > £. We may
assume that {g§'} satisfies the following:
(3.3) & = o(z;).

Since t < ¢, {q'} is also 0(e)-strainer at any = € B(z;, 10t). It follows from s <t
and [Y convli Lemma 1.9] that

(3.4) 25wy — Zqfwy| < 0(c)

for any « € B(z;,s) and y € B(z, s).
We denote by E; the standard n-dimensional Euclidean space. Define a map

fi = (fj)az1 : B(z;,10t) — E;
by

(3.5) £y = H"(B(lq]?t7 5 /ZEB(q?g()y’ z) —d(zj,z) dH" (2)

where ¢’ < e. This map is a 0(g)-almost isometric DC!-homeomorphism, which is
actually a DC'-coordinate system.

Lemma 3.3 ([O, Lemma 5]). There is an isometry Ff : By, — Ej satisfying the
following:

(3.6) [EF o fi(y) = fi(y)] < 0(e)s,

(3.7) |dE} o dfi,(€) — df; (€)] < 6(e)

for any j and k, and y € B(x;,s) N B(xg,s) and £ € .
Remark that each f; has the directional derivative df;.
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Proof of Lemma [33. We first recall how to define F}“’s. The property @B.0) is
proved in the same way to the original proof of [O, Lemma 5] in our situation. We

only prove [B7)).
Fix any j and k. For a =1,...,n, take yi € zxq, * and y, * € x1q; such that

lzryk| = |lzry, | = s.
Then we have
(Fe W), Fr(yR)) = %0ap + 0(c, 5/L)

forall o, 8 =1,...,n. Here, (-,-) is the standard inner product on Ej. Since s < £,
0(e,s/l) = 0(g). Then, we have

(i) — sei| < 0(e).
Here, {ef}7_; is an o.n.b on Ej. In a similar way, we have
|fr(y, @) + se| < 0(e).
We define vectors v, w* € E; (¢ =1,...,n) by

1
o = {00 — i)}
Then, we have
(W, vP) =605 + 0(e).

Then, {v,} is an almost orthonormal basis. By Schmidt’s orthogonalization we
obtain an orthonormal basis {€,} of E; such that

|€a — val| < 6(e).

We now define an isometry F f : B, — E; by changing the orthonormal basis
and the translation:

Ff(v) = fi(ze) + D (v,€f)éan
a=1
Then, we have

Ff (fu(2)) = f(x) + s9(0(e))
for all z € B(z;,s). Here, ¥(c) is a vector whose norm is less than or equal to |c|.
We prove [B1). For any y € B(x;,s) N B(xy,s) and £ € ¥, by Lemma [Z17]
there exists z € M such that
(3.8) lyz| =t and Z(,1;) = 0(e)-
Then, we have
Zq5yz = £((¢5), ') + 0(s/t).
Since s < t, we have 0(s/t) = (). Therefore,
(3.9) 417 = FrE B(lq;,’g,)) / 2 L O )
(3.10) = —cos Zq;‘yz +6(e).



COLLAPSING THREE-DIMENSIONAL ALEXANDROV SPACES 2371

On the other hand,

(3.11) dFF o dfy(€) = AP} (= cos Za3y2),_, ) +(0(e))
(3.12) = Z — cos quo‘yz < €o +U(0(¢)).
Therefore, we have (B7). O

Set V; := B(0,0.4s) C E; for all j.
Next, we perturb {F f } to a family {F ]k} satisfying the following.

Lemma 3.4 ([O) Lemma 6]). For any j and k with d(z;,xx) < 0.9s, there exists
a 0(g)-almost isometric C*° map FJZC : Vi = Ej satisfying the following:

(3.13) FJJ =1id on E; and

(3.14) F;(v) = Ff o Fl(v)

for any j and k with d(z;,z) < 0.9s and v € V; N EF(Vi) N FlJ(VJ)

Moreover, we can obtain this perturbed {Ff} also satisfying B.0) and B1). That
is, we have

(3.15) [EF o frly) = fi(y)] < 6(e)s,

(3.16) |dE} o dfie(€) — df;(€)] < 0(e)

for any j and k, and y € B(x;,s) N B(xg,s) and £ € .

Proof. We only review the first step of construction of F' jk ’s by induction referring
to the proof of [O].

Let us first review how to construct Ff’s. Let ¢ : [0,00) — [0,00) be a C°°-
function such that

¢=1on[0,1/2],
¢ =0on [l,00), and
—-4<¢ <0
Set
¥;(v) = ¢(|v]/0.8s)
for v € Vj. A
We set F! = F} and F{ = (F})~!, and define F? : U — R" for j > 2 by
F}(v) = 1 0 F{(v) - F} 0 Ff(0) + (1 = 41 0 F{ (v)) - F} (0)
for v € V5. By construction, F’ 2 is smooth and satisfies (3.15) and (3.16)).
For v € V5, we have
¢10 FP(v) = 1+ 0(e)[o],
ld(¢1 0 FF)llor = 6(e).
Therefore, we have, for any v € Vo and w € T, Es with |w| =1,
AF2(w) = d(F} o F2)(w) +0(2)
— d(F! o F2)(w) + 0(c)
= dsz(w) + 6(e).
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Thus, we have
2 2
|dF; — dF3| < 6(¢)
at any v € V5.
Therefore, for a segment c : [0, ty] — V2 between v and y, we have

|F32(v) - F]2(w)| =

to
F2
/0 dF; (c’(t))dt’ > 0.9|v — w|.

Thus, F ]-2 is injective. ([l

By the chain rule (.I3), an equivalence relation ~ on the disjoint union | |; V;
is defined in the following natural way: V; sy ~y' € V), <— F]k (¥') =y. Set
N := ||V, /~. We denote by 7 the projection

N
7T2|_|Vj—)N.

Jj=1

We denote by f/j := 7(V;) the subset of N corresponding to V}, and by 7; the
restriction of m

mi Vi — f/j
We define f; := 7rj_1. Then N is a C*-manifold with atlas {(V}, f;)};, and Ff :
[t(VienVj) = f;(Vi NV;) is the associate transformation.
Define maps fU) : B(z;,s) = E; (j=1,...,N) by
(@) = fil2),
[ (@) = gro [N () Fy o fO (@) + (1= 1o [V (@) folw),

Set V; := fW~1(V;). Then we have
Nk gk
) = FFo )
on V; NVj. Indeed, for instance, £ = Ff o () on B; N By. For the general case,

we refer to [O pp. 1272-1273]. Set U := Uj Vj A homeomorphism f: U — N is

defined to be the inductive limit of 7o ().
By [0 Lemma 8], we obtain the following properties of f):

(3.17) Ifi(@) — f9(2)] < O(e)s,
(3.18) |df; (&) — df9(€)] < ()

for all v € B(z;,0.4s) and § € ¥;.
Let {x;}; be a smooth partition of unity such that supp (x;) C V;. The desired
Riemannian metric gy on N is defined by

(3.19) (9N)a (v, w) := ZX;‘ (@)(df;(v), dfj(w))

for any v € N and v,w € T, N.
Up to here, we reviewed the construction of a smooth approximation f: U — N
by [KMS] (and [O]). Next, we construct the desired flow.
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We first remark that

Lemma 3.5. For each j, f@)—1: Vi — VJ is differentiable. Hence, f and f=1 are
also differentiable.

Proof. Since fU) is differentiable, for any scale (o), the following diagram commutes:

(77) " L2

J

) V),

ﬁ(D)J, lp(o)

.M —— T,E
do £

where y := fU)(z) and p{® and p(®) are canonical isometries. We will omit the
symbol (0) to write p:= p{®) and p := p(°).

Since fU) is 0(e)-isometric, (f(j))io)and (f(j)—l);‘)) are also. We define a map
A:TyE; — T, M by

. (0)
A= po (fO)-1 op L.
p (f )y P

Then we have

Aodyf9 =idg, ur,

da;f(J) O A == idTij .
Namely, A = (dm f (3‘))71 is determined independently of the choice of (0). By its
construction, A = d,(f)~1) is well-defined. Thus ()~ is differentiable.

Since f is the composition of differentiable map f) and smooth map m;, fand
f~1 are also differentiable. |

Set y; 1= y;-rl. Remark that y; can be taken to satisfy the following:
|zjy5] = ¢,
(3.20) R /
LSzy; > LSzxy; > —§ —0(g,s/t)

for all z € B(zj, s).
Now, let us forget the construction of f; above. We will use the following nota-
tion:

(3.21) fj = fu.
We set
Yi(z) =TV € 8, M,
Fiwh = fi@)
Z; =
= 1~ @)

€ E

for all z € B(zj, s).
We recall that f; is 0(¢)-isometric on B(z;,t). It follows from (BI0) that we
have

(3.22) df;(Y;(x)) = Z;(x) + 7(6(c))
for any = € B(x;,0.4s).
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Since
Aw(5’7}/j) + Lx(S/, Yk) + 4:E(Yja Yk) < 2m,
we have
Z(Yj(z), Yi(z)) < 26"+ 6(e)
for all z € B(z;,s) N B(zk, s). Then, we have
d(Y;,Y3)? < 2(1 — cos(28" + 6(¢)))
<20 +0(e).

Therefore, we obtain
(3.23) df; (Yi(2)) = df; (Vi (z)) + 6(v/20' + 6(e))
(3.24) = Z;(x) + T(V26' 4 6(¢)).

Note that Z; is smooth on V; C E;. We define a smooth vector field Wj on
V; C N by

We next prove the following.
Lemma 3.6. For any x € f/j N Vi, we have
[W;(x) — Wi(x)|n < 4V25" +6(e).
Proof. At first, we see

N
W7, — Wl = 3 e [afe (1 74|
/=1

E,

2

I
] =

xe |dF} (Z;) - dFE(2)

=1 Br
By ([B:24]), we have
AF} (Zy) = dFF (dfi(Yr)) + 9(0(c))
= dfe(Yi) + 9(0())
= 7y + (228 + 6(¢)).
Therefore, Lemma is proved. ([

We next define a smooth vector field W on N by

N
(3.25) W)= 3 x5) Wi (@),
j=1
By Lemma 3.6 we have
W =Wl = > xe We =W,
¢

<Y xelWe = Wl < 4V28' 4 6(e)
4
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We consider an integral flow ® of W, namely,
dd
—(x,t
dt (%)
We now define a flow ® on U by
Oz, 1) = fH(D(f (), 1))
Lemma 3.7. The conclusion (ii) of Theorem holds:

= W(P(z,t)).

d
= distgo ®(z,t) > 1 —5V5 — 6(e),
dt|—o4

(ds) (W (%)) > 1 —5V6 —0(e)
forallxz e U.
Proof. By Lemma [35] f is differentiable. Therefore, the flow curve
O(x,-): I, - U
is differentiable for any « € U. Then x € V; for some j. Then, we have
% t:f)ls o ®(z,t) = (dgo f) (%f o @(x,t))

= (ds o ) (W(f(@) = (s o ;1) o df; (W)

(%of)%dﬁmf+%fwy+ﬂ)n

— (ds o [V (Z; + 4355+ 6(e))
=«mo@ Y (df;(Yy) + 4vV26(8" + 6(e)))
> dis(Y;) — 4v28" — 6(¢)
>1—0—4V25 —0(e)
>1—5V6—0(e).

O

Lemma 3.8. The conclusion (i) of Theorem B2 holds: For any x € U, ®(x,t) is
a 5V/8 + 0(e)-isometric embedding in t € I,. Here, I, := {t € R|®(x,t) € U}.

Proof. By the construction of W, we have [WW| < 14 6(¢). Indeed, for any t,t' € I,
with ¢ < t/, we obtain

Then we have

d(®(,t), ®(x,t)  |B(x,t'), D, 1)] .\@(f(:v)vt’)@(f(w),t)\

vt B(f(2), ), B(f(x).)] vt
< 1+0(e).
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By Lemma [3.7, for ¢t < ¢’ in I, we obtain
d(®(z,t"), ®(x,t)) > d(S,®(x,t")) — d(S, ®(z,t))
-/ (ds) (W)ds > (1 — 55 — 0(2) (1 — 1)
t
This completes the proof of Lemma 3.8 |
Combining Lemmas B.8 and B, we obtain the conclusions of Theorem a

Definition 3.9. Let M be an Alexandrov space, f : M — R be a Lipschitz function
and ® : M x R — M be a Lipschitz flow. Let M’ be a subset of M. We say that
® is gradient-like for f on M’ if there exists a constant ¢ > 0 such that for any

x € M’ we have
liminf [(@(,1) — f(=) > c.
t—0 t

We denote by
®hfon M

this situation.

In this notation, we obtained in Theorem a gradient-like flow ® for distg on
U(C) with a constant ¢ = 1 — 5v/§ — (¢).

3.2. Flow and fibration. We will find a nice relation between Fibration Theorems
2.24] and 2.25] and Flow Theorem We first recall an important property of
Yamaguchi’s fibration.

Proposition 3.10 (cf. Lemma 4.6 in [Y convl]). Let M and X be Alexandrov
spaces and 7 : M — X be a 0(9,€)-Lipschitz submersion as in Theorem 224 Let
(0) = () be an arbitrary scale. We denote by H, a set of horizontal directions to
the fiber 7= 1(n(z)) at x. Then for any x € M, the restriction of the blow-up

7T3(co) o exp;(;’) H, — x

w(x)

satisfies the following: For any Y, Z € H,, we have
Hﬂ'a(co) oexpl?(Y), 7l o expggo)(Z)’ — 1Y, Z\‘ < 0(d,¢).

Here, the set of horizontal directions is defined in [Y convi §4] as

Hy = {{ €y, ||zy| = o}
for some small number ¢ > 0 with ¢ < o.
Proof of Proposition 310, We will use the following notation: 6 denotes a variable

constant 0(d,e). We set & = w(x) for any x € M.
Let us take Y € H,. By the definition of H,, there is a point y € M such that

2yl > 0, £(y/,Y) < 6.
Then, by Lemma 4.6 in [Y conv], for any Y € ' C ;X , we have

7w (v (£), v (8]

<40
t

(3.26)
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for any small ¢ > 0. Here, 7¢ denotes the geodesic from 7¢(0) tangent to £ € X ().
Let (0) = (&;) be an arbitrary scale. From (3.26), we have

3.97 7 0 expl® (Y), ex ©) (V| = lim ™ (vy (€4)), vy (€3))| <0
(3.27) |ma” © expy p

I -,
We next take any Z € H,. Then there exists z € M such that
lzz| >0, £L(Z,Z) < 6.
Then, for any Z € 2’ C ¥z X, we have
(3.28) |7 o expl®(Z), expl”(Z)| < 6.
On the other hand, by Lemma 4.7 in [Y_conv], we have
|Z(Y,2) - Z(Y,Z)| < 6.
It follows together with (3:26]), (B27) and (328) that we obtain
159 0 expl® (¥), 72 0 exp®(2)] - |Y, Z]| < 6.

This completes the proof. O

Theorem 3.11. For any n € N, there is a positive number ¢ = €, satisfy-
ing the following: Let M™ be an n-dimensional Alexandrov space without bound-
ary with curvature > —1 and p be a point of M™. Let X"~ be an (n — 1)-
dimensional non-negatively curved Alerandrov space. Assume that X is given by
the Euclidean cone K(X) over a closed Riemannian manifold ¥ of curvature > 1.
Ifdeu (M, p), (X,po)) < €, where pg is the origin of the cone X, then there exists a
small r = r, > 0 such that a metric sphere B(p,r) is homeomorphic to an S*-fiber
bundle over X.

Proof. dar((M,p), (X,po)) < € implies dgu (B (p,1/¢), Bx(po,1/¢)) < e. Take
a small number r > 0 such that r < 1 « 1/e. Since ¥ is a closed Riemannian
manifold, A(po;r/2,2) is a Riemannian manifold ~ ¥ x [r/2,2] with boundary
~ Y x {r/2,2}.

Let C be an annulus C := A(p;r/2,2). Since dgu(C, A(po;r/2,2)) < ¢, C'is
(n — 1,e)-strained. Since M has no boundary points, Theorem implies that
C is (n,0(g))-strained. Therefore by Theorem [Z25] there exists a 6(¢)-Lipschitz
submersion 7 : My — A(pg;r/2,2) which is actually an S'-fiber bundle. Here, M;
is some closed domain in M near C' containing A(p;r,1).

Set S := 7 Y(0B(po,r)). Let ® = ®(z,t) be a gradient-like flow for dist,
obtained by Theorem on an annulus around p.

We are going to prove

Lemma 3.12. The flow ® is gradient-like for distp, o m. Namely, we obtain the
following:

(3.29) lim inf dist,,, o o ®(x,t) — disty, o 7(z)
. t—0+ t

>1—10(¢g)
for any x € M.

If it is proved, then S is homeomorphic to dB(p,r) by a standard flow argument.
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Proof of Lemma BI2l Let us set Z := w(z) for any x € M;. We set

_ 4
Tdt

By Theorem (ii), we have

O(x,t) € T, M.
t=0+

V = Vdist,
and |V] = 1. Here, A = A’ means that d(4, A’) < 0(¢).
We set £ := V/|V| and recall that § € H,. It follows together with ([3.27) that
there exists ¢ € M with |zg| > o such that any £ € ¢ C Xz X satisfies

7@ o expl?(€) = expl” (€)

for each scale (o).
Let us take n € p), C 3, M. Then we have

Z(&m) > —0(¢).
Since n € H,, there exists 77 € 3z X such that
7 o expl® () = expéo)(
By Proposition B.I0] we obtain
(3.30) Z(&,7) > 7 —0(e).
On the other hand, from Lemma 4.3 in [Y conv], 7 is 6(¢)-close to an e-
approximation from (M, p) to (X, po). This implies

)

Zqipy > — 0(e).
We take an arbitrary direction ¢ € ph C ¥z X. Then, we have
(3.31) 2(¢,€) > 7 —6(e).
By 330) and B31]), we have
€ = Vdisty, .

Summarizing the above arguments, we obtain

d B(z, ;) — d(po, T
i 00X = AP0T) _ i, o (expl?) o w0 expl?) (V)
w i
= (distp, ) (¢)
= (distp, )% (Vdisty,)
=1
It follows from Lemma [2.14] that we obtain (B.29). O

As mentioned above, by LemmaBI2] we have B(p,r) ~ S. This completes the
proof of Theorem B.111 a

Remark 3.13. Kapovitch proved a statement similar to Theorem [3.IT]for collapsing
Riemannian manifolds M ([Kap Rest], Theorem 7.1]).

Perelman and Petrunin proved the existence and uniqueness of a gradient flow of
any semiconcave function, especially of any distance function ([Pet QG|, [PP QG]).
Note that the gradient “flow” is not a flow in the sense of Definition B.I] because
the gradient flow is defined on M x [0, c0).
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Remark 3.14. One might ask why we do not use the gradient flow of a distance
function to prove Theorem BIIl The reason is that the gradient flow may not be
injective.

For instance, we consider the cone X = K(S}) over a circle S with length
0 < 2m. X is expressed by the quotient of a set

Xo={re" €C|r>0,t€]0,0]}

by a relation r ~ 7e? for r > 0. By [re’!] € X we denote the equivalent class of
rett € Xo. We fix 7 > 0 and take p := re®/2. Let a > 0 be a sufficiently small
number such that S, N 90Xy = 0. Here, we denote by S, the circle centered at p
with radius a in C. We take b with a < b < r such that S, N 9Xy # () and take
X1, oo with 21 # x2 in Sy N 0Xy near p. Then [x1] = [z2] in X. We put points
y; € pr; NS, in Xo and set geodesics v; := [y;][z;] in X for ¢ = 1,2. In particular,
7: (i = 1,2) are the gradient curves for dj, in X. This case says that dj,-flow does
not injectively send [S,] := {[z] € X |z € S,} to [Sy].

3.3. Flow arguments.

Theorem 3.15. For a positive integer n, there is a positive constant e, satisfying
the following: Let M™ be an n-dimensional Alexandrov space with curvature > —1.
Let Ay, Ao, ..., Ay C M be closed subsets and C' C M be an (n, €)-strained compact
subset with A;NC =0 for alli =1,2,...,m and fore < &,. Suppose the following:
For each x € C and 1 < i <m, there is a point w = w(x) € M such that

(3.32) Zo(ALw') > 7 — 6.

Here, c(< w/2) is a positive constant bigger than some constant. Then there exist
an open neighborhood U of C' and a Lipschitz flow ® on M such that

d

(3.33) i

da,(®(x,t)) >1—55 —0(c)
0+

foralli=1,... mandxz € U.
Proof. We can show the following: There exists a precompact open neighborhood U

of C such that each x € U is (n, 0(¢g))-strained, and there is a point w = w(z) € M
such that

(3.34) lzw(z)| > £,
(3.35) ZAgyw(z) > 71— 6 —0(e),
forall y € B(z,r) and i = 1,...,m. Here, r and ¢ are positive numbers with r < /.

Since U is (n, 0(g))-strained, there is a smooth approximation f : U — N which
is a 6(e)-isometry for some Riemannian manifold N. By an argument similar to the
proof of Theorem B2} we can construct a smooth vector field W and its integral
flow ® on N such that

4 dist4, o f7H(®(2,1)) = dist’y, o df L (W)
dt |0y
>1—50—0(¢g).

Then, the pull-back flow ®, := ®, o f satisfies the conclusion of Theorem BI5 O
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Corollary 3.16. Let M™, Ay, Ao, ..., A, and C be the same as in the assumption
of Theorem and satisfy the following: All da, are (1 — 0)-reqular at z, m <n
and

(3.36) | La( Al A) = /2] < p

foranyx e C and1<i#j<m.
If v .= § + p is smaller than some constant depending on m, then there are a
Lipschitz flow ® and a neighborhood U of C' satisfying the following:

d

(3.37) — da,(®(z,t)) >1—-5V5 —0(e) — 0, (v)
dt t=0+

foranyx €U andi=1,...,m.

Proof. Let us consider a smooth approximation
f:U—N

for some neighborhood U of C' and a Riemannian manifold N. By Lemmas [3.7]and
3.8 we obtain smooth vector fields W; on N such that

(3.38) Wi <14 6(e),

(3.39) (da,) (W;) >1—5V5 —0(e)

on N for all i =1,--- ,m. Here, W; := df ~'(W;).
Let us define ¢,,(v) € (7/2,7) by

_ 1—(m—1)cos(n/2 —v) .
Vvmy/1+ (m —1)cos(r/2 — v)

Note that cos o, (v) = 1/v/m as v — 0.
Let us consider a vector field

08 o (1)

W= (Wi +Wod -+ W)/ |Wh + W4 -+ W
Since | £ (A}, A}) — 7/2| < p, we have
|Z(W;, W;)| < 100 + p + 6(e).
Putting W := df ' (W), we obtain
cos Z(W;, W) > cos(om(v) + 0(g))
for v = 100 + p. Then we have
(da,) (W) > (da,)'(W;) — [W, W;]
— 5V6 — cos(om(v)) — 0(e).

> (
>1

We consider the gradient flow ® of the vector field W on U, which is the desired
flow. |
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4. THE CASE THAT dim X = 2 AND 0X = )

In this and the next sections, we study the topologies of three-dimensional closed
Alexandrov spaces which collapse to Alexandrov surfaces. First, we exhibit exam-
ples of three-dimensional Alexandrov spaces (which are closed or open) collapsing
to Alexandrov surfaces.

We denote a circle of length € by S!. We often regard S! as {z € C | |z||
e/2n}, and Z denotes the complex conjugate for z € C.

Example 4.1. Recall that M, is obtained by the quotient space My := S x
R?/(z,y) ~ (Z,—y). Mp; have collapsing metrics d. and p. as follows.

Recall that a collapsing metric provided Example[[.2l The quotient (M, d.) :=
Sl x R?/(x,y) ~ (%, —y) has a metric d. of non-negative curvature collapsing to
K(SL) =R?/y ~—yase— 0.

We consider an isometry defined by

K(SH 3 [t,v] = [t, —v] € K(S1).
Here, t > 0 and v € S!. Note that K(S2) collapses to R as ¢ — 0. We consider a

metric p. on My of non-negative curvature defined by taking the quotient of the
direct product S x K(S!):
(Mpt’ pé‘) = Sl X K(S;)/(x7ta U) ~ (i‘vta _U)'
Then, (Mps, pe) collapses to [0,7] x Ry as ¢ — 0. Here, [0,7] is provided as
Stz ~ .
Example 4.2. Let %(S!) be the spherical suspension of S!, which has curvature
> 1. Any point in X(S!) is expressed as [t, v] parametrized by ¢ € [0, 7] and v € SI.
We consider an isometry
a:S(SH 3 [t,v] = [ —t,—v] € 2(S1).

Then, we obtain a metric d. on P2 of curvature > 1 defined by taking the quotient
B(SH/{a). We set P2 := (P?,d.). Note that P? collapses to [0,7/2] as € — 0.
Then, K(P2) collapses to K([0,7/2]) =R, x Ry as e — 0.

Remark that K (P2?) is isometric to the quotient space R x K(S!)/(c) defined as
follows: Let o be an involution defined by

oz, tv) = (—x,t(—v))

for z € R, ¢t >0 and v € S!. We sometimes use this expression in the paper.

Example 4.3. Let us consider the direct product S x ¥(S1) and an isometry
B8t x 2(SY) 3 (w,t,v) = (z,t,—v) € S* x B(SL).
Then, the quotient space N. := S! x £(S!)/(B) has non-negative curvature, and
N, collapses to [0, 7] x [0, 7] as € — 0.
Let us start the proof of Theorem [I.3]

Proof of Theorem [L3l Fix a sufficiently small § > 0. Then there are only finitely
many (2,d)-singular points z1,...,z; in X. For sufficiently small » > 0, consider
the set X' := X — (U(xy,7) U--- U U(xg,r)). By Theorem 2I0, there exists
a (3,0(i,0))-strained closed domain M; C M; which is converging to X’. From
Theorem [2.25] we may assume that there exists a circle fiber bundle 7} : M} — X’
which is a 0(i, 6)-almost Lipschitz submersion. Here, 6(i,0) is a positive constant
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such that lim; o0 50 0(7,0) = 0. We fix a large ¢ and use the notation 6(5) = 0(i, )
for simplicity.

Fix any (2,0)-singular point p € {x1,...,25} C X and take a sequence p; €
M; converging to p. Since the Flow Theorem implies that B(p;,r) is not con-
tractible, applying the rescaling argument Theorem 2271 we have points p; €
B(p;,r) with d(pz,]ﬁi) — 0 and a scaling constant §; such that any limit space
(Y, yo) of lim;_,o (5 -B(pi,7),p;) is a three-dimensional open Alexandrov space of
non-negative curvature. We may assume that p; = p;. We denote by S a soul of
Y. By Theorem 227 we have dim S < 1.

From Theorem B.11} the boundary dB(p;, r) is homeomorphic to a torus 7?2 or a
Klein bottle K2. It follows from the Soul Theorem and the Stability Theorem
234 that B(p;,r) is homeomorphic to the orbifold B(pt) if dimS = 0 or a solid
torus S* x D? or a solid Klein bottle S'xD? if dim S = 1.

We first consider the case of dim S = 1; namely, S is a circle. In this case, we
obtain the following conclusion.

Lemma 4.4. Ifdim S = 1, then B(p;,r) is homeomorphic to S* x D?.

Proof. Put B; := B(p;,r), B := B(p,r) and ¢; := dgy(B;, B). Suppose that B;
is homeomorphic to a solid Klein bottle S'xD?. Take r; — 0 with &;/r; — 0
such that hm( Bz,pl) = (T,X,0). Let ; : B; — B; be a universal covering and
Di € T, (pi). Let I'; =2 Z be the deck transformation group of m;. Passing to a
subsequence, we have a limit triple (Z, z, G) of a sequence of triples of pointed spaces
and isometry groups (T—B,, Di, I';) in the equivariant pointed Gromov-Hausdorff
topology (cf. [FY]). Z is an Alexandrov space of non-negative curvature because
of r; = 0, and G is abelian. Note that Z/G = lim(X -B;,pi) = (I, X, 0). Using the
G-action, we find a line in Z ([ChGi]). Then, by the Splitting Theorem, there is
some non-negatively curved Alexandrov space Zy such that Z is isometric to the
product R x Zy. We may assume that Z; is a cone by taking a suitable rescaling
{r:}. We denote by Gg the identity component of G. By [EY], Lemma 3.10], there
is a subgroup I'? of T; such that:

(1) (%Bi,ﬁi,l“?) converges to (Z, z,Gy).
(2) Ty/T9 = G/Gy for large i.

Since dim7,X = 2 and dim Z = 3, we have dim G = 1. This implies G = R x H
for some finite abelian group H. Since T,X = Z,/H, H must be cyclic. Here, G-
action is component-wise: Gy = R acts by translation of the line R and H acts on
Zy independently. By Stability Theorem 234, Z is simply-connected. Therefore,
7, is homeomorphic to R2.

Take a generator v; of I';. From our assumption, 7; is orientation reversing
on B;. Consider T, := (4?) = Z. Then I'} acts on B; preservmg orientation.
Taking a subsequence, we have a limit triple (Z, z, G’) of a sequence {( B;,pi, %)}
By an argument similar to the above, G’ & R x H’ for some finite cychc group
H'. Let lim; 00V = Yoo € G, which implies that v;(z;) = Yeo(Zoo) under the
Gromov-Hausdorff convergence ;B D T, = Too € Z. Then v is represented by
(0,¢) € R x H. Then, for large i, we have

(4.1) Z/G =(2/G")/(G|G") = (Zo/H") [{[¢]) = T, X.
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Since Zy/H' is the flat cone over a circle or an interval, and [¢] € H/H’ acts on a
Zy/H' reversing orientation, (Zo/H')/(¢) cannot be T, X. This is a contradiction.
(]

By Lemma 4, B(p;,r/2) must be homeomorphic to a solid torus. From Flow

Theorem B2 (7)1 (0B(p,r)) and dB(p;,r/2) bound a closed domain homeomor-
phic to T2 x [0,1], and this provides a circle fiber structure on dB(p;,7/2). By
[SYOO, Lemma 4.4], it extends to a topological Seifert structure on B(p;,r/2) over
B(p,r/2) which is compatible to the circle bundle structure on A(p;;r/2,r).

In the case of dim S = 0, B; is homeomorphic to B(pt). We must prove that

Lemma 4.5. If dimS = 0, then B; has the structure of circle fibration with a
singular arc fiber satisfying:
(1) it is isomorphic to the standard fiber structure on B(pt) = S* x D?/Zs;
(2) it is compatible to the structure of circle fiber bundle 7} near the boundary.

Proof. Recall that B(pt) = S! x D?/Z,, where Zs-action on S! x D? is given by

the involution & defined by or(x y) = (%, —y). Let py := (1,0), p_ := (—1,0) be the
fixed points of &. Putting U := S* x D2 \{p+,p-}, and U:= U/Zz7 let #: U = U
be the projection map. Fix a homeomorphism f; : x D?/Zy — B, and set

= f;(U ) Take a Zs-covering m; : U; — U; such that there is a homeomorphism
fz U - U; together with the following commutaitve diagram:

£

fi
Consider the length-metric on UZ induced from that of U; via 7;, and the length-
metrics of U and U for which both fi and fAZ become isometries. Note that U; =
Ui/&i, where 7; := fi odo (fi)*l. 6; extends to an isometry on the completion B;
of I_'A]Z Let 7, : BZ — B; also denote the the projection. Then we have the following
commutative diagram:

RxD? —

(4.2) Stxp? I, p
S''x D?/Zy — B;,

where m; : B; — B; is the universal covering, and fNZ is an isometry covering
fi. Here we consider the metric on R x D? induced by that of S' x D?. Let
0,X: R x D? - R x D? be defined as

U(I, y) = (—I, _y)? A(Ia y) = (l’ + 15 y)
Since o covers &, ¢ is an isometry. Put

oi:=fiooo(fi)l Ni:=fioXo(fi) L.
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From construction, the group A; generated by A; is the deck transformation group
of m; : B; — B;. Let A be the group generated by A. Let T'; (resp. I') be the group
generated by o; and A; (resp. by ¢ and A). Obviously we have an isomorphism
(T, A;) ~ (T, A). Note that

(4.3) oxo =271

Let us consider the limit of the action of (T';,A;) on B;. We may assume that
(Bi, pi, i, Ai) converges to (Z, 20, T'oo, Ao ), where Z =R x L, Aoy = Rx H, Lisa
flat cone and H is a finite cyclic group acting on L. Let 0o, € 'y and Ay € Ao be
the limits of o; and \; under the above convergence. Note that 0o, : RXL — RXx L
can be expressed as oo (2,y) = (—z,0.,(y)), where ol is a rotation of angle £/2
and £ is the length of the space of directions at the vertex of the cone L. Note that
T,X =(L/H)/ol.

As discussed above, from the action of H on L, we can put a Seifert fibered torus
structure on aBi. Namely, if A (rei‘g) = rei0+tv8/1) then OB; has a Seifert fibered
torus structure of type (u,v) that is &;-invariant (see [SY00, Lemma 4.4]). From
[@3), we have 0o Aoo0o0 = Ayt This yields that A2, = 1. Thus (p,v) is equal to
(1,1) or (2,1).

We shall show (i, ) = (1,1) and extend the fiber structure on dB; to a G-
invariant fiber structure on B; which projects down to the generalized Seifert bundle
structure on B;.

Let B and B be the r-balls in the cone T, X = (L/H) /o’ and L/H around the
vertices o, and 6, respectively. Consider the metric annuli

A= Aop;r/4,1), A= A(6,;7/4,7).

Applying the equivariant Fibration Theorem (Theorem 18.4 in [Y_4-diml|), we have
a Zo-equivariant S'-fibration g : A; — A for some closed domain fll of Bi, which
gives rise to an S'-fibration g; : A; — A for some closed domain A; of B;.

We denote by B(n!) and B(g;) the closed domain bounded by (7})~1(S(p,r))

and (g;)~1(S(0p,7/2)) respectively, and set

A(mi, 9i) == B(m) \ B(gi)-

By Flow Theorem [B2] there is a Lipschitz flow ® : dB(x}) x [0,1] — A(n}, g;)
such that ®(z,0) = z. Let ®; : IB(w}) — 0B(g;) be the homeomorpshism defined
by ®1(z) = ®(z,1). Obviously the w/-fibers of (7})~1(S(p,7)) and the (®1)~!-
images of g;-fibers of (g;)~'(S(0p,7/2)) are isotopic to each other. Namely, we
have an isotopy ¢; of dB(m;), 0 < ¢ < 1, such that ¢y = id and ¢; sends every
w/-fiber to the (®1)~!-image of a g;-fiber. Define ¥ : A(n, g;) — A(rw}, g;) by

(@ (x, 1)) = B(pr(x),1).

This joins the two fiber structures of 7} and g;. Thus we obtain a circle fibration

7" . M!" — X" gluing the fibrations ;r; : M! - X’ and g;, where X" = X —
(U(zy,r/4)U---UU(zg,7/4)).

Let V,,, = S! x D? denote the fibered solid torus of type (u,v).

From now on, for simplicity, we denote B(g;) by B;, and use the same notation as
in ([@2). In particular, we have the Zs-equivariant homeomorphism fz Vi — B,.
Using fi, we have a fiber structure on dV,, induced from the g;-fibers which is
isotopic to the standard fiber structure of type (u,v).
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Assertion 4.6. (u,v) = (1,1) and there is a 6-equivariant isotopy of OV1 1 joining
the two fiber structures on OV1 ;.

Proof. First suppose (u,v) = (1,1). On the torus 9Vy; = S! x 9D?, let m =
m(t) = (1,e) and £ = £(t) = (e, 1) denote the meridian and the longitude. Fix
a meridian m; and a longitude ¢; of aBi such that each fiber of §; transversally
meets m;. Here we may assume that all the longitudes of dB; discussed below are
gi-fibers.

Set h; := (f;)~! for simplicity. We now show that h;({;) is 6-equivariantly
ambient isotopic to £. Recall that 7 : V1 = S x dD? — K2 = S x 9D?/6 is
the projection. Since h;(¢;) is homotopic to ¢, #(h;(¢;)) is homotopic to #(¢), and
hence is ambient isotopic to #(¢). Namely, there exists an isotopy ¢, 0 < ¢ < 1, of
K? such that

po = id, 1(7(hi(4;))) = 7(L).
Let ¢y : OV1,1 — OVi 1 be the lift of ¢, such that ¢g = id. Note that ¢1(hs(¢;)) = £.
Therefore we may assume that h;(¢;) = ¢ from the beginning.

Next we claim that h;(m;) is 5-equivariantly ambient isotopic to m while keeping
¢ fixed. Namely, we show that there exists an isotopy ¢, 0 <t <1, of dV; 1 such
that

$o =id, P1(hi(mi)) =m, ¢ = 1.
To show this, we proceed in a way similar to the above. Since h;(m;) is homotopic
to m, 7(h;(m;)) is homotopic to 7(m), and hence is ambient isotopic to #(m).
Here the construction of isotopy is local (see [E]). Hence approximating m near the

intersection point £ N'm via a PL-arc for instance, we can choose such an isotopy
@y, 0 <t <1, of K? such that

wo =id, o1(7(hi(ms))) = 7(m), @ilze) = lag)-
Let ¢y : Vi1 — 0V 1 be the lift of ¢, such that ¢¢ = id. Note that ¢; sends h;(m;)
to m and @ is the required isotopy. Therefore we may assume that h;(m;) = m
from the beginning.

For a small € > 0, let ¢ = (e, e) and ¢ = (e',e7) (resp. m' = (€', e™)
and m” = (e, e')) be longitudes near ¢ (resp. meridians near m). Let ¢, and ¢/
(resp. m} and m}) be longitudes (resp. meridians) near ¢; (resp. near m;) such
that £, ¢/, m} and m} bound a regular neighborhood of ¢;Um;. In a way similar to
the above, taking a -equivariant ambient isotopy, we may assume that h;(¢}) = ¢/,
hi(€)y =2", hi(m};) =m' and h;(m}) =m".

Let D (resp. D;) be the small domain bounded by ¢, ¢/, m and m’ (resp. ¥,
2, m; and m} ). Identify D = Iy x [0,1], D; = I; x [0, 1], where Iy C m, I; C m;
are arcs, and define k; : D — D by ki(z,t) = hi(fi(z),t). From what we have
discussed above, kilop = lgp. It is then standard to obtain an isotopy ¢ of D
which sends k; to 1p keeping 9D fixed. Extending 1), d-equivariantly, we obtain a
g-equivariant isotopy of V1 1 which sends the h;-image of I-fibers of D; to I-fibers
of D keeping the outside D fixed. Applying this argument to the other domains
bounded by longitudes ¢, ¢, 5(¢'), 6(¢") and meridians m’, m” of V4 1, we finally
construct a g-equivariant ambient isotopy ¢: of 0V; 1 sending the h;-images of the
g;-fibers in 0B; to the corresponding longitudes of 0V; ;.

Finally we show that the case (u,v) = (2, 1) never happens. Let us fix a g;-fiber,
say k;, and a standard (2, 1)-fiber, say k, on the fibered torus 0V, of type (2,1).
Since h;(k;) is homotopic to k in T2, in a way similar to the above discussion,
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we have a f-equivariant ambient isotopy ¢; of Va1 such that ¢y = id and ¢,
sends h;(k;) to k. In S' x 9D?, k is described as k(t) = (e*?,¢e'), and hence
G ok(t) = (e=2* et+m) Therefore the images Im(é o k), Im(k) of 6 o k and k
respectively must meet at 6 o k(—m) = k(27). On the other hand,

Gok=2060p1(hi(ki)) = p100(hi(ki)), k= p1(hi(k;)).
It turns out that Im(6(hi(k;))) = Im(h;(6:(k;))) meets Im(h;(k;)). This implies
that Im(6;(k;)) meets Im(k;), a contradiction to the fact that g; is a Zs-equivariant

fibration.
This completes the proof of the assertion. O

Obviously the standard fiber structure on 0V; 1 extends to a standard 6-invariant
fiber structure on V; ;. Now it becomes easy to extend the fiber structure defined
by g;-fibers on dB; to a &;-equivariant fiber structure on B; of type (1,1) via hy,
which projects down to a generalized Seifert bundle structure on B; and on M; for
large ¢ which is compatible to the fiber structure of 7}. This completes the proof of

Lemma |
This completes the proof of Theorem [[3 |

5. THE CASE THAT dim X = 2 AND 0X # ()

Let {M;|i = 1,2,...} be a sequence of three-dimensional closed Alexandrov
spaces with curvature > —1 having a uniform diameter bound. Suppose that M;
converges to an Alexandrov surface X with non-empty boundary.

In this section, we provide decompositions of X into X’ U X" and of M; into
M U M/ such that M/ fibers over X’ in the sense of a generalized Seifert fiber
space and M/’ is the closure of the complement of M/. We will prove that each
component of M/ has the structure of a generalized solid torus or a generalized
solid Klein bottle, and the circle fiber structure on its boundary is compatible to
the circle fiber structure induced by the generalized Seifert fibration.

From now on, we denote by C one of the components of X. Since a two-
dimensional Alexandrov space is a manifold, C' is homeomorphic to a circle. Let us
fix a small positive number €. To construct the desired decompositions of X and
M;, we define a notion of an e-regular covering of C.

Definition 5.1. Let {B,, Do }i<a<n be a covering of C by closed subsets in X.
We say that {Bg, Do f1<a<n 18 e-regular if it satisfies the following:
(1) Ui<gen BaUDgy — C is (2,€)-strained.
(2) Each B, is the closed metric ball B, = B(pa, r«) centered at p, with radius
ro > 0 such that

|Vdpa| >1-¢con B(p(l’72roc) - {pa}a
B,N By =0 for all a # .
Also, the sequence p1,ps,...,p, is consecutive in C'.
(3) D, forms
D, := B(Ya,0) — int(By U Bay1),

where 74 = Papati With p,41 := p;. Here, 6 > 0 is a small positive
number with § < ming, rq.
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(4) For any x € D, we have
/PaPoy1 > T — €.
For x € D, — C and y € C with |zy| = |zC|, we have
Vdc|(z) > 1 ¢,
|Zpaay — /2| < e, and
| /pasizy — /2| <.

The existence of an e-regular covering of C' will be proved in Section @l We fix
an e-regular covering
{Ba,Do |a=1,2,...,n}

of C.
We consider a closed neighborhood X/, of C' defined as
(5.1) X¢ =) BaUD,.
a=1
We set

X" = UX/CI‘ and X’ := the closure of X — X"

This is our decomposition X = X' U X",
Since int X’ has all interior (2, €)-singular points of X, by Theorem [[3 we obtain
a generalized Seifert fibration

(5.2) o M — X'

for some closed domain M/ C M;. Let us denote by X8 the complement of a small
neighborhood of the union of 9X and the set of all interior (2, e)-singular points
in X. By Theorem we may assume that 7 is both a circle fibration and a
0(¢)-Lipschitz submersion on X', Recall that 7/~ ' (X™°8) is (3,6(¢))-regular, for
large 1.

We set M/ := M; — int M]. We will determine the topology of M/ in the
following subsections.

5.1. Decomposition of M/.
Let us denote by M;® a (3,6(¢))-regular closed domain of M; which contains

wg_l(X reg). By Theorem [Z40] we obtain a smooth approximation
(5.3) fi t UM;™®) = N(M;*®)

for a neighborhood U (M;®®) of M;*® and some Riemannian manifold N (M;*®).

Let us take po,; € M; converging to p, € C' C 90X, and 7,,; a simple arc joining
Da,i and poy1,; converging to 7v,. By the definition of regular covering, we may
assume that

N

A <U Yai30/100, 10 maxra>
a=1

is (3, 60(¢))-regular.

From now on, we fix any index « € {1,..., N} and use the following notation:
D= Pas P’ = Paty1, B := Ba, B := Bay1, 7= Yo and 7" := 74_1; and p; := pai,
Dh 1= Patii, Vi i= Yo, and i = Ya—1,i- To avoid a disordered notation, we assume
that all r, are equal to each other, and set r := r,.
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Let ¢’ be a small positive number with ¢’ < §. We will construct an isotopy of
B(pi,r + ¢') which deforms the metric ball B(p;,r — ¢') to some domain B; such
that

(5.4) B; =~ B(p;,T);
(5.5) OB; — Uy U~/,35/2) = m (9B(p,r) — U(yU~",36/2));
(5.6) dB; N B(yi U~;',8) = 0B(pi,r — ') N B(vi U~/ 0).

FIGURE 1. A domain near the corner

In Figure[ll the broken line denotes the metric sphere S(p;,r —4’), and the wavy
line denotes the pull-back of metric levels with respect to 4", v and p in X by «/.

Suppose that we construct such an isotopy and obtain a domain B; = B, ;
satisfying (5.3) and (5.6) for a moment. We consider the domain

(57) D; = Da,i = B('Ya,ia 35/2) U 71—1/’_1(‘4(7(1; 5a 25)) —int (Ba,i U Ba-i-l,i)'

Then we obtain a decomposition of M/’

N
(5.8) o= Ba.i U Da,
a=1
(5.9) M= |J M.
CCcoxX

Now we construct an isotopy which deforms B(p;,r — ¢') to B; satistying (5.0])
and (B.0). From now on throughout this paper, we use the following notation. For
any set A C M8, we set A := fi(A). We denote by U(A) a neighborhood of A
in U(M;°®) and by N(A) the image of U(A) by the approximation f;. Namely,
N(A) = ﬂ) For any point = € A, we set & := f;(z) € A. For any function
¢:A— R, we define ¢ : A — R by

(5.10) <;~$ =¢o f;l.

Let V be a gradient-like smooth vector field for a Lipschitz function ais\-im on
N((B(pi,7) U B(p},7) U B(vi,268)) N M;°®) obtained by Lemma [3.7
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We take a Lipschitz function h defined on B(p;,r + ¢’) such that

h is smooth,

0<h<l,

supp (h) € B(pi,r +4') = Ul U/, 0/2),
h=1on B(p;,r+8)—U(v; U~/,0).

We consider a smooth vector field & - V and its integral flow ®, and we define the
pull-back flow ®; := f; ' o®;0 f;. Then by construction and Theorem BIT] the flow
® transversally intersects Wg_l(ﬁB(p, r)—U(yU~",0)). Then we can construct an
isotopy by using the flow ®, which provides a closed neighborhood B; of p; satisfying

3. E3) and ().

5.2. The topologies of the balls near corners. We first prove that 0B; is
homeomorphic to a closed 2-manifold.

Lemma 5.2. 0B; ~ 0B(p;,r) is a closed 2-manifold.

Proof. If B; does not satisfy Assumption 2.28] we have some sequence p; with
|pipi| = 0 such that OB(p;,r) ~ Xj3,, where we may assume that p; = p;. Since M;
has no boundary, dB(p;,) is homeomorphic to S? or P2.

If B; satisfies Assumption[2.28] there exist a sequence 0; — 0 and p; with |p;p;| —
0 such that the limit (Y, yo) of (5%,3 (pi,r), pi) has dimension three. Here, we may
assume that p; = p;. Then, by Soul Theorem and Stability Theorem [2.34]
0B(p;,r) is homeomorphic to S2?, P2, T? or K2. |

From (5.0 and the construction of B;, we have
(5.11) OB; —U(y; U~} 6) ~ S* x I.
Now, we put F; and F} as follows:
(5.12) F;:=90B; N B(v,6) and F/' :== 0B; N B(v/, ).

Then, by Lemma (2] F; and F/” are 2-manifolds with boundaries homeomorphic
to S!. By the generalized Margulis lemma [FY], F; has an almost nilpotent funda-
mental group. Hence F; is homeomorphic to D? or Mé.

Therefore, we obtain the following assertion:

Lemma 5.3. 0B; is homeomorphic to S%, P% or K2.
We now determine the topology of B;.

Lemma 5.4. B; is homeomorphic to D3, M6x1 or K1 (P?). Moreover, if diam ¥,, >
7/2, then B; is not homeomorphic to Ky (P?).

Proof. We first consider the case that diam ¥, > 7/2. Then by Proposition 270}
Y,, is topologically a suspension over a one-dimensional Alexandrov space A of
curvature > 1. Since 9%,, = ), A is a circle. Hence p; is a topologically regular
point. Note that, in this situation, any @ € B(p,r) has diam X, > 7/2. Therefore,
int B; is topologically a manifold, and B; is not homeomorphic to Ki(P?).

From now on we assume that diam¥, < 7/2. If B; does not satisfy Assump-
tion[2.28 then there exists p; such that lim |p;p;| = 0 and B(p;,r) ~ K1(X;,) which
is homeomorphic to D3 or Ki(P?), where we may assume that p; = p;.
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Suppose that B; satisfies Assumption[2.28 By Theorem [2.27], there is a sequence
; of positive numbers tending to zero and points p; (where we may assume that
p; = p;) such that

e any limit (Y,yo) of (3 B;, p;) as i — 00 is a three-dimensional open Alexan-
drov space of non-negative curvature;
e denoting by S a soul of Y, we obtain dim S < 1.

Then, by Soul Theorem [Z59] Y is homeomorphic to R?, K(P?) or M,y if dim S = 0
or an R%-bundle over S' if dim S = 1. Therefore, B; is homeomorphic to D3,
K1(P?) or B(pt) if dimS = 0 or S* x D? or S'xD? ~ Mo x I if dim S = 1. By the
boundary condition (Lemma [53)), B; is actually not homeomorphic to S' x D?. It
remains to show that

(5.13) B, is not homeomorphic to B(pt).

We prove (BI3) by contradiction. Suppose that there is a homeomorphism
fi + B(pt) — B;. We will use the notation in the proof of Lemma Recall
that B(pt) is obtained by the quotient space of S! x D? by the involution 5. We
consider the corresponding space B; with an involution &; such that its quotient is
B;. By the argument of the proof of Lemma [£5] we obtain the following commu-
tating diagram:

RxD? ——

B(pt) ——

Here, the horizontal arrows are homeomorphisms, 7 and 7; are the universal cov-
erings, and 7 and 7; are the projections by involutions 6 and &;, respectively. We
may assume that (Bi,ﬁi,Fi,Ai) converges to (Z, 20, oo, Aoo) with Z = R x L,
Ao =R x H, L is a flat cone over a circle and H is a finite abelian group acting on
L. Note that all elements of H are orientation preserving on L. Recall that o, is
expressed as 0o (%, y) = (—, 05, (y)) and 0o is orientation preserving on L. There-
fore, [0’,] is orientation preserving on L/H. We remark that (L/H)/[o. ] = T, X.
Then, L/H has no boundary. Indeed, to check this, we suppose that L/H has non-
empty boundary. Then L/H is the cone over an arc. Since [0/ ] is a non-trivial
isometry on L/H, [0/ ] is the reflection with respect to the center line. Therefore,
[0L.] does not preserve orientation. This is a contradiction.

Thus, L/H is the cone over a circle. It turns out that o/ is a half rotation of L,
and hence so is [0),] for L/H. This implies 7, X has no boundary, and we obtain

a contradiction. We conclude (5.13)), and complete the proof of Lemma [5.4] O

Next, we will divide D; into two pieces D; = H; U K; depending on the topology
of F;. We will also determine the topology of H;, K;, and D;.
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5.3. The case that F; is a disk. We consider the case that F; ~ D?. Then, we
divide D; into H; and K; as follows:

H; = D; = U(v, ),

K; .= D;N B(v;,9).
5.3.1. The topology of K;. We prove that
Assertion 5.5. K; is homeomorphic to D3.

K is contained in a domain L; defined by
(5.14) L; = A(piir — &', [pp'| = r/2) N B(v;,0).
Since (dp,,d,) is (¢, 0(e))-regular near L; N S(7;,d), by Theorem 233 and Lemma

240, L; is homeomorphic to F; x [0,1] &~ D3. On the other hand, we can take a
closed domain A; C int K such that 4; ~ D3 and

(5.15) K?:= B(v;,6/2) — (U(pi, 2r) UU(p}, 2r)) C int A;.
By Theorem 233 and Lemma 240, K; ~ K?. Remark that F! := 9B, N B(v;, ) is
homeomorphic to D?. Indeed, if we assume that F! ~ Mo, then OK; ~ P?. Then,
by the embedding (5I5), we have

P? =~ 0K} Cint A; ~ R®,

This is a contradiction. Therefore, F} ~ D? and 0K? ~ 0K; ~ S?. By Theorem
2331 OK? is locally flatly embedded in A; ~ D3. Therefore, by the generalized
Schoenflies theorem, we conclude K; ~ K ~ D3.

5.3.2. The topology of H;.

Assertion 5.6. H; is homeomorphic to S' x D? and the circle fiber structure on
H; induced by the standard one on S* x D? is compatible to .

Let us define a domain @) C X by
(5.16) Q:=A(y;6—08,20+8) — (U(p,r =258 YUU(p',r —28")).
Note that @ is homeomorphic to a two-disk without (2,¢)-singular points. Then
Q; = wg_l(Q) is topologically a solid torus, and H; is contained in the interior of

Qi
We will construct an isotopy ¢ : Q; x [0,1] — @, satisfying

(5.17) e(+,0) =idg,,
(5.18) P(Qi, 1) = H,
(5.19) ©:0Q; x[0,1] = Q; —int H; is bijective.

If we obtain such a ¢, then by (G.I8), we conclude H; ~ Q; ~ S* x D?. And by
(E19), we can obtain the circle fiber structure of H; over ) which is compatible to
the generalized Seifert fibration 7}.

Next we use the conventions as in (G.I0).

Lemma 5.7. There is a smooth vector field X on N(Q; — H;) such that it is
gradient-like:

o ford,, and d,on, on N(B(p;,r+ ') N Q; — H,),

e for Jp; and dy om, on N(B(p},r +9')NQ; — H;),
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o for glv,y,i and m; on N(B(v,0+6)NQ; — H;), and
o for —J%. and —dy om} on N(Q; — H; — U(7;,26 —¢")).
Proof. Let us take gradient-like smooth vector fields V, V" and W for gpi, Jpé and

c?% on N(Q; — H;). We prepare a decomposition of Q; — int H; as follows:
8

(5.20) Qi —int H; = | J Aa.

a=1
See Figure Pl Here, we define
Ay = (Q; — int Hy) N (B(vi,0) = U({ps, pi},r +0")),
Ag = (Qi — int H;) — (U(7:,20 = 8") UU({ps, pi},r +9'))
A3 = B(pi,r + ") N B(v;,6 + '),
A% = B(pi,r +0) N A(yi;6 + 6,20 — &),
A = B(pi,r +6') = U(vi,25 — &).

Similarly, we put

D D

Af = B, +06) N B(vi,d + ),
A7 = B(pl,r+06") N A(yi; 0+ 0,20 = &),
A§ = B(p;,r+06") —U(v:,26 — &).
We define Az, Ay,---, Ag by
Ay = AL NQ; —int H; for a = 3,4,...,8

:):)

FIGURE 2. The decomposition of Q;

We take smooth functions h, (o =1,...,8) on N(Q; — H;) such that
0<hy <1,
ho =1 on Aa,
supp (he) C B(Aq, 8’ /100).
We define a vector field X as
X =mW —hW
+ h3(‘7 + W) + haV + hs(f/ — W)
+he(V' + W) + hyV' + hg(V' = W).
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Then, we can show that X satisfies the conclusion of Lemma [5.7 as follows. We
will prove it only on N(As).

We consider the integral flow ® of X and the pull-back ®; := fi_1 o®,o0 fi. It
suffices to show that

(5.21) ® rh dist,,
(5.22) @ rh dist.,
(5.23) ® M dist,, o 7,
(5.24) @ M dist, o7}

on N(As). We can write

X =aV + W
for smooth functions «, 5 > 0 with 1 < a+ < 3 on N(A3). By a direct calculus,
we have

1X] > V2 - 6(e),
(X, V) <y +0(e), Z(X, W) <~+6(e)

on N(As). Here, cosy =1/4/10.
Let us set

Then we have
We set

Then we obtain
V =Vd,, W =Vd,,.
Here, A = A’ means |A, A'| < 0(¢).
Since f; is a 6(e)-almost isometry, we have

[X| = X[, [V.X[ = |V, X], (V. X) = £(V,X).

Hence, we obtain
X > V2 - 0(e),

2(pi, X) = £(p;, V) = £(V, X) > 7 — v = 0(e).
Therefore, we have

(dp,)' (X) = —| X[ cos Z(p}, X) 2 1/V/5 — 6(e).

This implies (521)).
For any fixed scale (0), we set

drl = (expgs)(m))_l o () o expl® .

By Proposition B.I0, we have
Z(p,dri(X)) <~ +0(e), ldni(X)] > V2 - 0(e).
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Therefore, we obtain
(dist,, o ) (expl” (X)) = —|dmi(X)] €08 Ly (0 (0", di (X))
> 1/V5 - 0(e).
Thus, we obtain (523)).
In a similar way to the above, we can prove (.22]) and (2.24]). O

By Lemma 7] we obtain an isotopy ¢ based on @ satisfying (5I7) through

E10).

Therefore, we conclude that if F; ~ D2, then D; ~ D3,

5.4. The case that F; is a Mobius band. We consider the case that F; ~ Mo.
We prove that

Lemma 5.8. D; is (3,60(¢))-strained.
Proof. We first define a domain L; similar to (514):
L; := A(pi;r/2, |pp'| = r/2) 0 B(7i, 30).
To prove Lemma [B.8] it suffices to show that
(5.25) L; is (3,6(¢))-regular.

By Theorem [2.33]and Lemma2.40] we have L; ~ Mox I. Let L; be the orientable
double cover which is homeomorphic to (S! x I) x I. Since L; is a covering space
of L;, L; has the metric of Alexandrov space with L; = L; /{o) for an isometric
involution o on IA/Z

Since the projection L; — L; is a local isometry, to prove (B.25), it suffices to
show that

(5.26) L is (3,6(¢))-regular.
L; converges to the following closed domain L., in X:
Lo = A(p;7/2,|pp| — 7/2) N B(y,30).

We may assume that L; converges to some two-dimensional space Y2. Note that
L is 1-strained, and hence L; and L; are also 1-strained. Therefore,

(5.27) Y is 1-strained.

From the form of L., we have that Y? is a two-disk having no e-singular points.
Indeed, if Y has a boundary-point in the sense of Alexandrov space, then from an
argument similar to the proof of Assertion 5.5, L; contains a domain homeomorphic
to D2 x I or Mo x I. This is a contradiction, and hence Y has no boundary. By
this and (&27), Y is 2-strained. Therefore, L; is 3-strained; this is the assertion
(BE26). This implies (5.25]) and completes the proof of Lemma 5.8 O

By Lemma[B.8land Theorem [3.2] we have a Lipschitz flow ® which is gradient-like
for dist,, near D;. We divide D; into H; and K; as follows:

K; := the union of flow curves of ®
starting from Fj in B(v;,2d) — int Bj.
Hi = Di — int f(z
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Note that the union of flow curves of & starting from OF; is contained in
A(vyi;6 —6”,8 + §") for some small §” > 0. By the construction, K; ~ Mo x I.
We will prove that

Assertion 5.9. H; is homeomorphic to S* x D? and the circle fiber structure on
H; induced by one on S* x D? is compatible to .

Proof. Let @; be a closed neighborhood of H; obtained in a way similar to the
construction of @); in subsection We actually define

Q:=A(v;6—-08",20+8)—-U{p,p'},r — 20",
Qi = Wg_l(Q)'

We prepare a decomposition of Q; —int H; = Ui:l A, in a way similar to (5.20) in
Lemma 5.7 Actually, we define As, As, Ag as in Lemma 5.7, and other A,’s are
defined by

Al - (Q’L int HZ) N (B(’YM 0 + 6//) - U({p’np;}? T+ 5/)) )

= (Q; — int H;) N B(ps, v + &) N B(y;,0 +6"),
= (Q; —int H;) N B(p,,r + &) N B(y;,0 + "),
= (Q; —int (H; U A3 U A5)) N B(p;,r +6'),

= (Qz — iIlt (Hz U A6 @] Ag)) N B(p;, T + 5/)

Since Vdistm and Vdist,, are almost perpendicular to each other on @Q; — int Hj,
we can obtain a flow ® which has nice transversality as in Lemma 57 We can
also construct an isotopy from the identity to some homeomorphism which deforms
Q; to H; inside @;. Therefore, we obtain a circle fibration of H; over () which

is compatible to the generalized Seifert fibration 7}. This completes the proof of
Assertion 5.9 O

Therefore, we conclude that if F; ~ Mo, then D; =~ Mo x 1.

Proof of Theorem [l It remain to show that each component M/’ of M, has the
structure of a generahzed solid torus or generalized solid Klein bottles. Thls is clear
from Sections (.3 and £.4] |

5.5. Proof of Corollary To prove Corollary [[L6] we show elementary lemmas.
We define the mapping class group MCG(F) of a topological space F to be the set
of all isotopy classes of homeomorphisms of F'.

Lemma 5.10. Let F be a topological space. For any element v of the mapping
class group MCG(F'), we fix a homeomorphism ¢~ : F — F such that ¢, € y. Let
us set B = F x [0,1] and 7w : B — [0,1] a projection. For any homeomorphisms
fi + F — 77 i), for i = 0,1, there exist v € MCG(F) and a homeomorphism
h: F x[0,1] — B respecting m such that, for every x € F, h(z,0) = fo(z) and
h(z,1) = f10py(z).

Proof. Let us set Fy = m=1(t) = F x {t}. Let us define the translation y; : Fy — F}
by x¢(z,0) = (z,t), and set a homeomorphism f; = x¢ o fo : F — F;. Note that
fo = fo. Let us take an element v € MCG(F') represented by a homeomorphism
fl_1 o fl of F'. Then, there is a homeomorphism ¢; : F' — F, for 0 < ¢ < 1, such
that ~

go =1id and f1 091 = f10p,.
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Therefore, setting h; = ft o0g;: F— F;, we obtain

ho :fo and h1 :flogafy.

Hence, defining h : F x [0,1] — B by h(z,t) = hi(x), h satisfies the desired
condition. g

Lemma 5.11. Let Y be a generalized solid torus or a generalized solid Klein bottle.
Let m:Y — S be a projection as in (LZ). Then, there is a continuous surjection
n:Y —[0,1]

such that n=*(1) = dY and, setting
¢ = (m,n):Y = St x[0,1],

® is an S'-bundle over S* x (0,1]. Further, for every x € S*, ®~1(x,0) is a one
point set or a circle, and the homeomorphic type of the fiber ®~1(x,0) changes if
and only if that of 7~(x) changes.

Proof. Let us take ordered points t1,%a,. .., tan_1,tan € S* changing the fiber of 7.
Then, for a small € > 0, setting I, = [ty —¢,t, +¢] C S, 771(I}) is homeomorphic
to Kl (PQ)

We regard K;(P?) = Use(—1,1) D(t) as in Definition [L4 Let us define a contin-

uous surjection 6 : K1(P?) — [0,1] by
2? if t >0,
22497 ift<0.

9(.’1},y,2§) = {

This is well defined. (6 is like the square of the distance function from the center
of each surface D(t). If t < 0, then the center means a point D(t) N {z? + y? = 0}
of disk D(t), and if ¢ > 0, then the center means a centric circle D(t) N {z = 0}
of a Mobius band D(t).) Let us fix a homeomorphism ¢y, : Ki(P?) — 7 1(I)
respecting m. We define a continuous surjection

e =00py ! (k) = [0,1].

Thus, a continuous surjection from the disjoint union of 7=1(Ix)’s to [0, 1] is defined
and satisfies the desired property.

It remains to show that the domain of the n;’s can extend to the whole Y,
satisfying the desired property. Let Jy := [ty +&,tpr1 — €] C S! be the interval
between I and Ijy1. Let us set Fj, = 7~ (¢, + ¢) which is homeomorphic to D?
or Mé. Let Gy = 7 (tp1 — €) which is homeomorphic to F}.

Suppose that Fy ~ D?. We recall that D(—1) C K1 (P?) is defined as

{(2,9,2) € R*|a? + 9% — 22 = —1,2% + % <1}/(2,y,2) ~ —(2,y,2).
We identify this as D? = {(x,y) |22 + y? < 1} by a map
D(-1) 3 [z,y,2] — (2,9) € D%
Then, via ¢, the map 7 : Fi, — [0, 1] can be identified as the map
0 : D* = [0,1]; (z,y) — 2% + 97,

namely, 1, = 0’04,0,;1. Similarly, ng4+1 = 9’030,;11. Here, ¢, and @41 are restricted
on D? C 9K (P?). Let r : D* — D?;(x,y) — (z, —y) be the reflection with respect
to the xz-axis. We note that 6’ or = 6’ and r represents a unique non-trivial element
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of the mapping class group MCG(D?) (2 Z,) of D?. By using Lemma 510, we
obtain a homeomorphism

@ D x Jp — 7 (k).
respecting projections 7 and D? x Jj, — Ji, such that ¢}, = ¢y on Fj, and either
Ok = Prt1 on Gy, or
O = @rr1 07 on Gg.
Hence,
M =00 (¢)) " e (k) = [0,1]
satisfies

M = Nk on Fy, and n;, = ng11 on Gy.
Therefore, if the fiber of 7 on Jj, is a disk, then 7, and ng41 extend to the map 7,
on 7~ 1(Jy), satisfying the desired property.

Next, we assume that Fj, ~ M6. We recall that D(1) is
{(z,y,2) |2 +y° —a? =1, |2 < 1}/(2,y,2) ~ (2., 2).

Let us identify D(1) C 0K;(P?) as M6 defined by

M6 = S* x [-1,1]/(x,8) ~ (—x, —5)
via a map

(z,y)

—_—— € Mo.

y 2

D(1) 3 [z,y,2] — l

Then, 7y is identified as a projection
0" : Mo 3 [z, 8] — s €[0,1],

via ¢r. Namely, . = 0" o o' on Fy. We can see that m1 = 6" o <p;j_1 on
Gy. Let us fix a homeomorphism r : M6 — M6 defined by r[x, s] = [Z, s], where
7 is the complex conjugate of x in S* C C. Then, r reverses the orientation of
OMG6. Hence, r represents a unique non-trivial element of the mapping class group

MCG(M§) =2 Zg, and we note that 8” or = 6”. By Lemma [E.I0, there exists a
homeomorphism

O M6 x Jp = (),
respecting projections m and M6 x Ji — Ji, such that ¢} = ¢ on Fj, and either

Oh = Pri1 on Gy, or

<pg = k41 07 on Gy.
Since 6" = #” o r, we obtain a continuous surjection

M = 0" (¢i)~ s (Ji) = [0,1]
satisfying
Ny = nr on Fy and 1), = g1 on Gy,
By summarizing the above, we obtain a continuous surjection
n:Y —[0,1]

satisfying the desired condition. ([l
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Proof of Corollary [LG. We may assume that X has only one boundary component
0X. By Theorem [[LA] there are decompositions

M; =M UM/ and X = X' U X"

satisfying the following:
is a collar neighborhood o . We fix a homeomorphism ¢ : X
1) X" i 11 ighborhood of 0X. We fi h hi 0X
[0,1] = X" such that p(0X x {0}) = 90X and p(0X x {1}) = 0X".
(2) M/ is a generalized Seifert fiber space over X' =~ X. We fix a fibration
Flo M — X7 of it.
/" is a generalized solid torus or a generalized solid Klein bottle. We fix
3) M/ i lized solid lized solid Klein bottle. We fi
a projection m; : M]" — 0X ~ S' as ([L2)) in Definition [l
(4) The maps f/, m; and ¢ are compatible in the following sense. For any
r € 0X,

m H(x) N oMY = (f]) " (p(x, 1))
holds.
By Lemma [B.T1] we obtain a continuous surjection
i - Mz// — [07 1}
such that
(5) ;7 (1) = oM.
(6) Setting g; = (m, m;) : M" — X x [0, 1], the restriction of g; on
g (0X % (0,1])

is an S'-bundle.
(7) For every x € 90X, g;l(x,()) is one point set or a circle. The fiber of g;
changes at z € 0X if and only if the fiber of m; changes at x.
Then, the map
fl=¢ogi: M — X"
satisfies
Fl= £ on M0 Y.

Therefore, the gluing f; : M; — X of maps f/ and f/" defined by

fion M
fi= f" on M/

is well-defined. The map f; satisfies the topological condition desired in Corol-
lary

From the proof of Theorem and the construction of X", for any € > 0 and
large i, we can take m; : M — 0X as an e-approximation and ¢ : 90X x[0,1] — X"
satisfying

‘ |Lp(.’[:,t),<p(3;‘/,tl)‘ - |‘T7$/|‘ <e

for any z, 2’ € X and t,t’ € [0,1]. Then, one can show that f; is an approximation.
O



COLLAPSING THREE-DIMENSIONAL ALEXANDROV SPACES 2399

6. THE CASE THAT X IS A CIRCLE

Let {M?} be a sequence of closed three-dimensional Alexandrov spaces with
curvature > —1 and uniformly bounded diameter. Suppose that M; converges to a
circle X. We will prove Theorem [[.71

Proof of Theorem [0l We first show

Lemma 6.1. For large i, ¥, ~ S? for allx € M;. In particular, M; is a topological
manifold.

Proof. Indeed, by Proposition 2770] we may assume that diam ¥, is almost 7 for
each z; € M;. Tt follows from Theorem 2:35land M; = () that ¥, is homeomorphic
to the suspension over a circle, which is 2-sphere. Therefore, by Theorem 234 M;
is a topological manifold. O

By taking a rescaling, we may assume that M, converges to the unit circle

X =8'={e"% € C|0 € [0,27]}. We take points p* := 1 and p~ := —1 € S', and
prepare points pzr and p; € M; converging to p* and p~, respectively. Let us set
gt :==+v—1and ¢~ := —/—1 € S, and take q;r,q; € M; such that qii — ¢

Let us take §; the diameter of a part of dB(p;, 7/2) which is GH-close to ¢+ € S*.
We consider metric balls

B := B(p/,¢; — ;) and B; := B(p; ,l; — ;).
Here, ¢; = |p;,p; |/2. By the construction, B;" N B;” = (). We prove the next

Lemma 6.2. Bii is homeomorphic to Fii x [0,1]. Here, Fii is homeomorphic to
S2, P2, T? or K2.

Proof. We will prove this assertion only for B;L . Let us set B; := B;r and p; := p;L.
By Lemma [6.1] M; is a manifold. We will implicitly use this fact throughout the
following argument.
Remark that

(6.1) 0B; is disconnected.

If B; does not satisfy Assumption 2.28 then there exists a sequence p; € M;
where we may assume that p; = p; and 0B; = ¥, = 52, Hence 0B; is connected.
This is a contradiction.

Therefore, B; must satisfy Assumption 228 Then, by Theorem 2.27] there exist
€; — 0 and points p; € M;, where we may assume that p; = p;, such that a limit
(Y,y0) := limi%w(éBi,pi) exists and has dimension > 2. We remark that Y has

a line, because qu piq; — 7. It follows from Theorem that Y is isometric to
S xR for some non-negatively cured Alexandrov space S of dimension at least one.

If dim S = 2, then by Theorem 2.34] S has no boundary and the topology of
B; can be determined. By the remark (6.I), S is compact and, hence, S is either
homeomorphic to S? or P? or is isometric to a flat torus or a flat Klein bottle.
Again, by using Theorem 234, we conclude that B; ~ S x I.

If dim S = 1, then by Theorems [[3] and [[5] the topology of B; can be deter-
mined. It follows from (GI]) that S is compact. Hence S is isometric to a circle
or an interval. If S is a circle, then Y has no singular point. Then we can use
Theorem 25, and therefore we conclude that B; is homeomorphic to T2 x I or
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K? x I. If S is an interval, then by Theorem [[5] B; is homeomorphic to S? x I,
P2xTor K?x1I.
This completes the proof of Lemma O

Recall that qii are points in M; converging to ¢* = ++/—1 € S'. Let us consider
DF := B(¢F,n/2) —int (B UB;).
Let us set
SF .= Bf nD}.
By Lemma 6.2, SF ~ F*.

Lemma 6.3. There is a homeomorphism ¢; : F;” x [0,1] — D; such that
¢i(F;" x {0}) = S and ¢;(F;" x {1}) = S; .

Proof. Let W; be the component of S(p;,¢;) converging to ¢ = /—1 € S. Recall
that §; = diam W;. Then §; — 0.
Let us take g; € W; and consider any limit Y of a rescaling sequence:

1
6.2 —
(62) G
Let 7L be rays starting at g, which are limits of geodesics qipl:-t. Since Zp;rqiz; —
T, Yoo i= Yk U7 is a line in Y.
Let W, be the limit of W; under the convergence (6.2). By the choice of ¢;,
diam W, = 1. We will prove that

Assertion 6.4. Y is isometric to Wo, X R. In particular, dimY > 2.
Proof of Assertion [6.4l Let us consider functions
fii(') = Ji(pii’ )= liz'(piiv%'%
bE() 1= lim d(vE (1), ) —t.
Here, ciz- is the original metric of M; multiplied by 1/4;. The functions b* are the
Busemann functions of the rays 7Z. Then, we can show that fii converges to

b*. Therefore, we obtain W, = (b™)~'(0). This completes the proof of Assertion
0.4] ]

By Assertion [6.4] dim W, = 1 or 2. If dim W, = 2, then by Theorem 2.34] we
have a homeomorphism
¢i : Df = Woo x [-1,1]
with respect to functions fii and b*. Namely,
¢i((f) 1) = (b))
whenever ¢ is near {—1,1}. In particular,
SE =) = (0F)7H0) = W = (f7) 71 (1) = 57

1
In this case, Wo, =~ S2, P2, T? or K2.
If dim W, = 1, then W, is a circle or an interval. If W, is a circle, then by
Theorem 2.25] and some flow argument, there is a circle fiber bundle

mi: Df = W x [-1,1]
such that 7, '(Wa x {#1}) = SF. In this case, S ~ T2 or K2.
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If W, is an interval, then by using Theorem and some flow argument, we
have a homeomorphism

¢; : Df — St x [-1,1]

such that ¢;(S) = S;" x {#1}. In this case, ST ~ S?, P2 or K2.
This completes the proof of Lemma |

Let F; be a topological space homeomorphic to F£ ~ SE. By Lemmas and
[6-3], we obtain homeomorphisms

of : F; < [0,1] — B,
VF . F; x [0,1] — DF

such that they send the boundaries to the boundaries. Therefore, M; = Bj UB; U
D}t UD; is an F;-bundle over S. O

7. THE CASE THAT X IS AN INTERVAL

Let {M;} be a sequence of three-dimensional closed Alexandrov spaces of cur-
vature > —1 with diam M; < D. Suppose that M; converges to an interval I.
Let OI = {p,p'}, and let p;, p, € M; converge to p,p’, respectively. We divide M;
into M; = B; U D; U B., where B; = B(p;,r), B} = B(pj,r) for small r > 0, and

Proof of Theorem [[L8. In a way similar to the proof of Lemma [63] we can prove
that there exists a homeomorphism ¢, : F; x I — D; such that ¢;(F; x 0) = 0B;
and ¢;(F; x 1) = 0B/, where F; is homeomorphic to one of S?, P2, T? and K2.
Next, we will find the topologies of B; (and B}). If B; does not satisfy Assump-
tion 228 then B; is homeomorphic to D3 or K;(P?). Hence, we may assume that
there exist sequences 0; — 0 and p; such that a limit (Y, yo) = lim; 0 %(Bi, Di)
exists, where we may assume that p; = p; and Y is a non-compact non-negatively
curved Alexandrov space of dimY > 2.
If dimY = 3 with a soul S C Y, then Theorem implies B; is homeomorphic

to one of the following:

e D3 K;(P?) and B(pt) if dim S = 0,

e S x D? and S'xD? if dim S = 1, and

e B(N(S)) and B(S2) and B(Sy) if dim S = 2.
Here, N(S) is a non-trivial line bundle over a closed surface S of non-negative
curvature and B(N(S)) is a metric ball around S in N(S), and B(S;) is a metric
ball around S; in L; = L(S;) for i = 2,4 (see ZRI). B(N(S)) is homeomorphic
to one of the non-trivial twisted I-bundles over a closed surface S with connected
boundary. We determine the topology of B(N(S)) as follows: If S ~ S2, N(S) is
isometric to S x R, which is a contradiction. If S ~ P?, we have the line bundle
N(S) induced by the double covering = : § — S. Since N(S) = § x R, we
find that N(S) = S x R/(z,t) ~ (o(z), —t), where o is the involution on § with
S/o = S. Thus B(N(S)) is a twisted I-bundle over P2, which is homeomorphic to
P3 —int D3. If S is homeomorphic to either T2 or K2, then N(S) is a complete
flat three-manifold. By [W] Theorem 3.5.1] we obtain that B(N(S)) is a twisted
I-bundle over T2, which is homeomorphic to Mé x S, an orientable I-bundle K2 x I
over K2, and a non-trivial non-orientable I-bundle K?xI over K?2.
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If dimY = 2 and Y = (), then Y is either homeomorphic to R? or isometric to
a flat cylinder or a flat Mobius strip.

Suppose that ¥ =~ R%. Let us denote by m the number of essential singular
points in Y. Then m < 2. When m < 1, Theorem [[.3] together with Lemma
implies that B; ~ S* x D? or B(pt). If m = 2, then Y is isometric to the envelope
dbl (R4 x [0, 4]) for some £ > 0. Let B be a closed ball around {0} x [0,¢] in Y. By
Theorem [[3] B; is a generalized Seifert fiber space over B and its boundary 9B;
is homeomorphic to T2 or K2. We may assume that B; has actually two singular
orbits over two singular points (0,0) and (0, ) in Y. Here, a singular orbit is either
a (2, 1)-type fiber corresponding to the core of Us 1 or the interval fiber of M in
this case. The topology of B; is determined as follows: When two singular orbits
are both (2,1)-type, int B; is homeomorphic to Uj ; Up U ;. Since Uy ; is an R-
bundle over M, int B; is an R-bundle over K2. By the boundary condition, B; is
homeomorphic to K2x1I if 0B; ~ T? or K2xI if 0B; ~ K?2. When singular fibers
of B; are (2,1)-type and an interval, int B; is homeomorphic to Us ; Us M. Then
B; is homeomorphic to one of B(Ss) C Lo with So ~ P2, When B; has two
singular interval fibers, intB; is homeomorphic to M} Us M, which is Ly. Then
B, is homeomorphic to B(Sy).

If YV is a flat cylinder, then 0B; is not connected, and hence this case cannot
happen.

If Y is isometric to a flat Mobius strip, then B; is an S'-bundle over M&. There-
fore, we have B; ~ M6 x S! or K2x1I.

If dimY = 2 and 9Y # 0, then Y is either isometric to a flat half cylinder
S1(¢) x [0,00) or [0, ¢] xR or homeomorphic to an upper half plane R? = R x [0, co).

If Y is a flat half cylinder, then 0Y has no essential singular point. Therefore,
B; is a fiber bundle over S with the fiber homeomorphic to D? or Mé. In other
words, this is a generalized solid torus of type 0 or a generalized solid Klein bottle
of type 0.

If Y =[0,4] xR, then dB; is not connected, and hence this case cannot happen.

Suppose that Y is homeomorphic to Ra_. Let us set m := fEss(intY) and
n := #Ess (9Y). Then m <1 and n < 2.

If m = 0 and n < 1, then by Lemma 5.4, B; is homeomorphic to one of D3,
M6 x I or K;(P?).

If m = 0 and n = 2, then Y is isometric to R4 x [0,£] for some £ > 0. Let
B :=[0,c] x [0, ] for some ¢ > 0. By Corollary [[L6] there is a continuous surjective
map

m:B; — B.

We may assume that B; has two topologically singular points converging to the
corners (0,0) and (0,¢) of Y. We divide B into two domains,

A;=[0,c] x {y € [0,0](~1)’(y — £/2) > 0} C B,

for j = 1,2. Since B; has two topologically singular points, m~1(A;) ~ K;(P?).
Then, B; is homeomorphic to K;(P?) Up2 Ki(P?) if 7=1(A4; N Ay) ~ D? or
Ki1(P?) Upgs K1(P?) if 771(A1 N Ay) ~ Mé. By Lemma 261 and Remark 2.62]
B; is homeomorphic to B(pt) or B(S2) C La o with Sy ~ S2.

If m =1, then n = 0 and Y is isometric to a cut envelope R x [0, h]/(z,y) ~
(—z,y) for some h > 0. Let B :=Y N{(z,y) |z < r} which is homeomorphic to
D?. By Theorem [[5 there is a generalized Seifert fibration m; : W; — B such that
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B; is homeomorphic to a gluing of W; and F; x [—r,r] via a homeomorphism
OF; x [—r,7] D OF; x {z} > m; Y(x) C ; *({(x,h) € B | x € [-r,7]})

for all z € [—r,r]. Here, F; is D? or M6. We may assume that W, contains a
singular orbit over the singular point (0,0) € intB. If the singular orbit is a circle,
then W; is isomorphic to a Seifert solid torus V2 of (2,1)-type. Remark that W;
can be regarded as an I-bundle over M6, which corresponds to the preimage of the
Seifert fibration over {0} x [0,h] C B. Then, B; is isomorphic to an I-bundle over
M6 Ug F;. Therefore, it is P?xI ~ P3 —intD3 if F; ~ D? or K2xI if F; ~ Mb.
If the singular orbit is an interval, then Theorem [[.3] shows that W; is isomorphic
to M;/m- Recall that B; is homeomorphic to the union W; U F; x I. Therefore, B;
is homeomorphic to B(S2) C Lo with So &~ S? if F; &~ D? or B(S;) C Lo 3 with

This completes the proof of Theorem [I.8 O

8. THE CASE THAT X IS A SINGLE-POINT SET

Lemma 8.1. If M is a three-dimensional non-negatively curved closed Alexandrov
space, then a finite covering of M is T3, S* x S? or simply-connected.

Proof. We may assume that |7;(M)| = co. Then a universal covering M of M has
a line. Thus, M is isometric to the product R* x X, where 1 < k < 3 and X, is a
(3 — k)-dimensional non-negatively curved closed Alexandrov space.

e If k = 3, then M is the Euclidean space. Then a finite covering of M is T3,

o If k = 2, then Xj is a circle. Then M is not simply-connected. This is a
contradiction.

o If k = 1, then X is homeomorphic to S2. Then a finite covering of M is
homeomorphic to S x S2.

O

Proof of Corollary [L9. Let {M;} be a sequence of three-dimensional closed Alexan-
drov spaces of curvature > —1 with diam M; < D, which converges to a point {x}.
Let §; := diam M;. Then the rescaled space (%Ml is an Alexandrov space with
curvature > —62 having diameter one. Then, the limit Y of the rescaled sequence

M is a non- negatlvely curved Alexandrov space of dimension > 1. If dimY =1,
then M, is homeomorphic to a space in the conclusion of Theorems [I.7 and IEl
If dimY = 2 and Y = (), then M; is homeomorphic to a generalized Seifert fiber
space having at most 4 singular fibers. If dimY = 2 and 9Y # (), then M; is home-
omorphic to a space in the conclusion of Theorem with at most 4 topologically
singular points. If dimY = 3, then by the Stability Theorem, M; is homeomorphic
to Y. In this case, the topology of Y is already obtained in Lemma 811 O

9. APPENDIX: £-REGULAR COVERING OF THE BOUNDARY
OF AN ALEXANDROV SURFACE

Let X be an Alexandrov surface with non-empty compact boundary 0X. Let us
denote C' by a component of 9X. The purpose of this section is to prove Lemma
0.9 which states the existence of an e-regular covering of C, used in Section

We will first prepare a division of C' by consecutive arcs 1, ya, - . . , Yn With 0y, =
{PasPa+1} and pp+1 = p1. We next prove that this division makes the desired
regular covering {By, Dy }a=12,...n of C.
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For ¢ > 0, we define
S:(0X) ={peoX|L(E,) <m—¢},
where L(X,) is the length of ¥,. Note that S.(0X) is a finite set. We set
R.(0X) := 90X — S.(0X)
and
S.(C) :=8.(0X)NC and R.(C) :=R.(0X)NC.
We review fundamental properties.
Lemma 9.1. Fore > 0 and p € R.(0X), there exists 6 > 0 such that for every
x € B(p,d) — 0X, we have
|Vdox|(x) > cose.
Proof. Suppose the contrary. Then, there are a sequence §; — 0 and x; € B(p, d;) —
0X such that |Vdyx|(z;) < cose. Taking a subsequence, we consider the limit
Too € B(0p,1) C T, X of z; under the convergence (+X,p) = (T, X, 0p).
If |0T, X, 20| > 0, then
\Vdor, x|(2o0) > — cos <7r - %) = cos (%) .
By the lower-semicontinuity of angles,

lim inf |Vdax‘($z) > |VdanX|(.’L'OO).
11— 00
This implies a contradiction.
When |07, X, 25| = 0, we take yoo € B(0p,1) — U(0T,X,1/2) such that
10T X, Yoo|

= €08 LT Yoo 0T X > cos (E) .
‘xoo,yoo| 2

We take a sequence y; € B(p, ‘33) - U(0X, %) such that y; — Yo under the
convergence (%X ,p) = (TpX, 0,). Since the distance function dyx is A-concave for
some A on intX,

‘8Xa yz‘ - |8X7xz| <

A
|z, yil — 2
A

|lziyil + (dox )%, (14)

< §|$zyz| + |Vdox | ().

Remark that x;y; C int X (Remark [0.2] later). It is obvious that
|6X7yz|_‘aX7xl| N |anX7yoo|

(as i — 00).
|514] |Z 00 Yool
Therefore, we conclude that
cos(e/2) < cose.
This is a contradiction. Therefore, we have the conclusion of Lemma [@.11 O

Remark 9.2. The interior of an Alexandrov space is strictly convex. In fact, let
p,q € int M. For every x,y € int (pg) (the relative interior), £, = X, ([Pet_Paral).
If  is near p, then = € int M, and hence 0¥, = (. Then 90X, = (). Therefore,
pq C int M.
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Corollary 9.3. For any e,s > 0, there is §; > 0 such that
|Vdox| > cose
on B(0X,61) — (0X UU(S:(0X), s)).
Proof. The proof is provided by Lemma [0.T] and the Lebesgue covering lemma. O

Lemma 9.4. For any € > 0, there is 65 > 0 such that
B(0X,8) — 0X

is (2, €)-strained.

Proof. For any p € 0X, there is §, > 0 such that

B(p,dp) — {p}
has no ¢’-critical point for dj,, where, ¢’ < e. Therefore, B(p,d,) — 0X is (1,€)-
strained, and hence this is (2,¢)-strained. Since 90X is compact, there is § > 0
such that, for any p € 0X, there exists ¢ € X with B(p,d) C B(g,d,). Therefore,
B(0X,d) — 0X is (2,¢e)-strained. O

From now on, we use the notation Z(A; B, C) defined as follows. Let A, B and
C' be positive numbers satisfying a part of the triangle inequality: B+ C > A
and A+ C > B. If A+ B > (|, then taking a geodesic triangle Aabc in the
hyperbolic plane H? with side lengths |ab] = C, |bc| = A and |ca| = B, we set
Z(A; B,C) := Zbac. Otherwise, Z(A; B,C) := 0.

Let us start to construct a division of C' C dX to construct an e-regular covering.
Let us fix a small positive number ¢ > 0.

Lemma 9.5. For any p € 90X, there is s > 0 such that for any q¢ € B(p,s)N
X —{p} and x € pq — ({q} UU(p, |pal/2)), we have
Z(Ipal; [p=|, L(zq)) > 7 —&.
Here, pq is an arc joining p and q in 0X . In particular,
/prq>T— €.
Proof. Suppose the contrary. Then, there are p € 90X, s; — 0, ¢; € S(p, s;) N 0X
and z; € pg; — ({¢:} U U(p, |pgi|/2)) such that
Z(|pgil; [pz:], L(zigi)) < 7 — €.
Taking a subsequence, we may assume that g;, x; converges to ¢oo, oo, respectively,
under the convergence (+X,p) = (T,X,0,). Then, goo € 0T, X, [0p,¢oc| = 1 and
Too € Opfoo-
If oo # oo, then
lim Z(|pgi; [pzil, L(TiGi)) = ZopTocgoo = T
71— 00
This is a contradiction.
Otherwise, Too = ¢oo. We take 7o € 91, X such that
Goo € OpT o, |0;077"oo| > 3/2
We choose r; € 0X such that r; — ro, as i — oo under the convergence (SLX ,p) —

(T, X, 0p). Since z;7; is a quasigeodesic containing ¢;, by the comparison theorem
for quasigeodesics [PP QG], we have

Z(lpail; pwil, L&) > Z(|pril; Ipail, L(7i77)).
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Since L(Z;77)/8i = |TooToo| (PP QG]), we obtain
Z(|pril; lpi], L(TiT3)) = ZopTooTeo = T
This is a contradiction. O

Lemma 9.6. For p € R.(0X), there is s > 0 such that for any q¢ € B(p,s)N
0X — {p} and x € pg — {p, q}, we have

Z(lpal; lpe|, L(@q)) > 7 — ¢ or Z(|pal; L(p2), lzq|)) > 7 — <.
In particular, Zp:vq >m—c.

Proof. Suppose the contrary. Then there are p € 90X, s; — 0, ¢; € S(p,s;) N 90X
and z; € pg; — {p, ¢;} such that

(9.1) Z(|pqil; |pxil, L(7:¢;)) < ® — e and
(9.2) Z(|pgil; L(pT:), |zigi])) < 7 —e.

We may assume that g; and x; converge to g, and x,, respectively, under the
convergence (%X,p) — (T, X, 0p). Then, oo € 0T, X, [0pgoo] =1 and o € 0pGoo-
If ¢oo # 0p, then by the same argument as in the proof of Lemma [0.5] we have
Z(|pgil; [pxsl, L(zigi)) — .
This is a contradiction to ([@.T]).
Otherwise, goo = 0,. We take roo € 9T,X N S(0p,1) — {¢oo} and r; € X
such that 7; — ro.. Since Z;7; is a quasigeodesic containing p, by the comparison
theorem for quasigeodesics, we have

Z(|pail; L(pxi), |wiqi|)) = Z(|rigsl; L(7i7), [zigal))-
Since L(732;)/8i — |roc0p|, we obtain
Z(‘TiQi|;L(T/z’1\'i)a |lzigi|)) — Z%OOp?“oo > T —E.
This is a contradiction to ([@.2]). O

Definition 9.7. Let v = pg be an arc joining p and ¢ in 9X. We say that v is
strictly e-strained by vy = {p,q} if
(9.3) Zpxq > 7 — ¢ for all z € int,

and if setting £ and 7 as the directions of quasigeodesics Tp and Zq at x, respectively,
we have

(9.4) £(6,47) < e and £(,19) < &.
Remark that an arc pg in Lemma [0.0] is strictly e-strained by {p, ¢}. Indeed, we
assume that Z(Ipql; Ipz|, L(Zq)) > 7 — & for some = € intpg. We obtain /pzq >

Z(|pql; |pz|, L(Zq)) > m —e. Let ¢ and n be the directions of Zp and Zq at z,
respectively. Since dim X = 2, £ and 7 attain the diameter of X, i.e.

4(5’ 77) = L(Zm)

Hence, we have

Z(&,m) = L(E,2) + L(12,n)
= Z(E,1) + Z(12,19) + £(14, 1)
(18,10 > Z

Y%

prq > T —E.



COLLAPSING THREE-DIMENSIONAL ALEXANDROV SPACES 2407

Since L(X,) < m, we obtain

2(6,17) +£(1%,m) <e.

In particular, (@4]) holds.
Let us fix a component C of 9X. By Lemma[@H and §S.(C) < oo, there is s > 0
such that for every p € S:(C), taking ¢, ¢~ € S(p,s) N C, we have

Z(Ipg*|; |pz|, L(zq)) > 7 — ¢

for all z € B;,t — (U(p,s/2) U{qT}), where ﬂ;t = p/q?E
Let us consider the set

(9.5) C-U(S.(C),s)=C— |J int(BFugB,).
peES:(O)

This consists of finitely many arcs. We prove that each component K of it is divided
into finitely many strictly e-strained arcs.

Lemma 9.8. Let K be an arc in R.(C) with 0K = {p,q}. There are consecutive
arcs Yo = PaPati, @ = 1,2,...,n with py = p and p,1 = q such that each 7, is
strictly e-strained by {pa,Pa+1}-

Proof. By repeatedly using Lemmal[0.6] we have a set ® of consecutive arcs starting
from p contained in K,

® = {71)72a"'77n}
such that each -y, is strictly e-strained by 0v,. Here, “consecutive arcs starting

from p” means that each 7, forms v, = papar1 C K and p; = p.
In what follows, ® denotes any such finite sequence of arcs as above. Let us set

L(®):= Y L(7a).
a=1

We consider the value £ := supg L(®). Since 7, are consecutive and contained in
K, we have ¢ < L(K). To prove the lemma, we show that there exists ® with
L(®) = L(K).

If ¢ = L(K), then there is ® = {7, }1<a<n such that p, is arbitrarily close to
q. If there is ® with L(®) = L(K), then the proof is done. Otherwise, by using
Lemma for ¢, we can take ® such that 7,11 := p,q is strictly e-strained by
O7vn+1. Then we obtain an extension

(i) = (I) U {77L+1}

of ® with L(®) = L(K). This is a contradiction. Therefore, if £ = L(K), then
there is @ attaining L(®) = L(K).

We assume that ¢ < L(K). By a similar argument as above, we have & =
{Ya}1<a<n such that L(®) = ¢. Again, by a similar argument as above, we have

an extension ® of ®. Hence L(®) > ¢. This is a contradiction. O

By Lemma [0.8 and the decomposition (@], we obtain a division of C:

(9.6) c=| U Bfus, u(ULjv,ff),

p€S(C) K i=1
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where B;AL = p/qI and K denotes any arc component of C — U(S.(C),s). For
each K, 75 (1 < a < ng) expresses a strictly e-strained arc by 9y, obtained in
Lemma

By using a division ([@6]) of C, we prove the existence of an e-regular covering of

C.
Lemma 9.9. There is an e-regular covering of C.

Proof. Let us fix a division of C obtained as (@.0]). Fixing a component K, we write
n=ng, Yo = 7X. Each v, forms 7, = papar1. We take a small positive number
r such that

(9.7) |Vd,.| >1—¢on B(pa,2r) — {pa.} for all a,
B,N By =0 for all a # o,

where B, := B(pa, ).
By the condition (@3]), there is a small positive number § with § < r such that,
setting

D, := B(Ya,0) —int (By U Bat1),
we have
Zpozxpa-i-l >T =€

for all x € D,. Further, by ([@3) and ([@4]), § can be chosen that for every z € D,,
and y € C with |zC| = |zy|, we have

|£paxy — /2| < 26 and |Lpat1zy — /2] < 2e.
To use later, we set
D :={Ba}ti<a<n U{Dati<a<n-1-

For p € S-(C), there are unique components K and K~ of C—U(S.(C, s)) with
ﬁpi NK* # (. We take unique elements ¢+ € B;E NK*. Recall that s > 0 is a small
positive number satisfying the conclusion of Lemma[@.5] for p, and |[Vd,| > 1 —¢ on
B(p, s) — {p}. For ¢* € K*, we provided numbers r* satisfying (@.1) and (@.8),
above. Let us set

B, := B(p,s/2) and D;[ = B( pi,é) —int (B, U B(¢*,r%)).
If we retake § small enough, we have

|/pgt — /2| < e

for all x € Di
Thus, we obtain an e-regular covering

{Bp, D }pes.(cy U U (5%
K

of C. O
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