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DENSE FLAG TRIANGULATIONS OF 3-MANIFOLDS

VIA EXTREMAL GRAPH THEORY

MICHA�L ADAMASZEK AND JAN HLADKÝ

Abstract. We characterize f -vectors of sufficiently large three-dimensional
flag Gorenstein∗ complexes, essentially confirming a conjecture of Gal [Discrete
Comput. Geom., 34 (2), 269–284, 2005]. In particular, this characterizes f -
vectors of large flag triangulations of the 3-sphere. Actually, our main result
is more general and describes the structure of closed flag 3-manifolds which
have many edges.

Looking at the 1-skeleta of these manifolds we reduce the problem to a
certain question in extremal graph theory. We then resolve this question by
employing the Supersaturation Theorem of Erdős and Simonovits.

1. Introduction

One of the trends in enumerative combinatorics is to classify face numbers of
various families of simplicial complexes. In this paper we study flag triangulations
of closed 3-manifolds with sufficiently many vertices and high edge density. As a
consequence we confirm, for a sufficiently large number of vertices, a conjecture of
Gal regarding face vectors of flag triangulations of generalized homology 3-spheres.

If K is a finite simplicial complex and σ ∈ K is a face, we denote by |σ| its
number of vertices and by dimσ = |σ| − 1 its dimension. The dimension of K,
dimK, is the maximum over all σ ∈ K of dimσ.

The f -vector of a simplicial complex K of dimension d is the sequence

(1) (f−1, f0, . . . , fd),

where fi is the number of faces of dimension i. By convention, we always define
f−1 = 1. The h-vector of K is the sequence

(2) (h0, . . . , hd+1)

determined by the equation1

(3)

d+1∑
i=0

hix
d+1−i =

d∑
i=−1

fi(x− 1)d−i.
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Of course the f -vector and the h-vector determine one another and carry the
same information, but the h-vector often enjoys better combinatorial properties,
the Dehn-Sommerville equation (4) below being one example. Note that h0 = 1.

Next we introduce the class of Gorenstein∗ and Eulerian complexes. The reader
not interested in this level of generality can equally well think about simplicial
complexes which triangulate a standard sphere. Recall that if σ ∈ K is a face, then
the link of σ in K, denoted lkKσ, is the subcomplex {τ ∈ K | τ∩σ = ∅, τ ∪σ ∈ K}.

A simplicial complex K of dimension d is a generalized homology sphere (or
Gorenstein∗ complex ) if for every face σ ∈ K the homology of lkKσ is the same
as the homology of a sphere of dimension d − |σ|. In particular, when σ = ∅, this
means that K itself has the homology of a d-sphere. We are going to use the short
name ‘d-GHS’. A simplicial complex K of dimension d is Eulerian if for every face
σ ∈ K the Euler characteristic of lkKσ is the same as that of a sphere of dimension
d− |σ|.

Any triangulation of the standard d-sphere is a d-GHS and every d-GHS is
Eulerian. More generally, if K is a triangulation of a closed topological manifold
and σ �= ∅ is a face of K, then lkKσ is a (d − |σ|)-GHS. By the Poincaré duality
the Euler characteristic of an odd-dimensional closed manifold is 0, hence every
such manifold is Eulerian. (A closed manifold means a compact manifold without
boundary.)

Any Eulerian complex of dimension d satisfies the classical Dehn-Sommerville
equations

(4) hi = hd+1−i,

and, following Gal [Gal05], one can encode the coefficients hi in a shorter, integer-
valued γ-vector

(5) (γ0, . . . , γ� d+1
2 �)

determined by the equation

(6)
d+1∑
i=0

hix
i =

� d+1
2 �∑

i=0

γix
i(x+ 1)d+1−2i.

We always have γ0 = 1.
The classification of h- (or f -, γ-) vectors of generalized homology spheres is of

great interest in the field. The complete classification is predicted by the celebrated
g-conjecture of McMullen [McM71]. In this work we pick up a related but somewhat
different line of research started by Gal, who investigated these parameters for the
restricted family of flag complexes.

A simplicial complex is a flag if all its minimal non-faces have dimension 1 or,
equivalently, if it is the clique complex of its 1-skeleton. The latter means that faces
of K correspond to cliques in K(1), the graph which is the one-dimensional skeleton
of K. For flag generalized homology spheres the γ-vector is the most efficient and
interesting parameter. The major conjecture of Gal [Gal05, Conj. 2.1.7], which
states that the γ-vector of a flag d-GHS is non-negative, is known to hold for d ≤ 4
[Gal05, Cor.2.2.3]. For any flag (2d− 1)-GHS this conjecture is a strengthening of
the famous Charney-Davis conjecture [CD95]. On the other hand, Gal’s conjecture
itself has a stronger version which states that the γ-vector of a flag d-GHS is an
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f -vector of some flag complex [NP11]. See [NPT11] and the references therein for
progress in that area.

If K and L are two simplicial complexes with disjoint vertex sets, then their join
K ∗L is a simplicial complex with vertex set V (K)∪V (L) whose faces are all unions
τ ∪σ for τ ∈ K, σ ∈ L. It is a standard fact that Sk ∗Sl = Sk+l+1 for triangulated
spheres Sk, Sl with k, l ≥ −1.

Following Murai and Nevo [MN], let Λd denote the set of all γ-vectors of flag
d-GHSs. When d = 1, 2 the (k+4)-gon or its join with the two-point sphere S0 are
simplicial d-spheres with γ-vector (1, k) for any integer k ≥ 0, and by the previous
discussion these exhaust Λ1 and Λ2, i.e., we have

Λ1 = Λ2 =
{
(1, k) ∈ Z

2 : k ≥ 0
}

.

Gal [Gal05, Cor. 3.1.7] proved that γ2 ≤ γ2
1/4 must hold for any γ-vector (1, γ1, γ2)

in Λ3 or Λ4, and a simple join construction [MN, Thm. 5.1.ii] shows that this is
tight in dimension 4; that is,

Λ4 =

{
(1, γ1, γ2) ∈ Z

3 : γ2 ≤ γ2
1

4
, γ1, γ2 ≥ 0

}
.

Going back to dimension 3, Gal [Gal05, Thm. 3.2.1] showed that

(7)
Λ3 ⊇

{
(1, γ1, γ2) ∈ Z

3 : γ2 ≤ (γ1 − 1)2

4
, γ1, γ2 ≥ 0

}
∪
{
(1, k + l, kl) ∈ Z

3 : k, l ≥ 0
}
.

The elements of the first set can be realized as γ-vectors of some appropriate iterated
edge subdivisions of the boundary of the cross-polytope. The elements of the second
kind are the γ-vectors of a join of a (k + 4)-gon with an (l + 4)-gon.

Gal then conjectured that the inclusion (7) is in fact an equality. Since the γ-
vector of a flag 3-GHS is non-negative, the stronger version of that conjecture is
the following (see [Gal05, Con. 3.2.2] or [MN, Conj. 5.2]).

Conjecture 1.1. If (1, γ1, γ2) is the γ-vector of a flag 3-GHS K and γ2 > (γ1−1)2

4 ,
then K is a join of two polygons.

Also, note that the two constructions which show the inclusion (7) are flag tri-
angulations of the 3-sphere. Thus — if true — Conjecture 1.1 provides a charac-
terization of γ-vectors (or f -vectors) of flag triangulations of the 3-sphere. Even
this special case of the characterization of γ-vectors of flag triangulations of the
3-sphere is open. The conjecture was verified for order complexes of posets [MN].

To make the following discussion more concrete, suppose that K is an Euler-
ian complex of dimension 3 with face numbers (1, f0, f1, f2, f3). Then the Dehn-
Sommerville relations translate into

(8) f2 = 2(f1 − f0), f3 = f1 − f0.

Moreover, we find

(9) γ1 = f0 − 8, γ2 = f1 − 5f0 + 16

and the conditions (γ1 − 1)2/4 < γ2 ≤ γ2
1/4 are equivalent to

(10)
1

4
(f2

0 + 2f0 + 17) < f1 ≤ 1

4
f2
0 + f0.
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Our results. Below is the main result of the paper. It determines the structure
of closed flag 3-manifolds which have many edges.

Theorem 1.2. There exists a number n0 such that the following holds. If M is a
flag triangulation of a closed 3-manifold with f0 ≥ n0 vertices, f1 edges, and such
that f1 > 1

4 (f
2
0 +2f0 +17), then M is a join of two polygons (and, in particular, it

is homeomorphic to S3).

Theorem 1.2 resolves Conjecture 1.1 affirmatively for flag complexes with suffi-
ciently many vertices because every 3-GHS is a closed manifold (see Remark 1.9).
In other words, the inclusion (7) is an equality except for, perhaps, a finite number
of elements.

Below, we prepare tools for our proof of Theorem 1.2. We shall reduce Theo-
rem 1.2 to a certain statement in extremal graph theory (Theorem 1.6).

Given a graph G and a vertex v ∈ V (G) we write Nv for the neighborhood of v;
that is, {w ∈ V (G) : vw ∈ E(G)}. If W ⊆ V (G), then G[W ] is the subgraph of
G induced by W . The length of a path in a graph is its number of vertices; this is
one more than the standard common definition of length but more convenient for
our purposes.

Definition 1.3. If G is a graph and σ is a clique in G, then define the link of σ in
G as

lkGσ = G

[⋂
v∈σ

Nv

]
.

That is, lkGσ is the subgraph of G induced by the vertices which are not in σ but
which are adjacent to every vertex of σ.

Definition 1.3 is designed so that it is compatible with the topological notion
of links in flag complexes. For each flag complex K we have lkK(1)σ = (lkKσ)(1),
where on the left-hand side we use the link of Definition 1.3 and on the right-hand
side the link is understood in the simplicial sense.

Let us define the class of graphs which arise in our setting.

Definition 1.4. A graph G with n vertices and m edges is fascinating if it satisfies
the following conditions:

a) G contains exactly 2(m− n) triangles.
b) For every edge e in G the link lkGe is a cycle of length at least 4.
c) For every triangle t in G the link lkGt is the discrete graph with 2 vertices

and no edges.
d) For every vertex v in G the link lkGv is a connected, planar graph whose

every face (including the unbounded one) is a triangle. In particular – by
Kuratowski’s Theorem – it does not contain the complete bipartite graph
K3,3 as a subgraph.

Further, lkGv contains at least 6 vertices.

Our reduction is based on the next observation.

Lemma 1.5. If M is a closed flag 3-manifold, then the 1-skeleton of M is fasci-
nating.

Proof. Let G = M (1). Condition a) follows since M is Eulerian, and so it satisfies
(8). Parts b)–d) are consequences of the fact that lkM t, lkMe, lkMv are flag trian-
gulations of, respectively, S0, S1 and S2. A known fact that a flag triangulation of
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Sj requires at least 2(j+1) vertices [Gal05, Lem.2.1.14] proves that the links must
be sufficiently large. �

The graph join of graphs G and H, which we will denote G ∗H, is the disjoint
union of G and H together with all the edges between V (G) and V (H). For any
simplicial complexes K and L we have (K ∗ L)(1) = K(1) ∗ L(1), where on the
left-hand side we use the simplicial join.

By Lemma 1.5 we get that Theorem 1.2 is a consequence of the following result.

Theorem 1.6. There exists a number n0 such that the following holds. Suppose
G is a fascinating graph with n ≥ n0 vertices, m edges and m > 1

4 (n
2 + 2n + 17).

Then G is a join of two cycles.

The rest of the paper is concerned with the proof of this theorem. The strategy
is outlined at the beginning of the next section.

Remark 1.7. Along the way we will also see that the result is tight in the following
sense: There exist flag 3-spheres with arbitrarily large f0 and with exactly

f1 =
1

4
(f2

0 + 2f0 + 17)

edges, which are not a join of two cycles. Moreover, we will classify those boundary
cases: Any fascinating graphG with n ≥ n0 vertices and exactlym = 1

4 (n
2+2n+17)

edges is one of the graphs in Figure 2 in Section 4.

Remark 1.8. Theorem 1.2 implies that for f0 ≥ n0 every closed flag 3-manifold
satisfies f1 ≤ 1

4f
2
0 + f0 (or, equivalently, γ2 ≤ 1

4γ
2
1). This result in fact holds for all

values of f0 by the same proof that works for 3-GHSs in [Gal05].

Remark 1.9. In dimensions d = 0, 1, 2 the classes of (flag) d-spheres and d-GHS
coincide and in dimension d = 3 every 3-GHS is a closed, connected manifold. To
see this, first note that it is an easy consequence of the definition that if L is a
d-GHS and σ ∈ L, then lkLσ is a (d− |σ|)-GHS. Now the only 0-complex with the
homology of S0 is S0 itself. As for d = 1, observe that in a 1-GHS all vertex links
are the two-point space, so a 1-GHS is a disjoint union of cycles, of which only a
single cycle has the homology of S1. In a 2-GHS the link of every vertex is the
sphere S1, so a 2-GHS is a closed surface, and of all surfaces only S2 has the correct
homology. Finally, it means that in a 3-GHS all face links are homeomorphic to
spheres of appropriate dimensions, so a 3-GHS is a closed manifold.

2. Proof of Theorem 1.6

The main idea behind our approach is that G has a lot of edges (more than
n2/4), but relatively few triangles – just Θ(n2). Graphs with this edge density
must have many more triangles, namely Θ(n3), unless they look very “similar”, in
some sense, to the complete bipartite graph Kn/2,n/2. This phenomenon is called
supersaturation and is one of the basic principles of extremal (hyper)graph the-
ory with fundamental applications to areas like additive combinatorics or property
testing in computer science. In our setting the additional properties of G coming
from Definition 1.4 can be used to refine the similarity to Kn/2,n/2 to determine the
structure of G exactly. This is a relatively standard approach in Extremal Graph
Theory, called the Stability method, and was introduced by Simonovits [Sim68].
However, our proof is somewhat more complex than most of the applications of the
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Stability method to problems in extremal graph theory. Indeed, in these problems
one usually tries to determine exactly the structure of a unique extremal graph,
while here we are dealing with joins of two cycles whose lengths can vary, i.e.,
graphs with a somewhat looser structure.

Here is a more detailed outline of the proof. Mantel’s Theorem (which is a
special case of Turán’s Theorem) asserts that the complete balanced bipartite graph
K�h/2�,�h/2� is the unique maximizer of the number edges among all triangle-free

graphs on h vertices. Note that this graph has �h2/4
 edges. The graphK�h/2�,�h/2�
is stable for this extremal problem in the following sense: if H is a graph on h
vertices with at least h2/4 edges and containing only o(h3) triangles, it must be
“very similar” (the precise meaning appears in Theorem 2.2) to K�h/2�,�h/2�. These
conditions are satisfied for the fascinating graph G of Theorem 1.6. By exploiting
other properties of G we will be able to show that G is close to being a join of two
cycles in the sense of the next definition.

Definition 2.1. A fascinating graph G is called t-joinlike if there is a partition
V (G) = C1 � C2 �X where

• the graphs G[Ci] are cycles,
• there are edges ei ∈ G[Ci] such that lkGei = G[C3−i],
• |X| = t.

The vertices of X are called exceptional.

Note that a 0-joinlike fascinating graph is a join of two cycles G[C1] ∗G[C2]. At
the end of this section we will establish that G must be t-joinlike for t = 0, 1 or 2
with some extra conditions satisfied by the exceptional vertices.

Observe that the balanced join of two cycles of lengths ≈ n
2 has ≈ n2

4 + n edges
(and joins of cycles of unbalanced lengths have even less edges), so our graph G
is only allowed to “lose” ≈ n

2 edges with respect to that number before it violates
the bound of Theorem 1.6. In many cases, however, we will be able to show that
a 2-joinlike graph loses a lot more just by counting the edges missing in the sparse
planar links of exceptional vertices (Definition 1.4d)).

This leaves us with just a handful of possible scenarios considered in Section 4.
Those are the difficult ones, in the sense that the graphs G approach, and in fact
even reach, the bound m = 1

4 (n
2 + 2n + 17). That means we can no longer use

rough estimates. We then have to examine the structure of G more closely. This is
the part where the examples shown in Remark 1.7 show up.

Let e(H) = |E(H)|, and we write e(H[A,B]) (resp. e(H[A,B])) for the number
of edges (resp. non-edges) crossing between two disjoint vertex sets A,B ⊆ V (H).

Let us now state a theorem of Erdős and Simonovits [ES83, Theorem 3], tailored
to our needs.2 As said above, this version of the Supersaturation Theorem gives
an approximate structure in graphs with edge density at least 1

2 which contain

subcubically many triangles in the order of the graph.3

2These days, similar theorems are typically proven with the help of the Szemerédi Regularity
Lemma [Sze78]; see for example [KS96, Theorem 2.9]. Even though the Regularity Lemma was
already alive by the time of the publishing of [ES83] the theory was too juvenile to yield such a
statement back then. Therefore some alternative “sieve” arguments were used instead.

3The general version of the Supersaturation Theorem deals with (hyper)graphs containing a
small number of copies of a fixed (hyper)graph F .
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Theorem 2.2. For every ε > 0 there exists δ > 0 such that the following holds.
Let H be an h-vertex graph with at least h2/4 edges and containing at most δh3

triangles. Then there exists a partition V (H) = A1 � A2, with
∣∣|A1| − |A2|

∣∣ ≤ 1,
such that

(11) e(H[A1]) + e(H[A2]) + e(H[A1, A2]) ≤ εh2 .

To obtain the above statement set L to the one-element family consisting of just
a triangle in [ES83, Theorem 3].

We can now proceed with the proof of Theorem 1.6. Let 0 < γ � 1, α < γ/1000
and ε < αγ be fixed. Let δ be given by Theorem 2.2 for input parameter ε. Let n0 be
sufficiently large. Suppose that G is the graph as in Theorem 1.6. Definition 1.4a)
gives us that G has 2(e(G) − n) < n2 < δn3 triangles. Therefore, Theorem 2.2
applies with parameters δ and ε. Let A1 � A2 be the partition of V (G) from
Theorem 2.2.

Let us fix additional notation. Given a vertex v and a set of vertices X we write

deg(v,X) = |Nv ∩X|.

Define the following vertex sets for i = 1, 2:

Bi = {v ∈ Ai : deg(v,A3−i) ≥
n

2
− γn},

Wi = {v ∈ Ai \Bi : deg(v,Bi) ≥
n

2
− γn},

Xi = (Ai \Bi) \Wi.

Claim 1. We have |Ai \ Bi| ≤ αn for i = 1, 2. In particular, |Wi|, |Xi| < αn and
|Bi| ≥ n

2 − αn.

Proof. By definition every vertex of Ai \Bi has at least γn− 1 non-edges to A3−i.
If we had |Ai \Bi| > αn, then

ē(G[A1, A2]) ≥ |Ai \Bi| · (γn− 1) ≥ αγn2 − αn > εn2 ,

contrary to the choice of A1 and A2. �

Now define the partition V (G) = S1 � S2 �X as follows:

Si = Bi ∪W3−i,

X = X1 ∪X2.

Observe that n
2 − αn ≤ |Si| ≤ n

2 + αn and |X| ≤ 2αn. Denote x = |X|. It is
our goal to show that X = ∅, that S1 and S2 induce cycles, and that the bipartite
graph between S1 and S2 is complete.

Claim 2. For i = 1, 2 and for every vertex v ∈ Si we have deg(v, S3−i) ≥ n
2 − 2γn.

Proof. If v ∈ Bi, then v has at least n
2 − γn neighbors in A3−i, and by Claim 1 at

least n
2 − 2γn of them hit B3−i. If v ∈ W3−i, then v has at least n

2 − γn neighbors
in B3−i. �

Claim 3. For i = 1, 2 and for every vertex v ∈ Si we have deg(v, Si) ≤ 2. Conse-
quently, e(G[S1]) + e(G[S2]) ≤ n. Moreover, G[Si] is triangle-free.
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Proof. Suppose a vertex v ∈ Si has three neighbors u1, u2, u3 ∈ Si. By Claim 2 we
have

|Nv ∩Nu1
∩Nu2

∩Nu3
∩ S3−i| ≥

n

2
− 13γn ≥ 3 .

This implies that lkGv contains a copy of K3,3 (with u1, u2, u3 on one side and the
other being in S3−i), which is a contradiction to Definition 1.4d).

The proof of the last statement is similar: if t is a triangle in G[Si], then lkGt
contains most of S3−i, so G fails Definition 1.4c). �
Claim 4. If v ∈ X, then deg(v, Si) ≤ n

2 − 2
3γn for i = 1, 2.

Proof. By definition every vertex v ∈ X satisfies deg(v,Bi) ≤ n
2 − γn for i = 1, 2.

Therefore

deg(v, Si) ≤ deg(v,Bi) + |W3−i| ≤
n

2
− γn+ αn ≤ n

2
− 2

3
γn.

�
We call a vertex v ∈ X poor if deg(v, S1) ≥ 3 and deg(v, S2) ≥ 3. Let P ⊆ X be

the set of poor vertices. Choose a partition X \ P = T1 � T2 such that the vertices
v ∈ Ti satisfy deg(v, Si) ≤ 2 for i = 1, 2. Let p = |P |.
Claim 5. If v ∈ X \ P , then deg(v, S1 ∪ S2) ≤ n

2 − 1
2γn.

Proof. This is obvious from Claim 4. �
Claim 6. If v ∈ P , then deg(v, Si) ≤ 12γn for i = 1, 2.

Proof. Suppose the contrary, and without loss of generality let deg(v, S2) > 12γn.
Let u1, u2, u3 ∈ Nv ∩S1 be three different vertices. By Claim 2 the set Nu1

∩Nu2
∩

Nu3
∩ S2 has at least n

2 − 10γn vertices; therefore Nv hits at least γn of them. In
particular, G[Nv] contains a K3,3, a contradiction. �

We can now plug in the bounds from the claims above to count the number of
edges in G to obtain the following bound:

1

4
n2 +

1

2
n+

17

4
< e(G) ≤ e(G[S1, S2]) + e(G[S1]) + e(G[S2]) + e(G[P, S1 ∪ S2])

+ e(G[X \ P, S1 ∪ S2]) +

(
|X|
2

)
≤

(
n− x

2

)2

+ n+ 24pγn+ (x− p)

(
n

2
− 1

2
γn

)
+

x2

2
.

This is equivalent to

x

(
γn

2
− 3

4
x

)
+

pn

2
(1− 49γ) +

17

4
<

n

2
.

Since x ≤ 2αn < 1
3γn, we have γn

2 − 3
4x > γn

4 , and the last inequality implies

(12)
xγn

4
+

pn

2
(1− 49γ) +

17

4
<

n

2
.

It follows that

x <
2

γ
and(13)

p <
1

1− 49γ
< 1.5 .(14)
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In particular, we can only have p = 0 or p = 1.
Let Ki = Si ∪ Ti for i = 1, 2. Note that

n

2
− αn ≤ |Ki| ≤

n

2
+ αn+ x ≤ n

2
+ 2αn.

Let b = e(G[K1,K2]) be the number of missing edges between K1 and K2. The
following bound follows directly from Claim 3, the definition of Ti and (13).

Claim 7. For each v ∈ Ki we have that deg(v,Ki) ≤ |Ti|+ 2 ≤ x+ 2 ≤ 4
γ .

Claim 8. For i = 1, 2 and each set Y ⊆ Si, |Y | ≤ n
8 we have that G[Si \Y ] contains

at least one edge. In particular, G[Si] contains at least one edge.

Proof. Suppose the claim does not hold for example for i = 1 and some set Y ⊆ S1.
Let ti be the number of triangles in G with at least two vertices in Ki.

If T2 �= ∅, then let us consider an arbitrary fixed vertex v ∈ T2. By Claim 7 inside
K2 there are at most deg(v,K2)

2 ≤ 16/γ2 triangles touching v. We further see that
there are at most deg(v,K2)|K1| ≤ 4n/γ triangles through v with two vertices in
K2 (one of them being v) and one vertex in K1. Summing over all v ∈ T2 we get
that the number of triangles touching T2 with at least two vertices in K2 is at most
|T2| × ( 16γ2 + 4n

γ ) ≤ 17n
γ2 .

To bound t2 it only remains to add triangles whose two vertices are in S2 and
the third is in K1 (by Claim 3 there are no triangles entirely inside S2). By Claim 3
we have

(15) e(G[S2]) ≤ |S2| ≤
11n

20
.

Since each edge in S2 can be extended in at most |K1| ≤ 11n
20 ways to such a triangle

we get that

t2 ≤ 17n

γ2
+

11n

20
· 11n
20

≤ 122n2

400
.

To bound the number t1 of triangles with at least two vertices inside K1 we
proceed similarly, except that the fact e(G[S1 \ Y ]) = 0 allows us to strengthen the
counterpart of (15) to e(G[S1]) ≤ 2|Y | ≤ n

4 . Consequently,

t1 ≤ 17n

γ2
+

n

4
· 11n
20

≤ 3n2

20
.

Finally, the number tP of triangles passing through the (at most one) poor vertex
in P satisfies tP ≤ (24γn+ x)2 < 700γ2n2 < 0.01n2 by Claim 6.

We get that the total number of triangles is t1+ t2+ tP < 0.47n2 < 2(e(G)−n),
a contradiction to Definition 1.4a). �

Next, we claim that there are no poor vertices.

Claim 9. We have p = 0.

Proof. Suppose that p = 1 and let P = {q}. Employing Claim 3 and the definition
of T1, T2 we get

e(G[K1 ∪K2]) ≤
(
n− 1

2

)2

− b+
∑
i=1,2

(
|Si|+ 2|Ti|+

(
|Ti|
2

))
(13)

≤
(
n− 1

2

)2

− b+ n+ C ,
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where C depends only on γ. By Claim 6 we then have the following estimate:

(16)
1

4
n2 +

1

2
n+

17

4
< e(G) ≤

(
n− 1

2

)2

− b+ n+ 25γn.

This implies

(17) b ≤ 25γn.

Consider any edge e ∈ G[S1]. The link lkGe is a cycle C which contains, by
Claim 2, at least n

2 − 6γn vertices of S2 and, by Claim 3, does not pass through
S1. The number of vertices in which C can exit S2 is bounded from above by
2(x+ 1). Eliminating the vertices of C which are adjacent (in the graph G) to T2

(at most 2x) or to q (at most 12γn by Claim 6), we find that G[S2] contains at
least 1

2 (
n
2 − 30γn) vertex-disjoint edges e′ = u′v′ which satisfy V (lkGe

′) ⊆ K1.
We claim that for at least one such edge e′ = u′v′ we have K1 ⊆ Nu′ ∩ Nv′ .

Indeed, each edge e′ for which this does not hold is incident with at least one non-
edge in G[K1,K2], and thus otherwise we would get at least 1

2 (
n
2 −30γn) non-edges

in G[K1,K2], a contradiction to (17).
Let us fix an edge e′ as above. We now have that lkGe

′ = G[K1], and therefore
G[K1] is a cycle. A symmetric argument starting with an appropriate edge e′′ ∈
G[K1] for which lkGe

′′ = G[K2] shows that G[K2] is a cycle as well.
We now see that G, with the decomposition V (G) = K1 �K2 � {q}, is 1-joinlike

in the sense of Definition 2.1. We shall however later in Proposition 4.2 show that
this leads to a contradiction. �

For the remaining part we can therefore assume P = ∅. Our short-term goal for
now is to prove that G is 0-, 1- or 2-joinlike. The same way we derived (16) we get
that

1

4
n2 +

1

2
n+

17

4
< e(G) ≤

(n
2

)2

− b+ n+
4

γ2
.

This implies

(18) b <
n

2
+

4

γ2
− 17

4
< 0.51n.

Let Ei be the set containing Ti and all the neighbors in Si of the vertices in Ti.
By definition of Ti we have |Ei| ≤ 3x. Note that Ki \ Ei = Si \ Ei, and for any
vertex v ∈ Ki \ Ei we have deg(v,Ki) ≤ 2.

Fix two edges e1 ∈ G[S1 \E1] and e2 ∈ G[S2 \E2]; such edges exist by Claim 8.
For each i = 1, 2 the link lkGe3−i lies in Ki and its intersection with Ki \ Ei is a
collection of at most 3x paths of total length at least n

2 − 6γn by Claim 2, or a sole
cycle. Define a segment in G[Ki] as a maximal connected sub-path (or a cycle) of
lkGe3−i which lies in Ki \Ei. (Note that our definition of segments is with respect
to fixed edges e1 and e2.) There are at most 3x ≤ 6/γ segments in Ki. A segment
is called long if it has at least αn vertices and short otherwise. The total length
of short segments in Ki is at most 6

γ · αn < 0.09n; hence the total length of long

segments in each Ki is at least 0.4n.

Claim 10. Let R1 and R2 be two segments in K1 and K2, respectively. If for
some vertices x1 ∈ R1, x2 ∈ R2 we have x1x2 ∈ E(G), then G[R1, R2] is complete
bipartite.
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Proof. If x′
1, x

′′
1 are the neighbors of x1 in K1 and x′

2, x
′′
2 are the neighbors of x2 in

K2, then the link lkGx1x2 is a cycle contained in {x′
1, x

′′
1 , x

′
2, x

′′
2}; hence, by Defini-

tion 1.4b) it must pass through all those vertices. Therefore x1x
′
2, x1x

′′
2 , x2x

′
1, x2x

′′
1

∈ E(G). By successively repeating the same argument for the newly forced edges
we prove the claim. �

Claim 11. If R1 and R2 are two long segments in K1 and K2 respectively, then
G[R1, R2] is complete bipartite.

Proof. If not, then, by Claim 10, the bipartite graph G[R1, R2] does not contain
any edges. Then

e(G[K1,K2]) ≥ e(G[R1, R2]) = |R1| · |R2| ≥
α2n2

2
,

a contradiction to (18). �

Let L1 and L2 be the vertex sets of all the long segments in K1 and K2, respec-
tively. By Claim 11 the graph G[L1, L2] is complete bipartite. For i = 1, 2 choose
edges ẽi ∈ G[Li] which minimize the quantity

(19) |K3−i \ V (lkGẽi)|
and let Ci ⊆ Ki be the vertex set of the cycle lkGẽ3−i.

Claim 12. We have |K1 \ C1|+ |K2 \ C2| ≤ 2.

Proof. Let di = |Ki\Ci|. By the optimality of the choice of ẽi we get that the link of
every edge in G[Li] misses at least d3−i vertices ofK3−i. Since G[L1, L2] is complete
bipartite by Claim 11, those missing edges must contribute to e(G[Li,K3−i\L3−i]).
Recall that G[Li] is a collection of at most 3x ≤ 6/γ vertex-disjoint paths (or a
cycle) of total length at least 0.4n. We get

e(G[Li,K3−i \ L3−i]) ≥
d3−i

2
(|Li| − 3x) ≥ d3−i · 0.19 · n.

The two sets of missing edges we count this way for i = 1, 2 are disjoint. Therefore,
using (18)

0.51n > b ≥ e(G[L1,K2 \ L2]) + e(G[L2,K1 \ L1]) ≥ 0.19n(d1 + d2),

which implies d1 + d2 < 2.7. That ends the proof. �

The graphs G[C1], G[C2] are cycles and the minimizing edges ẽi ∈ Li ⊆ Ci

satisfy lkGẽi = G[C3−i]. Together with Claim 12 it shows that G is t-joinlike for
t ≤ 2. If t = 0, then we are done. The case t = 1 leads to a contradiction as shown
in Proposition 4.2. We can therefore assume that t = 2 and call the two exceptional
vertices q and q′. We can assume without loss of generality that either

(20) K1 \ C1 = {q}, K2 \ C2 = {q′}
or

(21) K1 \ C1 = {q, q′}, K2 \ C2 = ∅.
Define the following quantities for i = 1, 2,

di(q) = deg(q, Ci) and di(q
′) = deg(q′, Ci) ,

ei(q) = e(G[Nq ∩ Ci]) and ei(q
′) = e(G[Nq′ ∩ Ci]) .
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Note that ei(q) ≤ di(q) and ei(q
′) ≤ di(q

′) since G[Nq ∩Ci] and G[Nq′ ∩Ci] are
induced subgraphs of cycles.

If any of the numbers d1(q), d1(q
′), d2(q), d2(q

′) is at most 2, then the result
follows from Proposition 4.7. We will therefore assume that

min{d1(q), d1(q′), d2(q), d2(q′)} ≥ 3 .

The proof under this assumption splits into the two cases (20) and (21) and is
presented in the next section.

3. Two exceptional vertices of large degrees

In this section we show that each of the cases (20) and (21) from the previous
section leads to a contradiction. We use the same notation.

We are going to exploit the fact that the graphs lkGq and lkGq
′ are planar. Recall

that Euler’s formula implies that an h-vertex planar graph can have at most 3h−6
edges. So, planar graphs are sparse, and a substantial number of edges must be
missing between C1 and C2. A careful edge counting will lead to a contradiction.

We start with an auxiliary claim.

Claim 13. We have an inequality

e(G[Nq ∩ C1, Nq ∩ C2]) ≥ d1(q)d2(q)− 3d1(q)− 3d2(q) + e1(q) + e2(q) + 6 .

An analogous inequality holds for q′.

Proof. The graph G[Nq ∩ (C1 ∪ C2)] is a planar graph with d1(q) + d2(q) vertices
and

d1(q)d2(q)− e(G[Nq ∩ C1, Nq ∩ C2]) + e1(q) + e2(q)

edges. The claim now follows from Euler’s formula. �

From previous estimates we have n
2 − 2αn ≤ |Ci| ≤ n

2 + 2αn. The next easy
statement records the fact that if q is adjacent to most of Ci, then lkGq also contains
most of the edges from G[Ci].

Claim 14. Suppose β ≥ 4α. If di(q) ≥ n
2 (1−β), then ei(q) ≥ n

2 (1− 5β). The same
holds for q′.

Proof. Since |Ci| ≤ n
2 + 2αn the set Nq misses at most

n

2
+ 2αn− n

2
(1− β) = n

(
1

2
β + 2α

)
≤ βn

vertices of Ci. Recall that G[Ci] is a cycle. It follows that at most 2βn edges of
G[Ci] are not in lkGq. Hence

ei(q) ≥
n

2
− 2αn− 2βn =

n

2
(1− 4α− 4β) ≥ n

2
(1− 5β).

�
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3.1. The case (20). By Claim 7 we have d1(q), d2(q
′) ≤ 4

γ . Therefore

e(G[C1, C2]) ≥ e(G[Nq ∩ C1, Nq ∩ C2]) + e(G[Nq′ ∩ C1, Nq′ ∩ C2])−
16

γ2
.

The inequality

1

4
(n2 + 2n+ 17) < e(G) ≤

(
n− 2

2

)2

+ n+ deg(q) + deg(q′)− ē(G[C1, C2])

≤ n2

4
+ deg(q) + deg(q′)

− ē(G[Nq ∩ C1, Nq ∩ C2])− ē(G[Nq′ ∩ C1, Nq′ ∩ C2]) +
16

γ2
+ 1

together with Claim 13 and e1(q), e2(q
′) ≤ 4

γ gives

(22)
1

2
n+(d1(q)− 4)(d2(q)− 4)+ (d1(q

′)− 4)(d2(q
′)− 4)+ e2(q)+ e1(q

′) ≤ O(1) ,

where O(1) denotes some universal constant (depending on γ) whose exact value
does not matter. Observe that if d1(q) ≥ 4, then the inequalities d1(q) ≤ 4

γ and

d2(q) ≥ 3 imply (d1(q) − 4)(d2(q) − 4) ≥ − 4
γ . A similar observation holds for

q′. Therefore, if d1(q), d2(q
′) ≥ 4, then we get a contradiction because then the

left-hand side of (22) is at least 1
2n− 8

γ .

Let us then assume that d1(q) = 3. Then the inequality (22) becomes

(23)
1

2
n+ (d1(q

′)− 4)(d2(q
′)− 4) + e2(q) + e1(q

′) ≤ d2(q) +O(1) .

If d2(q
′) ≥ 4, then (d1(q

′)−4)(d2(q
′)−4) ≥ − 4

γ , and therefore (23) implies d2(q) ≥
0.49n. By Claim 14 we have e2(q) ≥ 0.45n, and plugging this back into (23) we get
d2(q) ≥ 1

2n + 0.45n − O(1) ≥ 0.94n, which is a contradiction with d2(q) ≤ |C2| ≤
0.51n.

We are now left with the case when d1(q) = d2(q
′) = 3 and (23) reduces to

(24)
1

2
n+ e2(q) + e1(q

′) ≤ d2(q) + d1(q
′) +O(1) .

We now need the following claim.

Claim 15. If v ∈ C2 is an isolated vertex of the graph G[Nq ∩C2], then vq′ ∈ E(G).

Proof. The cycle lkGqv is contained in (Nq ∩ C1) ∪ {q′}, and since d1(q) = 3, the
latter set has four vertices. By Definition 1.4b) lkGqv must pass through all of them
and in particular q′ ∈ Nv. �

Because d2(q
′) = 3 the claim implies that G[Nq ∩ C2] can have at most three

isolated vertices, and therefore e2(q) ≥ 1
2 (d2(q)− 3). By symmetry we get

e1(q
′) ≥ 1

2
(d1(q

′)− 3)

and (24) implies

(25) n ≤ d1(q
′) + d2(q) +O(1) .

It follows that d1(q
′), d2(q) ≥ 0.48n, but then, by Claim 14, e1(q

′), e2(q) ≥ 0.4n
and going back to the inequality (24) gives a contradiction.



2756 MICHA�L ADAMASZEK AND JAN HLADKÝ

3.2. The case (21). This time we have d1(q), d1(q
′) ≤ 4

γ . The missing edges in

G[Nq ∩C1, Nq ∩C2] and G[Nq′ ∩C1, Nq′ ∩C2] can have a significant overlap, so we
begin by using just the contribution of one of them to obtain a bound. We have

1

4
(n2+2n+17) < e(G) ≤

(
n− 2

2

)2

+n+deg(q)+deg(q′)− ē(G[Nq∩C1, Nq∩C2]) ,

and plugging in the bound from Claim 13 we obtain

(26)
1

2
n+ (d1(q)− 4)(d2(q)− 4) + e2(q) ≤ d2(q

′) +O(1) .

In the same way we obtain a symmetric version with q and q′ interchanged:

(27)
1

2
n+ (d1(q

′)− 4)(d2(q
′)− 4) + e2(q

′) ≤ d2(q) +O(1) .

Now suppose that d1(q) ≥ 4. Then (d1(q)−4)(d2(q)−4) ≥ − 4
γ , and so (26) implies

d2(q
′) ≥ 0.49n. Therefore, e2(q

′) ≥ 0.45n by Claim 14. Then the inequality (27)
can be rewritten as

d2(q) ≥
1

2
n+ (d1(q

′)− 4)(d2(q
′)− 4) + e2(q

′)−O(1)

≥ 0.94n+ (d1(q
′)− 4)(d2(q

′)− 4) .

This inequality can only be satisfied if the last product is negative, which implies
d1(q

′) = 3. Using d2(q
′) ≤ 0.51n we further obtain

d2(q) ≥ 0.94n− 0.51n = 0.43n .

By Claim 14 we get e2(q) ≥ 0.15n; but then (26) gives

d2(q
′) ≥ 1

2
n+ 0.15n−O(1) ≥ 0.64n ,

which is a contradiction.
By symmetry we also arrive at a contradiction assuming that d1(q

′) ≥ 4. It
means that we must have d1(q) = d1(q

′) = 3.
We have that |(Nq∪Nq′)∩C1| ≤ 6. Consequently, there are only a finite number

of possibilities for the graph G[(Nq ∪Nq′)∩C1]. We will first show that the actual
possibilities for G[(Nq ∪Nq′)∩C1] are even more limited. Call a vertex v ∈ C1 free
if v �∈ Nq ∪Nq′ , a q-vertex if v ∈ Nq \Nq′ , a q′-vertex if v ∈ Nq′ \Nq, a qq′-vertex
if v ∈ Nq ∩Nq′ and a boundary vertex if v belongs to an edge e ∈ G[C1] such that
lkGe ∩ {q, q′} = ∅. Observe that each free vertex is also boundary.

Claim 16. The vertices in C1 have the following properties:

a) if v ∈ C1 is boundary, then C2 ⊆ Nv,
b) if v ∈ C1 is a q-vertex, then at least one of its neighbors in C1 is in Nq,
b’) if v ∈ C1 is a q′-vertex, then at least one of its neighbors in C1 is in Nq′ ,
c) if v ∈ C1 is a qq′-vertex, then at least one of its neighbors in C1 is in

Nq ∪Nq′ ,
d) if e1, e2 ∈ G[C1] are two vertex-disjoint edges, such that lkGe1 contains q

but not q′ and lkGe2 contains q′ but not q, then in at least one of those
edges both endpoints are non-boundary,

e) if v is a q-vertex and w is a q′-vertex, then vw �∈ E(G[C1]).
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Figure 1. Eight possibilities of the graph G[(Nq ∪Nq′)∩C1] with
the types of the vertices (types q-, q′-, and qq′-).

Proof. a) Consider any edge e ∈ G[C1] such that v ∈ e and V (lkGe) ∩ {q, q′} = ∅.
Then lkGe = G[C2], so in particular C2 ⊆ Nv.

b) Let v′, v′′ ∈ C1 be the neighbors of v. If none of v′, v′′ is in Nq, then all three
of v, v′, v′′ are boundary, so by a) all are adjacent to the whole C2. Pick any vertex
w ∈ Nq ∩ C2 and let w′, w′′ be its neighbors in C2. Then the link lkGvw contains
the cycle w′v′w′′v′′ and the vertex q, which is impossible. By symmetry we also
get b’).

c) The proof is the same as b).
d) Suppose the contrary. Let e1 = xx′, e2 = yy′, where x′ and y′ are boundary

vertices. By a) C2 ⊆ Nx′ , Ny′ , therefore

lkG(e1) = G[{q} ∪ (Nx ∩ C2)], lkG(e2) = G[{q′} ∪ (Ny ∩ C2)].

It follows that G[Nx∩C2] is a path within C2 and q is adjacent only to the endpoints
of that path. The same argument for y and q′ shows that G[Ny ∩ C2] is a path
with q′ adjacent only to the endpoints of that path. It follows that, except for up
to four special vertices, every vertex in C2 is missing an edge to either q or x and
it is missing an edge to either q′ or y. Since x, y, q, q′ are four different vertices this
yields at least 2(|C2| − 4) ≈ n missing edges from K2 to K1, contradicting (18).

e) Suppose vw is an edge. Then v and w are both boundary. Let v′vww′ be the
4-vertex path on the cycle G[C1]. By b) and b’) we have v′ ∈ Nq and w′ ∈ Nq′ .
Then the edges vv′ and ww′ contradict d). �

It turns out that Claim 16 provides us with just enough information to restrict
G[(Nq ∪Nq′) ∩ C1] to just one possibility.

Claim 17. We have Nq ∩ C1 = Nq′ ∩ C1 = {v1, v2, v3}, where v1, v2, v3 are three
consecutive vertices in C1.

Proof. Claim 16 gives us that G[(Nq ∪Nq′)∩C1] is a graph with no cycle, in which
every vertex has degree 1 or 2, and there is no edge from a q-vertex to a q′-vertex.
By considering the possible number of qq′-vertices (3, 2, 1 or 0) and then their
degrees, we obtain eight graphs which satisfy the above property, up to exchanging
q and q′. They are shown in Figure 1. The graphs B–H have a pair of edges which
violates Claim 16d). That leaves us only with Case A. �
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As all the vertices in C1 except v2 are boundary, we have by Claim 16a) that
C2 ⊆ Nv for each v ∈ C1 \ {v2}.

Claim 18. There is no edge e ∈ G[C2] with q, q′ ∈ lkGe.

Proof. If e was such an edge, then v1 would be a vertex of degree 3 in lkGe. �
Claim 19. We have |Nq ∩Nv2 ∩ C2| ≤ 2 and |Nq′ ∩Nv2 ∩ C2| ≤ 2.

Proof. Any 3 vertices in Nq ∩Nv2 ∩C2 together with {v1, v2, v3} would form a K3,3

in lkGq, contradicting Definition 1.4d). �
To complete the proof we consider two cases. First suppose qq′ ∈ E(G). Then,

we have |Nq ∩Nq′ ∩ C2| ≤ 2. Indeed, otherwise v1 would be a vertex of degree at
least 3 in lkGqq

′, a contradiction to Definition 1.4b). It follows that every vertex
of C2, except for at most six special ones, is adjacent to at most one element of
{q, q′, v2}, and then there are at least 2(|C2|−6) ≈ n edges missing from K2 to K1.
This contradicts (18).

Now suppose qq′ �∈ E(G). Then lkGqv3 = G[{v2} ∪ (Nq ∩ C2)] and lkGq
′v3 =

G[{v2} ∪ (Nq′ ∩ C2)]. It means that G[Nq ∩ C2] and G[Nq′ ∩ C2] are paths – say
P and P ′ – within C2. By Claim 18, P and P ′ share at most the endvertices.
Moreover, the interior vertices of P and P ′ are not adjacent to v2. Consequently,
every vertex in C2, except for at most four special vertices, is adjacent to at most
one element of {q, q′, v2}. Again, the total number of missing edges from K2 to K1

is at least 2(|C2| − 4) ≈ n, contradicting (18).
This ends the consideration of the case (21), thereby completing the proof of

Theorem 1.6.

4. Exact results

In the proof of Theorem 1.6 we used, as black-boxes, two results about the
sparseness of certain 1- and 2-joinlike graphs — Propositions 4.2 and 4.7. They
will be proved in this section. Unlike previously, when we were free to count edges
with an accuracy of Θ(n), in this part we will need to determine the precise structure
of some fascinating graphs and count their edges exactly.

In this section G means any fascinating graph, which will always be 1- or 2-
joinlike, with C1, C2 referring to the cycles from Definition 2.1 and with exceptional
vertices called q and q′. We will frequently use the observation that if q is an
exceptional vertex of a t-joinlike graph G, then Ci \Nq �= ∅ for i = 1, 2.

Proposition 4.1. If G is 1-joinlike and q is the exceptional vertex, then deg(q, Ci)
≥ 3 for i = 1, 2.

Proof. Suppose that deg(q, C1) ≤ 2. If deg(q, C2) = 0, then lkGq contains at most
two vertices, so G fails Definition 1.4d). Otherwise let x ∈ Nq ∩ C2 be any vertex
with at least one neighbor in C2 \ Nq. We see that lkGqx contains at most three
vertices, which is a contradiction. �
Proposition 4.2. If G is 1-joinlike, then e(G) ≤ 1

4 (n
2+2n+17), where n = |V (G)|.

Proof. Let q be the exceptional vertex. We will say that a vertex v ∈ Ci is a q-
vertex if qv ∈ E(G), a free vertex otherwise and a boundary vertex if it is a q-vertex
adjacent to a free vertex.

We refer to C1 and C2 as “sides”.
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Claim 20. If v ∈ Ci is free or boundary, then C3−i ⊆ Nv.

Proof. Indeed, v belongs to an edge e ∈ G[Ci] with q �∈ lkGe and therefore with
lkGe = G[C3−i]. That means C3−i ⊆ Nv. �

By Proposition 4.1 and because Nq ∩ Ci �= Ci for i = 1, 2, there are at least
three q-vertices and at least two boundary vertices on each side. If there were three
boundary vertices in, say, C1, then the graph formed by those three vertices in C1

and any three neighbors of q in C2 would form, by Claim 20, a K3,3 in lkGq, which
is impossible. That implies there are exactly two boundary vertices on each side.
In other words each Nq ∩ Ci induces a path inside Ci of some length ai ≥ 3 for
i = 1, 2.

If u ∈ C1 and w ∈ C2 are q-vertices which are not boundary and uw ∈ E(G),
then by Claim 20 there is a K3,3 in lkGq formed by u, w and the two boundary
vertices on each side. This means uw �∈ E(G) for such u,w.

We now know the exact structure of G and we can compute its number of edges.
Denoting ci = |Ci| and using n = c1 + c2 + 1 we have

e(G) = c1c2 + c1 + c2 + a1 + a2 − (a1 − 2)(a2 − 2)

=
1

4
(n2 + 2n+ 17)− 1

4
(c1 − c2)

2 − (a1 − 3)(a2 − 3) ≤ 1

4
(n2 + 2n+ 17).

�

The second part of the analysis in this section deals with 2-joinlike graphs. We
start off with a counterpart of Proposition 4.1.

Proposition 4.3. If G is 2-joinlike and q is any exceptional vertex, then deg(q, Ci)
≥ 2 for i = 1, 2.

Proof. Suppose that deg(q, C1) ≤ 1. If deg(q, C2) = 0, then lkGq contains at most
two vertices, so G fails Definition 1.4d). Otherwise let x ∈ Nq ∩ C2 be any vertex
with at least one neighbor in C2 \ Nq. We see that lkGqx contains at most three
vertices, which is a contradiction. �

We shall later need the following simple inequality.

Lemma 4.4. If n = k + l + 2, then

kl + 2k + l + 6 ≤ 1

4
(n2 + 2n+ 17).

Proof. One checks that

kl + 2k + l + 6 =
1

4
(n2 + 2n+ 17)− 1

4
(l − k + 1)2.

�

Proposition 4.7 below is a combination of a case distinction captured by Propo-
sition 4.5 and Proposition 4.6.

Proposition 4.5. If G is 2-joinlike with exceptional vertices {q, q′} such that
deg(q, C1) = 2 and the two vertices of Nq ∩ C1 are adjacent, then e(G) ≤
1
4 (n

2 + 2n+ 17), where n = |V (G)|.
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Proof. Let Nq ∩ C1 = {u, v}. Let x, x′ ∈ C2 be neighbors such that qx ∈ E(G),
qx′ �∈ E(G) and let y be the other neighbor of x in C2 (their existence is guaranteed
by Proposition 4.3 and the fact that Nq ∩C2 �= C2). Then V (lkGqx) ⊆ {u, v, q′, y},
and since uv ∈ E(G) we can assume that lkGqx is the cycle vuyq′ (this is the unique
possibility up to the order of u, v). In particular, qq′, q′v ∈ E(G) and q′u �∈ E(G).

If u′ �= v is the other neighbor of u in C1, then lkGuu
′ contains neither q nor

q′, so it must be all of C2. In particular, C2 ⊆ Nu. It means that lkGuq =
G[{v} ∪ (Nq ∩ C2)], so G[Nq ∩ C2] is a path of length at least 3 within C2, whose
both endpoints, call them v1, v2, are connected to v, while the interior vertices of
the path are not connected to v. (In fact x from the previous paragraph is one of
the vi.) Let a = |Nq ∩ C2| be the length of this path.

The link of every edge in G[Nq ∩ C2] contains u and q, so to be a cycle it must
also contain q′. It follows that Nq′ ∩ C2 ⊇ Nq ∩ C2.

Let t �= u be the other neighbor of v in C1. We now focus on the link lkGq
′v.

It contains the path v1qv2. As we shall see, the case t �∈ lkGq
′v will lead to a

contradiction.

Claim 21. If t �∈ lkGq
′v, then lkGq

′v must contain, apart from v1, q and v2, all the
vertices in C2 \Nq.

Proof. The link lkGq
′v is a cycle which passes through v1qv2. The only possible

route for this cycle which does not take it outside lkGv and avoids t and u is to
continue from v2 back to v1 in C2, i.e., follow the path G[C2 \Nq]. �

However, the above would imply C2\Nq ⊆ Nq′ . Put together with the previously
established Nq′ ∩C2 ⊇ Nq∩C2 we would get C2 ⊆ Nq′ , a contradiction. This means
that t ∈ lkGq

′v, i.e. q′t ∈ E(G).
Consider any vertex x ∈ (C1 ∩ Nq′) \ {v} which has at least one neighbor x̃ in

C1 \ Nq′ . By the fact that q′u �∈ E(G) such a vertex must exist. The link lkGxx̃
is a cycle which does not touch C1 ∪ {q, q′}. Consequently, lkGxx̃ = G[C2] and, in
particular, C2 ⊆ Nx. The link lkGxq

′ consists of one vertex in C1 and of the whole
Nq′ ∩ C2. We get that G[Nq′ ∩ C2] is a path within C2, containing Nq ∩ C2. Let
w1, w2 be the endpoints and let b = |Nq′ ∩C2|. Assume that v1 is between w1 and
v2 on this path (possibly w1 = v1 or w2 = v2).

For every edge e in G[(C2 \Nq′)∪ {w1, w2}] we have lkGe = G[C1]. As C2 ∩Nq′

induces a path with endvertices w1 and w2 and G[C2] is a cycle, we must have that
G[(C2 \ Nq′) ∪ {w1, w2}] is a path; in particular, this graph contains no isolated
vertices. It follows that for every vertex x ∈ (C2\Nq′)∪{w1, w2} we have C1 ⊆ Nx.
Now consider the link lkGq

′v. It contains the vertices q, t, v1, v2, w1, w2, with paths
v1qv2 and w1tw2. This is only possible if v is adjacent to all of (Nq′ \ Nq) ∩ C2

while t is not adjacent to any vertex of (((Nq′ \Nq) ∩ C2) ∪ {v1, v2}) \ {w1, w2}.
Let |C1| = k, |C2| = l, with n = k+ l+2. The remaining part of the proof splits

into two cases. First we assume that t is non-adjacent to all of (Nq ∩C2) \ {v1, v2}.
In that case t is non-adjacent to b − 2 vertices of C2, v is non-adjacent to a − 2
vertices and using a bound deg(q′, C1) ≤ k − 1 we get

e(G) ≤ kl + k + l + (a+ 2) + (b+ k − 1) + 1− (a− 2)− (b− 2)

= kl + 2k + l + 6 ,

so the conclusion follows from Lemma 4.4.
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Next suppose that t has a neighbor y in (Nq ∩ C2) \ {v1, v2} and let s �= v be
the other neighbor of t in C1. The link lkGq

′t contains v, w1, w2, y and possibly s
with edges w1vw2, and apart from v and s it is contained in Nq′ ∩ C2. Any cycle
with that property must contain an edge e ∈ G[Nq ∩ C2], and it follows that there
exists an edge e ∈ G[Nt ∩Nq ∩ C2]. But lkGe is a cycle passing through uqq′t and
not through v, therefore necessarily going through all of C1 \ {v}. In particular,
Nq′ ∩ C1 = {v, t}, and so s �∈ lkGq

′t. It means that lkGq
′t = G[{v} ∪ (Nq′ ∩ C2)]

which, by the restrictions on Nt, implies v1 = w1, v2 = w2, a = b and C2 ⊆ Nt.
This determines the graph G, and we obtain

e(G) = kl + k + l + (a+ 2) + (a+ 2) + 1− (a− 2)

= kl + k + l + a+ 7

=
1

4
(n2 + 2n+ 17)− 1

4
(k − l + 1)2 − (l − 1− a) ≤ 1

4
(n2 + 2n+ 17)

because a ≤ l − 1. �

Proposition 4.6. If G is 2-joinlike with exceptional vertices {q, q′} such that
deg(q, C1) = 2 and the two vertices of Nq ∩ C1 are not adjacent, then e(G) ≤
1
4 (n

2 + 2n+ 17) where n = |V (G)|.

Proof. The proof uses similar techniques as the proof of Proposition 4.5. Set Nq ∩
C1 = {u, v}.

Let x ∈ C2 be any vertex with qx ∈ E(G) and such that x has a neighbor
x′ ∈ C2 with qx′ �∈ E(G). Let y be the other neighbor of x in C2. We have
V (lkGqx) ⊆ {u, v, q′, y}, with u and v being independent. It follows that lkGqx is
the cycle uq′vy; in particular, q′u, q′v, ux, vx, q′x ∈ E(G) and qq′ ∈ E(G).

It follows that the number of vertices x ∈ C2 with the property described in
the previous paragraph is at most 2. Indeed, we proved that every such vertex is
adjacent to u, v, q′, and the claim follows since lkGq is K3,3-free. It means that
G[Nq ∩ C2] is a path within C2 of length a = |Nq ∩ C2|. Moreover, if v1, v2 ∈ C2

are the endpoints of that path, then q′vj , uvj , vvj ∈ E(G) for j = 1, 2. It follows
that a ≥ 3, as otherwise lkGqu would contain a triangle q′v1v2.

The link lkGqu contains q′, v1, v2 and no vertex in C1, so it must be
G[{q′}∪ (Nq ∩C2)]. That, and the same argument for lkGqv, mean that Nq ∩C2 ⊆
Nu, Nv and that q′ is non-adjacent to vertices in (Nq ∩ C2) \ {v1, v2}.

We will now prove the following claim.

Claim 22. Suppose x ∈ C1 \ {u, v} and y ∈ (Nq ∩ C2) \ {v1, v2}. Let x′, x′′ be the
neighbors of x in C1, and let y′, y′′ be the neighbors of y in C2. If xy ∈ E(G), then
xy′, xy′′, x′y, x′′y ∈ E(G).

Proof. The link lkGxy contains neither q nor q′. Hence it must be contained in
{x′, x′′, y′, y′′}, and it follows that these four vertices must form a 4-cycle with x
and y adjacent to all of them. �

The vertices u, v divide G[C1] into two paths which we call P1, P2, so that there
is a partition C1 = P1 � P2 � {u, v}. We also write Pj = Pj ∪ {u, v} for j = 1, 2
for the “closures” of those paths. Claim 22 implies that for j = 1, 2 the bipartite
graph G[Pj , (Nq ∩ C2) \ {v1, v2}] is either edgeless or complete bipartite. Suppose
first that both of these graphs are complete. Take any edge e in G[Nq ∩ C2]. As
a ≥ 3, such an edge exists. The above then gives that lkGe contains all of C1, and
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q, a contradiction. Suppose next that both of these graphs are empty. Taking any
edge e in G[Nq ∩ C2] we observe that lkGe spans at most three vertices {q, u, v},
again a contradiction. We can therefore assume that G[P1, Nq ∩ C2] is complete
bipartite and G[P2, (Nq ∩ C2) \ {v1, v2}] has no edges.

For every edge f ∈ G[P2] the link lkGf misses q and Nq \ {v1, v2}; hence it must
contain q′. We therefore have that

(28) P2 ⊆ Nq′ .

The rest of the proof depends on whether Nq′ ∩ P1 is empty.
First suppose that q′ is adjacent to some vertex of P1. Recalling that Nq′ ∩

C1 �= C1 and combining this with (28) we have Nq′ ∩ P1 �= P1. We can find

t ∈ P1 with neighbors t′, t′′ ∈ P1 such that tq′ ∈ E(G) and t′q′ �∈ E(G). Since
lkGtt

′ contains neither q nor q′ it must be all of C2; hence C2 ⊆ Nt. We then
have lkGq

′t = G[{t′′} ∪ (Nq′ ∩ C2)], so Nq′ ∩ C2 induces a path within C2 and
t′′ is not adjacent to its internal vertices. Since v1, v2 ∈ Nq′ ∩ C2 we obtain that
Nq′ ∩ C2 = (C2 \Nq) ∪ {v1, v2}.

Let |C1| = k, |C2| = l. Subtracting the edges we lose from P2 to (Nq ∩ C2) \
{v1, v2} and from t′′ ∈ P1 to C2 \ Nq and using deg(q′, C1) ≤ k − 1, |P2| ≥ 1 and
a ≥ 3, we get

e(G) ≤ kl + k + l + (a+ 2) + (l − a+ 2 + k − 1) + 1− |P2|(a− 2)− (l − a)

≤ kl + 2k + l + 6.

Next consider the case Nq′ ∩ P1 = ∅. By the usual argument we have C2 ⊆
Nu, Nv. Let s ∈ P2 be the neighbor of v. Then lkGq

′v = G[{s, q} ∪ (Nq′ ∩C2)] and
it contains the edges v1qv2. It follows that there are vertices w1, w2 ∈ C2 such that
G[Nq′ ∩ C2] has two parts, stretching from v1 to w1 and from v2 to w2 (possibly
w1 = v1 or w2 = v2). Moreover, looking at lkGq

′v we see that sw1, sw2 ∈ E(G) but
s is not adjacent to the vertices in (Nq′ ∩ C2) \ {w1, w2}.

Let b = |Nq′ ∩ C2|. Counting the missing edges from P2 to (Nq ∩ C2) \ {v1, v2}
and the disjoint set of missing edges from s to (Nq′ ∩ C2) \ {w1, w2}, we have

e(G) ≤ kl + k + l + (a+ 2) + (b+ k − 1) + 1− |P2|(a− 2)− (b− 2)

≤ kl + 2k + l + 6.

An application of Lemma 4.4 completes the proof. �

Putting the above results (Propositions 4.3, 4.5 and 4.6) together we get the
main result of this section concerning 2-joinlike graphs.

Proposition 4.7. If G is 2-joinlike with exceptional vertices {q, q′} and deg(q, C1)
≤ 2, then e(G) ≤ 1

4 (n
2 + 2n+ 17) where n = |V (G)|.

5. Closing remarks

A careful analysis of the proofs in Section 4 reveals two families of fascinating
graphs which satisfy the equality m = 1

4 (n
2 + 2n+ 17) for n ≥ n0. They appear in

Proposition 4.2 and Proposition 4.5; see Figure 2. This proves the claim made in
Remark 1.7; we omit the details.

Let us finish by stating a generalization of Theorem 1.2 to higher dimensions.
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a) b)

Figure 2. The 1-skeleta of two triangulations of S3 with f1 =
1
4 (f

2
0 + 2f0 + 17). Starting from the join of two cycles, remove

the dashed edges and add the exceptional point(s) with the solid
edges. In a) |C1| = |C2| and deg(q, C1) = 3. In b) |C2| = |C1|+ 1,
deg(q, C1) = deg(q′, C1)=2 and deg(q, C2)=deg(q′, C2) = |C2|−1.

Conjecture 5.1. For every s ≥ 2 there exists a number n0 = n0(s) such that the
following holds. If M is a closed flag (2s− 1)-manifold or a flag (2s− 1)-GHS with
f0 ≥ n0 vertices and f1 edges, then

(29) f1 ≤ f2
0 · s− 1

2s
+ f0.

Moreover, if M satisfies

(30) f1 > f2
0 · s− 1

2s
+ f0 ·

s− 1

s
+

7s+ 3

2s
,

then M is a join of s polygons, in particular it is homeomorphic to S2s−1.

The maximal value in (29) is achieved by the balanced join of s cycles of lengths
f0/s. The expression in (30) is the number of edges in the single edge-subdivision
of such a join.

Let us sketch how one might prove this conjecture (the details will appear else-
where). Fix s ≥ 2 and denote n = f0. First of all, M is Eulerian and the “middle”
Dehn-Sommerville equation hs−1 = hs+1 can be rewritten in the form

fs = sfs−1 + a2fs−2 + · · ·+ asf0

for some coefficients ai depending only on s. It follows that the number of (s+ 1)-
cliques in the 1-skeleton G = M (1) is only O(ns). However, the number of edges in
G is above the Turán bound for a complete, balanced s-partite graph, which is the
maximizer of the number of edges amongKs+1-free graphs. By an application of the
stability method we get that G looks very similar to K�,�,...,�, where 	 = n/s. Next,
as in the case of fascinating graphs, we see that in G the link of every (2s− 1− j)-
clique is a triangulation of Sj for j = 0, 1, 2 (or for all 0 ≤ j ≤ 2s − 2 if M is a
manifold), and one can try to exploit those conditions to rigidify the structure of
G.
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Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Or-
say, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401.
MR540024 (81i:05095)

Fachbereich Mathematik, Universität Bremen, Bibliothekstr. 1, 28359 Bremen, Ger-

many

E-mail address: aszek@mimuw.edu.pl
Current address: Max Planck Institute for Informatics, Campus E1 4, 66123 Saarbrücken,

Germany

Mathematics Institute and DIMAP, University of Warwick, Coventry, CV4 7AL,

United Kingdom

E-mail address: honzahladky@gmail.com

http://www.ams.org/mathscinet-getitem?mr=1362980
http://www.ams.org/mathscinet-getitem?mr=1362980
http://www.ams.org/mathscinet-getitem?mr=726456
http://www.ams.org/mathscinet-getitem?mr=726456
http://www.ams.org/mathscinet-getitem?mr=2155722
http://www.ams.org/mathscinet-getitem?mr=2155722
http://www.ams.org/mathscinet-getitem?mr=1395865
http://www.ams.org/mathscinet-getitem?mr=1395865
http://www.ams.org/mathscinet-getitem?mr=0278183
http://www.ams.org/mathscinet-getitem?mr=0278183
http://www.ams.org/mathscinet-getitem?mr=3168460
http://www.ams.org/mathscinet-getitem?mr=2770549
http://www.ams.org/mathscinet-getitem?mr=2770549
http://www.ams.org/mathscinet-getitem?mr=2755087
http://www.ams.org/mathscinet-getitem?mr=2755087
http://www.ams.org/mathscinet-getitem?mr=0233735
http://www.ams.org/mathscinet-getitem?mr=0233735
http://www.ams.org/mathscinet-getitem?mr=540024
http://www.ams.org/mathscinet-getitem?mr=540024

	1. Introduction
	Our results

	2. Proof of Theorem 1.6
	3. Two exceptional vertices of large degrees
	3.1. The case (20)
	3.2. The case (21)

	4. Exact results
	5. Closing remarks
	Acknowledgement
	References

