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ESSENTIAL SURFACES

OF NON-NEGATIVE EULER CHARACTERISTIC

IN GENUS TWO HANDLEBODY EXTERIORS

YUYA KODA AND MAKOTO OZAWA, WITH AN APPENDIX BY CAMERON GORDON

Abstract. We provide a classification of the essential surfaces of non-negative
Euler characteristic in the exteriors of genus two handlebodies embedded in
the 3-sphere.

Introduction

As is well-known, the set of knots in the 3-sphere is classified into four classes,
the trivial knot, torus knots, satellite knots and hyperbolic knots, depending on the
types of the essential surfaces of non-negative Euler characteristic lying in their
exteriors. The trivial knot is the only knot that contains an essential disk in its
exterior, while the torus knot exteriors contain essential annuli but do not contain
essential tori. The class of satellite knots consists of knots admitting essential tori.
Classical studies on knots prove that the essential annuli in the exterior of torus
knots or satellite knots are very limited, that is, each of them is either a cabling
annulus or one which can be extended to decomposing spheres (cf. Lemma 1.2).
The class of hyperbolic knots consists of knots whose exteriors are simple, that
is, do not admit any essential surfaces of Euler characteristic at least zero. By
Thurston’s Hyperbolization Theorem [28, 35, 37, 38, 44], the complement of each
hyperbolic knot admits a complete hyperbolic metric of finite volume. A great
many studies on knots have been based on this classification.

A genus g handlebody V embedded in the 3-sphere S3, where g is a non-negative
integer, is called a genus g handlebody-knot and denoted by (S3, V ). When g equals
one, the study of handlebody-knots coincides with classical knot theory. On the
other hand, the study of handlebody-knots whose exteriors are also handlebodies
is related to the theory of Heegaard splittings. By Thurston’s Hyperbolization
Theorem again, the exterior E(V ) of handlebody-knot V of genus at least two
is simple if and only if E(V ) admits a hyperbolic structure with totally geodesic
boundary. Otherwise, the configurations of essential surfaces of non-negative Euler
characteristic in the exterior E(V ) are much more complicated in general compared
to the case of knots. The aim of this paper is to classify these essential surfaces in
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the exteriors of genus two handlebody-knots. In fact, we classify, without overlap,
the essential disks into three types (cf. Section 2), the essential annuli into four
types (cf. Section 3), the essential Möbius bands into two types (cf. Section 4), and
the essential tori into three types (cf. Section 5). This should be contrasted with the
case of knots; the essential annuli, for example, in knot exteriors can be classified
into two types, as was mentioned above. To obtain the above classification, we fully
use the results on essential planar surfaces and punctured tori properly embedded
in the exteriors of knots, which are strongly related to the study of Dehn surgeries
on knots in the 3-sphere that produce reducible or toroidal 3-manifolds.

In [36], Motto gave an infinite family of genus two handlebody-knots, and using
essential annuli lying in their exteriors, he showed that the handlebody-knots in the
family are mutually distinct whereas they have homeomorphic exteriors. In [32], Lee
and Lee provided other infinite families of genus two handlebody-knots such that the
handlebody-knots in each of the families are mutually distinct whereas they have
homeomorphic exteriors. A detailed description of essential annuli in the exteriors
of the handlebody-knots again played an important role in their paper. Also, in [10],
Eudave-Muñoz and the second-named author determined essential annuli that can
be extended to 2-decomposing spheres in tunnel number one, genus two handlebody-
knot exteriors, and they characterized their summands by 2-decomposing spheres.
Each of the above families of essential annuli is entirely contained in one type of
the essential surfaces studied in this paper.

On the other hand, the first-named author defined in [31] the symmetry group
of a handlebody-knot. This is the group of isotopy classes of self-homeomorphisms
of S3 leaving the handlebody-knot invariant. When the exterior of a genus two
handlebody-knot is boundary-reducible or simple, a finite presentation of its sym-
metry group can be obtained following [1, 6, 12, 31, 42]. However, apart from a few
examples, the symmetry groups of the remaining handlebody-knots still remain un-
known. The result in this paper would be a beginning step to developing the study
of the symmetry groups.

In [26], Ishii, Kishimoto and the second-named author showed the unique de-
composition theorem with respect to a special kind of 2-decomposing spheres for
handlebody-knots of arbitrary genus whose exteriors are boundary-irreducible. In
an appendix of the paper, we prove the same uniqueness theorem for arbitrary
handlebody-knots.

Throughout this paper, we will work in the piecewise linear category.

Notation. Let X be a subset of a given polyhedral space Y . Throughout the paper,
we will denote the interior of X by IntX and the number of components of X by
#X. We will use N(X;Y ) to denote a closed regular neighborhood of X in Y . If
the ambient space Y is clear from the context, we denote it briefly by N(X). Let
M be a 3-manifold. Let L ⊂ M be a submanifold with or without boundary. When
L is 1- or 2-dimensional, we write E(L) = M \ IntN(L). When L is 3-dimensional,
we write E(L) = M \ IntL. We shall often say surfaces, compression bodies, etc.
in an ambient manifold to mean the isotopy classes of them.

1. Preliminaries

Let M be a compact orientable 3-manifold. Let F be an orientable (possibly
not connected) surface properly embedded in M . A disk D embedded in M is
called a compressing disk for F if D∩F = ∂D and ∂D is an essential simple closed
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curve on F . A disk D embedded in M is called a boundary-compressing disk for F if
D∩F ⊂ ∂D is a single essential arc on F andD∩∂M = ∂D\Int (D∩F ). The surface
F is said to be incompressible (boundary-incompressible, respectively) if there exists
no compressing disk (boundary-compressing disk, respectively) for F . The surface
F is said to be essential if F is incompressible, boundary-incompressible and not
boundary parallel. A connected non-orientable surface F ′ properly embedded in M
is said to be essential if the frontier of N(F ′;M), that is, the closure of ∂N(F ′;M)\
∂M , is essential.

We recall that a handlebody is a compact orientable 3-manifold containing pair-
wise disjoint essential disks such that the manifold obtained by cutting along the
disks is a 3-ball. The genus of a handlebody is defined to be the genus of its
boundary surface. The following well-known fact will be needed later. See e.g.
[27].

Lemma 1.1. Let F be an essential surface in a handlebody. Then F is a disk.

The essential annuli in knot exteriors are classified as follows. See e.g. [5].

Lemma 1.2. Let K be a knot in S3. If E(K) contains an essential annulus A,
then exactly one of the following holds:

(1) K is a torus knot or a cable knot and A is its cabling annulus;
(2) K is a composite knot and A can be extended to a decomposing sphere for

K.

We note that the above lemma can be generalized as a classification of the
essential annuli in the exteriors of links in S3. In fact, if A is an essential annulus
in the exterior of a link, then A is a cabling annulus, A can be extended to a
decomposing sphere, or A connects two components of the link, where at least one
of the boundary components of A has a meridional or integral boundary slope.

As a direct corollary of Lemma 1.2, we can also classify the essential Möbius
bands in knot exteriors as follows:

Lemma 1.3. Let K be a knot in S3. If E(K) contains an essential Möbius band
F , then K is either an (n, 2)-torus knot or an (n, 2)-cable knot for an odd integer
n, and the frontier of N(F ) satisfies (1) in Lemma 1.2.

In Sections 3 and 4, we obtain the same types of classifications as Lemmas 1.2
and 1.3, respectively, for genus two handlebody-knots.

Let M be a compact orientable 3-manifold. Let F be an orientable surface
(possibly not connected) properly embedded in M . Let D be a compressing disk
for F . Then we have a new proper surface F ′ by cutting F along ∂D and pasting
two copies of D to it. We say that F ′ is obtained by compressing F along D.

Let M be a 3-manifold. We recall that M is said to be reducible if it contains a
sphere that does not bound a 3-ball in M . Otherwise, M is said to be irreducible.
Also, M is said to be boundary-reducible if it contains an essential disk. Otherwise,
M is said to be boundary-irreducible.

Lemma 1.4. Let M be a compact, orientable, irreducible, boundary-irreducible 3-
manifold such that ∂M is a closed surface of genus at least two. Let A be an annulus
properly enbedded in M . If each component of ∂A is essential on ∂M and A is not
parallel to the boundary of M , then A is essential in M .
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Proof. Assume that each component of ∂A is non-trivial on ∂M and that A is not
parallel to ∂M . If A admits a compressing disk D1 in M , then each of the disks
obtained by compressing A along D1 is an essential disk in M . This contradicts
the assumption that M is boundary-irreducible. Thus it suffices to show that A
is boundary-incompressible. Assume for contradiction that A admits a boundary-
compressing disk D2 in M . Let D be the disks obtained by boundary-compressing
A along D2. We will show that D is an essential disk in M . Set γ = ∂D2 ∩ ∂M .
We note that ∂D is the component of ∂N(∂A∪γ; ∂M) that is not parallel to either
component of ∂A. If the two simple closed curves ∂A are not parallel on ∂M , then
∂D is not trivial on ∂M . Hence D is an essential disk in M . Assume that ∂A
consists of parallel simple closed curves on ∂M . Let A′ be the sub-annulus of ∂M
such that ∂A′ = ∂A. If γ is not contained in A′, then ∂D is not trivial on ∂M .
Hence D is an essential disk in M . If γ is contained in A′, then D2 is an essential
disk in a component N of S3 cut off by the torus A ∪A′. This implies that N is a
solid torus and D2 is its meridian disk. Moreover, ∂D2 intersects each component
of ∂A once and transversely. Hence A is parallel to ∂M through N . This is a
contradiction. �

Let M be a compact orientable 3-manifold. Let F be an orientable surface
(possibly not connected) properly embedded in M . An annulus A embedded in
M is called a peripherally compressing annulus for F if A ∩ F is a single essential
simple closed curve on F and A ∩ ∂M = ∂A \ (A ∩ F ) is a single essential simple
closed curve on ∂M . We note that a peripherally compressing annulus is called an
accidental annulus when it is considered in a knot exterior. See e.g. [24]. Let A
be a peripherally compressing annulus for F . Then we have a new proper surface
F ′ by cutting F along F ∩ A and pasting two copies of A to it. We say that F ′ is
obtained by peripherally compressing F along A.

Lemma 1.5. Let M be a compact, orientable, irreducible 3-manifold such that ∂M
is a torus. Let T be an essential torus in M . Let A be a peripherally compressing
annulus for T . Then the annulus obtained by peripherally compressing T along A
is essential in M .

Proof. Let T ′ be the annulus obtained by peripherally compressing T along A.
Assume that there exists a compressing disk D1 for T ′. We can isotope D1 so that
∂D1 ∩N(A) = ∅. Then ∂D1 is parallel to A ∩ T , otherwise ∂A is not essential on
the annulus T ′. Since A∩T is essential on T , D1 is a compressing disk for T . This
is a contradiction.

Assume that there exists a boundary-compressing disk D2 for T ′. We note that
the two components ∂T ′ are parallel on the boundary of M . Let A′ be the sub-
annulus of ∂M such that ∂A′ = ∂A and ∂D2 ∩ ∂M ⊂ A′. Since M is irreducible,
the component N of M cut off by T ′ which contains D2 is a solid torus and D2 is
its meridian disk. Then T ′ and A′ are parallel through N since each component of
∂A intersects ∂D2 once and transversely. Now, if N contains A, T is compressible
in N ⊂ M (See the left-hand side in Figure 1). Otherwise, T is parallel to ∂M (See
the right-hand side in Figure 1). Therefore both cases contradict the assumption
that T is essential in M . This completes the proof. �

Let (S3, V ) be a handlebody-knot. We say that (S3, V ) is trivial if E(V ) is also
a handlebody. A 2-sphere S in S3 is called an n-decomposing sphere for (S3, V )
if S ∩ V consists of n essential disks in V , and S ∩ E(V ) is an essential surface
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Figure 1

in E(V ). A handlebody-knot (S3, V ) is said to be n-decomposable if it admits an
n-decomposing sphere. A 1-decomposable handlebody-knot is sometimes said to
be reducible. Otherwise, it is said to be irreducible. We note that, by Lemma 1.1,
tirivial handlebody-knots are not n-decomposable for n > 1. It is proved in [3, 45]
that a handlebody-knot (S3, V ) of genus two is 1-decomposable if and only if its
exterior E(V ) is ∂-reducible, i.e. ∂E(V ) is compressible in E(V ). See e.g. [25, 26]
and the references given there for more details.

2. Classification of the essential disks in genus two

handlebody-knot exteriors

We first review the notion of characteristic compression body introduced in [4].
Let M be an irreducible compact 3-manifold with boundary and let D be the
union of mutually disjoint compression disks for ∂M . Let W be the union of
N(D∪∂M ;M) and all the components of M \ Int (N(D∪∂M ;M)) that are 3-balls.
Then we call W a compression body for ∂M . Also, ∂+W = ∂M ⊂ ∂W is called
the exterior boundary of W and ∂−W = ∂W \ ∂+W is called the interior boundary
of W . A characteristic compression body W of M is a compression body for ∂M
such that the closure of M \ W is boundary-irreducible. Here, we remark that, if
W is a characteristic compression body, every compressing disk D for ∂M can be
isotoped so that D ⊂ W . We also remark that any closed incompressible surface
in W is parallel to a sub-surface of ∂−W (see e.g. [4]).

Theorem 2.1 ([4]). An irreducible compact 3-manifold with boundary has a unique
characteristic compression body.

Let (S3, V ) be a genus two handlebody-knot. Let W be the characteristic com-
pression body for of E(V ). We classify V into the following four types:

(i): ∂−W is a closed orientable surface of genus two;
(ii): ∂−W consists of two tori;
(iii): ∂−W is a torus;
(iv): ∂−W = ∅.

Let (S3, V ) be a genus two handlebody-knot. As we mentioned in Section 1 V
is of type (i) if and only if V is not 1-decomposable. We also note that V is of type
(iv) if and only if V is trivial.

Let X be a handlebody of genus at least 1. A simple closed curve l on ∂X is
said to be primitive with respect to X if there exists an essential disk E in X such
that ∂E and l have a single transverse intersection on ∂X.

Let (S3, V ) be a genus two handlebody-knot. We introduce the following three
types of essential disks in E(V ).
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(i) (ii) (iii) (iv)

Figure 2. The four types of characteristic compression bodies
W ⊂ E(V ).

Type 1 (1-decomposing sphere type): An essential disk D in E(V ) is called a
Type 1 disk if ∂D bounds an essential disk D′ in V . Here we remark that
D ∪D′ becomes a 1-decomposing sphere for V ;

Type 2 (primitive disk type): An essential disk D in E(V ) is called a Type 2
disk if ∂D is primitive with respect to V ;

Type 3 (unknotting tunnel type): An essential diskD in E(V ) is called a Type
3 disk if there exists a tunnel number one 2-component link l1 � l2 and an
unknotting tunnel τ of it such that

• l1 is a trivial knot;
• there exists a re-embedding h :E(l1)→S3 such that V =h(E(l1∪l2∪τ ))
andD = h(D∗), whereD∗ is the co-core of the 1-handleN(τ ;E(l1�l2))
attached to N(l1 � l2).

Remark. For each essential disk D in E(V ) we define c(D) to be the maximum
number of mutually disjoint and mutually non-isotopic compression disks for ∂V
in S3 each of which is disjoint from and non-isotopic to D. It is easily verified that
if D is of Type i (i = 1, 2, 3), then c(D) = 4− i.

Example. Let L = l1� l2 be the Whitehead link and τ be its unknotting tunnel as
illustrated on the left-hand side in Figure 3. Let h : E(l1) → S3 be the re-embedding
such that h(E(l1)) is a thickened trefoil. Then V = h(E(l1 ∪ l2 ∪ τ )) is a genus
two handlebody-knot and the image D of the co-core the 1-handle N(τ ;E(l1 ∪ l2))
becomes an essential disk in E(V ) as shown on the right-hand side in Figure 3.

Figure 3. A Type 3 essential disk.
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We remark that if D is an essential disk in the exterior W of the trivial genus
two handlebody-knot V , then D is the dual disk of an unknotting tunnel of the
tunnel number one knot or link which is the core of W \ IntN(D;W ).

Theorem 2.2. Let (S3, V ) be a non-trivial genus two handlebody-knot. Then each
essential disk D in the exterior of V belongs to exactly one of the above three types.

Proof. Let D be an essential disk in E(V ). By definition, we may easily check that
D cannot belong to more than one type.

Let W be the characteristic compression body of E(V ). We first consider the
case where V is of type (ii). Set ∂−W = T1�T2, where each of T1 and T2 is a torus.
It is clear that D is separating in E(V ). Since T1�T2 is incompressible in E(V ∪W )
and compressible in S3, T1 � T2 is compressible in V ∪W . Let D′ ⊂ V ∪W be a
compressing disk for T1 and S′ be a sphere obtained by compressing T1 along D′.
We note that S′ is an essential sphere in V ∪W ; otherwise V ∪W is a solid torus,
which is a contradiction. By Haken’s lemma [19], there exists an essential sphere S′′

in V ∪W such that S′′∩V is a single disk. This implies that S′′ is a 1-decomposing
sphere for V . By Lemma 3.1 of [31], S′′∩W is a unique compressing disk of ∂E(V )
in E(V ), which implies S′′ ∩W is isotopic to D in E(V ). Therefore ∂D bounds a
disk (parallel to S′′ ∩ V ) in V , hence D is a Type 1 disk.

In the following we shall consider the case where V is of type (iii). In this case
V ∪ W is a solid torus since ∂−W bounds a solid torus in S3 while E(V ∪ W ) is
not a solid torus.

Suppose that D is non-separating in E(V ). Then there exists a simple arc γ
properly embedded in W so that

• γ intersects D once and transversely; and
• γ ∪ ∂−W is a spine of W .

See the left-hand side in Figure 4. Since V ∩W is a solid torus and V ∪W \IntN(γ) ∼=

Figure 4

V is a genus two handlebody, it follows from [14] that γ is unknotted in V ∪ W ,
that is, there exists a disk E in V ∪ W such that E ∩ γ = ∂E ∩ γ = γ and
E ∩ ∂−W = ∂E \ Int γ. This implies that D is a Type 2 disk.

Suppose that D is separating in E(V ). We set W \ IntN(D;W ) = X1 � X2,
where X1

∼= T 2 × [0, 1] and X2 is a solid torus. Let l2 be the core of X2. Then
there exists a simple arc τ in W such that

• τ connects ∂−W and l2;
• (Int τ ) ∩ (∂−W ∪ l2) = ∅;
• τ intersects D once and transversely; and
• Γ = τ ∪ l2 ∪ ∂−W is a spine of W .
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See the right-hand side in Figure 4. We re-embed the solid torus V ∪ W into S3

by a map ι : V ∪W → S3 so that E(ι(V ∪W )) is a solid torus. Let l1 be the core
of E(ι(V ∪ W )). Then l1 ∪ ι(l2) is a tunnel number one link with an unknotting
tunnel ι(τ ), hence D is a Type 3 disk. This completes the proof. �

3. Classification of the essential annuli in genus two

handlebody-knot exteriors

In this section, we provide a classification of the essential annuli in the exteri-
ors of genus two handlebody-knots. Essential annuli in one of the four types in
the classification are described using Eudave-Muñoz knots. We quickly review the
definition and important properties of this class of knots.

In [8] Eudave-Muñoz provided an infinite family of hyperbolic knots k(l,m, n, p)
(where either n or p is equal to 0) that admit non-integral toroidal surgeries. The
knots are now called Eudave-Muñoz knots. The construction of the knot k(l,m, n, p)
can be briefly explained as follows. Let (B, T ) be the two-string tangle shown in
Figure 5. In the figure, (B, T ) lies outside of the small circle depicted in the
middle. Then the double branched cover of the tangle (B, T ) is the exterior of the
Eudave-Muñoz knot k(l,m, n, p). We note that the (−2, 3, 7)-pretzel knot, which is

Figure 5

one of the most famous examples of knots that admits non-integral toroidal Dehn
surgeries, is k(3, 1, 1, 0). In [9], a non-integral toroidal slope r for k(l,m, n, p) is
described in terms of the parameters as

r = l(2m− 1)(1− lm) + n(2lm− 1)2 − 1/2

for k(l,m, n, 0) and

r = l(2m− 1)(1− lm) + p(2lm− l − 1)2 − 1/2

for k(l,m, 0, p). The slope r is obtained as a lift of the circle ∂D, where the disk D
is depicted as in Figure 5. Gordon and Luecke [18] proved that these are the only
hyperbolic knots which admit non-integral toroidal surgeries.

Theorem 3.1 ([18]). Let K be a hyperbolic knot in S3 that admits a non-integral
toroidal surgery. Then K is one of the Eudave-Muñoz knots and the toroidal slope
is r described above.
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Lemma 3.2. Let K be an Eudave-Muñoz knot and let P be an incompressible
twice-punctured torus properly embedded in E(K) so that ∂P consists of the two
parallel toroidal slopes of K. Then P cuts off E(K) into two handlebodies of genus
two.

Proof. Let K = k(l,m, n, p). Let (B, T ) and D be the tangle and the disk, respec-
tively, as shown in Figure 5. Let p : E(K) → B be the double branched covering
of (B, T ). Then we have P = p−1(D). Since the disk D cuts off (B, T ) into two
trivial 3-string tangles (B1, T1) and (B2, T2), P cuts off E(K) into two genus two
handlebodies p−1(B1) and p−1(B2). �

Let (S3, V ) be a genus two handlebody-knot. We provide a list of annuli properly
embedded in E(V ).

Type 1 (2-decomposing sphere type): Let Γ ⊂ S3 be a spatial handcuff-graph.
Let S be a sphere in S3 that intersects Γ in exactly one edge of Γ twice
and transversely. Set V = N(Γ). We call A = S \ IntV a Type 1 annulus
for the handlebody-knot (S3, V ) if A is not parallel to the boundary of V .
See Figure 6.

Figure 6. Type 1 annuli.

Type 2 (Hopf tangle type): Let Γ ⊂ S3 be a spatial handcuff-graph. Assume
that one of the two loops of Γ is a trivial knot bounding a disk D such
that IntD intersects Γ in an edge e once and transversely. Set V = N(Γ)
and A = D ∩ E(V ). We call A a Type 2 annulus for the handlebody-knot
(S3, V ). See Figure 7.

Figure 7. Type 2 annuli.
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Type 3 (knot/link type): Let X be a solid torus embedded in S3. Let A be
an annulus properly embedded in E(X) so that ∂A∩∂X consists of parallel
non-trivial simple closed curves on ∂X.

• Let α be a properly embedded trivial simple arc in X such that ∂α ∩
∂A = ∅. Set V = X \ IntN(α). Then we call A a Type 3-1 annulus for
the handlebody-knot (S3, V ) provided that, if ∂A bounds an essential
disk in X, then any meridian disk of X has non-empty intersection
with α.

• Let ∂A not bound an essential disk in X. Let α be a properly em-
bedded simple arc in E(X) such that α ∩ A = ∅. Set V = X ∪N(α).
Then we call A a Type 3-2 annulus for the handlebody-knot (S3, V ) if
A is not parallel to the boundary of V .

Let X1, X2 be two disjoint solid tori embedded in S3. Assume that there
exists an annulus A properly embedded in E(X1�X2) so that A∩∂Xi is a
non-trivial simple closed curve in ∂Xi for i = 1, 2. Further we require that
no component of ∂A bounds a meridian disk in X1 or X2. Let e ⊂ E(X1 �
X2)\A be a proper arc connecting ∂X1 and ∂X2. Set V = X1∪X2∪N(e).
Then we call A a Type 3-3 annulus for the handlebody-knot (S3, V ). A
proper annulus A in the exterior of a genus two handlebody-knot is said to
be a Type 3 annulus if it is a Type 3-1, 3-2 or 3-3 annulus. Figure 8 shows
schismatic pictures of Type 3 annuli.

Figure 8. Type 3 annuli.

Type 4 (Eudave-Muñoz type): Let K be an Eudave-Muñoz knot and let P
be an incompressible twice-punctured torus properly embedded in E(K) so
that ∂P consists of the two parallel toroidal slopes of K. By Lemma 3.2,
P cuts off E(K) into two handlebodies of genus two. Let V be one of them
and set A = ∂N(K) \ Int (∂N(K) ∩ ∂V ).

• We call A a Type 4-1 annulus for the handlebody-knot (S3, V ).
• Let U ⊂ S3 be a knot or a two component link contained in
E(V ∪ N(K)) so that E(V ∪ N(K) ∪ U) is a compression body for
E(V ∪ N(K)). Let i : E(U) → S3 be a re-embedding such that
E(i(E(U))) is not a solid torus or two solid tori. Then we call i(A) a
Type 4-2 annulus for the handlebody-knot.

A proper annulus A in the exterior of a genus two handlebody-knot is said
to be a Type 4 annulus if it is a Type 4-1 or 4-2 annulus. Figure 9 depicts
a schismatic picture of an essential annulus of Type 4.

Remark. The annuli listed above are not always essential. However, if A ⊂ E(V )
is an annulus of one of the above four types, at least we have the following by
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Figure 9. A Type 4 annulus.

definition:

• each component of ∂A is essential on ∂V .
• A is not parallel to the boundary of V .

In Corollary 3.18, we will prove that if (S3, V ) is irreducible, then the above annuli
are actually essential.

As in the case of essential disks in E(V ), for each essential annulus A in E(V ),
we define c(A) to be the maximum number of mutually disjoint and mutually non-
isotopic compression disks for ∂V in S3 each of which is disjoint from A. Here if
there exists no such compression disk, we define c(A) = 0. It is easily verified that
if A is of Type i (i = 1, 2, 3, 4), then c(A) = 4− i.

Example. Figure 10 shows several types of essential annuli in the exteriors of genus
two handlebody-knots.

Figure 10. Essential annuli.

Now we are ready to state the classification theorem of the essential annuli in the
exterior of genus two handlebody-knots. This should be contrasted with Lemma
1.2.

Theorem 3.3. Let (S3, V ) be a genus two handlebody-knot. Then each essential
annulus in the exterior of V belongs to exactly one of the four types listed above.

Let (S3, V ) be a genus two handlebody-knot. Let A be an essential annulus A
in the exterior E(V ). Set ∂A = a1 � a2. We classify the configurations of the
boundary of A on ∂V into the following four cases:

Case 1: a1 and a2 are non-parallel, non-separating simple closed curves on
∂V .

Case 2: a1 is non-separating and a2 is separating on ∂V .
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Case 3: a1 and a2 are parallel separating simple closed curves on ∂V .
Case 4: a1 and a2 are parallel non-separating simple closed curves on ∂V .

Figure 11

We note that, by Lemma 1.1, the trivial handlebody-knot does not contain
essential annuli in its exterior.

Lemma 3.4. Let (S3, V ) be a genus two handlebody-knot. Let A ⊂ E(V ) be an
essential annulus.

(1) If both a1 and a2 bound disks in V , then A is a Type 1 annulus.
(2) If exactly one of a1 and a2 bounds a disk in V , then A is a Type 2 annulus.

Proof. (1) is straightforward from the definition. Let exactly one of a1 and a2, say
a1, bound a disk E in V .

If E is non-separating in V , then we may assume that a2 is an essential simple
closed curve on the boundary of the solid torus X = V \ IntN(E). Then the disk
A ∪ E determines a Seifert surface of the core K of X. It follows that K is the
trivial knot. Now, there is a handcuff-spine of V consisting of two loops e1, e2
and one cut edge e such that e1 intersects D once and transversely, e2 = K and
e ∩E = ∅. This implies that A is a Type 2 annulus.

If E is separating in V , then V \ IntN(E) consists of two solid tori X1 and X2,
and a2 is an essential simple closed curve on the boundary of one of them, say X1.
Then, again, the disk A ∪ E determines a Seifert surface of the core K of X1. It
follows that K1 is the trivial knot. Fix meridian disks E1 and E2 of X1 and X2,
respectively. There is a handcuff-spine of V consisting of two loops e1, e2 and one
cut edge e such that e1 = K, e2 is the core of X2, e∩ (E1∪E2) = ∅ and e intersects
E once and transversely. This implies that A is also a Type 2 annulus. �

Let P be a non-meridional, essential, planar surface properly embedded in the
exterior of a knot K in S3. If P is a disk, it is clear that K is the trivial knot and
P is its Seifert surface. If P is an annulus, then by Lemma 1.2, K is a torus knot
or a satellite knot and P its cabling annulus. The next two lemmas, which play an
important role throughout this section, show that P can be neither an n-punctured
sphere for n � 3 odd nor a 4-punctured sphere.

Lemma 3.5. Let P be a non-meridional planar surface with an odd number of
boundary components properly embedded in the exterior E(K) of a knot K. Then
P is essential if and only if K is the trivial knot and P is a meridian disk of the
solid torus E(K).

Proof. The sufficiency is clear. For necessity, let F ⊂ E(K) be a non-meridional
planar surface with an odd number of boundary components. Then by capping
off the boundary components of P by meridian disks of the filling solid torus, we
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obtain a non-separating sphere P̂ in the 3-manifold S3(K; p/q) obtained from S3 by
performing the Dehn surgery along K with the surgery slope p/q, where p/q 	= 1/0
is the boundary slope of P . Hence S3(K; p/q) can be presented as (S2 × S1)#M .
It follows that H1(S

3(K; p/q)) ∼= Z/pZ ∼= Z⊕H1(M). This implies that p = 0 and
H1(M) = 0. By Corollary 8.3 of [11], the 3-manifold S3(K; 0) is prime and the
genus of the knot is zero. Therefore K is the trivial knot and P is the meridian
disk of E(K). �

Remark. It is proved in [16] that if there exists a non-trivial knot that contains
an essential planar surface P of non-meridional boundary in its exterior, then the
boundary-slope of P is integral.

Lemma 3.6. The exterior of a knot in S3 contains no properly embedded incom-
pressible 4-punctured sphere with integral boundary slope.

The proof of Lemma 3.6, is given in Appendix A by Cameron Gordon.
We remark that Lemmas 3.5 and 3.6 are strongly related to the famous Cabling

Conjecture, which was proposed González-Acuña and Short.

Conjecture 3.7 (The Cabling Conjecture [13]). A Dehn surgery on a knot K in
S3 can give a reducible manifold only when K is a cable knot and the surgery slope
is that of the cabling annulus.

The conjecture is known to hold for several classes of knots including satellite
knots [41], strongly invertible knots [7], alternating knots [34], symmetric knots
[20,33] and the knots admitting bridge spheres with Hempel distance at least three
[2,22,23]. However, the general case is still one of the most important open problems
in knot theory. We note that if the exterior of every knot in S3 contains no properly
embedded essential planar surface of negative Euler characteristic with integral
boundary slope, then the Cabling Conjecture is true.

Lemma 3.8 (Classification of Case 1). Let A ⊂ E(V ) be an essential annulus of
Case 1. Then A is a Type 2, 3-1 or 3-3 annulus.

Proof. By Lemma 3.6, the 4-punctured sphere P = ∂V \IntN(a1∪a2) is compress-
ible in E(A). Let D be a compressing disk for P .

Assume first that D lies in V . Let D be separating in V . Then V \ IntN(D)
consists of two disjoint solid toriX1 and X2 such that ai ⊂ ∂Xi for i = 1, 2. If either
a1 or a2, say a1, is trivial on ∂X1, a1 is parallel to ∂D on ∂V . This contradicts the
assumption that a1 is non-separating. Thus both a1 and a2 are non-trivial on ∂X1

and ∂X2, respectively. Then A is a Type 3-3 annulus. Let D be non-separating in
V . If either a1 or a2 bounds a disk in V , it follows from Lemma 3.4 that A is a Type
2 annulus since a1 and a2 are not parallel on ∂V . Otherwise, a1 and a2 are parallel
essential simple closed curves on the boundary of X = V \IntN(D;V ). Since a1∪a2
separates ∂E(X), A is separating in E(X). On the other hand, since a1 and a2
are not parallel on ∂V , each of the two annulus components of ∂X \ IntN(∂A; ∂X)
meets ∂N(D). It follows that V ∩ IntA 	= ∅, whence a contradiction. See the
left-hand side in Figure 12.

Next, assume that D lies in E(V ). Let D be separating in V . Since a1 and a2 are
non-parallel and non-separating on ∂V , each of the two components of ∂V cut off
by ∂D contains a1 or a2. It follows that D∩A 	= ∅, whence a contradiction. See the
right-hand side in Figure 12. Let D be non-separating in V . Set X = V ∪N(D).
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Figure 12

Since ∂X is a torus in S3, either X or E(X) is a solid torus. If E(X) is a solid
torus, then V is the trivial genus two handlebody-knot. This contradicts Lemma
1.1. Hence X is a solid torus. Since A is essential in E(V ), neither a1 nor a2 is
parallel to ∂D on ∂V . It follows that a1 and a2 are parallel essential simple closed
curves on ∂X. Let α ⊂ X be the dual arc of D, that is, α is a simple arc properly
embedded in X so that N(D) = N(α). By [14], α must be a trivial arc in X. This
implies that A is a Type 3-1 annulus. This completes the proof. �

Lemma 3.9. Let A be an essential annulus in E(V ). Suppose that E(V ) is
boundary-reducible. Then there exists an essential disk D in E(V ) such that D∩A =
∅.

Proof. Let D be an essential disk in E(V ). We minimize #(A∩D) up to isotopy of
D. If A∩D = ∅, then we are done. Assume that A∩D 	= ∅. Then a standard cut-
and-paste argument allows us to retake an essential disk D in E(V ) so that A ∩D
consists of essential circles or essential arcs. However, the existence of an essential
circle in A ∩ D implies that A is compressible, while the existence of an essential
arc in A ∩D implies that A is boundary-compressible. This is a contradiction. �

Lemma 3.10. If E(V ) contains an essential annulus of Case 2 or 3, then E(V )
is boundary-irreducible.

Proof. Let E(V ) be boundary-reducible and assume that there exists an essential
annulus A ⊂ E(V ) that is an essential annulus of Case 2 or 3. In what follows, we
will prove that there exists an essential disk in E(V ) whose boundary is parallel to
either a1 or a2 on ∂V . This implies that A is compressible, whence a contradiction.

By Lemma 3.9, there exists an essential disk D in E(V ) disjoint from A.
Assume that D is separating in E(V ). Since any mutually disjoint, separating,

essential simple closed curves on a genus two closed surface are mutually parallel,
∂D is parallel to a2.

Assume that D is non-separating in E(V ). Suppose that A is of Case 2. Let
P1 and P2 be the pair of pants component and the once-punctured component of
∂V cut off by ∂A. If ∂D is contained in P1, ∂D is parallel to a1 on ∂V . If ∂D is
contained in P2, then there exists a simple closed curve l on P2 that intersects ∂D
once and transversely. Then the closure D′ of ∂N(D∪ l;E(V ))\∂M is an essential
separating disk in E(V ) disjoint from A. Then, by the above argument, ∂D′ is
parallel to a2 on ∂V . Suppose that A is of Case 3. Since D is non-separating, ∂D
is contained in a once-punctured component of ∂V cut off by ∂A. Then we obtain
an essential disk D′ in E(V ) so that ∂D is parallel to a2 on ∂V as above. �
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Lemma 3.11 (Classification of Case 2). Let A ⊂ E(V ) be an essential annulus of
Case 2. Then A is a Type 2 annulus.

Proof. By Lemma 3.10, we may assume that E(V ) is boundary-irreducible. Let P
be the component of ∂V \ IntN(a1 ∪ a2) that is homeomorphic to a pair of pants.
Lemma 3.5 implies that P is compressible in E(A). Since ∂V is incompressible in
E(V ), is P is compressible in V ∩ E(A). It follows that either a1 or a2 bounds a
disk in V . By Lemma 3.4, A is a Type 1 or 2 annulus. Since a1 and a2 are not
parallel by assumption, it follows that A is a Type 2 annulus. �

Lemma 3.12 (Classification of Case 3). Let A ⊂ E(V ) be an essential annulus of
Case 3. Then A is a Type 1 annulus.

Proof. By Lemma 3.10, we may assume that E(V ) is boundary-irreducible. Let
A′ ⊂ ∂V be the annulus with ∂A′ = a1 � a2. Then the torus A ∪ A′ bounds a
solid torus X in S3. Let P and Q be the once-punctured torus components of
∂V \ IntA′. Suppose first that P �Q is contained in X. Then P �Q is compressible
in X since a solid torus does not contain incompressible once-punctured tori. Since
∂V is incompressible in E(V ), P �Q is compressible in V . It follows that both a1
and a2 bound disks in V , which implies by Lemma 3.4 that A can be extended to a
2-decomposing sphere of V . Suppose next that P �Q is contained in E(X). Since
both P and Q determine Seifert surfaces of the core of X, both ∂P and ∂Q are
parallel to the preferred longitude of X. This implies that A and A′ are parallel in
X. However, this contradicts the assumption that A is essential. �

We recall the following theorem by Hayashi and Shimokawa, which will be needed
in the proof of Lemma 3.14.

Theorem 3.13 ([20]). Let Y be a solid torus and K ⊂ Y be a non-cabled knot.
Assume that ∂Y is incompressible in Y \ IntN(K). Let Y (K; r) be the 3-manifold
obtained from Y by performing the Dehn surgery along K with the surgery slope r.
If Y (K; r) contains a separating essential annulus Ã such that each component of

∂Ã is primitive with respect to Y , then the slope r is integral.

Lemma 3.14. Let K be a knot in S3. If there exists an incompressible twice-
punctured torus P in E(K) with non-integral boundary slopes that cuts off E(K)
into two genus two handlebodies, then K is a hyperbolic knot.

Proof. It is clear that K is neither the trivial knot nor a torus knot since it is
well-known that these knots do not contain essential twice-punctured tori in their
exteriors. Let K be a satellite knot. Then there exists an essential torus in E(K).
Each essential torus T cuts off S3 into two components Y1 and Y2, where Y1 is a
solid torus. We remark that K ⊂ Y1, otherwise T is compressible in E(K). Assume
that #(P ∩ T ) is minimal up to isotopy of T . We note that P ∩T 	= ∅ since P cuts
off E(V ) into two handlebodies V and V ′. We also note that each component of
P ∩Y2 is essential since P is essential and #(P ∩T ) is minimal. Let K1 be the core
of the solid torus Y1.

Claim 1. No component of P ∩ T is parallel to a component of ∂P on P .

Proof of Claim 1. Assume for contradiction that P∩T contains a simple closed curve
l parallel to ∂P on P . Without loss of generality, we may assume that l cuts off an
annulus P0 from P so that IntP0∩T = ∅. See Figure 13. Then P0 is a peripherally
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Figure 13

compressing annulus for T . By Lemma 1.5, we obtain by peripherally compressing
T along P0 an essential annulus T ′ in E(K) with non-integral boundary-slope. This
contradicts Lemma 1.2.

Claim 2. The number of mutually parallel loops of P ∩ T on P is at most two.

Proof of Claim 2. Assume for contradiction that P ∩ T contains mutually parallel
n � 3 loops on P . Then there exist annulus components P1 ⊂ P ∩ Y1 and P2 ⊂
P ∩ Y2. Recall that P2 is essential in Y2. By Lemma 1.2, P2 is a cabling annulus
for K1, or P2 can be extended to a decomposing sphere for K1.

In the former case, the slopes P ∩T are integral with respect to the meridian and
preferred longitude of K1. Hence P1 is parallel to ∂Y1 from both sides. This implies
that we can reduce the number of components of P ∩ T , whence a contradiction.

In the latter case, the slopes P ∩T bound meridian disks in Y1. By Claim 1, each
component of P cut off by P ∩T is either an annulus, a pair of pants, a 4-punctured
sphere or a once-punctured torus. We see that P∩Y2 consists of only essential annuli
as follows. Let Q be a component of P ∩ Y2. Since P ∩ ∂Y2 is meridional in Y2,
#∂Q is even; otherwise S3 contains a non-separating sphere or torus, which is a
contradiction. Thus Q is neither a pair of pants nor a once-punctured torus. On
the other hand, by Claim 1, a 4-punctured sphere component of P cut off by P ∩T
(if any) lies in Y1. Thus Q is not a 4-punctured sphere. As a consequence, Q is an
annulus. Among the essential annuli P ∩ Y2, take an outermost one P ′

2 in Y2. By
tubing P ′

2 along a sub-annulus on T whose interior does not intersect P , we obtain
an essential torus T ′ in E(K) with P ∩T ′ = ∅. See Figure 14. This implies T ′ ⊂ V
or T ′ ⊂ V ′. Then we have T ′ ⊂ V or T ′ ⊂ V ′. This contradicts Lemma 1.1.

Figure 14
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Claim 3. P ∩ T does not contain separating simple closed curves on P .

Proof of Claim 3. Assume for contradiction that P ∩T contains a separating simple
closed curve l on P . By Claim 1, l is parallel to no component of ∂P . If there exist

Figure 15

components of P ∩ T which are not parallel to l on P , they must be mutually
parallel non-separating simple closed curves. Moreover, since T is separating in
E(K), the number of such components are exactly two by Claim 2. Let m be
the number of components of P ∩ T parallel to l on P . Let n be the number of
the non-separating components of P ∩ T . Then (m,n) is (1, 0), (2, 0), (1, 2) or
(2, 2). Let P1 be the pair of pants component of P cut off by P ∩ T such that
∂P ⊂ ∂P1. See the right-hand side in Figure 15. When (m,n) = (1, 0), let P2 be
the once-punctured torus component of P \ IntN(P ∩ T ;P ). Then P2 is a Seifert
surface of the core K1 of Y1. In particular, the slope l is the preferred longitude
of Y1. Hence there is a re-embedding h : Y1 → S3 such that h(l) bounds a disk
in E(h(Y1)). Then by adding a disk, h(P1) can be extended to a proper annulus

Â in E(h(K)) with non-integral boundary slope. It follows that Â is parallel to

the boundary of E(h(K)). However, Â must be non-separating in E(h(K)) since

Â intersects E(h(Y1)) in a single meridional disk. This is a contradiction. When
(m,n) = (1, 2), P ∩ Y2 contains a component which is an essential pair of pants
in Y2 = E(Y1). This contradicts Lemma 3.5. When (m,n) = (2, 0) or (2, 2),
by Lemma 1.2, the boundary-slope of P ∩ T is cabling or meridional for Y1. In
the former case, we also have a contradiction by a similar argument of the case
(m,n) = (1, 0). In the latter case, there is a component of P ∩ Y2 that can be
extended to a decomposing sphere for K1. Then by the same argument as the last
part of the proof of Claim 2, there exists an essential torus in E(K) which does not
intersect P . This is a contradiction.

Claim 4. T ∩ P consists of two parallel non-separating simple closed curves on P .

Proof of Claim 4. By Claims 2 and 3, P ∩T consists of two parallel non-separating
simple closed curves on P (see the left-hand side in Figure 16), or four non-
separating simple closed curves on P such that the two of them are parallel and
the remaining two are also parallel (see the right-hand side in Figure 16). In the
latter case, let P1 be one of the two pairs of pants of P cut off by P ∩ T . Since
P ∩ T consists of mutually parallel integral slopes on T with respect to the knot
K1, we can re-embed Y1 by a map h : Y1 → S3 so that each component of h(P ∩T )
bounds a disk in E(h(Y1)). Then by adding disks to h(P1) along the boundary cir-
cles h(∂P1 \ ∂N(K)), we obtain a disk whose boundary is not integral with respect
to h(K). This is a contradiction.
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Figure 16

Claim 5. K1 is a torus knot and Y2 ∩ T is the cabling annulus.

Proof of Claim 5. By Claim 4, both V ∩T and V ′∩T are separating incompressible
annuli in the handlebodies V and V ′, respectively. Then it follows from the clas-
sification of essential separating annuli in a genus two handlebody [30] that both
V ∩Y2 and V ′∩Y2 are solid tori. This fact and Lemma 1.2 imply that K1 is a torus
knot and P ∩ Y2 is its cabling annulus.

Claim 6. There exist no essential tori in Y1 \ IntN(K).

Proof of Claim 6. Assume for contradiction that Y1\IntN(K) contains an essential
torus T ′. We also assume that #(P ∩T ′) is minimal up to isotopy in Y1 \ IntN(K).
Clearly, T ′ is also essential in E(K) and T ′ cuts S3 into two components Y ′

1 and
Y ′
2 , where Y ′

1 is a solid torus. Then by Claim 5, Y ′
2 is also a torus knot exterior.

We note that Y2 and Y ′
2 are disjoint, otherwise T ′ is parallel to T in E(K). Since

P ∩Y ′
2 is essential in Y ′

2 , P ∩Y ′
2 is a non-empty disjoint union of the cabling annuli

in Y ′
2 . Let γ be the core of the annulus P ∩ Y2 and let γ1, γ2, . . . , γn be the cores of

the annuli of P ∩ Y ′
2 . Since Y2 and Y ′

2 are disjoint, we may assume (up to isotopy)
that γ ∩ (

⋃n
i=1 γi) = ∅, P ∩ Y2 = N(γ;P ) and P ∩ Y ′

2 = N(
⋃n

i=1 γi;P ). By the
same argument as in the proof of Claim 3, none of γ1, γ2, . . . , γn is separating in
P . Assume that a component one of the circles γ1, γ2, . . . , γn, say γ1, is parallel
to γ on P . Let T1 = T ∩ V1 and let T ′

1 be a component of T ′ ∩ V1 such that
∂T ′

1 = ∂N(γ1;P ). We remark that T1 and T ′
1 are separating incompressible annuli

in V1 and all components of ∂T1 and ∂T ′
1 are parallel on P . Then by [30], T1 must

be contained in the solid torus component of V1 cut off by T ′
1. This is impossible

since Y2 and Y ′
2 are disjoint. Therefore, P cut off by T ∪T ′ contains a pair of pants

component P1 exactly one of whose boundary components lies on ∂N(K). Now,
as in the proof of Claim 4, we can re-embed Y1 ∩ Y ′

1 by a map h : Y1 ∩ Y ′
1 → S3

so that each component of h(P ∩ (T ∪ T ′)) bounds a disk in E(h(Y1 ∩ Y ′
1)). Then

by adding disks to h(P1) along the boundary circles h(∂P1 \ ∂N(K)), we obtain a
disk whose boundary is not integral with respect to h(K). This is a contradiction.

We set M = Y1 \ IntN(K). By Claim 4, P ∩ M is a essential separating 4-
punctured sphere in M . Then P ∩M is naturally extend to a separating essential
annulus Ã in the 3-manifold Y1(K; r) obtained from Y1 by performing the Dehn
surgery along K with the surgery slope r defined by the boundary slope of P on
∂N(K). See Figure 17. Since P ∩ Y2 is the cabling annulus of the core K1 of Y1,

each component of ∂Ã = P ∩∂Y1 is primitive with respect to the solid torus Y1. By
definition ∂Y1 = T is incompressible in M . Also, by Claim 6, M does not contain
essential tori. Hence if K cannot be isotoped onto T , it follows from Theorem 3.13
that the slope r is integral. This is a contradiction. Otherwise, M is a Seifert fiber
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Figure 17

space, a so-called cabling space, and P ∩M is an essential 4-punctured sphere in it.
However, this is impossible by Lemma 3.1 in [15]. �

The following theorem by Przytycki describes the incompressibility of surfaces
before and after performing the Dehn filling.

Theorem 3.15 ([40]). Let M be a compact 3-manifold whose boundary is a single
torus. Let P be a compact orientable surface properly embedded in M so that

(1) P cuts off M into two handlebodies;
(2) ∂P consists of two non-trivial simple closed curves on ∂M ; and
(3) P is not parallel to ∂M .

Let M̂ be the 3-manifold obtained from M by performing the Dehn filling along the
boundary slope of P . Let P̂ be the surface in M̂ naturally obtained by capping off the
boundary of P . Then P is incompressible in M if and only if P̂ is incompressible
in M̂ .

Theorems 3.1 and 3.15 together with Lemmas 3.2 and 3.14 provide the following
corollary, which plays a key role for the classification of the essential annuli of Case
4.

Corollary 3.16. Let K be a hyperbolic knot in S3. Let P be a compact twice-
punctured torus properly embedded in E(K) so that ∂P consists of parallel non-
integral boundary slopes. Then P is an essential surface that cuts off E(K) into
two genus two handlebodies if and only if K is an Eudave-Muñoz knot and P is
an incompressible twice-punctured torus properly embedded in E(K) so that ∂P
consists of the two parallel toroidal slopes of K.

Lemma 3.17 (Classification of Case 4). Let A ⊂ E(V ) be an essential annulus of
Case 4. Then A is a Type 1, 3-1, 3-2 or 4 annulus.

Proof. If both a1 and a2 bound a disk in V , A is a Type 1 annulus by Lemma 3.4.
In the following, we assume that both a1 and a2 do not bound disks in V . Let
A′ ⊂ ∂V be the annulus with ∂A′ = a1 � a2. Then the torus A∪A′ bounds a solid
torus X in S3. Set P = ∂V \ IntA′.

Suppose first that P is contained in X. Then there is a compressing disk D for
P .

Suppose that ∂D is non-separating on P and let P ′ ⊂ X be the annulus obtained
by compressing P along D.
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Claim 7. A′ ∪ P ′ bounds a solid torus in X.

Proof of Claim 7. When P ′ is incompressible in X, P ′ is parallel to either A or A′.
In each case, it is clear that A′ ∪ P ′ bounds a solid torus in X. Suppose that P
is compressible in X. Then by compressing P ′, we obtain two disks D1 and D2

bounded by a1 and a2, respectively. The disks D1 and D2 cut off X into two 3-balls
B1 and B2 such that A ⊂ ∂B1 and A′ ⊂ ∂B2. Now, P ′ is obtained by tubing D1

and D2 along a simple arc γ connecting D1 and D2. If γ ⊂ B1, we are done (see
the left-hand side in Figure 18). Assume that γ ⊂ B2. Then A′ ∪ P ′ is bounding

Figure 18

V ′ = B2 \ IntN(γ;B2). The handlebody V is obtained from V ′ by attaching a
1-handle or drilling along a simple arc (see the right-hand side in Figure 18). The
latter is impossible since A is incompressible in X. This implies that V ′ is also a
solid torus, whence the claim.

By Claim 7, A′ ∪ P ′ bounds a solid torus X ′ in X. Since ∂A′ = ∂P ′ = a1 ∪ a2,
a1 and a2 are parallel non-trivial simple closed curves on ∂X ′. If D ⊂ E(V ), then
V is obtained from X ′ by drilling X ′ along a properly embedded simple arc α in
X ′ such that ∂α ∩ ∂A = ∅. By [14], α is a trivial arc in X ′. This implies that A
is a Type 3-1 annulus. If D ⊂ V , then V is obtained from X ′ by adding a regular
neighborhood of a properly embedded simple arc in E(X \ IntX ′). This implies A
is a Type 3-2 annulus.

Suppose that ∂D is separating on P . Since A is incompressible in E(V ), ∂D
is parallel to neither a1 nor a2 on P . Hence ∂D is also separating on ∂V . By
compressing P along D we obtain one annulus P ′

1 and one torus P ′
2. In a similar

argument as in Claim 7, we see that A′∪P ′
1 bounds a solid torusX ′

1 inX. See Figure
19. Let D ⊂ V . Then P ′

2 bounds a solid torus component X ′
2 of V \ IntN(D;V ).

There exists a properly embedded simple arc α in X \Int (X ′
1∪X ′

2) connecting ∂X ′
1

and ∂X ′
2 so that N(α,X \ Int (X ′

1∪X ′
2)) = N(D;V ). Now using the solid torus X ′

1

and α∪X ′
2 it is easy to see that A is a Type 3-2 annulus. Let D ⊂ E(V ). Then P ′

2

is contained in X ′
1. When P ′

2 bounds a solid torus in X ′
1, then we can prove in the

same way as above that A is a Type 3-1 annulus. Suppose P ′
2 does not bound a
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Figure 19

solid torus in X ′
1. Then P ′

2 bounds in X ′
1 a region Y homeomorphic to the exterior

of a non-trivial knot in S3. Since ∂D is separating on ∂V , D ⊂ E(V ) is a Type
1 disk. If D is a Type 1 disk, both a1 and a2 bound disks in V ; this contradicts
the assumption at the beginning of the proof. If D is a Type 3 disk, one of the
components of E(V ) \ IntN(D) = E(X ′

1) � Y must be a solid torus by definition.
Since Y is not a solid torus, E(X ′

1) is a solid torus, i.e. X ′
1 is a standard solid torus

in S3. Then A is not essential in E(X ′
1), so is not in E(V ). This is a contradiction.

Next, suppose that P is contained in E(X). Let K be the core of X. When K
is the trivial knot, the above arguments immediately imply that A is a Type 3-1 or
3-2 annulus. Assume that K is not the trivial knot. Since A is essential, A and A′

is not parallel in X. Hence the boundary-slope of P on ∂X is non-integral.
If P is compressible in E(X), there exists a unique annulus component P ′ of

the surface obtained by compressing P as in the above argument. Since E(X)
is boundary-irreducible, a1 and a2 do not bound disks in E(X). Therefore P ′ is
incompressible. Since A determines a cabling annulus of the core of A′, P ′ is parallel
to A or A′. The former case is impossible since, if so, A is boundary-compressible
in E(V ). In the latter case, applying a similar argument for the case of P ⊂ X, we
can prove that A is a Type 3-1 or 3-2 annulus.

Suppose that P is incompressible in E(X). By Lemma 3.9, A′ ∪ P = ∂V is
incompressible in E(V ), i.e. E(V ) is boundary-irreducible. Similarly, A ∪ P is
incompressible in X ∪ V . Therefore A ∪ P is compressible in V ′ = E(X ∪ V ). It
follows that the interior boundary ∂−W of the characteristic compression body W
of V ′ is two tori, a single torus or the empty set.

Assume first that E(V ) does not admit an essential torus. Then it is clear from
the definition that ∂−W = ∅, i.e. V ′ is also a genus two handlebody. Then by
Corollary 3.16 K is an Eudave-Muñoz knot. This implies that A is a Type 4-1
annulus.

Finally, assume that E(V ) contains essential tori. In this case, the interior
boundary ∂−W is a single torus or two tori. Then, we can re-embed X ∪ V ∪W in
S3 so that E(X ∪ V ) is a handlebody. This implies that A is a Type 4-2 annulus.
This completes the proof. �
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Proof of Theorem 3.3. Let A be an essential annulus in E(V ). Then by Lemmas
3.8, 3.11, 3.12 and 3.17, A belongs to at least one of the four Types 1, 2, 3 and 4.
Moreover, by Lemma 3.4 and the definition of the types of annuli in E(V ), we have
the following characterization:

(1) If both components of ∂A bound disks in V , then A is a Type 1 annulus
and vice versa.

(2) If exactly one of the components of ∂A bounds a disk in V , then A is a
Type 2 annulus and vice versa.

(3) If no component of ∂A bounds a disk in V , and there exists a compression
disk of ∂V in S3 disjoint from A, then A is a Type 3 annulus and vice versa.

(4) If no component of ∂A bounds a disk in V , and there exist no compression
disks of ∂V in S3 disjoint from A, then A is a Type 4 annulus and vice
versa.

The proof is then straightforward. �

We recall that a handlebody knot (S3, V ) is said to be irreducible if it is not
1-decomposable. It is equivalent to saying that E(V ) is boundary-irreducible. For
irreducible genus two handlebody-knots, we have a complete classification of the
essential annuli in their exteriors as follows:

Corollary 3.18. Let (S3, V ) be an irreducible genus two handlebody-knot. Let A
be an annulus properly embedded in E(V ). Then A is essential in E(V ) if and only
if A is a Type 1, 2, 3-2, 3-3 or 4 annulus.

Proof. The “only if” part follows from Theorem 3.3 and the definition of the Type
3-1 annulus. In fact, if E(V ) contains an annulus of type 3-1, the dual disk of the
drilling arc α in the definition of the Type 3-1 annulus gives an essential disk in
E(V ).

Let A be a Type 1, 2, 3-2, 3-3 or 4 annulus. By definition, each component of A
is essential on ∂V and A is not parallel to the boundary of E(V ). Hence by Lemma
1.4, A is essential. �

4. Classification of the essential Möbius bands in genus two

handlebody-knot exteriors

The classification of the essential annuli in the exteriors of genus two handlebody-
knots provided in the previous section directly provides a classification of the es-
sential Möbius bands in them.

Let Y be a solid torus embedded in S3. Let K be an (n, 2)-slope on ∂Y with
respect to the core of Y , where n is an odd integer. Set X = N(K;S3) and
A = ∂Y \ IntX. A Type 3-1 (3-2, respectively) essential annulus in the exterior of
a genus two handlebody-knot is called a Type 3-1∗ annulus (a Type 3-2∗ annulus,
respectively) if it is constructed using the above X and A in their definitions. An
annulus F in the exterior of a genus two handlebody-knot is said to be a Type 3*
annulus if it is a Type 3-1∗ or 3-2∗ annulus.

Let (S3, V ) be a genus two handlebody-knot. An essential Möbius band F in
E(V ) is called a Type 1-1, 1-2 and 2 Möbius band, respectively, if the frontier of its
regular neighborhood is a Type 3-1∗, 3-2∗ and 4 annulus, respectively. An essential
Möbius band F in the exterior of a genus two handlebody-knot is said to be a Type
1 Möbius band if it is a Type 1-1 or 1-2 Möbius band.
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Example. The left-hand side in Figure 20 shows a Type 1-1 essential Möbius band
F1 in the exterior of a genus two handlebody-knot V1. This example is provided
in [36] to prove that handlebody-knots are not determined by their complements.
The right-hand side in the same figure shows a Type 1-2 essential Möbius band F2

in the exterior of a genus two handlebody-knot V2.

Figure 20. Type 1 essential Möbius bands.

Theorem 4.1. Let (S3, V ) be a genus two handlebody-knot. Then each essential
Möbius band F in the exterior of V belongs to exactly one of the above two types.
Conversely, each of Types 3∗ and 4 essential annuli in E(V ) is the frontier of a
regular neighborhood of an essential Möbius band of E(V ).

Proof. Let A be the frontier of a regular neighborhood an essential Möbius band
F in E(V ). Then A satisfies the following:

(1) ∂A cuts off an annulus A′ from ∂V ;
(2) A ∪ A′ bounds a solid torus Y in E(V );
(3) ∂A is an (n, 2)-slope with respect to the core of Y , where n is an odd

integer.

By (1) and Lemmas 3.12 and 3.17, A is a Type 1, 3-1, 3-2 or 4 annulus. By (2),
Type 1 is impossible. Let A be a Type 3-1 or Type 3-2 annulus. Then by definition
there exists a compressing disk D ⊂ E(Y ) for P = ∂V \ IntA′ such that ∂D is
non-separating on ∂V . Let P ′ be the surface obtained by compressing P along D.
By (3), the boundary-slope of the annulus P ′ is an (n, 2)-slope with respect to the
core of Y . This implies that A is a Type 3∗ annulus. Since no essential annulus
in E(V ) can be both Types 3 and 4 by Theorem 3.3, no essential Möbius band in
E(V ) can be both Types 1 and 2.

For the other direction, let A ⊂ E(V ) be an essential annulus of Type 3∗ or Type
4. Then ∂A cuts off an annulus A′ from ∂V and A ∪ A′ bounds a solid torus Y in
E(V ). If A is a Type 3∗ annulus, by definition, ∂A ⊂ ∂Y consists of (n, 2)-slopes
with respect to the core of X, where n is an odd integer. If A is a Type 4 annulus,
by Theorem 3.1 and the definition of Type 4, ∂A ⊂ ∂X also consists of (n, 2)-slopes
with respect to the core of X, where n is an odd integer. Hence in both cases, there
exists a Möbius band F properly embedded in X so that ∂F is the core of the
annulus A′. Since the frontier of F is isotopic to A in E(V ), F is essential in E(V ).
This completes the proof. �
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As a direct corollary of Theorem 4.1, we have the following:

Corollary 4.2. Let (S3, V ) be a genus two handlebody-knot. Then there exists a
one-to-one correspondence between the set of isotopy classes of essential Möbius
bands in E(V ) and the set of isotopy classes of Type 3∗ or 4 essential annuli in
E(V ).

As for essential annuli, we have a complete classification of the essential Möbius
bands in the exteriors of irreducible genus two handlebody-knots.

Corollary 4.3. Let (S3, V ) be an irreducible genus two handlebody-knot. Let F
be a Möbius band properly embedded in E(V ). Then F is essential in E(V ) if and
only if F is a Type 1-2 or 2 Möbius band.

Proof. This follows immediately from Corollary 3.18 and Theorem 4.1. �

5. Classification of the essential tori

in genus two handlebody-knot exteriors

Let (S3, V ) be a handlebody-knot and let T be a torus properly embedded in
E(V ). A peripherally compressing annulus A for T in E(V ) is called, in particular,
a meridionally compressing annulus if A∩∂V bounds an essential disk in V . We say
that T is meridionally compressible if it admits a meridionally compressing annulus.
Otherwise, T is said to be meridionally incompressible.

Theorem 5.1. Let (S3, V ) be a genus two handlebody-knot. Let T be an essential
torus in E(V ). Then the following holds:

(1) If T is meridionally compressible, then there exists a Type 1 essential annu-
lus A in E(V ) such that ∂A cuts off from ∂V an annulus A′ so that A∪A′

is isotopic to T .
(2) If T is not meridionally compressible but peripherally compressible, then

there exists a Type 3-1 or 3-2 essential annulus A in E(V ) such that ∂A
cuts off from ∂V an annulus A′ so that A ∪A′ is isotopic to T .

(3) If T is peripherally incompressible, then there exists a handlebody-knot
(S3, V ′) and a solid torus X in E(V ′) such that E(V ′∪X) does not contain
an essential annulus A with A∩∂V ′ 	= ∅ and A∩∂X 	= ∅, and that there ex-
ists a re-embedding h : E(X) → S3 so that h(V ′) = V and h(∂E(X)) = T .

Proof. Let Y ⊂ S3 be the solid torus bounded by T . Since T is incompressible in
E(V ), Y contains V .

Assume that there exists a peripherally compressing annulus Â for T . Let A ⊂
E(V ) be the annulus obtained by peripherally compressing T along Â. Since T is
essential, it follows from a similar argument of Claim 3 in the proof of Lemma 3.14
that A is also essential. Let A′ be the annulus component of ∂V cut off by ∂A. We
note that T is ambient isotopic to A ∪ A′. Then it is immediate from Lemma 3.4
that Â is a meridionally compressing annulus if and only if A is a Type 1 annulus.
If Â is not a meridionally compressing annulus, by Lemmas 3.12 and 3.17, A is a
Type 3-1, 3-2 or 4 annulus. However, Type 4 is impossible, since, if so, A ∪ A′

bounds a solid torus in E(V ), which implies that T is compressible.
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Next, assume that T is peripherally incompressible. Then Y \ IntV does not
contain an essential annulus A with A∩∂V 	= ∅ and A∩∂Y 	= ∅. We can re-embed
Y into S3 by a map i so that X = E(i(Y )) is a solid torus. The assertion is now
easily seen by settting V ′ = i(V ). �

Appendix A (by Cameron Gordon)

Proof of Lemma 3.6. Let K be a knot in S3, with exterior E(K). The lemma is
clearly true if K is trivial, so assume that K is non-trivial. Let P be a properly
embedded incompressible 4-punctured sphere in E(K) with integral boundary slope
α.

We will assume familiarity with the terminology of labeled fat vertex intersection
graphs, as described for example in [17].

Let E(K)(α) = E(K)∪Vα be the closed manifold obtained by α-Dehn filling on
E(K), where Vα is the filling solid torus. We may cap off the components of ∂P with
meridian disks v1, v2, v3, v4 of Vα (numbered in order along Vα) to get a 2-sphere

P̂ ⊂ E(K)(α). By [11], if we put K in thin position, then there is a level 2-sphere

Q̂ ⊂ S3, with corresponding meridional planar surface Q = Q̂ ∩ E(K) ⊂ E(K),

such that the intersection graphs ΓP and ΓQ in P̂ and Q̂ respectively, defined in
the usual way by the arc components of P ∩Q, have no monogon faces. Note that
v1, v2, v3, v4 are the (fat) vertices of ΓP .

Since H1(S
3) = 0, ΓP does not represent all types [39], and hence by [17] ΓQ

contains a Scharlemann cycle σ. Let f be the disk face of ΓQ bounded by σ and
let k ≥ 2 be the number of edges in σ. Since P is incompressible we can assume
by standard arguments that (Int f) ∩ P = ∅. Without loss of generality σ is a
(12)-Scharlemann cycle. The edges of σ give rise to k corresponding “dual” edges

of ΓP , joining vertices v1 and v2. They thus divide P̂ into k segments.

Claim 8. Vertices v3 and v4 of ΓP lie in the same segment.

Proof. Let q be the number of components ∂Q, which is equal to the valency of the
vertices of ΓP . Suppose v3 and v4 lie in different segments. Then of the q edges of
ΓP incident to v3, a1 go to v1 and a2 to v2, where a1 + a2 = q. Similarly b1 edges
at v4 go to v1 and b2 to v2, where b1 + b2 = q. It follows that either a1 + b1 or
a2 + b2 is ≥ q, a contradiction. �

By Claim 8 there is a disk D ⊂ P̂ containing fat vertices v1 and v2 and the k
edges dual to σ, and disjoint from v3 and v4.

Let H12 be that part of Vα that runs between fat vertices v1 and v2 of ΓP . Let

X̂ be a regular neighborhood of D ∪ H12 ∪ f , pushed slightly off P̂ . Then X̂ is

a punctured lens space whose fundamental group has order k. The 2-sphere ∂X̂
meets Vα in two meridian disks that are nearby parallel copies of v1 and v2. Let

A be the annulus ∂X̂ ∩ E(K). Then A separates E(K) into X and Y , say, where

X ⊂ X̂. Note that X̂ is obtained by attaching the 2-handle H12 to X, and that
P ⊂ Y .

Claim 9. A is essential in E(K).

Proof. Clearly A is incompressible in E(K).
Suppose A is boundary parallel in E(K). Then either X or Y is homeomorphic

to A× I (with A corresponding to A× {0}). In the first case, X̂ is homeomorphic
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to B3, a contradiction. In the second case, P compresses in Y , and therefore in
E(K), again a contradiction. �

Claim 9 implies that K is a cable knot with cabling annulus A. Since P has the
same boundary slope as A, it is easy to show that this is impossible. �

Appendix B: Decomposition of handlebody-knots

by 2-decomposing spheres

In this appendix, we provide a unique decomposition theorem of handlebody-
knots of arbitrary genus by decomposing spheres, which is a generalization of [26].
This is achieved by focusing only on a generalization of Type 1 annuli defined in
Section 3 for higher genus case.

A 2-decomposing sphere S in S3 is called a knotted handle decomposing sphere
for a handlebody-knot (S3, V ) if S ∩ V consists of two parallel essential disks in V ,
and S ∩E(V ) is an essential annulus in E(V ).

Let (S3, V ) be a handlebody-knot and S be its knotted handle decomposing
sphere. Then S ∩∂V cuts off an annulus A from ∂V . Let T be an essential torus in
E(V ) obtained by tubing S ∩E(V ) along A. Let Â be a meridionally compressing

annulus for T . Then by annulus-compressing T along Â, we get a new knotted
handle decomposing sphere S′. We say that S′ is obtained from S by an annulus-
move along A.

A set S1, . . . , Sn of knotted handle decomposing spheres for a handlebody-knot
(S3, V ) is said to be unnested if each sphere Si bounds a 3-ball Bi in S3 so that
Bi ∩ V ∼= B3 (1 � i � n) and Bi ∩ Bj = ∅ (1 � i < j � n). We remark that a
maximal unnested set of knottted handle decomposing spheres always exists by the
Kneser-Haken finiteness theorem [19,29]. Moreover, the following is proved in [26].

Theorem B.2 ([26]). Let (S3, V ) be a handlebody-knot such that E(V ) is boundary-
irreducible. Then (S3, V ) admits a unique maximal unnested set of knotted handle
decomposing spheres up to isotopies and annulus-moves.

In the following, we see that we can remove from the above theorem the assump-
tion that E(V ) is boundary-irreducible.

Theorem B.3. Every handlebody-knot (S3, V ) admits a unique maximal unnested
set of knotted handle decomposing spheres up to isotopies and annulus-moves.

Lemma B.4. Let {T1, T2, . . . , Tn} be a maximal set of mutually disjoint, mutually
non-parallel, essential, meridional-compressible tori in E(V ) satisfying the follow-
ing:

• for each i = 1, 2, . . . , n, let Yi be the region in S3 spanned by Ti such that
Yi ∩ V = ∅. Then Yi ∩ Yj = ∅ for 1 � i < j � n; and

• the core Ki of E(Yi) is a prime knot.

Then any essential, meridional-compressible torus T in E(V ) can be isotoped so
that T ∩ Ti = ∅ for all i.

Proof. Assume for contradiction that T∩(
⋃n

i=1 Ti) 	= ∅ after minimizing the number
of components of T ∩ (

⋃n
i=1 Ti) by an isotopy. Let Ti intersect T . Let A be a
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component of T ∩ Yi. Then by Lemma 1.2 and the assumption that Ki is a prime
knot, A is a cabling annulus for Ki. Hence A intersects a meridionally compressing
annulus Ai for Ti. It follows that Ai ∩ T consists of non-empty proper arcs with
end points on ∂Ai \ ∂V .

Let δ ⊂ Ai be the disk cut off from Ai by an outermost arc α of Ai ∩ T in Ai.
Let A′ be the component of T ∩E(Yi) containing α. See Figure 21. By boundary-

Figure 21

compressing A′ along δ, we get a disk D whose boundary bounds a disk D′ on Ti.
Since a solid torus is irreducible, D ∩ D′ bounds a 3-ball in E(Yi). This implies
that A′ can be isotoped to E(Yi) in E(V )∩E(Yi). This contradicts the minimality
of #(T ∩ (

⋃n
i=1 Ti)). �

Lemma B.5. Let {T1, T2, . . . , Tn} be a maximal set of mutually disjoint, mutually
non-parallel, essential tori in E(V ) such that there exist peripherally compressing
annuli Ai for Ti (1 � i � n) with Aj ∩Ak = ∅, Aj ∩ Tk = ∅ for 1 � j < k � n. For
each i = 1, 2, . . . , n, let Yi be the region in S3 spanned by Ti such that Yi ∩ V = ∅.
Then Yi ∩ Yj = ∅ for 1 � i < j � n.

Proof. If Yi ∩ Yj 	= ∅ for some i, j, we may assume without loss of generality that
Yi ⊂ Yj since every torus embedded in S3 is separating. However, this is impossible
since it is assumed that the compressing annulus Aj does not intersect Ti. �

Proof of Theorem B.3. Let S = {S1, S2, . . . , Sn} and S ′ = {S′
1, S

′
2, . . . , S

′
n} be max-

imal unnested sets of knotted handle 2-decomposing spheres for a handlebody-knot
(S3, V ). Since they are unnested, each sphere Si (S

′
i, respectively) bounds a 3-ball

Bi (B′
i) in S3 such that Bi ∩ V ∼= B3 (B′

i ∩ V ∼= B3, respectively) (1 � i � n)
and Bi ∩ Bj = ∅ (B′

i ∩ B′
j = ∅, respectively) (1 � i < j � n). Each sphere Si (S

′
i,

respectively) separates an annulus Ai (A
′
i, respectively) from ∂V . Let Ti (T

′
i , re-

spectively) be an essential torus in E(V ) obtained by tubing Si∩E(V ) (S′
i∩E(V ))

along Ai (A
′
i, respectively). Let Yi (Y

′
i , respectively) be the region in S3 spanned

by Ti (T
′
i , respectively) such that Yi∩V = ∅ (Y ′

i ∩V = ∅, respectively). It is easy to
check that the set T = {T1, T2, . . . , Tn} (resp. T ′ = {T ′

1, T
′
2, . . . , T

′
n}, respectively)

satisfies the assumption of Lemma B.5. Therefore we have Yi∩Yj = ∅ (Y ′
i ∩Y ′

j = ∅,
respectively) for 1 � i < j � n. Moreover, by Schubert’s theorem [43], the core Ki

(K ′
i, respectively) of E(Yi) (E(Y ′

i ), respectively) is prime for 1 � i � i. Hence by
Lemma B.4 that we have T = T ′. This implies that S ′ is obtained by at most n
annulus-moves from S.
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[10] M. Eudave-Muñoz and M. Ozawa, Composite tunnel number one genus two handlebody-knots,
Bol. Soc. Mat. Mexicana (2014), DOI 10.1007/s40590-014-0035-5.

[11] David Gabai, Foliations and the topology of 3-manifolds. III, J. Differential Geom. 26 (1987),
no. 3, 479–536. MR910018 (89a:57014b)

[12] Lebrecht Goeritz, Die abbildungen der brezelfläche und der vollbrezel vom geschlecht
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[29] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber.
Deutsch. Math.-Verein. 38 (1929), 248–260.

[30] Tsuyoshi Kobayashi, Structures of the Haken manifolds with Heegaard splittings of genus
two, Osaka J. Math. 21 (1984), no. 2, 437–455. MR752472 (85k:57011)

[31] Y. Koda, Automorphisms of the 3-sphere that preserve spatial graphs and handlebody-knots,
arXiv:1106.4777.

[32] Jung Hoon Lee and Sangyop Lee, Inequivalent handlebody-knots with homeomorphic com-

plements, Algebr. Geom. Topol. 12 (2012), no. 2, 1059–1079, DOI 10.2140/agt.2012.12.1059.
MR2928904

[33] E. Luft and X. Zhang, Symmetric knots and the cabling conjecture, Math. Ann. 298 (1994),
no. 3, 489–496, DOI 10.1007/BF01459747. MR1262772 (95f:57014)

[34] William W. Menasco and Morwen B. Thistlethwaite, Surfaces with boundary in alternating
knot exteriors, J. Reine Angew. Math. 426 (1992), 47–65. MR1155746 (93d:57019)

[35] John W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds,
The Smith conjecture (New York, 1979), Pure Appl. Math., vol. 112, Academic Press, Or-
lando, FL, 1984, pp. 37–125, DOI 10.1016/S0079-8169(08)61637-2. MR758464

[36] Michael Motto, Inequivalent genus 2 handlebodies in S3 with homeomorphic complement,
Topology Appl. 36 (1990), no. 3, 283–290, DOI 10.1016/0166-8641(90)90052-4. MR1070707
(91j:57008)
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