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GEOMETRIC ANALYSIS ASPECTS

OF INFINITE SEMIPLANAR GRAPHS

WITH NONNEGATIVE CURVATURE II

BOBO HUA AND JÜRGEN JOST

Abstract. In a previous paper, we applied Alexandrov geometry methods
to study infinite semiplanar graphs with nonnegative combinatorial curvature.
We proved the weak relative volume comparison and the Poincaré inequality
on these graphs to obtain a dimension estimate for polynomial growth har-
monic functions which is asymptotically quadratic in the growth rate. In the
present paper, instead of using volume comparison on the graph, we translate
the problem to a polygonal surface by filling polygons into the graph with edge
lengths 1. This polygonal surface then is an Alexandrov space of nonnegative
curvature. From a harmonic function on the graph, we construct a function
on the polygonal surface that is not necessarily harmonic, but satisfies cru-
cial estimates. Using the arguments on the polygonal surface, we obtain the
optimal dimension estimate for polynomial growth harmonic functions on the
graph which is linear in the growth rate.

1. Introduction

This paper is the second one in a series studying geometric analysis aspects of
infinite graphs with nonnegative curvature. We refine the argument in Hua-Jost-
Liu [27] and introduce a new observation to obtain the asymptotically optimal
dimension estimate of the space of polynomial growth harmonic functions on such
graphs.

In 1975, Yau [50] proved the Liouville theorem for harmonic functions on Rie-
mannian manifolds with nonnegative Ricci curvature. Soon after, Cheng-Yau [8]
obtained the gradient estimate for positive harmonic functions, which implies that
sublinear growth harmonic functions on these manifolds are constant. Then Yau
[51, 52] conjectured that the space of polynomial growth harmonic functions with
growth rate less than or equal to d on Riemannian manifolds with nonnegative Ricci
curvature is of finite dimension. Li-Tam [38] and Donnelly-Fefferman [19] indepen-
dently solved the conjecture for 2-dimensional manifolds. Then Colding-Minicozzi
[10–12] gave the affirmative answer for any dimension by using the volume compar-
ison property and the Poincaré inequality. Later, Li [36] and Colding-Minicozzi [13]
simplified the proof by using the mean value inequality. The dimension estimates
in [12,13,36] are asymptotically optimal. In the wake of this result, many general-
izations on manifolds [7, 29, 35, 39–41, 46–48] and on singular spaces [15, 25, 26, 33]
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followed. In this paper, we obtain the optimal dimension estimate which is linear
in d rather than quadratic in d as in [27].

Let us now describe the results in more detail. The combinatorial curvature for
planar graphs was introduced in [21, 28, 44] and studied by many authors [3–6, 17,
23, 30–32, 43, 45, 49]. Let G = (V,E, F ) be a (called semiplanar) graph embedded
in a 2-manifold such that each face is homeomorphic to a closed disk with finite
edges as the boundary. Let S(G) be the regular polygonal surface obtained by
assigning length one to every edge and filling regular polygons in the faces of G.
The combinatorial curvature at the vertex x is defined as

Φ(x) = 1− dx
2

+
∑
σ�x

1

deg(σ)
,

where dx is the degree of the vertex x, deg(σ) is the degree of the face σ, and the
sum is taken over all faces incident to x (i.e. x ∈ σ). The idea of this definition is to
measure the difference of 2π and the total angle Σx at the vertex x on the regular
polygonal surface S(G) equipped with a metric structure obtained from replacing
each face of G with a regular polygon of side length one and gluing them along the
common edges. That is,

2πΦ(x) = 2π − Σx.

It is evident from the definition (see [27]) that G has nonnegative combinatorial
curvature everywhere if and only if the corresponding regular polygonal surface
S(G) is an Alexandrov space with nonnegative sectional curvature, i.e. SecS(G) ≥ 0
(or SecG ≥ 0 for short). This class of graphs includes all regular tilings of the plane
(see [22]) and more general graphs (see [5, 27]).

For the basic facts of Alexandrov spaces, readers are referred to [1, 2]. In this
paper, we only consider 2-dimensional Alexandrov spaces with nonnegative curva-
ture, namely convex surfaces. Let G be a semiplanar graph with SecG ≥ 0; then
X := S(G) is a 2-dimensional Alexandrov space with nonnegative curvature. We
denote by d the intrinsic metric on X, by BR(p) := {x ∈ X | d(x, p) ≤ R} the
closed geodesic ball on X, and by |BR(p)| := H2(BR(p)) the volume of BR(p),
i.e. the 2-dimensional Hausdorff measure of BR(p), for some p ∈ X,R > 0. The
well known Bishop-Gromov volume comparison holds on X (see [1]) that for any
p ∈ X, 0 < r < R, we have

(1.1)
|BR(p)|
|Br(p)|

≤
(
R

r

)2

,

(1.2) |B2R(p)| ≤ 4|BR(p)|.
We call (1.1) the relative volume comparison and (1.2) the volume doubling prop-
erty. The Poincaré inequality was proved in [25,34] on Alexandrov spaces. For any
p ∈ X,R > 0 and any Lipschitz function u on X,

(1.3)

∫
BR(p)

|u− uBR
|2 ≤ CR2

∫
BR(p)

|�u|2,

where uBR
= 1

|BR(p)|
∫
BR(p)

u, and |�u| is the a.e. defined norm of the gradient of
u.

It has been shown in [27] that G inherits some geometric estimates from those of
X := S(G). For any p ∈ G and R > 0, we denote by dG the combinatorial distance
on the graph G, by BG

R (p) = {x ∈ G : dG(p, x) ≤ R} the closed geodesic ball on G,
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and by |BG
R (p)| :=

∑
x∈BG

R (p) dx the volume of BG
R (p). Let D denote the maximal

degree of the faces in G, i.e. D = DG := supσ∈F deg(σ), which is finite by [6]. Then
the weak relative volume comparison (1.4) and the volume doubling property (1.5)
were obtained in [27] for SecG ≥ 0. For any p ∈ G, 0 < r < R,

(1.4)
|BG

R (p)|
|BG

r (p)| ≤ C(D)

(
R

r

)2

,

(1.5) |BG
2R(p)| ≤ C(D)|BG

R(p)|,
where C(D) are constants only depending on D. The Poincaré inequality on G was
also obtained in [27]. There exist two constants C(D) and C such that for any
p ∈ G,R > 0, f : BG

CR(p) → R, we have

(1.6)
∑

x∈BG
R (p)

(f(x)− fBR
)2dx ≤ C(D)R2

∑
x,y∈BG

CR(p);x∼y

(f(x)− f(y))2,

where fBR
= 1

|BG
R (p)|

∑
x∈BG

R (p) f(x)dx, and x ∼ y means that x and y are neighbors

in G.
A function f on G is called discrete harmonic (see [9, 18, 20]) if for ∀x ∈ G,

Lf(x) :=
1

dx

∑
y∼x

(f(y)− f(x)) = 0.

Let G be a semiplanar graph with nonnegative curvature and let

Hd(G) := {u : G → R | Lu ≡ 0, |u(x)| ≤ C(dG(p, x) + 1)d},
which is the space of polynomial growth harmonic functions with growth rate less
than or equal to d on G. For a Riemannian manifold M , let Hd(M) := {u : M →
R | ΔMu = 0, |u(x)| ≤ C(d(p, x)+1)d}. In the Riemannian case, Colding-Minicozzi
[11] used the volume doubling property (1.2) and the Poincaré inequality (1.3)
to conclude the finite dimensionality of the space of polynomial growth harmonic
functions Hd(M) and get a rough dimension estimate. Then Colding-Minicozzi
[12] used the relative volume comparison and the Poincaré inequality to obtain the
asymptotically optimal dimension estimate, i.e. dimHd(M) ≤ C(n)dn−1, for d ≥ 1,
RicMn ≥ 0. Li [36] and Colding-Minicozzi [13] obtained the optimal dimension es-
timate by the mean value inequality. In the graph case, the volume doubling prop-
erty (1.5) and the Poincaré inequality (1.6) imply that dimHd(G) ≤ C(D)dv(D)

where C(D) and v(D) depend on the maximal facial degree D (see [15]). Hua-Jost-
Liu [27] used the weak relative volume comparison (1.4) to obtain the estimate
dimHd(G) ≤ C(D)d2. It is obviously not optimal. But it is hard to obtain the
optimal dimension estimate on the graph G since the constant C(D) in the weak
relative volume comparison (1.4) may not be close to 1.

Here comes the key observation. Since the relative volume comparison (1.1) on
X is as nice as in the case of Riemannian manifolds, we do the dimension estimate
argument for Hd(G) on X. For any (discrete) harmonic function f on G, we extend
it to a function f̄ defined on X with controlled behavior (see (3.3), (3.4)). But
in general, the extended function f̄ may not be harmonic on X anymore, nor will
f̄2 be subharmonic. However, since the original harmonic function f satisfies the
mean value inequality on G (see Lemma 3.2), the extended function f̄ satisfies the
mean value inequality in the large.
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Theorem 1.1 (Mean value inequality on X). Let G be a semiplanar graph with
SecG ≥ 0. Then there exist constants R1(D), C2(D) such that for any p ∈ X,R ≥
R1(D) and any harmonic function f on G we have

(1.7) f̄2(p) ≤ C2

|BR(p)|

∫
BR(p)

f̄2.

Let P d(X) := {u : X → R | |u(x)| ≤ C(d(p, x) + 1)d} denote the space of
polynomial growth functions on X with growth rate less than or equal to d. Since
the extending map

(1.8) E : Hd(G) → P d(X), f 	→ Ef = f̄ ,

is an injective linear operator, it suffices to get the dimension estimate for the image
E(Hd(G)). Combining the relative volume comparison (1.1) and the mean value
inequality (1.7), we obtain the optimal dimension estimate for E(Hd(G)).

Although we have to pay for extending map E by the loss of harmonicity, it
preserves the mean value property which is sufficient for our application. We adopt
the argument of the mean value inequality (see [13, 36, 37]) to get the optimal
dimension estimate. In addition, by the special structure of the graph with SecG ≥
0 and D ≥ 43, we [27] obtained that for any d > 0,

dimHd(G) = 1,

which implies the final theorem of the paper.

Theorem 1.2. Let G be a semiplanar graph with SecG ≥ 0. Then for any d ≥ 1,

dimHd(G) ≤ Cd,

where C is an absolute constant.

From a superficial glance, it might look as if polynomial growth harmonic func-
tions on Riemannian manifolds (continuous objects) and those on graphs (discrete
ones) are very similar and might succumb to an analogous treatment. While our
work is indeed inspired by certain analogies, there are also some important dif-
ferences which necessitate new ideas which we now wish to summarize. Firstly,
the unique continuation property for (discrete) harmonic functions on graphs fails,
leaving us with the problem of verifying the inner product property of the bilinear
form L2(BR) on Hd(G) where BR is the geodesic ball of radius R in a graph G
(see (4.1)). We use a lemma in [26] (see Lemma 4.1 in this paper) to overcome this
difficulty. Secondly, the constant C(D) in the relative volume comparison (1.4) on
semiplanar graphs with nonnegative curvature is not necessarily close to 1. Even
on manifolds, it is still an open problem to obtain the optimal dimension estimate
by using (1.4) and (1.6). In this paper, we find an argument which transforms the
discrete harmonic functions on the semiplanar graph G with nonnegative curvature
to functions on the polygonal surface S(G) that satisfy the mean value inequality.
This crucial step enables us to transfer the argument to S(G) where we have a nice
volume comparison (1.1) and to obtain the optimal dimension estimate of Hd(G).
Thirdly, the combinatorial obstruction for semiplanar graphs with a large face (i.e.
D ≥ 43) makes the dimension estimate independent of the parameter D.
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2. Preliminaries and notation

We recall the definition of semiplanar graphs in [27].

Definition 2.1. A graph G = (V,E) is called semiplanar if it can be embedded
into a connected 2-manifold S without self-intersections of edges and such that each
face is homeomorphic to the closed disk with finite edges as the boundary.

Let G = (V,E, F ) denote the semiplanar graph with the set of vertices V , edges
E, and faces F . Edges and faces are regarded as closed subsets of S, and two
objects from V,E, F are called incident if one is a proper subset of the other. We
always assume that the surface S has no boundary and the graph G is a simple
graph, i.e. without self-loops and multi-edges. We denote by dx the degree of the
vertex x ∈ G and by deg(σ) the degree of the face σ ∈ F , i.e. the number of edges
incident to σ. Further, we assume that 3 ≤ dx < ∞ and 3 ≤ deg(σ) < ∞ for
each vertex x and face σ, which means that G is a locally finite graph. For each
semiplanar graph G = (V,E, F ), there is a unique metric space, denoted by S(G),
which is obtained from replacing each face of G by a regular polygon of side length
one with the same facial degree and gluing the faces along the common edges in S.
S(G) is called the regular polygonal surface of the semiplanar graph G.

For a semiplanar graph G, the combinatorial curvature at each vertex x ∈ G is
defined as

Φ(x) = 1− dx
2

+
∑
σ�x

1

deg(σ)
,

where the sum is taken over all the faces incident to x. In this paper, we only con-
sider semiplanar graphs with nonnegative combinatorial curvature. It was proved
in [27] that a semiplanar graph G has nonnegative combinatorial curvature every-
where if and only if the regular polygonal surface S(G) is an Alexandrov space with
nonnegative curvature, denoted by SecG ≥ 0 or SecS(G) ≥ 0.

For Alexandrov spaces and Alexandrov geometry, readers are referred to [1, 2].
A curve γ in a metric space (X, d) is a continuous map γ : [a, b] → X. The length
of a curve γ is defined as

L(γ) = sup

{
N∑
i=1

d(γ(yi−1), γ(yi)) : any partition a = y0 < y1 < . . . < yN = b

}
.

A curve γ is called rectifiable if L(γ) < ∞. Given x, y ∈ X, denote by Γ(x, y) the
set of rectifiable curves joining x and y. A metric space (X, d) is called a length
space if d(x, y) = infγ∈Γ(x,y){L(γ)}, for any x, y ∈ X, where d is called the intrinsic
metric on X. A curve γ : [a, b] → X is called a geodesic if d(γ(a), γ(b)) = L(γ). It
is always true by the definition of the length of a curve that d(γ(a), γ(b)) ≤ L(γ).
A geodesic is a shortest curve (or shortest path) joining the two end points. A
geodesic space is a length space (X, d) satisfying that for any x, y ∈ X, there is a
geodesic joining x and y.

Denote by Πκ, κ ∈ R, the model space which is a 2-dimensional, simply connected
space form of constant sectional curvature κ. Typical ones are

Πκ =

⎧⎨
⎩

R
2, κ = 0,

S2, κ = 1,
H

2, κ = −1.
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In a geodesic space (X, d), we denote by γxy one of the geodesics joining x and
y, for x, y ∈ X. Given three points x, y, z ∈ X, denote by �xyz the geodesic
triangle with edges γxy, γyz, γzx. There exists a unique (up to an isometry) geodesic
triangle, �x̄ȳz̄, in Πκ (d(x, y) + d(y, z) + d(z, x) < 2π√

κ
is needed if κ > 0) such

that d(x̄, ȳ) = d(x, y), d(ȳ, z̄) = d(y, z) and d(z̄, x̄) = d(z, x). We call �x̄ȳz̄ the
comparison triangle in Πκ.

Definition 2.2. A complete geodesic space (X, d) is called an Alexandrov space
with sectional curvature bounded below by κ (SecX ≥ κ for short) if for any p ∈ X,
there exists a neighborhood Up of p such that for any x, y, z ∈ Up, any geodesic
triangle �xyz, and any w ∈ γyz, letting w̄ ∈ γȳz̄ be in the comparison triangle �x̄ȳz̄

in Πκ satisfying d(ȳ, w̄) = d(y, w) and d(w̄, z̄) = d(w, z), we have

d(x,w) ≥ d(x̄, w̄).

In other words, an Alexandrov space (X, d) is a geodesic space which locally
satisfies the Toponogov triangle comparison theorem. It was proved in [2] that
the Hausdorff dimension of an Alexandrov space (X, d), dimH(X), is an integer
or infinity. In this paper, we only consider 2-dimensional Alexandrov spaces with
SecX ≥ 0.

Let G be a semiplanar graph with nonnegative combinatorial curvature. Let
X := S(G) be the regular polygonal surface of G with the intrinsic metric d.
Then SecX ≥ 0. Let BR(p) denote the closed geodesic ball centered at p ∈ X of
radius R > 0, i.e. BR(p) = {x ∈ X : d(p, x) ≤ R}, |BR(p)| := H2(BR(p)) denote
the volume of BR(p), i.e. the 2-dimensional Hausdorff measure of BR(p). The well
known Bishop-Gromov volume comparison theorem holds on Alexandrov spaces [1].

Lemma 2.3. Let (X, d) be a 2-dimensional Alexandrov space with nonnegative
curvature, i.e. SecX ≥ 0. Then for any p ∈ X, 0 < r < R, it holds that

(2.1)
|BR(p)|
|Br(p)|

≤
(
R

r

)2

,

(2.2) |B2R(p)| ≤ 4|BR(p)|.

We call (2.1) the relative volume comparison and (2.2) the volume doubling
property.

For any precompact domain Ω ⊂ X, we denote by Lip(Ω) the set of Lipschitz
functions on Ω. For any f ∈ Lip(Ω), the W 1,2 norm of f is defined as

‖f‖2W 1,2(Ω) =

∫
Ω

f2 +

∫
Ω

|∇f |2.

TheW 1,2 space on Ω, denoted by W 1,2(Ω), is the completion of Lip(Ω) with respect

to the W 1,2 norm. A function f ∈ W 1,2
loc (X) if for any precompact domain Ω � X,

f |Ω ∈ W 1,2(Ω). The Poincaré inequality was proved in [25, 34].

Lemma 2.4. Let (X, d) be a 2-dimensional Alexandrov space with SecX ≥ 0 and

u ∈ W 1,2
loc (X). Then

(2.3)

∫
BR(p)

|u− uBR
|2 ≤ C(n)R2

∫
BR(p)

|�u|2,

where uBR
= 1

|BR(p)|
∫
BR(p)

u.
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Let G = (V,E, F ) be a semiplanar graph with nonnegative combinatorial cur-
vature and X := S(G) be the regular polygonal surface of G. Then it is straight-
forward that 3 ≤ dx ≤ 6 for ∀x ∈ G; i.e. G has bounded degree. We denote by
D = DG := sup{deg(σ) : σ ∈ F} the maximal degree of faces in G, which is a very
important parameter in our discussion (it is finite by the Gauss-Bonnet formula in
[6, 17]). For any x, y ∈ G, they are called neighbors, denoted by x ∼ y, if there
is an edge in E connecting x and y. There is a natural metric on the graph G,
dG(x, y) := inf{k : ∃x = x0 ∼ · · · ∼ xk = y}, i.e. the length of the shortest path
connecting x and y by assigning each edge the length one. Lemma 3.1 in [27] im-
plies that two metrics, dG and d, on G are bi-Lipschitz equivalent; i.e. there exists
a universal constant C such that for any x, y ∈ G,

(2.4) CdG(x, y) ≤ d(x, y) ≤ dG(x, y).

For any p ∈ G and R > 0, we denote by BG
R (p) = {x ∈ G : dG(p, x) ≤ R}

the closed geodesic ball in the graph G, by |BG
R (p)| :=

∑
x∈BR(p) dx the volume of

BG
R (p), and by �BG

R (p) the number of vertices in the closed geodesic ball BG
R (p).

Since 3 ≤ dx ≤ 6 for any x ∈ G, |BG
R (p)| and �BG

R(p) are equivalent up to a constant,
i.e. 3�BG

R(p) ≤ |BG
R (p)| ≤ 6�BG

R(p), for any p ∈ G and R > 0. The following volume
comparison on G was proved in [27] by the relative volume comparison (2.1) on X.

Lemma 2.5. Let G = (V,E, F ) be a semiplanar graph with SecG ≥ 0. Then there
exists a constant C(D) depending on D, such that for any p ∈ G and 0 < r < R,
we have

(2.5)
|BG

R (p)|
|BG

r (p)| ≤ C(D)

(
R

r

)2

,

(2.6) |BG
2R(p)| ≤ C(D)|BG

R(p)|.
We call (2.5) the weak relative volume comparison and (2.6) the volume doubling

property on G. The Poincaré inequality on G was also obtained in [27] by the
Poincaré inequality (2.3).

Lemma 2.6. Let G be a semiplanar graph with SecG ≥ 0. Then there exist two
constants C(D) and C such that for any p ∈ G,R > 0, f : BG

CR(p) → R, we have

(2.7)
∑

x∈BG
R (p)

(f(x)− fBG
R
)2dx ≤ C(D)R2

∑
x,y∈BG

CR(p);x∼y

(f(x)− f(y))2,

where fBG
R
= 1

|BG
R (p)|

∑
x∈BG

R (p) f(x)dx.

3. Mean value inequality

In this section, we extend each harmonic function on the semiplanar graph G
with nonnegative combinatorial curvature to a function on X := S(G) which is
almost harmonic in the sense that it satisfies the mean value inequality on X.

For any Ω ⊂ G and x ∈ G, we define dG(x,Ω) := inf{dG(x, y) | y ∈ Ω}. We
denote ∂Ω := {x ∈ G | d(x,Ω) = 1} and Ω̄ := Ω ∪ ∂Ω. The function f is called
harmonic on Ω if f : Ω̄ → R satisfies

Lf(x) :=
1

dx

∑
y∼x

(f(y)− f(x)) = 0,

for any x ∈ Ω, where L is called the Laplacian operator.
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Since the volume doubling property (2.6) and the Poincaré inequality (2.7) are
obtained on the semiplanar graph with nonnegative combinatorial curvature, the
Moser iteration can be carried out (see [16, 24]).

Lemma 3.1 (Harnack inequality). Let G be a semiplanar graph with SecG ≥ 0.
Then there exist constants C1(D) and C2(D) such that for any p ∈ G, R ≥ 1 and
any positive harmonic function f on BG

C1R
(p) we have

(3.1) max
BG

R (p)
f ≤ C2 min

BG
R (p)

f.

The mean value inequality is one part of the Moser iteration (see also [14]).

Lemma 3.2 (Mean value inequality on graphs). Let G be a semiplanar graph with
SecG ≥ 0. Then there exist two constants C1(D) and C2(D) such that for any
R > 0, p ∈ G, any harmonic function f on BG

C1R
(p), we have

(3.2) f2(p) ≤ C2

|BG
C1R

(p)|
∑

x∈BG
C1R(p)

f2(x)dx.

In the following process, we extend each function defined on G to the function
f̄ defined on X := S(G) with controlled behavior. Let f be a function on G,
f : G → R, G1 be the 1-dimensional simplicial complex of G by assigning each edge
the length one. Step one is the linear interpolation; i.e. f is extended to a piecewise
linear function on G1, f1 : G1 → R. In step two, we extend f1 to a function defined
on each face of G. For any regular n-polygon �n of side length one, there is a
bi-Lipschitz map

Ln : �n → Brn ,

where Brn is the circumscribed circle of �n of radius rn = 1
2 sin αn

2
(for αn = 2π

n ).

Without loss of generality, we may assume that the origin o = (0, 0) of R
2 is

the barycenter of �n, the point (x, y) = (rn, 0) ∈ R
2 is a vertex of �n, and

Brn = Brn(o). Then in polar coordinates, Ln reads

Ln : �n � (r, θ) 	→ (ρ, η) ∈ Brn(o),

where for θ ∈ [jαn, (j + 1)αn], j = 0, 1, · · · , n− 1,{
ρ =

r cos
(
θ−(2j+1)αn

2

)
cos αn

2
,

η = θ.

It maps the boundary of �n to the boundary of Brn(o). Direct calculation shows
that Ln is a bi-Lipschitz map; i.e. for any x, y ∈ �n we have C1|x − y| ≤ |Lnx −
Lny| ≤ C2|x − y|, where C1 and C2 do not depend on n. Then for any σ ∈ F, we
denote σ := �n where n := deg(σ). Let g : Brn(o) → R satisfy the boundary value
problem

(3.3)

{
Δg = 0, in B̊rn(o),
g|∂Brn (o) = f1 ◦ L−1

n ,

where B̊rn(o) is the open disk. Then we define f̄ : X → R as

(3.4) f̄ |σ = g ◦ Ln,

for any σ ∈ F. It is easy to see that f̄ is a continuous function (actually it is in

W 1,2
loc (X)).
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We improve the estimates in [27] to control the behavior of f̄ . Let B1 be the
closed unit disk in R

2. For completeness, we give the proof here.

Lemma 3.3. For any Lipschitz function h : ∂B1 → R, let g : B1 → R satisfy the
boundary value problem {

Δg = 0, in B̊1,
g|∂B1

= h.

Then we have ∫
B1

|∇g|2 ≤
∫
∂B1

h2
θ,

∫
∂B1

h2 ≤ C(ε)

∫
B1

g2 + ε

∫
∂B1

h2
θ,

where hθ = ∂h
∂θ , ε is small.

Proof. Let 1√
2π

, sinnθ√
π

, cosnθ√
π

(for n = 1, 2, · · · ) be the orthonormal basis of L2(∂B1).

Then h : ∂B1 → R can be represented in L2(∂B1) by

h(θ) = a0
1√
2π

+
∞∑
i=1

(
an

cosnθ√
π

+ bn
sinnθ√

π

)
.

So the harmonic function g with boundary value h is

g(r, θ) = a0
1√
2π

+

∞∑
i=1

(
anr

n cosnθ√
π

+ bnr
n sinnθ√

π

)
.

Since Δg = 0, we have Δg2 = 2|∇g|2. Then
∫
B1

|∇g|2 =
1

2

∫
B1

Δg2 =
1

2

∫
∂B1

∂g2

∂r
,

which follows from integration by parts, so that

∫
B1

|∇g|2 =

∫
∂B1

ggr =

∞∑
n=1

n(a2n + b2n).

In addition, ∫
∂B1

h2
θ =

∞∑
n=1

n2(a2n + b2n).

Hence,

(3.5)

∫
B1

|∇g|2 ≤
∫
∂B1

h2
θ.
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The second part of the theorem follows from an integration by parts and the
Hölder inequality:∫

∂B1

h2 =

∫
∂B1

(h2x) · x =

∫
B1

∇ · (g2x)

= 2

∫
B1

g2 + 2

∫
B1

g∇g · x

≤ 2

∫
B1

g2 + 2(

∫
B1

g2)
1
2 (

∫
B1

|∇g|2) 1
2 (by |x| ≤ 1)

≤ C(ε)

∫
B1

g2 + ε

∫
B1

|∇g|2

≤ C(ε)

∫
B1

g2 + ε

∫
∂B1

h2
θ. (by (3.5))

�
Note that for the semiplanar graph G with nonnegative curvature and any face

σ = �n of G, we have 3 ≤ n ≤ D, 1√
3
≤ rn = 1

sin π
n

≤ 1
2 sin π

D
= C(D). Then the

scaled version of Lemma 3.3 reads

Lemma 3.4. For 3 ≤ n ≤ D and any Lipschitz function h : ∂Brn → R, we denote
by g the harmonic function satisfying the Dirichlet boundary value problem{

Δg = 0, in B̊rn ,
g|∂Brn

= h.

Then it holds that

(3.6)

∫
∂Brn

h2 ≤ C(D, ε)

∫
Brn

g2 + C(D)ε

∫
∂Brn

h2
T ,

where ε is small, T = 1
rn
∂θ is the unit tangent vector on the boundary ∂Brn and

hT is the directional derivative of h in T.

The following lemma follows from the bi-Lipschitz property of the map Ln :
�n → Brn .

Lemma 3.5. Let G be a semiplanar graph with SecG ≥ 0 and σ := �n. Then we
have

(3.7)
∑

y∈∂�n∩G

f2(y) ≤ C

∫
∂�n

f2
1 ≤ C(D)

∫
�n

f̄2.

Proof. By the bi-Lipschitz property of Ln and the inequality (3.6), we have

(3.8)

∫
∂�n

f2
1 ≤ C(D, ε)

∫
�n

f̄2 + C(D)ε

∫
∂�n

(f1)
2
Tn

,

where Tn is the unit tangent vector on the boundary ∂�n. Let e ⊂ �n be an edge
with two incident vertices, u and v. By linear interpolation, we have∫

e

f2
1 =

∫ 1

0

(tf(u) + (1− t)f(v))2dt =
1

3
(f(u)2 + f(u)f(v) + f(v)2),

hence

(3.9)
1

6
(f(u)2 + f(v)2) ≤

∫
e

f2
1 ≤ 1

2
(f(u)2 + f(v)2).
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In addition,

(3.10)

∫
e

(f1)
2
Tn

= (f(u)− f(v))2 ≤ 2(f(u)2 + f(v)2).

Hence, by (3.8), (3.9) and (3.10), we have

(3.11)

∫
∂�n

f2
1 ≤ C(D, ε)

∫
�n

f̄2 + 12C(D)ε

∫
∂�n

f2
1 .

By setting ε = 1
24C(D) , (3.9) and (3.11) imply that∑

y∈∂�n∩G

f2(y) ≤ C

∫
∂�n

f2
1 ≤ C(D)

∫
�n

f̄2.

�

Let G = (V,E, F ) be a semiplanar graph with SecG ≥ 0. For any p ∈ X,
there exists a face σ ∈ F such that p ∈ σ. For any vertex q ∈ σ ∩ G, we have
d(p, q) ≤ C3(D), since diamσ ≤ C3(D) for deg(σ) ≤ D. Note that 3 ≤ dx ≤ 6, for
any x ∈ G.

Lemma 3.6. Let G be a semiplanar graph with SecG ≥ 0. Then there exists a
constant C(D) such that for any p ∈ X, q ∈ G on the same face, we have

(3.12) |Br′(p)| ≤ C(D)|BG
r (q)|,

where r > 2C3(D)
C , r′ = Cr − 2C3(D), and C is the constant in (2.4).

Proof. Let r′=Cr − 2C3(D) > 0, p∈σ0∈F and q∈σ0. We denote Wr′ :={σ∈F |
σ ∩ Br′(p) �= ∅} and Wr′ :=

⋃
σ∈Wr′

σ. It is obvious that Br′(p) ⊂ Wr′ . For any

vertex x ∈ Wr′ ∩G, there exists a face σ1 ∈ Wr′ such that x ∈ σ1, so that

d(q, x) ≤ d(p, x) + d(p, q)

≤ r′ + diamσ1 + diamσ0 ≤ r′ + 2C3(D)

= Cr.

Hence by (2.4) we have dG(q, x) ≤ r, which implies that

(3.13) Wr′ ∩G ⊂ BG
r (q).

Since 3 ≤ deg(σ) ≤ D, |σ| := H2(σ) ≤ C(D). Then

(3.14) |Br′(p)| ≤ |Wr′ | =
∑

σ∈Wr′

|σ| ≤ C(D)�Wr,

where �Wr′ is the number of faces in Wr′ . Moreover,

(3.15) 3�Wr′ ≤
∑

σ∈Wr′

deg(σ) ≤
∑

x∈Wr′∩G

dx ≤ 6�(Wr′ ∩G),

where �(Wr′ ∩ G) is the number of vertices in Wr′ ∩ G. Hence the lemma follows
from (3.14), (3.15) and (3.13):

|Br′(p)| ≤ C(D)�Wr′ ≤ C(D)�(Wr′ ∩G) ≤ C(D)�BG
r (q) ≤ C(D)|BG

r (q)|.
�

Now we can prove the mean value inequality for the extended function f̄ defined
on X := S(G) for some harmonic function f on G.
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Proof of Theorem 1.1. For any p ∈ X, there exists a face �n such that p ∈ �n.
Then by the construction of f̄ (see (3.3), (3.4)), there exists a vertex q ∈ ∂�n ∩G
such that

f̄2(p) ≤ f2(q)

≤ C2(D)

|BG
C1R

(q)|
∑

y∈BG
C1R(q)

f2(y)dy,(3.16)

where the last inequality follows from the mean value inequality (3.2) for harmonic
functions on the graph G.

By (3.12) in Lemma 3.6,

|BG
C1R(q)| ≥ C(D)|Br′(p)|,

where r′ = CC1R− 2C3(D) ≥ C(D)R if R ≥ R1(D). Hence

|BG
C1R(q)| ≥ C|BCR(p)|

≥ C|B2C1R(p)|;(3.17)

the last inequality follows from the relative volume comparison (2.1) on X.
Let WR := {σ ∈ F | σ ∩ BG

C1R
(q) �= ∅} and WR :=

⋃
σ∈WR

σ. For any x ∈ WR,

there exist a face σ1 ∈ WR such that x ∈ σ1 and a vertex z ∈ BG
C1R

(q) ∩ σ1. Then
by (2.4),

d(q, x) ≤ d(q, z) + d(z, x) ≤ dG(q, z) + diamσ1 ≤ C1R+ C3(D).

Hence
WR ⊂ BC1R+C3(D)(q) ⊂ BC1R+2C3(D)(p) ⊂ B2C1R(p)

if R ≥ R2(D). By (3.16) and (3.17), we obtain

f̄2(p) ≤ C2

|B2C1R(p)|
∑

y∈WR∩G

f2(y)

≤ C2

|B2C1R(p)|
∑

σ∈WR

∑
y∈∂σ∩G

f2(y)

≤ C2

|B2C1R(p)|
∑

σ∈WR

∫
σ

f̄2

≤ C2

|B2C1R(p)|

∫
B2C1R(p)

f̄2

if R ≥ R2(D), where the next to last inequality follows from (3.7) in Lemma 3.5.
Then the theorem follows by setting the new R1(D) := 2C1 max{R1(D), R2(D)}.

�

4. Optimal dimension estimate

In this section, we estimate the dimension of the space of polynomial growth
harmonic functions on a semiplanar graph with nonnegative combinatorial curva-
ture.

Let G be a semiplanar graph with SecG ≥ 0. For some fixed p ∈ G, we denote by
Hd(G) := {u : G → R | Lu = 0, |u(x)| ≤ C(dG(p, x) + 1)d} the space of polynomial
growth harmonic functions on G with growth rate less than or equal to d. By the
method of Colding-Minicozzi, the volume doubling property (2.6) and the Poincaré
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inequality (2.7) imply that dimHd(G) ≤ C(D)dv(D) for d ≥ 1, where C(D) and
v(D) are constants depending on the maximal facial degree D of G. Hua-Jost-
Liu [27] used the weak relative volume comparison (2.5) on the graph G and the
Poincaré inequality to obtain the dimension estimate dimHd(G) ≤ Cd2. But the
optimal dimension estimate is linear in d as in the Riemannian case (see [12,13,36]).
On the graph G, it is hard to obtain a nice relative volume comparison. But on the
Alexandrov space X := S(G), the relative volume comparison (2.1) follows from the
Bishop-Gromov volume comparison theorem. To obtain the asymptotically optimal
dimension estimate, we argue on the Alexandrov space X instead of G.

We denote by P d(X) := {u : X → R | |u(x)| ≤ C(d(p, x) + 1)d} the space of
polynomial growth functions on X with growth rate less than or equal to d. For
any harmonic function on G, we extend it to the function f̄ defined on X in the
process of (3.3) and (3.4), which establishes a map

E : Hd(G) → P d(X),

f 	→ Ef = f̄ .

It is easy to see that E is an injective linear operator. Hence it suffices to get the
dimension estimate of the image E(Hd(G)). By the relative volume comparison
(2.1) on X and the mean value inequality (1.7) for each function in E(Hd(G)), we
obtain the optimal dimension estimate (see [13, 26, 36, 37]).

Lemma 4.1. For any finite dimensional subspace K ⊂ E(Hd(G)), there exists a
constant R0(K) depending on K such that for any R ≥ R0(K),

(4.1) AR(u, v) =

∫
BR(p)

uv

is an inner product on K.

Lemma 4.2. Let G be a semiplanar graph with SecG ≥ 0, and let K be a k-
dimensional subspace of E(Hd(G)). Given β > 1, δ > 0, for any R1 ≥ R0(K) there
exists R > R1 such that if {ui}ki=1 is an orthonormal basis of K with respect to the
inner product AβR, then

k∑
i=1

AR(ui, ui) ≥ kβ−(2d+2+δ).

The following lemma follows from the mean value inequality (1.7) for the ex-
tended functions.

Lemma 4.3. Let G be a semiplanar graph with SecG ≥ 0, and let K be a k-
dimensional subspace of E(Hd(G)). Then there exists a constant C(D) such that
for any fixed 0 < ε < 1

2 , any basis of K, {ui}ki=1, R ≥ R2(D, ε), where εR2 ≥ R1(D)
(R1(D) is the constant in Theorem 1.1), we have

k∑
i=1

AR(ui, ui) ≤ C(D)ε−1 sup
u∈〈A,U〉

∫
B(1+ε)R(p)

u2,

where 〈A,U〉 := {w =
∑k

i=1 aiui :
∑k

i=1 a
2
i = 1}.

Proof. For any x ∈ BR(p), we set Kx = {u ∈ K : u(x) = 0}. It is easy to
see that dimK/Kx ≤ 1. Hence there exists an orthonormal linear transformation
φ : K → K, which maps {ui}ki=1 to {vi}ki=1 such that vi ∈ Kx, for i ≥ 2. For any
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x ∈ BR(p), since εR ≥ εR2 ≥ R1, then (1 + ε)R − r(x) ≥ R1 for r(x) = d(p, x).
Hence the mean value inequality (1.7) implies that for any x ∈ BR(p),

k∑
i=1

u2
i (x) =

k∑
i=1

v2i (x) = v21(x)

≤ C(D)|B(1+ε)R−r(x)(x)|−1

∫
B(1+ε)R−r(x)(x)

v21

≤ C(D)|B(1+ε)R−r(x)(x)|−1 sup
u∈〈A,U〉

∫
B(1+ε)R(p)

u2.(4.2)

For simplicity, denote Vp(t) = |Bt(p)| and Ap(t) = |∂Bt(p)|.
By the relative volume comparison (2.1), we have

Vx((1 + ε)R− r(x)) ≥
(
(1 + ε)R− r(x)

2R

)2

Vx(2R) ≥
(
(1 + ε)R − r(x)

2R

)2

Vp(R).

Hence, substituting into (4.2) and integrating over BR(p), we have

(4.3)

k∑
i=1

∫
BR(p)

u2
i ≤ C(D)

Vp(R)
sup

u∈〈A,U〉

∫
B(1+ε)R(p)

u2

∫
BR(p)

(1 + ε−R−1r(x))−2dx.

Define f(t) = (1 + ε−R−1t)−2; then f ′(t) = 2
R (1 + ε−R−1t)−3 ≥ 0,∫

BR(p)

f(r(x))dx =

∫ R

0

f(t)Ap(t)dt.

Since Ap(t) = V ′
p(t) a.e., we integrate by parts and obtain∫ R

0

f(t)Ap(t)dt = f(t)Vp(t) |R0 −
∫ R

0

Vp(t)f
′(t)dt.

Noting that f ′(t) ≥ 0 and using the relative volume comparison (2.1), we have∫ R

0

Vp(t)f
′(t)dt ≥ Vp(R)

R2

∫ R

0

t2f ′(t)dt

=
Vp(R)

R2
{t2f(t) |R0 −2

∫ R

0

tf(t)dt}.

Therefore ∫
BR(p)

f(r(x))dx ≤ 2Vp(R)

R2

∫ R

0

tf(t)dt ≤ 2Vp(R)ε−1.

Combining this with (4.3), we prove the lemma. �

Proof of Theorem 1.2. For any k-dimensional subspace K ⊂ E(Hd(G)), we set
β = 1+ ε, for fixed small ε. By Lemma 4.2, there exist infinitely many R > R0(K)
such that for any orthonormal basis {ui}ki=1 of K with respect to A(1+ε)R, we have

k∑
i=1

AR(ui, ui) ≥ k(1 + ε)−(2d+2+δ).

Lemma 4.3 implies that

k∑
i=1

AR(ui, ui) ≤ C(D)ε−1.
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Setting ε = 1
2d and letting δ → 0, we obtain

(4.4) k ≤ C(D)

(
1

2d

)−1 (
1 +

1

2d

)2d+2+δ

≤ C(D)d.

By (4.4) and Theorem 1.4 in [27] that dimHd(G) = 1 for any SecG ≥ 0, D ≥ 43
and d > 0, we obtain

dimHd(G) ≤ Cd. �

At the end, we use the Harnack inequality (3.1) in Lemma 3.1 to prove a gener-
alization of Nayar’s theorem [42]. We denote by

Hd
+(G) := {u : G → R | Lu = 0, u(x) ≥ −C(dG(p, x) + 1)d}

the set of one-side bounded polynomial growth harmonic functions with growth rate
less than or equal to d. This is not a linear space, but the linear span of Hd

+(G),

denoted by SpanHd
+(G), trivially contains Hd(G). The following corollary implies

that they are equal.

Corollary 4.4. Let G be a semiplanar graph with SecG ≥ 0. Then

SpanHd
+(G) = Hd(G),

which implies that

dimSpanHd
+(G) ≤ Cd,

for d ≥ 1.

Proof. It suffices to show that Hd
+(G) ⊂ Hd(G). For any f ∈ Hd

+(G), there exists

a constant C such that f(x) ≥ −C(d(p, x) + 1)d. We need to prove that f(x) ≤
C(d(p, x) + 1)d, for some C. For simplicity, we assume f(p) = 0. Let C1(D) be the
constant for the Harnack inequality in Lemma 3.1. Then for any x ∈ BG

R (p), R > 0,
it is easy to see that BG

C1R
(x) ⊂ BG

(C1+1)R(p). Moreover

f(y) ≥ −C(d(p, y) + 1)d ≥ −C((C1 + 1)R+ 1)d ≥ −CRd,

for y ∈ BG
(C1+1)R(p), R ≥ R1(D). That is, f(y) + CRd ≥ 0 on BG

C1R
(x). The

Harnack inequality (3.1) implies that

f(x) + CRd ≤ C(f(p) + CRd) = CRd.

Then we have

f(x) ≤ CRd,

for x ∈ BG
R (p), R ≥ R1(D). Hence there exists a constant C such that f(x) ≤

C(d(p, x) + 1)d. �
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