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CALDERO-CHAPOTON ALGEBRAS

GIOVANNI CERULLI IRELLI, DANIEL LABARDINI-FRAGOSO, AND JAN SCHRÖER

Abstract. Motivated by the representation theory of quivers with potential
introduced by Derksen, Weyman and Zelevinsky and by work of Caldero and
Chapoton, who gave explicit formulae for the cluster variables of cluster al-
gebras of Dynkin type, we associate a Caldero-Chapoton algebra AΛ to any

(possibly infinite-dimensional) basic algebra Λ. By definition, AΛ is (as a
vector space) generated by the Caldero-Chapoton functions CΛ(M) of the
decorated representations M of Λ. If Λ = P(Q,W ) is the Jacobian algebra
defined by a 2-acyclic quiver Q with non-degenerate potential W , then we have
AQ ⊆ AΛ ⊆ Aup

Q , where AQ and Aup
Q are the cluster algebra and the upper

cluster algebra associated to Q. The set BΛ of generic Caldero-Chapoton func-
tions is parametrized by the strongly reduced components of the varieties of
representations of the Jacobian algebra P(Q,W ) and was introduced by Geiss,
Leclerc and Schröer. Plamondon parametrized the strongly reduced compo-
nents for finite-dimensional basic algebras. We generalize this to arbitrary
basic algebras. Furthermore, we prove a decomposition theorem for strongly
reduced components. We define BΛ for arbitrary Λ, and we conjecture that BΛ

is a basis of the Caldero-Chapoton algebra AΛ. Thanks to the decomposition

theorem, all elements of BΛ can be seen as generalized cluster monomials. As
another application, we obtain a new proof for the sign-coherence of g-vectors.
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1. Introduction

1.1. Let AQ be the Fomin-Zelevinsky cluster algebra [FZ1, FZ2] associated to a
finite 2-acyclic quiver Q. By definition AQ is generated by an inductively defined
set of rational functions, called cluster variables. The cluster variables are contained
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in the set MQ of cluster monomials, which are by definition certain monomials in
the cluster variables.

Now let W be a non-degenerate potential for Q, and let Λ = P(Q,W ) be
the associated Jacobian algebra introduced by Derksen, Weyman and Zelevinsky
[DWZ1, DWZ2]. The category of decorated representations of Λ is denoted by
decrep(Λ). To any M ∈ decrep(Λ) one can associate a Laurent polynomial CΛ(M),
the Caldero-Chapoton function of M. It follows from [DWZ1,DWZ2] that the clus-
ter monomials form a subset of the set CΛ of Caldero-Chapoton functions.

1.2. The generic basis conjecture. One of the main problems in cluster algebra
theory is to find a basis of AQ with favourable properties. As an important re-
quirement, this basis should contain the set MQ of cluster monomials in a natural
way.

The concept of strongly reduced irreducible components of varieties of deco-
rated representations of a Jacobian algebra Λ was introduced in [GLS]. To each
strongly reduced component Z one can associate a generic Caldero-Chapoton func-
tion CΛ(Z); see Sections 4.1 and 6.4. It was conjectured in [GLS] that the set BΛ of
generic Caldero-Chapoton functions forms a C-basis of AQ. Using a non-degenerate
potential defined by Labardini [La1, La2], Plamondon [P2] found a counterexam-
ple and then conjectured that BΛ is a basis of the upper cluster algebra Aup

Q . This
conjecture should also be wrong in general. We replace it by yet another conjecture.

We study the Caldero-Chapoton algebra

AΛ := 〈CΛ(M) | M ∈ decrep(Λ)〉alg
generated by all Caldero-Chapoton functions. We do not restrict ourselves to Jaco-
bian algebras, but work with algebras Λ defined as arbitrary quotients of completed
path algebras. In particular, we generalize the notion of a Caldero-Chapoton func-
tion to this general setup. One easily checks that the functions CΛ(M) do not only
generate AΛ as an algebra but also as a vector space over the ground field C.

Conjecture 1.1. BΛ is a C-basis of AΛ.

We show that the set BΛ of generic Caldero-Chapoton functions is linearly inde-
pendent provided the kernel of the skew-symmetric incidence matrix BQ of Q does
not contain any non-zero element in Qn

≥0. This generalizes [P2, Proposition 3.19].

For Λ = P(Q,W ), a Jacobian algebra associated to a quiver Q with non-
degenerate potential W , we have

AQ ⊆ AΛ ⊆ Aup
Q

where AQ is the cluster algebra and Aup
Q is the upper cluster algebra associated to

Q. (We refer to [BFZ,DWZ1,FZ1] for missing definitions.) For this special case,
we give a list of open problems, which hopefully will lead to a better understanding
of the rather mysterious relation between AQ and Aup

Q .

1.3. Parametrization of strongly reduced components. Plamondon [P2,
Theorem 1.2] parametrized the strongly reduced components for finite-dimensional
basic algebras. (For our (non-standard) definition of a basic algebra we refer to
Section 2.1.) We generalize Plamondon’s result to arbitrary basic algebras. Let
Λ = C〈〈Q〉〉/I be a basic algebra, where the quiver Q has n vertices. Let decIrr(Λ)
be the set of irreducible components of all varieties decrepd,v(Λ) of decorated rep-
resentations of Λ, where (d,v) runs through Nn × Nn. By decIrrs.r.(Λ) we denote
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the subset of strongly reduced components. (The definition is in Section 5.) Recall
that decIrrs.r.(Λ) parametrizes the elements in BΛ.

Let

Gs.r.
Λ : decIrrs.r.(Λ) → Zn

be the map sending Z ∈ decIrrs.r.(Λ) to the generic g-vector gΛ(Z) of Z. (The defi-
nition of a g-vector is in Section 3.) Using Plamondon’s result for finite-dimensional
algebras and a long-path truncation argument, we get the following parametrization
of strongly reduced components for arbitrary Λ.

Theorem 1.2. For a basic algebra Λ = C〈〈Q〉〉/I the following hold:

(i) The map

Gs.r.
Λ : decIrrs.r.(Λ) → Zn

is injective.
(ii) The following are equivalent:

(a) Gs.r.
Λ is surjective.

(b) Λ := C〈〈Q〉〉/I is finite-dimensional, where I is the m-adic closure of
I.

1.4. A decomposition theorem for strongly reduced components. The no-
tion of a direct sum of irreducible components of representation varieties was intro-
duced in [CBS]. The Zariski closure Z := Z1 ⊕ · · · ⊕ Zt of a direct sum of irreducible
components Z1, . . . , Zt of varieties of representations of Λ is always irreducible, but
in general Z is not an irreducible component. It was shown in [CBS] that Z is an
irreducible component provided the dimension of the first extension group between
the components is generically zero. The following decomposition theorem is an ana-
logue for strongly reduced components. Instead of extension groups, we work with
a generalization EΛ(−, ?) of the Derksen-Weyman-Zelevinsky E-invariant [DWZ2].
(We define EΛ(−, ?) in Section 3.)

Theorem 1.3. For Z1, . . . , Zt ∈ decIrr(Λ) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt is a strongly reduced irreducible component.
(ii) Each Zi is strongly reduced and EΛ(Zi, Zj) = 0 for all i �= j.

Based on Theorem 1.3, we show that all elements of BΛ can be seen as CC-
cluster monomials. (The CC-cluster monomials generalize Fomin and Zelevinsky’s
notion of cluster monomials.)

1.5. Sign-coherence of g-vectors. A subset U of Zn is called sign-coherent if
for each 1 ≤ i ≤ n we have either ai ≥ 0 for all (a1, . . . , an) ∈ U or ai ≤ 0 for all
(a1, . . . , an) ∈ U .

The following theorem generalizes [P2, Theorem 3.7(1)].

Theorem 1.4. Let Λ be a basic algebra, and let Z1, . . . , Zt ∈ decIrrs.r.(Λ) be
strongly reduced components. Assume that

Z1 ⊕ · · · ⊕ Zt

is a strongly reduced component. Then {gΛ(Z1), . . . , gΛ(Zt)} is sign-coherent.
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1.6. The paper is organized as follows. In Section 2 we recall definitions and basic
properties of basic algebras and their (decorated) representations. We also intro-
duce truncations of basic algebras, which play a crucial role in some of our proofs. In
Section 3 we introduce and study g-vectors and E-invariants of decorated represen-
tations. Caldero-Chapoton functions and Caldero-Chapoton algebras are defined in
Section 4. Our main results, Theorems 1.2 and 1.3, are proved in Section 5. In Sec-
tion 6 we introduce component graphs, component clusters and CC-clusters, and
we show that the cardinality of loop-complete subgraphs of a component graph is
bounded by the number of simple modules. Section 7 explains the relation between
Caldero-Chapoton algebras and cluster algebras. Section 8 contains the proof of
Theorem 1.4. Finally, in Section 9 we discuss several examples of Caldero-Chapoton
algebras.

1.7. Notation. We denote the composition of maps f : M → N and g : N → L by
gf = g ◦ f : M → L. We write |U | for the cardinality of a set U .

A finite-dimensional module M is basic provided it is a direct sum of pairwise
non-isomorphic indecomposable modules. For a module M and some m ≥ 1 let
Mm be the direct sum of m copies of M .

For a finite-dimensional algebra Λ let τΛ be its Auslander-Reiten translation.
For an introduction to Auslander-Reiten theory we refer to the books [ARS] and
[ASS].

For n ≥ 1 and a set S, depending on the situation and if no misunderstanding
can occur, we identify Sn with the set of (n×1)- or (1×n)-matrices with entries in
S. By N we denote the natural numbers, including zero. For d = (d1, . . . , dn) ∈ Nn

let |d| := d1 + · · · + dn. For n ∈ N let Mn(Z) be the set of (n × n)-matrices with
integer entries.

For a ring R let R[x±
1 , . . . , x

±
n ] be the algebra of Laurent polynomials over R in n

independent variables x1, . . . , xn. For a = (a1, . . . , an) ∈ Zn set xa := xa1
1 · · ·xan

n .

2. Basic algebras and decorated representations

2.1. Basic algebras and quiver representations. Throughout, let C be the
field of complex numbers. A quiver is a quadruple Q = (Q0, Q1, s, t), where Q0 is
a finite set of vertices, Q1 is a finite set of arrows, and s, t : Q1 → Q0 are maps.
For each arrow a ∈ Q1 we call s(a) and t(a) the starting and terminal vertex of a,
respectively. If not mentioned otherwise, we always assume that Q0 = {1, . . . , n}.
Let BQ = (bij) ∈ Mn(Z), where

bij := |{a ∈ Q1 | s(a) = j, t(a) = i}| − |{a ∈ Q1 | s(a) = i, t(a) = j}|.
A path in Q is a tuple p = (am, . . . , a1) of arrows ai ∈ Q1 such that s(ai+1) =

t(ai) for all 1 ≤ i ≤ m − 1. Then length(p) := m is the length of p. Additionally,
for each vertex i ∈ Q0 there is a path ei of length 0. We often just write am · · · a1
instead of (am, . . . , a1).

A path p = (am, . . . , a1) of length m ≥ 1 is a cycle in Q, or more precisely an
m-cycle in Q, if s(a1) = t(am). The quiver Q is acyclic if there are no cycles in Q,
and for s ≥ 1 the quiver Q is called s-acyclic if there are no m-cycles for 1 ≤ m ≤ s.

A representation of a quiverQ = (Q0, Q1, s, t) is a tupleM = (Mi,Ma)i∈Q0,a∈Q1
,

where each Mi is a finite-dimensional C-vector space, and Ma : Ms(a) → Mt(a) is a
C-linear map for each arrow a ∈ Q1. We call dim(M) := (dim(M1), . . . , dim(Mn))
the dimension vector of M . Let dim(M) := dim(M1) + · · · + dim(Mn) be the
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dimension of M . For a path p = (am, . . . , a1) in Q let Mp := Mam
◦ · · · ◦Ma1

. The
representation M is called nilpotent provided there exists some N > 0 such that
Mp = 0 for all paths p in Q with length(p) > N .

For i ∈ Q0 let Si := (Mi,Ma)i,a be the representation of Q with Mi = C,
Mj = 0 for all j �= i, and Ma = 0 for all a ∈ Q1. For a nilpotent representation M
the ith entry dim(Mi) of its dimension vector dim(M) equals the Jordan-Hölder
multiplicity [M : Si] of Si in M .

For m ∈ N let CQm be a C-vector space with a C-basis labeled by the set Qm of
paths of lengthm in Q. Note that CQm is finite-dimensional. We do not distinguish
between a path p of length m and the corresponding basis vector in CQm.

The completed path algebra of a quiver Q is denoted by C〈〈Q〉〉. As a C-vector
space we have

C〈〈Q〉〉 =
∏
m≥0

CQm.

We write the elements in C〈〈Q〉〉 as infinite sums
∑

m≥0 am with am ∈ CQm. The

product in C〈〈Q〉〉 is then defined as

(
∑
i≥0

ai)(
∑
j≥0

bj) :=
∑
k≥0

∑
i+j=k

aibj .

A potential of Q is an element W =
∑

m≥1 wm of C〈〈Q〉〉, where each wm is a C-
linear combination of m-cycles in Q. By definition, W = 0 is also a potential. The
definition of a non-degenerate potential can be found in [DWZ1, Section 7].

The category mod(C〈〈Q〉〉) of finite-dimensional left C〈〈Q〉〉-modules can be iden-
tified with the category nil(Q) of nilpotent representations of Q.

By m we denote the arrow ideal in C〈〈Q〉〉, which is generated by the arrows of
Q. Thus for p ≥ 0 we have

m
p =

∏
m≥p

CQm.

An ideal I of C〈〈Q〉〉 is admissible if I ⊆ m2. We call an algebra Λ basic if Λ =
C〈〈Q〉〉/I for some quiver Q and some admissible ideal I of C〈〈Q〉〉.

A representation of a basic algebra Λ = C〈〈Q〉〉/I is a nilpotent representation of
Q, which is annihilated by the ideal I. We identify the category rep(Λ) of represen-
tations of Λ with the category mod(Λ) of finite-dimensional left Λ-modules. Up to
isomorphism the simple representations of Λ are the 1-dimensional representations
S1, . . . , Sn.

The category of all (possibly infinite-dimensional) Λ-modules is denoted by
Mod(Λ). We consider rep(Λ) as a subcategory of Mod(Λ).

2.2. Decorated representations of quivers. Let Λ = C〈〈Q〉〉/I be a basic al-
gebra. Following [DWZ1] (and in fact the earlier publication [MRZ]), a deco-
rated representation of Λ is a pair M = (M,V ), where M is a representation
of Λ and V = (V1, . . . , Vn) is a tuple of finite-dimensional C-vector spaces. Let
dim(V ) := (dim(V1), . . . , dim(Vn)) and dim(V ) := dim(V1) + · · · + dim(Vn). We
call dim(M) := (dim(M), dim(V )) the dimension vector of M.

One defines morphisms and direct sums of decorated representations in the ob-
vious way. Let decrep(Λ) be the category of decorated representations of Λ.

Let M = (M,V ) ∈ decrep(Λ). We write M = 0 if all Mi are zero, and V = 0 if
all Vi are zero. Furthermore, M = 0 if M = 0 and V = 0.
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For 1 ≤ i ≤ n set Si := (Si, 0), and let S−
i := (0, V ), where Vi = C and Vj = 0 for

all j �= i. The representations S−
i are the negative simple decorated representations

of Λ.

2.3. Varieties of representations. For d = (d1, . . . , dn) ∈ Nn let repd(Λ) be the
affine variety of representations of Λ with dimension vector d. By definition the
closed points of repd(Λ) are the representations M = (Mi,Ma)i∈Q0,a∈Q1

of Λ with
Mi = Cdi for all i ∈ Q0. One can regard repd(Λ) as a Zariski closed subset of the
affine space

repd(Q) :=
∏

a∈Q1

HomC(C
ds(a) ,Cdt(a)).

For d = (d1, . . . , dn) let Gd :=
∏n

i=1 GL(Cdi). The group Gd acts on repd(Λ) by
conjugation. More precisely, for g = (g1, . . . , gn) ∈ Gd and M ∈ repd(Λ) let

g.M := (Mi, g
−1
t(a)Mags(a))i∈Q0,a∈Q1

.

For M ∈ repd(Λ) let O(M) be the Gd-orbit of M . The Gd-orbits are in bijection
with the isomorphism classes of representations of Λ with dimension vector d.

For (d,v) ∈ Nn × Nn let decrepd,v(Λ) be the affine variety of decorated repre-
sentations M = (M,V ) with M ∈ repd(Λ) and V = Cv := (Cv1 , . . . ,Cvn), where
v = (v1, . . . , vn).

For M = (M,V ) ∈ decrepd,v(Λ) define g.M := (g.M, V ). This defines a Gd-
action on decrepd,v(Λ). The Gd-orbit of M is denoted by O(M). We have

(1) dimO(M) = dimO(M) = dimGd − dimEndΛ(M);

see for example [G].

2.4. Quiver Grassmannians. Let Λ = C〈〈Q〉〉/I be a basic algebra. For a rep-
resentation M = (Mi,Ma)i∈Q0,a∈Q1

of Λ and e ∈ Nn let Gre(M) be the quiver
Grassmannian of subrepresentations U of M with dim(U) = e. (By definition a
subrepresentation of M is a tuple U = (Ui)i∈Q0

of subspaces Ui ⊆ Mi such that
Ma(Us(a)) ⊆ Ut(a) for all a ∈ Q1.) So Gre(M) is a projective variety, which can be
seen as a closed subvariety of the product of the classical Grassmannians Grei(Mi)
of ei-dimensional subspaces of Mi, where e = (e1, . . . , en). Let χ(Gre(M)) be the
Euler-Poincaré characteristic of Gre(M).

2.5. Truncations of basic algebras. For a basic algebra Λ = C〈〈Q〉〉/I and some
p ≥ 2 let

Λp := C〈〈Q〉〉/(I +mp)

be the p-truncation of Λ. Clearly, Λp is a finite-dimensional basic algebra. Let

Λ := C〈〈Q〉〉/I

where

I :=
⋂
p≥0

(I +m
p)

is the m-adic closure of I in C〈〈Q〉〉. We obtain the following commutative diagram
with exact rows, where all morphisms whose label contains the symbol ι (resp. π)
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are the obvious canonical monomorphisms (resp. epimorphisms):

I
ι ��

ι
��

C〈〈Q〉〉 π �� Λ

π
��

I
ι∞ ��

ι∞,p

��

C〈〈Q〉〉 π∞ �� Λ

π∞,p

��

...

ιp+1,p

��

...
...

πp+1,p

��
I +mp

ιp ��

ιp,p−1

��

C〈〈Q〉〉
πp �� Λp

πp,p−1

��
I +mp−1

ιp−1 ��

ιp−1,p−2 ��

C〈〈Q〉〉
πp−1 �� Λp−1

πp−1,p−2��
...

ι3,2

��

...
...

π3,2

��
I +m2 ι2 �� C〈〈Q〉〉 π2 �� Λ2

We have
Λ = lim←−(Λp);

i.e. the algebra Λ is the inverse limit of the inverse system

(· · · → Λp → · · · → Λ3 → Λ2).

The epimorphisms in the third column of the above diagram induce sequences

rep(Λ2) → · · · → rep(Λp) → · · · → rep(Λ) → rep(Λ)

and
decrep(Λ2) → · · · → decrep(Λp) → · · · → decrep(Λ) → decrep(Λ)

of embedding functors. We can consider these as chains of subcategories of rep(Λ)
and decrep(Λ), respectively. The following lemma is straightforward.

Lemma 2.1. For any basic algebra Λ we have

rep(Λ) = rep(Λ) =
⋃
p≥2

rep(Λp) and decrep(Λ) = decrep(Λ) =
⋃
p≥2

decrep(Λp).

For 1 ≤ i ≤ n and p ≥ 2 let Ii,p ∈ rep(Λp), Ii ∈ Mod(Λ) and Ii ∈ Mod(Λ) be the
injective envelopes of the simple module Si. The above embedding functors yield
a chain

Ii,2 ⊆ Ii,3 ⊆ · · · ⊆ Ii,p ⊆ · · · ⊆ Ii

of submodules of Ii, and we have

Ii =
⋃
p≥2

Ii,p.
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Lemma 2.2. Let Λ = C〈〈Q〉〉/I be a basic algebra. Then the following hold:

(i) Let M = (M,V ) ∈ decrep(Λ). If p ≥ dim(M), then M is in the image of
the embedding decrep(Λp) → decrep(Λ).

(ii) Let M,N ∈ rep(Λ). If p ≥ dim(M), dim(N), then

dimHomΛp
(M,N) = dimHomΛ(M,N).

(iii) Let M,N ∈ rep(Λ). If p ≥ dim(M) + dim(N), then

dimExt1Λp
(M,N) = dimExt1Λ(M,N).

(iv) Let (d,v) ∈ Nn × Nn. If p ≥ |d|, then decrepd,v(Λp) = decrepd,v(Λ).

Proof. Let am · · · a1 be a path of length m in Q, and let M be a representation of Λ.
We can see M as a nilpotent representation of Q. For any non-zero vector v0 ∈ M
set vi := ai · · · a1v0 for 1 ≤ i ≤ m. Assume that each of the vectors v1, . . . , vm is
non-zero. We claim that v0, v1, . . . , vm are pairwise different and linearly indepen-
dent. Let b be a path of maximal length such that bv0 �= 0. Such a path b exists,
because M is nilpotent. By induction v1, . . . , vm are linearly independent. Assume
now that

v0 =
m∑
i=1

λivi

for some λi ∈ C. We have vi = ai · · · a1v0. Therefore we get

bv0 =
m∑
i=1

λibai · · · a1v0.

Since bai · · · a1 is either zero or a path of length i+length(b), we have bai · · · a1v0 = 0
for all 1 ≤ i ≤ m. Since bv0 �= 0, this is a contradiction. Therefore v0, v1, . . . , vm are
linearly independent. It follows that for any M ∈ decrep(Λ) with dim(M) = (d,v)
and any path b with length(b) ≥ |d| we have bM = 0. This implies (i). Parts (ii)
and (iv) are easy consequences of (i). Any extension of representations M and N
of Λ is a representation of Λ of dimension dim(M)+dim(N). This implies (iii). �

3. E-invariants and g-vectors of decorated representations

3.1. Definition of E-invariants and g-vectors. Let Q be a quiver, and let W
be a potential of Q. Let Λ = P(Q,W ) be the associated Jacobian algebra [DWZ1,
Section 3]. For decorated representations M and N of Λ the g-vector g(M) and
the invariants Einj(M) and Einj(M,N ) were defined in [DWZ2], where Einj(M) is
called the E-invariant of M. We define invariants gΛ(M), EΛ(M) and EΛ(M,N )
of decorated representations M and N of an arbitrary basic algebra Λ = C〈〈Q〉〉/I
as follows.

For a decorated representation M = (M,V ) of Λ let

gΛ(M) := (g1, . . . , gn)

with

gi := gi(M) := − dimHomΛ(Si,M) + dimExt1Λ(Si,M) + dim(Vi)

be the g-vector of M.
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For decorated representations M = (M,V ) and N = (N,W ) of Λ let

EΛ(M,N ) := dimHomΛ(M,N) +

n∑
i=1

dim(Mi)gi(N ).

The E-invariant of M is defined as EΛ(M) := EΛ(M,M).

Lemma 3.1. Let Λ = P(Q,W ), where W is a potential of Q. For M,N ∈
decrep(Λ) the following hold:

(i) gΛ(M) = g(M).
(ii) EΛ(M,N ) = Einj(M,N ).

Proof. Part (i) follows from [P1, Lemma 4.7, Proposition 4.8]. It can also be shown
in a more elementary way by using the exact sequence displayed in [DWZ2, Equa-
tion (10.4)]. Part (ii) is a direct consequence of (i) and the definition of EΛ(M,N )
and Einj(M,N ). �

3.2. Homological interpretation of the E-invariant. For 1 ≤ i ≤ n let Ii ∈
Mod(Λ) be the injective envelope of the simple representation Si of Λ. One easily
checks that the socle soc(Ii) of Ii is isomorphic to Si and that

(2) dimHomΛ(M, Ii) = dim(Mi)

for all M ∈ rep(Λ). Note that in general Ii is infinite dimensional. For M ∈ rep(Λ)
let

0 → M
f−→ IΛ0 (M) → IΛ1 (M)

denote a minimal injective presentation of M . The modules IΛ0 (M) and IΛ1 (M) are
up to isomorphism uniquely determined by M .

We will need the following theorem due to Auslander and Reiten.

Theorem 3.2 ([AR, Theorem 1.4 (b)]). Let M and N be representations of a
finite-dimensional basic algebra Λ. Then we have

dimHomΛ(τ
−
Λ (N),M) = dimHomΛ(M,N)− dimHomΛ(M, IΛ0 (N))

+ dimHomΛ(M, IΛ1 (N)).

Lemma 3.3. Let Λ = C〈〈Q〉〉/I be a finite-dimensional basic algebra, and let M ∈
rep(Λ). Let

0 → M
f−→ IΛ0 (M) → IΛ1 (M)

be a minimal injective presentation of M . Then for 1 ≤ i ≤ n we have

(i) [soc(IΛ0 (M)) : Si] = [soc(M) : Si] = dimHomΛ(Si,M) and

IΛ0 (M) ∼= I
dimHomΛ(S1,M)
1 ⊕ · · · ⊕ IdimHomΛ(Sn,M)

n .

(ii) [soc(IΛ1 (M)) : Si] = [soc(Coker(f)) : Si] = dimExt1Λ(Si,M) and

IΛ1 (M) ∼= I
dimExt1Λ(S1,M)
1 ⊕ · · · ⊕ I

dimExt1Λ(Sn,M)
n .

Proof. Since IΛ0 (M) is the injective envelope of M , we have soc(M) ∼= soc(IΛ0 (M)).
This implies (i). By the construction of minimal injective presentations, IΛ1 (M) is
the injective envelope of Coker(f). It follows that soc(Coker(f)) ∼= soc(IΛ1 (M)).
We apply the functor HomΛ(Si,−) to the exact sequence

0 → M
f−→ IΛ0 (M) → Coker(f) → 0.
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This yields an exact sequence

0 → HomΛ(Si,M)
F−→ HomΛ(Si, I

Λ
0 (M))

→ HomΛ(Si,Coker(f))
G−→ Ext1Λ(Si,M) → 0.

Here we used that IΛ0 (M) is injective, which implies Ext1Λ(Si, I
Λ
0 (M)) = 0. By (i)

we know that F is an isomorphism. Thus G is also an isomorphism. This implies
(ii). �

Combining Lemma 2.2 and Lemma 3.3 yields the following result.

Lemma 3.4. Let M = (M,V ) be a decorated representation of a basic algebra Λ,
and let gΛ(M) = (g1, . . . , gn) be the g-vector of M. If p > dim(M), then

gi = −[soc(I
Λp

0 (M)) : Si] + [soc(I
Λp

1 (M)) : Si] + dim(Vi)

for all 1 ≤ i ≤ n.

The following result is a homological interpretation of the E-invariant in terms
of Auslander-Reiten translations. This can be seen as a generalization of [DWZ2,
Corollary 10.9].

Proposition 3.5. Let M = (M,V ) and N = (N,W ) be decorated representations
of a basic algebra Λ. If p > dim(M), dim(N), then

EΛ(M,N ) = EΛp
(M,N ) = dimHomΛp

(τ−Λp
(N),M) +

n∑
i=1

dim(Mi) dim(Wi).

In particular, we have

EΛp
(M,N ) = EΛq

(M,N )

and

dimHomΛp
(τ−Λp

(N),M) = dimHomΛq
(τ−Λq

(N),M)

for all p, q > dim(M), dim(N).

Proof. Since p > dim(M), dim(N) we can apply Lemma 2.2 and get

dimHomΛp
(M,N) = dimHomΛ(M,N),

dimHomΛp
(Si, N) = dimHomΛ(Si, N),

dimExt1Λp
(Si, N) = dimExt1Λ(Si, N).

Let

0 → N → I
Λp

0 (N) → I
Λp

1 (N)

be a minimal injective presentation ofN , where we regardN now as a representation
of Λp. It follows from Lemma 3.3 and equation (2) that

dimHomΛp
(M, I

Λp

0 (N)) =
n∑

i=1

dim(Mi) dimHomΛp
(Si, N),

dimHomΛp
(M, I

Λp

1 (N)) =

n∑
i=1

dim(Mi) dimExt1Λp
(Si, N).
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This implies

EΛ(M,N ) = dimHomΛ(M,N) +

n∑
i=1

dim(Mi)(− dimHomΛ(Si, N)

+ dimExt1Λ(Si, N)) +

n∑
i=1

dim(Mi) dim(Wi)

= dimHomΛp
(M,N) +

n∑
i=1

dim(Mi)(− dimHomΛp
(Si, N)

+ dimExt1Λp
(Si, N)) +

n∑
i=1

dim(Mi) dim(Wi)

= dimHomΛp
(M,N)− dimHomΛp

(M, I
Λp

0 (N))

+ dimHomΛp
(M, I

Λp

1 (N)) +

n∑
i=1

dim(Mi) dim(Wi).

The first equality follows from Lemmas 2.2, 3.3 and 3.4. The second equality says
that EΛ(M,N ) = EΛp

(M,N ). Applying Theorem 3.2 yields

EΛp
(M,N ) = dimHomΛp

(τ−Λp
(N),M) +

n∑
i=1

dim(Mi) dim(Wi).

This finishes the proof. �

Corollary 3.6. For decorated representations M and N of a basic algebra Λ we
have

EΛ(M,N ) ≥ 0.

4. Caldero-Chapoton algebras

4.1. Caldero-Chapoton functions. To any basic algebra Λ = C〈〈Q〉〉/I we as-
sociate a set of Laurent polynomials in n independent variables x1, . . . , xn as fol-
lows. The Caldero-Chapoton function associated to a decorated representation
M = (M,V ) of Λ is defined as

CΛ(M) := xgΛ(M)
∑
e∈Nn

χ(Gre(M))xBQe,

where BQ and gΛ(M) are defined as in Sections 2.1 and 3.1, respectively. Note

that CΛ(M) ∈ Z[x±
1 , . . . , x

±
n ]. Let

CΛ := {CΛ(M) | M ∈ decrep(Λ)}

be the set of Caldero-Chapoton functions associated to Λ. For M = (M, 0) we
sometimes write CΛ(M) instead of CΛ(M).

The definition of CΛ(M) is motivated by the (different versions of) Caldero-
Chapoton functions appearing in the theory of cluster algebras; see for example
[Pa, Section 1]. Such functions first appeared in work of Caldero and Chapoton
[CC, Section 3], where they show that the cluster variables of a cluster algebra of
a Dynkin quiver are Caldero-Chapoton functions.
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Lemma 4.1. For decorated representations M = (M,V ) and N = (N,W ) the
following hold:

(i) gΛ(M⊕N ) = gΛ(M) + gΛ(N ).
(ii) CΛ(M) = CΛ(M, 0)CΛ(0, V ).
(iii) CΛ(M⊕N ) = CΛ(M)CΛ(N ).

Proof. Part (i) follows directly from the definitions and from the additivity of the
functors HomΛ(−, ?) and Ext1Λ(−, ?). To prove (ii), let M = (M,V ) be a decorated
representation of Λ. For the decorated representation (0, V ) we have

CΛ(0, V ) =

n∏
i=1

xvi
i

where dim(V ) = (v1, . . . , vn). For the decorated representation (M, 0) we have

CΛ(M, 0) := xgΛ(M,0)
∑
e∈Nn

χ(Gre(M))xBQe

where gi(M, 0) = − dimHomΛ(Si,M) + dimExt1Λ(Si,M) for 1 ≤ i ≤ n. Now one
easily checks that CΛ(M) = CΛ(M, 0)CΛ(0, V ). Thus (ii) holds. Now (iii) follows
from (i), (ii) and the well known formula

χ(Gre(M ⊕N)) =
∑

(e′,e′′)

χ(Gre′(M))χ(Gre′′(N))

where the sum runs over all pairs (e′, e′′) ∈ Nn ×Nn such that e′ + e′′ = e; see for
example [DWZ2, Proof of Proposition 3.2]. �

4.2. Definition of a Caldero-Chapoton algebra. In the previous section, we
associated to a basic algebra Λ the set

CΛ = {CΛ(M) | M ∈ decrep(Λ)}

of Caldero-Chapoton functions. Clearly, CΛ is a subset of the integer Laurent poly-
nomial ring Z[x±

1 , . . . , x
±
n ] generated by the variables x1, . . . , xn. By definition the

Caldero-Chapoton algebra AΛ associated to Λ is the C-subalgebra of C[x±
1 , . . . , x

±
n ]

generated by CΛ. The following is a direct consequence of Lemma 4.1(iii).

Lemma 4.2. The set CΛ generates AΛ as a C-vector space.

In this generality, Caldero-Chapoton algebras might not be so useful. (One
could generalize even more by replacing the matrix BQ in the definition of the
functions CΛ(M) by any other matrix in Mn(Z).) But the case where Λ is the
Jacobian algebra P(Q,W ) of a quiver Q with non-degenerate potential W (see
[DWZ1] for missing definitions) should certainly be of interest. In this case, based
on work of Palu [Pa], Plamondon [P1] considered a version of Caldero-Chapoton
functions using the Amiot cluster category [A]. In contrast, we follow Derksen,
Weyman and Zelevinsky’s [DWZ1,DWZ2] approach and define and study Caldero-
Chapoton functions purely in terms of the representation theory of the Jacobian
algebra without passing to the cluster category.
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4.3. Linear independence of Caldero-Chapoton functions. Let Λ=C〈〈Q〉〉/I
be a basic algebra. Except in some trivial cases, the set CΛ of Caldero-Chapoton
functions associated to decorated representations of Λ is linearly dependent. Often
the Caldero-Chapoton functions satisfy beautiful relations, which should be studied
more intensively. On the other hand, by Lemma 4.2, there are C-bases of AΛ

consisting only of Caldero-Chapoton functions. Our aim is to provide a candidate
BΛ for such a basis. Before constructing BΛ in Section 5, we prove the following
criterion for linear independence of certain sets of Caldero-Chapoton functions.

Let

Qn
≥0 := {(a1, . . . , an) ∈ Qn | ai ≥ 0 for all i},

Qn
>0 := {(a1, . . . , an) ∈ Qn | ai > 0 for all i}.

Proposition 4.3. Let Λ = C〈〈Q〉〉/I be a basic algebra. Let Mj , j ∈ J be decorated
representations of Λ. Assume the following:

(i) Ker(BQ) ∩Qn
≥0 = 0.

(ii) The g-vectors gΛ(Mj), j ∈ J are pairwise different.

Then the Caldero-Chapoton functions CΛ(Mj), j ∈ J are pairwise different and
linearly independent in AΛ.

Proof. We treat BQ as a linear map Qn → Qn. For a,b ∈ Zn define a ≤ b if there
exists some e ∈ Qn

≥0 such that

a = b+BQe.

We claim that this defines a partial order on Zn. Clearly, ≤ is reflexive and tran-
sitive. Assume that a ≤ b and b ≤ a. Thus a = b + BQf1 and b = a + BQf2 for
some f1, f2 ∈ Qn

≥0. It follows that a = a + BQ(f1 + f2). Thus f1 + f2 ∈ Ker(BQ).

Our assumption (i) yields that f1 = f2 = 0. Thus a = b. This shows that ≤ is
antisymmetric.

The partial order ≤ on Zn induces obviously a partial order on the set of Lau-
rent monomials in the variables x1, . . . , xn. Namely, set xa ≤ xb if a ≤ b. Let
deg(xa) := a be the degree of xa.

Among the Laurent monomials xgΛ(M)+BQe occurring in the expression

CΛ(M) = xgΛ(M)
∑
e∈Nn

χ(Gre(M))xBQe =
∑
e∈Nn

χ(Gre(M))xgΛ(M)+BQe

the monomial xgΛ(M) is the unique monomial of maximal degree.
For e = 0 the Grassmannian Gre(M) is just a point, and BQe = 0. Thus,

if e = 0, we have χ(Gre(M))xBQe = 1. This shows that the Laurent monomial
xgΛ(M) really occurs as a non-trivial summand of CΛ(M). In particular, we have
CΛ(M) �= CΛ(N ) if gΛ(M) �= gΛ(N ).

Now let M1, . . . ,Mt be decorated representations of Λ with pairwise different
g-vectors. Assume that

λ1CΛ(M1) + · · ·+ λtCΛ(Mt) = 0

for some λj ∈ C. Without loss of generality we assume that λj �= 0 for all j.

There is a (not necessarily unique) index s such that xgΛ(Ms) is maximal in the
set {xgΛ(Mj) | 1 ≤ j ≤ t}. It follows that the Laurent monomial xgΛ(Ms) does
not occur as a summand of any of the Laurent polynomials CΛ(Mj) with j �= s.
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(Here we use that the g-vectors of the decorated representations Mj are pairwise
different.) This implies λs = 0, a contradiction. Thus CΛ(M1), . . . , CΛ(Mt) are
linearly independent. �

For a = (a1, . . . , an) and b = (b1, . . . , bn) in Zn set a · b := a1b1 + · · ·+ anbn.
Note that condition (d) in the following lemma coincides with condition (i) in

Proposition 4.3.

Lemma 4.4. For the conditions

(a) rank(BQ) = n;
(b) each row of BQ has at least one non-zero entry, and there are n−rank(BQ)

rows of BQ, which are non-negative linear combinations of the remaining
rank(BQ) rows of BQ;

(c) Im(BQ) ∩Qn
>0 �= ∅;

(d) Ker(BQ) ∩Qn
≥0 = 0,

the implications

(a) =⇒ (b) =⇒ (c) =⇒ (d)

hold.

Proof. The implication (a) =⇒ (b) is trivial. Next, assume (b) holds. Let
m := rank(BQ). We denote the jth row of BQ by rj . By assumption there are
pairwise different indices i1, . . . , im ∈ {1, . . . , n} such that for each 1 ≤ k ≤ n with
k /∈ {i1, . . . , im} we have

rk = λ
(k)
1 ri1 + · · ·+ λ(k)

m rim

for some non-negative rational numbers λ
(k)
j . Since rk is non-zero, at least one of

the λ
(k)
j is positive. Clearly, there is some e ∈ Qn such that rij · e = 1 for all

1 ≤ j ≤ m. (The (k × n)-matrix with rows ri1 , . . . , rim has rank m. Thus, we can
see it as a surjective homomorphism Qn → Qm.) Now observe that the kth entry

of BQe is λ
(k)
1 + · · · + λ

(k)
m for all 1 ≤ k ≤ n with k /∈ {i1, . . . , im} and that this

entry is positive. It follows that Im(BQ) ∩Qn
>0 �= ∅.

Finally, to show (c) =⇒ (d) let b ∈ Im(BQ)∩Qn
>0. Thus there is some a ∈ Qn

such that BQa = b. Since BQ is skew-symmetric, we get −aBQ = b. Now let
e ∈ Ker(BQ) ∩Qn

≥0. We get BQe = 0, and therefore −aBQe = b · e = 0. Since b
has only positive entries and e has only non-negative entries, we get e = 0. This
finishes the proof. �

For the example, where Λ is the path algebra of an affine quiver of type A2,
the main argument used in the proof of Proposition 4.3 can already be found in
[C, Section 6.1]. If we replace condition (i) by condition (a), Proposition 4.3 was
first proved by Fu and Keller [FK, Corollary 4.4]. Essentially the same argument
was later also used by Plamondon [P1]. That the Fu-Keller argument can be applied
under condition (b) was observed by Geiß and Labardini. To any triangulation T
of a punctured Riemann surface with non-empty boundary, one can associate a
2-acyclic quiver QT . It is shown in [GLaS] that there is always a triangulation T
such that the matrix BQT

satisfies condition (b).
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5. Strongly reduced components of representation varieties

5.1. Strongly reduced components. Let Λ = C〈〈Q〉〉/I be a basic algebra, and
let (d,v) ∈ Nn × Nn. By Irrd(Λ) and decIrrd,v(Λ) we denote the set of irreducible
components of repd(Λ) and decrepd,v(Λ), respectively. For Z ∈ decIrrd,v(Λ) we
write dim(Z) := (d,v). Let

Irr(Λ) =
⋃

d∈Nn

Irrd(Λ) and decIrr(Λ) =
⋃

(d,v)∈Nn×Nn

decIrrd,v(Λ).

Note that any irreducible component Z ∈ decIrr(Λ) can be seen as an irreducible
component in Irr(Λdec), where Λdec := Λ×C× · · · ×C is defined as the product of
Λ with n copies of C. In fact, we can identify decrep(Λ) and rep(Λdec). Thus state-
ments on varieties of representations can be carried over to varieties of decorated
representations.

By definition we have

decrepd,v(Λ) = {(M,Cv) | M ∈ repd(Λ)}.
We have an isomorphism

decrepd,v(Λ) → repd(Λ)

of affine varieties mapping (M,Cv) to M . Thus the irreducible components of
decrepd,v(Λ) can be interpreted as irreducible components of repd(Λ). For Z ∈
decIrrd,v(Λ) let πZ be the corresponding component in Irrd(Λ).

For Z,Z1, Z2 ∈ decIrr(Λ) define

cΛ(Z) := min{dim(Z)− dimO(M) | M ∈ Z},
eΛ(Z) := min{dimExt1Λ(M,M) | M = (M,V ) ∈ Z},

endΛ(Z) := min{dimEndΛ(M) | M = (M,V ) ∈ Z},
homΛ(Z1, Z2) := min{dimHomΛ(M1,M2) | Mi = (Mi, Vi) ∈ Zi, i = 1, 2},
ext1Λ(Z1, Z2) := min{dimExt1Λ(M1,M2) | Mi = (Mi, Vi) ∈ Zi, i = 1, 2}.

For Z,Z1, Z2 ∈ decIrr(Λ) there is a dense open subset U of Z (resp. Z1 ×Z2) such
that EΛ(M) = EΛ(N ) for all M,N ∈ U (resp. EΛ(M1,M2) = EΛ(N1,N2) for
all (M1,M2), (N1,N2) ∈ U). This follows from the upper semicontinuity of the
functions dimHomΛ(−, ?) and dimExt1Λ(−, ?) proved in [CBS, Lemma 4.3]. For
M ∈ U (resp. (M1,M2) ∈ U) define EΛ(Z) := EΛ(M) (resp. EΛ(Z1, Z2) :=
EΛ(M1,M2)).

Note that for Z ∈ decIrrd,v(Λ) we have

cΛ(Z) = dim(Z)− dim(Gd) + endΛ(Z).

This follows from equation (1).
It is easy to construct examples of components Z ∈ decIrr(Λ) such that endΛ(Z)

�= homΛ(Z,Z), eΛ(Z) �= ext1Λ(Z,Z) and EΛ(Z) �= EΛ(Z,Z). Namely, let Λ = CQ
be the path algebra of the Kronecker quiver, and let Z ∈ decIrrd,v(Λ) with d =
(1, 1) and v = (0, 0). (Since Λ is a path algebra of an acyclic quiver, decrepd,v(Λ)
is irreducible for all d,v.) An easy calculation shows that endΛ(Z) = eΛ(Z) =
EΛ(Z) = 1 and homΛ(Z,Z) = ext1Λ(Z,Z) = EΛ(Z,Z) = 0. A further discussion of
this example can be found in Section 9.4.3.

The next lemma follows again from the upper semicontinuity of dimHomΛ(−, ?)
and dimExt1Λ(−, ?).
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Lemma 5.1. For Z,Z1, Z2 ∈ decIrr(Λ) the following hold:

(i) The sets

{M ∈ Z | dim(Z)− dimO(M) = cΛ(Z)},
{M = (M,V ) ∈ Z | dimExt1Λ(M,M) = eΛ(Z)},
{M = (M,V ) ∈ Z | dimEndΛ(M) = endΛ(Z)}

are open in Z.
(ii) The sets

{((M1, V1), (M2, V2)) ∈ Z1 × Z2 | dimHomΛ(M1,M2) = homΛ(Z1, Z2)},
{((M1, V1), (M2, V2)) ∈ Z1 × Z2 | dimExt1Λ(M1,M2) = ext1Λ(Z1, Z2)}

are open in Z1 × Z2.
(iii) The sets

{M ∈ Z | EΛ(M) = EΛ(Z)},
{(M1,M2) ∈ Z1 × Z2 | EΛ(M1,M2) = EΛ(Z1, Z2)}

are dense constructible subsets of Z and Z1 × Z2, respectively.

Lemma 5.2. For Z,Z1, Z2 ∈ decIrr(Λ) we have

cΛ(Z) ≤ eΛ(Z) ≤ EΛ(Z) and ext1Λ(Z1, Z2) ≤ EΛ(Z1, Z2).

Proof. Let d = dim(πZ) and di = dim(πZi) for i = 1, 2. Choose some p ≥
2|d|, |d1|+ |d2|. By Lemma 2.2 we can regard all the representations in Z, Z1 and
Z2 as representations of Λp. Thus we can interpret Z, Z1 and Z2 as irreducible
components in decIrr(Λp). Now Proposition 3.5 allows us to assume without loss of
generality that Λ = Λp. Voigt’s Lemma [G, Proposition 1.1] implies that cΛ(Z) ≤
eΛ(Z). The Auslander-Reiten formula Ext1Λ(M,N) ∼= DHomΛ(τ

−
Λ (N),M) yields

dimExt1Λ(M,N) ≤ dimHomΛ(τ
−
Λ (N),M).

This implies eΛ(Z) ≤ EΛ(Z) and ext1Λ(Z1, Z2) ≤ EΛ(Z1, Z2). (Here we used again
Proposition 3.5.) �

Following [GLS] we call an irreducible component Z ∈ decIrr(Λ) strongly reduced
provided

cΛ(Z) = eΛ(Z) = EΛ(Z).

For example, if Λ is finite-dimensional, one can easily check that for any injective Λ-
module I ∈ rep(Λ) the closure of the orbit O(I, 0) is a strongly reduced irreducible
component. Similarly, it follows directly from the definitions that for all decorated
representations of the form M = (0, V ), the closure of O(M) is a strongly reduced
component. (In this case, O(M) is just a point, and it is equal to its closure.)

Let decIrrs.r.d,v(Λ) be the set of all strongly reduced components of decrepd,v(Λ),
and let

decIrrs.r.(Λ) :=
⋃

(d,v)∈Nn×Nn

decIrrs.r.d,v(Λ).
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5.2. Decomposition theorems for irreducible components. An irreducible
component Z in Irr(Λ) or decIrr(Λ) is called indecomposable provided there exists
a dense open subset U of Z which contains only indecomposable representations
or decorated representations, respectively. In particular, if Z ∈ decIrrd,v(Λ) is
indecomposable, then either d = 0 or v = 0.

Given irreducible components Zi of decrepdi,vi
(Λ) for 1 ≤ i ≤ t, let (d,v) :=

(d1,v1) + · · ·+ (dt,vt) and let

Z1 ⊕ · · · ⊕ Zt

be the points of decrepd,v(Λ) which are isomorphic to M1 ⊕ · · · ⊕Mt with Mi ∈ Zi

for 1 ≤ i ≤ t. The Zariski closure of Z1 ⊕ · · · ⊕ Zt in decrepd,v(Λ) is denoted by

Z1 ⊕ · · · ⊕ Zt.

It is quite easy to show that Z1 ⊕ · · · ⊕ Zt is an irreducible closed subset of
decrepd,v(Λ), but in general it is not an irreducible component.

Theorem 5.3 ([CBS]). For Z1, . . . , Zt ∈ decIrr(Λ) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt is an irreducible component.
(ii) ext1Λ(Zi, Zj) = 0 for all i �= j.

Furthermore, the following hold:

(iii) Each irreducible component Z ∈ decIrr(Λ) can be written as Z =
Z1 ⊕ · · · ⊕ Zt with Z1, . . . , Zt indecomposable irreducible components in
decIrr(Λ). Suppose that

Z1 ⊕ · · · ⊕ Zt = Z ′
1 ⊕ · · · ⊕ Z ′

s

is an irreducible component with Zi and Z ′
i indecomposable irreducible com-

ponents in decIrr(Λ) for all i. Then s=t and there is a bijection σ : {1, . . . , t}
→ {1, . . . , s} such that Zi = Z ′

σ(i) for all i.

The next lemma is an easy exercise.

Lemma 5.4. For 1 ≤ i ≤ n and any decorated representation M = (M,V ) of Λ
we have

EΛ(M,S−
i ) = dim(Mi) and EΛ(S−

i ,M) = 0.

Corollary 5.5. If decIrrs.r.d,v(Λ) �= ∅, then we have divi = 0 for all 1 ≤ i ≤ n.

Proof. Let Z ∈ decIrrs.r.d,v(Λ) for some d,v, and let Z ′ be the corresponding irre-
ducible component of decIrrd,0(Λ). We clearly have cΛ(Z) = cΛ(Z

′) and EΛ(Z) =
EΛ(Z

′)+d1v1+· · ·+dnvn. Using Lemma 5.2 we obtain cΛ(Z) = cΛ(Z
′) ≤ EΛ(Z

′) ≤
EΛ(Z). Since cΛ(Z) = EΛ(Z), the result follows. �

Lemma 5.6. Let Z ∈ decIrrd,v(Λ), and assume that p > |d|. Then the following
are equivalent:

(i) Z ∈ decIrrs.r.(Λ).
(ii) Z ∈ decIrrs.r.(Λp).

Proof. Since p > |d|, we can apply Lemma 2.2 and Proposition 3.5 and get cΛp
(Z) =

cΛ(Z) and EΛp
(Z) = EΛ(Z). This yields the result. �

The additivity of the functor HomΛ(−, ?) and upper semicontinuity imply the
following lemma.
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Lemma 5.7. Let Z,Z1, Z2 ∈ decIrr(Λ). Suppose that Z = Z1 ⊕ Z2. Then the
following hold:

(i) endΛ(Z) = endΛ(Z1) + endΛ(Z2) + homΛ(Z1, Z2) + homΛ(Z2, Z1).
(ii) EΛ(Z) = EΛ(Z1) + EΛ(Z2) + EΛ(Z1, Z2) + EΛ(Z2, Z1).

Recall that for a = (a1, . . . , an) and b = (b1, . . . , bn) in Zn we defined a · b :=
a1b1 + · · ·+ anbn. The following lemma is obvious.

Lemma 5.8. Let d,d1,d2 ∈ Nn with d = d1 + d2. Then

dim(Gd)− dim(Gd1
)− dim(Gd2

) = 2(d1 · d2).

Lemma 5.9. Let Z,Z1, Z2 ∈ decIrr(Λ) with Z = Z1 ⊕ Z2. We have

dim(Z) = dim(Z1) + dim(Z2) + 2(dim(πZ1) · dim(πZ2))

− homΛ(Z1, Z2)− homΛ(Z2, Z1).

Proof. For i = 1, 2 let (di,vi) := dim(Zi), and let (d,v) := dim(Z). We have
dim(Z) = dim(Z1) + dim(Z2) and dim(πZi) = di. The map

f : Gd × Z1 × Z2 → Z

defined by

(g, (M1,C
v1), (M2,C

v2)) �→ (g.(M1 ⊕M2),C
v)

is a morphism of affine varieties. For (M1,M2) ∈ Z1 × Z2 define

fM1,M2
: Gd ×O(M1)×O(M2) → O(M1 ⊕M2)

by (g,N1,N2) �→ f(g,N1,N2). The fibres of fM1,M2
are of dimension

dM1,M2
:= dim(Gd) + dimO(M1) + dimO(M2)− dimO(M1 ⊕M2).

Using equation (1), an easy calculation yields

dM1,M2
= dim(Gd1

) + dim(Gd2
) + dimHomΛ(M1,M2) + dimHomΛ(M2,M1).

Let M be in the image of f . We want to compute the dimension of the fibre
f−1(M). Let

T := {O(N1)×O(N2) ⊆ Z1 × Z2 | N1 ⊕N2
∼= M}.

It follows from the Krull-Remak-Schmidt Theorem that T is a finite set. Thus the
fibre f−1(M) is the disjoint union of the fibres f−1

N1,N2
(M), where O(N1)×O(N2)

runs through T . So we get

dim(f−1(M)) = max{dN1,N2
| O(N1)×O(N2) ∈ T }.

Thus by upper semicontinuity there is a dense open subset V ⊆ Z such that all
fibres f−1(M) with M ∈ V have dimension

dZ1,Z2
:= dim(Gd1

) + dim(Gd2
) + homΛ(Z1, Z2) + homΛ(Z2, Z1).

We have

dim(Z) + dZ1,Z2
= dim(Gd) + dim(Z1) + dim(Z2).

Using Lemma 5.8 we get

dim(Z) = dim(Z1) + dim(Z2) + 2(d1 · d2)− homΛ(Z1, Z2)− homΛ(Z2, Z1).

This finishes the proof. �
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Lemma 5.10. For Z,Z1, Z2 ∈ decIrr(Λ) with Z = Z1 ⊕ Z2 we have

cΛ(Z) = cΛ(Z1) + cΛ(Z2).

Proof. For i = 1, 2 let (di,vi) := dim(Zi), and let (d,v) := dim(Z). We get

cΛ(Z) = dim(Z)− dim(Gd) + endΛ(Z)

= dim(Z1) + dim(Z2)− dim(Gd1
)− dim(Gd2

) + endΛ(Z1) + endΛ(Z2)

= cΛ(Z1) + cΛ(Z2).

The first equality follows directly from the definition of cΛ(Z). The second equality
uses Lemma 5.7(i) and Lemma 5.9. �

The following result is a version of Theorem 5.3 for strongly reduced components.

Theorem 5.11. For Z1, . . . , Zt ∈ decIrr(Λ) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt is a strongly reduced irreducible component.
(ii) Each Zi is strongly reduced and EΛ(Zi, Zj) = 0 for all i �= j.

Proof. Without loss of generality assume that t = 2. The general case follows by
induction. Let Z1 ∈ decIrrd1,v1

(Λ) and Z2 ∈ decIrrd2,v2
(Λ).

Assume that Z := Z1 ⊕ Z2 is a strongly reduced component. Thus we have
cΛ(Z) = EΛ(Z). Applying Lemma 5.10 and Lemma 5.7(ii) this implies

cΛ(Z1) + cΛ(Z2) = EΛ(Z1) + EΛ(Z2) + EΛ(Z1, Z2) + EΛ(Z2, Z1).

Since cΛ(Zi) ≤ EΛ(Zi) we get EΛ(Z1, Z2) = EΛ(Z2, Z1) = 0 and cΛ(Zi) = EΛ(Zi).
Thus (i) implies (ii).

To show the converse, assume that Z1 and Z2 are strongly reduced with
EΛ(Z1, Z2) = EΛ(Z2, Z1) = 0. We claim that

cΛ(Z) = cΛ(Z1) + cΛ(Z2) = EΛ(Z1) + EΛ(Z2) = EΛ(Z).

For the first equality we use Lemma 5.10; the second equality is just our assumption
that Z1 and Z2 are strongly reduced. Finally, the third equality follows from
Lemma 5.7 together with our assumption that EΛ(Z1, Z2) and EΛ(Z2, Z1) are both
zero. Thus Z is strongly reduced. �

Note that Theorems 5.3 and 5.11 imply that each Z ∈ decIrrs.r.(Λ) is of the form
Z = Z1 ⊕ · · · ⊕ Zt with Zi ∈ decIrrs.r.(Λ) and Zi indecomposable for all i.

5.3. Generic g-vectors. For Z ∈ decIrr(Λ) there is a dense open subset U of
Z such that gΛ(M) = gΛ(N ) for all M,N ∈ U . This follows again by upper
semicontinuity. For M ∈ U let

gΛ(Z) := gΛ(M)

be the generic g-vector of Z.
The next lemma follows directly from upper semicontinuity and Lemma 4.1(i).

Lemma 5.12. For Z,Z1, Z2 ∈ decIrr(Λ) with Z = Z1 ⊕ Z2 we have

gΛ(Z) = gΛ(Z1) + gΛ(Z2).

Lemma 5.13. For Z ∈ decIrrs.r.d,v(Λ) we have

d · gΛ(Z) = dim(Z)− dim(Gd).
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Proof. It follows from the definitions that

EΛ(Z) = endΛ(Z) + d · gΛ(Z),

and we have

cΛ(Z) = dim(Z)− dim(Gd) + endΛ(Z).

Now the claim follows, since cΛ(Z) = EΛ(Z). �

Corollary 5.14. Let Z ∈ decIrrs.r.d,v(Λ) with d �= 0. If EΛ(Z) = 0, then

d · gΛ(Z) = − endΛ(Z) < 0.

5.4. Parametrization of strongly reduced components. Let Λ = C〈〈Q〉〉/I be
a finite-dimensional basic algebra. Plamondon [P2] constructs a map

PΛ : decIrr(Λ) → Zn,

which can be defined as follows: Let Z ∈ decIrr(Λ). Then there exist injective
Λ-modules IΛ0 (Z) and IΛ1 (Z), which are uniquely determined up to isomorphism,
and a dense open subset U ⊆ πZ such that for each representation M ∈ U we have
IΛ0 (M) = IΛ0 (Z) and IΛ1 (M) = IΛ1 (Z). For Z ∈ decIrrd,v(Λ) define

PΛ(Z) := −dim(soc(IΛ0 (Z))) + dim(soc(IΛ1 (Z))) + v.

Let

P s.r.
Λ : decIrrs.r.(Λ) → Zn

be the restriction of PΛ to decIrrs.r.(Λ).
For a representation M let add(M) be the category of all finite direct sums of

direct summands of M . Plamondon [P2] obtains the following striking result.

Theorem 5.15 (Plamondon). For any finite-dimensional basic algebra Λ the fol-
lowing hold:

(i)

P s.r.
Λ : decIrrs.r.(Λ) → Zn

is bijective.
(ii) For every Z ∈ decIrrs.r.(Λ) we have

add(IΛ0 (Z)) ∩ add(IΛ1 (Z)) = 0.

Note that Plamondon works with irreducible components, and not with deco-
rated irreducible components. But his results translate easily from one concept to
the other.

We now generalize Theorem 5.15(i) to arbitrary basic algebras Λ. It turns out
that decIrrs.r.(Λ) is in general no longer parametrized by Zn but by a subset of
Zn. Our proof is based on Plamondon’s result and additionally uses truncations of
basic algebras.

For a basic algebra Λ let

GΛ : decIrr(Λ) → Zn

be the map which sends Z ∈ decIrr(Λ) to the generic g-vector gΛ(Z) of Z.
For finite-dimensional Λ, it follows immediately from Lemma 3.3 that GΛ = PΛ.

Let

Gs.r.
Λ : decIrrs.r.(Λ) → Zn

be the restriction of GΛ to decIrrs.r.(Λ).
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For a basic algebra Λ let

decIrr<p(Λ)

be the set of irreducible components Z ∈ decIrr(Λ) such that (d,v) := dim(Z)
satisfies |d| < p. Define

decIrrs.r.<p(Λ) := decIrr<p(Λ) ∩ decIrrs.r.(Λ).

Lemma 5.16. For a basic algebra Λ = C〈〈Q〉〉/I the following hold:

(i) For all p ≤ q we have

decIrrs.r.<p(Λp) ⊆ decIrrs.r.<q (Λq) ⊆ decIrrs.r.(Λ).

(ii) We have

decIrrs.r.(Λ) =
⋃
p>0

decIrrs.r.<p(Λp).

(iii) We have

decIrrs.r.(Λ) = decIrrs.r.(Λ).

Proof. Let Z ∈ decIrrd,v(Λ), and let p > |d|. Thus we have Z ∈ decIrrd,v(Λp) and
Z ∈ decIrr<p(Λp). Furthermore, we have cΛp

(Z) = cΛ(Z) and EΛp
(Z) = EΛ(Z).

Thus Z ∈ decIrrs.r.(Λ) if and only if Z ∈ decIrrs.r.(Λp). This yields (i) and (ii).
Recall that

I =
⋂
p≥0

(I +mp)

and Λp = C〈〈Q〉〉/(I +mp). For p ≥ 2 it is easy to check that

I +mp = I +mp.

This implies Λp = Λp. Now (ii) implies (iii). �

Theorem 5.17. For a basic algebra Λ the following hold:

(i) The map

Gs.r.
Λ : decIrrs.r.(Λ) → Zn

is injective.
(ii) The following are equivalent:

(a) Gs.r.
Λ is surjective.

(b) Λ is finite-dimensional.

Proof. Since Λp is finite-dimensional for all p, we know from Plamondon’s Theo-
rem 5.15(i) that

Gs.r.
Λp

: decIrrs.r.(Λp) → Zn

is bijective. Now Lemma 5.16 yields that the map

Gs.r.
Λ : decIrrs.r.(Λ) → Zn

sends Z ∈ decIrrs.r.<p (Λp) to Gs.r.
Λp

(Z), and that Gs.r.
Λ is injective. This proves (i).

Theorem 5.15(i) together with Lemma 5.16(iii) says that (b) implies (a). (Recall
that decrep(Λ) = decrep(Λ). This implies that GΛ = GΛ and Gs.r.

Λ = Gs.r.
Λ

. Note

also that for every Z ∈ decIrr(Λ) we have GΛ(Z) = GΛp
(Z) for some large enough

p.)
To show the converse, assume that Λ is infinite-dimensional. Recall that

Λ = lim←−(Λp)
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and

Ii =
⋃
p≥2

Ii,p

where Ii is the injective envelope of the simple Λ-module Si, and Ii,p is the injective
envelope of Si considered as a Λp-module, and Λp = C〈〈Q〉〉/(I + mp). We have
Ii,p = D(eiΛp), where D = HomK(−,K) is the K-dual functor. This implies

dim(Λp) =
n∑

i=1

dim(Ii,p).

It follows that there exists some 1 ≤ i ≤ n such that Ii is infinite-dimensional.
As a vector space, eiΛp is generated by the residue classes a + (I + mp) of all

paths a in Q with t(a) = i. We have

Ii,2 = D(eiΛ2) = D(ei(C〈〈Q〉〉/(I +m
2))) = D(ei(C〈〈Q〉〉/m2)).

This implies dim(Ii,2) ≥ 2. (Otherwise, there is no arrow a with t(a) = i, which

implies Ii,p = Ii,2 for all p ≥ 2, a contradiction since Ii is infinite-dimensional.)
Now suppose that Ii,p−1 = Ii,p for some p ≥ 3. This implies eiΛp−1 = eiΛp. Thus
we have ei(I +mp−1) = ei(I +mp). It follows that

ei(I +mp+1) = eiI + ei(I +mp)m = eiI + ei(I +mp−1)m = ei(I +mp).

In other words, we have Ii,p+1 = Ii,p. By induction we get Ii,q = Ii,p−1 for all q ≥ p,

a contradiction since Ii is infinite-dimensional. Thus we proved that dim(Ii,p) ≥ p
for all p ≥ 2.

Now assume that −ei is in the image of Gs.r.
Λ . (Here ei denotes the ith standard

basis vector of Zn.) In other words, there is some Z ∈ decIrrs.r.(Λ) such that
Gs.r.

Λ (Z) = −ei. By Lemma 5.16(ii) we know that Z ∈ decIrrs.r.<p(Λp) for some

p ≥ 1. Since gΛ(Z) = −ei, we have I
Λp

0 (Z) = Ii,p and I
Λp

1 (Z) = 0. (Here we use
Theorem 5.15(ii).) This implies that Z is the closure of the orbit of the decorated
representation (Ii,p, 0). But dim(Ii,p) ≥ p and the dimension of all representations
in Z are strictly smaller than p, a contradiction. �

6. Component graphs and CC-clusters

6.1. The graph of strongly reduced components. Let Λ be a basic algebra.
In [CBS] the component graph Γ(Irr(Λ)) of Λ is defined as follows: The vertices of
Γ(Irr(Λ)) are the indecomposable irreducible components in Irr(Λ). There is an edge
between (possibly equal) vertices Z1 and Z2 if ext1Λ(Z1, Z2) = ext1Λ(Z2, Z1) = 0.

We want to define an analogue of Γ(Irr(Λ)) for strongly reduced components.
The graph Γ(decIrrs.r.(Λ)) of strongly reduced components has as vertices the in-
decomposable components in decIrrs.r.(Λ), and there is an edge between (possibly
equal) vertices Z1 and Z2 if EΛ(Z1, Z2) = EΛ(Z2, Z1) = 0.

6.2. Component clusters. Let Γ be a graph, and let Γ0 be the set of vertices of
Γ. We allow only single edges, and we allow loops, i.e. edges from a vertex to itself.
For a subset U ⊆ Γ0 let ΓU be the full subgraph, whose set of vertices is U . The
subgraph ΓU is complete if for each i, j ∈ U with i �= j there is an edge between i
and j. A complete subgraph ΓU is maximal if for each complete subgraph ΓU ′ with
U ⊆ U ′ we have U = U ′. We call a subgraph ΓU loop-complete if ΓU is complete
and there is a loop at each vertex in U .
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The set of vertices of a maximal complete subgraph of Γ := Γ(decIrrs.r.(Λ)) is
called a component cluster of Λ. A component cluster U of Λ is E-rigid provided
EΛ(Z) = 0 for all Z ∈ U . (Recall that there is a loop at a vertex Z of Γ if and
only if EΛ(Z,Z) = 0. If EΛ(Z) = 0, then EΛ(Z,Z) = 0, but the converse does not
hold.) Clearly, each E-rigid component cluster is loop-complete.

Theorem 6.1. For each loop-complete subgraph ΓU of Γ := Γ(decIrrs.r.(Λ)) we
have |U| ≤ n.

Proof. Assume that Z1, . . . , Zn+1 are pairwise different vertices of a loop-complete
subgraph ΓJ of Γ(decIrrs.r.(Λ)). For 1 ≤ i ≤ n+1 let gΛ(Zi) be the generic g-vector
of Zi. Since ΓJ is loop-complete we know by Theorem 5.11 that

Za := Za1
1 ⊕ · · · ⊕ Z

an+1

n+1

is again a strongly reduced component for each a = (a1, . . . , an+1) ∈ Nn+1. By the
additivity of g-vectors we get

gΛ(Za) = a1gΛ(Z1) + · · ·+ an+1gΛ(Zn+1).

Furthermore, we know from Theorem 5.3 that Za = Zb if and only if a = b. Now
one can essentially copy the proof of [GS, Theorem 1.1] to show that there are
a,b ∈ Nn+1 with gΛ(Za) = gΛ(Zb) but a �= b. By Theorem 5.17 different strongly
reduced components have different g-vectors. Thus we have a contradiction. �

Corollary 6.2. Let Λ be a finite-dimensional basic algebra. Let M be a representa-
tion of Λ with HomΛ(τ

−
Λ (M),M) = 0. Then M has at most n isomorphism classes

of indecomposable direct summands.

The following conjecture might be a bit too optimistic, but it is true for Λ =
C〈〈Q〉〉, the path algebra of an acyclic quiver Q; see [DW, Corollary 21] and Sec-
tion 9.1.

Conjecture 6.3. For any basic algebra Λ the following hold:

(i) The component clusters of Λ have cardinality at most n.
(ii) The E-rigid component clusters of Λ are exactly the component clusters of

cardinality n.

6.3. E-rigid representations. After most of this work was done, we learned that
Iyama and Reiten [IR] obtained some beautiful results on so-called τ -rigid modules
over finite-dimensional algebras, which fit perfectly into the framework of Caldero-
Chapoton algebras.

Adapting their terminology to decorated representations of basic algebras, a dec-
orated representationM of a basic algebra Λ is called E-rigid provided EΛ(M) = 0.
The following theorem is just a reformulation of Iyama and Reiten’s results on τ -
rigid modules. Part (i) follows also directly from the more general statement in
Theorem 6.1.

For M ∈ decrep(Λ) let Σ(M) be the number of isomorphism classes of indecom-
posable direct summands of M.

Theorem 6.4 ([IR]). Let Λ = C〈〈Q〉〉/I be a finite-dimensional basic algebra. For
M ∈ decrep(Λ) the following hold:

(i) If M is E-rigid, then Σ(M) ≤ n.



2810 G. CERULLI IRELLI, D. LABARDINI-FRAGOSO, AND J. SCHRÖER

(ii) For each E-rigid M ∈ decrep(Λ) there exists some N ∈ decrep(Λ) such
that M⊕N is E-rigid and Σ(M⊕N ) = n.

(iii) For each E-rigid M ∈ decrep(Λ) with Σ(M) = n− 1 there are exactly two
non-isomorphic indecomposable decorated representations N1,N2 ∈
decrep(Λ) such that M⊕Ni is E-rigid and Σ(M⊕Ni) = n for i = 1, 2.

It is easy to find examples of infinite-dimensional basic algebras Λ such that
Theorem 6.4(iii) does not hold; see Section 9.3.1.

A basic algebra Λ is representation-finite if there are only finitely many isomor-
phism classes of indecomposable representations in rep(Λ). One easily checks that
Λ is finite-dimensional in this case.

Corollary 6.5. Assume that Λ is a representation-finite basic algebra. Then the
following hold:

(i) Each component cluster of Λ is E-rigid.
(ii) Each component cluster of Λ has cardinality n.
(iii) There is bijection between the set of isomorphism classes of E-rigid rep-

resentation of Λ to the set decIrrs.r.(Λ) of strongly reduced components.
Namely, one maps an E-rigid representation M to the closure of the orbit
O(M).

Proof. Since Λ is representation-finite, every irreducible component Z ∈ decIrr(Λ)
is a union of finitely many orbits, and exactly one of these orbits has do be dense
in Z. Thus we have cΛ(Z) = 0. This implies (i) and (iii). Now (ii) follows directly
from Theorem 6.4(ii). �

6.4. Generic Caldero-Chapoton functions. For each (d,v) ∈ Nn × Nn let

Cd,v : decrepd,v(Λ) → Z[x±
1 , . . . , x

±
n ]

be the function defined by M �→ CΛ(M). The map Cd,v is a constructible function.
In particular, the image of Cd,v is finite. Thus for an irreducible component Z ∈
decIrrd,v(Λ) there exists a dense open subset U ⊆ Z such that Cd,v is constant on
U . Define

CΛ(Z) := CΛ(M)

with M any representation in U . The element CΛ(Z) depends only on Z and not
on the choice of U .

Define

BΛ := {CΛ(Z) | Z ∈ decIrrs.r.(Λ)}.
We refer to the elements of BΛ as generic Caldero-Chapoton functions.

Proposition 6.6. Let Λ = C〈〈Q〉〉/I be a basic algebra. If Ker(BQ) ∩ Qn
≥0 = 0,

then BΛ is linearly independent in AΛ.

Proof. For each Z ∈ decIrrs.r.(Λ) there is some M ∈ Z such that gΛ(M) = gΛ(Z)
and CΛ(M) = CΛ(Z). By Theorem 5.17(i) the generic g-vectors of the strongly
reduced components of decorated representations of Λ are pairwise different. Now
Proposition 4.3 yields the result. �

If BΛ is a basis of AΛ, then we call BΛ the generic basis of AΛ.
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6.5. CC-clusters. For a component cluster U of a basic algebra Λ let

CU := {CΛ(Z) | Z ∈ U} and MU := {
∏
Z∈U

CΛ(Z)aZ | aZ ∈ IZ}

where

IZ :=

{
N if EΛ(Z,Z) = 0,

{0, 1} otherwise.

(In each of the products above we assume that aZ = 0 for all but finitely many
Z ∈ U .) The set CU is called a CC-cluster of Λ, and the elements in MU are
CC-cluster monomials. (The letters CC just indicate that we deal with sets of
Caldero-Chapoton functions.) A CC-cluster CU is E-rigid provided EΛ(Z) = 0 for
all Z ∈ U .

Note that
CU ⊆ MU ⊆ AΛ.

The following result is a direct consequence of the definition of BΛ and Theo-
rem 5.11.

Proposition 6.7. Let Λ be a basic algebra. Then

BΛ =
⋃
U

MU

where the union is over all component clusters U of Λ.

6.6. A change of perspective. The CC-clusters are a generalization of the clus-
ters of a cluster algebra defined by Fomin and Zelevinsky. In general, the Fomin-
Zelevinsky cluster monomials form just a small subset of the set of CC-cluster
monomials. Recall that the Fomin-Zelevinsky cluster monomials are obtained by
the inductive procedure of cluster mutation [FZ1, FZ2], and the relation between
neighbouring clusters is described by the exchange relations. One can see the ex-
change relations as part of the definition of a cluster algebra. On the other hand,
the definition of a Caldero-Chapoton algebra does not involve any mutations of
CC-clusters. The CC-clusters are given by collections of irreducible components,
and they do not have to be constructed inductively. One can find a meaningful
notion of neighbouring CC-clusters, and it remains quite a challenge to actually
determine an analogue of the exchange relations.

6.7. Open problems. In this section let Λ be any basic algebra. The following
conjecture is again quite optimistic in this generality.

Conjecture 6.8. BΛ is a C-basis of AΛ.

Conjecture 6.8 is true for every Λ = C〈〈Q〉〉 with Q an acyclic quiver and also for
numerous other examples; see [GLS].

Problem 6.9. Does the set

{CΛ(Z) | Z ∈ decIrrs.r.(Λ), EΛ(Z) = 0}
generate AΛ as a C-algebra?

We say that AΛ has the Laurent phenomenon property if for any E-rigid com-
ponent cluster {Z1, . . . , Zn} of Λ, we have

AΛ ⊆ C[CΛ(Z1)
±, . . . , CΛ(Zn)

±].
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Problem 6.10. Under which assumptions does AΛ have the Laurent phenomenon
property?

7. Caldero-Chapoton algebras and cluster algebras

7.1. Caldero-Chapoton algebras of Jacobian algebras. Suppose that Q is a
2-acyclic quiver with a non-degenerate potential W , and let Λ := P(Q,W ) be the
associated Jacobian algebra. Let AQ and Aup

Q be the cluster algebra and upper
cluster algebra associated to Q, respectively. Set AQ,W := AΛ, BQ,W := BΛ. Let

MQ,W := {CΛ(Z) | Z ∈ decIrrs.r.(Λ), EΛ(Z) = 0}.
The first part of the following proposition is a consequence of [DWZ2, Lemma

5.2]; compare also the calculation at the end of [GLS, Section 6.3]. The rest follows
from [DWZ2, Corollary 7.2].

Proposition 7.1. We have

AQ ⊆ AQ,W ⊆ Aup
Q .

The set MQ of cluster monomials of AQ is contained in BQ,W . More precisely, we
have

MQ ⊆ MQ,W ⊆ BQ,W .

In general, the sets MQ, MQ,W and BQ,W are pairwise different.

7.2. Example. Let Q be the quiver

2

b1

���
��

��
��

��
�

b2

���
��

��
��

��
�

1

a1

������������
a2

������������
3

c1
��

c2��

and define

W1 := c1b1a1 + c2b2a2,

W2 := c1b1a1 + c2b2a2 − c2b1a2c1b2a1.

It is not difficult to check that P(Q,W1) is infinite-dimensional and P(Q,W2) is
finite-dimensional. By [BFZ, Proposition 1.26] the algebras AQ and Aup

Q do not

coincide. The potentials W1 and W2 are both non-degenerate; see [DWZ1, Exam-
ple 8.6] and [La2, Example 8.2], respectively. Furthermore, by [P2, Example 4.3]
the set BQ,W2

of generic functions is not contained in AQ. In particular, AQ and
AQ,W2

do not coincide. We conjecture that AQ = AQ,W1
and Aup

Q = AQ,W2
.

7.3. Open problems.

Problem 7.2. Are there always non-degenerate potentials W1 and W2 of Q such
that AQ = AQ,W1

and Aup
Q = AQ,W2

?

Problem 7.3. For a non-degenerate potential W of Q find a necessary and suffi-
cient condition for AQ,W = Aup

Q . Is this related to the two conditions

(i) P(Q,W ) is finite-dimensional,
(ii) W is rigid (see [DWZ1, Section 6] for the definition)?



CALDERO-CHAPOTON ALGEBRAS 2813

Problem 7.4. Suppose that there is only one non-degenerate potential W of Q up
to right equivalence. Does it follows that AQ = Aup

Q ?

8. Sign-coherence of generic g-vectors

The following result implies Theorem 1.4. The special case where Λ = P(Q,W ) is
a Jacobian algebra with non-degenerate potentialW and U is an E-rigid component
cluster is proved in [P2, Theorem 3.7(1)].

Theorem 8.1. Let Λ be a basic algebra, and let U be a component cluster of Λ.
Then the set {gΛ(Z) | Z ∈ U} is sign-coherent.

Proof. Assume that {gΛ(Z) | Z ∈ U} is not sign-coherent. Thus there are Z1, Z2 ∈
U such that the set {gΛ(Z1), gΛ(Z2)} is not sign-coherent. Since U is a component
cluster, we know from Theorem 5.11 that Z := Z1 ⊕ Z2 is a strongly reduced
component. By Lemma 5.12 we have gΛ(Z) = gΛ(Z1)+gΛ(Z2). By Lemma 5.16(ii)
there is some p such that Z,Z1, Z2 ∈ decIrrs.r.<p (Λp). We also know that gΛp

(Z) =
gΛ(Z) and gΛp

(Zi) = gΛ(Zi) for i = 1, 2 and that

I
Λp

0 (Z) = I
Λp

0 (Z1) + I
Λp

0 (Z2) and I
Λp

1 (Z) = I
Λp

1 (Z1) + I
Λp

1 (Z2).

For i = 1, 2 let (di,vi) := dim(Zi).
We first assume that v1 = v2 = 0. Since {gΛ(Z1), gΛ(Z2)} is not sign-coherent,

we get from Lemma 3.4 that

add(I
Λp

0 (Z1)) ∩ add(I
Λp

1 (Z2)) �= 0 or add(I
Λp

1 (Z1)) ∩ add(I
Λp

0 (Z2)) �= 0,

a contradiction to Theorem 5.15(ii).
Next, assume that v1 and v2 are both non-zero. The components Z1 and Z2

are indecomposable. It follows that Z1 and Z2 are just the orbits of some nega-
tive simple representations. But then {gΛ(Z1), gΛ(Z2)} has to be sign-coherent, a
contradiction.

Finally, let v1 = 0 and v2 �= 0. Thus we get Z2 = O(S−
i ) for some 1 ≤ i ≤ n.

This implies gΛ(Z2) = ei. Since {gΛ(Z1), gΛ(Z2)} is not sign-coherent, the ith
entry of gΛ(Z1) has to be negative. It follows that the socle of each representation
in Z1 has Si as a composition factor. In particular, the ith entry di of d1 is non-
zero. But we also have EΛ(Z1, Z2) = 0. Now Lemma 5.4 implies that di = 0, a
contradiction. �

9. Examples

9.1. Strongly reduced components for hereditary algebras.

9.1.1. Assume that Λ = C〈〈Q〉〉 with Q an acyclic quiver. Thus Λ is equal to
the ordinary path algebra CQ. Clearly, for each (d,v) ∈ Nn × Nn the variety
decrepd,v(Λ) is an affine space. In particular, it has just one irreducible component,
namely Zd,v := decrepd,v(Λ).

Lemma 9.1. The following hold:

(i) For irreducible components Zd1,0, Zd2,0 ∈ decIrr(Λ) we have

ext1Λ(Zd1,0, Zd2,0) = EΛ(Zd1,0, Zd2,0).

(ii) Zd,v is strongly reduced if and only if divi = 0 for all 1 ≤ i ≤ n.
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Proof. Since Λ is a finite-dimensional hereditary algebra, we have

dimExt1Λ(M,N) = dimHomΛ(τ
−
Λ (N),M)

for all M,N ∈ rep(Λ). Now Proposition 3.5 implies (i). In particular, for Z = Zd,0

we have eΛ(Z) = EΛ(Z). Since Z = decrepd,0(Λ) is an affine space, Voigt’s Lemma
implies that cΛ(Z) = eΛ(Z). Thus Z is strongly reduced. The components Z0,ei

are obviously also strongly reduced. Now Corollary 5.5 yields (ii). �

The following result is a direct consequence of Lemma 9.1 and Schofield’s [Scho]
groundbreaking work on general representations of acyclic quivers. For all unex-
plained terminology we refer to [Scho].

Proposition 9.2. Let Λ = C〈〈Q〉〉 with Q an acyclic quiver. Then the indecom-
posable strongly reduced components are the components Zd,0, where d is a Schur
root, and the components Z0,e1

, . . . , Z0,en
, where ei is the ith standard basis vector

of Zn.

For a finite-dimensional path algebra Λ = CQ one can use Schofield’s algorithm
[Scho] (see also [DW] for a more efficient version of the algorithm) to determine the
canonical decomposition of a dimension vector, and one can also use it to decide
if ext1Λ(Z1, Z2) is zero or not. So at least in principle, the graph Γ(decIrrs.r.(Λ))
can be computed. However, even in this case there are numerous interesting open
questions on the structure of the graph Γ(decIrrs.r.(Λ)); see [Sche].

9.2. Strongly reduced components for 1-vertex algebras.

Proposition 9.3. Let Λ = C〈〈Q〉〉/I be a basic algebra with n = 1. Then the
following hold:

(i) If Λ is finite-dimensional, then the indecomposable strongly reduced compo-
nents in decIrr(Λ) are O(S−

1 ) and the closure of O((I1, 0)), where I1 is the

injective envelope of the simple Λ-module S1.
(ii) If Λ is infinite-dimensional, then the only indecomposable strongly reduced

component in decIrr(Λ) is O(S−
1 ).

Proof. Assume that Λ is finite-dimensional. Then Theorem 5.17 implies that
Im(Gs.r.

Λ ) = Z. For m ≥ 0, we know that the orbit closures of (S−
1 )m and (I1, 0)

m

are E-rigid strongly reduced components with generic g-vectors me1 and −me1, re-
spectively. This implies (i). Part (ii) follows from the proof of Theorem 5.17(ii). �

9.3. Strongly reduced components for some representation-finite alge-
bras. By Corollary 6.5 each vertex of the component graph of a representation-
finite basic algebra has a loop. In the following examples, for each E-rigid indecom-
posable strongly reduced component, we just display the indecomposable decorated
representation whose orbit closure is the component. We describe representations
by displaying their socle series and their composition factors. For 1 ≤ i ≤ n we
write i and −i instead of Si and S−

i , respectively. For a decorated representation
of the form M = (M, 0) we just display M .
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9.3.1. Let Q be the quiver

1 2
b�� a		

and let Λ := C〈〈Q〉〉/I, where I is generated by ba. Then Γ(decIrrs.r.(Λ)) looks as
follows:

2
1 1

−1 −2

For p = 2, the component graph Γ(decIrrs.r.(Λp)) looks as follows:

2
1 1

2
2

���

���

−1 −2

To repair the somewhat non-symmetric graph Γ(decIrrs.r.(Λ)) one could insert a
vertex for the infinite-dimensional indecomposable injective Λ-module I2. Such
aspects will be dealt with elsewhere.

9.3.2. Let Q be the quiver

1 2
b�� 3

a��

and let Λ := C〈〈Q〉〉/I, where I is generated by ba. Then Γ(decIrrs.r.(Λ)) looks as
follows:

−3

��
��
��
�

��
��

��

1 2
1

��
��
��
��
��
��
��
��

−2

�������

��
��

��
� 2

��
��
��

						

3 3
2

−1

������

�������

Note that for M = 3
2 and N = 1 we have Ext1Λ(M,N) = 0, but EΛ((M, 0), (N, 0))

= HomΛ(τ
−(N),M) �= 0.
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9.4. Examples of Caldero-Chapoton algebras.

9.4.1. Let Q be the quiver

1




and let Λ := C〈〈Q〉〉. The skew-symmetric adjacency matrix BQ of Q is just (0).
Up to isomorphism, for each d ≥ 1 there is a unique indecomposable representation
Md of Λ with dim(Md) = d, given by a nilpotent Jordan block of size d. One easily
checks that

CΛ(Md) = d+ 1.

This implies AΛ = C.
For p ≥ 2 the indecomposable representations of the p-truncation Λp are M1, . . . ,

Mp, and we get

CΛp
(Md) =

{
(d+ 1)x−1

1 if d = p,

(d+ 1) otherwise.

This implies AΛp
= C[x−1

1 ].

9.4.2. In this section, let Q be the quiver

1
a �� 2

b �� 3 c




and let Λ := C〈〈Q〉〉/I, where I is the ideal generated by c2. (This example is closely
related to Zhou and Zhu’s [ZZ] study of cluster tubes. We thank the anonymous
referee for pointing this out. The considerations in this section also hold for the
corresponding more general case of a linear quiver with n vertices and a loop c with
c2 = 0. This and also a comparison with the results in [ZZ] will be carried out in a
separate publication.)

The basic algebra Λ is a representation-finite string algebra, and its Auslander-
Reiten quiver looks as follows: (Recall that there is an arrow from M to N if
and only if there is an irreducible homomorphism from M to N , and for all non-
projective M we draw a dashed arrow from M to its Auslander-Reiten translate
τΛ(M).)

1
2
3
3

��











2

���
��

��
��

�
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2
3
3















��











1
2
3 2
3













��
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���������
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���
���

��
�

���������� 2
3 2
3
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����
���
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 1
2 1
3 2
3

��� � � � � � � �

���������

���
��

��
�
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���������

���
��

��
�

3 2
3

����
���

�

��������
��� � � � � � � 2 1

3 2
3

��������

����
���

���
��� � � � � � � � 1

2
3

��� � � � � � � �

2
3

����
���

���

�������� 1
3 2
3

��� � � � � � � �

����
���

���

��������
2
3

������������� � � � � � � � �

1
2
3

����������
3

�������������� � � � � � � � �
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In this quiver the two south-west and the two south-east edges are identified. The
framed representations are the indecomposable E-rigid representations of Λ. We
have

I1 = 1 , I2 = 1
2 , I3 =

1
2 1
3 2
3

.

We now describe explicitly the Caldero-Chapoton functions associated to the 12
indecomposable E-rigid decorated representations of Λ. By definition CΛ(S−

i ) = xi,
for i = 1, 2, 3. The remaining 9 functions are

CΛ( 1 ) =
1 + x2

x1
, CΛ ( 12 ) =

x1 + x3 + x2x3

x1x2
,

CΛ

(
1
2
3
3

)
=

x1x
2
2 + x1x2 + x1 + x3 + x2x3

x1x2x3
, CΛ( 2 ) =

x1 + x3

x2
,

CΛ ( 33 ) =
x2
2 + x2 + 1

x3
, CΛ

(
2
3
3

)
=

x1x
2
2 + x1x2 + x1 + x3

x2x3
,

CΛ

(
1
2
3 2
3

)
=

x2
1x

2
2 + x2

1x2 + x1x2x3 + 2x1x3 + x2
1 + x1x2x3 + x2x

2
3 + x2

3

x1x2
2x3

,

CΛ

(
1
2 1
3 2
3

)

=
x2
1x

2
2 + x2

1x2+x2
1 + x1x2x3+2x1x3 + x2

3 + x1x
2
2x3+2x1x2x3+2x2x

2
3 + x2

2x
2
3

x2
1x

2
2x3

,

CΛ

(
2
3 2
3

)
=

x2
1x

2
2 + x2

1x2 + x2
1 + x1x2x3 + 2x1x3 + x2

3

x2
2x3

.

The Caldero-Chapoton functions associated to the 6 indecomposable non-E-rigid
representations of Λ are

CΛ( 3 ) = x2 + 1,

CΛ ( 23 ) =
x1x2 + x1 + x3

x2
,

CΛ ( 3 2
3 ) =

x1x
2
2 + x1x2 + x1 + x3 + x2x3

x2x3
,

CΛ

(
1
2
3

)
=

x1x2 + x1 + x3 + x2x3

x1x2
,

CΛ

(
1

3 2
3

)
=

x1x
2
2 + x1x2 + x1 + x2x3 + x2

2x3 + x2x3 + x3

x1x2x3
,

CΛ

(
2 1
3 2
3

)
=

x2
1x

2
2 + x2

1x2 + x2
1 + x1x2x3+2x1x3 + x2

3 + x1x
2
2x3 + x1x2x3 + x2x

2
3

x1x2
2x3

.

The following statement says that in our example, there is a positive answer to
Problem 6.9.

Proposition 9.4. The set

{CΛ(Z) | Z ∈ decIrrs.r.(Λ), EΛ(Z) = 0}

generates the Caldero-Chapoton algebra AΛ as a C-algebra.
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Proof. It is enough to express the Caldero-Chapoton functions of the 6 indecompos-
able non-E-rigid representations in terms of Caldero-Chapoton functions of E-rigid
decorated representations. An easy calculation yields

CΛ( 3 ) = x2 + 1,

CΛ ( 23 ) = x1 + CΛ( 2 ),

CΛ ( 3 2
3 ) = CΛ

(
2
3
3

)
+ 1

CΛ

(
1
2
3

)
= CΛ ( 12 ) + 1,

CΛ

(
1

3 2
3

)
= CΛ

(
1
2
3
3

)
+ CΛ( 1 ),

CΛ

(
2 1
3 2
3

)
= CΛ

(
1
2
3 2
3

)
+ 1.

All summands of the right hand side of the above equations are Caldero-Chapoton
functions of E-rigid decorated representations, and the 6 Caldero-Chapoton func-
tions of the indecomposable non-E-rigid representations are on the left side. (Note
that xi = CΛ(S−

i ) and 1 = CΛ(0), and S−
i and 0 are both E-rigid.) This finishes

the proof. �

Since Λ is representation-finite, each strongly reduced component contains an
E-rigid decorated representation. Each vertex of Γ(decIrrs.r.(Λ)) has a loop. Let
Γ(decIrrs.r.(Λ))◦ be the graph obtained by deleting these loops. We display
Γ(decIrrs.r.(Λ))◦ in the following picture. Note that each component cluster is
E-rigid and contains exactly three irreducible components.
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3
3
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2
3 2
3

2

−3
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3 2
3

1
2
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��������������������������������������
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9.4.3. Let Q be the 2-Kronecker quiver

1

����
2
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and let Λ = C〈〈Q〉〉. The following picture describes the quiver Γ(decIrrs.r.(Λ)).
(For indecomposable strongly reduced components of the form Zd,0 or Z0,ei

we
just display the vectors d or −ei, respectively.)

1
1

· · · 4
3

3
2

2
1

1
0

0
−1

−1
0

0
1

1
2

2
3

3
4 · · ·

Thus there is exactly one component cluster {Z} of cardinality one, and there are
infinitely many component clusters of cardinality two. One can easily check that
EΛ(Z,Z) = 0, hence the loop at Z, but EΛ(Z) �= 0. Thus {Z} is not E-rigid. The
other component clusters are E-rigid. The CC-cluster monomials are

CΛ(
0
−1 )

aCΛ(
−1
0 )b, CΛ(

i+1
i )aCΛ(

i
i−1 )

b, CΛ(
i−1
i )aCΛ(

i
i+1 )

b and CΛ( 11 )
a

where a, b, i ≥ 0.
The set BΛ of generic Caldero-Chapoton functions is just the set of CC-cluster

monomials. Recall from [BFZ] that for any acyclic quiver Q we have AQ = Aup
Q .

In this case, BΛ is a C-basis of AQ; see [GLS].
For acyclic quivers Q of wild representation type and Λ = C〈〈Q〉〉, the component

graph Γ(decIrrs.r.(Λ)) will have vertices without loops. For example, let Q be the
3-Kronecker quiver

1

���� ��
2

and let Λ = C〈〈Q〉〉. Let

φ =

(
−1 3
−3 8

)

be the Coxeter matrix of Λ. For k ≥ 0 define

p2k := φk ( 01 ) ,

p2k+1 := φk ( 13 ) ,

q2k := φ−k ( 10 ) ,

q2k+1 := φ−k ( 31 ) .

Set p−1 := −e1 and q−1 := −e2. One connected component of the component
graph Γ(decIrrs.r.(Λ)) looks as follows:

· · · q3 q2 q1 q0 q−1 p−1 p0 p1 p2 p3 · · ·

These are precisely the E-rigid vertices of Γ(decIrrs.r.(Λ)).
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The set of Schur roots of Q consists of real and imaginary Schur roots. The
above picture shows the real Schur roots (and the vectors −e1 and −e2). The set
R+

im of imaginary Schur roots consists of all dimension vectors d = (d1, d2) ∈ N2

with d2 �= 0 such that

(3−
√
5)/2 ≤ d1/d2 ≤ (3 +

√
5)/2;

see [DW, Section 3] and [K, Section 6]. There is no edge between Zd,0 and any
other vertex of Γ(decIrrs.r.(Λ)). In particular, there is no loop at Zd,0.

The CC-cluster monomials are

CΛ(q−1)
aCΛ(p−1)

b, CΛ(pi−1)
aCΛ(pi)

b,

CΛ(qi)
aCΛ(qi−1)

b and CΛ(d)

where a, b, i ≥ 0 and d ∈ R+
im. Again it follows from [GLS] that these CC-cluster

monomials form a C-basis of AQ. It remains a challenge to compute the exchange
relations between all neighbouring CC-clusters. For the E-rigid CC-clusters, the
exchange relations are known from the Fomin-Zelevinsky exchange relations arising
from mutations of clusters. But for d,d1,d2 ∈ R+

im and i ≥ −1 it remains an open
problem to express the products

CΛ(d)CΛ(pi), CΛ(d)CΛ(qi) and CΛ(d1)CΛ(d2)

as linear combinations of elements from the basis BΛ.
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