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LIMITS OF POSITIVE FLAT BIVARIATE MOMENT MATRICES

LAWRENCE A. FIALKOW

Abstract. The bivariate moment problem for a sequence β ≡ β(6) of degree
6 remains unsolved, but we prove that if the associated 10×10 moment matrix
M3(β) satisfies M3 � 0 and rank M3 ≤ 6, then β admits a sequence of approxi-

mate representing measures, and β(5) has a representing measure. More gener-
ally, let Fd denote the closure of the positive flat moment matrices of degree 2d
in n variables. Each matrix in Fd admits computable approximate representing
measures, and in 2013, Jiawang Nie and the author began to study concrete
conditions for membership in this class. Let β ≡ β(2d) = {βi}i∈Z

n
+,|i|≤2d,

β0 > 0, denote a real n-dimensional sequence of degree 2d. If the correspond-
ing moment matrix Md ≡ Md(β) is the limit of a sequence of positive flat

moment matrices {M (k)
d }, i.e., M (k)

d � 0 and rank M
(k)
d = rank M

(k)
d−1, then

i) Md � 0, ii) rank Md ≤ ρd−1 ≡ dim R[x1, . . . , xn]d−1, and iii) β(2d−1)

admits a representing measure. We extend our earlier results by proving, con-
versely, that for n = 2, if Md satisfies certain positivity and rank conditions

related to i)-iii), then Md is the limit of positive flat moment matrices.

1. Introduction

Let β ≡ β(m) = {βi}i∈Z
n
+,|i|≤m denote a real n-dimensional sequence of degree

m, β0 > 0, and let K ⊆ Rn be a closed set. The Truncated K-Moment Prob-
lem (TKMP) concerns conditions for the existence of a positive Borel measure μ,
supported in K, such that

(1.1) βi =

∫
xidμ (|i| ≤ m)

(where i ≡ (i1, . . . , in) ∈ Zn
+, |i| = i1 + · · · + in, x ≡ (x1, . . . , xn) ∈ Rn, and

xi := xi1
1 · · ·xin

n ). β as above is a truncated moment sequence, and we refer to
μ as a K-representing measure for β. In the case K = Rn, we refer to TKMP
as the Truncated Moment Problem (TMP) and to μ as a representing measure.
Although several abstract criteria for the existence of representing measures are
known [CF9], [CF7] (cf. Theorems 1.2 and 1.4 below), the only concrete condition
available is flatness of the moment data, i.e., the moment matrix Md associated to
β(2d) satisfies Md � 0 (positive semidefinite) and rank Md = rank Md−1 [CF7] (cf.
Theorem 1.4). With the aid of this condition, TKMP has been solved concretely
for K a planar curve of degree 1 or 2 [CF3], [CF5], [CF6], [CF8], and for y = x3

[F]. In particular, for n = 2, TMP has been solved concretely for degree 2 (d = 1)
and degree 4 (d = 2) [CF3], [CF5]. Nevertheless, the degree 6 problem (d = 3)
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remains largely unsolved, and similarly for β(m) with m ≥ 5. In view of this
difficulty, our focus here is on membership of Md in Fd, the closure of the positive
flat moment matrices. For if Md(β) belongs to Fd, then the moment problem for
β is “almost” solved in two respects: first, there exists a sequence of approximate
representing measures for β and, second, as described by Theorem 1.2 (cf. [CF9]),
β(2d−1) has a representing measure. Moreover, as we discuss below, the existence of
approximate representing measures provides a criterion for finite convergence in the
polynomial optimization program of J.-B. Lasserre [Las]. Our main result, Theorem
1.9, provides a sufficient condition for membership in Fd. The main application of
Theorem 1.9 is the following simple criterion for approximation by positive flat
moment matrices in the degree 6 problem.

Theorem 1.1. Let n = 2 and let β ≡ β(6) = {βij}i,j≥0,i+j≤6. The associated

10 × 10 moment matrix M3 ≡ M3(β) belongs to F3 if and only if M3 � 0 and
ρ ≡ rank M3 ≤ 6. In this case, given τ , ρ ≤ τ ≤ 6, M3 is in the closure of the
rank-τ positive flat moment matrices, and there exists a sequence of (computable) τ -

atomic positive measures {μk} such that βij = lim
k→∞

∫
xiyj dμk (i, j ≥ 0, i+j ≤ 6).

Moreover, β(5) has a representing measure.

Let R[x]m ≡ R[x1, . . . , xn]m := {p ∈ R[x1, . . . , xn] : deg p ≤ m}. We associate

to β the Riesz functional Lβ : R[x]m �→ R defined by Lβ(
∑
|i|≤m

aix
i) =

∑
aiβi. If

β has a K-representing measure μ, then Lβ is K-positive, i.e., p ∈ R[x]m, p|K ≥
0 =⇒ Lβ(p) ≥ 0; indeed, in this case, Lβ(p) =

∫
K
p dμ ≥ 0. For K = Rn, we

say that Lβ is positive. In the classical Full Multidimensional K-Moment Problem

for β ≡ β(∞), the Riesz-Haviland Theorem [R], [H] states that β admits a K-
representing measure if and only if Lβ is K-positive. Such is not the case in TKMP.
The proof of Tchakaloff’s Theorem [T] shows that ifK is compact, thenK-positivity
of Lβ does imply that β has a (finitely atomic) K-representing measure. However,
for K noncompact, this implication fails; for example, with n = 1, K = R, m = 4,
the sequence 1, 1, 1, 1, 2 has a positive functional but no representing measure
(cf. Example 1.5). The following result of [CF9] illustrates the role of K-positivity
in TKMP.

Theorem 1.2 ([CF9, Theorem 1.2]). β ≡ β(2d) (or β ≡ β(2d+1)) admits a K-

representing measure if and only if β can be extended to a sequence β̃ ≡ β̃(2d+2) for
which L

˜β is K-positive.

(The result in [CF9] is stated only for β(2d), but it is clear from the proof that it
applies as well to β(2d+1).)

K-positivity also solves TKMP in the sense of approximation. Let Mn,m denote
the set of all real n-dimensional sequences of degree m, viewed as a subset of
Rη (endowed with the Euclidean norm), where η := dim R[x]m (=

(
n+m
m

)
). Let

Rn,m(K) := {β ∈ Mn,m : β has a K-representing measure}, and let Pn,m(K) :=
{β ∈ Mn,m : Lβ is K-positive}. Note that Rn,m(K) ⊂ Pn,m(K) ⊂ Mn,m is an
inclusion of convex cones, with Mn,m and Pn,m(K) closed; it will become clear in
the sequel that in general Rn,m(K) is not closed.

Theorem 1.3 ([FN1, Theorem 2.2]). Pn,m(K) = Rn,m(K). If Lβ(m) is K-positive,
then there exists a sequence of positive Borel measures {μk}, each supported in
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K, having finite moments up to degree m, such that for each i, |i| ≤ m, βi =

lim
k→∞

∫
xidμk.

In view of the preceding two results, it would be desirable to have a concrete
test for K-positivity, but at present there is no such test that is applicable to a
general multisequence. Similarly, in the Full K-Moment Problem, concrete condi-
tions for K-positivity are known only in certain cases, e.g., in Hamburger’s solution
for K = R (cf. [A], [KN]) and in K. Schmüdgen’s solution for K a basic compact
semialgebraic set [S2]. Remarkably, in the compact case treated by Tchakaloff [S2],
there is no known concrete test for K-positivity in TKMP, even in the case when K
is a basic compact semialgebraic set. In [FN2] we began to study conditions for β
to be a limit of “flat” multisequences (as defined below), in which case positivity of
Lβ is obvious. Moreover, if the flat approximants β[k] are known, then correspond-

ing approximate representing measures μ(k) for β can be explicitly computed (cf.
Example 1.5). In [FN2] we obtained concrete necessary and sufficient conditions
for flat approximation when n = 1, d ≥ 1 and when n = d = 2 (cf. Theorem 1.6 be-
low). In the present note, we extend the results of [FN2] to the bivariate truncated
moment problem, i.e., n = 2, d ≥ 1. The conditions that we present in Theorem
1.9 apply in certain cases in which the truncated moment problem is still unsolved,
including certain cases of the bivariate degree 6 problem, so we can at least test for
approximate representing measures in these cases; Theorem 1.1 provides one such
test.

To describe our results in detail, we require some additional terminology. Fol-
lowing [CF7], we associate to β ≡ β(2d) the moment matrix Md(β). For p ∈ R[x]d,

p =
∑
|i|≤d

aix
i, let p̂ ≡ (ai) denote the vector of coefficients of p with respect to

the basis for R[x]d consisting of the monomials in degree-lexicographic order. Let
ρd = dim R[x]d. Then the moment matrix Md ≡ Md(β) is the ρd × ρd matrix
defined by

〈Md(β)p̂, q̂〉 = Lβ(pq) (p, q ∈ R[x]d).

As noted above, if β has a representing measure, then Lβ is positive. Further, if Lβ

is positive, then Md(β) is positive semidefinite (Md(β) � 0), since 〈Md(β)p̂, p̂〉 =
Lβ(p

2) ≥ 0 (p ∈ R[x]d). In general, the preceding implication cannot be reversed,
but there is one situation where positivity of Md(β) is equivalent to positivity of
Lβ. Recall that p ∈ R[x]2d is nonnegative or positive semidefinite (psd) if p|Rn ≥
0, and p is a sum of squares (SOS) if there exist p1, . . . , pk ∈ R[x]d such that

p =

k∑
j=1

p2j . Now, if every nonnegative polynomial p in R[x]2d is SOS , then positive

semidefiniteness of Md(β) implies positivity of Lβ , since, for p nonnegative, Lβ(p) =

Lβ(
k∑

j=1

p2j) =
∑

〈Md(β)p̂j, p̂j〉 ≥ 0. A well-known theorem of Hilbert (cf. [Rez])

shows that each psd polynomial is SOS if and only if n = 1, d ≥ 1; n = d = 2;
or n ≥ 1, d = 1. In each of these cases, checking that Lβ is positive reduces
to simply verifying that Md(β) is positive semidefinite. Now, for n = 2, d = 3,
there exists M3(β) � 0 (positive definite) for which Lβ is not positive [CF3], [S1];
more generally, [FN2, Proposition 1.6] shows that except in the cases of Hilbert’s
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theorem, positive semidefiniteness of a moment matrix does not imply positivity of
its Riesz functional.

In the sequel we seek to identify cases of Riesz functional positivity that are
beyond the scope of Hilbert’s theorem and are not due to the existence of repre-
senting measures. The first such examples appear in [EF] for certain bivariate M3

with rank M3 = 9. In the present note we focus on positivity arising from approx-
imation by positive flat moment matrices. The following result of [CF7] illustrates
the central role of positive flat moment matrices in TMP.

Theorem 1.4 ([CF7]). Let β ≡ β(2d). If Md(β) � 0 is flat, i.e., rank Md =
rank Md−1, then β admits a unique representing measure which is rank Md(β)-
atomic. More generally, β has a representing measure if and only if β can be

extended to a sequence β̃ ≡ β̃(2(d+k)) (for some k, 0 ≤ k ≤ ρ2d − rank Md(β) + 1)

for which Md+k(β̃) is positive semidefinite and flat.

The result in [CF7] is stated in terms of finitely atomic representing measures, but
in [BT] Bayer and Teichmann proved that the existence of a representing measure
implies the existence of a finitely atomic representing measure. Theorem 1.4 is the
basis for a concrete solution to TKMP when K is the real line R [CF1], a planar
line or curve of degree 2 [CF3], [CF5], [CF6], [CF8], or the planar curve y = x3

[F]. Theorem 1.4 also leads to an algorithmic solution to TMP for the class of
recursively determinate moment matrices [CF10] and is used by Helton and Nie
[HN] in a numerical solution to TKMP based on semidefinite programming (see
also [FN3]).

Let Fd := {Md(β) : Md(β) � 0, rank Md(β) = rank Md−1(β)}, the set of
positive flat moment matrices with data of degree 2d. For Md(β) ∈ Fd, we refer to
β as a flat multisequence. Now if Md(β) belongs to Fd, the closure of Fd in any of
the (equivalent) norms on the ρd×ρd matrices, then, by Theorems 1.3 and 1.4, Lβ is

positive. Moreover, if Md(β) = lim
k→∞

M
(k)
d , where each M

(k)
d is positive semidefinite

and flat, then a unique representing measure for M
(k)
d can be explicitly computed

using [CF7] (see Section 2), and this serves as an approximate representing measure
for Md. Although a concrete characterization of positivity for Lβ seems unlikely,
in view of the ease of detecting flatness (by simply checking the positivity and rank
conditions), we are motivated to seek a concrete characterization of membership in
Fd (cf. Question 1.7 below). To illustrate membership in Fd, consider the example
mentioned just before Theorem 1.2.

Example 1.5. We have n = 1 and

M ≡ M2(β
(4)) =

⎛⎝ 1 1 1
1 1 1
1 1 2

⎞⎠ .

M is positive semidefinite, but not recursively generated, so β has no measure (see
Section 2). However, with

M
(k)
2 :=

⎛⎝ 1 1 1 + 1
k

1 1 + 1
k 1 + εk

1 + 1
k 1 + εk 2

⎞⎠ (εk =
k2 +

√
k5 − 2k4 − k3

k3
),
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we see that M
(k)
2 is positive and flat, with rank M

(k)
2 = rank M

(k)
1 = 2, and

clearly lim
k→∞

M
(k)
2 = M , so M2(β) ∈ F2 and Lβ is positive. (Of course, since

n = 1 in this example, positivity of Lβ also follows from M � 0 via sums of

squares.) Let γ =
√

k3(k2 − 2k − 1) and let ψ =
√
k2(3k + 2k2 + k3 − 4γ). Then

(as described in Section 2) the unique representing measure for M
(k)
2 , which serves

as an approximate representing measure for M , is given by μ(k) := α
(k)
1 δ

x
(k)
1

+

α
(k)
2 δ

x
(k)
2

, where x
(k)
1 = 1

2k2 (γ − ψ) −→ 1, x
(k)
2 = 1

2k2 (γ + ψ) −→ +∞, α
(k)
1 =

−2k2+γ+ψ
2ψ −→ 1, α

(k)
2 = −2k2+γ−ψ

2ψ −→ 0. The fact that {x(k)
2 } diverges reflects the

fact that β has no representing measure.

Now suppose n ≥ 1 and Md(β) = lim
k→∞

Md(β
[k]), where each β[k] is a sequence

of degree 2d with Md(β
[k]) positive and flat. It follows that

(1.2) Md(β) � 0,

and lower semicontinuity of rank ([Her, Proposition 1.12(i)]) implies that

rank Md(β) ≤ lim inf
k→∞

rank Md(β
[k]) = lim inf

k→∞
rank Md−1(β

[k]) ≤ ρd−1,

whence

(1.3) rank Md(β) ≤ ρd−1.

For n = 1, d ≥ 1 or n = d = 2, the main result of [FN2], which follows, characterizes
membership in Fd in terms of (1.2) and (1.3).

Theorem 1.6 ([FN2]). Let n = 1, d ≥ 1 or n = d = 2. Md ≡ Md(β) belongs to
Fd if and only if Md � 0 and rank Md ≤ ρd−1. In this case, there exist moment

matrices M
(k)
d ≡ Md(β

[k]) (k ≥ 1) such that lim
k→∞

M
(k)
d = Md and for each k,

rank M
(k)
d = rank M

(k)
d−1 = rank Md.

Note also that for n ≥ 1, d = 1, (1.2) and (1.3) imply that M1(β) is flat (with
rank 1), so Theorem 1.6 holds in all the cases of Hilbert’s theorem; these results
motivate the following question.

Question 1.7. Let n, d ≥ 1. If Md(β) � 0 and rank Md ≤ ρd−1, does Md(β)
belong to Fd?

Note that in each case in which Question 1.7 has an affirmative answer, (1.2)
and (1.3) provide a simple test for the existence of a representing measure for
β(2d−1) (via Theorem 1.2). Theorem 1.1 provides a positive answer to Question
1.7 for n = 2, d = 3; this is perhaps surprising, because several moment theorems
which hold within the framework of Hilbert’s theorem, e.g., the solution to TMP
for n = d = 2 [CF5], break down in the bivariate degree 6 case (cf. [F]). To further
address membership in Fd, observe the necessay condition arising from Theorem
1.2 that positivity of Lβ, including membership of Md(β) in Fd, entails

(1.4) β(2d−1) ∈ Rn,2d−1.

Of course, (1.4) is equivalent to TMP for β(2n−1) and is therefore difficult to check
in general. Nevertheless, the results of this paper provide some positive evidence
concerning the following weaker version of Question 1.7.
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Question 1.8. Let n, d ≥ 1. If Md � 0, rank Md ≤ ρd−1, and β(2d−1) has a
representing measure, is Md a limit of positive flat moment matrices?

Let Md ≡ Md(β) denote a bivariate moment matrix of degree 2d, and consider
the block matrix decomposition

Md ≡
(

Md−1 Bd

BT
d Cd

)
;

thus Md−1 and Bd together contain the data in β(2d−1), and Cd is a Hankel matrix
comprised of the data of degree 2d. As we discuss in Section 2, Md is positive
semidefinite if and only if i) Md−1 � 0, ii) there exists a matrix W such that
Bd = Md−1W , and iii) Cd � C� ≡ C�

d := WTMd−1W , i.e., Δ� ≡ Cd − C�
d � 0.

Let ρd = dim R[x, y]d (= (d+1)(d+2)
2 ), which coincides with the size of Md; thus,

r ≡ rank Md−1 ≤ ρd−1. Now suppose β(2d−1) has a κ-atomic representing measure
μ; then Md[μ] is of the form

Md[μ] =

(
Md−1 Bd

BT
d Cd[μ]

)
.

Let Δ ≡ Δ[μ] := Cd − Cd[μ], s = rank Δ[μ], ρ[μ] := s+ κ, and

MΔ :=

(
0 0
0 Δ

)
.

We now state our main result.

Theorem 1.9. Let n = 2, d ≥ 1. Suppose that Md(β) � 0 and that β(2d−1)

has a κ-atomic representing measure μ. If Δ ≡ Δ[μ] � 0 and ρ[μ] ≤ ρd−1, then
Md ∈ Fd. Moreover, if ρ[μ] ≤ τ ≤ ρd−1, then there exists a sequence of positive

flat moment matrices, {M (k)
d }∞k=1, such that Md(β) = lim

k→∞
M

(k)
d and, for each k,

rank M
(k)
d = rank M

(k)
d−1 = τ .

We note two basic cases where Theorem 1.9 applies. For Md � 0, let

M � :=

(
Md−1 Bd

BT
d C�

)
and

MΔ� :=

(
0 0
0 Δ�

)
,

so that

(1.5) Md = M � +MΔ� .

Let r = rank Md−1 and s� = rank Δ�. Then ρ ≡ rank Md = r+s� and rank M � =
r. For the cases covered by Theorem 1.6, we showed in [FN2] that C� is always
Hankel; thus, Theorem 1.6 can be derived from the following result.

Corollary 1.10. The conclusions of Theorem 1.9 hold if Md � 0, ρ ≡ rank Md ≤
ρd−1, and C� is Hankel.

Proof. Suppose Md � 0 and rank Md ≤ ρd−1. If C� is a Hankel matrix, then
M � is a flat moment matrix extension of Md−1 using the data in Bd. Theorem
1.4 thus shows that M � has a unique representing measure μ, which is r-atomic
(r ≡ rank Md−1). Thus, the hypotheses of Theorem 1.9 hold with κ = r, Δ = Δ�,
s = s�, ρ[μ] = r+ s = ρ ≤ ρd−1; note from iii) above that Δ � 0 since Md � 0. �
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In Example 2.1, (1.2) and (1.3) hold, but C� is not Hankel; however, we show in
Section 4 that this example falls within the scope of the next result.

Corollary 1.11. The conclusions of Theorem 1.9 hold if Md has a κ-atomic
representing measure μ with κ ≤ ρd−1; in particular, this applies if Md � 0,
rank Md ≤ ρd−1, and Md admits a flat extension Md+1.

Proof. For μ satisfying the hypothesis, Δ[μ] = 0, s = 0, ρ[μ] = κ ≤ ρd−1, so
Theorem 1.9 applies. In the flat extension case, Theorem 1.4 implies the existence
of μ with κ ≡ card supp μ = rank Md ≤ ρd−1. �

If we ignore the calculations of ranks in the proof of Theorem 1.9, we arrive at
the following criterion for positivity of Lβ.

Proposition 1.12. If Md(β) � 0 and β(2d−1) has a finitely atomic representing
measure μ such that Δ[μ] � 0, then Lβ is positive.

Section 2 concerns positive moment matrices, including a geometric character-
iztion of flatness (Theorem 2.7) that we require in the sequel. Section 3 concerns
determining sequences, which provide a tool for relating the rank of a moment ma-
trix to the geometry of the support of a representing measure. Using Proposition
3.1 and particular determining sequences that we describe in Section 3, we prove
Theorem 1.9 and Proposition 1.12 in Section 4. The proof of Theorem 1.1 is a
synthesis of these and other results and appears in Section 5. Theorem 1.1 also
yields a new solution to the singular quartic moment problem (Proposition 5.13).
The proofs of Theorem 1.1 and of several examples that we present below depend
in part on calculations using the computer algebra system in Mathematica; in the
sequel we refer to these as symbolic calculations.

We conclude this section by noting an application of Theorem 1.9 to polynomial
optimization on R2. For p ∈ R[x, y], the Optimization Problem entails estimating

(1.6) p∗ := inf
(x,y)∈R2

p(x, y).

We recall the moment relaxations for (1.6) introduced by J.-B. Lasserre [Las]. For
t ≥ 1, we define the t-th Lasserre relaxation by

(1.7) pt := inf{Ly(p) : y ≡ y(2t), y00 = 1, Mt(y) � 0}.
It is not difficult to check that pt ≤ p∗ and that for t′ ≥ t, pt′ ≥ pt; thus, {pt}
is convergent, and pmom ≡ lim

t→∞
pt ≤ p∗. For fixed t, the infimum in (1.6) is not

necessarily attained. Assuming that the infimum is attained, at some optimal

sequence y∗ ≡ y
(2t)
∗ , we seek criteria which imply that Ly∗(p) = p∗, so that we

have finite convergence of {ps} to p∗ at stage s = t. A basic result of [Las] shows
that this is the case if Mt(y∗) is flat, and this concrete condition is used as the
stopping criterion in the optimization program in [HeLa]. In [FN2, Theorem 1.5]
we showed that convergence at stage t occurs, more generally, if Ly∗ is positive.
Thus, Corollary 1.10 provides a broader concrete condition for finite convergence
than flatness, namely, rank Mt(y∗) ≤ ρt−1 and C�

t (y∗) Hankel.

2. Positive moment matrices

In this section we present some results concerning positive moment matrices that
will be used in the sequel. We begin, more generally, with a real symmetric block
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matrix of the form

(2.1) M =

(
A B
BT C

)
.

It is well known that M is positive semidefinite if and only if A � 0, B = AW for
some matrix W , and C � WTAW (= BTW ) (cf. [CF1]). In this case, let Δ ≡
C −WTAW denote the Schur complement, so that rank M = rank A+ rank Δ.
We have rank M = rank A, and we say that M is a flat extension of A if and
only if C = WTAW . Flat extensions are uniquely determined by A and B, for if
there are matrices W and V such that AW = B = AV , then WTAW − V TAV =
WTAV − V TAV = (AW − AV )TV = 0. Given A � 0 and B = AW as above, if
we set C� = WTAW and

(2.2) M � =

(
A B
BT C�

)
,

then clearly M � is a positive, flat extension of A.
Let us denote the positive n-variable moment matrix Md ≡ Md(β) by

(2.3) Md(β) =

(
Md−1(β) Bd

BT
d Cd

)
,

with Bd = Md−1W . In this setting, we sometimes denote C� by C�
d. Following

[CF2], [CF7], we say that Md is flat if rank Md = rank Md−1, i.e., Cd = C�
d.

Theorem 1.4 implies that in this case Md has a unique representing measure which
is (rank Md)-atomic. For Md � 0, a rank-preserving extension Md+1 is said to be
a flat extension; in this case, Md+1 � 0 and Md+1 is itself flat. In the sequel, if μ is
a positive Borel measure with convergent moments β ≡ β(2d), we sometimes denote
Md(β) by Md[μ]; moreover, for a moment matrix Md(β), we sometimes refer to a
representing measure for β as a representing measure for Md(β).

Let n = 2 and suppose Md(β) � 0, so that Bd = Md−1(β)W for some matrix
W (as above). Since n = 2, Cd is a Hankel matrix; i.e., Cd is constant on cross-
diagonals. We note that in general C� ≡ WTMd−1W need not be Hankel. We
illustrate this in the following example of [FN2], which we will analyze further in
Section 4.

Example 2.1. Consider the positive moment matrix M3(β) defined by

M3(β) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 2
1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 2 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 2
0 1 0 0 0 0 1 0 2 0
0 0 2 0 0 0 0 2 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.



LIMITS OF POSITIVE FLAT BIVARIATE MOMENT MATRICES 2673

Then B3 = M2W , where

W :=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0
1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

so C� ≡ WTM2W =

⎛⎜⎜⎝
1 0 1 0
0 1 0 2
1 0 1 0
0 2 0 4

⎞⎟⎟⎠ and Δ ≡ C3 − C� =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠.

In [FN2] we used ad hoc methods to show that M3 ∈ F3. In Section 4 we will
establish membership in F3 based on Corollary 1.11. �

In the sequel we denote the successive columns ofMd(β) byXi (|i| ≤ d) in degree-
lexicographic order. Let p ∈ R[x]d, p =

∑
aix

i. We define a corresponding element
of Col Md(β), the column space of Md(β), by p(X) :=

∑
aiX

i (= Mdp̂). Thus,
each column dependence relation in Md(β) can be expressed as p(X) = 0 for some
p ∈ R[x]d, p �≡ 0. Following [CF2], [CF7], we say thatMd(β) is recursively generated
if p, q, pq ∈ R[x]d, p(X) = 0 =⇒ (pq)(X) = 0. Positivity and recursiveness are
necessary conditions for β to have a representing measure [CF7], and for n = 1
these conditions are also sufficient [CF1] (cf. Theorem 2.3). In the sequel, to
construct examples, we will employ the following result without further reference.

Theorem 2.2 (Structure Theorem [CF2], [CF7]). If Md(β) is positive semidefinite,
then the following properties hold:

i) Md−1(β) is recursively generated.
ii) If p ∈ Pd−1 and p(X) = 0 in Col Md−1, then p(X) = 0 in Col Md.
iii) If p ∈ Pd satisfies p(X) = 0 in Col Md and q ∈ Pd satisfies deg pq ≤ d, then

(pq)(X) = 0 in Col
(
Md−1(y) Bd

)
. Further, if Md is flat, then (pq)(X) = 0 in

Col Md.

For n = 1, we will denote a truncated moment sequence of degree 2d by y(2d) =
{y0, . . . , y2d}. Then Md(y) is a Hankel matrix, which we henceforth denote by
Hd ≡ Hd(y) := (ya+b)0≤a,b≤d. In this case, Theorem 2.2 may be expressed as
follows.

Theorem 2.3 ([CF1]). Suppose Hd ≡ Hd(y) is a positive Hankel matrix, y0 > 0. If
Hd � 0 (positive definite), then Hd admits infinitely many distinct flat extensions
and corresponding (d + 1)-atomic representing measures. If Hd is singular, let
r := min{s : 1 ≤ s ≤ d : Hs is singular}. Let v = (yr, . . . , y2r−1)

T and let
c ≡ (c0, . . . , cr−1)

T = M−1
r−1v. Then (a) yj = c0yj−r+· · ·+cr−1yj−1 (r ≤ j ≤ 2d−1)

and (b) y2d ≥ c0y2d−r + · · ·+ cr−1y2d−1.
Further, the following are equivalent: i) y has a representing measure; ii) equality

holds in (b) (above); iii) Hd is recursively generated; iv) rank Hd = r; v) Hd is a flat
extension of Hr−1. There is strict inequality in (b) (above) ⇐⇒ rank Hd = r + 1.

Recall the variety associated with β and Md(β), defined by

V ≡ V(β) :=
⋂

p∈R[x]d, p(X)=0

Z(p),
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where Z(p) := {x ∈ Rn : p(x) = 0}. We will repeatedly use the following result.

Proposition 2.4 ([CF2], [CF7, Prop. 2.10, Cor. 2.12]). If β has a representing
measure μ, then supp μ ⊆ V(β). Furthermore,

i) rank Md ≤ card supp μ ≤ card V(β);
ii) for p ∈ R[x]d, p(X) = 0 in Col Md (equivalently, Mdp̂ = 0) ⇐⇒ p|supp μ ≡ 0.

The next result shows how the variety can be used to construct the unique
representing measure corresponding to a flat extension.

Theorem 2.5 ([CF7, Theorem 1.2]). Suppose Md � 0 admits a flat extension

Md+1(β̃), i.e., rank Md+1(β̃) = rank Md. Then card V(β̃) = ρ ≡ rank Md, say

V(β̃) = {w1, . . . , wρ}. Let Xi1 , . . . , Xiρ denote a basis for the column space of Md,
define pj(x) := xij ∈ R[x]d, and let ω = (βi1 , . . . , βiρ). Then the Vandermonde

matrix V ≡ (pj(wk))1≤j,k≤ρ is invertible, and we define α ≡ (α1, . . . , αρ) by αT :=

V −1ωT . The unique representing measure for β̃ is given by

(2.4) μ :=

ρ∑
i=1

αiδwi
.

We now consider the moment matrix determined by a finitely atomic measure.
For w ≡ (x1, . . . , xn) ∈ Rn, let ζ ≡ ζ[w] = (1, x1, x2, . . . , xd

1, xd−1
1 x2, . . . ,

xn−1x
d−1
n , xd

n). In the sequel, δ{w} denotes the atomic measure with support

{w}, whose moment sequence β ≡ β(2d) satisfies βi = xi1
1 · · ·xin

n (i ≡ (i1, . . . , in),
|i| ≤ 2d). As noted in [Lau], Md[δ{w}] ≡ Md(β) = ζT ζ, so rank Md[δ{w}] = 1. It

follows from subadditivity of rank that if μ is a t-atomic measure, μ ≡
t∑

i=1

αiδ{wi}

with each αi > 0, then

(2.5) rank Md[μ] = rank

t∑
i=1

αiMd[δ{wi}] ≤
t∑

i=1

rank αiMd[δ{wi}] = t.

In Theorem 2.7, we present a geometric criterion for flatness that we will use
in the proof of Theorem 1.9. We begin with a lower estimate for rank Md which
complements the upper estimate in Proposition 2.4 i). Given P ≡ {p1, . . . , pt} ⊂
R[x]d and points w ≡ {wi}ti=1 ⊂ Rn, let V ≡ V [P;w] denote the Vandermonde-type
matrix

(2.6)

⎛⎜⎝ p1(w1) · · · pt(w1)
...

...
...

p1(wt) · · · pt(wt)

⎞⎟⎠ .

Proposition 2.6. If w ≡ {w1, . . . , wt} ⊆ V(β), P ≡ {p1, . . . , pt} ⊂ R[x]d, and
V ≡ V [P;w] is invertible, then rank Md(β) ≥ t. If Md has a t-atomic represent-
ing measure μ, supp μ = w ≡ {w1, . . . , wt}, then rank Md = t ⇐⇒ there exist
polynomials P ≡ {p1, . . . , pt} ⊂ R[x]d such that V [P;w] is invertible.

Proof. Let v := ρd; since V is invertible, P is independent, so we may extend P

to a basis {pj}vj=1 for R[x]d. Suppose p ≡
v∑

i=1

cipi ∈ R[x]d and p̂ ∈ ker Md; then

p|V(β) ≡ 0, so p(wj) = 0 (1 ≤ j ≤ t).
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We first consider the case when t < v. Setting

V̂ =

⎛⎜⎝ p1(w1) · · · pt(w1) pt+1(w1) · · · pv(w1)
...

...
...

...
...

...
p1(wt) · · · pt(wt) pt+1(wt) · · · pv(wt)

⎞⎟⎠ ≡
(

V Ṽ
)

and c ≡ (c1, . . . , cv)
T , we have

(2.7) V̂ c = 0.

Now V is invertible, so multiplying (2.7) by V −1 on the left, we obtain Kc = 0,
with K of the form

(
It D

)
, where It denotes the t × t identity matrix and

D := V −1Ṽ is of the form Dt×(v−t) ≡ (dij)1≤i≤t,1≤j≤v−t. We thus see that

(2.8) ci + di1ct+1 + · · ·+ di,v−tcv = 0 (1 ≤ i ≤ t).

Now,

p = (−d1,1ct+1 − · · · − d1,v−tcv)p1 + · · ·+ (−dt,1ct+1 − · · · − dt,v−tcv)pt

+ct+1pt+1 + · · ·+ cvpv

= ct+1(−d1,1p1 − · · · − dt,1pt + pt+1) + ct+2(−d1,2p1 − · · · − dt,2pt + pt+2)

+ · · ·+ cv(−d1,v−tp1 − · · · − dt,v−tpt + pv).

The preceding calculation shows that ker Md is spanned by the v − t vectors η̂j
(1 ≤ j ≤ v − t), where

(2.9) ηj := −d1,jp1 − · · · − dt,jpt + pt+j .

Thus, dim ker Md ≤ v − t, and it follows that rank Md = ρd − dim ker Md ≥
ρd − (v − t) = t.

In the case when t = v, we set V̂ = V and conclude from (2.7) that ĉ = 0,
whence ker Md = {0}. Thus, rank Md = ρd = v = t.

Next, suppose μ is a representing measure, supp μ = w ≡ {wi}ti=1. From
Proposition 2.4, w ⊆ V(β) and rank Md ≤ t. If there exists P ≡ {pi}ti=1 ⊂ R[x]d
such that V [P;w] is invertible, then the above argument implies that rank Md = t.
Conversely, suppose rank Md = t, and let B ≡ {Xi1 , . . . , Xit} denote a basis

for Col Md. Let P = {xij}tj=1 ⊂ R[x]d. Suppose p :=

t∑
j=1

cjx
ij , p �≡ 0, and

V [P;w]p̂ = 0, i.e., p|supp μ ≡ 0. Since μ is a representing measure for Md,
Proposition 2.4 ii) implies p(X) = 0 in Col Md, contradicting the independence of
B; thus V [P;w] is invertible. �

Theorem 2.7. Md � 0 is flat if and only if there exist a t-atomic representing
measure μ for Md, supp μ = w ≡ {w1, . . . , wt} ⊂ Rn, and polynomials P ≡
{p1, . . . , pt} ⊂ R[x]d−1, such that V [P;w] is invertible.

Proof. The “only if” direction follows immediately from Theorem 2.5 applied to
the flat extension Md of Md−1. For the converse, it follows from Proposition 2.6
(applied to Md−1), and from (2.5), that t = rank Md−1 ≤ rank Md ≤ t, so Md is
flat. �

We conclude this section with a change of variables result for n = 2 that we
will use in Section 5 to simplify certain moment matrices. An analogous change of
variables for the truncated complex moment problem appears in [CF5, Proposition
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1.7], but here we require a stronger version. Consider the degree-one map T : R2 �→
R2 defined by T (x, y) = (x̃, ỹ) ≡ (a + αx + γy, b + δx + λy), where αλ − γδ �= 0
(which insures that T is a bijection). Given β ≡ β(2d), let Lβ denote its Riesz

functional. We define a multisequence β̃ ≡ β̃(2d) by β̃ij = Lβ(x̃
iỹj) (i, j ≥ 0,

i + j ≤ 2d). Let M̃d ≡ Md(β̃) denote the moment matrix for β̃ and let L
˜β denote

its Riesz functional. For p ∈ R[x, y]2d, p(x, y) ≡
∑

aijx
iyj , we have L

˜β(p) =

Lβ(p(x̃, ỹ)) = Lβ(
∑

aij(a + αx + γy)i(b + δx + λy)j). Let Pd denote the space
of polynomial vectors of degree at most d, i.e., Pd = {p̂ : p ∈ R[x, y]d}, and

define a matrix J ≡ Jd : Pd �→ Pd by Jp̂ := p̂(x̃, ỹ) (p ∈ R[x, y]d); for example,
Jx̂ ≡ J(0, 1, 0, 0, ..., 0)T = (a, α, γ, 0, . . . , 0)T .

Proposition 2.8. i) M̃d = JTMdJ ;
ii) J is invertible;

iii) M̃d � 0 ⇐⇒ Md � 0;

iv) rank M̃d = rank Md.
v) The formula μ = μ̃ ◦ T is a one-to-one correspondence between representing

measures for β and β̃, which preserves measure class and cardinality of support;
moreover, T (supp μ) = supp μ̃.

vi) M̃d (� 0) admits a flat extension if and only if Md (� 0) admits a flat
extension.

vii) For p ∈ R[x, y]d, define q(x̃, ỹ) := p ◦T −1(x̃, ỹ) ∈ R[x̃, ỹ]d. Then in Col M̃d,

q(X̃, Ỹ ) = JT p(X,Y ). In particular, p(X,Y ) = 0 if and only if q(X̃, Ỹ ) = 0,

and V(β̃) = T (V(β)); further, M̃d is recursively generated if and only if Md is
recursively generated.

viii) M̃d ∈ Fd if and only if Md ∈ Fd.
ix) Let τ satisfy 1 ≤ τ ≤ ρd−1 and let Fd,τ = {Md ∈ Fd : rank Md = τ}. Then

M̃d ∈ Fd,τ if and only if Md ∈ Fd,τ .

x) For Md � 0, M̃ �
d ≡ JTM �

dJ = (M̃d)
�; in particular, C�

d is Hankel in M �
d if

and only if the C�
d block of (M̃d)

� is Hankel.

Proof. The proofs of i)-vi) are direct analogues of those of the corresponding parts

of [CF5, Proposition 1.7], so we omit the details. For vii), we have q(X̃, Ỹ ) = M̃dq̂ =

M̃d
̂p ◦ T −1 = JTMd((J ̂p ◦ T −1)) = JTMd

̂(p ◦ T −1 ◦ T ) = JTMdp̂ = JT p(X,Y ).

Since J is invertible, it follows that q(X̃, Ỹ ) = 0 ⇐⇒ p(X,Y ) = 0; the other

conclusions follow similarly. For viii), first note that, relative to β̃, for 1 ≤ k ≤ d,

we also have the subsequence β̃(2k) and its moment matrix M̃k (a submatrix of

M̃d). For p ∈ R[x, y]d, deg p(x, y) = deg p(x̃, ỹ), so J maps Pk onto itself and

the map Jk associated to β̃(2k) satisfies Jk = J |Pk. Each Jk is invertible, and

M̃k = JT
k MkJk. In particular, rank M̃d−1 = rank Md−1. It now follows from

iii) and iv) that M̃d is positive and flat if Md is positive and flat. The converse

follows by symmetry (using the transform T −1). For ix), suppose Md = lim
k→∞

M
[k]
d ,

where each M
[k]
d , corresponding to β[k] (a sequence of degree 2d), is positive and

flat, with rank M
[k]
d = τ . Then M̃d ≡ JTMdJ = lim

k→∞
JTM

[k]
d J , and iii)-iv) and

viii) imply that each JTM
[k]
d J is positive and flat, with rank JTM

[k]
d J = τ . Thus
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Md ∈ Fd,τ =⇒ M̃d ∈ Fd,τ , and the converse follows by symmetry (again using the
transform T −1).

For x), since Md � 0, there is a matrix W such that

Md =

(
Md−1 Md−1W

WTMd−1 Cd

)
, Cd � C�

d ≡ WTMd−1W,

and

M �
d =

(
Md−1 Md−1W

WTMd−1 WTMd−1W

)
.

Denoting

J ≡ Jd =

(
Jd−1 K
0 L

)
,

we have

M̃d ≡ JTMdJ =

(
M̃d−1 B̃d

B̃T
d C̃d

)
,

where M̃d−1 = JT
d−1Md−1Jd−1 and B̃d = M̃d−1W̃ , with W̃ = J−1

d−1(K+WL). Thus

(M̃d)
� =

(
M̃d−1 B̃d

B̃T
d C̃�

d

)
,

with C̃�
d ≡ W̃T M̃d−1W̃ = (KT +LTWT )(J−1

d−1)
T (JT

d−1Md−1Jd−1)J
−1
d−1(K+WL) =

(K +WL)TMd−1(K +WL). A block matrix calculation now shows that the last

expression coincides with the C-block of JTM �
dJ , so (M̃d)

� coincides with M̃ �
d ≡

JTM �
dJ . Now, if C�

d is Hankel in M �
d, then M �

d is a moment matrix, and therefore

so also is M̃ �
d. Thus (M̃d)

� (= M̃ �
d) is a moment matrix, whence its C�

d block is
Hankel. The converse follows by symmetry. �

3. Determining sequences for bivariate polynomials

In this section we examine certain determining sequences for bivariate polynomi-
als that will be used in proving Theorem 1.9. By a determining sequence for R[x, y]d
we mean a sequence of distinct points Γ ≡ {(xk, yk)}∞k=1 ⊂ R2 with the following
property: for p ∈ R[x, y]d, if there exists kp ∈ N such that p(xk, yk) = 0 for every
k ≥ kp, then p ≡ 0. In particular, Γ is determining if each nonzero polynomial in
R[x, y]d has at most a finite number of zeros in Γ.

The following result will prove useful in relating the geometry of the support of
a representing measure to the rank of a moment matrix.

Proposition 3.1. Suppose P ≡ {p1(x, y), . . . , pt(x, y)} is a set of independent

polynomials in R[x, y]d. If w(j) ≡ {w(j)
i }∞i=1 is a determining sequence for R[x, y]d

(1 ≤ j ≤ t), then given k > 0, there exist integers k1, . . . , kt ≥ k such that

V [P;w
(1)
k1

, . . . , w
(t)
kt

] is invertible.

Note that we are not assuming that the determining sequences in Proposition 3.1
are distinct; however, in the proof of Theorem 1.9 in Section 4, the sequences will
be distinct. Furthermore, the integers k1, . . . , kt need not be distinct, but clearly

the points w
(1)
k1

, . . . , w
(t)
kt

are necessarily distinct. We also note that although we
have formulated Proposition 3.1 only for 2 variables, the concept of determining
sequence and the proof that we present below are valid as well for n variables.
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Proof of Proposition 3.1. The proof is by induction on t ≥ 1. Since p1(x, y) �≡ 0

and w(1) is a determining sequence, there exists k1 ≥ k such that p1(w
(1)
k1

) =
1

km
1
Q

(m)
d (w1) �= 0, so the result holds for t = 1. Assume by induction that the

result holds up to t − 1. Since Pt−1 ≡ {p1, . . . , pt−1} is independent, there ex-

ist k1, . . . , kt−1 ≥ k such that Vt−1 ≡ V [Pt−1;w
(1)
k1

, . . . , w
(t−1)
kt−1

] is invertible. Let

V (x, y) be defined by

(3.1) V (x, y) :=

⎛⎜⎜⎜⎜⎝
p1(w

(1)
k1

) · · · pt−1(w
(1)
k1

) pt(w
(1)
k1

)
...

...
...

...

p1(w
(t−1)
kt−1

) · · · pt−1(w
(t−1)
kt−1

) pt(w
(t−1)
kt−1

)

p1(x, y) · · · pt−1(x, y) pt(x, y)

⎞⎟⎟⎟⎟⎠ ,

and set p(x, y) := det V (x, y) (∈ R[x]d). Expanding det V (x, y) with respect to the
bottom row, we have

p(x, y) = D1p1(x, y)−D2p2(x, y) + · · ·+ (−1)t+1Dtpt(x, y),

where each Di is a minor of p(x, y) and Dt = det Vt−1 ( �= 0, by induction). Since
{p1, . . . , pt} is independent in R[x, y]d and Dt �= 0, then p(x, y) �≡ 0 in R[x, y]d.

Now, since {w(t)
i }∞i=1 is a determining sequence, there exists kt ≥ k such that

p(w
(t)
kt
) �= 0, whence V [P;w

(1)
k1

, . . . , w
(t)
kt

] is invertible. �

We require a determining sequence for R[x, y]d that is compatible with a moment
matrix construction in the proof of Theorem 1.9, and to this end we will focus on
the sequence Γ ≡ {(k + 1

km , αk)}∞k=1, where m ∈ N satisfies m ≥ d and α ∈ R is
nonzero.

Proposition 3.2. Γ is a determining sequence for R[x, y]d. If p ∈ R[x, y]d and
p �≡ 0, then p has at most md+ d zeros of the form (k + 1

km , αk), where k ∈ N.

Let p ∈ R[x, y]d, p(x, y) =
∑

i,j≥0,i+j≤d

aijx
iyj . For α �= 0 and m ∈ N, m ≥ d, let

q
(m)
d (x) := p(x+ 1

xm , αx), and define Q
(m)
d ∈ R[x]md+d by

(3.2) Q
(m)
d (x) := xmdq

(m)
d (x) = xmd

∑
i,j≥0,i+j≤d

aij(x+
1

xm
)i(αx)j .

It follows from (3.2) that to prove Proposition 3.2, it suffices to show thatQ
(m)
d (x) �≡

0; i.e., Q
(m)
d has some nonzero coefficient. The coefficients of Q

(m)
d as a polyno-

mial in R[x]md+d are not the coefficients aij of p(x, y), but, rather, certain linear
combinations of the aij . To show that at least one such coefficient is nonzero,
we require some auxiliary results. In the sequel we say that a power monomial

xk appearing in Q
(m)
d is affiliated with coefficient aij of p(x, y) if the formal ex-

pansion of (3.2) into a sum of monomials contains one or more terms of the
form γaijx

k, say γraijx
k (1 ≤ r ≤ s) for some s ≥ 1, where γr ≡ αjδr is a

nonzero absolute constant (i.e., independent of all auv); we sometimes write this
as xk � aij . It is clear from (3.2) that for fixed i, j, k,

∑s
r=1 γraijx

k is a term
of the form Γaijx

k, where Γ = αjβ and β is some binomial coefficient. For
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our purposes, it is necessary to identify exactly which monomial powers xk ap-

pear in Q
(m)
d and with which coefficients of p(x, y) each monomial power is affili-

ated. For example, if p(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2, then

Q
(m)
2 (x) = a00x

2m + a10x
2m+1 + a10x

m + a01αx
2m+1 + a20x

2m+2 + 2a20x
2m+1 +

a20 + a11αx
2m+2 + a11αx

m+1 + a02α
2x2m+2, so the sequences of coefficients with

which each power monomial of Q
(m)
2 is affiliated are as follows:

x0 � a20; xm � a10; x
m+1 � a20, a11; x

2m � a00; x
2m+1 � a10, a01; x

2m+2 �

a20, a11, a02.

To identify the powers and affiliations in Q
(m)
d , consider the index set for the

monomials in p(x, y), Z2
d := {(i, j)|i, j ≥ 0, i + j ≤ d}, and for m ≥ d, let Sm,d =

{rm+ s : r,m ∈ Z, 0 ≤ r ≤ d, 0 ≤ s ≤ r}. The requirement m ≥ d is necessary to

insure that Sm,d contains (d+1)(d+2)
2 distinct elements. It is now easy to check that

the map φ ≡ φd : Z2
d −→ Sm,d, defined by φ(i, j) = (d− i)m+ j is a bijection, with

inverse ψ : Sm,d −→ Z2
d given by ψ(rm+s) = (d−r, s). (Indeed, if (i, j) ∈ Z2

d, then
r ≡ d − i and s ≡ j satisfy 0 ≤ r ≤ d and s = j ≤ d − i = r, so φ is well-defined,
and similarly for ψ.) Note also that

(3.3) φd−1(i, j) +m = φd(i, j).

Now let rd(x) =
∑

i,j≥0,i+j≤d−1

aij(x+
1

xm
)i(αx)j (which we can interpret as q

(m)
d−1(x)

relative to
∑

i,j≥0,i+j≤d−1

aijx
iyj), and set sd(x) =

∑
i,j≥0,i+j=d

aij(x+
1

xm
)i(αx)j , so

that q
(m)
d (x) = rd(x) + sd(x). Thus, Q

(m)
d (x) = xm(x(d−1)mrd(x)) + xmdsd(x), or

(3.4) Q
(m)
d (x) = xmQ

(m)
d−1(x) + xmdsd(x).

Lemma 3.3. Let d ≥ 1, m ≥ d. For (i, j) ∈ Z2
d, the power monomials xk in

Q
(m)
d that are affiliated with coefficient aij of p(x, y) are xφ(i,j), xφ(i,j)+m+1, . . . ,

xφ(i,j)+i(m+1).

Proof. The proof is by induction on d ≥ 1. For d = 1, m ≥ 1, Q
(m)
1 (x) = a00x

m +
a10x

m+1 + a10x
0 + a01αx

m+1. The unique power affiliated with a00 is xm, and
φ(0, 0) = m, i = 0. The powers affiliated with a10 are x

0 and xm+1, and φ(1, 0) = 0,
i = 1. The unique power affiliated with a01 is xm+1, and φ(0, 1) = m+ 1, i = 0.

Assume the result is true up to d − 1 and consider Q
(m)
d . For i, j ≥ 0 with

i+ j ≤ d− 1, it follows by induction that the powers affiliated with aij in Q
(m)
d−1 are

precisely xφd−1(i,j), xφd−1(i,j)+m+1, . . . , xφd−1(i,j)+i(m+1). Thus, (3.4) implies that

the powers affiliated with aij in Q
(m)
d are precisely xφd−1(i,j)+m, xφd−1(i,j)+2m+1,

. . . , xφd−1(i,j)+(i+1)m+i, and (3.3) implies that these powers coincide with xφd(i,j),
xφd(i,j)+m+1, . . . , xφd(i,j)+i(m+1).

Now consider the case i, j ≥ 0, i + j = d. It follows from (3.4) that the pow-

ers affiliated with aij in Q
(m)
d are those affiliated with aij in the formal expan-

sion of xmdsd(x), i.e., those powers which appear in the complete expansion of
xmd(x + 1

xm )i(αx)d−i. The monomial powers in this expansion are xmdxixd−i,

xmdxi−1x−mxd−i, xmdxi−2x−2mxd−i, . . . , xmdx−imxd−i, which simplify to xmd+d,
xmd−m+d−1, xmd−2m+d−2, . . . , xmd−mi+d−i, and this sequence coincides with
xφ(i,d−i)+i(m+1), xφ(i,d−i)+(i−1)(m+1), . . . , xφ(i,d−i). �
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Corollary 3.4. For (i, j) ∈ Z2
d, the powers affiliated with aij in Q

(m)
d are xφ(i,j),

xφ(i−1,j+1), . . . , xφ(0,j+i).

Proof. For 0 ≤ a ≤ i, φ(i, j)+a(m+1) = (d−i)m+j+am+a = (d−i+a)m+j+a =
(d− (i−a))m+ j+a = φ(i−a, j+a). The result now follows from Lemma 3.3. �

Note that every power of x in the expansion of the right hand side of (3.2) is
affiliated with some aij . The preceding result shows that each such power of x is of

the form xφ(i′,j′) for some (i′, j′) ∈ Z2
d, and it also shows that every such power is

affiliated with at least one coefficient in Q
(m)
d , namely, ai′j′ . Since φ : Z2

d −→ Sm,d

is a bijection, it also follows that the powers in Q
(m)
d can be expressed as xrm+s

with 0 ≤ r ≤ d, 0 ≤ s ≤ r.

Proof of Proposition 3.2. It suffices to show that Q
(m)
d has at most md + m dis-

tinct real roots. Suppose to the contrary that Q
(m)
d has more than md + d roots.

Since deg Q
(m)
d ≤ md + d, then Q

(m)
d ≡ 0 in R[x], and we will show that this

implies p(x, y) ≡ 0 in R[x, y], contradicting the hypothesis. We may list the powers
corresponding to Sm,d by increasing degree as

(3.5) x0, xm, xm+1, x2m, x2m+1, x2m+2, . . . , xdm, xdm+1, . . . , xdm+d.

We will prove by induction on the position, τ , of a power in this list (1 ≤ τ ≤
(d+1)(d+2)

2 ) that for the τ -th power xrm+s (0 ≤ r ≤ d, 0 ≤ s ≤ r), every coefficient
aij of p(x, y) with which xrm+s is affiliated satisfies aij = 0.

Note from Corollary 3.4 that if x0 is affiliated with coefficient aij of p(x, y), then
0 = φ(i − ρ, j + ρ) for some ρ, 0 ≤ ρ ≤ i. Now 0 = (d − (i − ρ))m + j + ρ =
(d− i+ ρ)m+ j + ρ, and thus ρ = 0, d = i, j = 0. Conversely, φ(d, 0) = 0, so x0 is

affiliated only with ad,0; since Q
(m)
d ≡ 0, it follows that ad,0 = 0.

Now assume by induction that for the first τ − 1 powers in (3.5), each coefficient
aij with which any of these powers is affiliated satisfies aij = 0. Let xrm+s denote
the τ -th power (for some r, s with 0 ≤ r ≤ d, 0 ≤ s ≤ r). Now rm+s = φ(i, j) for a
unique (i, j) ∈ Z2

d, and Corollary 3.4 shows that xrm+s is affiliated with aij . Next,
suppose xrm+s is also affiliated with some other coefficient ai′,j′ , (i, j) �= (i′, j′).
Now φ(i′, j′) = r′m + s′ for some r′, s′ with 0 ≤ r′ ≤ d, 0 ≤ s′ ≤ r′. Lemma 3.3

shows that xφ(i′,j′) comes first in the sequence of powers affiliated with ai′,j′ , and
since this sequence is ordered by strictly increasing degree of the powers, we have
r′m + s′ < rm + s. By induction, since xr′m+s′ is a lower power than xrm+s, it
follows that ai′,j′ = 0. Thus, whether or not xrm+s is affiliated only with aij , we

can now represent the total coefficient of xrm+s in Q
(m)
d as γaij for some nonzero

absolute constant γ. Since Q
(m)
d ≡ 0, it now follows that aij = 0, so every coefficient

with which xrm+s is affiliated equals 0. By induction, we conclude that for every
power xrm+s (0 ≤ r ≤ d, 0 ≤ s ≤ r), each coefficient with which xrm+s is affiliated
equals 0. Since, given aij , x

φ(i,j) is affiliated with aij (Corollary 3.4), it follows that

each aij = 0. Since p(x, y) �≡ 0 by hypothesis, this contradiction implies that Q
(m)
d

has at most md+ d real roots, which completes the proof. �

The following example shows that if m < d, then we may have p(x, y) �≡ 0, but

Q
(m)
d ≡ 0. Let d = 2, m = 1, and for α �= 0 and a11 �= 0, set a00 = −αa11,

a02 = −a11

α , a01 = a10 = a20 = 0. Then p(x, y) = −a11(α − xy + 1
αy

2) �≡ 0, but
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q
(1)
2 (x) ≡ p(x + 1

x , αx) = −a11(α − (αx2 + α) + 1
α (α

2x2)) = 0. Thus Q
(1)
2 (x) ≡

xq
(1)
2 (x) = 0.
We continue this section by identifying another determining sequence that we

will use in proving Theorem 1.9.

Proposition 3.5. Let m ∈ N, m ≥ d. If p ∈ R[x, y]d and p �≡ 0, then p has at
most md+ d zeros of the form ( 1

km , k), where k ∈ N.

Proof. For p(x, y) ≡
∑

i,j≥0,i+j≤d

aijx
iyj , let r

(m)
d (x) := p( 1

xm , x), and define R
(m)
d ∈

R[x]md+d by

(3.6) R
(m)
d (x) := xmdr

(m)
d (x) = xmd

∑
i,j≥0,i+j≤d

aij(
1

xm
)ixj .

We will prove that

(3.7) R ≡ Rd(x) =
d∑

i=0

i∑
j=0

ad−i,jx
im+j .

If p has more than md + m zeros of the form ( 1
km , k), then R has more than

md + m roots, so R ≡ 0 in R[x]. Since m ≥ d, the powers xim+j (0 ≤ i ≤ d,
0 ≤ j ≤ i) are distinct; moreover, each coefficient of p is of the form ad−i,j for
some i, j with 0 ≤ i ≤ d, 0 ≤ j ≤ i. It thus follows from (3.7) that each coefficient
of p equals 0, so p ≡ 0, a contradiction. It remains to establish (3.7). Write

p(x, y) = u(x, y) + v(x, y), where u(x, y) =
∑

i,j≥0,i+j≤d−1

aijx
iyj and v(x, y) =∑

i,j≥0,i+j=d

aijx
iyj . Then Rd(x) = xmx(d−1)mu( 1

xm , x) + xmdv( 1
xm , x), and thus

(3.8) Rd(x) = xmRd−1(x) + xmdv(
1

xm
, x).

Now (3.7) follows from (3.8) by a straightforward induction on d ≥ 1; we omit the
details. �

We conclude this section by describing a determining sequence, corresponding
to a prescribed point (x0, y0) ∈ R2, that we will use in Section 5. For r, s ∈ N, with
s > 0 and r > (d− 1)s, consider the sequence Λ := {(x0 +

1
kr , y0 +

1
kr+s )}∞k=1.

Proposition 3.6. Λ is a determining sequence for R[x, y]d. If p ∈ R[x, y]d and
p �≡ 0, then p has at most (r + s)d zeros of the form (x0 +

1
kr , y0 + 1

kr+s ), where
k ∈ N.

The hypothesis s > 0 is necessary: for d = 1, if a, b, c ∈ R are nonzero, with b = −c,
if a + bx0 + cy0 = 0, and if we take r = 1 and s = 0, then p(x, y) := a + bx + cy
vanishes on Λ. We will use notation similar to that in the proof of Proposition 3.2.

For p ∈ R[x, y]d, p(x, y) =
∑

i,j≥0,i+j≤d

aijx
iyj , let q(x) = p(x0 +

1
xr , y0 +

1
xr+s ), and

define Qd ∈ R[x](r+s)d by

(3.9) Qd(x) := x(r+s)dq(x) = x(r+s)d
∑

i,j≥0,i+j≤d

aij(x0 +
1

xr
)i(y0 +

1

xr+s
)j .
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It follows readily that

(3.10) Qd = xr+sQd−1 + x(r+s)d
d∑

i=0

ai,d−i(x0 +
1

xr
)i(y0 +

1

xr+s
)d−i.

Lemma 3.7. The powers that appear in Qd are xir+js with 0 ≤ i ≤ j ≤ d, and

(3.11) xir+js � aj−i+a,d−j+b (a, b ≥ 0, a+ b ≤ i).

Moreover, the complete expansion of (3.10) includes the term aj−i,d−jx
ir+js (cor-

responding to a = b = 0 in (3.11)).

We have already seen that s > 0 is necessary for Proposition 3.6. In order for
the exponents ir + js (0 ≤ i ≤ j ≤ d) to be distinct, it is necessary and sufficient
that r > (d− 1)s, which is the requirement in the definition of Λ.

Proof of Lemma 3.7. The proof is by induction on d ≥ 1. For d = 1, p(x, y) =
a00+a10x+a01y, so Q1(x) = a00x

r+s+a10x0x
r+s+a10x

s+a01y0x
r+s+a01. Thus

x0 is affiliated only with a01 (in agreement with i = j = 0, a = b = 0 in (3.11)), and
xs is affiliated only with a10 (in agreement with i = 0, j = 1, a = b = 0). For xr+s,
we have i = j = 1, and this power is affiliated with a00 (a = b = 0), a01 (a = 0,
b = 1), and a10 (a = 1, b = 0). By inspection, we also see that in Q1(x) we have
the required terms a01x

0, a10x
s, and a00x

r+s.
Now assume the result holds for d − 1. Thus, in Qd−1, for 0 ≤ i ≤ j ≤ d − 1,

the power xir+js is affiliated precisely with the coefficients aj−i+a,(d−1)−j+b, where
a, b ≥ 0, a + b ≤ i; moreover, the expansion of (3.10) (with d − 1 taking the place
of d) contains the term aj−i,(d−1)−jx

ir+js. It follows from (3.10) that in Qd the

power x(i+1)r+(j+1)s is also affiliated with these coefficients. Setting i′ := i + 1,
j′ := j + 1, in Qd, for 1 ≤ i′ ≤ j′ ≤ d, the power xi′r+j′s is affiliated with

aj′−i′+a,d−j′+b (a, b ≥ 0, a+ b ≤ i′ − 1);

moreover, the expansion of (3.10) for Qd contains the terms

aj−i,(d−1)−jx
(i+1)r+(j+1)s = aj′−i′,d−j′x

i′r+j′s.

To complete the proof of (3.11) (but with i and j in (3.11) replaced by i′ and j′),

it is necessary to show that i) for the case i′ = 0, 0 ≤ j′ ≤ d, xj′s � aj′,d−j′ and

Qd contains the term aj′,d−j′x
j′s; and ii) xi′r+j′s is affiliated with aj′−i′+a,d−j′+b

when 0 ≤ i′ ≤ j′ ≤ d and a+ b = i′.

Note that in (3.10), the expansion of x(r+s)d

d∑
i=0

ai,d−i(x0 +
1

xr
)i(y0 +

1

xr+s
)d−i

is of the form

(3.12) x(r+s)d
d∑

i=0

ai,d−i(
i∑

u=0

(
i

u

)
xu
0x

−r(i−u))(
d−i∑
v=0

(
d− i

v

)
yv0x

−(r+s)(d−i−v)).

Upon further expansion, this shows that

(3.13) x(u+v)r+(v+i)s � ai,d−i (0 ≤ i ≤ d, 0 ≤ u ≤ i, 0 ≤ v ≤ d− i).

To show i), given 0 ≤ j′ ≤ d, in (3.13) we let i = j′, u = v = 0 and see that xis

is affiliated with ai,d−i. Further, with u = v = 0, it is clear from (3.12) that Qd

contains the term ai,d−ix
is. For ii), we have 1 ≤ i′ ≤ j′ ≤ d, a + b = i′, and we

seek to show that xi′r+j′s � aj′−i′+a,d−j′+b. Set ĩ ≡ j′ − b so that 0 ≤ ĩ ≤ d and
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aj′−i′+a,d−j′+b = aĩ,d−ĩ. Let u := i′ − b (0 ≤ u ≤ d) and v := b (0 ≤ v ≤ d − ĩ).

It now follows from (3.13) that xi′r+j′s = x(u+v)r+(v+ĩ)s � aĩ,d−ĩ, which proves ii)
and completes the induction. �
Proof of Proposition 3.6. If p(x, y) has more than (r+ s)d zeros in Λ, then Qd has
more than (r + s)d distinct real roots, so Qd ≡ 0. Under this assumption, we will
prove that each coefficient of p(x, y) equals 0, in contradiction to p �≡ 0. From
Lemma 3.7, with i = 0, 0 ≤ j ≤ d, a = b = 0, we see that in Qd, x

js is affiliated
solely with aj,d−j , so aj,d−j = 0 (0 ≤ j ≤ d). Let us assume by induction that for
some i, 1 ≤ i ≤ d, we have auv = 0 for u, v ≥ 0, d ≥ u+v ≥ d− i+1. We will show
that each coefficient of degree d− i equals 0. Lemma 3.7 implies that for i ≤ j ≤ d,
the coefficient of xir+js in Qd is of the form

α00aj−i,d−j +α10aj−i+1,d−j + α01aj−i,d−j+1 + · · ·+αi0aj,d−j + · · ·+ α0iaj−i,d−j+i

for certain absolute constants αuv with α00 = 1. Except for aj−i,d−j , each coefficient
of p(x, y) that appears in the preceding expression has degree at least d− i+ 1, so
by induction each such coefficient equals 0. It follows that the coefficient of xir+js

in Qd reduces to α00aj−i,d−j , whence aj−i,d−j = 0. Thus, each coefficient of p of
degree d− i equals 0; the result now follows by induction. �

4. Limits of positive flat moment matrices

In this section we prove Theorem 1.9. Throughout this section Md ≡ Md(β) (as
in (2.3)) denotes a bivariate moment matrix of degree 2d. Now suppose β(2d−1) has
a κ-atomic representing measure μ, so that Md[μ] is of the form

Md[μ] :=

(
Md−1 Bd

BT
d Cd[μ]

)
.

Let Δ ≡ Δ[μ] := Cd − Cd[μ], s ≡ rank Δ[μ], ρ[μ] ≡ s+ κ, and

MΔ :=

(
0 0
0 Δ

)
.

We now re-state Theorem 1.9 for ease of reference.

Theorem 4.1. Let n = 2, d ≥ 1. Suppose that Md(β) � 0 and that β(2d−1) has a
κ-atomic representing measure μ. If Δ ≡ Δ[μ] � 0 and ρ[μ] ≤ ρd−1, then Md ∈ Fd.
Moreover, if ρ[μ] ≤ τ ≤ ρd−1, then there exists a sequence of positive flat moment

matrices, {M (k)
d }, such that Md(β) = lim

k→∞
M

(k)
d and for each k, rank M

(k)
d =

rank M
(k)
d−1 = τ .

Proof. Denote μ as μ ≡
κ∑

i=1

αiδwi
, where the points wi are distinct and each αi > 0.

If ρ[μ] < ρd−1 and ρ[μ] < τ ≤ ρd−1, choose additional points wρ[μ]+1, . . . , wτ so
that all of the τ − s points are distinct. (If τ = ρ[μ], omit all reference to these
additional points in the sequel.) Let R,S ∈ N, with S > 0 and R > (d− 1)S. With
wj ≡ (xj , yj) (1 ≤ j ≤ κ and κ+ s+1 ≤ j ≤ τ ), we apply Proposition 3.6 to define

the determining sequences w(j) ≡ {w(j)
k }∞k=1 (1 ≤ j ≤ κ and κ + s + 1 ≤ j ≤ τ ),

where w
(j)
k := (xj +

1
kR , yj +

1
kR+S ).

Next, note that Δ is a Hankel matrix, say Δ = (ui+j)0≤i,j≤d. We first consider
the case when Δ is a moment matrix, i.e., u0 > 0. If Δ � 0 (positive definite),
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then s = d + 1 and Δ has an s-atomic representing measure ν by Theorem 2.3
(cf. [CF1]). Otherwise, Δ is positive and singular, i.e., s ≤ d, so [FN2, Theorem
3.1] implies that there is a sequence, {Hd(y

[k])}, of positive Hankel matrices such

that Δ = lim
k→∞

Hd(y
[k]) and rank Hd(y

[k]) = rank Hd−1(y
[k]) = s. It follows from

Theorem 1.4 that Hd(y
[k]) admits an s-atomic representing measure νk. Thus,

for the remainder of the proof of this case, replacing Δ by Hd(y
[k]) and Cd by

Cd[μ] +Hd(y
[k]) if necessary, we may assume that rank Δ = s and that Δ admits

an s-atomic representing measure ν ≡
κ+s∑

i=κ+1

aiδ{αi} (where each ai > 0 and the

αi are distinct). Further, for the purposes of approximation, in the sequel we may
assume that αi �= 0 (κ+1 ≤ i ≤ κ+ s). For if a (unique) αi′ satisfies αi′ = 0, then
consider the measures ν(l) (l ≥ 1) obtained from ν by replacing αi′ = 0 by αi′ =

1
l

(with l large enough so that the αi remain distinct). Clearly, Δ = lim
l→∞

Hd[ν
(l)],

and we claim that rank Hd[ν
(l)] = s for all sufficiently large l. Since ν(l) is s-

atomic, then (2.5) implies that rank Hd[ν
(l)] ≤ s. The reverse inequality follows

from lower semicontinuity of rank (cf. Section 1), since Δ = lim
l→∞

Hd[ν
(l)] and

rank Δ = s. In the sequel, by replacing Δ by Hd[ν
(l)] (for sufficiently large l),

we may thus assume that rank Δ = s and that Δ has an s-atomic measure ν (as
above) in which the αi are distinct and nonzero. Now, for κ + 1 ≤ j ≤ κ + s,
choose an integer mj ≥ d− 1. Applying Proposition 3.2 with d replaced by d− 1,

we define the determining sequences w(j) ≡ {w(j)
k }∞k=1 (κ+ 1 ≤ j ≤ κ + s), where

w
(j)
k := (k + 1

kmj , αjk).
Let v ≡ ρd−1 and t ≡ τ . Let p1(x, y), . . . , pv(x, y) denote the basis for R[x, y]d−1

consisting of all of the monomials, and let P := {p1, . . . , pt}. We next apply Propo-
sition 3.1 to P and the determining sequences w(j) (1 ≤ j ≤ t). It follows that given

k > 0, there exist k1, . . . , kt ≥ k such that V ≡ V [P, w
(1)
k1

, . . . , w
(t)
kt

] (as defined in

Section 2) is invertible; in particular, the points wj ≡ w
(j)
kj

(1 ≤ j ≤ t) are distinct.

We define three atomic measures that will be used in constructing the flat ap-
proximants to Md. Let

μ(k) :=

κ∑
j=1

αjδwj
=

κ∑
j=1

αjδ(xj+
1

kR
j

,yj+
1

k
R+S
j

),

ν(k) :=
κ+s∑

j=κ+1

aj
k2dj

δwj
≡

κ+s∑
j=κ+1

aj
k2dj

δ{(kj+
1

k
mj
j

,αjkj)},

σ(k) :=

t∑
j=κ+s+1

1

k
δwj

≡
t∑

j=κ+s+1

1

k
δ(xj+

1

kR
j

,yj+
1

k
R+S
j

).

Now let ω(k) := μ(k) + ν(k) + σ(k) and set

M
(k)
d ≡ Md[ω

(k)] = Md[μ
(k)] +Md[ν

(k)] +Md[σ
(k)].

Straightforward calculations show that lim
k→∞

Md[μ
(k)] = Md[μ], lim

k→∞
Md[ν

(k)] =

MΔ, and lim
k→∞

Md[σ
(k)] = 0. Thus, lim

k→∞
M

(k)
d = Md[μ] +MΔ = Md(β).
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To complete the proof of this case, it remains to show that M
(k)
d is flat. Since

ω(k) is a representing measure for M
(k)
d , supp ω(k) = {w1, . . . , wt}, P ⊂ R[x, y]d−1,

and V [P;w1, . . . , wt] is invertible, the conclusion that M
(k)
d is flat follows directly

from Theorem 2.7. This completes the proof when u0 > 0.
We next consider the case when u0 = 0. In this case, it follows from Theorem

2.3 that uj = 0 (0 ≤ j ≤ 2d− 1) and γ := u2d ≥ 0. If γ = 0, then Δ = 0 and s = 0;
in this case, we may proceed as above except that we skip the step involving Δ and
ν(k) and, in particular, we do not define the sequences w(j) (κ + 1 ≤ j ≤ κ + s).
Assuming that γ > 0, we have s = 1, and for fixed m ≥ d−1, we use Proposition 3.5

to define the determining sequence w(κ+1) ≡ {w(κ+1)
k }∞k=1, where w

(κ+1)
k = ( 1

km , k).
We next apply Proposition 3.1 exactly as before to produce the points w1, . . . , wt

with an invertible Vandermonde V . We define μ(k) and σ(k) as before, but we now
define

ν(k) :=
γ

k2dj
δ
w

(j)
kj

,

where j = κ+ 1. The proof now continues exactly as in the case u0 > 0, beginning
with the definition of ω(k) := μ(k) + ν(k) + σ(k). �

We illustrate Theorem 4.1, and particularly Corollary 1.11, with a continuation
of Example 2.1.

Example 4.2. In Example 2.1 we have M3 � 0 and rank M3 = 6, with column
relations X2 = 1, X3 = X, X2Y = Y , and Y 3 = 2Y . It is straightforward
to check that by propagating these column relations forward, i.e., by defining
X4 := X2, X3Y := XY , X2Y 2 := Y 2, XY 3 := 2XY , Y 4 := 2Y 2, we construct
a positive flat moment matrix extension M4. Thus β has a 6 atomic represent-
ing measure μ which may be explicitly computed as described in Section 2 (cf.
[CF7]). The support of μ is the variety of M4, which consists of the common so-

lutions to x2 = 1 and y3 = 2y, namely (x1, y1) ≡ (−1, 0), (x2, y2) ≡ (−1,−
√
2),

(x3, y3) ≡ (−1,
√
2), (x4, y4) ≡ (1, 0), (x5, y5) ≡ (1,−

√
2), (x6, y6) ≡ (1,

√
2). Note

that B ≡ {1, X, Y,XY, Y 2, XY 2} is a basis for the column space of M3 and define
corresponding polynomials p1(x, y) := 1, p2(x, y) = x, p3(x, y) := y, p4(x, y) = xy,
p5(x, y) := y2, p6(x, y) = xy2. The Vandermonde V ≡ (pi(xj , yj))1≤i,j≤6 is in-
vertible. Let v be the vector of moments corresponding to the pi, i.e., v :=
(β00, β10, β01, β11, β02, β12)

T = (1, 0, 0, 0, 1, 0)T . We compute α ≡ (α1, α2, α3, α4,

α5, α6)
T := V −1v = ( 14 ,

1
8 ,

1
8 ,

1
4 ,

1
8 ,

1
8 )

T . Then μ :=

6∑
i=1

αiδ(xi,yi) is a representing

measure for M3.
We now use the method of Theorem 4.1 to approximate M3 with positive flat

moment matrices. Using Proposition 3.6 with d = 3, r = 3, s = 1 (r and s here have
the same meaning as in Proposition 3.6), we perturb the support of μ as follows.

For k > 0 , 1 ≤ j ≤ 6, let x
(j)
k = xj +

1
(jk)3 and y

(j)
k = yj +

1
(jk)4 . We now define

ω(k) ≡ μ(k) :=

6∑
j=1

αjδ(x(j)
k ,y

(j)
k )

.

Since Δ[μ] = 0, we set ν(k) = 0, and since ρ[μ] = 6 = ρ2, we set σ(k) = 0. With

M
(k)
3 := M3[μ

(k)], it is clear that lim
k→∞

M
(k)
3 = M3. We performed a numerical test
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using Mathematica, where all calculations are performed exactly in Q[
√
2]. In par-

ticular, calculations of the ranks of the approximants are exact because there are no
roundoff errors in the matrices. Let β[k] denote the moment sequence correspond-

ing to M
(k)
3 and let Δk = max

a,b≥0,a+b≤6
|βab − β

[k]
ab |. We found Δ1 ≈ 0.4, Δ2 ≈ 0.09,

Δ3 ≈ 0.05, Δ4 ≈ 0.02, Δ5 ≈ 0.01, Δ10 ≈ 0.002, Δ20 ≈ 0.0002, Δ50 ≈ 10−5.

Perhaps surprisingly, every M
(k)
3 that we tested was flat, even for k = 1, where

the error is large. Note also that in implementing Proposition 3.1, for each k > 0
we used kj = jk (1 ≤ j ≤ 6). Experiments with each kj = k did not yield flat

approximants M
(k)
3 .

We next illustrate Theorem 4.1, particularly Corollary 1.10, in a case where C�

is Hankel. In such a case, let μ denote the unique, (rank Md−1)-atomic measure
associated with M � ≡ Md[μ], let Δ ≡ Δ[μ] = Δ�, and let κ = r ≡ rank Md−1.
In any example of this type, we may apply the method of Theorem 4.1 directly or
we may apply a slightly different and simpler approach that we next describe. In
this approach, we do not define the determining sequences w(1), . . . , w(r), and we
replace μ(k) with μ. Further, if r + s < τ , we choose αj (r + s + 1 ≤ j ≤ t) so
that α1, . . . , αt are distinct and nonzero. For m ≥ d − 1, we use Proposition 3.2
to define determining sequences w(j) ≡ {(k + 1

km , αjk)}∞k=1 (r + s + 1 ≤ j ≤ t).
Given k ≥ 1, we then apply Proposition 3.1 to pr+1, . . . , pt and the sequences
w(r+1), . . . , w(t) to produce points wr+1, . . . , wt (dependent on k) leading to an
invertible (τ − r) × (τ − r) Vandermonde V . As before, we use wr+1, . . . , wr+s to
define ν(k) and wr+s+1, . . . , wt to define σ(k). Setting ω(k) := μ + ν(k) + σ(k), the
proof then proceeds along the lines of the proof of Theorem 4.1; we omit the details.

Example 4.3. To define

M4 ≡ M4(β
(8)) =

(
M3 B4

BT
4 C4

)
,

we begin with

M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 2 0 2 0 5
0 1 0 0 2 0 2 0 5 0
1 0 2 2 0 5 0 5 0 14
1 0 2 2 0 5 0 5 0 14
0 2 0 0 5 0 5 0 14 0
2 0 5 5 0 14 0 14 0 42
0 2 0 0 5 0 5 0 14 0
2 0 5 5 0 14 0 14 0 42
0 5 0 0 14 0 14 0 42 0
5 0 14 14 0 42 0 42 0 132

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

M3 is positive semidefinite, with rank M3 = 7, and column dependence relations
X2 = Y , X3 = XY , and X2Y = Y 2. From Theorem 2.2, a positive M4 requires
that in

(
M3 B4

)
we have X4 = X2Y , X3Y = XY 2, X2Y 2 = Y 3, so B4 must
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be of the form

B4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 5 0 14
0 5 0 14 0
5 0 14 0 42
5 0 14 0 42
0 14 0 42 0
14 0 42 0 132
0 14 0 42 0
14 0 42 0 132
0 42 0 132 x
42 0 132 x y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A calculation shows that there exists W satisfying B4 = M3W and

C� =

⎛⎜⎜⎜⎜⎝
14 0 42 0 132
0 14 0 132 x
42 0 132 x y
0 132 x x2 + 428 x(y − 416)
132 x y x(y − 416) 179464 + x2 − 844y + y2

⎞⎟⎟⎟⎟⎠ .

In the sequel, to satisfy the requirement that C� be Hankel, we set y = x2 + 428.
We next define C4 by

C4 =

⎛⎜⎜⎜⎜⎝
15 0 43 0 133
0 43 0 133 x
43 0 133 x x2 + 429
0 133 x x2 + 429 x(x2 + 12)
133 x x2 + 429 x(x2 + 12) x4 + 13x2 + 1417 + ε

⎞⎟⎟⎟⎟⎠ (ε ≥ 0),

so that

Δ ≡ C4 − C� =

⎛⎜⎜⎜⎜⎝
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1 + ε

⎞⎟⎟⎟⎟⎠ .

Since Δ � 0, then M4 � 0. However, since X4 �= X2Y in the column space, M4 is
not recursively generated and thus has no representing measure. Since M4 � 0, we
have rank M4 = rank M3+rank Δ. Thus, rank M4 = 9 if ε = 0 and rank M4 = 10
if ε > 0, so in either case M4 satisfies the hypotheses of Theorem 4.1, and we will
illustrate how to approximate M4 with positive flat moment matrices.

We begin with the case when ε = 0 and rank M4 = 9, and we let μ denote the
unique (7-atomic) representing measure for M � (which can be explicitly computed
from [CF7]; cf. Section 2). We first choose τ = 9, i.e., we will approximate M4 by

flat moment matrices M
(k)
4 with rank M

(k)
4 = 9. Since ε = 0, Δ has the unique

representing measure ν := 1
2δ{1}+

1
2δ{−1}. Following the proof of Theorem 4.1 and

the modified approach sketched above (in particular, applying Propositions 3.1 and
3.2), we choose m = 3, and for k ≥ 1, we set k1 = k2 = k, a1 = a2 = 1

2 , and α1 = 1,
α2 = −1. Now we define

ν(k) :=
1

2k8
δ(k+ 1

k3 ,k) +
1

2k8
δ(k+ 1

k3 ,−k).
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Let ω(k) := μ+ν(k) and setM
(k)
4 = M4[ω

(k)]. Clearly, lim
k→∞

M
(k)
4 = M �+MΔ = M4,

and a symbolic calculation shows that rank M
(k)
4 = rank M

(k)
3 = 9.

We next choose τ = 10. Note that for k ≥ 1, Propositions 3.1 and 3.2 guarantee
the existence of k1, k2, k3 ≥ k corresponding to an invertible Vandermonde, but
there is no explicit formula for the ki values. In this case, if we choose k1 = k2 =

k3 = k, then we find rank M
(k)
3 = 9, so M

(k)
4 (which has rank 10) is not flat.

Instead, we define ν(k) as above, except that we now try k1 = k and k2 = 2k.
Further, following the method discussed above, we try k3 = 3k, α3 = 2, and we

define σ(k) := 1
k10 δ{(3k+ 1

(3k)3
,6k)}. Setting ω(k) := μ + ν(k) + σ(k) and M

(k)
4 :=

M4[ω
(k)], we see that lim

k→∞
M

(k)
4 = M � +MΔ +0 = M4, and a symbolic calculation

shows that rank M
(k)
4 = rank M

(k)
3 = 10.

We next consider the case when ε > 0, i.e., rank Δ = 3. In this case, Δ
is not recursively generated and so has no representing measure. Nevertheless,
[FN2] implies that Δ may be approximated by rank 3 positive flat Hankel matrices.
Indeed, for k > 0, if we define

νk :=
1

2
δ{1} +

1

2
δ{−1} +

ε

k8
δ{k},

then lim
k→∞

H4[νk] = Δ, and rank H4[νk] = rank H3[νk] = 3. We may therefore

assume that Δ = Δ(k) := H4[νk], and we proceed as outlined above, with r = 7
and ρ = τ = ρ3 = 10. Let α1 = 1, α2 = −1, α3 = k, and a1 = a2 = 1

2 , a3 = ε
k8 .

For fixed j ≥ k, we choose k1 = j, k2 = 2j, k3 = 3j (based on Proposition 3.1 and
experimentation), and define

ν(k) =
1

2k81
δ{(k1+

1

k3
1
,k1)} +

1

2k82
δ{(k2+

1

k3
2
,−k2)} +

ε

k8
1

k83
δ{(k3+

1

k3
3
,k·k3)}.

We now set ω(k) := μ + ν(k) and M
(k)
4 := M4[ω

(k)]. Clearly, lim
k→∞

M
(k)
4 = M � +

lim
k→∞

MΔ(k) = M �+MΔ = M4, and a symbolic calculation shows that rank M
(k)
4 =

rank M
(k)
3 = 10.

To conclude the example we re-define C4 as

C4 =

⎛⎜⎜⎜⎜⎝
14 0 42 0 132
0 42 0 132 x
42 0 132 x x2 + 428
0 132 x x2 + 428 x(x2 + 12)
132 x x2 + 428 x(x2 + 12) x4 + 13x2 + 1416 + ε

⎞⎟⎟⎟⎟⎠ (ε > 0),

so that the Hankel matrix Δ is no longer a moment matrix, i.e., Δj = 0 (0 ≤ j ≤ 7)
and Δ8 = ε > 0. We have r = 7, ρ = 8, and we choose τ = 9. Using Propositions
3.1 and 3.5 (with k1 = k and k2 = 2k in Proposition 3.1), let ν(k) := ε

k8 δ{( 1
k3 ,k)}

and σ(k) := 1
k10 δ{( 1

(2k)3
,2k)}. Setting ω(k) := μ+ ν(k) + σ(k) and M

(k)
4 := M4[ω

(k)],

we see that lim
k→∞

M
(k)
4 = M � + MΔ + 0 = M4, and a symbolic calculation shows

that rank M
(k)
4 = rank M

(k)
3 = 9.
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We conclude this section with a proof of Proposition 1.12.

Proof of Proposition 1.12. The proof consists of repeating the proof of Theorem
4.1 up to the point where we define ω(k) := μ(k) + ν(k) + σ(k), set

M
(k)
d ≡ Md[ω

(k)] = Md[μ
(k)] +Md[ν

(k)] +Md[σ
(k)],

and show that lim
k→∞

M
(k)
d = Md[μ] +MΔ = Md(β). This shows that Md is in the

closure of moment matrices with measures, so Lβ is positive. Since we are not
interested in the ranks of the approximating moment matrices, it is also possible
to re-work the proof in a simpler way, without using determining sequences. �

5. Flat approximation in the degree 6 moment problem

Our main application is Theorem 1.1, which is included in the following result.

Theorem 5.1. M3 ≡ M3(β
(6)) belongs to F3 if and only if M3 � 0 and ρ ≡

rank M3 ≤ 6. In this case, given τ , ρ ≤ τ ≤ 6, M3 is in the closure of the rank-τ
positive flat moment matrices, and there exists a sequence of (computable) τ -atomic

positive measures {μk} such that βij = lim
k→∞

∫
xiyj dμk (i, j ≥ 0, i + j ≤ 6).

Further, either M �
3 is a moment matrix or M3 admits a flat extension M4, whence

β(5) has a representing measure.

Let Md =

(
Md−1 Bd

BT
d Cd

)
denote a positive semidefinite moment matrix. We

recall from Section 2 two basic properties that we will use repeatedly. It follows
from [CF2, Proposition 3.9] that if Md � 0, then

(5.1) p ∈ R[x]d−1, p(X) = 0 in Col Md−1 =⇒ p(X) = 0 in Col Md.

Further, Theorem 2.2 iii) implies that
(
Md−1 Bd

)
is recursively generated, i.e.,

(5.2)
p, q, pq∈R[x]d, p(X)=0 in Col

(
Md−1 Bd

)
=⇒(pq)(X)=0 in Col

(
Md−1 Bd

)
.

If Md � 0, then Ran Bd ⊆ Ran Md−1, so there exists W such that Bd = Md−1W .
Let C�

d := BT
d W = WTMd−1W ; note that C�

d = C�
dW

T and that C�
d is independent

ofW satisfying Bd = Md−1W . LetM �
d :=

(
Md−1 Bd

BT
d C�

d

)
. The following property

is useful in computing M �
d:

(5.3) p ∈ R[x]d, p(X) = 0 in Col
(
Md−1 Bd

)
=⇒ p(X) = 0 in Col M �

d.

As discussed in Section 2, rank M �
d = rank Md−1. Thus, if C

�
d is Hankel, then M �

d

is a flat moment matrix extension of Md−1 (using the data in Bd) and thus has a
representing measure (cf. Theorem 1.4). Note that in the case when d = 3, since
C�

3 ≡ (cij)1≤i,j≤4 is real symmetric, C�
3 is Hankel if and only if c31 = c22, c41 = c32,

and c42 = c33.
We begin the proof of Theorem 5.1 with a series of preliminary results based on

the value of r ≡ rank M2.

Proposition 5.2. If M3 � 0, rank M3 ≤ 6 and r ≡ rank M2 ≤ 3, then C�
3 is

Hankel.
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Proof. Suppose r=1. Then in ColM3, X=α1, Y =β1 (for certain scalars α, β), so
(5.2) and (5.3) imply that in ColM �

3 , X
iY j=αiβj1. Then for i+ j=k+ l=3 with

1 ≤ i, l ≤ 3, 0 ≤ j, k ≤ 2, 〈XiY j , XkY l〉 = αi+kβj+l = 〈Xi−1Y j+1, Xk+1Y l−1〉, so
C�

3 is Hankel.
Next, let r = 2. If rank M1 = 1, then by recursiveness in M2, it follows that

rank M2 = 1, a contradiction. Thus rank M1 = rank M2 = 2, so M2 is flat. Thus

M2 has a unique flat extension M̃3. Since M̃3 is recursively generated, it follows

readily from (5.2) that B3 = B̃3. Now (5.3) implies that M �
3 = M̃3, so C�

3 = C̃3,
whence C�

3 is Hankel.
Now suppose r = 3. As above, if rank M1 = 1, then by recursiveness of M2,

rank M2 = 1, a contradiction. Further, if rank M1 = 3, then M2 is flat, so we may
proceed exactly as in the r = 2 case (above) to conclude that C�

3 is Hankel. We
may thus assume that rank M1 = 2, and we first consider the case when {1, X}
is a column basis, with Y = α1 + βX for some α, β ∈ R. By recursiveness in M2,
XY = αX+βX2 and Y 2 = αY +βXY , so {1, X,X2} is a basis for Col M2. From
(5.2), in Col B3 we have

(5.4) X2Y = αX2 + βX3,

(5.5) XY 2 = αXY + βX2Y,

(5.6) Y 3 = αY 2 + βXY 2.

These relations and the value of β50 completely determine the other moments of
degree 5; thus from (5.4), β41 = αβ40+ββ50, β32 = αβ31+ββ41, β23 = αβ22+ββ32;
from (5.5), β14 = αβ13 + ββ23; and from (5.6), β05 = αβ04 + ββ14. With these
values, a calculation shows that there exists W such that B3 = M2W , and a
further calculation shows that C�

3 ≡ WTM2W is Hankel. In the remaining case, a
basis is {1, Y }, and the proof is entirely analogous. �

We next analyze cases of Theorem 5.1 with r = 4 or r = 5. Since M3 � 0, then
M2 is recursively generated, so in these cases we must have {1, X, Y } independent
in Col M2. Thus, in Col M2 there is a dependence relation of the form p(X,Y ) = 0,

with deg p(x, y) = 2. Given a degree-one map T , let M̃2 denote the moment matrix
corresponding to M2 under T (cf. Proposition 2.8), and let q(x̃, ỹ) = p ◦ T −1(x̃, ỹ)
∈ R[x̃, ỹ]d; clearly q(x̃, ỹ) = 0 if and only if p(x, y) = 0. It is well known that
corresponding to p(x, y) there is a degree-one map T such that the variety q(x̃, ỹ) =
0 is one of the following: x̃ỹ = 0, x̃ỹ = 1, ỹ = x̃2, x̃2 + ỹ2 = 1, x̃2 = 1, x̃2 = 0,
x̃2 = −1, x̃2 + ỹ2 = 0, x̃2 + ỹ2 = −1 (cf. [SH, p. 405]). We note that column
dependence relations corresponding to any of the last four cases cannot occur in

M̃2 if M̃2 � 0 and rank M̃2 ≥ 4. To see this, we may scale β̃ so that β̃00 = 1, and

we denote M̃2 as

(5.7) M̃2 ≡

⎛⎜⎜⎜⎜⎜⎜⎝
1 a b c d e
a c d f g h
b d e g h k
c f g p q w
d g h q w s
e h k w s t

⎞⎟⎟⎟⎟⎟⎟⎠ .
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If X̃2 = 0, then c = f = g = p = q = w = 0; since c = 0, positivity of M̃2

implies a = d = h = 0, and, similarly, w = 0 implies s = 0. Thus, rank M̃2 ≤ 3,

a contradiction. Similarly, if X̃2 + Ỹ 2 = 0, then c + e = 0 and p + w = 0 imply

c = e = p = w = 0, and it follows as above (via positivity) that rank M̃2 ≤ 2. If

X̃2 = −1, then c = −1, which violates positivity in M̃2; similarly, if X̃2+ Ỹ 2 = −1,
then c + e = −1, which is impossible. Motivated by the preceding discussion, in
the following sequence of results we assume that M2 admits a column dependence
relation corresponding to one of the following varieties: xy = 0, xy = 1, x2 = y,
x2 = 1, or x2 + y2 = 1. In each case we will show that under the hypotheses of
Theorem 5.1, M3 satisfies the following property:

(5.8) C�
3 is Hankel or M3 admits a flat extension M4.

In view of Theorem 1.4 and Corollaries 1.10 and 1.11, it is clear that (5.8) implies
the conclusions of Theorem 5.1, including the existence of a representing measure
for β(5).

In the sequel, to simplify certain symbolic calculations, we always scale β so that
β00 = 1 (without loss of generality). If B is a collection of columns of Md which
forms a basis of the column space of Md, we will denote by [Md]B the compression
of Md to the rows and columns indexed by the elements of B. Thus, if Md � 0,
then [Md]B � 0.

Proposition 5.3. Suppose M3 � 0, with ρ ≤ 6 and r = 4. If M2 has a column
relation XY = 0, then C�

3 is Hankel.

Proof. As noted above, {1, X, Y } is independent. Suppose first that Col M2 has
the basis B ≡ {1, X, Y,X2}. Writing Y 2 = c11+c2X+c3Y +c4X

2, in
(
M2 B3

)
we have X2Y = 0, 0 = XY 2 = c1X+ c2X

2+ c4X
3 and Y 3 = c1Y + c3Y

2. Further,
M2 is of the form

(5.9) M2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 a b c 0 d
a c 0 e 0 0
b 0 d 0 0 f
c e 0 g 0 0
0 0 0 0 0 0
d 0 f 0 0 h

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with

J ≡ [M2]B =

⎛⎜⎜⎝
1 a b c
a c 0 e
b 0 d 0
c e 0 g

⎞⎟⎟⎠ � 0,

( c1 c2 c3 c4 )T = J−1( d 0 f 0 )T , h = ( d 0 f 0 )( c1 c2 c3 c4 )T .

From the above column relations, B3 must be of the form

(5.10) B3 =

⎛⎜⎜⎜⎜⎜⎜⎝
e 0 0 f
g 0 0 0
0 0 0 h
t 0 0 0
0 0 0 0
0 0 0 u

⎞⎟⎟⎟⎟⎟⎟⎠



2692 LAWRENCE A. FIALKOW

for certain t and u. Since X3 in B3 belongs to Ran M2, it follows that X3 =
d11 + d2X + d3Y + d4X

2, with ( d1 d2 d3 d4 ) = J−1( e, g, 0, t )T . In particular,
γ := 〈X3, Y 2〉 = 0, and a symbolic calculation shows that

γ = ( d, 0, f, 0 )( d1 d2 d3 d4 )T =
(bf − d2)(e3 − 2ceg + ag2 + (c2 − ac)t)

det(J)
.

Further, since Y 3 = c1Y + c3Y
2, it follows that u = c1f + c3h. Now let

W =

⎛⎜⎜⎜⎜⎜⎜⎝
d1 0 0 0
d2 0 0 0
d3 0 0 c1
d4 0 0 0
0 0 0 0
0 0 0 c2

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then M2W = B3, and in C�
3 ≡ WTM2 ≡ (cij)1≤i,j≤4, we have c31 = 0 = c22 and

c42 = 0 = c32. Thus C�
3 is Hankel if and only if c41 = 0 (= c32). A symbolic

calculation shows that

c41 =
−γω

det(J)
(ω ≡ −bde2 + (c3 − 2ace+ e2)f + (bcd+ a2f − cf)g),

and since γ = 0, then c41 = 0. Thus C�
3 is Hankel, which completes the proof in

this case.
Suppose next that XY = 0 and that B ≡ {1, X, Y, Y 2} is a basis for Col M2. In

view of the previous case, we may assume that X2 ∈ 〈1, X, Y 〉. Thus, X2 = c11 +
c2X+ c3Y , with ( c1 c2 c3 ) = M−1

1 ( c e 0)T . In particular, g = ( c e 0 )(c1 c2 c3 )T

and 0 = 〈X2, Y 2〉 = ( d 0 f )( c1 c2 c3 )T (which entails c2 − ae)(d2 − bf) = 0).
Denoting M2 and B3 as in (5.9) and (5.10), t in X3 is uniquely determined via
recursiveness in ( M2 B3 ) by

(5.11) X3 = c1X + c2X
2,

i.e., t = c1e+ c2g.
Let K = [M2]B (� 0). Since M3 � 0, Y 3 in B3 is in Ran M2, so Y 3 =

k11+k2X+k3Y +k4Y
2, where ( k1 k2 k3 k4 ) = K−1( f, 0, h, u )T . This relation

and (5.10) imply that 0 = 〈Y 3, X2〉 = k1c + k2e ≡ λ. A symbolic calculation now
shows that

λ =
(ae− c2)(f3 − 2dfh+ bh2 + (d2 − bf)u)

det(K)
.

Setting

W =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 k1
c1 0 0 k2
0 0 0 k3
c2 0 0 0
0 0 0 0
0 0 0 k4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

we have M2W = B3, and a further symbolic calculation shows that

C�
3 ≡ BT

3 W =

⎛⎜⎜⎝
∗ 0 0 c14
0 0 0 0
0 0 0 0
0 0 0 ∗

⎞⎟⎟⎠ ,
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with

c14 ≡ 〈Y 3, X3〉 = k1e+ k2g =
−λ(acd+ b2e− de)

det(K)
.

Since λ = 0, it follows that C�
3 is Hankel, whence the result follows. �

Proposition 5.4. Suppose M3 � 0, with ρ ≤ 6 and r = 4. If M2 has a column
relation XY = 1, then C�

3 is Hankel.

Proof. Since XY = 1, we may denote M2 as

(5.12) M2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 a b c 1 d
a c 1 e a b
b 1 d a b f
c e a g c 1
1 a b c 1 d
d b f 1 d h

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since r = 4, {1, X, Y } is independent, and we first consider the case when B ≡
{1, X, Y,X2} is a column basis. Let

J ≡ [M2]B =

⎛⎜⎜⎝
1 a b c
a c 1 e
b 1 d a
c e a g

⎞⎟⎟⎠ � 0,

and set ( c1 c2 c3 c4 )T := J−1( d b f 1 )T . Then

(5.13) h = ( d b f 1 )( c1 c2 c3 c4 )T

and Y 2 = c11 + c2X + c3Y + c4X
2. By recursiveness, in Col ( M2 B3 ) we have

X2Y = X, XY 2 = Y , Y 3 = c1Y + c2XY + c3Y
2 + c4X

2Y . Now B3 is of the form

B3 =

⎛⎜⎜⎜⎜⎜⎜⎝
e a b f
g c 1 d
c 1 d h
t e a b
e a b f
a b f u

⎞⎟⎟⎟⎟⎟⎟⎠
for some t ≡ β50 and u ≡ β05. Setting ( k1 k2 k3 k4 )T := J−1( e g c t )T , the
condition X3 ∈ Ran M2, i.e., X

3 = k11 + k2X + k3Y + k4X
2, is equivalent to the

condition that λ := k1d+ k2b+ k3f + k41− a satisfies λ = 0. Setting

W ≡

⎛⎜⎜⎜⎜⎜⎜⎝
k1 0 0 0
k2 1 0 c4
k3 0 1 c1
k4 0 0 0
0 0 0 c2
0 0 0 c3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

we have M2W = B3, so that C�
3 = BT

3 W . Denoting C�
3 ≡ (cij)1≤i,j≤4, a symbolic

calculation shows that c31 = c22, c42 = c33, and c32 = 1. Thus , C�
3 is Hankel if and
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only if c41 ≡ k1f + k2d+ k3h+ k4b satisfies c41 = 1 (= c32). Now, using (5.13), a
symbolic calculation shows that

c41 − 1 =
λγ

det(J)
,

where γ is a polynomial in the moments of M2. Since, from above, λ = 0, we have
c41 = 1, whence C�

3 is Hankel.
In the remaining case with XY = 1, we may assume that M2 has the column

basis B ≡ {1, X, Y, Y 2}. In view of the previous case, we may also assume that
X2 = c11 + c2X + c3Y , where ( c1 c2 c3 )T = M−1

1 ( c e a )T , so, in particular, we
have

(5.14) c1c+ c2e+ c3a = g, c1d+ c2b+ c3f = 1.

In ( M2 B3 ), by recursiveness, we have X3 = c1X + c2X
2 + c31, X2Y = X,

XY 2 = Y . Further, since Y 3 ∈ Ran M2, in Col ( M2 B3 ) we have

(5.15) Y 3 = k11 + k2X + k3Y + k4Y
2,

where ( k1 k2 k3 k4 )T = L−1( f d h u )T for

L ≡ [M2]B =

⎛⎜⎜⎝
1 a b d
a c 1 b
b 1 d f
d b f h

⎞⎟⎟⎠ (� 0).

In particular, (5.15) entails

(5.16) b ≡ 〈Y 3, X2〉 = k1c+ k2e+ k3a+ k4.

Define W by

W =

⎛⎜⎜⎜⎜⎜⎜⎝
c3 0 0 k1
c1 1 0 k2
0 0 1 k3
c2 0 0 0
0 0 0 0
0 0 0 k4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

so that M2W = B3. A symbolic calculation shows that C�
3 := WTM2W ≡

(cij)1≤i,j≤4 is Hankel if and only if 1 = c41 ≡ 〈X3, Y 3〉 = c1d + c2b + c3f and
c41 = c14; the former condition follows from (5.14) and the latter from the fact that
C�

3 is real symmetric, so the proof is complete. �

Proposition 5.5. Suppose M3 � 0, with ρ ≤ 6 and r = 4. If M2 has a column
relation Y = X2, then C�

3 is Hankel.

Proof. Since r = 4 and M2 is recursively generated, then {1, X, Y } is independent,
and we first consider the case when {1, X, Y, Y 2} is a column basis for M2. Thus,
there is a column relation of the form XY = c11 + c2X + c3Y + c4Y

2. The corre-
sponding curve xy = c1 + c2x + c3y + c4y

2 has no x2 term, so its discriminant is
positive, and it thus represents a (possibly degenerate) hyperbola. Thus, by apply-
ing an appropriate degree-one map and Proposition 2.8 iii), iv), vii), M2 may be

transformed into a rank-4 positive M̃2 with a column relation of the form X̃Ỹ = 0

or X̃Ỹ = 1̃. It thus follows from Propositions 5.3 and 5.4 that the C block of (M̃d)
�

is Hankel, whence Proposition 2.8 x) implies that C�
3 is Hankel.
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We may now assume that {1, X, Y,XY } is a column basis, with a column relation
of the form Y 2 = k11 + k2X + k3Y + k4XY . Denoting M2 as Md with d = 2,
we see that Md is recursively determinate in the sense of [CF10]; i.e., there is a
degree-reducing relation Xn = p(X,Y ) (n = 2, deg p = 1 < n) and a degree-
preserving relation Y m = q(X,Y ) (m = 2, deg q = 2 = m). Since Md is positive,
recursively generated, and recursively determinate with n +m − 2 = d, it follows

from [CF10, Corollary 2.4] that M2 admits a unique flat extension M̃3. In this

extension, B̃3 is completely determined from M2 by recursiveness, i.e., X̃3 = X̃Y ,

X̃2Y = Ỹ 2, X̃Y 2 = (xq)(X̃, Ỹ ), Ỹ 3 = (yq)(X̃, Ỹ ). Since M2 = M̃2 and ( M2 B3 )
is recursively generated, the same column relations as just above determine B3 so

that B3 = B̃3. It now follows immediately from (5.3) that C�
3 = C̃3, and since C̃3

is Hankel, the result follows. �

Proposition 5.6. Suppose M3 � 0, with ρ ≤ 6 and r = 4. If M2 has a column
relation X2 = 1, then C�

3 is Hankel.

Proof. The proof is essentially the same as that of the preceding result. If {1, X,
Y, Y 2} is a column basis for M2, then there is a hyperbola relation XY = c11 +
c2X+ c3Y + c4Y

2, so it follows as in the proof of Proposition 5.5 that C�
3 is Hankel.

In the remaining case, {1, X, Y,XY } is a column basis, and it follows exactly as in
the proof of Proposition 5.5 that M �

3 is a moment matrix, whence C�
3 is Hankel. �

Proposition 5.7. Suppose M3 � 0, with ρ ≤ 6 and r = 4. If M2 has a column
relation X2 + Y 2 = 1, then C�

3 is Hankel.

Proof. As in the previous proof, {1, X, Y } is independent. We consider first the
case when {1, X, Y,X2} is a column basis for M2. It follows that XY is a linear
combination of the basis columns, but since this relation has no Y 2 term, the
relation represents a hyperbola, so the result follows from the hyperbola cases above
(exactly as in the proof of Proposition 5.5, via Proposition 2.8 x)). In the remaining
case, {1, X, Y } is independent and {1, X, Y,X2} is dependent, so there is a degree-
reducing column relation of the form X2 = c11 + c2X + c3Y . Since we also have
the degree-preserving relation Y 2 = 1−X2, M2 is recursively determinate, and the
proof proceeds exactly as in the conclusion of the proof of Proposition 5.5. �

We next present cases where r = 5. Since there is nothing to prove in Theo-
rem 5.1 if M3 is flat, and (5.8) clearly holds as well in this case, we may assume
rank M3 = 6 in these cases.

Proposition 5.8. Suppose M3 � 0, with ρ = 6 and r = 5. If M2 has a column
relation XY = 0, then M3 satisfies (5.8).

Proof. We have M2 as in (5.9), and ( M2 B3 ) is recursively generated, so B3 is
as in (5.10). Since X2Y = XY 2 = 0 in B3, (5.3) implies that the same column
relations hold in C�

3, so C�
3 has the form

(5.17) C�
3 =

⎛⎜⎜⎝
κ 0 0 τ
0 0 0 0
0 0 0 0
τ 0 0 δ

⎞⎟⎟⎠ .
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We may suppose τ �= 0, for otherwise C�
3 is Hankel and the result follows. A

symbolic calculation shows that τ = τ1τ2 where

τ1 = (e3 − 2ceg + ag2 + (c2 − ae)t), τ2 = (f3 − 2dfh+ bh2 + (d2 − bf)u).

Let J = [M2]B, where B denotes the column basis {1, X, Y,X2, Y 2}. Now J � 0,
so κ = [X3]J−1[X3]T , where [X3] = ( e g 0 t 0 ); note that since τ �= 0 and C�

3 � 0,
then κ > 0. Consider Δ := C3 − C�

3 and write Δ ≡ (Δij)1≤i,j≤4.

We claim that Δ11 �= 0. Let us denote C�
3 as (cij)1≤i,j≤4, so that c31 = c22 =

c13 = 0. Since C3 (= C�
3 + Δ) is Hankel, it follows that Δ31 = Δ22 = Δ13. If

Δ11 = 0, then, since Δ � 0, it follows that Δ21 = Δ31 = Δ41 = 0, whence Δ22 = 0.
Positivity of Δ now implies Δ32 = Δ42 = 0. Since C3 ≡ C�

3+Δ is Hankel, it follows
that Δ32 = τ , which contradicts τ �= 0.

Now M3 � 0 and rank M3 = 6, so

(5.18) Δ � 0, rank Δ = 1.

Since C�
3 +Δ = C3 and C3 is Hankel, (5.17) and (5.18) imply that for p ≡ Δ11 > 0

and certain scalars q and ε, Δ has the form

Δ =

⎛⎜⎜⎝
p qp q2p ε
qp q2p q3p qε
q2p q3p qε q2ε
ε qε q2ε k

⎞⎟⎟⎠ , ε �= q3p.

Since rank Δ = 1, XY 2 = q2X3 in Col Δ, whence q4p = qε. Now, if q �= 0, then
ε = q3p, a contradiction. Thus q = 0, so the Hankel matrix C3 is of the form

C3 =

⎛⎜⎜⎝
v 0 0 0
0 0 0 0
0 0 0 0
0 0 0 w

⎞⎟⎟⎠ .

We now haveX2Y = XY 2 = 0 in M3, and we next construct a flat extensionM4.
Since ( M3 B4 ) must be recursively generated in any flat extension M4, in B4 we
must define X3Y = X2Y 2 = XY 3 = 0. From this structure, it follows that in B4,
X4 must be of the form X4 = ( g t 0 v 0 0 x 0 0 0 )T (for some x), and Y 4 must have
the form Y 4 = ( h 0 u 0 0 w 0 0 0 y )T (for some y). Since p > 0, M3 has a column

basis {1, X, Y,X2, Y 2, X3}. Let J̃ denote the compression of M3 to these rows and

columns, and let X̃4 ≡ ( g t 0 v 0 x)T . For each x, let wx = J̃−1X̃4. For M4 to be
a positive extension of M3 it is necessary that X4 ∈ Ran M3, and this is equivalent

to the condition that ψ ≡ 〈Ỹ 3, wx〉 = 〈X4, Y 3〉 = 0, where Ỹ 3 ≡ ( f 0 h 0 u 0)T .
A symbolic calculation shows that

ψ =
τ2(Q− τ1x)

det(J̃)

(where Q is some polynomial in the moments of M3). Since τ1 �= 0, it follows

that there exists a unique x (= Q
τ1
) such that X4 ∈ Ran M3. Further, setting

Ỹ 4 = ( h 0 u 0 w 0 )T and wy = J̃−1Ỹ 4, if we define y := 〈Ỹ 3, wy〉, then the
resulting Y 4 satisfies Y 4 ∈ Ran M3, as required for positivity of M4. With these
values for the moments of B4, we now compute C�

4 ≡ (cij)1≤i,j≤5 via (5.3). Since

X3Y = X2Y 2 = XY 2 = 0 in C�
4, it is easy to see that C�

4 is Hankel if and only if
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c51 = 0. A symbolic calculation of c51 using (5.3) shows that c51 = ψ, and by our
choice of x, ψ = 0, so the existence of a flat extension M4 is established. �

Proposition 5.9. Suppose M3 � 0, with ρ = 6 and r = 5. If M2 has a column
relation XY = 1, then M3 satisfies (5.8).

Proof. The proof is very similar to that of the previous result, so we omit many of
the details. Symbolic calculation shows that either C�

3 is Hankel, in which case the
result follows, or C�

3 is not Hankel because τ ≡ (C�
3)41−1 �= 0. In the latter case we

proceed to construct a flat extension M4 as follows. In ( M2 B3 ) we have X
2Y = X

and XY 2 = Y . As in the previous proof, by examining the structures of C�
3 and Δ

in detail, we see that X2Y = XY 2 = 0 in Δ, whence X2Y = X and XY 2 = Y hold
in M3. In M4 we must then have X3Y = X2, X2Y 2 = 1, XY 3 = Y 2 in ( M3 B4 )
(due to recursiveness), so in B4 it remains to define x ≡ β70 and y ≡ β07. A
symbolic calculation shows that there exists x such that X4 ∈ Ran M3 if and only
if an equation of the form Q − τx = 0 has a solution (for a particular polynomial
expression Q in the moments of M3). Since τ �= 0, there is a unique solution x.
Next, β07 can be defined so that Y 4 ∈ Ran M3 exactly as in the proof of the
preceding result. Now (5.3) implies that in Col C�

4 we have X3Y = X2, X2Y 2 = 1,
and XY 3 = Y 2, so C�

4 is Hankel if and only if (C�
4)51 = 1. A symbolic calculation

now shows that (C�
4)51 − 1 = (Q− τx)R (for some well-defined rational expression

R in the moment data). Since Q − τx = 0, a flat extension M4 is established, so
the result follows. �

Proposition 5.10. Suppose M3 � 0, with ρ = 6 and r = 5. If M2 has a column
relation Y = X2, then M3 satisfies (5.8).

Proof. By recursiveness, we have X3 = XY and X2Y = Y 2 in ( M2 B3 ), and
so, by (5.3), these relations also hold in C�

3. Thus, X3 and X2Y in C�
3 are Hankel

with respect to each other, and it follows that C�
3 ≡ (cij)1≤i,j≤4 is Hankel if and

only if c42 = c33, in which case we are done. Assuming this is not the case, we
will establish a flat extension M4. Consider Δ := C3 − C�

3, rank Δ = 1, and note
that the leftmost two columns of Δ must be Hankel with respect to each other. If
p ≡ Δ11 �= 0, then from the form of C3 and C�

3, it follows that Δ is of the form

Δ =

⎛⎜⎜⎝
p 0 0 0
0 0 0 0
0 0 δ w
0 0 w s

⎞⎟⎟⎠ , δ > 0,

or

Δ =

⎛⎜⎜⎝
p qp q2p q3p
qp q2p q3p q4p
q2p q3p δ q5p
q3p q4p q5p q6p

⎞⎟⎟⎠ , δ �= q4p, q �= 0.

In the former case, rank Δ ≥ 2, a contradiction. In the latter case, since p �= 0 and
rank Δ = 1, then Col 3 = q2Col 1, which implies δ = q4p, a contradiction. Thus,
p = 0, so the positivity of Δ and the Hankel property of its leftmost two columns
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imply that

Δ =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 δ w
0 0 w s

⎞⎟⎟⎠ , δ > 0, δs = w2.

It follows that in C3 ≡ C�
3 + Δ, we have X3 = XY and X2Y = Y 2. Thus M3 is

positive and recursively generated. Since δ > 0, it follows that a column basis for
M3 is given by {1, X, Y,XY, Y 2, XY 2}. We thus have a column relation of the form
Y 3 = k11+ k2X + k3Y + k4XY + k5Y

2 + k6XY 2. Denoting M3 as Md with d = 3,
we see that Md is recursively determinate, i.e., Xn = p(X,Y ) (n = 2, deg p = 1)
and Y m = q(X,Y ) (m = 3, deg q = 3). Since Md is positive, recursively generated,
and recursively determinate with n +m − 2 = d, it follows from [CF10, Corollary
2.4] that M3 admits a unique flat extension M4, whence the result follows. �
Proposition 5.11. Suppose M3 � 0, with ρ = 6 and r = 5. If M2 has a column
relation X2 = 1, then M3 satisfies (5.8).

Proof. The proof is essentially the same as that of the preceding result; replacing
X2 = Y by X2 = 1 has no effect on the argument there that either C�

3 is Hankel or
M3 is recursively determinate with n+m− 2 = d (in the sense of [CF10, Corollary
2.4]), whence M3 admits a flat extension M4. �
Proposition 5.12. Suppose M3 � 0, with ρ = 6 and r = 5. If M2 has a column
relation X2 + Y 2 = 1, then M3 admits a flat extension M4.

Proof. Since {1, X, Y } is independent in Col M3, it follows from [CF5, Proposition
1.12] that M3(β) corresponds to a complex moment matrix M3(γ) with columns
1, Z, Z̄ independent and Z̄Z = 1 in the column space. [CF5, Theorem 1.1] now
implies that M3(γ) has a flat extension M4. Under the inverse correspondence of

[CF5, Proposition 1.12], M4 corresponds to a real moment matrix M̃4 that is a flat
extension of M3. �

We are now prepared to prove Theorem 5.1.

Proof of Theorem 5.1. The “only if” direction is clear from the discussion in Section
1. For the converse, let r = rank M2. If r = 6, then M3 is flat, so there is nothing
to prove. For 1 ≤ r ≤ 3, the result follows from Proposition 5.2 and Corollary
1.10. Suppose 4 ≤ r ≤ 5. As noted earlier, in these cases recursiveness in M2

implies that {1, X, Y } is independent in Col M2. Since M2 is singular, there is a
column dependence relation of the form AX2+BXY +CY 2+DX+EY +F1 = 0,
with A2 + B2 + C2 �= 0. Let p(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F and
consider the planar variety p(x, y) = 0. As discussed earlier in this section (following
Proposition 5.2), there is a degree-one map T (T (x, y) ≡ (x̃, ỹ)), such that the
variety corresponding to q(x̃, ỹ) := (p ◦ T −1)(x̃, ỹ) is one of the following: x̃ỹ = 0,
x̃ỹ = 1, ỹ = x̃2, x̃2 = 1, x̃2 + ỹ2 = 1. Applying T to M3 via Proposition 2.8, it

follows from Proposition 2.8 iii), iv), vii) that the resulting moment matrix M̃3 is

positive, with rank M̃3 = rank M3, {1̃, X̃, Ỹ } independent in Col M̃2, and with

one of the following column dependence relations: X̃Y = 0̃, X̃Y = 1̃, Ỹ = X̃2,

X̃2 = 1̃, X̃2 + Ỹ 2 = 1̃. It now follows from Propositions 5.3-5.12 that M̃3 satisfies
(5.8). Proposition 2.8 vi) and x) thus imply that M3 satisfies (5.8), so the proof is
completed by applications of Corollaries 1.10 and 1.11. �
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The bivariate singular quartic problem was solved in [CF5] (with one exception
that we note below). We conclude with a new formulation based on Theorem 5.1.

Proposition 5.13. For n = 2, let β ≡ β(4) and suppose M2(β) is singular. The
following are equivalent:

i) β admits a representing measure;
ii) M2 is positive and recursively generated, and rank M2 ≤ card V(β);
iii) M2 admits a positive extension M3 ≡ M3(β̃) satisfying rank M3 ≤ 6.

The equivalence of i) and ii) is proved in [CF5], except that [CF5] neglects to
treat the case when M2 has a column relation equivalent to X2 = 1 under a degree-
one map; we treat the X2 = 1 case now.

Lemma 5.14. Suppose X2 = 1 in Col M2. Then β ≡ β(4) has a representing
measure if and only if M2 is positive, recursively generated, and satisfies rank M2 ≤
card V(β).

Proof. The necessity of the conditions is clear. For the converse, if M1 is singular,
the existence of a flat extension follows from [CF3] and from the equivalence of the
real and complex truncated moment problems [CF7]. We may thus assume that
M1 � 0, and we consider next the case when {1, X, Y,XY } is a basis for Col M2.
Then Y 2 = q(X,Y ) for some q ∈ R[x, y]2, and since also X2 = 1, it follows that
M2 is recursively determinate with n+m− 2 = d (in the sense of [CF10, Corollary
2.4]), so [CF10] implies the existence of a flat extension M3. If {1, X, Y, Y 2} is a
column basis, then there is a hyperbola relation XY = a1 + bX + cY + dY 2, so it
follows from [CF8] that either M2 has a flat extension M3 or M2 admits a positive,
recursively generated extension of rank 5, which in turn has a flat extension M4.

In the remaining case, we have a column basis B ≡ {1, X, Y,XY, Y 2}, and we

will construct a flat extension M3(β̃). Since X2 = 1, we may denote M2 by

(5.19) M2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 a b 1 c d
a 1 c a b f
b c d b f g
1 a b 1 c d
c b f c d p
d f g d p q

⎞⎟⎟⎟⎟⎟⎟⎠ .

In Col ( M2 B3 ) we must have X3 = X and X2Y = Y , so B3 has the form

(5.20) B3 =

⎛⎜⎜⎜⎜⎜⎜⎝
a b f g
1 c d p
c d p q
a b f g
b f g w
f g w s

⎞⎟⎟⎟⎟⎟⎟⎠
for certain w, s. Let J = [M2]B. Since J � 0, it is clear that B3 = M2W for some
W . Let C�

3 ≡ WTM2W . Since X3 = X and X2Y = Y in Col ( BT
3 C�

3 ), then
C�

3 ≡ (cij)1≤i,j≤4 is Hankel if and only if c42 = c33. A symbolic calculation shows
that τ ≡ c42 − c33 is of the form τ = τ1τ2

Det J , where τ1 and τ2 are polynomials in
the moments of M2. Further, τ1 can be expressed as τ1 = σ + ρw, where σ and
ρ are also polynomials in the moments of M2. Let K denote the compression of
M2 to rows and columns indexed by 1, X, Y,XY . Then K � 0, and a symbolic
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calculation shows that Det K = ρρ′ for some moment polynomial ρ′. Thus, ρ �= 0,

and it follows that there is a unique w ≡ w̃ such that τ1 = 0. Setting β̃14 = w̃, then

τ = 0 and C�
3 is Hankel, so the existence of a flat extensionM3(β̃) is established. �

Proof of Proposition 5.13. We first show that ii) implies iii). If ii) holds and M1 is
singular, then [CF3] and the equivalence of the real and complex truncated moment
problems [CF7] together imply that M2 has a flat extension, so iii) follows in this
case. We now assume that M1 � 0, so that M2 has a degree 2 column dependence
relation. Note from Proposition 2.8 that all of the properties in i)-iii) (i.e., posi-
tivity, rank, variety, existence of measureness, recursiveness, existence of positive
extensions with prescribed rank) are invariant under degree-one maps. From Propo-
sition 2.8 and the discussion following Proposition 5.2, we may thus assume that
M2 has a column dependence corresponding to one of the five varieties considered
in the proof of Theorem 5.1. In each of these cases, except for x2 = 1, the results
of [CF5] show that when ii) holds, then either M2 admits a flat extension M3 or
M2 has a positive extension M3 with rank M3 ≤ 1+ rank M2 ≤ 6, and M3 admits
a flat extension M4. The proof of Lemma 5.14 establishes the same conclusions in
the case when x2 = 1. Thus, ii) implies iii). If iii) holds, then Theorem 5.1 implies
that L

˜β is positive, so i) follows from Theorem 1.2. Since i) always implies ii) (cf.

Section 2), the proof is complete. �
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Added in proof

A very general and concrete sufficient condition for positivity of Lβ was recently
discovered by Grigoriy Blekherman [Bl]. Blekherman’s results imply that if n ≥ 1,
d ≥ 3, and rank Md ≤ 3d− 3, then Lβ is positive. They also imply that Theorem
1.1 cannot be extended to moment problems of higher degree.
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[CF3] Raúl E. Curto and Lawrence A. Fialkow, Flat extensions of positive moment matrices:
relations in analytic or conjugate terms, Nonselfadjoint operator algebras, operator theory,
and related topics, Oper. Theory Adv. Appl., vol. 104, Birkhäuser, Basel, 1998, pp. 59–82.
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[S1] Konrad Schmüdgen, An example of a positive polynomial which is not a sum of squares

of polynomials. A positive, but not strongly positive functional, Math. Nachr. 88 (1979),
385–390, DOI 10.1002/mana.19790880130. MR543417 (81b:12024)
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