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AN EXPLICIT FORMULA

FOR THE CUBIC SZEGŐ EQUATION

PATRICK GÉRARD AND SANDRINE GRELLIER

Abstract. We derive an explicit formula for the general solution of the cubic
Szegő equation and of the evolution equation of the corresponding hierarchy.
As an application, we prove that all the solutions corresponding to finite rank
Hankel operators are quasiperiodic.

1. Introduction

This paper is a continuation of the study of dynamical properties of an inte-
grable system introduced by the authors in [2], [3]. As an evolution equation, the
cubic Szegő equation is a simple model of nondispersive dynamics. More precisely,
it can be identified as a first order Birkhoff normal form for a certain nonlinear
wave equation; see [4]. As a Hamiltonian equation, it was proved in [2] to admit a
Lax pair and finite dimensional invariant submanifolds corresponding to some finite
rank conditions. In [3], action angle variables were introduced on generic subsets of
the phase space, and on open dense subsets of the finite rank submanifolds. How-
ever, unlike the KdV equation or the one dimensional cubic nonlinear Schrödinger
equation, this integrable system displays some degeneracy, since the collection of its
conservation laws does not control the high regularity of the solution, as observed
in [2]. An important consequence of this instability phenomenon is that the action
angle variables cannot be extended to the whole phase space, even when restricted
to one of the finite rank submanifolds. Our purpose in this paper is to prove a
formula for the general solution of the initial value problem for this equation. In
the case of generic data, this formula reduces to the one given by the action angle
variables above. However, the formula enables us to study the nongeneric case too,
and allows us in particular to establish the quasiperiodicity of all solutions lying in
one of the above finite rank submanifolds, despite the already mentioned lack of a
global system of action–angle variables. Finally, this formula is also very useful to
revisit the instability phenomenon displayed in [2]. We now introduce the general
setting of this equation.

1.1. The setting. Let T = R/2πZ, endowed with the Haar integral∫
T

f :=
1

2π

∫ 2π

0

f(x) dx.
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Key words and phrases. Cubic Szegő equation, inverse spectral transform, quasiperiodicity,

energy transfer to high frequencies, instability.
Part of this work was completed while the authors were visiting CIRM in Luminy. They are

grateful to this institution for its warm hospitality.

c©2014 American Mathematical Society

2979

http://www.ams.org/tran/
http://www.ams.org/tran/
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9947-2014-06310-1
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On L2(T), we use the inner product

(f |g) :=
∫
T

fg.

The family of functions (eikx)k∈Z is an orthonormal basis of L2(T), on which the
components of f ∈ L2(T) are the Fourier coefficients

f̂(k) := (f |eikx).

We introduce the closed subspace

L2
+(T) := {u ∈ L2(T) : ∀k < 0, û(k) = 0}.

Notice that elements u ∈ L2
+(T) identify to traces of holomorphic functions u on

the unit disc D such that

sup
r<1

∫ 2π

0

|u(reix)|2dx < ∞

via the correspondence

u(z) :=

∞∑
k=0

û(k)zk, z ∈ D, u(x) = lim
r→1

u(reix),

which establishes a bijective isometry between L2
+(T) and the Hardy space of the

disc.
We denote by Π the orthogonal projector from L2(T) onto L2

+(T), known as the
Szegő projector:

Π

( ∞∑
k=−∞

f̂(k)eikx

)
=

∞∑
k=0

f̂(k)eikx.

On L2
+(T), we introduce the symplectic form

ω(h1, h2) = Im(h1|h2).

The densely defined energy functional

E(u) :=
1

4

∫
T

|u|4

formally corresponds to the Hamiltonian evolution equation,

(1) iu̇ = Π(|u|2u),

which we called the cubic Szegő equation. In [2], we solved the initial value problem
for this equation on the intersections of Sobolev spaces with L2

+(T). More precisely,
define, for s ≥ 0,

Hs
+(T) := Hs(T) ∩ L2

+(T) = {u ∈ L2
+(T) :

∞∑
k=0

|û(k)|2(1 + k2)s < ∞}.

Then equation (1) defines a smooth flow on Hs
+(T) for s > 1

2 , and a continuous

flow on H
1
2
+(T). The main result of this paper provides an explicit formula for the

solution of this initial value problem.
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1.2. Hankel operators and the explicit formula. Let u ∈ H
1
2
+(T). We denote

by Hu the C–antilinear operator defined on L2
+(T) as

Hu(h) = Π(uh), h ∈ L2
+(T).

In terms of Fourier coefficients, this operator reads

Ĥu(h)(n) =

∞∑
p=0

û(n+ p)ĥ(p).

In particular, its Hilbert–Schmidt norm ‖ · ‖HS is finite since u ∈ H
1
2
+(T) and

(2) ‖Hu‖L(L2
+) ≤ ‖Hu‖HS 	 ‖u‖H1/2 .

We call Hu the Hankel operator of symbol u. Notice that this definition is different
from the standard ones used in references [9], [11], where Hankel operators were
rather defined as linear operators from L2

+ into its orthogonal complement. The link
between these two definitions can be easily established by means of the involution

f �(x) = e−ixf(x).

Notice that, with our definition, Hu satisfies the following self-adjointness identity:

(3) (Hu(h1)|h2) = (Hu(h2)|h1), h1, h2 ∈ L2
+(T).

In particular, Hu is a R-linear symmetric operator for the real inner product

〈h1, h2〉 := Re(h1|h2).

A fundamental property of Hankel operators is their connection with the shift
operator S, defined on L2

+(T) as

Su(x) = eixu(x).

This property reads

S∗Hu = HuS = HS∗u,

where S∗ denotes the adjoint of S. We denote by Ku this operator, and call it
the shifted Hankel operator of symbol u. Notice that Ku is Hilbert–Schmidt and
symmetric as well. As a consequence, operators H2

u and K2
u are C–linear trace class

positive operators on L2
+(T). Moreover, they are related by the following important

identity:

(4) K2
u = H2

u − (·|u)u.

Theorem 1. Let u0 ∈ H
1
2
+(T), and let u ∈ C(R, H

1
2
+(T)) be the solution of equation

(1) such that u(0) = u0. Then

u(t, z) = ((I − ze−itH2
u0 eitK

2
u0S∗)−1e−itH2

u0u0 | 1).

The proof of this theorem will be given in section 3. It is a nontrivial consequence
of the Lax pair structure recalled in section 2. Our second result concerns the special
case of data u0 such that Hu0

is of finite rank. In this case, operators S∗, H2
u0
,K2

u0

act on a finite dimensional space containing u0, and the implementation of the
above formula reduces to diagonalization of matrices.
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1.3. Finite rank manifolds and quasiperiodicity. Let d be a positive integer.

We denote by V(d) the set of u ∈ H
1
2
+(T) such that

rkHu =

[
d+ 1

2

]
, rkKu =

[
d

2

]
,

where [x] denotes the integer part of x ∈ R. Using Kronecker’s theorem [6], [11],
[9], one can show that V(d) is a complex Kähler submanifold of L2

+(T) of dimension

d (see the appendix of [2]), consisting of rational functions of eix. More precisely,
V(d) consists of functions of the form

u(x) =
A(eix)

B(eix)
,

where A,B are polynomials with no common factors, B has no zero in the closed
unit disc, B(0) = 1, and

• If d = 2N is even, the degree of A is at most N − 1 and the degree of B is
exactly N .

• If d = 2N + 1 is odd, the degree of A is exactly N and the degree of B is
at most N .

Using the Lax pair structure recalled in section 2, V(d) is invariant through the
flow of (1). We now state the second result of this paper. In the sequel, S1 denotes
the unit circle of complex numbers of modulus 1.

Theorem 2. For every u0 ∈ V(d), the map

t ∈ R �→ u(t) ∈ V(d)
is quasiperiodic. More precisely, there exist a positive integer n, real numbers
ω1, · · · , ωn, and a smooth mapping

Φ : (S1)n → V(d)
such that, for every t ∈ R,

u(t) = Φ(eiω1t, · · · , eiωnt).

In particular, for every s > 1
2 ,

(5) sup
t∈R

‖u(t)‖Hs < +∞.

Notice that property (5) was established in Theorem 7.1 of [2] under the ad-
ditional generic assumption that u0 belongs to V(d)gen, namely that the vectors

H2n
u0

(1), n = 1, . . . , N =
[
d+1
2

]
, are linearly independent. Our general formula al-

lows us to extend property (5) to all data in V(d). However, it should be emphasized
that, while it is clear from the arguments of Lemma 5 in [2] that estimate (5) is
uniform if u0 varies in a compact subset of V(d)gen, (5) does not follow from an
a priori estimate on the whole of V(d), in the sense that one can find families of
data (uε

0) in V(d), belonging to a compact subset of V(d), in particular bounded in
all Hs, and such that

sup
ε

sup
t∈R

‖uε(t)‖Hs = ∞, s >
1

2
;

see corollary 5 of [2]. We shall revisit this phenomenon in section 4 thanks to the
explicit formula of Theorem 1.
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Another natural observation is that property (5) is in sharp contrast with the
results obtained by O. Pocovnicu for the cubic Szegő equation on the real line [12].
Indeed, in [12], Pocovnicu obtains an explicit formula for all rational solutions of
the cubic Szegő equation on the line, and displays a nongeneric rational solution of
this equation such that, for every s > 1

2 ,

‖u(t)‖Hs −→
t→∞

∞.

This illustrates how the growing phenomenon of high Sobolev norms may differ
depending on the domain of the equation.

Finally, let us mention that the generalization of property (5) to nonfinite rank
solutions is an open problem.

Note added in proof. Since this paper was accepted, we proved that property (5)
fails for generic initial data in Hs for every s > 1

2 .

1.4. Organization of the paper. Section 2 is devoted to recalling the crucial
Lax pair structure attached to equation (1). As a fundamental consequence, Hu(t)

and Ku(t) remain unitarily equivalent to their respective initial data. In section 3,
we take advantage of this structure to derive Theorem 1. In section 4, we apply
this theorem to the particular case of data u0 belonging to V(3), which sheds a
new light on the instability phenomenon. The next two sections are devoted to the
proof of Theorem 2. As a preparation, we first generalize the explicit formula to
Hamiltonian flows associated to energies

Jy(u) := ((I + yH2
u)

−1(1)|1),
where y is a positive parameter. The quasiperiodicity theorem then follows by ob-
serving, through an interpolation argument, that the map Φ in the statement of
Theorem 2 can be defined as the value at time 1 of the Hamiltonian flow corre-
sponding to a suitable linear combination of energies Jy.

2. The Lax pair structure

In this section, we recall the Lax pairs associated to the cubic Szegő equation;
see [2], [3]. First we introduce the notion of a Toeplitz operator. Given b ∈ L∞(T),
we define Tb : L

2
+ → L2

+ as

Tb(h) = Π(bh), h ∈ L2
+.

Notice that Tb is bounded and T ∗
b = Tb. The starting point is the following lemma.

Lemma 1. Let a, b, c ∈ Hs
+, s >

1
2 . Then

HΠ(abc) = TabHc +HaTbc −HaHbHc.

Proof. Given h ∈ L2
+, we have

HΠ(abc)(h) = Π(abch) = Π(abΠ(ch)) + Π(ab(I −Π)(ch))

= TabHc(h) +Ha(g) g := b(I −Π)(ch).

Since g ∈ L2
+,

g = Π(g) = Π(bch)−Π(bΠ(ch)) = Tbc(h)−HbHc(h).

This completes the proof. �
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Using Lemma 1 with a = b = c = u, we get

(6) HΠ(|u|2u) = T|u|2Hu +HuT|u|2 −H3
u.

Theorem 3. Let u ∈ C∞(R, Hs
+), s >

1
2 , be a solution of (1). Then

dHu

dt
= [Bu, Hu], Bu :=

i

2
H2

u − iT|u|2 ,

dKu

dt
= [Cu,Ku], Cu :=

i

2
K2

u − iT|u|2 .

Proof. Using equation (1) and identity (6),

dHu

dt
= H−iΠ(|u|2u) = −iHΠ(|u|2u) = −i(T|u|2Hu +HuT|u|2 −H3

u).

Using the antilinearity of Hu, this leads to the first identity. For the second one,
we observe that

(7) KΠ(|u|2u) = HΠ(|u|2u)S = T|u|2HuS +HuT|u|2S −H3
uS .

Moreover, notice that

Tb(Sh) = STb(h) + (bSh|1).
In the case b = |u|2, this gives

T|u|2Sh = ST|u|2h+ (|u|2Sh|1).
Moreover,

(|u|2Sh|1) = (u|uSh) = (u|Ku(h)).

Consequently,

HuT|u|2Sh = KuT|u|2h+ (Ku(h)|u)u.
Coming back to (7), we obtain

KΠ(|u|2u) = T|u|2Ku +KuT|u|2 − (H2
u − (·|u)u)Ku.

Using identity (4), this leads to

(8) KΠ(|u|2u) = T|u|2Ku +KuT|u|2 −K3
u.

The second identity is therefore a consequence of antilinearity and of

dKu

dt
= −iKΠ(|u|2u).

�

In the sequel, we denote by L(L2
+) the Banach space of bounded linear operators

on L2
+. Observing that Bu, Cu are linear and antiselfadjoint, we obtain, following

a classical argument due to Lax [7],

Corollary 1. Under the conditions of Theorem 3, define U = U(t) and V = V (t)
as the solutions of the following linear ODEs on L(L2

+):

dU

dt
= BuU,

dV

dt
= CuV, U(0) = V (0) = I.

Then U(t), V (t) are unitary operators and

Hu(t) = U(t)Hu(0)U(t)∗, Ku(t) = V (t)Ku(0)V (t)∗.
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Remark 1. The notion of a Lax pair is now familiar in the theory of integrable
systems. The most famous examples concern the KdV equation [7] and the one
dimensional cubic Schrödinger equation [13]. It may seem strange and unusual
here that the cubic Szegő equation admits two different Lax pairs. In fact, the
eigenvalues of the selfadjoint operators H2

u and K2
u corresponding to these two Lax

pairs are essentially independent, leading to a complete set of actions, as proved in
[3]. Indeed, according to Theorems 1.1 and 1.2 of [3], if u is generic, one can fix the
eigenvalues (σ2

j ) of K
2
u independently of the eigenvalues (ρ2j) of H

2
u, except for the

interlacement constraint

ρ21 > σ2
1 > ρ22 > σ2

2 > . . . .

This suggests that the Lax pair for the cubic Szegő equation should be rather
regarded as the pair (Lu, Du), where Lu is the operator diag(Hu,Ku) acting on
L2
+ × L2

+, and Du := diag(Bu, Cu).

3. Proof of the formula

In this section, we prove Theorem 1. Our starting point is the following identity,
valid for every v ∈ L2

+:

(9) v(z) = ((I − zS∗)−1v|1), z ∈ D.

Indeed, the Taylor coefficient of order n of the right hand side is

((S∗)nv|1) = (v|Sn1) = v̂(n),

which coincides with the Taylor coefficient of order n of the left hand side. Let
u ∈ C∞(R, Hs

+) be a solution of (1), s > 1
2 . Applying (9) to v = u(t) and using the

unitarity of U(t), we get

u(t, z) = ((I − zS∗)−1u(t)|1) = (U(t)∗(I − zS∗)−1u(t)|U(t)∗1),

which yields

(10) u(t, z) = ((I − zU(t)∗S∗U(t))−1U(t)∗u(t)|U(t)∗1).

We shall identify successively U(t)∗1, U(t)∗u(t), and the restriction of U(t)∗S∗U(t)
on the range of Hu0

. We begin with U(t)∗1,

d

dt
U(t)∗1 = −U(t)∗Bu(1)

and

Bu(1) =
i

2
H2

u(1)− iT|u|2(1) = − i

2
H2

u(1).

Hence
d

dt
U(t)∗1 =

i

2
U(t)∗H2

u(1) =
i

2
H2

u0
U(t)∗1,

where we have used Corollary 1. This yields

(11) U(t)∗1 = ei
t
2H

2
u0 (1).

Consequently,

U(t)∗u(t) = U(t)∗Hu(t)(1) = Hu0
U(t)∗(1) = Hu0

ei
t
2H

2
u0 (1),

and therefore

(12) U(t)∗u(t) = e−i t
2H

2
u0 (u0).
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Finally,

U(t)∗S∗U(t)Hu0
= U(t)∗S∗Hu(t)U(t) = U(t)∗Ku(t)U(t),

and therefore

(13) U(t)∗S∗U(t)Hu0
= U(t)∗V (t)Ku0

V (t)∗U(t).

On the other hand,

d

dt
U(t)∗V (t) = −U(t)∗Bu(t)V (t) + U(t)∗Cu(t)V (t) = U(t)∗(Cu(t) −Bu(t))V (t)

=
i

2
U(t)∗(K2

u(t) −H2
u(t))V (t) =

i

2
(U(t)∗V (t)K2

u0
−H2

u0
U(t)∗V (t)).

We infer

U(t)∗V (t) = e−i t
2H

2
u0 ei

t
2K

2
u0 .

Plugging this identity into (13), we obtain

U(t)∗S∗U(t)Hu0
= e−i t

2H
2
u0 ei

t
2K

2
u0Ku0

e−i t
2K

2
u0 ei

t
2H

2
u0

= e−i t
2H

2
u0 eitK

2
u0Ku0

ei
t
2H

2
u0

= e−i t
2H

2
u0 eitK

2
u0S∗Hu0

ei
t
2H

2
u0

= e−i t
2H

2
u0 eitK

2
u0S∗e−i t

2H
2
u0Hu0

.

We conclude that, on the range of Hu0
,

(14) U(t)∗S∗U(t) = e−i t
2H

2
u0 eitK

2
u0S∗e−i t

2H
2
u0 .

It remains to plug identities (11), (12), (14) into (10). We finally obtain

u(t, z) = ((I − ze−i t
2H

2
u0 eitK

2
u0S∗e−i t

2H
2
u0 )−1e−i t

2H
2
u0 (u0)|ei

t
2H

2
u0 (1))

= ((I − ze−itH2
u0 eitK

2
u0S∗)−1e−itH2

u0 (u0)|1),

which is the claimed formula in the case of data u0 ∈ Hs
+, s >

1
2 . The case u0 ∈ H

1
2
+

follows by a simple approximation argument. Indeed, we know from [2], Theorem

2.1, that, for every t ∈ R, the mapping u0 �→ u(t) is continuous on H
1
2
+ . On the

other hand, the maps u0 �→ Hu0
,Ku0

are continuous from H
1
2
+ into L(L2

+) as linear
operators satisfying (2). Since H2

u0
,K2

u0
are selfadjoint, the operator

e−itH2
u0 eitK

2
u0S∗

has norm at most 1. Hence, for z ∈ D, the right hand side of the formula is

continuous from H
1
2
+ into C.

4. An example

This section is devoted to revisiting sections 6.1, 6.2 of [2] by means of the explicit
formula. Given ε ∈ R, we define

uε
0(x) = eix + ε.

It is easy to check that uε
0 ∈ V(3). Hence the corresponding solution uε of (1) is

valued in V(3), and consequently reads

uε(t, x) =
aε(t)eix + bε(t)

1− pε(t)eix
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with aε(t) ∈ C∗, bε(t) ∈ C, pε(t) ∈ D, aε(t) + bε(t)pε(t) �= 0. We are going to
calculate these functions explicitly. We start with the special case ε = 0. In this
case, |u0

0| = 1; hence

u0(t, x) = e−itu0
0(x)

so
a0(t) = e−it, b0(t) = 0, p0(t) = 0.

We come to ε �= 0. The operators H2
u0
,K2

u0
, S∗ act on the range of Huε

0
, which is

the two dimensional vector space spanned by 1, eix. In this basis, the matrices of
these three operators are respectively

M(H2
u0
) =

(
1 + ε2 ε

ε 1

)
, M(K2

u0
) =

(
1 0
0 0

)
, M(S∗) =

(
0 1
0 0

)
.

The eigenvalues of H2
u0

are

ρ2± = 1 +
ε2

2
± ε

√
1 +

ε2

4
;

hence the matrix of the exponential is given by

M
(
e−itH2

u0

)
=

e−itρ2
+ − e−itρ2

−

ρ2+ − ρ2−
M(H2

u0
) +

ρ2−e
−itρ2

+ − ρ2+e
−itρ2

−

ρ2− − ρ2+
I

=
e−iΩt

2ω

(
−2i sin (ωt)M(H2

u0
) + (2ω cos(ωt) + 2iΩ sin(ωt))I

)
,

where

ω := ε

√
1 +

ε2

4
, Ω := 1 +

ε2

2
.

We obtain

e−itH2
u0 (u0) =

e−iΩt

2ω

(
−2iεΩ sin(ωt) + 2εω cos(ωt) + (2ω cos(ωt)− iε2 sin(ωt))eix

)
,

M
(
e−itH2

u0 eitK
2
u0S∗

)
=

e−it ε2

2

2ω

(
0 2ω cos(ωt)− iε2 sin(ωt)
0 −2iε sin(ωt)

)
,

and finally

aε(t) = e−it(1+ε2), bε(t) = e−it(1+ε2/2)

(
ε cos(ωt)− i

2 + ε2√
4 + ε2

sin(ωt)

)
,

pε(t) = − 2i√
4 + ε2

sin(ωt) e−itε2/2, ω :=
ε

2

√
4 + ε2.

The important feature of such dynamics concerns the regime ε → 0. Though
p0(t) ≡ 0, pε(t) may visit small neighborhoods of the unit circle at large times.
Specifically, at time tε = π/(2ω) ∼ π/(2ε), we have |pε(t)| ∼ 1− ε2. A consequence
is that the momentum density,

μn(t
ε) := n|ûε(tε, n)|2 = n|aε(tε) + bε(tε)pε(tε)|2|pε(tε)|2(n−1)

= n
ε4

(4 + ε2)2

(
1− ε2

4 + ε2

)n−1

,

which satisfies
∞∑

n=1

μn(t
ε) = Tr(K2

uε(tε)) = Tr(K2
uε
0
) = 1,



2988 PATRICK GÉRARD AND S. GRELLIER

Figure 4.1. The trajectory of pε for small ε.

becomes concentrated at high frequencies

n 	 1

ε2
.

This induces the following instability of Hs norms:

‖uε(tε)‖Hs 	 1

ε2s−1
, s >

1

2
,

which is a phenomenon of the same nature as the one displayed by Colliander,
Keel, Staffilani, Takaoka and Tao in [1]. This proves in particular that conservation
laws do not control Hs regularity for s > 1

2 . This is in strong contrast with the
case of other integrable PDEs such as the KdV equation ([5], [7], [8], [9]) and the
one dimensional cubic NLS ([13]). Notice that, as already mentioned at the end
of subsection 1.3 of the introduction, the family (uε

0) approaches u0
0, which is a

nongeneric element of V(3), since H2
u0

admits 1 as a double eigenvalue.
Another example of integrable system is the cubic Szegő equation on the real

line, studied by O. Pocovnicu in [12]. In this case, the author displays an example
of a nongeneric rational solution u such that

‖u(t)‖Hs 	 1

t2s−1
, t → +∞, s >

1

2
.

Quite similarly to what is discussed in this section, the phenomenon relies on a pole
of the solution approaching the real line at distance t−2 for large t. However, in
that case, it can be achieved on an individual trajectory, without appealing to an
extra parameter ε.

Coming back to the cubic Szegő equation on the circle, these comments naturally
lead to the question of large time behavior of the Hs norms of individual solutions
for s > 1

2 . We are going to answer this question in the special case of finite rank
solutions by proving the quasiperiodicity theorem in the next two sections.

5. Generalization to the Szegő hierarchy

The Szegő hierarchy was introduced in [2] and used in [3]. For the convenience
of the reader, and because our notation is slightly different, we shall recall the main
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facts here. For y > 0 and u ∈ H
1
2
+ , we set

Jy(u) = ((I + yH2
u)

−1(1)|1).
Notice that the connection with the Szegő equation is made by

E(u) =
1

4
(∂2

yJ
y
|y=0 − (∂yJ

y
|y=0)

2).

For every s > 1
2 , J

y is a smooth real valued function on Hs
+, and its Hamiltonian

vector field is given by

XJy (u) = 2iywyHuw
y, wy := (I + yH2

u)
−1(1),

which is a Lipschitz vector field on bounded subsets of Hs
+. This fact is a conse-

quence of the following lemma, where we collect basic estimates. We recall that the
Wiener algebra W is the space of f ∈ L2

+ such that

‖f‖W :=

∞∑
k=0

|f̂(k)| < ∞.

Lemma 2. Let f, u, v ∈ L2
+. Then

‖Huf‖W ≤ ‖u‖W ‖f‖W ,

‖Huf‖
Hs− 1

2
≤ ‖u‖Hs‖f‖L2 , s ≥ 1

2
,

‖Huf‖Hs ≤ ‖u‖Hs‖f‖W , s ≥ 0,

‖wy‖Hs ≤ 1 + y‖u‖2Hs , s > 1,

‖fg‖Hs ≤ Cs(‖f‖W ‖g‖Hs + ‖g‖W ‖f‖Hs),

‖XJy (u)−XJy (v)‖Hs ≤ Cs(R, y)‖u− v‖Hs , s > 1, ‖u‖Hs + ‖v‖Hs ≤ R.

Proof. The first three estimates are straightforward consequences of the formula

Ĥuf(k) =

∞∑
�=0

û(k + �)f̂(�).

The fourth estimate comes from these estimates and the fact that

wy = 1− yH2
uw

y, ‖wy‖L2 ≤ 1.

The fifth estimate is obtained by decomposing

f̂g(k) =

∞∑
�=0

f̂(k − �)ĝ(�) =
∑

|k−�|≤�

f̂(k − �)ĝ(�) +
∑

|k−�|>�

f̂(k − �)ĝ(�).

As for the last estimate, we set

wy[u] := (I + yH2
u)

−1(1).

We write

‖wy[u]− wy[v]‖L2 = y‖(I + yH2
u)

−1(H2
v −H2

u)(I + yH2
v )

−1(1)‖L2 ≤ yR‖u− v‖Hs .

Then, by again using the first two inequalities,

wy[u]− wy[v] = y(H2
v (w

y[v])−H2
u(w

y[u]))

leads to
‖wy[u]− wy[v]‖Hs ≤ C(R, y)‖u− v‖Hs .

Using moreover the fact that Hs is an algebra, this yields the desired estimate. �
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By the Cauchy–Lipschitz theorem, the evolution equation

(15) u̇ = XJy (u)

admits local in time solutions for every initial data in Hs
+ for s > 1, and the

lifetime is bounded from below if the data are bounded in Hs
+. We shall see that

this evolution equation admits a Lax pair structure similar to the one in section 2.

Theorem 4. For every u ∈ Hs
+, we have

HiXJy (u) = HuF
y
u + F y

uHu,

KiXJy (u) = KuG
y
u +Gy

uKu,

Gy
u(h) := −ywy Π(wy h) + y2Huw

y Π(Huwy h),

F y
u (h) := Gy

u(h)− y2(h|Huw
y)Huw

y.

If u ∈ C∞(I, Hs
+) is a solution of equation (15) on a time interval I, then

dHu

dt
= [By

u, Hu],
dKu

dt
= [Cy

u,Ku],

By
u = −iF y

u , Cy
u = −iGy

u.

Proof.

Lemma 3. We have the following identity:

HaHu(a)(h) = Hu(a)Ha(h) +Hu(aΠ(ah)− (h|a)a).

Proof.

HaHu(a)(h) = Π(aHu(a)h) = Hu(a)Ha(h) + Π(Hu(a)(I −Π)(ah)).

On the other hand,

(1−Π)(ah) = Π(ah)− (a|h).
The lemma follows by plugging the latter formula into the former one. �

Let us complete the proof. Using the identity

wy = 1− yH2
uw

y,

and Lemma 3 with a = Hu(w
y), we get

Hwy Hu(wy)(h) = HHu(wy)(h)− yHHu(wy)H2
u(w

y)(h)

= HHu(wy)(h)− yH2
u(w

y)HHu(wy)(h)

− yHu

(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)

= wy HHu(wy)(h)− yHu

(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)

= wy Π(wy Huh)− yHu

(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)
.

We therefore have obtained

Hwy Hu(wy) = Ly
uHu +HuR

y
u,

where Ly
u and Ry

u are the following selfadjoint operators:

Ly
u(h) = wy Π(wy h), Ry

u(h) = −y
(
Hu(w

y)Π(Hu(wy)h)− (h|Hu(w
y))Hu(w

y)
)
.
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Consequently, using the symmetry of Hwy Hu(wy) for the real inner product,

Hwy Hu(wy) =
1

2
(Ly

u +Ry
u)Hu +Hu

1

2
(Ly

u +Ry
u).

Multiplying by −2y, we obtain the desired formula, since

F y
u = −y(Ly

u +Ry
u).

We now come to the second identity. From the first one, we get

(16) KiXJy (u) = HiXJy (u)S = HuF
y
uS + F y

uKu.

For every h, v ∈ L2
+, we use

Π(vSh) = SΠ(vh) + (Sh|v)
and infer

F y
uSh = −ywy Π(wy Sh) + y2Huw

y Π(Huwy Sh)− y2(Sh|Huw
y)Huw

y

= SGy
uh− y(Sh|wy)wy = SGy

uh+ y2(Sh|H2
uw

y)wy

= SGy
uh+ y2(Hu(w

y)|Ku(h))w
y,

where we have used wy = 1 − yH2
uw

y again. Plugging this identity into (16), we
obtain the claim.

The last formulae are straightforward consequences of the antilinearity of Hu

and Ku. �

Using Theorem 4 in a similar way to section 2, we derive

Corollary 2. Under the conditions of Theorem 4, assuming moreover 0 ∈ I,
define Uy = Uy(t) and V y = V y(t) as the solutions of the following linear ODEs
on L(L2

+):

dUy

dt
= By

u U
y,

dV y

dt
= Cy

u V y, Uy(0) = V y(0) = I.

Then Uy(t), V y(t) are unitary operators and

Hu(t) = Uy(t)Hu(0)U
y(t)∗, Ku(t) = V y(t)Ku(0)V

y(t)∗.

At this stage, we are going to slightly generalize the setting, for the needs of the
next section. Let y1, . . . , yn be positive numbers and a1, . . . , an be real numbers.
We consider the functional

Ĵ(u) =
n∑

k=1

akJ
yk(u) = (f(H2

u)1|1), f(s) :=
n∑

k=1

ak
1 + yks

,

and the evolution equation

(17) u̇ = XĴ (u).

By linearity from Theorem 4, it is clear that the solution of (17) satisfies

(18)
dHu

dt
= [B̂u, Hu],

dKu

dt
= [Ĉu,Ku]

with

(19) B̂u =

n∑
k=1

akB
yk
u , Ĉu =

n∑
k=1

akC
yk
u .
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Corollary 3. Let u be a solution of equation (17) on some time interval I contain-

ing 0, and define Û = Û(t) and V̂ = V̂ (t) as the solutions of the following linear
ODEs on L(L2

+):

dÛ

dt
= B̂u Û ,

dV̂

dt
= Ĉu V̂ , Û(0) = V̂ (0) = I.

Then Û(t), V̂ (t) are unitary operators and

Hu(t) = Û(t)Hu(0)Û(t)∗ Ku(t) = V̂ (t)Ku(0)V̂ (t)∗.

As a consequence of this corollary, if we start from an initial datum u(0) such
that Hu(0) is a trace class operator, then Hu(t) is trace class for every t, with the
same trace norm. By Peller’s theorem [11, Chap. 6, Theorem 1.1], the trace norm
of Hu is equivalent to the norm of u in the Besov space B1

1,1, which is contained in
W and contains Hs

+ for every s > 1. Consequently, if u(0) ∈ Hs
+ for some s > 1,

then u(t) stays bounded in W . We claim that, if u(0) is in V(d), the evolution
can be continued for all time. Moreover, since the ranks of Hu(t) and Ku(t) are
conserved in view of Corollary 3, this evolution takes place in V(d) if u(0) ∈ V(d).

Corollary 4. The equation (17) defines a smooth flow on V(d) for every d.

In view of the Gronwall lemma, the statement is an easy consequence of the
following estimate.

Lemma 4. Let R, y ≥ 0, s > 1 be given. There exists C(d,R, y, s) > 0 such that,
for every u ∈ V(d) with ‖u‖W ≤ R,

‖XJy (u)‖Hs ≤ C(d,R, y, s)(1 + ‖u‖Hs).

Proof. By using Lemma 2, we are reduced to prove

‖wy‖W ≤ B(d,R, y).

We set N =
[
d+1
2

]
. The above estimate is an easy consequence of

(I +H2
u)

−1 =

N∑
k=0

αkH
2k
u

with |αk| ≤ 1 for k = 0, . . . , N . In fact, the Cayley–Hamilton theorem yields

(H2
u)

N+1 =
N∑

k=1

(−1)k−1Sk(H
2
u)

N−k+1, Sk :=
∑

�1<···<�k

ρ2�1 . . . ρ
2
�k
,

and one can easily check that

αk = (−1)k

1 +
N−k∑
j=1

Sj

1 +
N∑
j=1

Sj

, k = 0, . . . , N,

where ρ21 ≥ · · · ≥ ρ2N are the positive eigenvalues of H2
u, listed with their multiplic-

ities. �
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Remark 2. For general data u(0) ∈ Hs
+, one can prove similarly that the solution

can be continued for all time if y‖u(0)‖Hs is small enough, or just if yTr|Hu(0)| is
small enough.

Our next step is to derive an explicit formula for the solution of (17) along the
same lines as in section 3. The starting points are the formulae

By
u(1) = iyJy(u)wy,

Cy
u −By

u = −iy2(·|Huw
y)Huw

y

= iyJy(u)((I + yH2
u)

−1 − (I + yK2
u)

−1),

where we have used the identity K2
u = H2

u − (·|u)u. This leads to

B̂u(1) = ig(H2
u)(1), g(s) :=

n∑
k=1

akykJ
yk(u)

1 + yks
,

Ĉu − B̂u = i(g(H2
u)− g(K2

u)).

Arguing exactly as in section 3, we obtain the following formula.

Theorem 5. The solution u of equation (17) with initial data u(0) = u0 ∈ V(d) is
given by

(20) u(t, z) = ((I − ze2itg(H
2
u0

)e−2itg(K2
u0

)S∗)−1e2itg(H
2
u0

)u0 | 1), z ∈ D,

where

g(s) :=

n∑
k=1

akykJ
yk(u)

1 + yks
.

6. Proof of the quasiperiodicity theorem

In this section, we prove Theorem 2. Let u0 ∈ V(d) be given. From Theorem 1,
it is easy to see that, after diagonalizing H2

u0
and K2

u0
, the solution indeed has the

form

u(t) = Φ(eiω1t, . . . , eiωnt)

and, on the other hand, obviously belongs to V(d) for all t. In order to prove that
t �→ u(t) is a quasiperiodic function valued into V(d), we need to establish some
stronger property, namely that one can find a smooth function Φ defined on the
torus (S1)n and valued in V(d), such that the above formula holds.

We denote by Σ the union of the spectra of H2
u0

and K2
u0
. We set n = 
Σ, and

we identify (S1)n to (S1)Σ, or the set of functions from Σ to S1. For every function
F : Σ → S1, the operator F (H2

u0
)F (K2

u0
)S∗ has norm at most 1; hence we can

define

Φ(F )(z) = ((I − zF (H2
u0
)F (K2

u0
)S∗)−1F (H2

u0
)u0 | 1), z ∈ D.

Notice that Theorem 1 exactly claims that u(t, z) = Φ(Ft), where Ft is the function
Σ → S1 defined by Ft(s) = e−its. Hence, in order to prove quasiperiodicity, it is
enough to prove that Φ(F ) defines an element of V(d) which depends smoothly
on F . First notice that, from the above formula, Φ(F ) is a rational function with
coefficients smoothly dependent on F . Hence we just have to prove that, for every
F , Φ(F ) defines an element of V(d).

Let F ∈ (S1)Σ. For each s ∈ Σ, we set

F (s) = eiω(s),
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where ω(s) ∈ [0, 2π). Let y1, . . . , yn be n positive numbers pairwise distinct. Then
the matrix (

1

1 + yks

)
k=1,...,n,s∈Σ

is invertible, and hence the linear system

ω(s) = 2

n∑
k=1

akykJ
yk(u0)

1 + yks
, s ∈ Σ,

has a unique solution a1, . . . , an. Using Theorem 5, Φ(F ) is the value at time
t = 1 of the solution u of equation (17) with parameters a1, . . . , an, y1, . . . , yn. By
Corollary 4, it belongs to V(d). This proves quasiperiodicity.

Since Φ is a continuous mapping, Φ((S1)Σ) is a compact subset of V(d). On
the other hand, for every s, the Hs norm is continuous on V(d). It is therefore
bounded on this compact subset, which contains the integral curve issued from u0.
This completes the proof of Theorem 2.

Remark 3. It is tempting to adapt the above proof of quasiperiodicity to nonfinite
rank solutions. However, even assuming that one can define a flow on Hs

+ for all
y with convenient estimates for large y, this strategy meets a serious difficulty.
Indeed, on the one hand, the construction of a Hamiltonian flow on Hs

+ for

Ĵ(u) = (f(H2
u)1|1)

requires a minimal regularity for f , say C1, which, if f is represented as

f(s) =

∫ ∞

0

a(y)

1 + ys
dμ(y)

for some positive measure μ and some function a on R+, imposes a decay condition
as ∫ ∞

0

y|a(y)| dμ(y) < ∞.

On the other hand, Σ is made of a sequence of positive numbers converging to 0
and of its limit, and the interpolation problem

F (s) = exp

(
2i

∫ ∞

0

ya(y)Jy(u0)

1 + ys
dμ(y)

)
would have a solution only if ω : Σ → S1 is continuous on Σ. Unfortunately,
the space C(Σ, S1) is not compact, neither for the simple convergence nor for the
uniform convergence. Therefore the question of large time dynamics of nonfinite
rank solutions of the cubic Szegő equation remains widely open.
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[5] Thomas Kappeler and Jürgen Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 45, Springer-
Verlag, Berlin, 2003. MR1997070 (2004g:37099)

[6] L. Kronecker, Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichun-
gen, Monatsber. Königl. Preuss. Akad. Wiss. (Berlin), 535-600 (1881). Reprinted in Leopold
Kronecker’s Werke, vol. 2, 113–192, Chelsea, 1968.

[7] Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure
Appl. Math. 21 (1968), 467–490. MR0235310 (38 #3620)

[8] Peter D. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math. 28 (1975),
141–188. MR0369963 (51 #6192)

[9] Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical
Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002.

Hardy, Hankel, and Toeplitz; Translated from the French by Andreas Hartmann. MR1864396
(2003i:47001a)

[10] S. P. Novikov, A periodic problem for the Korteweg-de Vries equation. I (Russian),
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