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THICK SUBCATEGORIES OF THE BOUNDED

DERIVED CATEGORY OF A FINITE GROUP

JON F. CARLSON AND SRIKANTH B. IYENGAR

Abstract. A new proof of the classification for tensor ideal thick subcate-
gories of the bounded derived category, and the stable category, of modular
representations of a finite group is obtained. The arguments apply more gen-
erally to yield a classification of thick subcategories of the bounded derived
category of an artinian complete intersection ring. One of the salient features
of this work is that it takes no recourse to infinite constructions, unlike previous
proofs of these results.

1. Introduction

In the paper [6], the first author, in collaboration with Benson and Rickard,
established a classification for tensor ideal thick subcategories of the stable category
of finitely generated kG-modules in the case thatG is a finite group and k is a field of
characteristic p > 0 dividing the order of G. This result was inspired and influenced
by an earlier classification of the thick subcategories of the perfect complexes over
a commutative noetherian ring by Hopkins [16]. The statements are remarkably
similar: In both cases a subcategory is determined by the support, suitably defined,
of the objects in the subcategory.

However, the methods in the two settings were entirely different. At that time it
did not seem possible to adapt Hopkins’ methods to modules over group algebras.
Instead, the proofs in [6] used idempotent modules and idempotent functors devel-
oped by Rickard. Idempotent modules are, in general, infinitely generated, hence
the proof had employed constructions from the stable category of all kG-modules
to obtain a result that spoke only of finitely generated modules.

The main purpose of this paper is to show that the results in the two settings
are directly related. To this end, we extend Hopkins’ arguments to obtain a clas-
sification of the thick subcategories of perfect Differential Graded modules over
suitable DG algebras. The result about kG-modules is then deduced from it by a
series of reductions, following the paradigm developed in the work of the second
author with Avramov, Buchweitz, and Miller [2], and with Benson and Krause [8].
What is more, the arguments require no constructions involving infinitely generated
modules, in contrast to the proof in [6].

In the reduction mentioned above, it is more natural to work with the bounded
derived category of modules over kG; the sought-after classification for the stable
category is an easy consequence, for the latter is a quotient of the former by the
subcategory of perfect complexes. The first step (which comes last in the paper)
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is to reduce to the case of an elementary abelian p-group; this uses a theorem of
the first author [12]. After that, if p = 2 Koszul duality gives an equivalence of
triangulated categories between the bounded derived category of k(Z/2)r-modules
and the derived category of DG modules, with finitely generated cohomology, over a
polynomial ring k[y1, . . . , yr] with generators yi in degree one. Then one can apply
(the extension of) Hopkins’ theorem to k[y] to get the desired classification. Even
in this case, we take a slightly longer route, that has the merit of being independent
of the characteristic of k.

The starting point is the observation that the group algebra of an elementary
abelian group is an artinian complete intersection ring. For any such ring R there
is an exact functor, constructed in [2], from its bounded derived category to the de-
rived category of DG modules with finitely generated cohomology over a polynomial
ring k[x1, . . . , xr], with generators xi in degree two. Though not an equivalence of
categories, the functor is close enough to it that one can relate the thick subcate-
gories in the source and in the target. Hopkins’ Theorem again applies, and yields
a classification of the thick subcategories of the bounded derived category of R.
Such a result has been proved for complete intersections of any (Krull) dimension
by Stevenson [21], using different techniques involving infinite methods.

Friedlander and Pevtsova [13] have proved a similar classification of thick sub-
categories for the stable category of modules over a finite group scheme, again using
idempotent modules. We have been unable to bring to bear the methods of this
paper in that context. The difficulty is that for more general finite group schemes,
there is no reduction of such a classification to unipotent abelian subgroup schemes,
which are the analogs of the elementary abelian subgroups

Here is an outline of the contents of this paper: Section 3 is devoted to estab-
lishing the analogue of Hopkins’ theorem for DG modules over commutative graded
rings. This uses a notion of support for DG modules, discussed in Section 2. In
Section 4 we classify the thick subcategories of the bounded derived category of
DG modules over an exterior algebra, using a BGG correspondence from [2] and
the main result of Section 3. The statement on artinian complete intersections is
deduced from it in Section 5. Section 6 is devoted to group algebras.

In this article, we assume that the reader is familiar with basic results on group
cohomology, and take [11] as our reference for this topic. We also take the mechanics
of triangulated categories as given, and refer the reader to one of the standard
texts such as [15] for details. We recall only that a non-empty full subcategory of
a triangulated category is thick if it is triangulated (i.e., if two of three objects
in a triangle are in the subcategory, then so is the third) and closed under taking
direct summands. If M is an object in a triangulated category, the smallest thick
subcategory containing it is denoted Thick(M).

There are two distinct aspects to any classification of thick subcategories via
supports. The first is the realizability problem: Construct an object with support a
prescribed closed subset of the ambient variety. This is now well understood to be
the elementary aspect of the classification problem, and there are various solutions
that apply in great generality; see, for example, [4]. The second, more challenging,
step is to prove that if the support of an object M is contained in the support of
N , then Thick(M) ⊆ Thick(N). This is where properties specific to the context
come in play. In this work, the focus is on this aspect of the classification problem.
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2. Support for DG modules

Let S be a commutative Z-graded noetherian ring that is concentrated in even
degrees or satisfies 2S = 0. Our gradings are upper; thus S =

⊕
i∈Z

Si. In this
section we introduce a notion of support for Differential Graded (henceforth abbre-
viated to DG) modules over S and describe various ways of computing supports.

To begin with, we record a version of Nakayama’s Lemma for graded S-modules.
Such results are known in greater generality but the version below is all we need;
the proof is similar to the one for ungraded rings, and is sketched for completeness.

Lemma 2.1. Assume S has a unique maximal homogeneous ideal, say m. If M is
a finitely generated graded S-module and mM = M , then M = 0.

Proof. Pick homogeneous elements {x1, . . . , xn} that generate M as an S-module.
By hypothesis, there exist homogeneous elements {sij}1�i,j�n in m such that

xi =

n∑
j=1

sijxj for each 1 ≤ i ≤ n.

By the determinant trick, it follows that det(I−A)M = 0 where A = (sij). Observe
that det(I − A) = 1 −

∑
t∈Z

st, where st is in m and has degree t. Thus, for any

homogeneous element x in M , one gets x =
∑

t stx, so that x = s0x. As S0 is a
local ring with maximal ideal m ∩ S0, the element 1 − s0, which is in S0 \ m, is a
unit, and hence x = 0. �

Henceforth we view S as a DG algebra with dS = 0. Given a DG S-module
M , its homology H(M) is a graded S-module. We write D(S) for the derived
category of DG S-modules, viewed as a triangulated category, and Df (S) for the
full subcategory consisting of DG modules M for which the S-module H(M) is
finitely generated. The basic constructions and results on DG modules over DG
algebras, required in this work, are all recorded in [2, §3 and §4].

We recall that a DG module S-module F is semi-free if it admits a family
(Fn)n∈N of DG submodules such that Fn ⊆ Fn+1, and

⋃
n Fn = F , and Fn+1/Fn is

isomorphic to a direct sum of suspensions of S; in particular, forgetting differentials,
F is a graded free S-module. When F is semi-free the functors HomS(F,−) and
−⊗S F defined on the category of DG S-modules preserve quasi-isomorphisms.

Each DG module M over S admits a semi-free resolution: a quasi-isomorphism
of DG S-modules F → M with F semi-free. The assignments

(−⊗L
S M) = −⊗S F and RHomS(M,−) = HomS(F,−)

then define exact functors on D(S).
We write Spec∗S for the set of homogeneous prime ideals in S. For each p in

Spec∗S, the homogeneous localization of a graded S-moduleM at p is denotedM(p).
We write k(p) for S(p)/pS(p), which is a graded field. See Bruns and Herzog [10, §1.5]
for the module theory over graded rings.

When M is a DG S-module, and p ∈ Spec∗S, the differential on M induces one
on M(p), making it a DG module over S(p).

Definition 2.2. The support of M ∈ Df (S) is the subset of Spec∗S defined by

Supp∗S M = {p ∈ Spec∗S | H(M(p)) �= 0}.
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Let AnnS H(M) denote the annihilator of the S-module H(M); it is a homoge-
neous ideal of S. Since H(M(p)) ∼= H(M)

(p)
, there are equalities

(2.3) Supp∗S M = Supp∗S H(M) = {p ∈ Spec∗S | p ⊇ AnnS H(M)} .
The next result provides a description of support that is often more convenient to
work with. Its proof is, at the end, an application of Nakayama’s Lemma 2.1.

Theorem 2.4. Let M be a DG S-module in Df (S). For each p ∈ Spec∗S, one has

H(M(p)) �= 0 if and only if H(k(p)⊗L
S M) �= 0 .

In particular Supp∗S M = {p ∈ Spec∗S | k(p)⊗L
S M �= 0 in D(S)}.

Proof. Replacing S by S(p) one may assume that S is (graded) local, so there is
a unique maximal homogeneous ideal; call it m and let k = S/m. The task is
then to verify that, in D(S), if k⊗L

S M = 0, then M = 0. Pick a set of elements
{s1, . . . , sn} that generate the ideal m, and let K be the DG S-module obtained

by an iterated mapping cone: K0 = S and Ki = cone(Σ|si|Ki−1
si−−→ Ki−1) for

i ≥ 1 and K = Kn. Then K is in ThickS(k); see the penultimate paragraph in the
proof of [7, Theorem 8.1]. The hypothesis thus implies that K ⊗S M = 0 in D(S).
Consider the long exact sequence associated to the exact sequence of DG modules

0 −→ Ki−1 ⊗S M −→ Ki ⊗S M −→ Σ|si|+1(Ki−1 ⊗S M) −→ 0 .

Assuming H(Ki ⊗M) = 0, there is an isomorphism

Σ|si| H(Ki−1 ⊗S M)
si−−→ H(Ki−1 ⊗S M)

of finitely generated graded S-modules. Hence, H(Ki−1⊗S M) = 0, by Lemma 2.1,
for si is in m. An iteration then yields H(M) = 0, as desired. �

3. Perfect DG modules over commutative graded algebras

Let S be a commutative Z-graded noetherian ring, either concentrated in even
degrees or satisfying 2S = 0. As in the previous section, we view S as a DG algebra
with zero differential. The main result of this section is a generalization of Hopkins’
theorem that applies to perfect DG modules over S.

Definition 3.1. A DG S-module is said to be perfect if it is in ThickS(S).

A DG module is perfect if and only if it is a retract (that is to say, isomorphic in
Df (S) to a direct summand) of a semi-free DG module with a finite free filtration;
see [2, Theorem 4.2] for details. We do not need this description in what follows.

When S is concentrated in degree zero, a DG module is nothing other than a
complex of S-modules, and a DG module is perfect if and only if it is isomorphic to a
bounded complex of finitely generated projective S-modules. Thus the result below
generalizes Hopkins’ theorem [16, Theorem 11] (see also Neeman [19, Lemma 1.2]
and Thomason [23, Theorem 3.14]) from rings, which can be viewed as DG algebras
concentrated in degree 0, to DG algebras with zero differential.

Theorem 3.2. If M and N are perfect DG S-modules with Supp∗S M ⊆ Supp∗S N ,
then M is in ThickS(N).

This result can be deduced from the classification of the localizing subcategories
of D(S) proved in [7, §8]. In the interest of avoiding “infinite constructions”, we
sketch an alternative proof, mimicking arguments from [16, 19, 23]. The crux is
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the following Tensor Nilpotence Theorem for perfect DG modules that extends
[16, Theorem 10] and [19, Theorem 1.1]; see also [23, Theorems 3.6,3.8].

Theorem 3.3. Let F and G be perfect DG S-modules. If f : F → X is a morphism
of DG S-modules and k(p)⊗L

S f = 0 for each p ∈ Supp∗S G, then there exists an
integer n ≥ 1 such that G⊗L

S f⊗n = 0 in D(S).

Here f⊗n denotes the morphism F⊗L
Sn → X⊗L

Sn induced by f .

Proof. The proof proceeds by a series of reductions.

Step 1. Reduction to the case G = S.

This is a formal argument (see [23, Theorem 3.8]) exploiting the fact that, since
the DG S-module G is perfect, it is a retract of RHomS(G,G)⊗L

S G.

Step 2. Reduction to the case F = S.

Indeed, f⊗n = 0 if and only if (f ′)⊗n = 0 where f ′ : S → RHomS(F,X) is the
morphism that assigns 1 to f .

For the sequel, we replace X by its semi-free resolution; thus, for example,

W⊗L
S f is represented by W ⊗S f for any W ∈ D(S) and f⊗n : S → X⊗L

S n is
represented by the morphism f⊗n : S → X⊗n. In particular, the following condi-
tions are equivalent:

• f⊗n = 0 in D(S);
• the cycle f(1)⊗n ∈ X⊗n is homologous to 0.

Note that morphisms g, h : S → W are homotopic if and only if the cycles g(1)
and h(1) in W0 are homologous. In such a situation, we write g(1) ∼ h(1).

Claim 1. Let I, J be homogeneous ideals in S such that

(S/I)⊗S f = 0 = (S/J)⊗S f .

If IJ = (0), then f ⊗S f = 0.

Indeed, the hypothesis is equivalent to the existence of cycles a ∈ IX0 and
b ∈ JX0 such that f(1) ∼ a and f(1) ∼ b. It is then readily seen that

(f ⊗ f)(1) = f(1)⊗ f(1) ∼ a⊗ b .

Since a⊗ b ∈ IJ(X0 ⊗S X0) = 0, it follows that f ⊗ f = 0.
In what follows, dimS denotes the dimension of Spec∗S.

Claim 2. If d is a non-negative integer such that the result holds for all graded
domains S with dimS ≤ d, then it holds for all graded rings S with dimS ≤ d.

Indeed, this is by a straightforward application of Claim 1, given that the minimal
primes of S, and so also its nil-radical, are homogeneous; see [10, Lemma 1.5.6].

Next we prove the desired result when dimS is finite, by an induction argument.
Assume dimS = 0. Using the preceding claim we can assume S is a domain,

and hence a graded field. In this case the result is obvious.
We now suppose that the result holds for all commutative Z-graded noetherian

rings of dimension d− 1 or less, and verify that it holds whenever dimS = d ≥ 1.
By Claim 2, it suffices to consider the case when S is a domain.

Consider the ideal Ann(f) = {s ∈ S | sf = 0 in D(S)} of S. By hypothesis,
k(0)⊗S f = 0, where k(0) is the graded residue field at the prime ideal (0). Thus
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Ann(f) �= (0). We may assume f �= 0. Then there exists a non-zero homogeneous
element s in Ann(f) that is not a unit, and so a non-zero divisor in S.

Consider the morphism S/(s) ⊗S f : S/(s) → S/(s) ⊗S X. Since Spec∗(S/(s))
is naturally identified with the subset of primes p ∈ Spec∗S containing s, and for
such a p the S action on k(p) factors through S/(s), it follows that

k(p)⊗S/(s) (S/(s)⊗S f) ∼= k(p)⊗S f = 0 .

The induction hypothesis thus yields that S/(s)⊗S f
⊗n = 0 for some integer n ≥ 1;

that is to say, f⊗n(1) ∼ sx for some x ∈ X. Because sd(x) = d(sx) = 0 and the
graded S-module underlying X is free (recall X is semi-free) one gets d(x) = 0,
that is to say, x is a cycle. This justifies the second equivalence below:

f⊗(n+1)(1) = (f⊗n ⊗ f)(1) ∼ (sx⊗ f(1)) = (x⊗ sf(1)) ∼ (x⊗ 0) = 0 .

The other equivalence and the equalities are standard. Thus f⊗(n+1) = 0.
This completes the proof of the theorem when dimS is finite.
To finish the proof, we consider the chain of ideals

Ann(f) ⊆ Ann(f⊗2) ⊆ Ann(f⊗3) ⊆ · · · .
Since S is noetherian, there exists an integer n such that Ann(f⊗n) = Ann(f⊗i)
for all i ≥ n. We claim that f⊗n = 0, or equivalently, that Ann(f⊗n) = S.

Indeed, if this is not the case, then there exists a prime ideal p ⊇ Ann(f⊗n).
The dimension of S(p) is finite and the hypothesis of the theorem applies to the

morphism f(p) : S(p) → X(p). The already established case yields that f(p)
⊗i = 0 for

i � 0 so

Ann(f⊗i)
(p)

= Ann(f(p)
⊗i) = S(p) .

This is a contradiction. �

In the sequel, given a morphism g : X → Y of DG S-modules, we write cone(g)

for any DG S-module that fits in an exact triangle X
g−−→ Y → cone(g) →, and

use the fact that if g = 0, then Y is a retract of cone(g).

Proof of Theorem 3.2. Given Theorem 3.3 the argument is akin to the one for [16,
Theorem 7] (see also [19, Lemma 1.2] and [23, Lemma 3.14]), so we only sketch it.

The natural map S → RHomS(N,N) of DG S-modules induces a morphism

g : M → M⊗L
S RHomS(N,N) ,

and this gives rise to an exact triangle of perfect DG S-modules:

F
f−−→ M

g−−→ M⊗L
S RHomS(N,N) −→ .

For any p ∈ Supp∗S M , one has H(k(p)⊗L
S N) �= 0, since Supp∗S M ⊆ Supp∗S N .

Here we use the alternative definition of support from Theorem 2.4. Since k(p) is a
graded field, the map k(p)⊗L

S g is split-injective, so that k(p)⊗L
S f = 0 in D(k(p)).

Theorem 3.3 applies to yield that M⊗L
S f⊗n = 0 for some positive integer n. Thus,

M⊗(n+1) is a retract of M⊗L
S cone(f⊗n). A straightforward induction on i shows

that cone(f⊗i) is in ThickS(N) for each i ≥ 1, and hence so is M⊗L
S cone(f⊗i). In

conclusion, M⊗(n+1) is in ThickS(N). It follows that so is M . This uses the fact
that, since M is perfect, it is a retract of the DG S-module RHomS(M,M)⊗L

S M ,
which is isomorphic to RHomS(M,S)⊗L

S M⊗2. �
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Definition 3.4. A subset V of Spec∗S is specialization closed when the following
property holds: If p ⊆ q are homogenous prime ideals in S and p ∈ V , then q ∈ V ;
equivalently, V is a union of closed subsets, in the Zariski topology on Spec∗S.

In what follows, given a subset V of Spec∗S, set

Thick(S)V = {M ∈ Thick(S) | Supp∗S M ⊆ V } ,
viewed as a full subcategory of Thick(S). It is not hard to verify that this is a thick
subcategory when V is specialization closed. Theorem 3.2 yields a perfect converse.

Corollary 3.5. If C is a thick subcategory of Thick(S), then there exists a spe-
cialization closed subset V ⊆ Spec∗S such that C = Thick(S)V .

Proof. Since the support of any DG S module M in Df (S) is a closed subset of
Spec∗S, by (2.3), the subset

V =
⋃

M∈C

Supp∗S M

is specialization closed. It is immediate from definitions that C ⊆ Thick(S)V .
Let now M be a perfect DG S-module with Supp∗S M ⊆ V . Since Supp∗S M is a

closed subset, there exist DG S-modules N1, . . . , Ns in C such that

Supp∗S M ⊆
⋃
i

Supp∗S(Ni) .

Note that the subset on the right is the support of the DG S-module N =
⊕

i Ni,
that is also perfect. Thus Theorem 3.2 yields that M is in ThickS(N), and hence
in C, since the latter is a thick subcategory. This proves that Thick(S)V ⊆ C. �

The realizability problem in Thick(S) is easily solved: For any closed subset V
of Spec∗S, defined by a homogeneous ideal I in S, the perfect DG S-module S//I
constructed as in [7, §2.5] has support V . In conjunction with Corollary 3.5, this
yields a bijection between thick subcategories of Thick(S) and specialization closed
subsets of Spec∗S.

4. DG modules over exterior algebras

In this section, we sketch the development of a theory of support varieties for
DG modules over an exterior algebra, and prove the version of Hopkins’ theorem
in that context. A lot of this material is taken from [2, 3]; recall that we are using
upper gradings, unlike in these references.

Suppose that k is a field and that Λ = k〈ξ1, . . . , ξr〉 is an exterior algebra on
indeterminates {ξi}, all of odd negative degrees. We consider Λ as a DG algebra
with dΛ = 0. Let D(Λ) denote the derived category DG of Λ-modules and Df (Λ)
the full subcategory consisting of DG Λ-modules M such that the Λ-module H(M)
is finitely generated. We note that Df (Λ) coincides with ThickΛ(k), the thick
subcategory generated by the trivial module k; see [2, Remark 7.5].

Let S be the polynomial algebra k[x1, . . . , xr] on indeterminates {xi}, where
|xi| = −|ξi| + 1, again viewed as a DG algebra with zero differential; D(S) and
Df (S) have the expected meaning. In this case, Df (S) = ThickS(S); that is to say,
every DG S-module with finitely generated homology is perfect; see [2, Remark 7.5].

The main result we need is the following equivalence of categories from [2, The-
orem 7.4]. It is a DG analogue of the Bernstein-Gelfand-Gelfand correspondence.
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Theorem 4.1. There exists an exact functor h : D(Λ) → D(S) with the property
that its restriction to Df (Λ) is an equivalence

h : Df (Λ)
≡−−→ Df (S). �

The construction of the functor h is sketched below. We refer the reader to [2, §7]
(note the Corrigendum) for a complete proof of the theorem.

The graded dual Homk(S, k) is a DG S-module. Consider the algebra Λ ⊗k S
as a DG algebra with differential zero. Let F denote the DG module over it with
underlying graded module Λ⊗kHomk(S, k) and differential given by multiplication
by δ =

∑r
i=1 ξi ⊗ xi. It is a straightforward exercise to show that δ2 = 0.

The DG (Λ⊗kS)-module F is the DG module Homk(X, k) constructed in [2, §7].
The result below is thus contained in (7.6.4), (7.6.5) and (7.6.3) of [2]. The gist of
(1) and (2) is that F is a semi-free resolution of k, viewed as a DG module over Λ.

Proposition 4.2. The following statements hold.

(1) The map ε : F → k induced by augmentations Λ → k and Homk(S, k) → k,
is a morphism of DG Λ-modules and a quasi-isomorphism.

(2) HomΛ(F,−) preserves quasi-isomorphisms.
(3) The map S → HomΛ(F, F ) induced by the multiplicative action of S on F

is a morphism of DG S-modules, and a quasi-isomorphism. �
For any DG Λ-module M , the complex HomΛ(F,M) is a DG S-module. Hence,

thanks to Proposition 4.2(2), one can define an exact functor

h : D(Λ) → D(S) with h(M) = HomΛ(F,M).

The other parts of Proposition 4.2 imply that this induces an equivalence of trian-
gulated categories between Df (Λ) and Df (S). From this we get a natural notion
of support variety for DG Λ-modules.

Definition 4.3. The support of M ∈ Df (Λ) is the subset of Spec∗S defined by

VΛ(M) = Supp∗S h(M) ⊆ Spec∗S .

From (2.3) one then gets the first equality below:

VΛ(M) = Supp∗S H(h(M)) = Supp∗S ExtΛ(k,M) .

The second one is from Proposition 4.2. With this information, we can easily prove
the main result of this section.

Theorem 4.4. The following statements hold:

(1) For DG modules M and N in Df (Λ) one has VΛ(M) ⊆ VΛ(N) if and only
if M is in ThickΛ(N).

(2) For any closed subset V ⊆ Spec∗S there exists a DG module M in Df (Λ)
with VΛ(M) = V .

Proof. By hypothesis, Supp∗S h(M) ⊆ Supp∗S h(N), so Theorem 3.2 yields that
h(M) is in ThickS(h(N)). Since h is an equivalence it follows thatM is in ThickΛ(N).

For the second statement, we observe that V is the variety of an ideal I ⊂ S. So
we let M = h−1(S/I). �
Remark 4.5. The results in this section carry over to the case when the generators
{ξi} of the exterior algebra Λ are in degree zero; in this case S is a polynomial
algebra on generators of degree one.
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5. Artinian complete intersection rings

Let k be a field, let k[z1, . . . , zr] be the polynomial algebra over k in indetermi-
nates z = z1, . . . , zr, and let f1, . . . , fr be a regular sequence in (z)2. Set

R = k[z1, . . . , zr]/(f1, . . . , fr).

Thus R is a complete intersection ring of (Krull) dimension zero. The main result
in this section, Theorem 5.6, is an analogue of Hopkins’ theorem for Df (R), the
bounded derived category of finitely generated R-modules.

Since fj is in (z)2 for each 1 ≤ j ≤ r, we can write

(5.1) fj =
∑

1�h�i�r

chi,j zhzi

with each chi,j in k[z1, . . . , zr]. These elements give rise to structure constants in
the Ext-algebra of R, as discovered by Sjödin [20, Theorem 5], and described below.

Remark 5.2. Let R = k{η1, . . . , ηr, θ1, . . . , θr} be the tensor algebra on k, where
the {ηi} and the {θj} are indeterminates of degree 1 and 2, respectively. Then
ExtR(k, k) is this tensor algebra modulo the ideal generated by the relations

ηhηi + ηhηi = −
r∑

j=1

chi,jθj for h < i and η2h = −
r∑

j=1

chh,jθj ,

θiηj − ηjθi = 0 = θiθj − θjθi for all i, j ,

where for c in k[z1, . . . , zr], we write c for its image in k = k[z1, . . . , zr]/(z1, . . . , zr).
Thus, k[θ] = k[θ1, . . . , θr] is a polynomial ring in the center of ExtR(k, k), and

ExtR(k, k) is a finitely generated (even free) module over it, generated by η1, . . . , ηr.

Example 5.3. The example to bear in mind is the group algebra of an elementary
abelian p-group, E = (Z/p)r, over a field of characteristic p. Since

kE ∼= k[z1, . . . , zr]/(z
p
1 , . . . , z

p
r )

one can choose chi,j to be zp−2
j when h = i = j, and zero otherwise. Then the

description of its Ext-algebra from Remark 5.2 recovers a well-known computation:

ExtkE(k, k) =

{
k[η1, . . . , ηr] if p = 2,

k〈η1, . . . , ηr〉 ⊗k k[θ1, . . . , θr] for p odd.

For any complex M of R-modules, the graded k-vector space ExtR(k,M) has
the structure of a graded right module over ExtR(k, k), and hence over k[θ]. The
next result is due to Gulliksen [14, Theorem 3.1] for general complete intersection
rings; we furnish an elementary proof, specific to our context:

Lemma 5.4. There is an equality Df (R) = ThickR(k). In particular, for each M
in Df (R), the k[θ]-module ExtR(k,M) is noetherian.

Proof. Let M be in Df (R). Replacing it by a quasi-isomorphic complex, if neces-
sary, we may assume M is a bounded complex of finitely generated R-modules. It
then has a finite filtration M ⊇ (z)M ⊇ (z)2M ⊇ · · · ⊇ 0 by subcomplexes, with
subquotients isomorphic to a complex of k-vector space, of finite rank over k. Such
a complex is in Thickk(k) and hence in ThickR(k). It follows that M itself is in
ThickR(k). This establishes that Df (R) ⊆ ThickR(k); the reverse inclusion is a
tautology.
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For the second statement, one has only to note that if N ′ → N → N ′′ → is an
exact triangle of complexes of R-modules, and the k[θ]-modules ExtR(k,N

′) and
ExtR(k,N

′′) are finitely generated, then so is ExtR(k,N). �
This permits one to introduce a notion of support for complexes of R-modules.

Definition 5.5. The support variety of any complex M ∈ Df (R) is the subset

VR(M) = Supp∗k[θ] ExtR(k,M) ⊆ Spec∗k[θ] .

Note that VR(k) = Spec∗k[θ].
One has an exact analogue of Theorem 3.2:

Theorem 5.6. Let M and N be complexes in Df (R). If VR(M) ⊆ VR(N), then
M is in ThickR(N).

See Remark 5.12 for antecedents. The result is proved by a reduction to the case
of DG modules over exterior algebras, Theorem 4.4, via functors described below.

Construction 5.7. Let K be the Koszul complex on the sequence z1, . . . , zr,
viewed as a DG algebra. It is thus an exterior algebra over R on indeterminates
y1, . . . , yr, with each yi of degree −1, with differential determined by

d(zi) = 0 and d(yi) = zi .

The morphism of DG algebras R → K induces exact functors

t : Df (R) → Df (K) and r : Df (K) → Df (R) ,

where t is defined by the assignment M �→ K ⊗R M (note that K is a finite free
complex of R-modules, and so respects quasi-isomorphisms), and r is defined by
restriction of scalars. The functor r is right adjoint to t.

The proof of the result below only uses the fact that R is an artinian local ring.
The complete intersection property is not required. The gist of the statement is
that the functors t and r, though not equivalences, come close to that.

Proposition 5.8. One has ThickR(M) = ThickR(rtM) for each M in Df (R).

Proof. It suffices to prove that ThickR(R) = ThickR(K); the stated equality follows
by applying −⊗L

R M . Since K is a finite free complex, it is in ThickR(R), so it
remains to verify that R is in ThickR(K). This is a special case of Theorem 3.2,
since K and R are both perfect complexes with the same support—namely, {(z)}—
but there is also an elementary argument, exploiting the structure of the Koszul
complex; see [17, Lemma 6.0.9]. This is precisely where the hypothesis that R is
zero dimensional is used. �

Let Λ be an exterior algebra over k on r generators ξi in degree 1, and view it
as a DG algebra with differential zero.

Lemma 5.9. The assignment ξj �→
∑

1�h�i�r chi,jzhyi induces a morphism Λ →
K of DG algebras that is a quasi-isomorphism.

Commentary in lieu of a proof. The said assignment induces a map Φ: Λ → K of
graded algebras, by the universal properties of exterior algebras. Note that the
graded algebra underlying K is strictly graded-commutative, for that too is an
exterior algebra. Given (5.1), it is clear that

∑
h,i chi,jzhyi is a cycle in K for each

j, so Φ is a morphism of DG algebras. One can complete the proof by invoking the
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fact that these cycles form a basis for the k-vectorspace H1(K) and that H(K) is
the exterior algebra on H1(K); see [22, Theorem 6].

For a proof specific to the case of Example 5.3, see [8, Lemma 7.1]. �

The quasi-isomorphism Λ → K of DG algebras from Lemma 5.9 induces an
equivalence i : Df (K) → Df (Λ) of triangulated categories; see [2, 3.6]. This, along
with the functors t and r from Construction 5.7 makes for a bridge from R to Λ:

(5.10) Df (R)
t ��

Df (K)
r

�� ≡
i �� Df (Λ)

The morphisms R → K
�←− Λ of DG algebras induce a homomorphism of k-

algebras Ext∗Λ(k, k) → Ext∗R(k, k). This map is one-to-one, and its image is precisely
the subalgebra k[θ]. In this way, we identify VR(k) and VΛ(k).

Proposition 5.11. There is an equality VR(M) = VΛ(itM) for each M in Df (R).

Proof. Adjunction gives an isomorphism ExtΛ(k, itM) ∼= ExtR(k,M) and this is
compatible with the homomorphism of k-algebras ExtΛ(k, k) → ExtR(k, k). �

Proof of Theorem 5.6. The hypothesis translates to VΛ(itM) ⊆ VΛ(itN), by Propo-
sition 5.11. Thus Theorem 4.4 yields that itM is in ThickΛ(itN). Since i is an
equivalence, it follows that tM is in ThickK(tN). This gives the inclusion below:

ThickR(M) = ThickR(rtM) ⊆ ThickR(rtN) = ThickR(N) .

The equalities are from Proposition 5.8. �

Remark 5.12. Theorem 5.6 carries over to general artinian complete intersection
rings, and the proof is identical, except for one step, Lemma 5.9. There may be
no morphisms between the DGA algebras K and Λ for the ring R may not contain
its residue field as a subring. However, they are still linked by a chain of quasi-
isomorphisms (see, for example, [3, Lemma 6.4]) and that is all that is needed.

A solution to the realizability problem for Df (R) is contained in Bergh [9, Corol-
lary 2.3]; see also [4, Theorem 7.8]: For any closed subset V ⊆ VR(k) there exists
a complex M in Df (R) with the property that VR(M) = V . For another proof,
closer to the spirit of this paper, see Avramov and Jorgensen [5]. From these and
Theorem 5.6, one obtains a bijection between the thick subcategories of Df (R) and
specialization closed subsets of VR(k), for any artinian complete intersection ring
R; see the proof of Corollary 3.5.

Stevenson [21, Theorem 10.5] has established an analogous classification for any
local complete intersection ring; see also [18].

6. Group algebras

The central result in this section is an extension of Hopkins’ Theorem to group
algebras. Throughout we assume that G is any finite group and that k is a field
of characteristic p > 0 dividing |G|. Keeping in line with notation in previous
sections, we write Df (kG) for the bounded derived category of finitely generated
kG-modules. This is a tensor triangulated category, where the tensor product
M ⊗N of complexes M and N is the complex M ⊗k N with the diagonal G-action.

Given a subgroup E of G and a complex M of kG-modules, we write M↓GE
for the complex of kE-modules obtained from M by restriction along the inclusion
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kE ⊆ kG. Given a complex N of kE-modules, we write N↑GE for complex kG⊗kEN
of kG-modules induced from N .

Our main tool is the following result from [12] (see also [11, Theorem 8.2.7]) that
leads to a connection between thick subcategories of the bounded derived category
of kG with those of the group algebras of the elementary abelian p-subgroups of G.

Theorem 6.1. There exists a kG-module V and a filtration

{0} = M0 ⊆ M1 ⊆ · · · ⊆ Mt = k ⊕ V

where for every i = 1, . . . , t, there is an elementary abelian p-subgroup Ei ⊆ G and
a finitely generated kEi-module Wi such that Mi/Mi−1

∼= (Wi)↑GEi
. �

In [12, Corollary 2.4] this result was used to prove that the stable category
stmod(kG) is generated by modules induced from elementary abelian p-subgroups
of G. The same is true for the bounded derived category.

Corollary 6.2. With E1, . . . , Et the elementary abelian p-subgroups of G from
Theorem 6.1, there is an equality

Df (kG) = ThickG(

t⊕
i=1

k↑GEi
) .

Proof. Any complex C of kG-modules is a direct summand of C ⊗ (k ⊕ V ), which
has a filtration by submodules C ⊗Mi with quotients

(C ⊗Mi)/(C ⊗Mi−1) ∼= C ⊗ (Mi/Mi−1) ∼= C ⊗ (Wi)↑GEi
∼= (C↓GEi

⊗Wi)↑GEi
,

the last isomorphism being Frobenius reciprocity. Thus C is in the thick subcate-
gory generated by the (C↓GEi

⊗Wi)↑GEi
.

It remains to note that when C is in Df (G), the complex C↓GEi
⊗Wi is in Df (Ei),

and hence in ThickE(k); see Lemma 5.4. �
We recall a construction of cohomological varieties for complexes of kG-modules.
The cohomology algebra H∗(G, k) of G, that is to say the k-algebra Ext∗kG(k, k),

is graded commutative and finitely generated, and hence noetherian. As usual,
H•(G) denotes

⊕
i�0 H

2i(G, k) when p is odd, and all of H∗(G, k) when p = 2. In

any case, H•(G) is a commutative noetherian subalgebra of H∗(G, k).
For any complex M of kG-modules, there is a homomorphism of k-algebras

H∗(G, k) → Ext∗G(M,M) ,

so Ext∗G(M,M) is endowed with a structure of a module over H•(G). It is a finitely
generated module when M is in Df (kG); see, for example, [11, Theorem 6.5.1]. The
results in [11] are stated for kG-modules, but the arguments are easily adapted to
apply to any complex in Df (kG). Alternatively, one can deduce the result for
complexes from the one for modules using the fact that any M ∈ Df (kG) is in the
thick subcategory generated by its total homology module, H(M).

Definition 6.3. The support variety of any complex M ∈ Df (kG) is the subset

VG(M) = Supp∗H•(G) Ext
∗
G(M,M) ⊆ Spec∗ H•(G) .

As VG(k) = Spec∗ H•(G) the support of M may be viewed as a subset of VG(k).

Remark 6.4. We need support varieties for objects in Df (kG) and so have to work
with the affine variety Spec∗ H•(G, k). If one is interested only in stmod(kG), then
one could consider instead the corresponding projective varieties.
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Remark 6.5. Let E be an elementary abelian p-group E of rank r. Its group algebra
is isomorphic to the complete intersection R = k[z1, . . . , zr]/(z

p
1 , . . . , z

p
r ). For any

M in Df (kE), the two notions of support varieties of M in Definitions 6.3 and 5.5
are naturally isomorphic:

VE(M) ∼= VR(M) .

Indeed, to begin with, since E is a p-group, there is an equality of supports:

VE(M) = Supp∗H•(E) Ext
∗
E(k,M) .

Now let k[θ] be as in Remark 5.2. One has inclusions of k-subalgebras k[θ] ⊆ H•(E),
and the k[θ] action on Ext∗(k,M) factors through this inclusion. The induced map

Supp∗H•(E) Ext
∗
E(k,M)

∼=−−→ Supp∗k[θ] Ext
∗
E(k,M) = VR(M)

is an isomorphism; see [1, Theorem 7.1].

A thick subcategoryC ofDf (kG) is tensor ideal providedM⊗N is inC whenever
one of M or N is in C. We write Thick⊗G(M) for the tensor ideal thick subcategory
of Df (kG) generated by a complex M .

If Df (kG) = ThickG(k), then we have that Thick⊗G(M) = Thick(M) for any
complex M of kG-modules. This happens, for example, if G is a p-group.

With this background we get a version of Hopkins’ Theorem for group algebras.

Theorem 6.6. Let G be a finite group and k a field of characteristic p > 0. If
M,N are complexes in Df (kG) with VG(M) ⊆ VG(N), then M is in Thick⊗G(N).

Proof. Let E be an elementary abelian p-subgroup of G. The hypothesis then yields
the inclusion below:

VE(M↓GE) = (res∗G,E)
−1 VG(M) ⊆ (res∗G,E)

−1 VG(N) = VE(N↓GE).

The equalities are by the Subgroup Restriction Theorem [11, Theorem 9.6.2].
Thus, keeping in mind Remark 6.5, one gets from Theorem 5.6 that M↓GE is in
ThickE(N↓GE), and hence, by Frobenius reciprocity, also that

M ⊗ k↑GE ∈ ThickG(N ⊗ k↑GE) ⊆ Thick⊗G(N) .

Let now E1, . . . , Et be the elementary abelian p-subgroups of G from Theorem 6.1.
The inclusion above then yields the second inclusion below:

ThickG(M) ⊆ ThickG(
t⊕

i=1

(M ⊗ k↑GEi
)) ⊆ Thick⊗G(N) ,

while the first one is by Corollary 6.2. This completes the proof of the theorem. �

For any specialization closed subset of V of VG(k), we write Df (kG)V for the
subcategory consisting ofM inDf (kG) such that VG(M) ⊆ V . Using the properties
of support from [11, Proposition 9.7.2], it is not difficult to see that Df (kG)V is a
thick tensor ideal subcategory of Df (kG). Arguing as in the proof of Corollary 3.5,
and using Theorem 6.6 instead of Theorem 3.2, one gets the following result.

Corollary 6.7. If C is a tensor ideal thick subcategory of Df (kG), then there exists
a specialization closed subset V of VG(k) such that C = Df (kG)V . �
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Now, for any closed subset V ⊆ VG(k), one can construct an object M ∈ Df (kG)
with VG(M) = V , using either the Tensor Product Theorem, see [11, Theorem
9.7.4], or the more general approach from [4, §5]. Combined with Corollary 6.7 this
gives a bijection between tensor ideal thick subcategories of Df (kG) and special-
ization closed subsets of VG(k).

There is an equivalence Df (kG)/Thick(kG) ≡ stmod(kG) of triangulated cate-
gories. From this and the corollary above, it is easy to deduce the characterization
of the tensor ideal thick subcategories of stmod(kG) proved in [6].
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