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KO-RINGS OF FULL FLAG VARIETIES

MARCUS ZIBROWIUS

Abstract. We present type-independent computations of the KO-groups of
full flag varieties, i.e. of quotient spaces G/T of compact Lie groups by their
maximal tori. Our main tool is the identification of the Witt ring, a quotient
of the KO-ring, of these varieties with the Tate cohomology of their complex
K-ring. The computations show that the Witt ring is an exterior algebra whose
generators are determined by representations of G.
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Introduction

The complex K-ring of a homogeneous space X of the form G/H, where G
is a compact Lie group and H is a subgroup of maximal rank, has a classical
description in terms of the representation rings of G and H. In particular, every
stable isomorphism class of complex vector bundles over X lies in the image of a
natural ring homomorphism

α : R(H) → K0(X)

that was already studied by Atiyah and Hirzebruch in their seminal paper [AH61].
For real vector bundles, the situation is far more subtle. In particular, while it

is straightforward to define an analogous ring homomorphism

αO : RO(H) → KO0(X),

it is easy to see that it is almost never surjective (Proposition 2.2).
On the whole, our current understanding of the KO-groups of homogeneous

spaces is still rather patchy. The problem of computing these groups is just as
old as the corresponding problem for complex K-groups, yet no general solution
is known to date. More recent progress includes a series of papers of Kishimoto,
Kono, Ohsita and Yagita computing the KO-groups of all full flag varieties, i.e.
of the homogeneous spaces of the form G/T , where G is as above and T is a
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maximal torus [KKO04, KO13, Yag]. As in earlier work [Fuj67,KH91,KH92], the
main strategy is to show that the Atiyah-Hirzebruch spectral sequence collapses
after the second differential, allowing a computation of the two-torsion of the KO-
groups via the second Steenrod square. However, the arguments needed to put this
strategy into practice are intricate. In particular, so far it has been possible to
establish that the spectral sequence collapses only on a case-by-case basis, and the
arguments used for the Lie groups of classical types in [KKO04], for E6, F4 and G2

in [KO13] and for E7 and E8 in [Yag] each have different flavour. No relationship
between vector bundles on G/T and representations of G is apparent from these
calculations.

In this paper, we present a more conceptual, type-independent computation of
the KO-groups of all full flag varieties based on the known description of their K-
rings. Our approach focuses on the “Witt ring” ofX, for which we give the following
ad hoc definition: Let ri : K2i(X) → KO2i(X) denote the realification maps. We
define the Witt groups and the (total) Witt ring of X as the cokernels of these
maps and their direct sum, respectively:

Wi(X) := KO2i(X)/ri,

W∗(X) :=
⊕
i∈Z/4

KO2i(X)/ri.

We will seek to justify our terminology at the end of this introduction. First, let
us mention the key points that make these quotients interesting:

• The Witt groups capture the two-torsion of the KO-groups of X. In
particular, since the free parts of the KO-groups may easily be determined
by cell-counting, a description of the Witt groups leads to a full additive
description of KO∗(X) (Lemma 1.2).

• As a quotient ring of KOeven(X), the Witt ring W∗(X) provides a first
approximation to the ring structure of KO∗(X). In fact, it completely

describes the products KOodd(X)⊗KOodd(X) → KOeven(X) (Remark 1.3).
• The ring W0(X) detects all non-homogeneous vector bundles: elements of
KO0(X) not contained in the image of αO. More precisely, the cokernel of
αO may be identified with a quotient of W0(X) (Proposition 2.2).

• The Witt ring is computable: it follows from an observation of Bousfield
that W∗(X) may be identified with the Tate cohomology of the complex
K-ring K0(X) (see subsection 1.2).

Theorem 6.7 of [Yag], summarizing the existing calculations for full flag varieties,
shows that their Witt rings are exterior algebras on generators of odd degrees; in
each case, the explicit number of generators in each degree may be extracted from
one of the papers mentioned. The independent computations presented here yield
the following concise formulation:

Theorem. Let G be a simply-connected compact Lie group. The Witt ring of G/T
is an exterior algebra on bH generators of degree 1 and bC

2 + bR generators of degree
3, where bC, bR and bH denote the numbers of basic representations of G of complex,
real and quaternionic type, respectively.

This is Theorem 3.3 below. Precise definitions of bC, bR and bH are given in
subsection 2.1. Their values for simple G, taken from [Dav03, Table 3.1], are
displayed in Table 1.
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Table 1. The numbers of basic representations for the
simply-connected simple compact Lie groups G of different types

Type G bC bR bH

An SU(n+ 1) n− 1 − 1 if n ≡ 1 mod 4
(n≥1) n− 1 1 − if n ≡ 3 mod 4

n − − if n is even

Bn Spin(2n+ 1) − n− 1 1 if n ≡ 1, 2 mod 4
(n≥2) − n − if n ≡ 0, 3 mod 4

Cn Sp(n) − (n− 1)/2 (n+ 1)/2 if n is odd
(n≥3) − n/2 n/2 if n is even

Dn Spin(2n) − n − if n ≡ 0 mod 4
(n≥4) − n− 2 2 if n ≡ 2 mod 4

2 n− 2 − if n is odd

E6 (E6) 4 2 −
E7 (E7) − 4 3
E8 (E8) − 8 −

F4 (F4) − 4 −

G2 (G2) − 2 −

Our justification for the above terminology is based on the following connection
with algebraic geometry. In [Bal00], Balmer constructs a four-periodic cohomology
theory W∗ on algebraic varieties such that, when F is a field of characteristic not
two, W0(Spec(F )) agrees with the classical Witt group of F . In [Zib11], we show
that for complex flag varieties Balmer’s Witt ring agrees with the “topological” Witt
ring defined above (see also Remark 1.4). In particular, the theorem immediately
translates into a description of Balmer’s Witt ring of a full complex flag variety.

In fact, more is true. We have set up the computations presented here in such
a way that they can be done directly in the algebraic setting. This allows us to
generalize the theorem to full flag varieties over any algebraically closed field of
characteristic not two:

Theorema. Let G be a simply-connected semi-simple algebraic group over an
algebraically closed field of characteristic not two, and let B ⊂ G be a Borel
subgroup. The graded Witt ring (in the sense of Balmer) W∗(G/B) is an exterior
algebra on bH generators of degree 1 and bC

2 + bR generators of degree 3, where bC,
bR and bH are the numbers of non-self-dual, symmetric and anti-symmetric basic
representations of G.

In this generality, we believe the result to be new. Complete algebraic computa-
tions of Witt groups of flag varieties are in fact still only known in special cases, for
example for projective spaces [Wal03b], (split) quadrics [Nen09] and Grassmannians
[BC12].

That said, our main focus in this article will be on the topological situation. In
particular, some auxiliary results needed for the proof of Theorema in Section 3
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will simply be quoted from our article [Zib], in which we apply similar ideas to
“twisted” Witt groups of general flag varieties.

Notation and conventions. Throughout this paper, a (topological) space will be
a space of the homotopy type of a finite CW complex. We do not deviate from
the standard convention that simply-connected spaces are in particular path-
connected when referring to Lie groups. The K- and KO-groups of a space will
be thought of as graded by Z/2 and Z/8, respectively. In particular, periodicity
isomorphisms are never mentioned explicitly. The notation

KO0,4(X)

will indicate the direct sum KO0(X) ⊕ KO4(X), and similarly for other graded
groups and indexes.

1. Witt rings and Tate cohomology

1.1. Witt rings capture two-torsion. In this section, we summarize a few lem-
mas concerning the additive structure of the KO-groups of flag varieties on which
all existing computations rely. To be specific, we use the term flag variety to refer
to a homogeneous space of the form

G/H,

where G is a semi-simple compact Lie group and H is a centralizer of a torus. In
particular, H is always connected and of maximal rank, i.e. it contains a maximal
torus T of G. In the special case when H = T , we speak of the full flag variety
G/T . We may and will always assume that G is simply-connected.

The thus defined flag varieties are indeed complex varieties. In fact, they may
be realized algebraically as quotients

GC/P,

where GC is the semi-simple algebraic group over C corresponding to G and P
is a parabolic subgroup [Ser95, Théor‘eme 2]. Then the Bruhat decomposition of
GC yields a cellular decomposition, in the algebraic sense, of GC/P . In particular,
flag varieties may be given the structure of CW complexes with cells only in even
dimensions. This immediately implies:

Lemma 1.1. The K-groups of a flag variety X are given by

K0(X) = Z
⊕n,

K1(X) = 0,

where n is the number of cells of X.

Indeed, since the singular cohomology of X is concentrated in even degrees, the
Atiyah-Hirzebruch spectral sequence computing its K-theory must collapse. The
number of cells of a flag variety G/H is equal to the index of the Weyl group of H
in the Weyl group of G.

In contrast, the Atiyah-Hirzebruch spectral sequence computing the KO-groups
of X does not collapse. Taken by its own, this spectral sequence only yields a
description of the free parts of the KO-groups (see Lemma 1.2 below). However,
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further structural information may be obtained by studying the relation of real to
complex K-theory. Let η denote the generator of KO−1(point) = Z/2, and let

KO2i(X)
ci−→ K0(X)

ri−→ KO2i(X)

denote the realification and complexification maps, composed with appropriate
powers of the periodicity isomorphism Ki(X) ∼= Ki−2(X). These maps fit into
a long exact sequence known as the Bott sequence, which, when K1(X) = 0, breaks
up into 6-term exact sequences of the following form:

0 → KO2i−1(X)
η−→ KO2i−2(X)

ci−1−−−→ K0(X)
ri−→ KO2i(X)

η−→ KO2i−1(X) → 0.

In particular, multiplication by η2 induces an isomorphism from the cokernel of ri
to the kernel of ci−1, which in turn may be identified with the 2-torsion subgroup
of KO2i−2(X). Writing Wi(X) for the cokernel of ri as in the introduction, we
obtain the following structural lemma:

Lemma 1.2 ([Hog69, 2.1, 2.2]). The KO-groups of a CW complex X with cells
only in even dimensions have the following structure:

KO2i(X) = Wi+1(X) · η2 ⊕ Z
⊕n2i ,

KO2i+1(X) = Wi+1(X) · η.

Here, the ranks of the free parts of the groups of even degrees are
n0 = n4 = the number of cells of X of dimension a multiple of 4,
n2 = n6 = the number of remaining cells of X.

Remark 1.3 (Mulitplicative structure). It follows from Lemma 1.2 that the products

KOodd(X)⊗KOodd(X) → KOeven(X) are completely described by the products in
W∗(X), in view of the following commutative diagram:

Wi(X)⊗Wj(X) ��

η⊗η∼=
��

Wi+j(X)
��

η2

��

KO2i−1(X)⊗KO2j−1(X) �� KO2i+2j−2(X)

1.2. Witt rings are Tate cohomology rings. We now describe how the Witt
ring W∗(X) of a flag variety may be obtained directly from the K-ring K0(X). In
general, the K-ring of a space X comes equipped with an involution

K0(X)
∗−→ K0(X)

which sends the class of a vector bundle E to the class of the dual bundle E∨. This
involution allows us to view K0(X) as a Z/2-module. Let hi(X) denote the Tate
cohomology groups of Z/2 with coefficients in K0(X). These groups are 2-periodic
in i, and we will write h+(−) and h−(−) to denote the groups of even and odd
degrees, respectively. Concretely, these groups may be defined as follows:

h+(X) =
ker(id− ∗)
im(id+ ∗) ,

h−(X) =
ker(id+ ∗)
im(id− ∗) .
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The realification and complexification maps descend to the following well-defined
maps between the Tate cohomology groups and quotients/subgroups of the KO-
groups of X:1

KO2i(X)/r
ci−→ hi(X)

ri−→ c\KO2i(X).

The cokernels KO2i(X)/r are of course precisely the Witt groups Wi(X). A crucial
observation is that these maps even allow us to identify the Witt groups of X with
its Tate cohomology groups, at least up to a slight difference in grading.

Bousfield’s Lemma. For any space X with K1(X) = 0, the complexification and
realification maps induce isomorphisms

W0(X)⊕W2(X)
∼=−−−−−→

( c0 c2 )
h+(X)

∼=−−−−→(
r−1

r1

) c\KO−2 ⊕ c\KO2(X),

W1(X)⊕W3(X)
∼=−−−−−→

( c1 c3 )
h−(X)

∼=−−−→(
r0
r2

) c\KO0 ⊕ c\KO4(X).

The composition along each row is given by
(

η2 0

0 η2

)
.

Proof. This is essentially [Bou05, Lemma 4.7]. The realification and complexifica-
tion maps and the involution satisfy the following relations [Bou90, 4.7]:

ciri = id+(−1)i∗, ∗ci = (−1)ici, ri−1ci = η2,

rici = 2, ri∗ = (−1)iri.

The claim of the lemma concerning the composition along each row follows im-
mediately. Moreover, we have already seen in Lemma 1.2 that multiplication
by η2 induces an isomorphism from the Witt groups of X to the kernels of the
complexification maps, so the first map in each row must be injective while the
second map must be surjective.

We now show that injectivity of (ci−2 ci) implies injectivity of
t
(ri−1 ri+1): Sup-

pose x ∈ hi(X) is contained in the kernel of
t
(ri−1 ri+1). Choose a representative

x ∈ K0(X) such that x∗ = (−1)ix. Then ri±1(x) = 0 and Bott’s sequence implies

that for j = i− 2 and j = i there are elements yj ∈ KO2j(X) such that cj(yj) = x.
Consequently, the image of (yi−2, yi) under (ci−2 ci) is zero in the two-torsion
group h+(X). So the injectivity of the latter map implies that yi−2 and yi vanish

in Wi−2(X) and Wi(X), respectively. In particular, yi is contained in the image
of ri and, thus, x is contained in the image of ciri = id+(−1)i∗. We deduce that
x = 0 in hi(X), as required. �

The ring structure of K0(X) induces a ring structure on the direct sum of the
Tate cohomology groups

h∗(X) := h+(X)⊕ h−(X),

so we will call h∗(X) the Tate cohomology ring of X. Since complexification is a
ring homomorphism KO∗(X) → K∗(X), the first two isomorphisms in Bousfield’s
Lemma even induce an isomorphism of rings

(1.1) c : W∗(X)
∼=−−→ h∗(X)

1We use the notation f\A and B/f to denote the kernel and cokernel of a morphism f : A → B,
respectively.
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mapping the sum of the Witt groups of even degrees to h+(X) and the sum of the
Witt groups of odd degrees to h−(X). This ring isomorphism will be our main
tool in the computation of the Witt rings of full flag varieties. The isomorphism
induced by realification will be used only to identify the Z/4-grading of W∗(X).

Remark 1.4. An analogue of Bousfield’s Lemma holds for Balmer’s algebraic Witt
ring of any smooth cellular variety over an algebraically closed field of characteristic
not two [Zib, Theorem 2.3]. As a corollary, we obtain a new proof of the fact that
the algebraic Witt groups of complex flag varieties agree with the topological Witt
groups considered here. This approach is significantly more elementary than the
one taken in [Zib11]. Moreover, it is immediate that we have an isomorphism of
Witt rings.

2. Representations and homogeneous bundles

As we have seen, the K-group K0(G/H) of a flag variety is rather simple.
However, a theorem of Hodgkin asserts that it has an interesting ring structure
which may be described in terms of representations of H and G:

K0(G/H) ∼= R(H)
/
a(G) ,

where R(H) is the complex representation ring of H and a(G) is the ideal generated
by rank zero virtual representations of G. The theorem may be divided into two
separate assertions:

(a) We have an epimorphism α : R(H) � K0(G/H).
(b) The kernel of this epimorphism is given by a(G).

In subsection 2.2, we briefly explain why the first assertion for real representations
and vector bundles fails. The second assertion is briefly discussed in subsection 2.3.
Apart from Hodgkin’s Theorem itself, the only part of this discussion that will be
relevant to our computations is the existence of a real analogue of α. First, however,
we need to fix some notation regarding representation rings.

2.1. Representation rings of compact Lie groups. The complex representa-
tion ring of a compact Lie group G will be denoted R(G). Similarly, the K-groups of
the categories of real and quaternionic representations of G will be denoted RO(G)
and RSp(G), respectively. While RO(G) again has a natural ring structure, RSp(G)
does not: the tensor product of two quaternionic representations is not quaternionic
but real [Ada69, Definition 3.7]. It is therefore often convenient to consider real
and quaternionic representations simultaneously, i.e. to consider the Z/2-graded
ring RO(G)⊕ RSp(G).

Just as for vector bundles, we have dualization, realification/quaternionification
and complexification maps:2

R(G)
∗−→ R(G),

RO(G)
c0−→ R(G)

r0−→ RO(G),

RSp(G)
c2−→ R(G)

r2−→ RSp(G).

2We deviate from the traditional notation c′ and q for c2 and r2 to emphasize the analogy
with K-theory.
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Moreover, for any complex representation λ of G, the tensor product λλ∗ carries a
canonical real structure [Ada69, Lemma 7.2]. This induces a map

R(G)
φ−→ RO(G)

such that cφ(x) = xx∗.
The complexification maps c0 and c2 are injective for any compact Lie group

G [Ada69, Proposition 3.27]. An irreducible complex representation of G is said
to be of real type if it is contained in the image of c0, and it is said to be of
quaternionic type if it is contained in the image of c2.

G-equivariant K-theory. Representations may be viewed as equivariant vector
bundles over a point, so we can identify R(G) and RO(G) with the G-equivariant
K-groups K0

G(point) and KO0
G(point). We use equivariant K-theory to define Z/2-

and Z/8-graded complex and real representation rings as follows:

Ri(G) := Ki
G(point),

ROi(G) := KOi
G(point).

The values of these groups in each degree may be expressed purely in terms of
R(G), RO(G) and RSp(G) [BG10, Theorem 2.2.12]:

R0(G) = R(G), R1(G) = 0,

RO0(G) = RO(G), RO−1(G) = RO(G)
/
r0 (∼= W 0(G)),

RO2(G) = R(G)
/
RO(G) , RO1(G) = 0 (= W 1(G)),

RO4(G) = RSp(G), RO3(G) = RSp(G)
/
r2 (∼= W 2(G)),

RO6(G) = R(G)
/
RSp(G) , RO5(G) = 0 (= W 3(G)).

The maps η : RO2i(G) � RO2i−1(G) are the obvious epimorphisms, while the
maps η : RO2i+1(G) ↪→ RO2i(G) are monomorphisms induced by complexification.

Define the Witt groups of G by Wi(G) := RO2i(G)/ri and write h±(R(G)) for
the Tate cohomology of R(G) with respect to the involution ∗. Then Bousfield’s
Lemma holds with the same proof as in subsection 1.2:

(2.1)
h+(R(G)) ∼= W0,2(G),

h−(R(G)) ∼= 0.

The case of a torus. The complex representation ring of a torus T may be identified
with the ring of Laurent polynomials in dimT variables:

R(T ) = Z[x±1
1 , · · · , x±1

dimT ].

The Tate cohomology of this ring is easy to compute: dualization corresponds to
the involution sending xi to x−1

i , and this implies that h∗(R(T )) is trivial:

(2.2) h∗(R(T )) = Z/2 · 1.
This triviality is the main simplification in the computation of the Witt rings of
full flag varieties G/T as opposed to Witt rings of arbitrary flag varieties.

Remark 2.1. If follows from the triviality of h∗(R(T )) that the real representation
ring RO(T ) may be identified with the subring of R(T ) fixed by the involution.
However, an explicit description of this subring in terms of generators and relations
is fairly complicated; see [ABB+14, Theorem 3.2].



KO-RINGS OF FULL FLAG VARIETIES 3005

The simply-connected case. In general, for any compact Lie group G with maximal
torus T , the complex representation ring R(G) may be identified with a subring of
R(T ) via the restriction map — it is the subring fixed by the action of the Weyl
group. When G is simply-connected, one may deduce that R(G) is a polynomial
ring on certain irreducible representations known as the basic representations of
G [Ada69, Theorem 6.4.1]. Moreover, the set B(G) of these basic representations
may be partitioned into disjoint subsets

B(G) = BC ∪ c0(BR) ∪ c2(BH)

consisting of the basic representations of complex, real and quaternionic types,
respectively (cf. [Dav03]). The numbers bC(G), bR(G) and bH(G) appearing in
Theorem 3.3 are the sizes of these subsets.

While representations of real and quaternionic types are self-dual, the basic
representations of complex type arise as mutually dual pairs. We may thus choose
a subset B′

C
⊂ BC such that we obtain a refined decomposition

B(G) = B′
C ∪ (B′

C)
∗ ∪ c0(BR) ∪ c2(BH).

Finally, it will often be convenient to replace the given generators by generators

of rank zero. To indicate this, we will write ζ̃ for the reduced virtual representation

associated with a representation ζ, i.e. we define ζ̃ := ζ − rkζ. Thus, we may write
the representation ring as

R(G) = Z[λ̃, λ̃∗, c0(μ̃), c2(ν̃)]λ∈B′
C
,μ∈BR,ν∈BH

.

2.2. Homogeneous bundles. In [AH61, Conjecture 5.7], Atiyah and Hirzebruch
conjectured that all stable isomorphism classes of complex vector bundles on a
flag variety G/H arise from representations of H in the following way: Given a
complex representation ζ of H of rank r, we may consider G× C

r as an H-space,
with H acting on G via multiplication and on Cr via ζ. Then the quotient space
(G × Cr)/H is a G-equivariant complex vector bundle over G/H. In fact, this
construction induces a ring isomorphism

(2.3) R(H)
∼=−→ K0

G(G/H)

[Seg68, §1]. Forgetting the equivariant structure, we obtain a ring homomorphism

(2.4) α : R(H) −→ K0(G/H).

Atiyah and Hirzebruch checked by direct computation that this homomorphism is
surjective in many cases [AH61, Theorem 5.8]; their conjecture asserted that it is so
in general. The conjecture was verified by Hodgkin and Pittie [Hod75, Lemma 9.2;
Pit72, Theorem 3].

Of course, the construction of α works equally well with real representations
and vector bundles. Moreover, the map can be extended to higher degrees: if we
interpret R(H) as K0

H(point), we may regard (2.3) as an incarnation of a general
isomorphism for equivariant cohomology theories [May96, (4.4) in XVI§4]. For
equivariant KO-theory [May96, XIV§4; BG10, 2.2], we thus have an isomorphism

(2.5) RO∗(H)
∼=−→ KO∗

G(G/H)
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which, composed with the forgetful map KO∗
G(G/H) → KO∗(G/H), yields a ring

homomorphism

(2.6) α∗
O : RO∗(H) −→ KO∗(G/H)

analogous to the morphism α above.
However, α∗

O is not generally surjective, even in degree zero. We may easily pin
down its cokernel in terms of Witt groups.

Proposition 2.2. The cokernel of

RO2∗(H)
α2∗

O−−→ KO2∗(G/H)

coincides with the cokernel of the induced map W∗(H) → W∗(G/H).

Example 2.3. Consider a full flag variety G/T . By equations (2.1) and (2.2) of
subsection 2.1 we have W∗(T ) = Z/2, and the map induced by αO is simply the
inclusion of the trivial subring Z/2 ↪→ W∗(G/T ). Our computation of the Witt ring
of G/T in Theorem 3.3 will show in particular that the cokernel of this inclusion
is far from being trivial. For example, Table 1 tells us that W∗(SU(6)/T ) is an
exterior algebra on one generator of degree one and two generators of degree three,
so said cokernel is non-trivial in all degrees.

Proof of Proposition 2.2. It follows from the construction of α and αO that these
maps are compatible with the structure maps ri and ci. In particular, we may
consider the following commutative diagram:

R0(H)

α
����

ri �� RO2i(H)

α2i
O

��

�� �� Wi(H)

��

K0(G/H)
ri �� KO2i(G/H) �� �� Wi(G/H)

This diagram has exact rows by our definition of the Witt groups, and α is surjective
by the work of Hodgkin and Pittie mentioned above. This implies that the cokernel
of the second vertical map agrees with the cokernel of the third, as claimed. �

The maps α2i−1
O : RO2i−1(H) → KO2i−1(G/H) in odd degrees may of course be

identified directly with the maps Wi(H) → Wi(G/H).

2.3. Hodgkin’s Theorem. At the beginning of the previous section, we explained
how α associates vector bundles over G/H with representations ζ of H. It follows
from the construction that when ζ is the restriction of a representation of G, the
associated vector bundle may be trivialized. In particular, the ideal

a(G) ⊂ R(H)

generated by virtual representations of G of rank zero is contained in the kernel of
α. In [Hod75, Lemma 9.2], Hodgkin shows not only that α is surjective but also
that its kernel is precisely this ideal:

Hodgkin’s Theorem. For any flag variety G/H with G simply-connected, α
induces a ring isomorphism

(2.7) α : R(H)
/
a(G)

∼=−→ K0(G/H).
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Hodgkin’s proof is based on the construction of a Künneth spectral sequence for
equivariant K-theory. A different proof, leading to a more general algebraic version
of the theorem, is due to Panin [Pan94]. A key ingredient in both approaches which
we will need later is the following theorem of Pittie and Steinberg:

Steinberg’s Theorem ([Ste75, Theorem 1.1]). The representation ring R(H) of
a connected subgroup H of maximal rank in a simply-connected compact Lie group
G is a free R(G)-module of finite rank.

Steinberg’s proof also shows that the rank of R(H) over R(G) is equal to the
index of the Weyl group of H in the Weyl group of G. In particular, the additive
description of K0(G/H) given in Lemma 1.1 may easily be recovered.

We now define a factorization of α∗
O analogous to the factorization α of α. Let

R̃O∗(G) denote the kernel of the forgetful map RO∗(G) → RO∗({1}), and let

a
∗
O(G) ⊂ RO∗(H)

be the ideal generated by the image of R̃O∗(G) and by the images of a(G) under
the maps ri. Then α∗

O factors through

(2.8) α∗
O : RO∗(H)

/
a∗O(G) → KO∗(G/H),

and the factorization is compatible with the structure maps ri and ci. In particular,
the following diagram commutes:

(2.9)

R0(H)
/
a(G)

ri
��

α �� K0(G/H)

ri

��

RO2i(H)
/
a2iO (G)

α2i
O �� KO2i(G/H)

This will be used to identify the Z/4-grading of W∗(G/H) in the proof of Theorem 3.3.

Remark 2.4 (Description of a0,4O (G)). The ideal a0,4O (G) ⊂ RO0,4(H) is generated
by real and quaternionic virtual representations of G of rank zero, together with
the images of a(G) under realification and quaternionification. In the notation of

subsection 2.1, a(G) and a
0,4
O (G) may be written as follows:

a(G) = (λ̃, λ̃∗, c0μ̃, c2ν̃)λ,μ,ν ,

a
0,4
O (G) = (φλ̃, μ̃, ν̃)λ,μ,ν + r0(a(G)) + r2(a(G)).

Remark 2.5 (Injectivity of α0,4
O ). It seems natural to ask whether the ideal a0,4O (G)

coincides with the kernel of α0,4
O . Our computations for flag varieties in section 4

imply that this is true only in special cases:

Proposition 2.6. For a complete flag variety G/T , the map

α0,4
O : RO0,4(T )

/
a
0,4
O (G) → KO0,4(G/T )

is injective only when G is of one of the following low-dimensional types:

An with 1 ≤ n ≤ 4, An ×Am with 1 ≤ n,m ≤ 2, B2, G2.
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Proof. Since this proposition is not central to the aims of this paper, we include
only a brief sketch of the argument. For any compact Lie group H, and for any
space X, the pairs of abelian groups (R(H),RO0,4(H)) and (K0(X),KO0,4(X)) fit
into complexes of the form

... �� R(H)
1−∗

�� R(H)
( r0r2 )�� RO0,4(H)

( c0 −c2 )
�� R(H)

1−∗
�� R(H) �� ...

... �� K0(X)
1−∗

�� K0(X)
( r0r2 )�� KO0,4(X)

( c0 −c2 )
�� K0(X)

1−∗
�� K0(X) �� ...

The relevant Bott exact sequences imply that these complexes are exact [Bou05,
Theorem 4.4]. Taking X to be a flag variety G/H, we may compare the two

sequences via the maps α and α0,4
O . Basic homological algebra then shows that the

kernel of α0,4
O may be identified with the homology of the corresponding complex for

(a(G), a0,4O (G)) at a0,4O (G) → a(G) → a(G), which we may view as the cokernel of

a0O(G)⊕ a4O(G)
/
( r0r2 )

( c0 −c2 )−−−−−−→ ker(a(G)
1−∗−−→ a(G)).

This cokernel maps isomorphically to the cokernel of

a0O(G)
/
r0 ⊕ a4O(G)

/
r2

( c0 c2 )−−−−−→ h+(a(G)).

In particular, α0,4
O is injective if and only if (c0 c2) is surjective. For a full flag

variety G/T , the domain of (c0 c2) is easy to compute: the fact that

RO0(T )/r0 ⊕ RO4(T )/r2 = W0,2(T ) = Z/2 · 1R
implies that a0O(G)/r0 ⊕ a4O(G)/r2 is generated as a Z/2-module by the elements

φλ̃, μ̃ and ν̃ with λ, μ and ν in B′
C
(G), BR(G) and BH(G) respectively.

On the other hand, the computations in section 4 will imply that h+(a(G)) is

additively isomorphic to the odd-degree part of an exterior algebra on bC
2 + bR + bH

generators of degree 1:

h+(a(G)) ∼= h−(R(T )/a(G)) =
[
ΛZ/2(uλ, vμ, wν)λ,μ,ν

]odd
.

Moreover, one may check that under this additive isomorphism the generators uλ,

vμ and wν correspond to the elements c0φλ̃, c0μ̃ and c2ν̃ in h+(a(G)), respectively.
The map (c0 c2) is simply the inclusion of the Z/2-linear subspace spanned by these
elements. It is surjective if and only if the exterior algebra ΛZ/2(uλ, vμ, wν)λ,μ,ν is
generated by at most 2 elements, i.e. if and only if

bC(G)

2
+ bR(G) + bH(G) ≤ 2.

This holds only in the cases listed in the proposition. �

3. Witt rings of full flag varieties

Hodgkin’s Theorem (subsection 2.3) and Bousfield’s Lemma (subsection 1.2)
have the following corollary:

Corollary 3.1. For any flag variety G/H with G simply-connected, we have an
isomorphism of Z/2-graded rings

W∗(G/H)
∼=−→ h∗ (R(H)

/
a(G)

)
,

where h∗(−) := h+(−)⊕ h−(−) denotes Tate cohomology.



KO-RINGS OF FULL FLAG VARIETIES 3009

Proof. It suffices to observe that the isomorphism α : R(H)
/
a(G) ∼= K0(G/H)

of Hodgkin’s Theorem is an isomorphism of rings with involution, for the involu-
tions induced by dualizing representations and vector bundles. We thus obtain an
isomorphism of Tate cohomology rings, which, combined with Bousfield’s Lemma
(1.1), yields the desired identification:

(3.1) W∗(G/H)
∼=−→
c

h∗(G/H)
∼=←−
α

h∗ (R(H)
/
a(G)

)
.

Note that h∗(G/H) is our notation for h∗(K0(G/H)). �

We now apply this corollary to a full flag variety G/T . Recall from subsection 2.1
that h∗(R(T )) is trivial:

h+(R(T )) = Z/2 · 1,
h−(R(T )) = 0.

On the other hand, we have seen that the complex representation ring of G may
be written as

R(G) = Z[λ̃, λ̃∗, c0(μ̃), c2(ν̃)]λ∈B′
C
,μ∈BR,ν∈BH

.

Viewing R(G) as a subring of R(T ) via the restriction map, we may consider the
following virtual representations of G as elements of R(T ):

λ̃λ̃∗ with λ ∈ B′
C,

c0(μ̃) with μ ∈ BR,

c2(ν̃) with ν ∈ BH.

All of these elements are self-dual, so they define classes in h+(R(T )). But since
h+(R(T )) is so simple and the elements have rank zero, the corresponding classes
must vanish. By the definition of h+, this means that we may find elements uλ, vμ
and wν in R(T ) such that

(3.2)

uλ + u∗
λ = λ̃λ̃∗

vμ + v∗μ = c0(μ̃)

wν + w∗
ν = c2(ν̃)

⎫⎪⎬⎪⎭ in R(T ).

Consider these equations in K0(G/T ) ∼= R(T )/a(G). Here, the right-hand sides
vanish since they are given by virtual representations of G of rank zero. Thus, the
images of uλ, vμ and wν in K0(G/T ) are anti-self-dual. With a little more work
one may see that these images generate the Tate cohomology ring of G/T . In fact,
we have the following:

Proposition 3.2. Let G/T be a full flag variety with G simply-connected. The
Tate cohomology ring

h∗(R(T )
/
a(G))

is an exterior Z/2-algebra on certain generators uλ, vμ, wν ∈ h−(−). These gener-
ators may be represented by elements of R(T ) satisfying (3.2) above.

Proof, assuming Corollary 4.5. We defer the main part of the argument to section 4.
Here, we simply observe that the claim follows directly from Corollary 4.5 with
R := R(G) and A := R(T ). Indeed, all assumptions needed have already been
checked: R is a polynomial ring on pairs of mutually dual generators and certain
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self-dual generators, A is a free R-module of finite rank by Steinberg’s Theorem
(equation 2.3), and h∗(A) is trivial. �

Theorem 3.3. Let G/T be a flag variety with G simply-connected. The total Witt
ring of G/T is an exterior Z/2-algebra on certain generators

cν ∈ W1(G/T ),

aλ, bμ ∈ W3(G/T )

indexed by the basic representations λ ∈ B′
C
, μ ∈ BR and ν ∈ BH:

W∗(G/T ) ∼= Λ(aλ, bμ, cν)λ∈B′
C
,μ∈BR,ν∈BH

.

Proof. Let uλ, vμ and wν be the generators of Proposition 3.2, and let aλ, bμ and
cν be their preimages under the isomorphism (3.1) (with H = T ), that is, the
preimages of the elements αuλ, αvμ and αwν under c. Since uλ, vμ and wν are

elements of h−(−), we have aλ, bμ, cν ∈ W1,3(G/T ).
It remains to show that these elements remain homogeneous with respect to the

Z/4-grading of the total Witt group, of degrees 3, 3 and 1, respectively. To see this,
we first observe that the second isomorphism(

r0
r2

)
: h−(G/T )

∼=−→ c\KO0(G/T )⊕ c\KO4(G/T )

of Bousfield’s Lemma preserves the grading of h−(G/T ) corresponding to the de-
composition into W1(G/T )⊕W3(G/T ). It therefore suffices to show that

r0(αuλ) = 0 in KO0(G/T ),

r0(αvμ) = 0 in KO0(G/T ),(3.3)

r2(αwν) = 0 in KO4(G/T ).

In order to obtain these relations, we note that the injectivity of the complexi-
fication maps c0 and c2 on representations of G allows us to rewrite equations (3.2)
as

r0uλ = φ(λ̃i) in RO0(T ),

r0vμ = μ̃i in RO0(T ),

r2wν = ν̃i in RO4(T ).

Since all representations on the right-hand sides are restrictions of representations
of G,

r0uλ = 0

r0vμ = 0

r2wν = 0

⎫⎪⎬⎪⎭ in RO0,4(T )
/
a
0,4
O (G) .

We now apply the map αO defined in subsection 2.3 to these equations. By (2.9)
this yields the desired relations (3.3). �

Finally, we indicate how to translate the above computation to the algebraic
setting of a full flag variety G/B over an algebraically closed field of characteristic
not two.
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Proof of Theorema. In the algebraic setting, the role of the topological K-group is
played by the algebraic K-group K0(G/B), while the roles of the KO-groups of

even degrees KO2i are played by Balmer and Walter’s Grothendieck-Witt groups
GWi(G/B) [Wal03a]. The complexification maps correspond to the forgetful maps

GWi(G/B) → K0(G/B), the realification maps correspond to the hyperbolic maps
K0(G/B) → GWi(G/B), and the cokernels of the hyperbolic maps are Balmer’s
Witt groups Wi(G/B). Moreover, over an algebraically closed field, Bousfield’s
Lemma (subsection 1.2) holds as before [Zib, Theorem 2.3].

Similarly, we can consider the algebraic K-group K0(Rep(G)) and the Grothen-
dieck-Witt andWitt groups GWi(Rep(G)) andWi(Rep(G)) of the categoryRep(G)
of finite-dimensional representations of an affine algebraic group G in place of the
groups R(G), RO2i(G) and RO2i+1(G). Then again h∗(G) = W∗(G) for an affine
algebraic group over an algebraically closed field [Zib, Theorem 2.2].

Finally, as already mentioned in subsection 2.3, Hodgkin’s Theorem also holds
in the algebraic setting [Pan94]: for any simply-connected semi-simple algebraic
group G, and for any parabolic subgroup P ⊂ G, there is a ring isomorphism

K0(G/P ) ∼= K0(Rep(P ))
/
a ,

where a ⊂ K0(Rep(P )) is the ideal generated by restrictions of rank zero classes in
K0(Rep(G)). This allows us to carry over the topological computations described
above. �

4. Tate cohomology of some quotient rings

The aim of this section is to complete our computations by proving Proposition 3.2.
This is accomplished in Corollary 4.5.

We first need some terminology. We define a ∗-module to be an abelian group
equipped with an involution ∗ which is a group isomorphism, a ∗-ring to be a
commutative unital ring equipped with an involution ∗ which is a ring isomorphism,
and a ∗-ideal in a ∗-ring A to be an ideal preserved by the involution on A. We
will say that a ∗-ideal a ⊂ A is generated by certain elements a1, . . . , an and write

a = (a1, . . . , an)

if a is generated as an ideal in the usual sense by the elements a1, a
∗
1, . . . , an, a

∗
n.

An element x of a ∗-module M will be called self-dual if x = x∗ and anti-self-
dual if x∗ = −x∗. The Tate cohomology of M may be defined as in subsection 1.2:

h+(M) :=
ker(id− ∗)
im(id+ ∗) ,

h−(M) :=
ker(id+ ∗)
im(id− ∗) .

In other words, h+(M) is the quotient of the subgroup of self-dual elements by
those elements which are “obviously self-dual”, and similarly h−(M) is a quotient
of the subgroup of anti-self-dual elements. For a ∗-ring A, the direct sum

h∗(A) := h+(A)⊕ h−(A)
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inherits a commutative ring structure, so we will refer to h∗(A) as the Tate
cohomology ring of A. It is easily checked that this ring is Z/2-graded, i.e.
that

h+(A) · h+(A) ⊂ h+(A),

h+(A) · h−(A) ⊂ h−(A),

h−(A) · h−(A) ⊂ h+(A).

We begin with a simple proposition relating the Tate cohomology of principal
ideals in a ∗-ring A to the Tate cohomology of A.

Proposition 4.1. Let A be a ∗-ring.
• If μ̃ ∈ A is a self-dual element which is not a zero divisor, then multiplica-
tion by μ̃ induces a graded isomorphism

h∗(A)
∼=−→
·μ̃

h∗(μ̃A).

If, in addition, the class of μ̃ in h+(A) is trivial, then

h∗(A/(μ̃)) ∼= h∗(A)⊕ u · h∗(A),

where u may be represented by any element of A with the property that
u+ u∗ = μ̃.

• If (λ̃, λ̃∗) is a regular sequence in A, then multiplication by the product λ̃λ̃∗

induces a graded isomorphism

h∗(A)
∼=−−−→

·λ̃λ̃∗
h∗((λ̃, λ̃∗)A).

If, in addition, the class of λ̃λ̃∗ in h+(A) is trivial, then

h∗(A/(λ̃, λ̃∗)) ∼= h∗(A)⊕ u · h∗(A),

where u may be represented by any element of A with the property that

u+ u∗ = λ̃λ̃∗.

Proof. We prove the second part; the proof of the first is analogous. Since λ̃λ̃∗ is
self-dual, the map

h∗(A)
·λ̃λ̃∗
−−−→ h∗((λ̃, λ̃∗)A)

is well-defined. For injectivity, suppose first that λ̃λ̃∗x = 0 in h+((λ̃, λ̃∗)A) for some

x ∈ h+(A). Then λ̃λ̃∗x = y + y∗ for some y ∈ (λ̃, λ̃∗)A. Write y = λ̃y1 + λ̃∗y2 for
certain y1, y2 ∈ A. Then

λ̃λ̃∗x = λ̃(y1 + y∗2) + λ̃∗(y∗1 + y2).

In particular, λ̃∗(y∗1 + y2) = 0 in A/(λ̃). By regularity of the sequence (λ̃, λ̃∗), this

implies that y∗1 + y2 = 0 in A/(λ̃). So y∗1 + y2 = λ̃z in A, for some z ∈ A. Thus,

λ̃λ̃∗x = λ̃λ̃∗(z + z∗).

By assumption, λ̃ is not a zero divisor in A. Its dual λ̃∗ cannot be a zero divisor in
A either. We may therefore conclude that x = z + z∗, which shows that x = 0 in
h+(A). The case when x ∈ h−(A) works analogously.
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For surjectivity, suppose that y ∈ (λ̃, λ̃∗)A is an arbitrary self-dual element.

Writing y = λ̃y1 + λ̃∗y2 as in the proof of injectivity, we see that

λ̃(y1 − y∗2) + λ̃∗(y2 − y∗1) = 0.

It follows that y2 − y∗1 = 0 in A/(λ̃), so y2 − y∗1 = λ̃z for some z ∈ A. Thus, we find

that y = λ̃y1+λ̃∗y∗1+λ̃λ̃∗z. So y is equivalent to λ̃λ̃∗z in h+((λ̃, λ̃∗)A). Moreover, z

defines an element in h+(A): the fact that y is self-dual implies that λ̃λ̃∗z∗ = λ̃λ̃∗z

and thus z = z∗, as neither λ̃ nor λ̃∗ is a zero divisor. Preimages of elements of

h−((λ̃, λ̃∗)A) may be found in an analogous fashion.
Finally, consider the Tate cohomology sequence associated with the short exact

sequence of ∗-modules

0 → (λ̃, λ̃∗)A → A → A/(λ̃, λ̃∗) → 0.

The assumption on the class of λ̃λ̃∗ in h+(A) shows that the map induced by the

inclusion of (λ̃, λ̃∗)A into A is zero on cohomology. Thus, the cohomology sequence

splits into short exact sequences from which the stated result for h∗(A/(λ̃, λ̃∗))
follows. �

Corollary 4.2. Let A be a ∗-ring. Let a := (λ̃1, . . . , λ̃k, μ̃k+1, . . . , μ̃k+l) be a ∗-ideal
in A such that:

• λ̃1, λ̃
∗
1, . . . , λ̃k, λ̃

∗
k, μ̃k+1, . . . , μ̃k+l is a regular sequence in A.

• The generators μ̃k+1, . . . , μ̃k+l are self-dual.

• The class of each of the elements λ̃iλ̃
∗
i and μ̃i is trivial in h+(A).

Then we have an isomorphism of h∗(A)-modules

h∗(A/a) ∼= h∗(A)⊗Z/2 Λ(u1, . . . , uk+l),

where the generators ui may be represented by elements ui ∈ A such that

ui + u∗
i =

{
λ̃iλ̃

∗
i for i = 1, . . . , k,

μ̃i for i = k + 1, . . . , k + l.

Proof. Write aj for the ∗-ideal in A generated by the first j generators, i.e. by

λ̃1, . . . , λ̃j or λ̃1, . . . , λ̃k, . . . , μ̃j , respectively. Since λ̃iλ̃
∗
i and μ̃i are trivial in h+(A),

they are a fortiori trivial in h+(A/b) for any ∗-quotient A/b of A. More precisely,

if u ∈ A has the property that u + u∗ = λ̃iλ̃
∗
i or u + u∗ = μ̃i, then the class of u

in any ∗-quotient of A still has this property. Thus, we may proceed by induction.
The case when a has zero generators is trivial. To pass from j to j + 1 generators,

we apply Proposition 4.1 to the classes of λ̃j+1, λ̃
∗
j+1 or μ̃j+1 in A/aj . �

We now analyse a special case in which we can show that the additive isomor-
phism in Corollary 4.2 is in fact an isomorphism of rings. By an augmented
∗-ring we will mean a ∗-ring A together with a surjective ∗-morphism rk: A � Z,
where Z is equipped with the trivial involution. The image of an element of A
under the augmentation will be referred to as the rank of that element. If a is
a ∗-ideal in A generated by elements of rank zero, then the quotient A/a again
has a canonical augmentation. Moreover, an augmentation of A descends to an
augmentation rk: h∗(A) � Z/2 mapping elements of h+(A) to their rank modulo
two and elements of h−(A) to zero.
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Lemma 4.3. Let A be an augmented ∗-ring with h∗(A) trivial (i.e. such that
h+(A) = Z/2 · 1 and h−(A) = 0). Let a be any ∗-ideal in A generated by elements
of rank zero. Then all elements of rank zero in h∗(A/a) square to zero.

Proof. Take u ∈ h∗(A/a) such that rk(u) = 0. Pick a representative u ∈ A. Then
uu∗ defines an element in h+(A), which, for rank reasons, must be zero. It follows
that, a fortiori, uu∗ = 0 in h+(A/a). Since u was in h∗(A/a) to begin with, we
have uu∗ = u2 in h∗(A/a). �

Corollary 4.4. Let A be an augmented ∗-ring containing a ∗-ideal a generated by

elements λ̃1, . . . , λ̃k, μ̃k+1, . . . , μ̃k+l of rank zero. Assume that:

• λ̃1, λ̃
∗
1, . . . , λ̃k, λ̃

∗
k, μ̃k+1, . . . , μ̃k+l is a regular sequence in A.

• The generators μ̃k+1, . . . , μ̃k+l are self-dual.
• h∗(A) is trivial.

Then we have an isomorphism of rings

h∗(A/a) ∼= Λ(u1, . . . , uk+l).

In particular, u2
i = 0 in h∗(A/a) for all i. Representatives of the generators ui

may be chosen as in Corollary 4.2.

Proof. Since λ̃iλ̃
∗
i and μ̃i have rank zero, they must be trivial in h+(A). We may

thus apply Corollary 4.2 to obtain the module structure of h∗(A) and Lemma 4.3
to obtain the algebra structure. �

Finally, we specialize to the situation of Proposition 3.2. Let R be an augmented
∗-ring, and let A be an augmented ∗-algebra over R. That is, A is simultaneously
a ∗-ring and an augmented algebra over R such that (r · a)∗ = r∗a∗ for all r ∈ R

and a ∈ A. Given an arbitrary element λ in R (or in A), we write λ̃ for the element
λ− rk(λ) of rank zero.

Corollary 4.5. Let A be an augmented algebra over an augmented ∗-ring R.
Suppose that:

• R is a polynomial ring of the form R = Z[λ1, λ
∗
1, . . . , λk, λ

∗
k, μk+1, . . . , μk+l]

with μk+1, . . . , μk+l self-dual.
• A is a free R-module of finite rank.
• h∗(A) is trivial, i.e. h+(A) = Z/2 · 1 and h−(A) = 0.

Let a ⊂ A be the ideal generated by all elements of R of rank zero. Then

h∗ (A/a ) = Λ(u1, . . . , uk+l),

where the classes ui may be represented by elements ui ∈ A such that

ui + u∗
i =

{
λ̃iλ̃

∗
i for i = 1, . . . , k,

μ̃i for i = k + 1, . . . , k + l.

Proof. The ideal a may be generated by the reduced generators λ̃, λ̃∗
1, . . . , λ̃k, λ̃

∗
k,

μ̃k+1, . . . , μ̃k+l of R. These generators form a regular sequence in R. Since A is
free of finite rank over R, they also form a regular sequence in A. So we may apply
Corollary 4.4. �
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