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MOD 3 CONGRUENCE AND TWISTED SIGNATURE

OF 24 DIMENSIONAL STRING MANIFOLDS

QINGTAO CHEN AND FEI HAN

Abstract. In this paper, by combining modularity of the Witten genus and
the modular forms constructed by Liu and Wang, we establish mod 3 congru-
ence properties of certain twisted signatures of 24 dimensional string manifolds.

Introduction

Let M be a 2n dimensional smooth closed oriented manifold. Let gTM be a
Riemmian metric on TM and ∇TM the associated Levi-Civita connection. Let V
be a complex vector bundle over M with a Hermitian metric hV and a unitary
connection ∇V .

Let ΛC(T
∗M) be the complexified exterior algebra bundle of TM and let

〈 , 〉ΛC(T∗M) be the Hermitian metric on ΛC(T
∗M) induced by gTM . Let dv

be the Riemannian volume form associated to gTM . Then Γ(M,ΛC(T
∗M)) has a

Hermitian metric such that for α, α′ ∈ Γ(M,ΛC(T
∗M)),

〈α, α′〉 =
∫
M

〈α, α′〉ΛC(T∗M) dv.

For X ∈ TM , let c(X) be the Clifford action on ΛC(T
∗M) defined by c(X) =

X∗ − iX , where X∗ ∈ T ∗M corresponds to X via gTM . Let {e1, e2, · · · , e2n} be an
oriented orthogonal basis of TM . Set

Ω = (
√
−1)nc(e1) · · · c(e2n).

Then one can show that Ω is independent of the choice of the orthonormal basis
and ΩV = Ω ⊗ 1 is a self-adjoint element acting on ΛC(T

∗M) ⊗ V such that
Ω2

V = Id|ΛC(T∗M)⊗V .
Let d be the exterior differentiation operator and d∗ be the formal adjoint of d

with respect to the Hermitian metric. The operator

DSig := d+ d∗ =

2n∑
i=1

c(ei)∇ΛC(T∗M)
ei : Γ(M,ΛC(T

∗M)) → Γ(M,ΛC(T
∗M))

is the signature operator, and the more general twisted signature operator is defined
as (cf. [6])

DSig ⊗V :=
2n∑
i=1

c(ei)∇ΛC(T∗M)⊗V
ei : Γ(M,ΛC(T

∗M)⊗V ) → Γ(M,ΛC(T
∗M)⊗V ).
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The operators DSig⊗V and ΩV anticommunicate. If we decompose ΛC(T
∗M)⊗

V = Λ+
C(T

∗M) ⊗ V ⊕ Λ−
C(T

∗M) ⊗ V into ±1 eigenspaces of ΩV , then DSig ⊗ V
decomposes to define

(DSig ⊗ V )± : Γ(M,Λ±
C(T

∗M)⊗ V ) → Γ(M,Λ∓
C(T

∗M)⊗ V ).

The index of the operator (DSig ⊗ V )+ is called the twisted signature of M and
denoted by Sig(M,V ). By the Atiyah-Singer index theorem,

Sig(M,V ) =

∫
M

L̂(TM,∇TM )ch(V,∇V )

(see Section 1.2 for the definitions of L̂ and ch as well as some explanation of the
above formula).

When V is trivial, Sig(M,V ) is just the signature of M , denoted by Sig(M).
Let TCM be the complexification of TM . When V = TCM,TCM ⊗ TCM and
Λ2TCM , simply denote Sig(M,V ) by Sig(M, T ), Sig(M, T ⊗T ) and Sig(M,Λ2T )
respectively.

Further, assume that M is spin. Let O be the SO(2n) bundle of oriented or-

thogonal frames in TM . Since TM is spin, the SO(2n) bundle O
�
�� M lifts to

a Spin(2n) bundle O′ σ �� O
�
�� M such that σ induces the covering projection

Spin(2n) → SO(2n) on each fiber. Let Δ(TM),Δ(TM)± denote the Hermitian
bundles of spinors

Δ(TM) = O′ ×Spin(2n) S2n, Δ(TM)± = O′ ×Spin(2n) S±,2n,

where S2n = S+,2n ⊕ S−,2n is the complex spinor representation. The connec-
tion ∇TM on O lifts to a connection on O′. Δ(TM),Δ(TM)± are then naturally
endowed with a unitary connection, which we simply denote by ∇.

The elements of TM act by Clifford multiplication on Δ(TM)⊗ V . Define the

twisted Dirac operator D ⊗ V to be
∑2n

i=1 ei∇
Δ(TM)⊗V
ei . Let (D ⊗ V )± denote the

restriction of D⊗V to Δ(TM)±⊗V . The twisted operator (D⊗TCM)+ is known
as the Rarita-Schwinger operator [23]. By the Atiyah-Singer index theorem,

Ind((D ⊗ V )+) =

∫
M

Â(TM,∇TM )ch(V,∇V )

(see (1.17) for the definition of Â).
On spin manifolds, there are divisibility properties for the signature and twisted

signatures. The famous Rokhlin theorem ([20]) says that whenM is a 4 dimensional
smooth closed spin manifold, Sig(M) is divisible by 16. Ochanine ([19]) generalizes
the Rokhlin congruence to higher dimensions by proving that when M is an 8k+4
dimensional smooth closed spin manifold, the signature Sig(M) is divisible by 16.
The Hirzebruch divisibilities ([9]; cf. [5]) assert that whenM is an 8k+4 dimensional
smooth closed spin manifold, the twisted signature Sig(M, T ) is divisible by 256,
while when M is 8k dimensional, Sig(M, T ) is divisible by 2048. In [5], the authors
show that when M is an 8k + 4 dimensional smooth closed spin manifold with
k ≥ 1, the twisted signature Sig(M, T ⊗ T ) is divisible by 256, while when M is
8k dimensional with k ≥ 2, Sig(M, T ⊗ T ) is divisible by 2048.

A spin manifold M is called string if p1(M)
2 = 0, where p1(M)

2 is a degree 4
integral cohomology class determined by the spin structure of M , twice of which
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is equal to the first Pontryagin class p1(M). On a 4k dimensional smooth closed
string manifold M , the Witten genus ([22])

W (M) :=

∫
M

Â(TM)ch

( ∞⊗
n=1

Sqn(T̃CM)

)
is a modular form of weight 2k over SL(2,Z) with integral Fourier expansion ([24]).
See Section 1 for details. 24 is an interesting dimension for string manifolds. For ex-
ample, the Hirzebruch prize question [10] asks for the existence of a 24 dimensional

string manifold M such that
∫
M

Â(M) = 1,
∫
M

Â(M)ch(TCM) = 0 (answered pos-
itively by Hopkins-Mahowald [11]) and to find such a string manifold on which the
Monster group acts by diffeomorphism (still open).

In this paper, we study 24 dimensional string manifolds and obtain the following
mod 3 congruence of the twisted signature and the index of the Rarita-Schwinger
operator by combining the modularity of the Witten genus and the modular forms
constructed by Liu and Wang in [17].

Theorem 0.1. If M is a 24 dimensional smooth closed string manifold, then

(0.1) Sig(M,Λ2T ) ≡ Ind((D ⊗ TCM)+) mod 3Z.

Let ΩString
4k be the string cobordism group in dimension 4k and tmf be the

theory of topological modular form developed by Hopkins and Miller ([11]). Let
MFZ

2k(SL(2,Z)) be the space of modular forms of weight 2k over SL(2,Z) with
integral Fourier expansion. The Witten genus W is equal to the composition of the
maps ([11])

ΩString
4k

σ �� tmf−4k(pt)
e �� MFZ

2k(SL(2,Z)) ,

where σ is the refined Witten genus and e is the edge homomorphism in a spectral
sequence. Hopkins and Mahowald ([11]) show that σ is surjective. For i, l ≥ 0, j =
0, 1, define

ai,j,l =

⎧⎨⎩
1 i > 0, j = 0,
2 j = 1,

24/gcd(24, l) i, j = 0.

Hopkins and Mahowald also show that the image of e (and therefore the image of
the Witten genus) has a basis given by monomials

(0.2) ai,j,lE4(τ )
iE6(τ )

jΔ(τ )l, i, l ≥ 0, j = 0, 1,

where

E4(τ ) = 1 + 240(q + 9q2 + 28q3 + · · · ),
E6(τ ) = 1− 504(q + 33q2 + 244q3 + · · · )

are the Eisenstein series and Δ(τ ) = q
∏

n≥0(1− qn)24 is the modular discriminant

(see Section 1.1). Their weights are 4, 6, 12 respectively. In dimension 24, the
image of the Witten genus is spanned by the monomials E4(τ )

3, 24Δ(τ ), and since∫
M

Â(M)ch(TCM) − 24
∫
M

Â(M) is the coefficient of q in the expansion of the

Witten genus, one has that Ind((D⊗TCM)+) =
∫
M

Â(M)ch(TCM) is divisible by
24 (this observation is due to Teichner [21]). Therefore, by Theorem 0.1, we have

Corollary 0.1. If M is a 24 dimensional smooth closed string manifold, then

(0.3) 3|Sig(M,Λ2T ).
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One naturally asks if the string condition is indispensable for the mod 3 divis-
ibility in Corollary 0.1. We answer this question as follows. Let B8 be such a

Bott manifold, which is 8 dimensional and spin with the A-hat genus Â(B8) = 1,
Sig(B8) = 0 ([15]). Let HP 2 be a quarterionic projective plane. B8 ×HP 2×HP 2

is a 24 dimensional spin manifold but not string. In Section 3, we will show that

(0.4) 3 � Sig(B8 ×HP 2 ×HP 2,Λ2T ),

and therefore the string condition is indispensable.
One can also show that the power of 3 cannot be increased for the divisibility in

Corollary 0.1. Let M8
0 be the 8 dimensional Milnor-Kervaire almost-parallelizable

manifold. It is a string manifold. Consider the 24 dimensional string manifold
M8

0 ×M8
0 ×M8

0 . In Section 3, we will show that

(0.5) 3|Sig(M8
0 ×M8

0 ×M8
0 ,Λ

2T )

but

(0.6) 32 � Sig(M8
0 ×M8

0 ×M8
0 ,Λ

2T ).

We would like to point out that M8
0 × M8

0 × M8
0 is an interesting 24 dimensional

string manifold with W (M8
0 ×M8

0 ×M8
0 ) = −E4(τ )

3. See Section 3 for details.
The paper is organized as follows. In Section 1, we review some basic knowledge

of Jacobi theta functions, modular forms and then review the Witten genus as well
as the modular forms constructed by Liu andWang. In Section 2, we prove Theorem
0.1 by combining modularity of the Witten genus and the Liu-Wang modular forms.
The examples and computation are included in Section 3.

1. Modular forms and characteristic forms

1.1. Preliminary on the Jacobi theta functions and modular forms. Let

SL2(Z) :=

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
as usual be the modular group. Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
be the two generators of SL2(Z). Their actions on H, the upper half plane, are
given by

S : τ → −1

τ
, T : τ → τ + 1.

The four Jacobi theta functions are defined as follows (cf. [4]):

θ(v, τ ) = 2q1/8 sin(πv)

∞∏
j=1

[
(1− qj)(1− e2π

√
−1vqj)(1− e−2π

√
−1vqj)

]
,

θ1(v, τ ) = 2q1/8 cos(πv)

∞∏
j=1

[
(1− qj)(1 + e2π

√
−1vqj)(1 + e−2π

√
−1vqj)

]
,

θ2(v, τ ) =
∞∏
j=1

[
(1− qj)(1− e2π

√
−1vqj−1/2)(1− e−2π

√
−1vqj−1/2)

]
,



MOD 3 CONGRUENCE AND TWISTED SIGNATURE 2963

θ3(v, τ ) =
∞∏
j=1

[
(1− qj)(1 + e2π

√
−1vqj−1/2)(1 + e−2π

√
−1vqj−1/2)

]
,

where q = e2π
√
−1τ with τ ∈ H. They are holomorphic functions for (v, τ ) ∈ C×H.

If we act on the theta-functions by S and T , they obey the following transfor-
mation laws (cf. [4]):
(1.1)

θ(v, τ + 1) = e
π
√

−1
4 θ(v, τ ), θ (v,−1/τ ) =

1√
−1

(
τ√
−1

)1/2

eπ
√
−1τv2

θ (τv, τ ) ;

(1.2) θ1(v, τ+1) = e
π
√

−1
4 θ1(v, τ ), θ1 (v,−1/τ ) =

(
τ√
−1

)1/2

eπ
√
−1τv2

θ2(τv, τ ) ;

(1.3) θ2(v, τ + 1) = θ3(v, τ ), θ2 (v,−1/τ ) =

(
τ√
−1

)1/2

eπ
√
−1τv2

θ1(τv, τ ) ;

(1.4) θ3(v, τ + 1) = θ2(v, τ ), θ3 (v,−1/τ ) =

(
τ√
−1

)1/2

eπ
√
−1τv2

θ3(τv, τ ) .

Definition 1.1. Let Γ be a subgroup of SL2(Z). A modular form over Γ is a
holomorphic function f(τ ) on H ∪ {∞} such that for any

g =

(
a b
c d

)
∈ Γ ,

the following property holds:

f(gτ ) := f

(
aτ + b

cτ + d

)
= χ(g)(cτ + d)lf(τ ),

where χ : Γ → C∗ is a character of Γ and l is called the weight of f .

Let

(1.5) E2k(τ ) = 1− 4k

B2k

∞∑
n=1

⎛⎝∑
d|n

d2k−1

⎞⎠ qn

be the Eisenstein series, where B2k is the 2k-th Bernoulli number. When k >
1, E2k(τ ) is a modular form of weight 2k over SL2(Z). However, unlike other
Eisenstein theories, E2(τ ) is not a modular form over SL(2,Z). Instead E2(τ ) is a
quasimodular form over SL(2,Z), satisfying

(1.6) E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ )−

6
√
−1c(cτ + d)

π
.

In particular, we have

(1.7) E2(τ + 1) = E2(τ ),

(1.8) E2

(
−1

τ

)
= τ2E2(τ )−

6
√
−1τ

π
.

For the precise definition of quasimodular forms, see [12].
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Explicitly, we have

(1.9) E2(τ ) = 1− 24
∞∑

n=1

⎛⎝∑
d|n

d

⎞⎠ qn = 1− 24q − 72q2 − 96q3 − · · ·

and

E4(τ ) = 1 + 240(q + 9q2 + 28q3 + · · · ),
E6(τ ) = 1− 504(q + 33q2 + 244q3 + · · · ).

(1.10)

Let

(1.11) Δ(τ ) =
1

1728
(E4(τ )

3 −E6(τ )
2) = q

∏
n≥0

(1− qn)24 = q − 24q2 + 252q3 + · · ·

be the modular discriminant.

Theorem 1.1 (Tate). The ring of integral modular forms is

MFZ
∗

∼= Z[E4(τ ), E6(τ ),Δ(τ )]/(E4(τ )
3 − E6(τ )

2 = 1728Δ(τ )).

In the following, let’s briefly review some level 2 modular forms. Let

Γ0(2) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod 2)

}
,

Γ0(2) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ 0 (mod 2)

}
be the two modular subgroups of SL2(Z). It is known that the generators of Γ0(2)
are T, ST 2ST and the generators of Γ0(2) are STS, T 2STS (cf. [4]).

Simply write θj = θj(0, τ ), 1 ≤ j ≤ 3. Define (cf. [16])

δ1(τ ) =
1

8
(θ42 + θ43), ε1(τ ) =

1

16
θ42θ

4
3 ,

δ2(τ ) = −1

8
(θ41 + θ43), ε2(τ ) =

1

16
θ41θ

4
3 .

More explicitly, we have

(1.12) δ1(τ ) =
1

4
+ 6

∞∑
n=1

∑
d|n,d odd

d · qn =
1

4
+ 6q + 6q2 + · · · ,

(1.13) ε1(τ ) =
1

16
+

∞∑
n=1

∑
d|n

(−1)dd3 · qn =
1

16
− q + 7q2 + · · · ,

(1.14) δ2(τ ) = −1

8
− 3

∞∑
n=1

∑
d|n,d odd

d · q n
2 = −1

8
− 3q1/2 − 3q − 12q3/2 + · · ·

and

(1.15) ε2(τ ) =

∞∑
n=1

∑
d|n,n/d odd

d3 · q n
2 = q1/2 + 8q + 28q3/2 · · · ,

where the “· · · ” terms are the higher degree terms, all of which have integral coef-
ficients.

If Γ is a modular subgroup, let MZ
∗ (Γ) denote the ring of modular forms over Γ

with integral Fourier coefficients.
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Theorem 1.2 (cf. [16]). One has that δ1(τ ) (resp. ε1(τ )) is a modular form of
weight 2 (resp. 4) over Γ0(2); δ2(τ ) (resp. ε2(τ )) is a modular form of weight
2 (resp. 4) over Γ0(2), and moreover MZ

∗ (Γ
0(2)) = Z[8δ2(τ ), ε2(τ )]. Furthermore,

we have the transformation laws

(1.16) δ2

(
−1

τ

)
= τ2δ1(τ ), ε2

(
−1

τ

)
= τ4ε1(τ ).

1.2. Modular characteristic forms. Let M be a 4k dimensional smooth Rie-
mannian manifold. Let ∇TM be the associated Levi-Civita connection on TM
and RTM = (∇TM )2 be the curvature of ∇TM . ∇TM extends canonically to a
Hermitian connection ∇TCM on TCM = TM ⊗C.

Let Â(TM,∇TM ) and L̂(TM,∇TM ) be the Hirzebruch characteristic forms de-
fined respectively by (cf. [25])

Â(TM,∇TM ) = det1/2

⎛⎝ √
−1
4π RTM

sinh
(√

−1
4π RTM

)
⎞⎠ ,

L̂(TM,∇TM ) = det1/2

⎛⎝ √
−1
2π RTM

tanh
(√

−1
4π RTM

)
⎞⎠ .

(1.17)

Note that L̂(TM,∇TM ) defined here is different from the classical Hirzebruch L-
form defined by

L(TM,∇TM ) = det1/2

⎛⎝ √
−1
2π RTM

tanh
(√

−1
2π RTM

)
⎞⎠ .

However, they give the same top (degree 4k) forms, and therefore when M is
oriented ∫

M

L̂(TM,∇TM ) =

∫
M

L(TM,∇TM ).

Let E, F be two Hermitian vector bundles over M carrying Hermitian connec-
tions ∇E , ∇F respectively. Let RE = (∇E)2 (resp. RF = (∇F )2) be the curvature
of ∇E (resp. ∇F ). If we set the formal difference G = E − F , then G carries an
induced Hermitian connection ∇G in an obvious sense. We define the associated
Chern character form as (cf. [25])

(1.18) ch(G,∇G) = tr

[
exp

(√
−1

2π
RE

)]
− tr

[
exp

(√
−1

2π
RF

)]
.

Let ch(G,∇G) =
∑2k

i=0 ch
i(G,∇G) such that chi(G,∇G) is the degree 2i component.

Define

ch2(G,∇G) =

2k∑
i=0

2ichi(G,∇G).

It’s not hard to see that∫
M

L̂(TM,∇TM )ch(E,∇E) =

∫
M

L(TM,∇TM )ch2(E,∇E).

Note that in the book [14] (Theorem 13.9), the following formula is given:

Sig(M,E) =

∫
M

L(TM,∇TM )ch2(E,∇E).
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Here we use
∫
M

L̂(TM,∇TM )ch(E,∇E) to avoid ch2. (However, we would like to

point out that our L̂ is different from the L̂ in [14].)
By the Chern-Weil theory, the cohomology classes represented by the character-

istic forms defined above are independent of the choice of connections. In the rest
of this chapter, we simply write characteristic forms without writing connections.

For any complex number t, let

St(E) = C|M + tE + t2S2(E) + · · · , Λt(E) = C|M + tE + t2Λ2(E) + · · ·

denote respectively the total symmetric and exterior powers of E, which lie in
K(M)[[t]]. The following relations between these two operations [1] hold:

(1.19) St(E) =
1

Λ−t(E)
, Λt(E − F ) =

Λt(E)

Λt(F )
.

Let {ωi}, {ωj
′} be formal Chern roots for Hermitian vector bundles E, F re-

spectively. Then [8]

(1.20) ch (Λt(E)) =
∏
i

(1 + eωit).

Therefore, we have the following formulas for Chern character forms:

(1.21) ch (St(E)) =
1

ch (Λ−t(E))
=

1∏
i

(1− eωit)
,

(1.22) ch (Λt(E − F )) =
ch (Λt(E))

ch (Λt(F ))
=

∏
i

(1 + eωit)∏
j

(1 + eωj
′
t)

.

If W is a real Euclidean vector bundle over M carrying a Euclidean connection
∇W , then its complexification WC = W ⊗ C is a complex vector bundle over
M carrying a canonically induced Hermitian metric from that of W , as well as a
Hermitian connection ∇WC induced from ∇W . If E is a complex vector bundle

over M , set Ẽ = E −Crk(E) in K(M).
Set

(1.23) Θ(TCM) =
∞⊗

n=1

Sqn(T̃CM).

Θ(TCM) carries the induced connection from ∇TCM .
When M is a closed string manifold, the Witten genus ([22])

W (M) :=

∫
M

Â(TM)ch(Θ(TCM))

is a modular form of weight 2k over SL(2,Z) with integral Fourier expansion ([24]).
Let V be a 2l dimensional real Euclidean vector bundle over M carrying a Eu-

clidean connection. Let a, b be two integers. Liu and Wang introduce the following
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elements ([17]) in K(M)[[q
1
2 ]] which consist of formal power series in q

1
2 with coef-

ficients in the K-group of M :

Θ1(TCM,VC, a, b)

=
∞⊗

n=1

Sqn(T̃CM)⊗
( ∞⊗

m=1

Λqm(ṼC)

)a

⊗
( ∞⊗

r=1

Λ
qr−

1
2
(ṼC)

)b

⊗
( ∞⊗

s=1

Λ
−qs−

1
2
(ṼC)

)b

,

(1.24)

Θ2(TCM,VC, a, b)

=

∞⊗
n=1

Sqn(T̃CM)⊗
( ∞⊗

m=1

Λqm(ṼC)

)b

⊗
( ∞⊗

r=1

Λ
qr−

1
2
(ṼC)

)b

⊗
( ∞⊗

s=1

Λ
−qs−

1
2
(ṼC)

)a

.

(1.25)

Θi(TCM,VC, a, b), i = 1, 2, carry the induced connections from ∇TCM and ∇VC .
Now assume V is spin and denote the spinor bundle of V by Δ(V ), which carries

the induced connection from ∇VC .
Let p1(TM) and p1(V ) be the first Pontrjagin forms of TM and V respectively.
If ω is a differential form on M , we denote by ω(i) its degree i component.
Set ([7, 17])

Q1(TCM,VC, a, b, τ )

=
{
e

1
24E2(τ)[p1(TM)−(a+2b)p1(V )]Â(TM)ch((Δ(V ))a)ch(Θ1(TCM,VC, a, b))

}(4k)

,

(1.26)

(1.27) Q2(TCM,VC, a, b, τ ) =
{
Â(TM)ch((Δ(V ))b)ch(Θ2(TCM,VC, a, b))

}(4k)

,

Q2(TCM,VC, a, b, τ ) =

{
e

1
24E2(τ)[p1(TM)−(a+2b)p1(V )] − 1

p1(TM)− (a+ 2b)p1(V )

· Â(TM)ch((Δ(V ))b)ch(Θ2(TCM,VC, a, b))

}(4k−4)

.

(1.28)

Liu and Wang prove following the theorem in [17]:

Theorem 1.3 ([17]).
∫
M

Q1(TCM,VC, a, b, τ ) is a modular form weight 2k over
Γ0(2), while∫

M

{Q2(TCM,VC, a, b, τ ) + [p1(TM)− (a+ 2b)p1(V )]Q2(TCM,VC, a, b, τ )}

is a modular form weight 2k over Γ0(2). Moreover, the following identity holds:∫
M

Q1

(
TCM,VC, a, b,−

1

τ

)
(1.29)

= 2(a−b)lτ2k
∫
M

{Q2(TCM,VC, a, b, τ )

+[p1(TM)− (a+ 2b)p1(V )]Q2(TCM,VC, a, b, τ )
}
.
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2. Proof of Theorem 0.1

In this section, we give the proof of Theorem 0.1 by combining the modularity
of the Witten genus and the Liu-Wang modular forms.

Let M be a 24 dimensional smooth closed string manifold.

Lemma 2.1.

(2.1)

∫
M

Â(TM)ch(S2TCM) =

∫
M

Â(TM)ch(−TCM + 196884),

and therefore

(2.2)

∫
M

Â(TM)ch(S2TCM) ≡ −
∫
M

Â(TM)ch(TCM) mod 3Z.

Proof. Since the Witten genus W (M) is a weight 12 modular form over SL(2,Z),
by Tate’s Theorem, we have

(2.3)

∫
M

Â(TM)ch(Θ(TCM)) = mE4(τ )
3 + nΔ(τ ).

Expanding Θ(TCM), we have

Θ(TCM) =

∞⊗
n=1

Sqn(T̃CM)

(2.4)

=

∞⊗
n=1

Sqn(TCM)Λ−qn(C
24)

= (1 + TCMq + S2TCMq2)⊗ (1 + TCMq2)⊗ (1− 24q + 276q2)

⊗ (1− 24q2) +O(q3)

= [1 + TCMq + (S2TCM + TCM)q2]⊗ (1− 24q + 252q2) +O(q3)

= 1 + (TCM − 24)q + (S2TCM − 23TCM + 252)q2 +O(q3).

Since

E4(τ )
3 = 1 + 720q + 179280q2 +O(q3),

Δ(τ ) = q − 24q2 +O(q3),
(2.5)

we have

(2.6)

∫
M

Â(TM) = m,

(2.7)

∫
M

Â(TM)ch(TCM − 24) = 720m+ n,

(2.8)

∫
M

Â(TM)ch(S2TCM − 23TCM + 252) = 179280m− 24n.

By solving these relations, it’s not hard to get (2.1). �

Remark 2.1. We would like to point out that (2.1) is implicitly derived in [10] by
using a different basis for weight 12 modular forms. Our contribution here is to
observe (2.2) and use it to prove mod 3 congruence of the twisted signature.
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Using the string condition and putting a = 0, b = 1 and V = TM in Liu-Wang’s
construction, we get a pair of modular forms by using the modularity from which
we can prove the following lemma.

Lemma 2.2. ∫
M

L̂(TM)ch
(
Λ2TCM − TCM

)
≡
∫
M

Â(TM)ch
(
Λ2TCM − S2TCM + TCM

)
mod 3Z.

(2.9)

Proof. Putting a = 0, b = 1 and V = TM in Liu-Wang’s construction, we have
(2.10)

Θ1(TCM,TCM, 0, 1) =

∞⊗
n=1

Sqn(T̃CM)⊗
∞⊗
r=1

Λ
qr−

1
2
(T̃CM)⊗

∞⊗
s=1

Λ
−qs−

1
2
(T̃CM),

(2.11)

Θ2(TCM,TCM, 0, 1) =
∞⊗

n=1

Sqn(T̃CM)⊗
∞⊗

m=1

Λqm(T̃CM)⊗
∞⊗
r=1

Λ
qr−

1
2
(T̃CM),

(2.12)

Q1(TCM,TCM, 0, 1, τ ) =
{
e−

1
24E2(τ)p1(TM)Â(TM)ch(Θ1(TCM,TCM, 0, 1))

}(24)

,

Q2(TCM,TCM, 0, 1, τ )− p1(TM)Q2(TCM,TCM, 0, 1, τ )

=
{
e−

1
24E2(τ)p1(TM)L̂(TM)ch(Θ2(TCM,TCM, 0, 1))

}(24)

.
(2.13)

Note that we have used L̂(TM) = Â(TM)ch(Δ(TM)).
Let

(2.14) Θ1(TCM,TCM, 0, 1) = A0 +A1q
1/2 +A2q + · · · ,

(2.15) Θ2(TCM,TCM, 0, 1) = B0 +B1q
1/2 +B2q + · · · .

Since M is string, we have

R1(τ ) :=

∫
M

Q1(TCM,TCM, 0, 1, τ )

=

∫
M

e−
1
24E2(τ)p1(TM)Â(TM)ch(Θ1(TCM,TCM, 0, 1))

=

∫
M

Â(TM)ch(Θ1(TCM,TCM, 0, 1)),

(2.16)

R2(τ ) :=

∫
M

{Q2(TCM,TCM, 0, 1, τ )− p1(TM)Q2(TCM,TCM, 0, 1, τ )}

=

∫
M

e−
1
24E2(τ)p1(TM)L̂(TM)ch(Θ2(TCM,TCM, 0, 1))

=

∫
M

L̂(TM)ch(Θ2(TCM,TCM, 0, 1)).

(2.17)

By Theorem 1.3, we see that R1(τ ) is an integral modular form of weight 12 over
Γ0(2), while R2(τ ) is an integral modular form of weight 12 over Γ0(2).

So by Theorem 1.2, we have the following expansion:

(2.18) R2(τ ) = h0(8δ2)
6 + h1(8δ2)

4ε2 + h2(8δ2)
2ε22 + h3ε

3
2,
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where each hr =
∫
M

Â(TM)ch(br(TCM)), 0 ≤ r ≤ 3, and each br(TCM) is a
canonical integral linear combination of Bj(TCM), 0 ≤ j ≤ r.

From (2.18) and (1.14), (1.15), one has

(2.19)

∫
M

L̂(TM)ch(B0) = h0,

(2.20)

∫
M

L̂(TM)ch(B1) = 144h0 + h1,

(2.21)

∫
M

L̂(TM)ch(B2) = 8784h0 + 104h1 + h2.

From (1.19) and (2.11), one can compute the Bi’s explicitly as follows:

B0 +B1q
1/2 +B2q +O(q3/2)

=
∞⊗

n=1

Sqn(T̃CM)⊗
∞⊗

m=1

Λqm(T̃CM)⊗
∞⊗
r=1

Λ
qr−

1
2
(T̃CM)

=
∞⊗

n=1

Λ−qn(C
24)

Λ−qn(TCM)
⊗

∞⊗
m=1

Λqm(TCM)

Λqm(C24)
⊗

∞⊗
r=1

Λ
qr−

1
2
(TCM)

Λ
qr−

1
2
(C24)

=[1 + (TCM − 24)q]⊗ [1 + (TCM − 24)q]⊗ 1 + TCMq
1
2 + Λ2TCMq

1 + 24q
1
2 + 276q

+O(q3/2)

=[1 + (2TCM − 48)q]⊗ (1 + TCMq
1
2 + Λ2TCMq)⊗ (1− 24q

1
2 + 300q) +O(q3/2)

=1 + (TCM − 24)q
1
2 + (Λ2TCM − 22TCM + 252)q +O(q3/2).

(2.22)

So we have

(2.23) B0 = 1,

(2.24) B1 = TCM − 24,

(2.25) B2 = Λ2TCM − 22TCM + 252.

Then by (2.19)-(2.22), we get

(2.26) h0 =

∫
M

L̂(TM),

(2.27) h1 =

∫
M

L̂(TM)ch(TCM − 168),

(2.28) h2 =

∫
M

L̂(TM)ch(Λ2TCM − 126TCM + 8940).

Also by Theorem 1.3, the following identity holds:

(2.29) R1

(
−1

τ

)
= 2−12τ12R2(τ ).

Therefore, by (1.16) and (2.18), we have

(2.30) R1(τ ) = 2−12[h0(8δ1)
6 + h1(8δ1)

4ε1 + h2(8δ1)
2ε21 + h3ε

3
1].
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Note that

(8δ1)
6−2rε1

r

=(2 + 48q)6−2r(
1

16
− q)rO(q2)

=26−6r[1 + 24(6− 2r)q][1− 16rq] +O(q2)

=26−6r[1 + (144− 64r)q] +O(q2).

(2.31)

Comparing the coefficient of q, we have

(2.32)

∫
M

Â(TM)ch(A2) = 2−12
3∑

r=0

26−6r(144− 64r)hr.

By (1.19) and (2.10), we can explicitly expand Θ1(TCM,TCM, 0, 1) as follows:

Θ1(TCM,TCM, 0, 1)

=

∞⊗
n=1

Λ−qn(C
24)

Λ−qn(TCM)
⊗

∞⊗
r=1

Λ
qr−

1
2
(TCM)

Λ
qr−

1
2
(C24)

⊗
∞⊗
s=1

Λ
−qs−

1
2
(TCM)

Λ
−qs−

1
2
(C24)

=
1− 24q

1− TCMq

1 + TCMq
1
2 + Λ2TCMq

1 + 24q
1
2 + 276q

1− TCMq
1
2 + Λ2TCMq

1− 24q
1
2 + 276q

+O(q3/2)

=
1− 24q

1− TCMq

1 + (2Λ2TCM − TCM ⊗ TCM)q

1− 24q
+O(q3/2)

=(1− 24q)(1 + TCMq)[1 + (2Λ2TCM − TCM ⊗ TCM)q](1 + 24q) +O(q3/2)

=1 + (Λ2TCM − S2TCM + TCM)q +O(q3/2).

(2.33)

So one has

(2.34) A2 = Λ2TCM − S2TCM + TCM.

By (2.32) and (2.34), we have∫
M

Â(TM)ch
(
Λ2TCM − S2TCM + TCM

)
=2−12

3∑
r=0

26−6r(144− 64r)hr

=2−20(218 · 9h0 + 212 · 5h1 + 26h2 − 3h3).

(2.35)

Hence

220
∫
M

Â(TM)ch
(
Λ2TCM − S2TCM + TCM

)
=218 · 9h0 + 212 · 5h1 + 26h2 − 3h3

≡h2 − h1 mod3Z

=

∫
M

L̂(TM)ch
(
Λ2TCM − 127TCM + 9108

)
≡
∫
M

L̂(TM)ch
(
Λ2TCM − TCM

)
mod3Z.

(2.36)

Noting that 220 ≡ 1(mod 3Z), we get Lemma 2.2. �
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Putting a = 1, b = 0 and V = TM in Liu-Wang’s construction, one obtains
another pair of modular forms (cf. [16]). Applying the modularity of this pair, we
have

Lemma 2.3.

(2.37)

∫
M

L̂(TM)ch(TCM) = 211
∫
M

Â(TM)ch(Λ2TCM − 47TCM + 900),

and therefore

(2.38)

∫
M

L̂(TM)ch(TCM) ≡
∫
M

Â(TM)ch(−Λ2TCM − TCM) mod 3Z.

Proof. When a = 1, b = 0 and V = TM , we have∫
M

Q1(TCM,VC, a, b, τ )

=

∫
M

L̂(TM)ch

( ∞⊗
n=1

Sqn(T̃CM)⊗
∞⊗

m=1

Λqm(ṼC)

)
,

∫
M

Q2(TCM,VC, a, b, τ ) + [p1(TM)− (a+ 2b)p1(V )]Q2(TCM,VC, a, b, τ )

=

∫
M

Â(M)ch

( ∞⊗
n=1

Sqn(T̃CM)⊗
∞⊗
s=1

Λ
−qs−

1
2
(T̃CM)

)
.

By applying the modularity of this pair of modular forms, we can use Theorem
2.3 in [5], which asserts that if M is an 8m dimensional smooth closed oriented
manifold,

(2.39)

∫
M

L̂(TM)ch(TCM) = 211

[
m−1∑
r=0

(m− r)26(m−r−1)hr

]
,

where the hr’s are determined by∫
M

Q2(TCM,TCM, 1, 0, τ )

=

∫
M

Â(M)ch

( ∞⊗
n=1

Sqn(T̃CM)⊗
∞⊗
s=1

Λ
−qs−

1
2
(T̃CM)

)

=

m∑
r=0

hr(8δ2)
2m−rεr2.

When M is 24 dimensional,

(2.40)

∫
M

L̂(TM)ch(TCM) = 211(3× 212h0 + 27h1 + h2).
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To determine h0, h1 and h2, we expand the q-series

Θ2(TCM,TCM, 1, 0)

=B0 + B1q
1/2 +B2q + · · ·

=

∞⊗
n=1

Sqn(T̃CM)⊗
∞⊗
s=1

Λ
−qs−

1
2
(T̃CM)

=

∞⊗
n=1

Λ−qn(C
24)

Λ−qn(TCM)
⊗

∞⊗
s=1

Λ
−qs−

1
2
(TCM)

Λ
−qs−

1
2
(C24)

=
1− 24q

1− TCMq

1− TCMq
1
2 + Λ2TCMq

1− 24q
1
2 + 276q

+O(q3/2)

=(1− 24q)(1 + TCMq)(1− TCMq
1
2 + Λ2TCMq)(1 + 24q

1
2 + 300q) + O(q3/2)

=1 + (24− TCM)q
1
2 + (Λ2TCM − 23TCM + 276)q +O(q3/2)

(2.41)

and note that the hi’s (similar to (2.19)-(2.21)) satisfy

(2.42)

∫
M

Â(TM)ch(B0) = h0,

(2.43)

∫
M

Â(TM)ch(B1) = 144z = h0 + h1,

(2.44)

∫
M

Â(TM)ch(B2) = 8784h0 + 104h1 + h2.

So

h0 =

∫
M

Â(TM),

h1 =−
∫
M

Â(TM)ch(TCM + 120),

h2 =

∫
M

Â(TM)ch(Λ2TCM + 81TCM + 3972).

(2.37) then easily follows from (2.40). �

Remark 2.2. To derive Lemma 2.3, the string condition is not necessary. However,
as we have seen, to obtain Lemma 2.2, the string condition is indispensable.

Remark 2.3. The strategy of the proof of Lemma 2.3 is essentially the same as that
of Lemma 2.2. In each case, one constructs a pair of modular forms, the modularity
of which gives us the desired result. The application of Theorem 2.3 from [5] in the
above proof is only to simplify the process to derive (2.40), which is similar to the
process to derive (2.32) in the proof of Lemma 2.2.
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Combining Lemma 2.1, Lemma 2.2 and Lemma 2.3, we have

∫
M

L̂(TM)ch(Λ2TCM)

≡
∫
M

L̂(TM)ch(TCM) +

∫
M

Â(TM)ch
(
Λ2TCM − S2TCM + TCM

)
mod 3Z

≡
∫
M

Â(TM)ch(−Λ2TCM − TCM)

+

∫
M

Â(TM)ch
(
Λ2TCM − S2TCM + TCM

)
mod 3Z

=

∫
M

Â(TM)ch
(
−S2TCM

)
≡
∫
M

Â(TM)ch(TCM) mod 3Z,

(2.45)

as desired.
This finishes the proof of Theorem 0.1.

3. The examples and computation

In this section, we do computations on the two examples B8 ×HP 2 ×HP 2 and
M8

0 ×M8
0 ×M8

0 .
Recall that the twisted signature

Sig(M,Λ2T ) := Ind(DSig ⊗ Λ2TCM)+,

and so by the Atiyah-Singer index theorem,

Sig(M,Λ2T ) =

∫
M

L̂(TM)ch(Λ2TCM).

First we have a lemma about Sig(M,Λ2T ) when the manifold M is a product of
several manifolds.

Lemma 3.1. If M =
∏s

i=1 Ni, then

Sig(M,Λ2T )

=

s∑
i=1

Sig(Ni,Λ
2T )

∏
j 	=i

Sig(Nj) +
∑

1≤i<j≤s

Sig(Ni, T )Sig(Nj , T )
∏
p	=i,j

Sig(Np).

(3.1)

Proof. It is not hard to see that the lemma follows from the multiplicity of the

Hirzebruch L̂-class

L̂(M) =

s∏
i=1

L̂(Ni)

and the following property of the exterior square:

Λ2

(
s⊕

i=1

Vi

)
=

s⊕
i=1

Λ2(Vi)⊕
⊕
i<j

Vi ⊗ Vj ,

where the Vi’s are vector spaces. �
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Assume N is an 8 dimensional smooth closed oriented manifold. Let p1, p2 be
the first and second Pontryagin classes of N . Let [N ] be the fundamental class. By
direct computations, we have

Sig(N) =
7p2 − p21

45
[N ],

Sig(N, T ) =
112p21 − 64p2

45
[N ],

Sig(N,Λ2T ) =
692p21 + 196p2

45
[N ],

Â(N) =
7p21 − 4p2

5760
[N ].

(3.2)

The first three equalities can be derived from the following formulas about the

Chern character and L̂-class for a real vector bundle V :

ch(VC) = dim(V ) + p1(V ) +
p1(V )2 − 2p2(V )

12
+ · · · ,

and when dimV = 8,

L̂(V ) = 16 +
4

3
p1(V ) +

7p2(V )− p1(V )2

45
+ · · · .

Let B8 be the Bott manifold, which is 8 dimensional and spin with Â(B8) = 1,
Sig(B8) = 0 ([15]). By (3.2), it is easy to see that p21[B

8] = 7× 128, p2[B
8] = 128,

and therefore

Sig(B8, T ) = 2048, Sig(B8,Λ2T ) = 14336.

By a theorem of Hirzebruch [10], for the quaterionic projective plane HP 2 the
total Pontryagin class

p(HP 2) = (1 + u)6(1 + 4u)−1,

where u ∈ H4(HP 2,Z) is the generator. So p1(HP 2) = 2u and p2(HP 2) = 7u2.
By (3.2), it is easy to get

Sig(HP 2) = 1, Sig(HP 2, T ) = 0, Sig(HP 2,Λ2T ) = 92.

A manifold is called almost-parallelizable if its tangent bundle is trivial on the
complement of a point ([18]). For a 4k dimensional almost-parallelizable manifold
M4k, all the Pontryagin classes pi = 0 for i < k. By the Cauchy lemma (cf. [10]),

each genus is a multiple of the Â-genus; actually one has

(3.3) W (M4k) = E2k(τ )

∫
M

Â(M),

(3.4) Sig(M4k) = −22k+1(22k−1 − 1)

∫
M

Â(M).

Put ak = 1 if k is even and ak = 2 if k is odd. By the plumbing method, Milnor
and Kervaire have constructed an almost-parallelizable manifold M4k

0 such that

(3.5) Sig(M4k
0 ) = ak2

2k+1(22k−1 − 1) · numerator

(
B2k

4k

)
,

where B2k is the Bernoulli number. Since B4 = − 1
30 , the numerator

(
B4

8

)
= 1.

One sees from (3.5) that Sig(M8
0 ) = 224 and therefore from (3.4) and (3.3) that
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M

Â(M8
0 ) = −1 and W (M8

0 ) = −E4(τ ). We would like to point out that M8
0 ×

M8
0 ×M8

0 is an interesting 24 dimensional string manifold whose Witten genus

W (M8
0 ×M8

0 ×M8
0 ) = −E4(τ )

3.

Plugging Sig(M8
0 ) = 224 into the first equality in (3.2) and using p1(M

8
0 ) = 0, we

have p2(M
8
0 ) = 1440. Then by the second and the third equalities in (3.2), we get

Sig(M8
0 , T ) = −2048, Sig(M8

0 ,Λ
2T ) = 6272.

By Lemma 3.1 and the above computations of the signature and twisted signa-
tures of B8,HP 2 and M8

0 , we have

Sig(B8 ×HP 2 ×HP 2,Λ2T )

=Sig(B8,Λ2T )Sig(HP 2)2 + 2Sig(HP 2,Λ2T )Sig(B8)Sig(HP 2)

+ 2Sig(B8, T )Sig(HP 2, T )Sig(HP 2) + Sig(B8)Sig(HP 2, T )2

=14336

≡2 (mod 3Z)

(3.6)

and

Sig(M8
0 ×M8

0 ×M8
0 ,Λ

2T )

=3Sig(M8
0 ,Λ

2T )Sig(M8
0 )

2 + 3Sig(M8
0 , T )2Sig(M8

0 )

=3× 6272× 2242 + 3× (−2048)2 × 224

≡3 (mod 9Z).

(3.7)
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