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CRYSTALLOGRAPHIC ACTIONS ON CONTRACTIBLE

ALGEBRAIC MANIFOLDS

KAREL DEKIMPE AND NANSEN PETROSYAN

Abstract. We study properly discontinuous and cocompact actions of a dis-
crete subgroup Γ of an algebraic group G on a contractible algebraic manifold
X. We suppose that this action comes from an algebraic action of G on X such
that a maximal reductive subgroup of G fixes a point. When the real rank
of any simple subgroup of G is at most one or the dimension of X is at most
three, we show that Γ is virtually polycyclic. When Γ is virtually polycyclic, we
show that the action reduces to an NIL-affine crystallographic action. Special-
izing to NIL-affine actions, we prove that the generalized Auslander conjecture
holds up to dimension six and give a new proof of the fact that every virtually
polycyclic group admits an NIL-affine crystallographic action.

1. Introduction

The study of crystallographic groups and actions already has a long history.
The original concept was that of the Euclidean crystallographic groups. These
are discrete and cocompact subgroups of the group of isometries of a Euclidean
space. The crystallographic groups are then exactly those groups acting properly
discontinuously, cocompactly and isometrically on a Euclidean space. These groups
are well understood by the three Bieberbach theorems derived almost a century
ago (see [5], [6]). The first Bieberbach theorem describes the algebraic structure
of such crystallographic groups and implies that all of them are virtually abelian.
The torsion-free crystallographic groups, called Bieberbach groups, are exactly the
fundamental groups of the compact flat Riemannian manifolds.

About half a century later, L. Auslander in his fundamental paper [3] generalized
the first two Bieberbach theorems to the class of almost crystallographic groups.
These are subgroups of Isom(N), the group of isometries of a 1-connected nilpotent
Lie group N equipped with a left–invariant Riemannian metric, acting properly dis-
continuously and cocompactly on N . The generalization of the first theorem implies
that any almost crystallographic subgroup is virtually nilpotent. The torsion-free
almost crystallographic groups are then the fundamental groups of the almost flat
manifolds in the sense of Gromov (see [22], [31]). Although this is of no influence to
the sequel of our paper, we note that the generalization of the second Bieberbach
theorem in [3] is not correct. See [23] for the right generalization.
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Around the same time and in connection with the study of affine manifolds,
one also started to deal with affine crystallographic groups. These are subgroups
of Aff(Rn), the group of invertible affine motions of a Euclidean n-space, acting
properly discontinuously and cocompactly on Rn. For this class of affine crystal-
lographic groups, an analogue of the first Bieberbach theorem has not yet been
proven. In fact, two main problems, which are more or less converses of each other,
have been dominating much of the research in this field. The first problem is a
question posed by J. Milnor in 1977 (see [27]), who asked whether or not it was
true that any torsion-free polycyclic-by-finite group could be realized as an affine
crystallographic group. On the other hand, there is a conjecture due to L. Auslan-
der (see [4]) stating that any affine crystallographic group is polycyclic-by-finite.
In fact L. Auslander formulated this as a theorem, but it has been shown that his
proof contains a gap and since then it is referred to as Auslander’s conjecture. It
is clear that a positive answer to both Milnor’s question and Auslander’s conjec-
ture could be interpreted as a first Bieberbach theorem for affine crystallographic
groups (giving a clear description of their algebraic structure). Unfortunately, the
answer to Milnor’s question is negative, even for nilpotent groups, as was shown
by Y. Benoist in [8]. Moreover, the Auslander conjecture is still open and is only
known to hold up to dimension 6. (In fact, to our knowledge, a full proof has only
been given up to dimension 3 (see [21]) and a positive result up to dimension 6 has
been announced in [1].)

Inspired by the negative answer to Milnor’s question, one has been looking for
other possible generalizations for which the analogue of Milnor’s question has a
positive answer. The first positive result in this direction was given in [18]. It
was shown that any polycyclic-by-finite group admits a properly discontinuous and
cocompact action on some R

n where the action is given by polynomial maps of
bounded degree. So, although not all torsion-free polycyclic-by-finite groups can
be realized as affine crystallographic groups, they can be realized as polynomial
crystallographic groups.

To introduce yet another generalization, we again consider a 1-connected nilpo-
tent Lie group N , and define the affine group of N to be the group Aff(N) =
N�Aut(N) acting on N by (m,h)·n = mh(n), for allm,n ∈ N and all h ∈ Aut(N).
A subgroup Γ ⊆ Aff(N) acting properly discontinuously and cocompactly on N is
called an NIL–affine crystallographic group. For N = R

n, this immediately reduces
to the ordinary case of affine crystallographic groups. It has been shown in [17]
and independently in [7] that any torsion-free polycyclic-by-finite group can also
be realized as an NIL-affine crystallographic group, so also in this situation the
analogue of Milnor’s question has a positive answer.

On the other hand, for all of these possible generalizations one can also study
a generalized version of Auslander’s conjecture. Some results in this direction for
polynomial and NIL-affine actions can be found in [13, 16].

However, up till now, all approaches to the Auslander conjecture and its gener-
alizations have been dealing with the specific situation (affine, polynomial or NIL-
affine). In this paper we introduce a unified approach to all known generalizations
of the concept of a crystallographic group and start the study of the generalized
version of the Auslander conjecture in this most general setting.

The general setting is obtained by replacing Rn or the 1-connected nilpotent
Lie group N (i.e. the space on which the crystallographic groups are acting) by
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a contractible real algebraic manifold X and by considering subgroups Γ ⊆ G, or
slightly more general representations ρ : Γ → G, where G is a real algebraic group
acting algebraically on X.

Definition 1.1. Let G be a real algebraic group acting algebraically on a con-
tractible real algebraic manifold X. A representation ρ : Γ → G letting Γ act
properly discontinuously and cocompactly on X is an algebraic crystallographic
action. The image ρ(Γ) is said to be an algebraic crystallographic group.

In the case where no confusion is possible, we will just talk about crystallographic
actions and crystallographic groups.

In the examples above, the groups Isom(Rn), Isom(N), Aff(Rn) and Aff(N) are
indeed algebraic groups acting algebraically on Rn (or N which is isomorphic to
R

n as an algebraic manifold). Also, in the case of crystallographic groups of poly-
nomial actions of bounded degree, the action factorizes through the action of a real
algebraic group, as it is explained in [9]. It follows that all types of crystallographic
groups considered thus far are also algebraic crystallographic groups.

In all of the above types of crystallographic groups, a key observation is that a
maximal reductive subgroup of the algebraic closure of Γ has a fixed point. This
leads us to the following generalization of Auslander’s conjecture:

Question 1: If a maximal reductive subgroup of G fixes a point
of X and Γ acts crystallographically on X via a representation
ρ : Γ → G, is Γ virtually polycyclic?

Note that a positive answer to this question would provide a full geometric char-
acterization of the class of polycyclic-by-finite groups. Indeed, we already know
that any such group admits an algebraic crystallographic action (e.g. an NIL-affine
crystallographic), and a positive answer would imply that these are the only groups
admitting a crystallographic action with the extra condition that a maximal reduc-
tive subgroup of G has fixed point.

Using results of Section 2, we can equivalently ask a more specific:

Question 2: Let Γ be Zariski dense in a connected algebraic group
G. Let R be the radical, U be the unipotent radical, and H be a
maximal reductive subgroup of G. Let V be a closed subgroup of
U normalized by H. Define a left action of G on the homogeneous
space U/V of left cosets by

wh · [u] = [whuh−1], ∀u,w ∈ U, ∀h ∈ H.

If Γ ∩ R = {e} and the action of Γ on U/V is crystallographic, is
Γ trivial?

Expanding on the results of Sŏıfer and Tomanov on affine actions by generalized
Lorentz motions (see [33, Theorem A], [34, Theorem A]), we derive the following
theorem, which can be seen as a first positive indication for the general Auslander
conjecture.

Theorem A (Theorem 3.1). Let Γ be a subgroup of an algebraic group G. Let
G = UH where U is the unipotent radical and H is a maximal reductive subgroup.
Suppose G acts algebraically on a contractible algebraic manifold X such that there
exists x0 ∈ X with Hx0 = x0. Suppose Γ acts crystallographically on X.

(a) If the real rank of any simple subgroup of G does not exceed one, then Γ is
virtually polycyclic.
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(b) If Γ is a virtually polycyclic, Zariski dense subgroup of G, then X is G-
equivariantly isomorphic to U with the G-action given by

wh · u = whuh−1, ∀u,w ∈ U, ∀h ∈ H.

The second part of the theorem may be interpreted by deducing that every
such action must necessarily be NIL-affine crystallographic and in this sense rigid
(see Remark 3.2). To illustrate the practicality of this result, for an arbitrary
virtually polycyclic group Γ, we construct a crystallographic action on a contractible
algebraic manifold and use this rigidity to obtain that Γ admits an NIL-affine
crystallographic action (see Theorem 3.3). In this way, we give a new proof of the
aforementioned result appearing in [17] and in [7].

Next, we specialize to NIL-affine crystallographic actions and show that the
generalized Auslander conjecture remains valid up to dimension 6.

Theorem B (Theorem 3.5). Let Γ be an NIL-affine crystallographic group of a
1-connected nilpotent Lie group N . If the real rank of any simple subgroup of the
algebraic closure of Γ does not exceed one, then Γ is virtually polycyclic and N is
isomorphic to the unipotent radical of the algebraic closure of Γ.

Theorem C (Theorem 3.6). Suppose Γ is an NIL-affine crystallographic group of
a 1-connected nilpotent Lie group N of dimension at most six. Then Γ is virtually
polycyclic and N is isomorphic to the unipotent radical of the algebraic closure of
Γ.

At last, we consider groups that admit properly discontinuous actions on a con-
tractible algebraic manifold of dimension at most three. Consequently, we answer
Question 1 affirmatively up to this dimension.

Theorem D (Theorem 3.7). Let Γ be a finitely generated Zariski dense subgroup
of a connected algebraic group G. Let H be a maximal reductive subgroup of G.
Suppose G acts algebraically on a contractible algebraic manifold X such that there
exists x0 ∈ X with Hx0 = x0. Suppose Γ acts properly discontinuously on X.

(a) If dim(X) = 2, then Γ is virtually polycyclic.

(b) If dim(X) = 3 and Γ is not virtually polycyclic, then Γ is virtually free and
X is G-equivariantly isomorphic to R3, where G acts by Lorentz transfor-
mations on R3.

For examples and a survey of actions by Lorentz transformations, we refer the
reader to [19], [20], and [14].

2. Crystallographic actions

In this section, we derive the necessary lemmas for our main results. We say that
X is an algebraic manifold if it is a nonsingular real affine variety (see [10], [32]). By
an isomorphism of algebraic manifolds, we mean an isomorphism (biregular map)
of the affine varieties. We say that an algebraic group G acts algebraically on X if
the action map G×X → X is a morphism of algebraic varieties. By an algebraic
group, we will always mean a real algebraic group, which in turn will be the set of
real points of a linear algebraic group.

In the general setting, Γ will be a subgroup of a real linear algebraic group G that
acts algebraically on a contractible algebraic manifold X such that the restriction
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of the action to Γ is properly discontinuous and cocompact. As already stated in
Definition 1.1, we will call such an action by Γ crystallographic.

Note that, since G acts continuously and Γ acts properly discontinuously onX, Γ
must necessarily be discrete in G. Of course, the notions “properly discontinuous”
and “discrete” refer to the usual topology and not to the Zariski topology.

The first few lemmas we present contain some small but indispensable results
related to properly discontinuous and cocompact actions.

Lemma 2.1. Suppose G is a group acting on a locally compact Hausdorff space X.
Let π : X → X/G denote the natural quotient map. Then, for any closed compact
subset K ⊆ X/G, there exists a compact set K ′ ⊆ X such that π(K ′) = K.

Proof. Let S be the preimage of K. Since K is closed, S is also closed. For each
x ∈ S, let Ux be a neighborhood of x inX such that Ux is compact. As {Ux | x ∈ S}
covers S, {π(Ux) | x ∈ S} is an open cover of K. So, we can find a finite subcover
{π(Uxi

) | xi ∈ S, i ∈ I} of K. Let K ′ =
⋃

i∈I Uxi
∩ S. Then K ′ is a closed subset

of a compact set and it is therefore compact. Clearly, π(K ′) = K. �
Lemma 2.2. Let Γ be a group acting properly discontinuously and cocompactly on
a connected locally compact Hausdorff space X. Then Γ is finitely generated.

Proof. By Lemma 2.1, we can find a compact subset C of X such that ΓC = X.
Let U be an open subset containing C such that U is compact. Then, the set
F = {γ ∈ Γ | γU ∩ U �= ∅} is finite. We claim that Γ = 〈F 〉.

Let Λ = 〈F 〉 and set A =
⋃

γ∈Λ γU and B =
⋃

γ∈Γ�Λ γU . Since A and B are

open and A ∪ B = X, it follows that either A ∩ B �= ∅ or B = ∅. If B �= ∅, then
there exists γ′ ∈ Γ�Λ for which γ′U ∩A �= ∅. Hence, there exists γ ∈ Λ such that
γ′U ∩ γU �= ∅. This implies γ−1γ′U ∩ U �= ∅, showing that γ−1γ′ ∈ Λ. But then
γ′ ∈ Λ, which is a contradiction. Thus, B = ∅ and Γ = Λ. �

The following is a well-known fact on aspherical manifolds (see 8.1 of [12]).

Lemma 2.3. Let Γ be a group acting freely and properly discontinuously on an n-
dimensional, contractible topological manifold M without boundary. Then cd(Γ) ≤
n with equality if and only if M/Γ is compact.

In our study of algebraic actions, we will often deal with actions of unipotent
groups and their homogeneous spaces. In the next lemma, we collect some basic
results in this context.

Lemma 2.4. Suppose U is a connected, unipotent group.

(a) If V is a closed, connected subgroup of U , then U/V is an algebraic manifold
isomorphic to Rk where k = dim(U)− dim(V ).

(b) Suppose U acts algebraically on an algebraic manifold X. Then, for each
x ∈ X, the orbit Ux is Zariski closed in X. Also, the isotropy group Ux of
x is a connected subgroup of U .

(c) With the assumptions of part (b), for each x ∈ X, Ux is isomorphic to Rk

where k = dim(U)− dim(Ux).

Proof. Let {X1, . . . , Xn} be a weak Mal’cev basis of the Lie algebra u through the
subalgebra v where U = exp(u) and V = exp(v). Then the map φ : Rk → U/V
given by

(t1, . . . , tk) 
→ exp(t1Xn−k+1) . . . exp(tkXn) · V
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is an isomorphism of algebraic manifolds (see Theorem 1.2.12 and preceding Remark
1 of [15]). This proves (a).

The fact that the orbit Ux is Zariski closed in X is now standard and was first
proven independently by Kostant and Rosenlicht (see [30]). For the second part of
(b), we let u ∈ Ux and note that the one parameter subgroup ut is the minimal
algebraic subgroup containing u. Therefore, ut ≤ Ux, proving that Ux is connected.

Part (c) follows directly from (a) and (b). �
The next lemma is a generalization of a result first observed by Margulis on

affine crystallographic actions (see Prop.1 of [33]).

Lemma 2.5. Let Γ be a subgroup of an algebraic group G. Let G = UH where U is
the unipotent radical and H is a reductive subgroup. Suppose G acts algebraically on
a contractible algebraic manifold X such that there exists x0 ∈ X with Hx0 = x0.
If Γ acts crystallographically on X, then U acts transitively on X.

Proof. Since Γ acts crystallographically, by Lemma 2.2, it is finitely generated. By
Selberg’s Lemma, we can find a torsion-free subgroup Γ′ of finite index in Γ. By
Lemma 2.3, cd(Γ′) = dim(X), implying vcd(Γ) = dim(X).

On the other hand, Ux0 = Gx0 is Γ-invariant. By Lemma 2.4, it is a closed
and contractible submanifold of X. This implies vcd(Γ) ≤ dim(Ux0), resulting in
dim(Ux0) = dim(X) and hence Ux0 = X. �

In our study of algebraic crystallographic groups, we will often be able to reduce
the situation by first studying the radical of the algebraic group G. With this in
mind, next we will derive a few necessary results in case G is solvable.

Lemma 2.6. Let Γ1 be a Zariski dense, solvable subgroup of an algebraic group G1.
Let G1 = U1H1 where U1 is the unipotent radical and H1 is a reductive subgroup.
Then, there exists a compact subset K ⊂ U1 such that G1 = Γ1KH1.

Proof. Since G1 has a finite number of connected components, we can assume it is
connected. As a general fact, the commutator subgroup [Γ1,Γ1] is Zariski dense in
[G1, G1] (see p.59 of [11]). Let G2 = [G1, G1] and Γ2 = G2∩Γ1. Then [Γ1,Γ1] ≤ Γ2.

So, Γ2 is Zariski dense in G2. Let G̃1 = G1/G2 and Γ̃1 = Γ1/Γ2. Since G2 is
unipotent, we can find a compact subset K2 such that G2 = Γ2K2 (see 2.3 of [29]).

Since G̃1 is abelian, there is a natural epimorphism ψ : G̃1 → Ũ1 onto the unipotent

radical Ũ1. It follows that the image ψ(Γ̃1) is Zariski dense inside Ũ1 (see p.57 of

[11]). So, there exists a compact subset K̃1 in Ũ1 such that Ũ1 = ψ(Γ̃1)K̃1. This

shows that G̃1 = Γ̃1K̃1H̃1 where H̃1 is the maximal reductive subgroup of G̃1.
LetG1 = U1H1 where U1 is the unipotent radical andH1 is a reductive subgroup.

Denote by φ : G1 → G̃1 the natural quotient homomorphism and note that φ(U1) =

Ũ1 and φ(H1) = H̃1. Let K1 be a compact subset of U1 such that φ(K1) = K̃1.
Then, we have G1 = Γ1G2K1H1 = Γ1K2K1H1 and K2K1 ⊆ U1. This finishes the
proof. �
Lemma 2.7. Let Γ1 be a Zariski dense, solvable subgroup of an algebraic group
G1. Let U1 be the unipotent radical and H1 be a maximal reductive subgroup of
G1. Suppose G1 acts algebraically on a contractible algebraic manifold X such that
there exists x0 ∈ X with H1x0 = x0 and suppose the restriction of the action to
Γ1 is properly discontinuous. Then, Γ1 acts crystallographically on the orbit space
G1x0 and U1 acts freely and transitively on G1x0.
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Proof. The fact that Γ1 acts crystallographically follows directly from Lemma 2.6.
Transitivity of the action of U1 is clear. Next, we show that this action is also free,
i.e. U1 acts freely on U1x0.

In fact, it is enough to show that for each nontrivial u ∈ U1, ux0 �= x0. Suppose
otherwise, that an element u in U1 fixes x0. By Lemma 2.6, we have that for each
integer i, ui = γicihi where γi ∈ Γ1, ci ∈ K, and hi ∈ H1. Then, uix0 = γicix0.
Suppose the set A = {γi | i ∈ Z} is finite. Then, there exists an infinite subsequence
{uij} such that uij = γcijhij where γ ∈ A , cij ∈ K, and hij ∈ H1. Let γ = γuγh
where γu ∈ U1 and γh ∈ H1. Since u

ij = γuγhcijγ
−1
h γhhij , it follows that γhhij = 1

for all j. Then uij = γuγhcijγ
−1
h , showing that the set {uij | j ∈ Z} is contained

in the compact set {γu}Kγh , which is clearly a contradiction. Hence, A is infinite.
Now, we have x0 = uix0 = γicix0 for all i. This implies that the set

{γ ∈ Γ1 | Kx0 ∩ γKx0 �= ∅}
is infinite, which is again a contradiction. �

Lemma 2.8. Let Γ1 be a discrete, finitely generated, Zariski dense subgroup of a
connected solvable algebraic group G1 = U1H1 where U1 is the unipotent radical
and H1 is a reductive subgroup. Suppose G1 is a normal subgroup of an algebraic
group G and assume G acts algebraically and transitively on an algebraic manifold
X such that there exists x0 ∈ X with H1x0 = x0. Let Ω = G0

1 ∩ Γ1. Then there
exists a connected Lie subgroup L of G0

1 such that Ω is a cocompact lattice in L,
the commutator subgroup [G1, G1] is in L, and Lx = G1x for all x ∈ X.

Proof. As before, let G2 = [G1, G1] and Γ2 = Γ1 ∩ G2. Then Γ2 is Zariski dense
in G2. Since G2 is unipotent, Γ2 is a cocompact lattice. Let Λ = Ω/Γ2 and
T = G1/G2. Then Λ is a finitely generated subgroup of the abelian group T . Using
one-parameter subgroups, we can easily construct a connected Lie subgroup A of
T such that Λ is a cocompact subgroup of A. Now, we let L be the preimage of
A under the epimorphism of G1 onto T . Clearly, G2 ≤ L and Ω is a cocompact
lattice in L.

For a given x ∈ X, there exists a maximal reductive subgroup of G1 that fixes it,
which implies G1x = U1x. We claim that Lx = U1x. To see this, it suffices to show
that the standard projection from G1 onto U1 (mapping u1h1 to u1 for u1 ∈ U1

and h1 ∈ H1) remains onto when restricted to L. By taking quotients with G2, we
can reduce to the abelian case where T maps onto its unipotent radical V via the
standard projection π : T → V . Since Λ is a finite index subgroup of Γ1/Γ2, the
projection π(Λ) is a finite index subgroup of π(Γ1/Γ2). Because Γ1/Γ2 is Zariski
dense in T , π(Γ1/Γ2) is Zariski dense in V . This implies that π(Λ) and hence π(A)
are Zariski dense in V . Since π(A) is a connected Lie subgroup of V , we deduce
that π(A) = V . �

The following lemma provides us with a key tool to use an induction approach
for the study of algebraic crystallographic actions.

Lemma 2.9. Suppose Γ is a Zariski dense subgroup of an algebraic group G. Let
Γ1 be a solvable normal subgroup of Γ and G1 be the algebraic closure of Γ1. Let U1

be the unipotent radical and H1 be a maximal reductive subgroup of G1. Suppose
G acts algebraically on a contractible algebraic manifold X such that there exists
x0 ∈ X with Hx0 = x0 where H is a maximal reductive subgroup of G containing
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H1. Suppose Γ acts crystallographically on X. Then,

(a) G1x0 is G1-equivariantly isomorphic, as an algebraic manifold, to U1 with
G1-action analogous to (1).

(b) X̃ = X/G1 is G-equivariantly isomorphic, as an algebraic manifold, to a
quotient of U by a closed connected subgroup where G acts as in (1).

(c) The group Γ̃ = Γ/Γ1 is a crystallographic group of motions of X̃.

Proof. For part (a), Lemma 2.7 shows that G1x0 is isomorphic to U1. The fact
that this isomorphism can be chosen to be G1-equivariant will be evident from the
proof of part (b).

To prove (b), we note that, by Lemma 2.5, X = Ux0. The action of G on X̃
is transitive. It is not difficult to see that the isotropy group Gx̃0

at the point

x̃0 = G1x0 of X̃ is V H where V = U ∩ Gx̃0
. We define a left action of G on the

homogeneous space of left cosets U/V by

(1) wh · [u] = [whuh−1], ∀u,w ∈ U, ∀h ∈ H.

Then, we have a G-equivariant isomorphism of algebraic manifolds

X̃ ∼= UH/V H ∼= U/V.

Here, the second isomorphism is defined by [uh] 
→ [u], for all u ∈ U , h ∈ H. This
proves part (b).

For (c), let K be a compact subset of X̃. Let K ′ be a compact subset of X

mapped onto K by the projection of X onto X̃. Let us consider the sets

B ={γ̃ ∈ Γ̃ | γ̃K ∩K �= ∅},
C ={γ ∈ Γ | γK ′ ∩G1K

′ �= ∅}.

Let φ : Γ → Γ̃ be the quotient map. It is not difficult to see that φ(C ) = B.
Now, from Lemma 2.8 it follows that G1K

′ = ΩCK ′ for some compact subset
C of G0

1 and Ω = G0
1 ∩ Γ1. We define

D ={γ ∈ Γ | γCK ′ ∩ CK ′ �= ∅}.

By our choice of the compact set C it follows that C ⊆ Γ1D . Since Γ acts properly
discontinuously on X, D is a finite set. It follows that B ⊆ φ(Γ1D) = φ(D) and,

therefore, B is also finite. This proves that Γ̃ acts properly discontinuously on X̃.

To show that Γ̃ acts cocompactly, we note that X̃/Γ̃ ∼= X̃/Γ where Γ acts

through the quotient Γ/Γ1. As X̃/Γ is an image of the compact set X/Γ, it is
clearly compact. �

When considering algebraic crystallographic actions, by means of the previous
lemma, we will be able to assume that the crystallographic group Γ intersects
trivially with the radical R of G and consequently that it embeds as a discrete
subgroup in G/R. We will therefore shift our attention to actions of semisimple
and more generally of reductive algebraic groups. The last part of this section is
devoted to the necessary results in this direction.
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Lemma 2.10. Suppose G is an algebraic group. Let R be the radical of G and let
S be the semisimple group G0/R. Suppose Γ is a discrete subgroup of G0 and is

Zariski closed in G. Set Γ̃ = Γ/R ∩ Γ. Then Γ̃ acts properly discontinuously on the
symmetric space XS of S.

Proof. Since Γ is a discrete subgroup of G0, by Corollary 5.4 in [2], it follows that

Γ̃ is a discrete subgroup of S. Let C be an arbitrary compact subset of XS . Let C
′

be a compact subset of S such that π(C ′) = C where π : S → XS is the quotient
map. Let K be a maximal compact subgroup of S and consider the sets

E ={γ̃ ∈ Γ̃ | γ̃C ∩ C �= ∅},
F ={γ̃ ∈ Γ̃ | γ̃C ′K ∩ C ′K �= ∅}.

Since Γ̃ is discrete, it acts properly discontinuously on S. Therefore, E = F is
finite. �

Lemma 2.11. Let u be a nilpotent real Lie algebra and let v be a subalgebra of u
that does not contain any nonzero ideal of u. Assume that ϕ ∈ Aut(u) is such that
ϕ(v) = v and denote by ϕ̄ the induced linear map on u/v. If the restriction ϕ|v of
ϕ to v is not unipotent, then ϕ̄ is also not unipotent.

Proof. Let us consider the complex Lie algebra uC = u ⊗ C and its subalgebra
vC = v ⊗ C. It is obvious that vC also does not contain any nonzero ideal of uC.
It follows that it is enough to prove the lemma in the case of complex Lie algebras
instead of real Lie algebras. Therefore, in what follows, we will drop the subscripts
C from our notation and assume that u and v are Lie algebras over C.

Let A = {ψ ∈ Aut(u) | ψ(v) = v}; then A is an algebraic subgroup of Aut(u). It
follows that for every ψ ∈ A, its semisimple part ψs and its unipotent part ψu are
in A. Now, for the given ϕ we can also consider ϕs and it is obvious that ϕ|v is not
unipotent if and only if the restriction ϕs|v of ϕs to v is not unipotent. Moreover,
the induced map of ϕ on u/v is unipotent if and only if the induced map of ϕs

on u/v is trivial. So, it suffices to show that there is no semisimple automorphism
ϕ ∈ Aut(u), with ϕ|v nontrivial and ϕ̄ trivial.

We will prove this by contradiction and so we assume that such a semisimple
ϕ exists. Let c denote the nilpotency class of u and let γ1(u) = u and γi+1(u) =
[u, γi(u)] denote the terms of the lower central series of u. Then, γc(u) �= 0 and
γc+1(u) = 0.

We define the following subalgebras of u:

∀i ∈ {1, 2, . . . , c} : vi = γi(u) ∩ v,

∀i ∈ {1, 2, . . . , c} : ui = v+ γi(u).

Then, we have v1 = v and u1 = u. In this way, we obtain a filtration of u:

0 ⊆ vc ⊆ · · · ⊆ v2 ⊆ v1 ⊆ uc ⊆ · · · ⊆ u2 ⊆ u1.

Moreover, each term of this filtration is preserved by ϕ. Let vc+1 = 0 and uc+1 =
v = v1 and denote by li = dim vi/vi+1 and ki = dim ui/ui+1 for 1 ≤ i ≤ c. As ϕ is
semisimple, we can choose a basis of the vector space u which consists of vectors

Vi,j ∈ v (1 ≤ i ≤ c, 1 ≤ j ≤ li) and Up,q ∈ u (1 ≤ p ≤ c, 1 ≤ q ≤ ki)
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where each of these vectors is an eigenvector for ϕ and

vr = span{Vi,j | r ≤ i ≤ c, 1 ≤ j ≤ li} for all r ∈ {1, 2, . . . , c},
ur = span{Up,q | r ≤ p ≤ c, 1 ≤ q ≤ ki}+ v for all r ∈ {1, 2, . . . , c}.

We use λi,j ∈ C to denote the eigenvalue corresponding to the eigenvector Vi,j . By
the condition on ϕ, we know that there is at least one pair (i, j), with λi,j �= 1.
Also, ϕ(Up.q) = Up.q , since ϕ induces the identity on u/v. Let

i0 = max{i ∈ {1, 2, . . . , c} | ∃j ∈ {1, 2, . . . , lc} : λi,j �= 1}
and fix a j0 ∈ {1, 2, . . . lc} with λi0,j0 �= 1. For brevity, we will use λ0 = λi0,j0

and V0 = Vi0,j0 . Note that the choice of i0 implies that ϕ is the identity on vi0+1.
Because of the fact that v is not an ideal of u, we know that there exists a vector
U ∈ u with [U, V0] �= 0. So, there must also exist a basis vector U (Vi,j or Up,q)
with [U, V0] �= 0. We distinguish two possibilities, each of which will lead to a
contradiction.

Case 1. There exists a vector Up,q with [Up,q , V0] �= 0.

Let X = [Up,q , V0]; then ϕ(X) = [ϕ(Up,q), ϕ(V0)] = [Up,q , λ0V0] = λ0X, hence
X is a (non-zero) eigenvector for the eigenvalue λ0. If X �∈ v, this contradicts the
fact that ϕ induces the identity on u/v. Hence, we must have that X ∈ v, but then
X ∈ vi0+1, contradicting the fact that, by our choice of i0, ϕ induces the identity
on vi0+1.

Case 2. There is no vector Up,q with [Up,q , V0] �= 0, but [Vi,j , V0] �= 0 for some (i, j).

Let i1 = max{i ∈ {1, 2, . . . , c} | ∃j ∈ {1, 2, . . . , lc} : [Vi,j , V0] �= 0} and choose
a j1 ∈ {1, 2, . . . , li1} with [Vi1,j1 , V0] �= 0. We use the abbreviation V1 = Vi1,j1 and
λ1 = λi1,j1 . By the choice of i1, we know that [vi1+1, V0] = 0. We observe that
λ1λ0 = 1, otherwise, [V1, V0] ∈ vi0+1 would be a (nonzero) eigenvector for ϕ for the
eigenvalue λ0λ1 �= 1, contradicting the choice of i0. So, we know that λ1 = 1/λ0 �=
1. As [V1, V0] �= 0, there exists a basis vector X of u with [X, [V1, V0]] �= 0. By the
Jacobi identity, we have that

(2) [X, [V1, V0]] = −[V1, [V0, X]]− [V0, [X,V1]].

First suppose that X = Up,q for some values of p and q. Since [V0, Up,q] = 0, this
implies [Up,q , V1] �= 0. As [Up,q, V1] is an eigenvector of eigenvalue λ1 �= 1, we must
have that [Up,q , V1] ∈ v. Moreover, [Up,q , V1] ∈ γi1+1(u) and hence [Up,q , V1] ∈ vi1+1.
But, by the choice of i1, this implies that [V0, [Up,q , V1]] = 0. This shows that both
terms on the right-hand side of (2) are 0, implying that also [X, [V1, V0]] = 0, a
contradiction.

Therefore, we may assume that X = Vi2,j2 for some pair (i2, j2). We use the
notation V2 = Vi2,j2 and λ2 = λi2,j2 . Note that ϕ[V2, [V1, V0]] = λ2[V2, [V1, V0]].
Then [V2, [V1, V0]] is a nonzero eigenvector associated to the eigenvalue λ2. As
[V2, [V1, V0]] ∈ vi0+1, this implies that λ2 = 1.

Now, we look again at the right-hand side of (2), for X = V2. As [V2, V1] ∈ vi1+1,
we immediately have that [V0, [V2, V1]] = 0, by the choice of i1. As ϕ([V0, V2]) =
λ0λ2[V0, V2] = λ0[V0, V2] and [V0, V2] ∈ vi0+1, the choice of i0 forces [V0, V2] = 0.
Again, both terms of the right-hand side of (2) are 0, leading to the fact that
[V2, [V1, V0]] = 0, a contradiction. �
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Lemma 2.12. Let U be a 1-connected nilpotent Lie group and let H ≤ Aut(U)
be a reductive subgroup. Assume that V ≤ U is a closed and connected subgroup
of U which is invariant under the action of H. Suppose that the induced action of
H on U/V is faithful. Then the corresponding action of H on the tangent space
TV (U/V ) of U/V at eV is faithful.

Remark 2.13. First of all, we remark that the requirement that H is reductive is
necessary. Let U be the three-dimensional Heisenberg group⎧⎨

⎩[x, y, z] :=

⎛
⎝ 1 x z

0 1 y
0 0 1

⎞
⎠ | x, y, z ∈ R

⎫⎬
⎭

and let V be the subgroup {[x, 0, 0] | x ∈ R}. It follows that we can identify U/V
with R2 by the map

ψ : U/V → R
2 : [x, y, z]V 
→ (y, z).

Now, for all t ∈ R,

φt : U → U : [x, y, z] 
→ [x+ ty, y, z + ty2/2]

is an automorphism of U , with φt(V ) = V. Each φt induces on U/V a map

φ̄t : R
2 → R

2 : (y, z) 
→ (y, z + ty2/2).

Note that the differential of φ̄t at (0, 0) is the identity map and that {φt | t ∈ R} is
a unipotent subgroup of Aut(U) acting faithfully on U/V = R2.

Proof of Lemma 2.12. It is not difficult to see that when V is a normal subgroup of
U , the proposition is trivial to prove. In fact, even more is true. Let us explain that
we can discard the maximal normal subgroup N of U which is contained in V . It is
easy to see that N is a connected subgroup of U and that for every automorphism
φ ∈ Aut(U), with φ(V ) = V , we also have that φ(N) = N .

There is a natural identification of the spaces U/V and (U/N)/(V/N), under
which the action of H on U/V can also be seen as an action of H on (U/N)/(V/N).
It follows that by replacing V by V/N and U by U/N , we can assume that V does
not contain any nontrivial normal subgroup of U .

Let us now denote by u the Lie algebra of U and by v the Lie algebra of V , so
v is a subalgebra of u. Any automorphism φ ∈ Aut(U), induces an automorphism
dφ ∈ Aut(u) and vice versa. Of course φ(V ) = V if and only if dφ(v) = v. The fact
that V is a subgroup of U which does not contain a nontrivial normal subgroup of
U is equivalent to the fact that v does not contain any nonzero ideal of u. This, in
turn, is equivalent to the fact that v ∩ Z(u) = 0.

To be able to describe the action of H on U/V , we will fix a diffeomorphism of
U/V with a finite dimensional real vector space, using a weak Mal’cev basis of the
Lie algebra u of U . We suppose that u is c-step nilpotent and define the subalgebras
ui = γi(u) + v forming a descending sequence

u = u1 ⊇ u2 ⊇ u3 ⊇ · · · ⊇ uc ⊇ v = uc+1

of subalgebras, which are invariant under the action of H. Moreover, for any i,
ui+1 is an ideal in ui. This will turn out to be crucial in what follows.

As in the proof of the previous lemma, we use ki to denote the dimension of
ui/ui+1 and choose for each i elements Xi,1, Xi,2, . . . , Xi,ki

in ui in such a way



2776 KAREL DEKIMPE AND NANSEN PETROSYAN

that the natural projections of these elements form a basis of ui/ui+1. Then each
element u ∈ U can be uniquely written under the form

(3) exp(t1,1X1,1) exp(t1,2X1,2) · · · exp(t1,k1
X1,k1

) exp(t2,1X2,1)

· · · exp(tc,kc
Xc,kc

) exp(Y )

where ti,j ∈ R and Y ∈ v. The map

ψ : U/V → R
k1+k2+···+kc : u 
→ (t1,1, t1,2, . . . , t1,k1

, t2,1, . . . , tc,kc
),

where the ti,j are as in (3), is a diffeomorphism sending the point eV to the origin.
Now, consider an automorphism φ ∈ H. Assume that there exists an i ∈

{1, 2, . . . c} such that φ (or rather dφ) does not induce the identity on ui/ui+1.
This means that there are real numbers ap,q, 1 ≤ p, q ≤ ki so that dφ(Xi,q) =∑ki

p=1 ap,qXi,p and the ki × ki–matrix A = (ap,q) is not the identity matrix. Using
the fact that ui+1 is an ideal in ui, we find that

ϕ (exp(ti,1Xi,1) exp(ti,2Xi,2) · · · exp(ti,ki
Xi,ki

))

= exp(
∑
q

a1,qti,qXi,1) exp(
∑
q

a2,qti,qXi,2) · · · exp(
∑
q

aki,qti,qXi,ki
) · α

for some α ∈ exp(ui+1). This means that for the action of φ on the space U/V =
Rk1+···+kc , we have that

φ · (0, 0, . . . , 0, ti,1, ti,2, · · · , ti,ki
, 0, 0, . . . , 0)

= (0, 0, . . . , 0,
∑
q

a1,qti,q,
∑
q

a2,qti,q, . . . ,
∑
q

aki,qti,q, ∗, ∗, . . . , ∗).

It follows that the differential of this map at the origin is nontrivial. Thus, if we
can show that for any φ ∈ H there exists an i ∈ {1, 2, . . . , c} such that φ does not
induce the identity on ui/ui+1 we are done. Therefore, we consider the morphism

(4) ψ : H → GL(u1/u2)×GL(u2/u3)× · · · ×GL(uc/uc+1)

mapping any φ in H to the c-tuple of maps it induces on the consecutive quotients.
Suppose, by a way of contradiction, that K = Ker(ψ) is nontrivial. Then, as H is a
reductive group, so is K. Since K is nontrivial, there must exist an element φ ∈ K
which is not unipotent. It follows that dφ is also not a unipotent element. However,
the fact that φ ∈ K implies that dφ acts trivially on each of the factors ui/ui+1,
implying that dφ induces a unipotent map on u/v. On the other hand, since dφ
is not a unipotent element, this also implies that dϕ|v is not unipotent. But, now

Lemma 2.11 tells us that dφ is not unipotent on u/v, which is a contradiction. It
follows that K is trivial and this finishes the proof. �

In the next lemma, we derive the “eigenvalue one criteria” on the induced rep-
resentation of the reductive subgroup of the given algebraic group which will be
essential in our subsequent arguments.

Lemma 2.14. Let Γ be a Zariski dense subgroup of an algebraic group G. Suppose
G acts algebraically on an algebraic manifold X such that there exists x0 ∈ X fixed
by the action of a maximal reductive subgroup H of G. Let ρ : H → GL(Tx0

X)
be the representation corresponding to the action of H on the tangent space Tx0

X
at x0. If Γ acts freely on X, then ρ(h) has an eigenvalue equal to one for every
h ∈ H.
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Proof. The fact that H acts algebraically on X implies that ρ is a morphism of
algebraic groups. Let ψ : G → H denote the projection of G onto H. Next, we will
show that for each γ ∈ Γ, ρ ◦ ψ(γ) has an eigenvalue equal to one. Since ψ(Γ) is
Zariski dense in H, this will give us the desired result.

For this purpose, we let γ = γsγu be the Jordan decomposition of a nontrivial
element γ ∈ Γ, where γs is semisimple and γu is unipotent. There exists u ∈ U such
that uγsu

−1 = h0 ∈ H. We let γt
u be the one-parameter subgroup of γu and define

a curve in G by γ(t) = γt
uγs, t ∈ R. Since Γ acts freely, the curve γ(t) does not fix

the point x1 = u−1x0 of X. Analogously to the representation ρ, we can construct
a representation β : u−1Hu → GL(Tx1

X). By identifying the tangent spaces with
an isomorphism, it follows that ρ and β are conjugate by du : Tx1

X → Tx0
X. Since

γs fixes x1, it also fixes the curve γ(t)x1 pointwise. It follows that β(γs) has an
eigenvalue equal to one. Since h0 = ψ(γs), we also have that ρ ◦ ψ(γs) has an
eigenvalue equal to one. But ρ ◦ ψ(γ) = ρ ◦ ψ(γs)ρ ◦ ψ(γu) and ρ ◦ ψ preserves
Jordan decomposition (see 4.4(c) of [11]). Hence, ρ ◦ ψ(γ) has an eigenvalue equal
to one. �

We end this section by a lemma on special real representations of semisimple
groups. For its proof, we refer to Lemma 5 of [33].

Lemma 2.15. Suppose S is a nontrivial connected semisimple Lie group such
that the real rank of any simple subgroup of S is at most one. Denote by XS the
symmetric space of S. Let ρ : S → GLn(R) be a faithful representation of S such
that for every s ∈ S, ρ(s) has an eigenvalue equal to one. Then n > dim(XS).

3. Main results

We begin with a generalization of [33, Theorem A] and [34, Theorem A].

Theorem 3.1. Let Γ be a subgroup of an algebraic group G. Let G = UH where
U is the unipotent radical and H is a maximal reductive subgroup. Suppose G acts
algebraically on a contractible algebraic manifold X such that there exists x0 ∈ X
with Hx0 = x0. Suppose Γ acts crystallographically on X.

(a) If the real rank of any simple subgroup of G does not exceed one, then Γ is
virtually polycyclic.

(b) If Γ is a virtually polycyclic, Zariski dense subgroup of G, then X is G-
equivariantly isomorphic to U with the G-action given by

wh · u = whuh−1, ∀u,w ∈ U, ∀h ∈ H.

Proof. We first prove (a). Since Γ is a finitely generated linear group, in view
of Selberg’s Lemma, we can assume that it is torsion-free. Also, without loss of
generality, we can assume that Γ is Zariski dense in G. Let R be the solvable
radical of G and let S be a maximal connected semisimple Lie subgroup of H.
We set Γ1 = Γ ∩ R and denote by G1 the algebraic closure of Γ1 in G. Also, let

G̃ = G/G1, Γ̃ = Γ/Γ1, and X̃ = X/G1.

By Lemmas 2.7 and 2.9, Γ1 acts crystallographically on G1x0 and Γ̃ acts crystal-

lographically on X̃. Since Γ̃ is a finitely generated linear group, we can assume that

it is torsion-free and hence acts freely on X̃. Let L be the kernel of the action of G

on X̃. Then L is a normal algebraic subgroup containing G1. We define G′ = G/L
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and its subgroup Γ′ = ΓL/L. Since Γ̃ acts freely on X̃, Γ ∩ L = Γ ∩ G1 and thus

Γ′ ∼= Γ̃. Therefore, it is enough to show that Γ′ is virtually polycyclic.

Observe that Γ′, G′ and X̃ satisfy the hypothesis of the theorem in place of Γ,
G and X, respectively. Therefore, proceeding by induction on the dimension of G,
we can assume that L is trivial.

Next, let us consider the tangent space Tx0
X of X at x0 and the action of S on

Tx0
X. We denote by ρ : S → GL(Tx0

X) the representation corresponding to this
action. Since S acts faithfully on X, Lemma 2.9(b) together with Lemma 2.12 show
that ρ is a faithful representation. Since Γ intersects trivially with the solvable radi-
cal of G, by Lemma 2.10, a finite index subgroup of Γ acts properly discontinuously
on the symmetric space XG0/R. This implies cd(Γ) ≤ dim(XG0/R) ≤ dim(XS).
Also, since Γ acts crystallographically on X, cd(Γ) = dim(X). Hence, we have
dim(ρ) = dim(Tx0

X) = dim(X) = cd(Γ) ≤ dim(XS).
On the other hand, by Lemma 2.14, it follows that for every s ∈ S, ρ(s) has an

eigenvalue equal to one. But, according to Lemma 2.15, this is only possible when
S is trivial. We deduce that Γ is virtually polycyclic.

If Γ is a virtually polycyclic, Zariski dense subgroup of G, then the identity
component of G is solvable. Assertion (b) now follows directly from Lemma 2.9. �

Remark 3.2. Assuming the hypothesis of part (b) of the theorem, let us consider
the resulting action of the group G. Note that the conjugation action gives rise
to a representation φ : H → Aut(U). Let H ′ be its image and denote by G′ the
semidirect product U � H ′. Then there is an epimorphism of algebraic groups
ψ : G → G′ given by uh 
→ uφ(h) for each u ∈ U and h ∈ H. Now, the action
of G on X factors through G′ and has kernel equal to ker(φ). Because Γ is a
crystallographic subgroup of G and X ∼= U , its image under ψ is an NIL-affine
crystallographic subgroup of G′ and Γ∩ker(φ) is finite. This shows that the action
of Γ on X is NIL-affine crystallographic.

As we mentioned earlier, every virtually polycyclic group admits an NIL-affine
crystallographic action. This was proven independently by Dekimpe in [17] and
Baues in [7]. Next, we present a new proof of this result which is a constructive
application of Theorem 3.1(b).

Theorem 3.3. Let Γ be a virtually polycyclic group. Then it admits an NIL-affine
crystallographic action.

Proof. It is well known that any virtually polycyclic group is linear. Therefore,
we can assume Γ is a Zariski dense subgroup of an algebraic group G. Since Γ is
virtually solvable, G0 is a solvable normal subgroup of G. Let G1 = [G0, G0] and
Γ1 = Γ ∩ G1. Then G1 is a normal unipotent subgroup of G and Γ1 is Zariski
dense in G1 and hence it is a cocompact lattice. Let Λ = Γ/Γ1. Then Λ is a
virtually abelian group. We denote by E(n) the image of the standard embedding
of the group of isometries of Rn into GLn+1(R). By a theorem of Zassenhaus
[36], we know that Λ admits an Euclidean crystallographic action on some Rn, i.e.
there exists a representation ρ : Λ → E(n) with finite kernel such that ρ(Λ) is
crystallographic. Let G = G× E(n) and note that we can embed Γ into G by the
homomorphism γ 
→ (γ, ρ([γ])), ∀γ ∈ Γ. We identify Γ with its image in G.
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Let U be the unipotent radical of G. Next, we construct a transitive action of
G on X = U × Rn by

g · (u, y) = (whuh−1, x+ αy) ∀g = (wh, (x, α)) ∈ G, ∀(u, y) ∈ X.

This is clearly an algebraic action and it is not difficult to see that a maximal
reductive subgroup of G fixes a point. We claim that the restriction of the action
to Γ is properly discontinuous.

Suppose this is not the case. Then there exists a compact subset K = K1 ×K2

in X, where K1 ⊆ U and K2 ⊆ R
n such that the intersection of the sets

G ={γ ∈ Γ | γK1 ∩K1 �= ∅},
H ={γ ∈ Γ | [γ]K2 ∩K2 �= ∅}

is infinite. Now, since Λ acts properly discontinuously on Rn, this implies that
there is an element γ0 ∈ Γ, for which

I ={γ ∈ G ∩ H | [γ] = [γ0]}

is infinite. Hence, also the set

{γ−1
0 γ ∈ Γ1 | γ−1

0 γK1 ∩ γ−1
0 K1 �= ∅},

containing γ−1
0 I , is infinite. This is a contradiction to the fact that Γ1 is a discrete

subgroup of U .
Next, let Γ be the algebraic closure of Γ in G and denote by H ′ a maximal

reductive subgroup of Γ. Then H ′ is a reductive subgroup of G and hence it is
contained in a maximal reductive subgroup H of G. Let x0 be a point fixed by H
and consider the orbit Y at x0 of the action of Γ on X. It is clearly a contractible

algebraic submanifold of X. Since Γ
0
is solvable and Y = Γ

0
x0, by Lemma 2.6, it

follows that Γ acts crystallographically on Y . Therefore, Theorem 3.1 and Remark
3.2 show that Γ admits an NIL-affine crystallographic action on the unipotent
radical of Γ which is isomorphic to Y . �

Now, we consider algebraic crystallographic actions in the case where the ambient
space X is the 1-connected nilpotent Lie group N and the algebraic group is the
group affine motions of N . Recently, Abels, Margulis, and Soifer have shown that
Auslander’s conjecture holds up to dimension 6 (see [1]). Building on this result,
we prove that the generalized Auslander conjecture for NIL-affine actions also holds
up to dimension 6. But first, we need a lemma.

Lemma 3.4. Let N be a 1-connected nilpotent Lie group and suppose H is a
maximal reductive subgroup of affine transformations Aff(N). Then there exists
x0 ∈ N such that Hx0 = x0.

Proof. Let U be the unipotent radical of Aff(N). Consider the natural epimorphism
of algebraic groups π : Aff(N) → Aut(N). Since ker(π) = N is unipotent, π|H :
H → Aut(N) is injective. As any two maximal reductive subgroups are conjugate,
we can assume H ≤ Aut(N). Hence, He = e, finishing the claim. �
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The lemma together with Theorem 3.1 gives us the following.

Theorem 3.5. Let Γ be an NIL-affine crystallographic group of a 1-connected
nilpotent Lie group N . If the real rank of any simple subgroup of the algebraic
closure of Γ does not exceed one, then Γ is virtually polycyclic and N is isomorphic
to the unipotent radical of the algebraic closure of Γ.

Theorem 3.6. Suppose Γ is an NIL-affine crystallographic group of a 1-connected
nilpotent Lie group N of dimension at most 6. Then Γ is virtually polycyclic and
N is isomorphic to the unipotent radical of the algebraic closure of Γ.

Proof. In [13], this result has been proven when dim(N) ≤ 5. In the abelian case,
N = R6, Auslander’s conjecture has been settled (see [1]). Also, if N is 2-step
nilpotent, then by Proposition 3 of [13], Γ admits an affine crystallographic action
on R

6. So, by the abelian case, we can again conclude that Γ is virtually polycyclic.
Now, we observe that in dimension 6, there are 33 nonisomorphic, nonabelian,

nilpotent real Lie algebras (see [24], [28]). For 30 of them, the Lie algebra n corre-
sponding to N is either 2-step nilpotent or has solvable derivation algebra Der(n).
When Der(n) is solvable, since it is the Lie algebra of Aut(n), it directly follows
that Aff(N) is virtually solvable. Therefore, in these 30 cases, we can deduce that
Γ is virtually polycyclic.

Using Theorem 3.5, we will show that in the remaining three cases, Γ is also
virtually polycyclic. (To describe the three cases, we use the notation of [28].)

Case 1. g6,12: [X1, X2] = X5, [X1, X5] = X6, [X3, X4] = X6.

By writing the elements of the Lie algebra as column vectors using basis {X6, . . . ,
X1}, we find

Aut(g6,12) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

α2
1β2 α1ε2 λ4 λ3 λ2 λ1

0 α1β2 ε4 ε3 ε2 ε1
0 0 ∂4 ∂3 0 ∂1
0 0 γ4 γ3 0 γ1
0 0 0 0 β2 β1

0 0 0 0 0 α1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

< GL6(R),

where ∂1 =
∂4ε3 − ∂3ε4

α1β2
, γ1 =

γ4ε3 − γ3ε4
α1β2

, α1β2 �= 0, and ∂4γ3 − ∂3γ4 = α2
1β2.

Let ϕ1 : Aut(g6,12) → GL6(R) be the morphism defined by

⎛
⎜⎜⎜⎜⎜⎜⎝

α2
1β2 α1ε2 λ4 λ3 λ2 λ1

0 α1β2 ε4 ε3 ε2 ε1
0 0 ∂4 ∂3 0 ∂1
0 0 γ4 γ3 0 γ1
0 0 0 0 β2 β1

0 0 0 0 0 α1

⎞
⎟⎟⎟⎟⎟⎟⎠


→

⎛
⎜⎜⎜⎜⎜⎜⎝

α2
1β2 0 0 0 0 0

0 α1β2 0 0 0 0
0 0 ∂4 ∂3 0 0
0 0 γ4 γ3 0 0
0 0 0 0 β2 0
0 0 0 0 0 α1

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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The kernel of ϕ1 is unipotent. We note that Im(ϕ1) ∼= GL2(R)×R∗×R∗ and hence
has semisimple rank one. Therefore, by Theorem 3.5, Γ is virtually polycyclic.

Case 2. g5,4 ⊕ R: [X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5.

By writing the elements as column vectors using basis {X5, X4, X3, X6, X2, X1},
we find

Aut(g5,4 ⊕ R) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

β2x β1x ε3 ε6 ε2 ε1
α2x α1x ∂3 ∂6 ∂2 ∂1
0 0 x 0 γ2 γ1
0 0 0 λ6 λ2 λ1

0 0 0 0 β2 β1

0 0 0 0 α2 α1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

< GL6(R),

where ε3 = β1γ2 − β2γ1, ∂3 = α1γ2 − α2γ1, λ6 �= 0, and x = β2α1 − β1α2 �= 0.
Just as in the previous case, there exists an epimorphism of Aut(g5,4 ⊕ R) onto
GL2(R)× R∗ and the kernel is unipotent. Thus, Γ is virtually polycyclic.

Case 3. g4,1 ⊕ R2: [X1, X2] = X3, [X1, X3] = X4.

By writing the elements as column vectors using basis {X4, X3, X6, X5, X2, X1},
we have

Aut(g4,1 ⊕ R
2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

α2
1β2 α1γ2 ∂6 ∂5 ∂2 ∂1

0 α1β2 0 0 γ2 γ1
0 0 λ6 λ5 λ2 λ1

0 0 ε6 ε5 ε2 ε1
0 0 0 0 β2 β1

0 0 0 0 0 α1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

< GL6(R),

where α1β2 �= 0 and λ6ε5 − λ5ε6 �= 0. There exists an epimorphism of
Aut(g4,1 ⊕ R2) onto GL2(R) × R∗ × R∗ with unipotent kernel. It follows that
Γ is virtually polycyclic. �

Lastly, we study groups which act properly discontinuously on a contractible
algebraic manifold of dimension at most three.

Theorem 3.7. Let Γ be a finitely generated Zariski dense subgroup of a connected
algebraic group G. Let H be a maximal reductive subgroup of G. Suppose G acts
algebraically on a contractible algebraic manifold X such that there exists x0 ∈ X
with Hx0 = x0. Suppose Γ acts properly discontinuously on X.

(a) If dim(X) = 2, then Γ is virtually polycyclic.

(b) If dim(X) = 3 and Γ is not virtually polycyclic, then Γ is virtually free and
X is G-equivariantly isomorphic to R3, where G acts by Lorentz transfor-
mations on R3.

Proof. Let Γ1 = Γ∩R and G1 be the algebraic closure of Γ1 in R. Denote Γ̃ = Γ/Γ1

and let S be a Levi factor of H. By Selberg’s Lemma, we can assume that both Γ

and Γ̃ are torsion-free.
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Now, let us consider the orbit space Gx0. It is an algebraic submanifold of X
that is G-equivariantly isomorphic to the quotient of the unipotent radical of G
by a closed connected subgroup. We denote this submanifold by Y and define

Ỹ = Y/G1. Note that when Γ acts cocompactly, Y = X and Ỹ = X̃. Proceeding
as in the proof of Theorem 3.1, it follows that the action of S on the tangent space

Tx̃0
Ỹ of Ỹ at x̃0 = G1x0 is faithful. Then, the representation ρ : S ↪→ GL(Tx̃0

Ỹ ) is
faithful.

To prove (a), observe that SL2(R) is the only nontrivial connected semisimple
subgroup of GL2(R). But, SL2(R) does not satisfy the assertion of Lemma 2.14.
Therefore, S must be trivial.

For part (b), we again observe that the groups SO(3), SO0(2, 1), SL2(R)× {1},
and SL3(R) are the only nontrivial connected semisimple subgroups of GL3(R).
The case S = SL3(R) is impossible by Lemma 2.14. Suppose that S = SO(3).

Then Γ̃ is trivial, because it is a discrete subgroup of a compact group. So, Γ is
virtually polycyclic.

Next, let us assume S = SL2(R) × {1}. It follows that dim(Ỹ ) = 3, otherwise

the representation ρ : S ↪→ GL(Tx̃0
Ỹ ) would violate the eigenvalue one criteria of

Lemma 2.14. We deduce that Ỹ = Y = X = X̃ and Γ̃ = Γ. It follows that G
acts transitively on X and X is G-equivariantly isomorphic to the quotient of the
unipotent radical U by a closed and connected subgroup V (see Lemma 2.9). Next,
we proceed as in the proof of Lemma 2.12.

First, we can assume that V does not contain a nontrivial normal subgroup of
U . We denote by u the Lie algebra of U and by v the subalgebra corresponding to
V . We suppose that u is c-step nilpotent and define the subalgebras ui = γi(u) + v

forming a descending sequence

u = u1 ⊇ u2 ⊇ u3 ⊇ · · · ⊇ uc ⊇ v = uc+1

of subalgebras, which are invariant under the action of H. In addition, for each
i, ui+1 is an ideal in ui. We obtain the following faithful representation of H (see
(4)):

ψ : H → GL(u1/u2)×GL(u2/u3)× · · · ×GL(uc/uc+1).

We distinguish three possible cases. Either uc = u and GL(uc/uc+1) ∼= GL3(R) or
uc �= u and ψ : H → R

∗ ×GL2(R) or uc �= u and ψ : H → GL2(R)× R
∗.

In the first case, Γ admits an affine action on R3. So, by applying Theorem 2.1
of [21], we conclude that it is virtually polycyclic.

In the second case, there is an H-invariant proper ideal w of u such that u/w ∼= R

and w/v ∼= R
2. Since ψ is faithful and satisfies the eigenvalue one criteria, it is not

difficult to see that H acts trivially on u/w. Thus, the image of the representation
ρ : H ↪→ GL(u/v) lies inside ⎛

⎝GL2(R)
∗
∗

0 0 1

⎞
⎠ .

Let W be the normal unipotent subgroup of U corresponding to w. Consider the
map φ : Γ → U/W ∼= R given by γ 
→ [γx][x−1] where x ∈ U/V and [ ] : U → U/W
is the quotient homomorphism. We claim that this map is independent of the choice
of x and hence it is a homomorphism. Indeed, since G acts transitively on U/V , it
acts as in (1). Because H acts trivially on U/W , it follows that for γ = uh, u ∈ U ,
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h ∈ H, we have [γx][x−1] = [uhxh−1][x−1] = [u][x][x−1] = [u]. Now, it is routine to
check that φ is a homomorphism. The kernel of φ is the subgroup of Γ that leaves
invariant the submanifold W/V ∼= R

2. Thus, by part (a), it is virtually polycyclic
and so, Γ is virtually polycyclic.

In the third and final case, there is an H-invariant proper ideal w of u such that
u/w ∼= R2 and w/v ∼= R. It follows that H acts trivially on w/v. By identifying the
tangent space Tx0

X ∼= u/v with R
3, we obtain that the image of the representation

ρ : H ↪→ GL(u/v) is a subgroup of⎛
⎝ 1 ∗ ∗

0
0

GL2(R)

⎞
⎠ .

Let us suppose that Γ is not solvable. By Lemma 2.10 of [21], there are elements
γ1 and γ2 in Γ such that the projections to GL2(R) of their images in ρ(H) are
hyperbolic (have real distinct inverse eigenvalues) and share no common eigenspace
in u/w.

The action of Γ on U/V descends to the plane U/W . It follows that there is a
unique point [ui] ∈ U/W invariant under the action of γi for i = 1, 2. This means
that the curve li = uiW/V in U/V is invariant under action of γi where ui ∈ U
is a preimage of [ui]. Next, we will argue that these curves coincide. To see this,
first we choose a Riemannian metric on the quotient manifold X/Γ and endow X
with the covering space metric. Let Λi = 〈γi〉 for i = 1, 2 and consider the quotient
map U/V → U/W ∼= R2 which is Γ-equivariant. Let ε > 0 and denote by W ε

i

the ε-tubular neighborhood of li in U/V . Since the action of Λi on U/V leaves
W ε

i invariant, the image of W ε
i in U/W is a Λi-equivariant neighborhood of the

point [ui]. Since γi acts as an Anosov diffeomorphism of U/W fixing [ui], it is not
difficult to see that any Λi-equivariant neighborhood of [ui] in U/W contains the
Λi–invariant lines through [ui] on which γi acts respectively as a contracting and
expanding map. Let us refer to these two lines as the coordinate axes of [ui]. It
follows that the image of W ε

i in U/W contains the coordinate axes of [ui]. Let [u0]
be an intersection point of the coordinate axes of [u1] and [u2]. We have just shown
that both W ε

1 and W ε
2 contain the curve u0W/V . This implies that every point on

u1W/V is arbitrarily close to u2W/V and hence the two curves must coincide.
Now, the group generated by γ1 and γ2 acts properly discontinuously on the

curve u1W/V and is therefore cyclic. This is a contradiction to the fact that γ̃1
and γ̃2 have no common eigenspace.

Finally, we suppose S = SO0(2, 1). By Corollary 5.2 in [2] (see also 8.24 of [29]),

Γ̃ is a discrete subgroup of G/R which is locally isomorphic to S. Therefore, Γ̃ is a

discrete subgroup of isometries of the hyperbolic plane H2 and thus cd(Γ̃) ≤ 2. If

Ỹ /Γ̃ is compact, then Γ̃ acts crystallographically on Ỹ and dim(Ỹ ) ≤ 2. So, by part

(a), Γ̃ is virtually polycyclic. If Γ is not virtually polycyclic, then dim(Ỹ ) = 3. In
this particular case, we will not assume that Γ is torsion-free. Passing to a quotient
of Γ by a finite subgroup, we can assume that G acts faithfully on X. We deduce

that Ỹ = Y = X = X̃ and Γ̃ is a quotient of Γ by a finite subgroup. It follows that
G acts transitively on X and X is G-equivariantly isomorphic to the quotient of U
by a closed and connected subgroup V . We will argue that V is a normal subgroup
of U such that U/V is abelian. As before, we can assume that V does not contain a
nontrivial normal subgroup of U and construct a faithful representation ψ of H. It
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is not difficult to see that, since SO0(2, 1) ≤ H, the representation is only faithful
when uc = u and GL(uc/uc+1) ∼= GL3(R). This finishes our claim.

Since there are no proper connected algebraic subgroups of GL3(R) properly
containing SO(2, 1) such that all their elements have an eigenvalue equal to one, it
follows that H = SO(2, 1). Hence, G ∼= U � SO(2, 1) and G acts on U/V ∼= R3 by
Lorentz transformations.

Now, according to a theorem of Mess (see [26]), Γ̃ cannot contain the fundamental

group of a closed surface. This implies that vcd(Γ̃) = 1 and so, by Stallings’s

theorem, Γ̃ is virtually free. Then, Γ is finite by virtually free and it is also virtually
torsion-free. Therefore, Γ is virtually free. �

Immediately from the theorem, we obtain the generalized Auslander conjecture
(see Question 1) up to dimension 3.

Corollary 3.8. Let G be an algebraic group acting algebraically on a contractible
algebraic manifold X of dimension at most three such that a maximal reductive
subgroup of G fixes a point of X. If Γ acts crystallographically on X via a repre-
sentation ρ : Γ → G, then Γ is virtually polycyclic.
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