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ASYMPTOTICS OF THE DENSITIES

OF THE FIRST PASSAGE TIME DISTRIBUTIONS

FOR BESSEL DIFFUSIONS

KÔHEI UCHIYAMA

Abstract. This paper concerns the first passage times to a point a > 0,
denoted by σa, of Bessel processes. We are interested in the case when the
process starts at x > a and we compute the densities of the distributions of
σa to obtain the exact asymptotic forms of them as t → ∞ that are valid
uniformly in x > a for every order of the Bessel process.

1. Introduction and main results

This paper concerns the first passage times to a point a ≥ 0, denoted by σa, of
Bessel processes of order ν ∈ R. We are interested in the case when the process
starts at x > a and we compute the densities of the distributions of σa to obtain
the exact asymptotic forms of them as t → ∞ that are valid uniformly in x > a
for each order ν. If ν = ±1/2, we have well-known explicit expressions of them,
which are often used in various circumstances; otherwise there has been quite re-
stricted information on them until quite recently. In the case when 0 ≤ x < a the
distribution of σa solves a boundary value problem of the associated second order
differential equation on the finite interval (0, a) and the distribution of σa or its
density is represented by means of eigenfunction expansion ([3], [8], [12], etc.), and
thereby we can obtain accurate estimates of them. In the case x > a, however,
the region for the differential equation is the infinite interval (a,∞) and the cor-
responding representation is given by a Fourier-Bessel transform (cf. [16], Section
4.10), which it does not seem a simple matter to derive an asymptotic form of the
density directly from. Also, there have been only a few partial results as given
in [15], [18], [7] in which ν = 0 or/and relative ranges of x are restricted at least
for sharp estimates (in addition to the cases ν = ±1/2). In the recent paper [2]
Byczkowski, Malecki and Ryznar have computed an estimate of the density for σa

for all values of ν by using a certain integral representation of it given in [1]: they
obtain upper and lower bounds of the correct order of magnitude valid uniformly
for all t > 0, x > a, which however does not give the exact asymptotic form as we
shall obtain in this paper (although in some cases their results are very close to
and even finer than ours; see (i) of Remark 1 of the present paper). Hamana and
Matumoto [10] have derived a similar (but, in a significant point, quite different)
integral representation of the density of σa for the case x > a (as well as for the
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case 0 ≤ x < a) and computed an exact asymptotic form of the density as t → ∞
but with x > a fixed.

The present investigation is originally motivated by a study of Wiener sausage
of the Brownian bridge in Rd joining the origin to a point x ∈ Rd over a time
interval [0, t] when |x| grows linearly with t ([20]). The evaluation of the expected
volume of the sausage swept by a ball of radius a can be reduced to that of the
density for σa with arbitrary starting point > a. Not that only the case of the order
ν = (d− 2)/2 is concerned there. In fact, the results for all orders ν ≥ 0 turn out
to take part in the evaluation.

Let Xν
t be the Bessel process of order ν ∈ R, whose infinitesimal generator Lν

is given by

Lν =
1

2

d2

dx2
+

2ν + 1

2x
· d

dx
.

If 2ν+2 is a positive integer, Xν
t represents the radial part of the standard (2ν+2)-

dimensional Brownian motion. If ν ≥ −1 we write d for 2ν + 2:

(1) d = 2ν + 2, or what is the same, ν =
d

2
− 1;

the process Xν
t is sometimes called the d-dimensional Bessel process no matter

whether d is an integer or not. Let Px be the probability law of the process Xν
t

started at x ≥ 0 and Ex be the expectation by Px. Let σa denote the first passage
time of Xν

t to a > 0 and qν(t, x; a) the density of the distribution of σa:

qν(x, t; a) =
d

dt
Px[σa ≤ t].

We also write q(d) for qν , where d = 2ν + 2 if ν ≥ −1.
In what follows we suppose ν ≥ 0 unless the contrary is stated explicitly. At the

end of this introduction we shall observe that there is a simple relation between qν

and q−ν and the case ν < 0 is reduced to the case ν > 0 and vice versa. If ν ≥ 0,
the origin is an entrance and non-exit boundary to the positive half line as is well
known. We shall use the two indices d and ν interchangeably, understanding that
they are related by (1). Put

pνt (x) = p
(d)
t (x) = (2πt)−d/2e−x2/2t.

For the process Xν started at the origin p
(d)
t (x) is the density of the distribution

of Xν
t w.r.t. the invariant measure cdx

d−1dx, where cd = 2πd/2/Γ( 12 (d + 1)), the

normalizing constant. We prefer q(d) and p
(d)
t to qν and pνt , and in order to avoid

confusion we shall use the former notation throughout the paper except in a few
occasions when the use of the latter one is definitely suitable.

In [18] the present author obtains the following result among others (see (38) of
Section 2 for another one). Put κ = 2e−2γ , where γ = −

∫∞
0

e−u lg u du (Euler’s
constant).

Theorem 1 ([18]). If ν = 0, then uniformly for x > a, as t → ∞,

q(2)(x, t; a) =
lg( 12κx

2/a2)

t(lg(κt/a2))2
e− x2/2t +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2γ lg(t/x2)

t(lg t)3
+O

(
1

t(lg t)3

)
for x2 < t,

O

(
1 + [lg(x2/t)]2

x2(lg t)3

)
for x2 ≥ t.

(2)
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This theorem does not identify in any sense the asymptotic form of q(2)(x, t; a)
for x >

√
4t lg lg t (see Lemma 9 in Section 3). The objective of this paper is to

complement this ((4) in Theorem 2 and Corollary 4), and at the same time to also
obtain an asymptotic form of qν for ν > 0 when the Bessel process is transient ((3)
of Theorem 2 and Theorem 3).

Define a function Λν(y), y ≥ 0 by

Λν(y) =
(2π) ν+1

2yνKν(y)
, y > 0,

and Λν(0) = limy↓0 Λν(y). Here Kν is the modified Bessel function of the second
kind of order ν; Λν(0) is well defined (see (5) below) and

Λν(0) =
2πν+1

Γ(ν)
for ν > 0; and

Λ0(y) ∼
π

− lg y
as y ↓ 0,

in particular Λ0(0) = 0. (By definition the ratio of two sides of ∼ tends to 1 in the
indicated process of taking limits.) The main result of this paper is then stated as
follows.

Theorem 2. Uniformly for x > a, as t → ∞,

(3) q(d)(x, t; a) = a2νΛν

(
ax

t

)
p
(d)
t (x)

[
1−

(
a

x

)2ν ](
1 + o(1)

)
if ν > 0

and

(4) q(2)(x, t; a) = p
(2)
t (x)×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4π lg(x/a)

(lg t)2

(
1 + o(1)

)
(x ≤

√
t ),

Λ0

(
ax

t

)(
1 + o(1)

)
(x >

√
t ).

If the right-hand sides are multiplied by e−a2/2t, both the formulae (3) and (4) so
modified hold true also as x → ∞ uniformly for t > 0.

From the estimates of the density q(d) we can easily compute those of the dis-
tribution Px[σa < t] and we shall carry out the computation that will be based on
(3) and (4) in the last short section.

Remark 1. (i) In [2] Byczkowski, Malecki and Ryznar give estimates closely related
to Theorem 2. The main result of [2], their Theorem 2 (in its section 3), is a
weaker version of the estimates (3) and (4): the uniform upper and lower bounds
of the correct asymptotic order of magnitude are obtained instead of the exact
asymptotic form. For the case when x/t → ∞, however, they derive a very precise
estimate, finer than one given above, of which we present an explicit statement
shortly (Lemma 5 below). For ν > 0 their Proposition 5 identifies the asymptotic
form of q(d)(x, t; a) in the case when x/t converges to a positive constant (as t → ∞),
the same result as included in Theorem 2 as a significant special case. It is also
noted that for each x > a fixed the formula (3) is given in [10] but with some
coefficient not being explicit (see also [1]). The proofs in these papers rest on
certain integral representations of q(d)(x, t) (given by [1] (in [10]) and by [9] (in
[2])), and the methods adopted therein are quite different from ours.
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(ii) For every ν, Λν(y) is an increasing function of y. Indeed, we have

(5) Λν(y) =
2πν+1∫∞

0
exp(− 1

4uy
2)e−uuν−1du

(y > 0),

as is readily deduced from the identity Kν(z) = 1
2 (z/2)

ν
∫∞
0

e−
1
4u z2−uu−ν−1du

(| arg z| < π
4 ) ([13], p. 119), of which the right-hand side is invariant under the

replacement of ν by −ν. It is also noted that for each ν ≥ 0,

Kν(y) =
√
π/2y e−y(1 +O(1/y)) (y → ∞),

so that

(6) Λν(y) = (2π)ν+1/2y−ν+1/2 ey(1 + O(1/y)) (y → ∞).

The detailed estimation of q(d)(x, t; a) inside the parabolic regions x2 < Ct (C >
1) would be of fundamental importance. We next give an extension of Theorem 1
to ν > 0 in this respect, which partially prepares us for the proof of Theorem 2 in
an obvious way (see (iii) of Remark 2 below).

For ν > 0 we have the Green function, G(d)(x, y) say; we need to bring in
G(x) = G(d)(x); = G(d)(x, 0) = G(d)(0, x), or explicitly

G(x) =

∫ ∞

0

p
(d)
t (x)dt =

Γ(d2 − 1)

2πd/2
· 1

xd−2
.

The next theorem (a reduced version of Propositions 6 and 7 in Section 2) gives

a fairly fine estimate of q(d) for ν > 0 in the case when x ≤
√
2(ν ∧ 1)t lg t (as in

Theorem 1 in a sense). Here as well as in what follows c ∨ b = max{c, b}, c ∧ b =
min{c, b} for c, b real. It is noted that a2νΛν(0) = 1/G(a).

Theorem 3. Let ν > 0. If ν �= 1, then uniformly for x > a, as t → ∞,

q(d)(x, t; a)

=
(a2/2)ν

Γ(ν) tν+1

[
e−x2/2t −

(
a

x

)2ν

e−a2/2t

]
+O

(
1 ∧ (

√
t/x)ν+( 1

2∧ν)

tν+1+(ν∧1)

)
(7)

=
1

G(a)

[
p
(d)
t (x)−

(
a

x

)d−2

p
(d)
t (a)

]
+ O

(
1 ∧ (

√
t/x)[(d−1)/2]∧(d−2)

td/2+(ν∧1)

)
.(8)

In the case ν = 1 the same estimate holds true if the error term given by the
O-symbol is replaced by

O

(
1 + lg(t/x2)

t3

)
for a < x <

√
t; O

(
lg t

t3

(√
t

x

)3/2)
for x >

√
t.

Remark 2. (i) For random walks on the d-dimensional square lattice Zd we have
analogues of Theorems 1 and 3 [17]. The form of the principal term in formula (8) is
intrinsically the same as and in fact suggested by that corresponding to the walks.
For d = 2 Theorem 3 (or Proposition 8) provides an improvement of Theorem 1.4
of [17] in view of Theorem 1.5 of it.

(ii) In the proof of Theorem 3 we give a more precise expression of the error term,
which shows that its order of magnitude cannot be improved at least for x <

√
t.

(iii) If the range is restricted to 2a < x <
√
t, (3) is an immediate consequence

of Theorem 3; the case a < x ≤ 2a is contained in Proposition 6, which also implies
(3). In view of these results for x <

√
t the essential ingredient of (3) is now the



THE FIRST PASSAGE TIME DISTRIBUTIONS 2723

estimate in the region x >
√
t. With certain additional results employed the same

can be said for ν = 0 (for details see the Remark given at the end of Section 2).

The two-dimensional case is particularly interesting and deserves to be described
here in more detail. Restricting to the region x >

√
t we may state formula (4) as

follows: uniformly for x >
√
t, as t → ∞,

(9) q(2)(x, t, a) =
1

2K0(ax/t)
· e

−x2/2t

t

(
1 + o(1)

)
.

Substitution from the formulae (6) and K0(u) = − lg( 12e
γu) + O(u2 lg u) (u ↓ 0)

makes the right-hand side above explicit if x/t goes to 0 or ∞. We shall actually
compute errors in formula (9) (see Proposition 8 and Lemma 5). Taking into
account these comments, the next result is essentially a corollary of Theorem 1 and
the proof of Theorem 2.

Corollary 4. Let ν = 0. Uniformly in x > a, as t → ∞,

q(2)(x, t, a) =
2 lg(x/a)

(lg t)2
· e

−x2/2t

t

[
1 +O

(
1

lg t

)]
if a < x ≤

√
t

=
1

2 lg(t/x)
· e

−x2/2t

t

[
1 +O

(
1

lg(t/x)

)]
if x/t → 0, x >

√
t(10)

=

√
ax

2πt
· e

−(x−a)2/2t

t

[
1 +O

(
t

x

)]
if x/t → ∞.

The factor e−(x−a)2/2t in the last formula of (10), asymptotically equivalent to

e−x2/2t when x/t → 0, may be understood to be natural by comparing it with the

Gaussian kernel p
(2)
t (x− a) (see also (15) in Section 2).

The next result from [2] (Lemma 4) gives a fine estimate in the case when
x/t → ∞. It in particular shows that the dependence on d of the leading term in
this case comes only from the factor (a/x)(d−1)/2.

Lemma 5 ([2]). For each ν ≥ 0 it holds that uniformly for all t > 0 and x > a,
(11)

q(d)(x, t; a) =
x− a√
2π t3/2

e−(x−a)2/2t

(
a

x

)(d−1)/2
[
1 +

βt

ax

(
1 +O

(√
t ∧ t

x− a

))]
,

where β = (d− 1)(3− d)/8 = ( 14 − ν2)/2.

From the scaling property of Bessel processes it follows that

q(x, t; a) = a−2q(x/a, t/a2; 1).

For the proofs of the foregoing theorems we shall mostly consider only the case
a = 1 and write q(x, t) for q(x, t; 1).

The estimation of q(x, t) will be made in the following three cases
(i) x <

√
t;

(ii)
√
t < x ≤ Mt (with M arbitrarily fixed);

(iii) x/t → ∞,
of which the cases (i) and (ii) will be discussed in Sections 2 and 3, respectively.
The methods employed in these cases are different from one another. Roughly
speaking, for the case (i) the estimation is based on the well-known formula for the
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Laplace transform of q(d)(x, ·), to which we apply the Laplace inversion formula;
some computation using the Cauchy integral theorem then leads to somewhat finer
estimates (Proposition 6) than those given in Theorem 3. For the case (ii) we
exploit the fact that any Bessel process of order ν > −1 can be decomposed as a
sum of two independent Bessel processes and apply the result of the case (i). This
gives some error estimate to the asserted asymptotic form of q in the case x/t → 0
(Propositions 8 and 11). To include the case x/t → v > 0 an additional argument
is employed.

For (iii) Lemma 5 provides a better estimate than that required for Theorem 2.
The proof of Lemma 5 rests on the integral representation obtained in [1] and the
derivation from it is involved. A relatively easier proof for the relevant estimate in
Theorem 2 can be provided by making use of the following probabilistic expression:

(12) q(d)(x, t; a) =
x− a√
2πt3

e−(x−a)2/2t

(
a

x

)(d−1)/2

EBM
x

[
exp

{
β

∫ t

0

ds

B2
s

} ∣∣∣∣∣σa = t

]
,

where the conditional expectation is taken w.r.t. the probability measure of the
standard linear Brownian motion Bt. (This identity is readily derived from the
well-known formula for q(1) by using the Cameron-Martin-Girsanov formula.) In
the case x/t → ∞, t > 1, estimate (11), but with the second term in the big
square brackets replaced by a less exact O(t/x), can be derived from (12) by some
comparison argument based on the diffusion equation that is associated with the
expectation in (12) via the Kac formula (cf. [20]), of which we will not go into
further detail. By the way, it is noted that the expression of q(d) above verifies,
on expanding the exponential, the estimate (11) of the case t ↓ 0 with the same
replacement for the second term as above.

If x/t is large enough, one can evaluate the conditional expectation in (12) for
large t directly as mentioned above, of which the dependence on ν comes only
from β. Otherwise, however, a direct evaluation of it seems hard. Our results
on q(d) rather give a precise estimate of it valid uniformly in x, which turns out
to be useful: in [20] we exploit the estimate to derive an asymptotic form of the
space-time distribution of the hitting of a ball by d-dimensional Brownian motion.

Throughout the paper C,C ′, C ′′, etc. will be used to denote constants whose
precise values are not important for the present purpose; the same letter may
designate different constants depending on the occasions where it occurs.

We conclude the present section by mentioning some simple facts for the case

ν < 0. The probability that the Bessel process X
|ν|
t of order |ν| started at x > a

hits a in a finite time is given by h(x) = (a/x)2|ν|, which is a harmonic function
for the process restricted on [a,∞) with killing at a, and the conditional process
conditioned on this event is an h-transform of it. On identifying the generator this
conditional process is a Bessel process of order ν (< 0). Hence

qν(x, t; a) = q|ν|(x, t; a)
x2|ν|

a2|ν|
.

(This also follows from (14) below.) Every Bessel process of negative order visits
the origin in a finite time with probability one and we have the explicit formula

(13) qν(x, t; 0) = Λ|ν|(0)x
2|ν|p

|ν|
t (x)
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(for the derivation let a ↓ 0 in (14) and use (16), both given in Section 2). By a
comparison argument we have the inequality∫ t

0

qν(x− a, s; 0)ds <

∫ t

0

qν(x, s; a)ds (x > a, t > 0) if − 2−1 < ν < 0,

and the same one but in the opposite direction if ν < −2−1.

2. Proof of Theorem 3

For any ν ∈ R,

(14) Ex[exp{−λσa}] =
Kν(x

√
2λ)x−ν

Kν(a
√
2λ)a−ν

(λ > 0, x > a > 0),

as is well known and may be derived by solving the problem: LνU = λU (x > a)
with the lateral conditions U(a + 0) = 1 and U being positive and decreasing, of
which the solution is unique. (See (17) below.)

For ν = 1/2 (i.e., d = 3) we have a particularly simple expression of q(3): for
x > a

(15) q(d=3)(x, t; a) =
ae−(x−a)2/2t

t
√
2πt

(
1− a

x

)
,

which trivializes this special case of Theorems 3 and 2 and is helpful for making a
guess at the asymptotic form of q(d) in general cases.

In what follows we let ν ≥ 0 and, when there is no risk of confusion, we sup-

press the superscript (d) from q(d)(x, t; a) and p
(d)
t (x) except for the statement of

propositions or lemmas.
Put Gλ(x) =

∫∞
0

pt(x)e
−λtdt. We know

(16) Gλ(x) =
2

(2π)d/2

(√
2λ

x

)ν

Kν(x
√
2λ)

([5], p. 146). It is convenient (and natural) to write the representation (14) in the
form

(17) Ex[exp{−λσa}] =
Gλ(x)

Gλ(a)
.

For ν > 0 let G(x) = limλ↓0 Gλ(x), so that

G(x) =

∫ ∞

0

pt(x)dt =
Γ(d2 − 1)

2πd/2xd−2
.

If ν is not an integer, Kν(z) =
(
π/2 sin(πν)

)[
I−ν(z) − Iν(z)

]
, where Iν is the

modified Bessel function of the first kind of order ν and given by

(18) Iν(z) =

(
z

2

)ν ∞∑
k=0

(z/2)2k

Γ(ν + k + 1)Γ(k + 1)

for | arg z| < π ([13], p. 108).

Proposition 6. Let ν > 0 and M > 0. For a < x < M
√
t,

(19) q(d)(x, t; a) =
1

G(a)

[
p
(d)
t (x)−

(
a

x

)d−2

p
(d)
t (a)

]
+ a−2η(x/a, t/a2),
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with the function η(x, t), x > 1, t > 2, admitting the estimate

η(x, t) = O

(
1− x−1

tν+2

)
if ν > 1; = O

(
1− x−1

t2ν+1

)
if 0 < ν < 1

and η(x, t) = O

(
1− x−1

tν+2
lg t

)
if ν = 1.

(See (25), (36) and (37) for more exact forms of η(x, t).)

Remark 3. One might suspect that the function

q∗(x, t) := [G(a)]−1p
(d)
t (x− a)[1− (a/x)d−2],

an analogue to the explicit form of q(3), can take the place of the leading term in
(19). Since the difference of them is at most the magnitude of O(x(2−2ν)∨1/tν+2),
this is true if ν < 1; in the case ν > 1, however, the difference becomes much larger
than η(t, x) as x gets large, so that the replacement causes a larger error term.

Proof of Proposition 6. The Laplace inversion of (17) gives

(20) q(x, t; a) =
1

2πi

∫ i∞

−i∞

Gz(x)

Gz(a)
etzdz.

Here and in what follows the functions zν/2 and lg z involved in the integrand (see
(18), (34)) take their principal values. For the evaluation of the integral above
we follow the argument made in [17] for the random walk of dimensions d ≥ 3.
Motivated by it we decompose

Gλ(x)

Gλ(a)
=

Gλ(x)− (a/x)2νGλ(a)

Gλ(a)
+

a2ν

x2ν

=
Gλ(x)− (a/x)2νGλ(a)

G(a)
+R(λ;x),(21)

where

R(λ;x) =

[
1

Gλ(a)
− 1

G(a)

][
Gλ(x)− (a/x)2νGλ(a)

]
+

a2ν

x2ν
.

By the definition of Gλ(x) the contribution to (20) of the first term on the right-
hand side of (21) equals

1

G(a)

[
pt(x)− (a/x)2νpt(a)

]
.

The error term in Proposition 6 is then written as

(22) η(x, t) =
1

2πi

∫ i∞

−i∞
R(z, x)etzdz.

As z → ∞,

(23) Kν(z) = (π/2z)1/2e−z(1 +O(1/z)) (| arg z| ≤ π).

Hence Gz(x)/Gz(a) = O(e−(x−a)
√
2z) as z → ∞ (with x fixed), and we see that the

function R(z, x) rapidly approaches zero as z → ∞ in the sector | arg z| > π − δ
for any δ > 0. This together with the fact that Kν(z) has no zeros on the right
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half plane 
z ≥ 0 (cf. [21], p. 511) (hence Gz(x) has no zeros on −π ≤ arg z ≤ π)
permits us to apply Cauchy’s integral formula to transform (22) into

(24) η(x, t) =
1

2πi

∫ ∞

0

[
−R(−u+ i0, x) +R(−u− i0, x)

]
e−tudu,

where R(−u+ i0, x) = limy↓0 R(−u+ iy, x) and analogously for R(−u− i0, x). It is
noted that the integral in (24) is not affected by subtraction of any entire function
from R.

Let ν be not an integer. We show that uniformly for a < x < M
√
t,

(25) η(x, t) =
−ν − 1

2ν+1(ν − 1)Γ(ν)

(
1− 1

x2ν
+
x2 − 1

x2ν

)
1

tν+2
−B2

0

1− x−2ν

Γ(−2ν)t2ν+1
+r(t, x)

with

|r(t, x)| ≤ C

t2ν+1

[(
x2

t

)
∨ 1

tν

](
1− 1

x

)
(0 < ν < 1)

≤ C

tν+2
· x

2

t

(
1− 1

x

)
(ν > 1),

where the constant B0 is given in (27) below. The estimation of η is simple apart
from the uniformity in x, which we must take care of in dealing with the dependence
on x. Let a = 1 for simplicity. Recall the definitions of Gλ(1) and G(1). From the
power series expansion of Iν given in (18) we then deduce straightforwardly

Gλ(1)

G(1)
=

(
√
2λ)ν [ I−ν(

√
2λ )− Iν(

√
2λ )]

limλ↓0(
√
2λ)νI−ν(

√
2λ )

= Γ(1− ν)

( ∞∑
k=0

(λ/2)k

Γ(−ν + k + 1)k!
+

(√
2λ

2

)2ν ∞∑
k=0

(λ/2)k

Γ(ν + k + 1)k!

)

=
[
1 +A1λ+A2λ

2 + · · ·
]
− λν

[
B0 +B1λ+ · · ·

]
(26)

with

(27) A1 = [2(1− ν)]−1, B0 = 2−νΓ(1− ν)/Γ(ν + 1).

Let f(λ) = Gλ(1)/G(1)− 1. Then

(28)
1

Gλ(1)
− 1

G(1)
=

1

G(1)

[
1

1 + f(λ)
− 1

]
= − f(λ)

G(1)
+

[f(λ)]2

Gλ(1)
.

Also, noting
x2νGλ(x) = Gx2λ(1),

we obtain

x2ν × Gλ(x)− (1/x)2νGλ(1)

G(1)
=

Gx2λ(1)−Gλ(1)

G(1)

= A1λ(x
2 − 1)−B0λ

ν(x2ν − 1) +Hλ(x),(29)

where Hλ(x) =
[
A2λ

2(x4 − 1) + · · ·
]
+
[
B1λ

ν+1(x2ν+2 − 1) + · · ·
]
, the remainder

term. Since f(z) = O(|z|ν/2−1/4) as z → ∞ along the negative real line, the equality
(26) entails

f(λ) = A1λ−B0λ
ν +O(|λ|(ν∧1)+1) (|λ| < 1) and |f(−u± i0)| ≤ C|u|ν/2 (u > 0).
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From the power series expansions of I±ν(z) it follows that

Ak = O(1/Γ(−ν + k + 1)k!), Bk = O(1/Γ(ν + k + 1)k!).

With these preliminary discussions we now compute the integral in (24). Using
(28) and (29) we make the decomposition

(30) x2νR(λ;x) = −f(λ)
(
A1λ(x

2−1)−B0λ
ν(x2ν −1)

)
+T1(λ)+f(λ)Hλ(x)+1,

where T1(λ) = [f(λ)]2[Gx2λ(1)−Gλ(1)]/Gλ(1); the principal part would be involved
in the first term in view of (21), (27) and (29).

First consider the contribution of T1 and observe that for u > 0,

|T1(−u+ i0)− T1(−u− i0)| ≤ C0u
2(ν∧1)

[
uν(x2ν − 1) + C1u

ν+1(x2ν+2 − 1) + · · ·
]

+ C ′
0u

2ν
[
u(x2 − 1) + C ′

1u
2(x4 − 1) + · · ·

]
with certain constants Ck, C

′
k that are dominated by a constant multiple of

2kk3ν/(k!)2. Here we have exploited the fact that the terms of integral powers
cnλ

n involved in T1(λ) cancel out in the difference on the left-hand side. Employ-
ing the simple inequality xs − 1 ≤ (1 ∨ s)(1− x−1)xs valid for all x > 1, s > 0, we
infer that for 1 < x < M

√
t,∫ ∞

0

∣∣∣T1(−u+ i0)− T1(−u− i0)
∣∣∣e−tudu

≤ C

(
1− 1

x

)(
1

t2(ν∧1)+1

∞∑
k=0

k3ν+14kx2(ν+k)

tν+kk!
+

1

t2ν+1

∞∑
k=1

k3ν+14kx2k

tkk!

)

≤ C ′
(
1− 1

x

)[
1

t2(ν∧1)+1

(
x2

t

)ν

+
1

t2ν+1

(
x2

t

)]
,(31)

where C ′ depends on M .
Secondly, in the same way we see that if T2(λ) = f(λ)Hλ(x),

(32)

∫ ∞

0

|T2(−u+ i0)− T2(−u− i0)|e−tudu ≤ C

(
1− 1

x

)(
x2

t

)ν+1
1

tν∧1+1
.

Thirdly, putting

F (λ) = −f(λ)
(
A1λ(x

2 − 1)−B0λ
ν(x2ν − 1)

)
,

we have

F (λ) = A1B0λ
ν+1

(
x2ν−1+x2 − 1

)
(1+C1λ+ · · · )−B2

0λ
2ν(x2ν−1)(1+C ′

1λ+ · · · ),

apart from the difference by an entire function, and for s > −1,

1

2πi

∫ ∞

0

[
− (−u+ i0)s + (−u− i0)s

]
e−tudu =

1

Γ(−s)ts+1
.
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(Here the identity Γ(1+s) sinπs = −π/Γ(−s) is used; remember that 1/Γ(−n) = 0
if n is non-negative integer.) Hence

1

2πi

∫ ∞

0

[−F (−u+ i0) + F (−u− i0)]e−tudu

=

(
A1B0

x2ν − 1 + x2 − 1

Γ(−ν − 1)tν+2
−B2

0

x2ν − 1

Γ(−2ν)t2ν+1

)[
1 +O(1/t)

]
.

(33)

Finally, collecting the bounds (24) and (26) through (32) (of which we divide each
formula by x2ν since we have multiplied it in (29) and (30)), noting B0/Γ(−ν−1) =
(ν +1)/2νΓ(ν) and making an elementary comparison of terms that appear on the
right-hand sides of them, we find (25) to be true.

Let ν be a positive integer. The arguments are similar to the above. In place of
(26) we have

Gλ(1)

G(1)
=

2

(ν − 1)!

[
ν−1∑
k=0

(ν − k − 1)!

2(k!)

(
−λ

2

)k

−
(
−λ

2

)ν
(
γ + lg

√
λ

2

) ∞∑
k=0

(λ/2)k

k!(ν + k)!

]
+

(
−λ

2

)ν

g(λ)

=
[
1 +A1λ+A2λ

2 + · · ·
]
− λν(lg λ)

[
B0 +B1λ+ · · ·

]
,

(34)

where g(λ) = a0 + a1λ + · · · is a certain entire function (with a0 = 1 for ν = 1),
and

A1 =

{
−2−1[1 + lg(2e−2γ)] (ν = 1),
−[2(ν − 1)]−1 (ν ≥ 2)

and B0 =
(−1)ν

2νν!(ν − 1)!
.(35)

Noting

(2π)−1�
(
− [lg(−u+ i0)]k + [lg(−u− i0)]k

)
= −k(lg u)k−1 (k = 1, 2, u > 0)

we compute the integral in (24) to see that if ν is an integer greater than 1, then

(36) η(x, t) = −(−1)ν+1(ν+1)!A1B0

(
1− 1

x2ν
+
x2 − 1

x2ν

)
1

tν+2
+O

(
1− x−1

tν+2
· x

2

t

)
.

The coefficient of the leading term coincides with one appearing in (25) [since
1/Γ(−n) = 0 if n is a non-negative integer], so that (25) is valid for ν = 2, 3, 4, . . ..

If ν = 1 and f is defined as before, the leading term of−f(λ)
[
Gx2λ(1)−Gλ(1)

]
/G(1)

being

(B2
0λ

2 lg λ)(−x2 lg(x2λ) + lg λ),

we see

η(x, t) = −4B2
0

(1− x−2) lg t− lg x

tν+2
+ O

(
1− x−1

tν+2

)
.(37)

The foregoing two formulae obviously imply the desired bounds for η(x, t). The
proof of Proposition 6 is complete. �

We still need to obtain error estimates for |x| >
√
t.
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Proposition 7. Let ν > 0. Then the function η(t, x) defined via (19) admits the
estimates

η(t, x) = O

(
1

tν+2

(√
t

x

)ν+ 1
2

)
if ν > 1; = O

(
1

t2ν+1

(√
t

x

)ν+( 1
2∧ν)

)
if 0 < ν < 1

and η(t, x) = O

(
lg t

tν+2

(√
t

x

)ν+ 1
2

)
if ν = 1

that are valid uniformly for x >
√
t > 2.

Proof. We can proceed as in the preceding proof except that in place of (29) we
make the decomposition

x2ν
(
Gλ(x)− (1/x)2νGλ(1)

)
= Gx2λ(1)−G(1) + [G(1)−Gλ(1)]

and estimate the contributions of the three terms on the right-hand side sepa-
rately. Let ν �= 1. It follows from the preceding proof that the contributions of
the last two terms to η(x, t) are bounded by a constant multiple of x−2νt−ν−1 =
t−2ν−1(

√
t /x)2ν . As for the first term, on the one hand, we recall that Gz(1) =

Cν(2z)
ν/2Kν(

√
2z) = C ′

νz
(2ν−1)/4e−

√
2z(1 + o(1)) as z → ∞ to see that

x−2ν |f(−u± i0)G−x2u±i0(1)| ≤ Cu1∧νx−2ν(x2u)(2ν−1)/4 = Cu1∧ν+ν(x2u)−ν/2−1/4

for u > 1/x2 (f is the same as in (28)) and the integration over u > 1/x2 of e−tu

times the last member yields a magnitude of the order O
(
t−(1∧ν)+ν+1(

√
t/x)ν+1/2

)
.

On the other hand we have x−2ν |f(−u± i0)G−x2u±i0(1)| ≤ Cu1∧νx−2ν for 0 < u <
1/x2 and the corresponding integral does not exceed the foregoing magnitude. By
(24) we find the asserted bound for ν �= 1. The case ν = 1 is omitted, it being
similarly dealt with. �

Remark about the case ν = 0 and proof of Corollary 4. Theorem 1 (as well as any
other results of [18]) does not give a precise asymptotic form for x near a, while
the first formula of Corollary 4 does. Here we indicate a manner by which such
an estimate can be obtained by following the method employed in the proof of
Proposition 6, and thereby prove the first formula of Corollary 4. By the way, this
entails the case x/

√
t → 0 of the formula (4).

For ν = 0 we must replace Gz(x)/Gz(a) byK0(x
√
2z)/K0(a

√
2z) in the inversion

formula (20) that represents p(x, t; a). Put g(λ) = − lg(a
√
κλ) (κ = 2e−2γ) as

in [18]; g(λ) is the principal part of K0(a
√
2λ) as λ ↓ 0. The analogue of the

decomposition (21) should be

K0(x
√
2λ)

K0(a
√
2λ)

=
K0(x

√
2λ)−K0(a

√
2λ)

g(λ)
+R(λ;x),

where

R(λ;x) =

[
1

K0(a
√
2λ)

− 1

g(λ)

][
K0(x

√
2λ)−K0(a

√
2λ)

]
+ 1.

With this R define η by (24) for which we have (25). Then we can proceed as in
the proof of Theorem 1 of [18] with the same computation but taking care of the

effect of the subtraction of K0(a
√
2λ) in the expressions above, which results in the

additional factor (x−a)∧1 in front of the error term and hence allows us to replace
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1 + lg+ x by lg(x/a) in the error estimate of Theorem 1 of [18] so that uniformly
for x > a, as t → ∞,

(38) q(2)(x, t; a) = 2[lg(x/a)]
κ

a2
W

(
κ

a2
t

)
+O

(
lg(x/a)

t(lg t)2
· x

2 ∧ t

t

)
,

where W (λ) =
∫∞
0

e−λudu
[lg u]2+π2 = 1

λ(lg λ)2 − 2γ
(lg λ)3 + · · · .

Now let a = 1 and substitute 1
2κ = e−2γ into the numerator of the leading term

in the formula of Theorem 1, and we find that for 1 < x <
√
t,

q(2)(x, t) =
2 lg x

t[lg(κt)]2
e−x2/2t +

2γ(1− e−x2/2t)

t[lg(κt)]2
+

−4γ lg x

t[lg(κt)]3
+O

(
1

t[lg t]3

)
.

Using this estimate for
√
t/ lg t < x <

√
t and (38) for 1 < x ≤

√
t/ lg t we obtain

q(2)(x, t) =
2 lg x

t[lg(κt)]2
e−x2/2t +O

(
lg x

t[lg t]3

)
(a < x <

√
t)

as t → ∞, which is the same as the first formula of Corollary 4.

3. Proof of Theorem 2

For the proof of Theorem 2 it suffices to verify the formula of it in the case√
t < x < Mt for each M > 1 in view of Theorem 2 and the Remark given at the

end of Section 2. It is convenient to treat the cases ν = 0 and ν > 0 separately.
In both cases one may suppose x/t to tend to a constant v ≥ 0, and the subcases
v = 0 and v > 0 are also separately treated since different arguments are employed
for them, although the framework is the same. In the case v = 0 we shall provide
estimates of the error terms that are not given in Theorem 2.

3.1. The case ν = 0. In the course of proof of Theorem 2 given below we shall
derive the following proposition, which entails the formula of Theorem 2 in the case
x/t → 0.

Proposition 8. Let ν = 0. It holds that uniformly for
√
t < x < t/2, as t → ∞,

q(2)(x, t, a) =
π

K0(ax/t)
p
(2)
t (x)

[
1 +O

(
1

lg(t/x)

)]
.

For the proof of Proposition 8 we shall use Theorem 1, which it is convenient to
reduce to the following slightly weaker form.

Lemma 9. Let ν = 0. Uniformly for x > a, as t → ∞,

q(2)(x, t; a) = 2πp
(2)
t (x)

[
2 lg(x/a)

[ lg(t/a2)]2
+O

(
1

(lg t)2

)]
if x2 < 2t lg(lg t)

= 2πp
(2)
t (x)

[
2 lg(x/a)

[ lg(t/a2)]2
+ o

(
1

lg t

)]
if 2t lg(lg t) ≤ x2 ≤ 4t lg(lg t).

In what follows we let a = 1. We need the following lemma from [19] in which
ν = 0.

Lemma 10. For any ν, there is a constant c = cν > 0 such that for all x > 1 and
t > 1,

(39) q(d)(x, t) ≤ cp
(d)
t+1(x).
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Proof. The proof follows from the parabolic Harnack inequality (cf. eg., [6], [22])
as in the case ν = 0. �

We use the fact that the Bessel process of order ν = 0 is the radial process of

the standard two-dimensional Brownian motion B
(2)
t . Let x denote a generic point

of R2 and P
BM(2)
x the probability of B(2) started at x. We can suppose that the

initial point B
(2)
0 = x is on the upper vertical axis so that x = (0, x). Write ξt and

Yt for the horizontal and vertical components of B
(2)
t , respectively, and let TK be

the first hitting time of the vertical level K by B
(2)
t : TK = inf{t > 0 : Yt = K}.

Then the space-time distribution of (TK , ξTK
) is given by

(40)
P

BM(2)
(0,x) [TK ∈ dt, ξTK

∈ dξ]

dtdξ
=

x−K

t
p
(1)
t (x−K)p

(1)
t (ξ)

(cf. [11], page 25), which yields the representation

(41) q(x, t) =

∫ t

0

ds

∫ ∞

−∞

x−K

t− s
p
(2)
t−s

(√
ξ2 + (x−K)2

)
q
(√

ξ2 +K2, s
)
dξ.

K may be any number between 1 and x = |x|, but we suppose 4 ≤ K < x/2. With
a fixed K we are to compute the repeated integral on the right-hand side by using
the formula of Lemma 9. It is remarked that we make no use of Lemma 9 in the
case when x/t → v > 0.

We break the rest of the proof into four parts. For the case x/t → 0 certain
elaborate computations directly yield the desired formula of Proposition 8 (Parts
1 and 2). In the case x/t → v �= 0, on the other hand, we first show the existence
of limit of the ratio q(x, t)/pt(x) (Part 3). While it is difficult to identify the limit
along the same line as in the case x/t → 0, with its existence at hand another way
determines the limit (Part 4).

Throughout the proof we suppose that for some M > 0,
√
t < x < Mt.

The constant K ≥ 4 may be fixed arbitrarily prior to Part 3, in which we need to

take K large enough, so we do not assign K a specific value. We write pt, q for p
(2)
t ,

q(2) to be consistent to our convention that the superscript (d) is dropped, while

we continue to write p
(κ)
t if κ �= 2. We put, for 0 ≤ c < τ ≤ t,

Ic,τ = Ic,τ (x, t) :=

∫ τ

c

ds

∫ ∞

−∞

x−K

t− s
pt−s

(√
ξ2 + (x−K)2

)
q
(√

ξ2 +K2 , s
)
dξ,

the contribution to the integral in (41) from the interval c < s < τ .

Part 1: Estimation of Ic,t. Here c is a constant not less than 4. In the identity
pα2 + qβ2 = pq(α− β)2 + (pα+ qβ)2, where p, q ∈ R with p+ q = 1 and α, β may
be vectors in any Euclidian space, take p = (t− s)/t and divide both sides of it by

T = pqt =
s(t− s)

t

to obtain

(42)
1

s
α2 +

1

t− s
β2 =

1

t
(β − α)2 +

1

T

(
α+

s

t
(β − α)

)2

.
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Then substituting the two-dimensional vectors α = (ξ,K), β = (ξ,K − x) leads to

pt−s

(√
ξ2 + (x−K)2

)
ps

(√
ξ2 +K2

)

=
1

2πT
pt(x)e

−ξ2/2T exp

[
− 1

2T

(
K − s

t
x

)2
]
.

(43)

In the repeated integral of Ic,t we split the range of integration w.r.t. ξ at
ξ = ±

√
4s lg lg s. We claim that

Ic,t = pt(x)

∫ t

c

x−K

(t− s)
√
T

exp

{
− 1

2T

(
K − s

t
x

)2
}

×
[∫

√
ξ2+K2<

√
4s lg lg s

lg(ξ2 +K2)

(lg s)2
√
T

e−ξ2/2T dξ(44)

+R(s, t) +O

(
1

(lg s)2

)]
ds,

where R(s, t), the term that comes from the remainder term in Lemma 9, is
o(1/ lg s). For the part |ξ| ≥

√
4s lg s we have only to substitute the expression

of q given in Lemma 9 and apply (43) (note that the bound in Lemma 9 actu-
ally holds uniformly for t ≥ 4 simply because q(x, t) is bounded there). For the
integral on |ξ| ≥

√
4s lg s we need to take ps+1 in place of ps in (43) so that the

corresponding contribution to Ic,t becomes

pt+1(x)

∫ t

c

x−K

(t− s)
√
T ′

exp

{
− 1

2T ′

(
K − s+ 1

t+ 1
x

)2
}

×
∫
√

ξ2+K2≥
√
4s lg lg s

e−ξ2/2T ′

√
T ′

dξds,

(45)

where T ′ = (s+ 1)(t− s)/(t+ 1); since the inner integral is O(1/(lg s)2) uniformly
in t, a simple change of variable gives the error term in (44). Thus we have verified
the claim.

Scaling the variable ξ by
√
s and dominating e−ξ2/2T by e−ξ2/2s if necessary, we

see that the quantity in the big square brackets is evaluated to be

(46)

√
2π

lg s
+O

(
1

(lg s)2
√
(t− s)/t

)
+R(s, t).

We must compute the integral

(47) J :=

∫ t

c

x−K

(t− s)
√
T

exp

{
− 1

2T

(
K − s

t
x

)2
}√

2π

lg s
ds.

Now we suppose x/t < 1/2 so that lg t/x > lg 2 and take c = 4. By a sim-
ple change of the variables of integration, e.g., according to u = (x/t)

√
s, which

transforms s/t to u2t/x2 one can easily find that J ∼ pt(x)π/ lg(t/x) as x/t → 0,
t/x2 → 0 (which is enough for Theorem 2 restricted to the case x/t → 0). But
this way does not give the error estimate asserted in Proposition 8. To improve the
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evaluation of the integral we transform the variable of integration by

(48) ρ =
s

t− s

(
i.e., s =

tρ

1 + ρ

)
,

entailing the relation ds = (t− s)2dρ/t = (t− s)
√
T/tρ dρ.

Noting the inequalities

0 <
1

T
− 1

tρ
≤ 2

t− s
and

1

T
· sx
t

=
x

t− s
<

2x

t
∨
(
2

x
· x

2ρ

t

)

we may write the exponent appearing in the integral of (47) in the form

− 1

2T

(
K − s

t
x

)2

= −K2

2tρ
− (1− δ)

x2ρ

2t
+O

(
x

t

)
,

where δ = δ(t, x, s,K) is a function of t, x, s,K that satisfies 0 < δ < 4K/x (pro-

vided that K < x). Further, transform the variable ρ to u = x
√
ρ/t. Then

xds

(t− s)
√
T

=
xdρ√
tρ

= 2du,

and we obtain
(49)

J =

∫ ∞

(x/t)
√

c/(1−c/t)

2
√
2π

lg
[
(t/x)2m(u)

] exp

(
−K2x2

2t2u2
− (1−δ)

u2

2

)
du

(
1+O

(
x

t

))
,

where m(u) = u2/(1 + u2t/x2). We apply the inequality

|1− 1/(1 + r)| ≤ |r|+ r2/(1 + r) (r > −1)

with r = [lgm(u)]/ lg(t2/x2) for which (1 + r)−1 ≤ (lg c)−1 lg(t2/x2) to see that

2
√
2π

lg [(t/x)2m(u)]
=

√
2π

lg(t/x)
+O

(
1 + [lgm(u)]2

[lg(t/x)]2

)

uniformly valid if u is confined to the range of integration. Owing to the identity

(50)

∫ ∞

0

e−b/2u2−λu2/2du =

√
π

2λ
e−

√
2bλ (λ > 0, b ≥ 0)

and the bound
∫∞
0

| lgm(u)|2e−u2/2du ≤ C, formula (49) reduces to

(51) J = [π/ lg(t/x)][1 +O(1/ lg(t/x))].

Taking the computation carried out just above into account one also observes that

the contribution of the error term in (46) is O
(
pt(x)/[lg(t/x)]

2
)
and concludes that

uniformly for
√
t < x < t/2, as t → ∞,

(52) Ic,t = pt(x)

[
π

lg(t/x)

(
1 +O

(
1

lg(t/x)

)
+ R̃

)]
,

where R̃, the term corresponding to R(s, t), is o(1).
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Part 2: Estimation of I0,c. The integral I0,c(t, x) is dominated by

∫ ∞

−∞
P√

ξ2+K2 [σ1 < c] sup
0<s<c

x−K

t− s
pt−s

(√
ξ2 + (x−K)2

)
dξ

≤ C
√
c e−K2/2c x

tK
pt(x−K) ≤

[
C ′e−K2/2ceKx/t

]
pt(x)

x

t
,

where for the first inequality we have used the bound

Py[σ1 < c] ≤ C
√
ce−(y−1)2/2c/(y − 1)

for y > 1, a bound obtained from the one-dimensional result (cf. Lemma 3.2 of
[19]). Combined with (52) this shows that q(x, t)/pt(x) = O(1/ lg t) at least for√
2t lg lg t < x ≤

√
4t lg lg t. Using this bound instead of the second one of Lemma

9 we obtain

R(s, t) = O(1/(lg s)2)

so that R̃ = O(1/ lg(t/x)). The proof of Proposition 8 is complete.

Part 3: Proof of convergence. Here we suppose x/t → v > 0 and prove that there
exists lim q(x, t)/pt(x), the limit value depends only on v and the convergence is
locally uniform in v. Here we use Lemma 10 but not Lemma 9. With the help of
(43) it gives

(53) IK2, t/2(x, t) ≤ Cpt(x)

∫ t/2

K2

x

t
exp

[
− 1

2(1− s′/t′)

(
K√
s′

− x

t′

√
s′
)2

]
ds√
s
,

where s′ = s + 1, t′ = t + 1 and (43) is applied with ps+1

(√
ξ2 +K2

)
in place

of ps

(√
ξ2 +K2

)
(see (45)). One observes that the integral above is at most

O(e−vK/4) (use e.g. (50)). Also a quite crude estimation shows It/2,t(x, t) ≤
Cpt(x)e

−(2K−x)2/8t. Combined with the result of Part 2 these show that for any
ε > 0 one can choose K large so that

(54) lim sup
t→∞,x/t→v

∣∣∣∣∣q(x, t)− Ic,K2(x, t)

pt(x)

∣∣∣∣∣ < ε.

Define hK(ξ, s) by

hK(ξ, s) = q
(√

ξ2 +K2 , s
)/

ps

(√
ξ2 +K2

)
.

By Lemma 10

hK(ξ, s) ≤ C exp

[
ξ2 +K2

2s(s+ 1)

]
,
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and keeping this bound in mind we see that

Ic,K2(x, t)

pt(x)

=
1

pt(x)

∫ K2

c

ds

∫ ∞

−∞

x−K

t− s
pt−s

(√
ξ2 + (x−K)2

)
ps

(√
ξ2 +K2

)
hK(ξ, s)dξ

=

∫ K2

c

ds

2πT

∫ ∞

−∞

x−K

t− s
exp

[
− 1

2T

((
K − x

t
s
)2

+ ξ2
)]

hK(ξ, s)dξ

−→ v

∫ K2

c

ds

2πs

∫ ∞

−∞
exp

[
− (K − vs)2

2s
− ξ2

2s

]
hK(ξ, s)dξ

as x/t → v. This together with (54) shows that q(x, t)/pt(x) is convergent and the
limit value does not depend on the manner of x/t approaching to v. The required
uniformity of the convergence is easily ascertained from the arguments made above.

Part 4: Identification of the limit. The proof rests on the identity

(55) pt(x) =

∫ t

0

q(x, t− s)ps(1)ds,

which follows from the Markov property of the Bessel process and also from the
identity (17). We may suppose that x = tv, v �= 0. By Part 3

(56) q(tv, t− s) = λpt−s(tv)(1 + o(1)) as s/t → 0, t → ∞

for some constant λ = λ(v) ≥ 0. Since

pt−s(tv)ps(1)

pt(tv)
=

1

2πs(1− s/t)
exp

(
− v2s

2(1− s/t)
− 1

2s

)
,

substitution of (56) into (55) yields

1

λ
= lim

1

pt(tv)

∫ t

0

pt−s(tv)ps(1)ds(57)

=
1

2π

∫ ∞

0

exp

(
− v2s

2
− 1

2s

)
ds

s

= K0(v)/π

(see [5], Eq. (29) on page 146 for the last equality). Hence λ = π/K0(v), as desired.
This completes the proof of Theorem 2 in the case when x/t is bounded. �

Remark 4. In the case x/t → v > 0, it seems hard to compute the value lim q(x, t)/
pt(x) along the same line as in Part 1 since our knowledge of the behavior of
q((ξ,K), s) is poor for small values of s that significantly contribute to the integral
of (41). This point would be well understood from the argument made in Part 3
above. One notes that from Part 2 we know only that I0,c(x, t) becomes small if
K/c is large enough, while the error term O(1/(lgT )2) in the estimate (44) depends
on c.
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3.2. The case ν > 0.

Proposition 11. Let ν > 0. It holds that uniformly for
√
t < x < t/2, as t → ∞,

q(d)(x, t, a)

p
(d)
t (x)

− 1

G(a)
= O

((
x

t

)d−2
√

lg
t

x

)
(0 < ν < 1/2)

= O(x/t) (ν > 1/2).

We use the fact that the square of the Bessel process of dimension d > 2 is the
sum of those of two independent Bessel processes of dimensions 1 and d′ = d − 1
([14]). Let (Yt) be the one-dimensional standard Brownian motion started at x
and (ξt) the Bessel process of the dimension d′ started at 0 and independent of
(Yt). Then the law of the process (X2

t ) is the same as the law of (ξ2t + Y 2
t ). Let

TK = inf{t > 0 : Yt = K}. Then in place of (40) we have

P [TK ∈ dt, ξTK
∈ dξ]

dtdξ
=

x−K

t
p
(1)
t (x−K)p

(d′)
t (ξ)cd′ξd−2

so that

(58) q(x, t) =

∫ t

0

ds

∫ ∞

−∞

x−K

t− s
p
(1)
t−s(x−K)p

(d′)
t−s(ξ)q

(√
ξ2 +K2, s

)
cd′ξd−2dξ.

The proof of Proposition 11 given below is analogous to the one given for ν = 0,
and we proceed parallel to the lines of the preceding proof.

Part 1: Estimation of Ic,t. We write Ib,c(x, t) as before for the integral in (58)

restricted on the interval [b, c]. The product p
(1)
t−s(x −K)p

(d′)
t−s(ξ) appearing in the

integrand may be written as

pt−s

(√
ξ2 + (x−K)2

)
= pt−s(x−K)e−ξ2/2(t−s),

which we further rewrite in the form

(59)

(
t

t− s

)d/2

pt(x−K) exp

{
− (x−K)2s

2t(t− s)

}
e−ξ2/2(t−s).

We split the range of ξ-integration at ξ = ±
√
4s lg s in the repeated integral of

Ic,t. The integral on |ξ| ≥
√
4s lg s is disposed of by employing Lemma 10 as before

(see (45)). As for the integral on the other part we first evaluate the contribution
of the term (ξ2 +K2)−νps(1)/G(1), which, using (59), is dominated by a constant
multiple of

R1 := pt(x)

∫ t

c

ds
xtd/2ps(1)

(t− s)d/2+1
exp

{
− (x−K)2s

2t(t− s)

}∫
|ξ|<

√
4s lg s

e−ξ2/2(t−s)dξ.

It is convenient to split the outer integral at s = t/2 and let R>
1 and R<

1 be the parts
corresponding to s > t/2 and s ≤ t/2, respectively. By performing the ξ-integration
and changing the variable by u = t− s we deduce

R>
1 ≤ Cpt(x)

∫ t/2

0

x

u(d+1)/2
e−x2/4udu ≤ C ′′pt(x)x

2−d.

For the evaluation of R<
1 we replace the integrand by unity in the inner integral

and have the bound

R<
1 ≤ Cpt(x)x

t

∫ t/2

c

√
lg s

s(d−1)/2
exp

{
− x2s

2t2

}
ds.
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Since the integral on the right-hand side is evaluated to be O
(
(x/t)d−3

√
lg t/x

)
or

O(1) according to whether ν < 1/2 or ν > 1/2, by taking into account the estimate
for R>

1 obtained above we deduce that

(60) R1 ≤ C ′pt(x)

(
x

t

)d−2√
lg

t

x
if ν < 1

2 and R1 ≤ C ′pt(x)
x

t
if ν > 1

2 .

Let 0 < ν < 1/2. Then, in a similar way to the above, we evaluate the
contribution of the error term in (8), denoted by R2, and make decomposition

R2 = R>
2 +R<

2 . For R
>
2 we note that

∫
R
e−ξ2/2(t−s)ξd−2dξ = O((t− s)(d−1)/2) and

deduce that

|R>
2 | ≤ Cpt(x)xt

−ν

∫ t/2

0

u−3/2e−x2/4udu ≤ C ′pt(x)t
−ν ;

also

|R<
2 | ≤ Cpt(x)x

t

∫ t/2

c

e−(x2/2t2)sds

sd/2+ν

∫ √
4s lg s

0

ξd−2dξ

=
Cpt(x)x

t

∫ t

c

(lg s)(d−1)/2

s(d−1)/2
e−(x2/2t2)sds ≤ C ′pt(x)

(
x

t

)d−2
√
lg

t

x
,(61)

so that

(62) |R2| ≤ C ′′′pt(x)

(
x

t

)d−2
√
lg

t

x
.

Putting T = s(t− s)/t we have in place of (43)

pt−s

(√
ξ2 + (x−K)2

)
ps

(√
ξ2 +K2

)

= pt(x)p
(d′)
T (ξ)

1√
2πT

exp

[
− 1

2T

(
K − s

t
x

)2
]
.

(63)

Applying this together with (60) and (62) and making use of Lemma 10 in the same
manner as before we find that

Ic,t =
pt(x)

G(1)

∫ t

c

x−K

(t− s)
√
2πT

exp

{
− 1

2T

(
K − s

t
x

)2
}

×
[∫

√
ξ2+K2<

√
4s lg s

p
(d′)
T (ξ)cd′ξd−2dξ +O

(
1

s

)]
ds

+ O

(
pt(x)

(
x

t

)d−2
√
lg

t

x

)
.

The quantity in the big square brackets may be evaluated to be

1 +O
(
1/s[(t− s)/t](d−1)/2

)
.

In order to evaluate the whole integral we employ the transformation (48) and
follow the succeeding arguments up to (51). We then conclude that

Ic,t =
pt(x)

G(1)

[
1 +O

((
x

t

)d−2√
lg

t

x

)]
.
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Let ν > 1/2. Then, the integral of the third member in (61) becomes bounded,
so that we have |R<

2 | ≤ C ′pt(x)x/t in place of the bound given therein. The
other computations may be carried out in a similar way and we obtain Ic,t =
[pt(x)/G(1)](1 +O(x/t)).

Part 2: Estimation of I0,c. The same computation as before gives the same bound

of I0,c (but here pt = p
(d)
t ), which is sufficient for the present purpose. Thus

Proposition 11 has been proved.

Part 3: Proof of convergence. The proof is quite similar to the one given for ν = 0.
The bound (53) and hence the relation (54) holds true without any alteration except
that here q and pt are defined with d > 2. Define hK(ξ, s) as before. Then

Ic,K2(x, t)

pt(x)
−→ v

∫ K2

a

ds

(2πs)d/2

∫ ∞

−∞
exp

[
− (K − vs)2

2s
− ξ2

2s

]
hK(ξ, s)cd′ξd−2dξ

as x/t → v, and as before we conclude the desired convergence.

Part 4. Let λd(v) be the limit of q(x, t)/pt(x) as x/t → v > 0. The functional
equation (55) holds true for all ν > 0 in view of the corresponding identity for the
Laplace transforms. In place of (57) we then have that if x/t → v, then

1

λd(v)
= lim

∫ t

0

pt−s(tv)ps(1)

pt(tv)
ds =

1

(2π)d/2

∫ ∞

0

exp

(
− v2s

2
− 1

2s

)
ds

sd/2

= 2vd/2−1Kd/2−1(v)/(2π)
d/2,

so that λd(v) = Λd(v). Thus we conclude the formula of Theorem 2. �

4. Asymptotics of the distribution of σa

We derive estimates of the distribution Px[σa < t] from those of the density. Here
we compute only the principal parts of Px[σa < t] or Px[t < σa < ∞] (according to
whether t < x2 or t ≥ x2). With a little more labor one can obtain the error term
by employing Propositions 6, 7, 8, 11 or Lemma 5. Let γ(y, ν) be the incomplete
gamma function and put

γν(y) =
γ(y, ν)

Γ(ν)
=

1

Γ(ν)

∫ y

0

e−uuν−1du

and

Γν(y) = 1− γν(y) =
1

Γ(ν)

∫ ∞

y

e−uuν−1du.

Theorem 12. Let ν > 0. Uniformly for x > a, as t → ∞,

(64)
Px[t < σa < ∞]

Px[σa < ∞]
=

[
1−

(
a

x

)2ν ]
γν

(
x2

2t

)
(1 + o(1))

and

(65)
Px[σa < t]

Px[σa < ∞]
=

1

Λν(0)
Λν

(
ax

t

)
Γν

(
x2

2t

)
(1 + o(1)).

If x2/t → ∞, the first formula (64) is poor (at least in comparison with the
second one), since then γν(x

2/2t) tends to 1 and it says simply that the conditional
probability of escaping from a after t tends to 1 and nothing more; such a result
may be verified more directly (e.g., the crude bound given in Lemma 10 may be
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used to derive a fairly nice estimate of the speed of convergence). Similarly, in the
case x2/t → 0, (65) asserts that the conditional probability of arriving at a before
t tends to 1, which also readily follows from (13) as well as from (64).

Taking the limit along x2/2t = 1/y, either of (64) or (65) shows that the scaled
variable 2σa/x

2 conditioned on the event σa < ∞ converges in law to a variable
whose distribution function is 1−γν(1/y). This, however, follows immediately from
(14) by knowing the formulae Kν(t) ∼ 2ν−1Γ(ν)t−ν (t ↓ 0) ([13], page 136) and

−
∫∞
0

e−λydγν(1/y) = 2Kν(2
√
λ )λν/2/Γ(ν) ([5], (29) on page 146).

The proofs of two formulae of Theorem 12 are similar. Since (64) is easier,
we prove only (65). By what is remarked above we have only to prove it for

x >
√
t/ lg t. With this restriction we can include the case ν = 0. We remind the

readers that

Px[σa < ∞] =

(
a

x

)2ν

.

Theorem 13. Let ν ≥ 0. Uniformly for x >
√
t/ lg t, as t → ∞,

Px[σa < t] = Λν

(
ax

t

)(
a

x

)2ν
2ν

(2π)ν+1

∫ ∞

x2/2t

e−yyν−1dy(1 + o(1)).

Proof. Employing Lemma 5 (if necessary) as well as Theorem 2 and recalling
Λν(y) = Cy−ν+1/2ey(1 + o(1)) for y > 1, one observes first that Px[σa <

√
t]

is negligible and then that

Px[σa < t] = a2ν
∫ t

0

Λν

(
ax

s

)
p(d)s (x)ds(1 + o(1)).

By a simple change of the variable the right-hand side is transformed into(
a

x

)2ν
1

(2π)d/2

∫ ∞

x2/t

Λν

(
ay

x

)
e−y/2yd/2−2dy(1 + o(1)).

If ν > 0, the proof is easy from this expression and the following argument is made to
include the case ν = 0. If

√
t/ lg t < x <

√
t lg t (for instance), then x2/t > 1/ lg t

and (lg t)2x/t → 0, and hence the range of integration may be restricted to the
interval [x2/t, (lg t)2x2/t] in which Λν(ay/x) = Λν(ax

2/t)(1 + o(1)) so that one
may replace Λν(ay/x) by Λν(ax

2/t), yielding the desired formula after a simple
change of the variable of integration. The other case may be dealt with in a similar
manner. If

√
t lg t ≤ x < t, then x2/t goes to infinity so that the upper limit of the

integral may be replaced by (1 + δ)x2/t for any δ > 0 and the required relation is
reduced to Λ((1+ δ)ax/t)/Λν(ax/t) → 1 as δ ↓ 0 uniformly in this region, which is
plainly true. As for the case x ≥ t one has only to replace δ by K/x with large K
and argue analogously. The proof of Theorem 13 is complete. �

In the case when ν = 0 and x <
√
2t lg lg t a precise asymptotic form is obtained

in [18]. Combined with it Theorem 13 shows

Corollary 14. Let ν = 0. Uniformly for x > a, as t → ∞,

Px[σa < t] = 1− 2 lg(x/a)

lg t

[
1− lg(2e−γ)

lg t
+O

( 1
lg tV

1
tx

2

lg t

)]
for x <

√
t(66)

=
1

2K0(ax/t)

∫ ∞

x2/2t

e−y

y
dy (1 + o(1)) for x >

√
t/ lg t.(67)
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From Corollary 14 it follows that if ν = 0 and x = μtα with μ > 0 fixed, then as
t → ∞,

Px[σ1 < t] −→ (1− 2α) if 0 ≤ α < 1/2,

Px[σ1 < t] ∼
∫ ∞

1
2μ

2t2α−1

e−y

2y
dy ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

(1− α) lg t
if 1/2 ≤ α < 1,

1

K0(μ)
if α = 1,(

π−12μtα−1
)1/2

eμt
α−1

if α > 1.

In view of the identity Px[σa < t] = Px/a[σ1 < t/a2], the case α = 1/2 of this
formula is the same as (1.6) of Spitzer [15], where it is used to derive his well-known
test for a parabolic thinness at infinity of space-time boundaries. By the same
token an equivalent form in the case 0 < α < 1/2 is lima↓0 P1[lg σa ≤ γ lg a−1] =
γ(2 + γ)−1 (γ = α−1 − 2), which is found in [11], Problem 4.6.4, but in terms of
the Laplace transform.
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2742 KÔHEI UCHIYAMA

[14] Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed.,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR1725357 (2000h:60050)

[15] Frank Spitzer, Some theorems concerning 2-dimensional Brownian motion, Trans. Amer.
Math. Soc. 87 (1958), 187–197. MR0104296 (21 #3051)

[16] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equa-
tions. Part I, Second Edition, Clarendon Press, Oxford, 1962. MR0176151 (31 #426)
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[19] Kôhei Uchiyama, The expected area of the Wiener sausage swept by a disc, Stochastic Process.
Appl. 123 (2013), no. 1, 191–211, DOI 10.1016/j.spa.2012.09.005. MR2988115

[20] K. Uchiyama, The expected volume of Wiener sausage for Brownian bridge joining the origin
to a point outside a parabolic region, RIMS Kôkyûroku (2013).
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