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NON-SELF-ADJOINT GRAPHS

AMRU HUSSEIN, DAVID KREJČIŘÍK, AND PETR SIEGL

Abstract. On finite metric graphs we consider Laplace operators, subject to
various classes of non-self-adjoint boundary conditions imposed at graph ver-
tices. We investigate spectral properties, existence of a Riesz basis of projectors
and similarity transforms to self-adjoint Laplacians. Among other things, we
describe a simple way to relate the similarity transforms between Laplacians on
certain graphs with elementary similarity transforms between matrices defin-
ing the boundary conditions.

1. Introduction

The subject of differential operators on metric graphs has attracted a lot of atten-
tion in the last decades. This topic has become popular under the name “quantum
graphs”, referring to its background and applications in quantum mechanics. Since
a quantum system is described by a unitary time evolution, most of the literature
has been concerned with self-adjoint Schrödinger operators. For more details and
many references, we refer to the surveys [9, Chap. 17] and [6] together with the
articles [33–35].

In other areas of physics, where a system is described by non-conservative equa-
tions of motion, it is necessary to deal with non-self-adjoint operators. As an ex-
ample, let us mention stochastic processes on metric graphs [26–28]. Furthermore,
there have been recent attempts to develop “quasi-Hermitian quantum mechan-
ics”, where physical observables are represented by non-self-adjoint operators T
satisfying the quasi-self-adjointness relation

(1.1) T ∗ = ΘTΘ−1

with a bounded, boundedly invertible and positive operator Θ = G∗G. The idea
goes back to the paper [43] by nuclear physicists, where Θ is called metric, since it
defines a new inner product in the underlying Hilbert space with respect to which T
becomes self-adjoint. In other words, T is similar to a self-adjoint operator via the
similarity transformation G, namely GTG−1 is self-adjoint. A consistent quantum
theory can be built for quasi-self-adjoint operators.

It is not easy to decide whether a given non-self-adjoint operator is quantum-
mechanically admissible, i.e. quasi-self-adjoint. A necessary condition for the quasi-
self-adjointness of T is that its spectrum σ(T ) is real. It was noticed that many
operators commuting with an anti-unitary operator called symmetry have the real
spectrum. This observation is behind the boom of the so-called “PT-symmetric
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quantum mechanics” [5,40], which we use here as a source of interesting quasi-self-
adjoint models. In this context, non-self-adjoint operators on metric graphs were
previously considered in [4, 45].

The present work is motivated by the growing interest in spectral theory on
network structures and by the fresh relevance of non-self-adjoint operators in quan-
tum mechanics. We regard metric graphs as an intermediate step between Sturm-
Liouville operators on intervals and partial differential operators. Indeed, we shall
be able to rigorously investigate some non-trivial properties related to the spectrum
and quasi-self-adjointness that one can hardly expect to obtain in such a generality
in higher dimensions.

We restrict ourselves to a simple differential operator on the graph – namely the
Laplacian – but consider arbitrary non-self-adjoint interface or boundary conditions
on the graph vertices. The standard material about Laplacians on metric graphs
is collected in the forthcoming Section 2. In a long Section 3 divided into many
subsections we introduce various classes of boundary conditions for the Laplacian.
The emphasis is not put on a systematic classification of non-self-adjoint boundary
conditions, but rather on a diversity motivated by different applications and on
intriguing examples with wild spectra.

Spectral theory for the Laplacians is developed in Section 4. There we also
present an explicit integral-type formula for the resolvent, with a proof postponed
to Appendix A. In Section 5, we apply an abstract result of Agranovich [1] to show
that the eigensystem of a non-self-adjoint Laplacian on a compact metric graph
contains a Riesz basis of subspaces.

Finally, in Section 6 we discover a simple way to relate the similarity transforms
between Laplacians on graphs with elementary similarity transforms between ma-
trices defining the boundary conditions. This main result enables us not only to
effectively analyse the problem of quasi-self-adjointness for such graphs but it turns
out to be technically useful for self-adjoint Laplacians, too.

2. The Laplacian on finite metric graphs

Metric graphs are locally linear one-dimensional spaces with singularities at the
vertices, and one can think roughly of a metric graph as a union of finitely many
finite intervals [0, ai], with ai ∈ (0,∞), or semi-infinite intervals [0,∞) glued to-
gether at their endpoints. This intuitive picture is formalised here by recalling from
[24, 25, 27] some notation and basic definitions.

2.1. Graph as a topological space. A graph is a 4-tuple G = (V, I,E, ∂), where V
denotes the set of vertices, I the set of internal edges and E the set of external edges,
where the set E∪ I is summed up in the notion edges. The boundary map ∂ assigns
to each internal edge i ∈ I an ordered pair of vertices ∂(i) = (∂−(i), ∂+(i)) ∈ V×V,
where ∂−(i) is called its initial vertex and ∂+(i) its terminal vertex. Each external
edge e ∈ E is mapped by ∂ onto a single, its initial, vertex. The degree deg(v) of a
vertex v ∈ V is the number of edges with initial vertex v plus the number of edges
with terminal vertex v. A graph is called finite if |V| + |I| + |E| < ∞ and a finite
graph is called compact if E = ∅.

2.2. Graph as a metric space. A graph G is endowed with the following metric
structure. Each internal edge i ∈ I is associated with an interval [0, ai], with ai > 0,
such that its initial vertex corresponds to 0 and its terminal vertex to ai. Each



NON-SELF-ADJOINT GRAPHS 2923

external edge e ∈ E is associated to the half-line [0,∞) such that ∂(e) corresponds
to 0. The numbers ai are called lengths of the internal edges i ∈ I and they are
summed up into the vector a = {ai}i∈I ∈ (0,∞)|I|. The 2-tuple consisting of a
finite graph endowed with a metric structure is called a metric graph (G, a). The
metric on (G, a) is defined via minimal path lengths.

2.3. Graph as a measure space. Equipping each edge of the metric graph with
the one-dimensional Lebesgue measure, we obtain a measure space. Any function
ψ : (G, a) → C can be written as

ψ(xj) = ψj(x), where ψj : Ij → C,

with

Ij =

{
[0, aj ], if j ∈ I,

[0,∞), if j ∈ E.

Occasionally we write also ψj(x) = ψj(xj). One defines∫
G

ψ :=
∑
i∈I

∫ ai

0

ψ(xi) dxi +
∑
e∈E

∫ ∞

0

ψ(xe) dxe,

where dxi and dxe refer to integration with respect to the Lebesgue measure on the
intervals [0, ai] and [0,∞), respectively.

2.4. Graph as a Hilbert space. Given a finite metric graph (G, a) one considers
the Hilbert space

H ≡ H(E, I, a) = HE ⊕HI, HE =
⊕
e∈E

He, HI =
⊕
i∈I

Hi,

where Hj = L2(Ij ;C). Hence, the scalar product in H is given by

〈ψ, ϕ〉 =
∫
G

ψ ϕ.

2.5. Graph as an energy space. Denote by Wj , j ∈ E∪I, the set of all functions
ψj ∈ Hj which are absolutely continuous with square integrable derivative ψ′

j , and
set

(2.1) W =
⊕

j∈E∪I

Wj .

With the scalar product defined by

〈ψ, ϕ〉W := 〈ψ′, ϕ′〉+ 〈ψ, ϕ〉
the space W becomes a Hilbert space.

By Dj with j ∈ E∪I denote the set of all ψj ∈ Hj such that ψj and its derivative
ψ′
j are absolutely continuous and its second derivative ψ′′

j is square integrable. Let

D0
j denote the set of all elements ψj ∈ Dj with

ψj(0) = 0, ψ′(0) = 0, for j ∈ E,

ψj(0) = 0, ψ′(0) = 0, ψj(aj) = 0, ψ′(aj) = 0, for j ∈ I.

The sets

D =
⊕

j∈E∪I

Dj and D0 =
⊕

j∈E∪I

D0
j
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together with the scalar product defined by

〈ψ, ϕ〉D := 〈ψ′′, ϕ′′〉+ 〈ψ, ϕ〉W
become Hilbert spaces, such that D0 ⊂ D is closed.

2.6. Graph as a Laplacian. Let Δ be the differential operator

(Δψ)j (x) =
d2

dx2
ψj(x), j ∈ E ∪ I, x ∈ Ij ,

with domain D, and Δ0 its restriction on the domain D0. It is known that the
operator Δ0 is a closed symmetric operator with deficiency indices (d, d), where

(2.2) d := |E|+ 2|I|,
and its Hilbert space adjoint is (Δ0)∗ = Δ; see, e.g., [9, Sec. 4.8].

Any closed extension −Δ̃ of −Δ0 satisfying

(2.3) Δ0 ⊂ Δ̃ ⊂ Δ

will be called the Laplacian on (G, a). Self-adjoint Laplacians on graphs are well
studied. The aim of this paper is to discuss extensions of −Δ0 which are not
necessarily self-adjoint.

The extensions Δ̃ of Δ0 with (2.3) can be discussed in terms of boundary or
matching conditions imposed at the endpoints of the edges. For this purpose one
defines for ψ ∈ D the vectors of boundary values

ψ =

⎡⎣{ψe(0)}e∈E

{ψi(0)}i∈I

{ψi(ai)}i∈I

⎤⎦ and ψ′ =

⎡⎣ {ψ′
e(0)}e∈E

{ψ′
i(0)}i∈I

{−ψ′
i(ai)}i∈I

⎤⎦ .

One introduces the auxiliary Hilbert space

K ≡ K(E, I) = KE ⊕K−
I ⊕K+

I

with KE = C|E| and K
(±)
I = C|I|. One sets

[ψ] := ψ ⊕ ψ′ ∈ K⊕K.

Any extension Δ̃ with (2.3) can be associated with a subspace M ⊂ K2 := K⊕K

such that Δ̃ = Δ(M) is the restriction of Δ to the domain

Dom(Δ(M)) = {ψ ∈ D | [ψ] ∈ M}.

3. Classification of boundary conditions

There are various ways to parametrise the subspaces M ⊂ K2. In the following
some parametrisations are discussed starting with self-adjoint boundary conditions
and then transferring the methods to non-self-adjoint ones.

Given linear maps A,B in K, one defines

(A, B) : K2 → K, (A, B)(χ1 ⊕ χ2) = Aχ1 +Bχ2 for χ1, χ2 ∈ K,

and sets
M(A,B) := Ker(A, B).

If dimM ≥ d, there are appropriate operators A,B acting in K such that M =
M(A,B), and then an equivalent description of Dom(Δ(M)) is that it contains all
functions ψ ∈ D satisfying the linear boundary conditions

(3.1) Aψ +Bψ′ = 0.
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In this case one also writes equivalently Δ(M) = Δ(A,B). Note that the parametri-
sation by the matrices A and B is not unique. Indeed, operators Δ(A,B) and
Δ(A′, B′) agree if and only if the corresponding spaces M(A,B) and M(A′, B′)
agree. Therefore we introduce

Definition 3.1. Boundary conditions defined by A,B and A′, B′ are called equiv-
alent if M(A,B) = M(A′, B′).

Notice that the boundary conditions are equivalent if and only if there exists an
invertible operator C in K such that simultaneously

A′ = CA and B′ = CB.

3.1. Self-adjoint boundary conditions. Recall that any self-adjoint realisation
of Δ can be parametrised as Δ(A,B), where the matrices A and B satisfy AB∗ =
BA∗ and dimM(A,B) = d, where d is defined in (2.2); see, e.g., [23, Lem. 2.2 and
below it].

It is a classical result that there is a one-to-one correspondence between unitary
operators U in K and self-adjoint realisations of Δ. More precisely, any self-adjoint
extension of Δ0 can be defined by the boundary conditions

(3.2) −1

2
(U − �)ψ +

1

2ik
(U + �)ψ′ = 0,

for k > 0; see, e.g., [17, Sec. 3].
The link between the parametrisation by unitary operators U and the one by

matrices A and B in (3.1) is given by a Cayley transform. For A,B defining a
self-adjoint Laplacian, consider, for k ∈ C \ {0} such that A+ ikB is invertible, the
transform

(3.3) S(k,A,B) := − (A+ ikB)−1 (A− ikB) .

For k > 0 the operator S(k,A,B) is unitary [23, Thm. 2.1] and one can choose
U = S(k,A,B) in (3.2); cf. [24, p. 209]. For self-adjoint Laplacians on graphs with
I = ∅ the matrix S(A,B, k) admits also the interpretation as the scattering matrix
for a certain scattering pair [25].

3.2. Regular boundary conditions. The transform S(k,A,B) can be defined
for non-self-adjoint boundary conditions as well whenever A + ikB is invertible,
and then S(k,A,B) is independent of the concrete choice of A,B representing
M = M(A,B). So, whenever A + ikB is invertible for k ∈ C \ {0} one re-obtains
from S(k,A,B) equivalent boundary conditions of the form (3.1) by

AS := −1

2
(S(k,A,B)− �) and BS :=

1

2ik
(S(k,A,B) + �) .(3.4)

This follows from the equalities

(A+ ikB)AS = A and (A+ ikB)BS = B

used in [27, proof of Lem. 3.4]. A necessary condition for the definition ofS(k,A,B)
is that dimM(A,B) = d, but this is not sufficient. Actually, since det(A+ ikB) is
a polynomial in k of degree at the most d, A+ ikB is not invertible either for every
k ∈ C or only for finitely many values k ∈ C.

Definition 3.2. Boundary conditions (3.1) defined by A,B with dimM(A,B) =
d such that A + ikB is invertible for some k ∈ C are called regular boundary
conditions.
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3.3. Other notions of regular boundary conditions. The reader is warned
that there exist further parametrisations and classifications of boundary conditions
for the second derivative operator acting on intervals. For instance, the classification
given in [13, Sec. XIX.4] is based on the structure of certain determinants related
to the secular equation, and this gives rise to an alternative regularity assumption
[13, Hypothesis XIX.4.1] on boundary conditions. The aim in [13] is to define
spectral operators and the regularity hypothesis goes back to [7, 8].

That the regularity hypothesis formulated in [13, Hypothesis XIX.4.1] does not
agree with the notion of regular boundary conditions introduced in our Defini-
tion 3.2 follows already from [13, Ex. XIX.6(d)], which is discussed here as Ex-
ample 3.6 below. The boundary conditions given in [13, Ex. XIX.6(d)] are called
intermediate boundary conditions and are an example of a class of boundary con-
ditions not satisfying the regularity hypothesis [13, Hypothesis XIX.4.1]; see also
[8, p.383], whereas they are regular in the sense introduced here.

In general it seems difficult to make a precise statement on the secular equation
for – in our sense – regular boundary conditions. More generally, when considering
non-compact graphs, i.e. E 
= ∅, there is no straightforward generalisation of the
regularity hypothesis of [13, Sec. XIX.4] since it is dealing with operators with
discrete spectrum.

3.4. Irregular boundary conditions. Boundary conditions defined by A,B with
dimM(A,B) = d which are not regular will be called irregular. We do not include
the situations dimM(A,B) 
= d in our notion of irregular boundary conditions,
since they are not spectrally interesting. Indeed, it follows from Proposition 4.2
below that σ(−Δ(A,B)) = C whenever dimM(A,B) 
= d.

The class of regular boundary conditions covers many relevant and interesting
cases, whereas the irregular boundary conditions seem to be rather pathological.
Indeed, the latter are typically associated with operators that have empty resolvent
set or empty spectrum, even if dimM(A,B) = d holds.

Example 3.1 (Indefinite Laplacian, no resolvent set). Consider the boundary con-
ditions (3.1) given by

A =

(
1 −1
0 0

)
and B =

(
0 0
1 −1

)
for the graph G = (V, ∂,E) consisting of two external edges E = {e1, e2} and one ver-
tex ∂(e1) = ∂(e2). Identifying this graph with the real line, the operator −Δ(A,B)
corresponds to the indefinite operator

− sign(x)
d

dx
sign(x)

d

dx
on L2(R)

with its natural domain {ψ ∈ W 1,2(R) | (ψ′ sign)′ ∈ L2(R)}. This operator is
studied within the framework of Krein space theory in [36, Sec. 5].

This example demonstrates in particular that dimM(A,B) = d is a necessary but
not a sufficient condition for A,B to define regular boundary conditions. Indeed,
dimM(A,B) = 2 = d in this example, while A+ ikB is invertible for no complex k.
(As a consequence, the statement in [27, observation below Ass. 2.1] is not correct
in general, but it holds for the boundary conditions defining m-accretive operators
studied there.)
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Note that the equation det(A+ikB) = 0 with Im k > 0 is the secular equation for
the spectral problem associated with−Δ(A,B); cf. Subsection 4.1 below. Therefore
the spectrum of the operator described in the present example is entire C. This
fact will be explained also in Subsection 6.4.2 by means of a similarity transform.

�
Example 3.2 (Totally degenerate boundary conditions, no spectrum). This exam-
ple is taken from [13, Sec. XIX.6(b)]. Consider the interval [0, 1] and the irregular
boundary conditions defined by

A =

[
1 0
0 0

]
and B =

[
0 0
1 0

]
.

Then dimM(A,B) = 2 = d and the boundary conditions correspond to

ψ(0) = 0 and ψ′(0) = 0,

whereas on the other endpoint no boundary conditions are imposed. By integra-
tion one can show that this operator is boundedly invertible, and for the compact
embedding D ↪→ H the inverse is compact, and hence the operator −Δ(A,B) has
only point spectrum. However, a direct computation shows that for these bound-
ary conditions there are no eigenvalues, and therefore the spectrum of −Δ(A,B) is
empty. �

By inspection of the previous examples, it is straightforward to identify the
mechanism which is behind the irregularity of the boundary conditions.

Proposition 3.3. Let A,B be maps in K such that dimM(A,B) = d. Then A,B
define irregular boundary conditions if and only if

KerA ∩KerB 
= {0}.
Proof. If KerA ∩ KerB 
= {0}, then for a non-zero ψ ∈ KerA ∩ KerB one has
(A+ ikB)ψ = 0 for any k ∈ C. The other way round, if A+ ikB is not invertible for

any k ∈ C, then KerA 
= {0}, since otherwise one could consider �+ikA−1B which
is invertible for k sufficiently small. So, for non-zero ψ ∈ KerA one has ikBψ = 0
for any k ∈ C and hence ψ ∈ KerB, which proves that KerA ∩KerB 
= {0}. �

A possible generalisation of Example 3.1 to more complex graphs is given by the
following example.

Example 3.3 (A generalisation of Example 3.1). Consider a star graph with I = ∅
and subdivision of the external edges E = E+∪̇E− together with the boundary
conditions defined by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 · · · 1 · · · −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where in the last row of B for each edge in E+ stands a +1 and for each edge in E−
a −1. To paraphrase, these boundary conditions guarantee that functions are con-
tinuous at the central vertex and that the sum of the outward directed derivatives
evaluated at the positive incident edges equals the sum of the outward directed



2928 AMRU HUSSEIN, DAVID KREJČIŘÍK, AND PETR SIEGL

derivatives evaluated at the negative incident edges. These boundary conditions
define an operator which is self-adjoint in a certain Krein space [19, Sec. 4]. The
kernel of A is spanned by the vector w with (w)i = 1, for all i ∈ {1, . . . , |E|}. Hence,
by Proposition 3.3, for |E+| = |E−| the boundary conditions defined by A,B are
irregular and for |E+| 
= |E−| they are regular. For example, in the case |E+| = 2
and |E−| = 1 one obtains the k-independent “scattering matrix”

S(k,A,B) =

⎡⎣1 2 −2
2 1 −2
2 2 −3

⎤⎦ .

�

Remark 3.4. Let the boundary conditions be local, i.e.

M =
⊕
v∈V

Mv,

where Mv are subspaces of K2
v, the space of boundary values associated with the

endpoints of the edges incident in the vertex v; cf. [27, Def. 2.6]. Then it is a direct
consequence of Proposition 3.3 that the boundary conditions are regular if and only
if the boundary conditions at each vertex are regular, and irregular if at least at
one vertex the boundary conditions are irregular.

3.5. m-sectorial boundary conditions. In [34, Corol. 5] a further way to param-
etrise self-adjoint Laplacians on graphs is proposed. It is given in terms of an
orthogonal projection P acting in K and a self-adjoint operator L acting in the
subspace KerP . For any self-adjoint Laplacian one has −Δ(A,B) = −Δ(A′, B′)
with A′ = L+ P and B′ = P⊥, where using RanB∗ = (KerB)⊥ one sets

L = (B |RanB∗)−1 AP⊥,

P denotes the orthogonal projector onto KerB ⊂ K and P⊥ = � − P is the
complementary projector. This parametrisation is unique in contrast to that using
matrices A,B, and additionally it is convenient when considering forms associated
with operators; cf. [34, Thms. 6 and 9].

Inspired by the self-adjoint situation, for a given projector P and a not necessarily
self-adjoint operator L acting in KerP , i.e. L = P⊥LP⊥, let us consider −Δ(M)
with M = M(L+ P, P⊥). According to [18, Thm. 3.1], this operator is m-sectorial
and associated with the closed sectorial form δP,L defined by

(3.5)
δP,L[ψ] =

∫
G

|ψ′|2 − 〈LP⊥ψ, P⊥ψ〉K,

ψ ∈ Dom(δP,L) = {ϕ ∈ W | Pϕ = 0},

where W denotes the Sobolev space (2.1).
The question when M(A,B) with dimM(A,B) = d admits an equivalent para-

metrisation in terms of a projector P and an operator L acting in KerP such that
M(A,B) = M(L + P, P⊥) is discussed in [18]. It turns out that this is possible
if and only if −Δ(A,B) is m-sectorial. Furthermore, if M(A,B) does not admit
such a parametrisation, then the numerical range of −Δ(A,B) is entire C; see
[18, Lem. 4.3]. Therefore, here we call boundary conditions defined by P and L as
described above m-sectorial. Descriptive examples of such boundary conditions are
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δ-interactions with generally complex coupling parameters. Note that in order to
apply any kind of form methods one needs at least m-sectorial boundary conditions.

Example 3.4 (Complex δ-interaction). Consider a graph with I = ∅ and |E| ≥ 2.
Assume that the boundary conditions are defined up to equivalence by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
−γ 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where γ ∈ C. For real γ one can represent the boundary conditions equivalently by
the m-sectorial boundary conditions defined by P = �−P⊥, where P⊥ is the rank
one projector onto (KerB)⊥, and L = − γ

|E|P
⊥; cf. [34, Sec. 3.2.1]. A direct calcu-

lation shows that this carries over to the case of complex coupling parameters γ.
The operator −Δ(A,B) is associated with the quadratic form defined by

δP,L[ψ] =

∫
G

|ψ′|2 + γ

|E| |ψ|
2, ψ ∈ Dom(δP,L) = {ψ ∈ W | Pψ = 0}.

�

It is proved in [18] that the boundary conditions of the form (3.1) defined by
matrices A,B can be substituted by an equivalent parametrisation using m-sectorial
boundary conditions if and only if

dimM(A,B) = d and QAP⊥ = 0,(3.6)

where Q is the orthogonal projector onto (RanB)⊥ and P⊥ is the orthogonal pro-
jector onto (KerB)⊥. This is due to the fact that the evaluation at the vertices
of the derivatives cancel out in the corresponding quadratic form if and only if
QAP⊥ = 0.

Note that L+P + ikP⊥ has a block diagonal form with respect to the decompo-
sition of K into RanP and RanP⊥. Thus L+P + ikP⊥ is invertible for |k| > ‖L‖.
Consequently, the parametrisation by the transform S(k, L+P, P⊥) is admissible,
whereas the converse is not true: from A + ikB invertible, in general, it does not
follow that there are equivalent m-sectorial boundary conditions. This is illustrated
by the following examples.

Example 3.5 (From Kirchhoff to wild aperiodic boundary conditions). Let G =
(V, ∂,E) be a graph consisting of two external edges E = {e1, e2} and one vertex
∂(e1) = ∂(e2). Consider the boundary conditions defined by

Aτ =

(
1 −eiτ

0 0

)
and Bτ =

(
0 0
1 e−iτ

)
,

for τ ∈ [0, π/2]. Identifying the graph with the real line and the vertex with zero,
the boundary conditions correspond to

ψ(0+) = eiτψ(0−) and ψ′(0+) = e−iτψ′(0−).

This example is included in the study of PT-symmetric point interactions in [2] and
was further investigated in [3] and [44, Chap. 2.5].
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The matrix Aτ + ikBτ is invertible for τ ∈ [0, π/2) and k 
= 0, hence Aτ , Bτ

define regular boundary conditions for τ ∈ [0, π/2). For the Cayley transform

S(Aτ , Bτ , k) = −(Aτ + ikBτ )
−1(Aτ − ikBτ ), τ ∈ [0, π/2),

an explicit computation yields the k-independent matrix

S(Aτ , Bτ , k) =
1

cos(τ )

[
i sin(τ ) 1

1 −i sin(τ )

]
.

The operator S(Aτ , Bτ , k) is unitary (with eigenvalues +1 and −1) only for τ = 0,
where it defines the so-called standard or Kirchhoff boundary conditions.

On the other hand, for τ = π/2 one has det(Aπ/2 + ikBπ/2) = 0 for any k ∈ C,
and therefore Aπ/2, Bπ/2 define irregular boundary conditions. Furthermore one
has σp(−Δ(Aπ/2, Bπ/2)) = C \ [0,∞), because of (4.1) below. This reproduces the
results obtained in [3, Thm. 2] and [44, Chap. 2.5].

Explicit computation yields

RanBτ = span

{(
0
1

)}
, (RanBτ )

⊥ = span

{(
1
0

)}
,

KerBτ = span

{(
1

−eiτ

)}
, (KerBτ )

⊥ = span

{(
1
eiτ

)}
,

and therefore, with Qτ being the orthogonal projector onto (RanBτ )
⊥ and P⊥

τ

being the orthogonal projector onto (KerBτ )
⊥, one has

QτAτP
⊥
τ =

1

2

(
1− e2iτ e−iτ − eiτ

0 0

)

= 0, for τ ∈ (0, π/2].

The criterion in (3.6) implies that for τ ∈ (0, π/2] there is no equivalent represen-
tation of Aτ , Bτ by m-sectorial boundary conditions. This can be illustrated also
by considering the quadratic form defined by the operator −Δ(Aτ , Bτ ) which by
integrating by parts and inserting the boundary conditions simplifies to become

〈−Δ(Aτ , Bτ )ψ, ψ〉 =
∫
G

|ψ′|2 + (1− e2iτ )ψ2(0)ψ′
2(0)

for every ψ ∈ Dom(−Δ(Aτ , Bτ )). In particular, the derivative term cannot be
avoided, and the numerical range is entire C for all τ ∈ (0, π/2].

Despite the wild numerical range properties, in Section 6.4 we shall show that
for τ ∈ [0, π/2) the operator −Δ(Aτ , Bτ ) is similar to the self-adjoint Laplacian
−Δ(A0, B0), and hence its spectrum is [0,∞). Such a similarity relation is of course
impossible for τ = π/2 because the spectrum is entire C.

The analogous operator on the graph with two internal edges of the same length
defined by boundary conditions Aτ , Bτ at the central vertex and Dirichlet bound-
ary conditions at the endpoints exhibit similar pathological behaviours; see [44,
Chap. 2.5]. �

Example 3.6 (Intermediate boundary conditions). Consider the interval [0, 1] and
the regular boundary conditions defined by

A =

[
1 0
0 1

]
and B =

[
0 0
−1 0

]
,
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i.e. ψ(0) = 0 and ψ(1)− ψ′(0) = 0. Then dimM(A,B) = 2 and

QAP⊥ =

[
1 0
0 0

]

= 0.

Hence the boundary conditions are not m-sectorial. One has

〈−Δ(A,B)ψ, ψ〉 =
∫ 1

0

|ψ′|2 − ψ′(0)ψ′(1)

for every ψ ∈ Dom(−Δ(A,B)). This example can be found in [8, p.383] as well as
in [13, Ex. XIX.6(d)], where the boundary conditions are called intermediate.

Using the methods developed in the forthcoming Section 4 one can show that the
spectrum of −Δ(A,B) consists only of eigenvalues of geometric multiplicity one,
where each eigenvalue is a solution of sin(k) = k, k ∈ C. �

3.6. Adjoint boundary conditions. Consider for M ⊂ K2 the possibly non-self-
adjoint operator Δ(M). Since Δ0 ⊂ Δ(M) ⊂ Δ it follows for the adjoint operator
that Δ(M)∗ = Δ(M∗) for an appropriate subspace M∗ ⊂ K2, and hence also the
adjoint operator can be described by means of boundary conditions.

Proposition 3.5. Let M ⊂ K2. Then Δ(M)∗ = Δ(M∗) with

M∗ = (JM)⊥ , where J =

[
0 �K

−�K 0

]
defines a map in K2.

Proof. By definition, the adjoint of Δ(M) in the Hilbert space H is the operator
defined on

Dom(Δ(M)∗) = {ψ ∈ H | ∃ϕ ∈ H, ∀η ∈ Dom(Δ(M)), 〈ψ,Δ(M)η〉 = 〈ϕ, η〉}

by Δ(M)∗ψ = ϕ. It follows from (2.3) that Δ0 ⊂ Δ(M)∗ ⊂ Δ, and hence Δ(M)∗

is also a realisation of Δ defined by means of boundary conditions. Consequently,
Δ(M)∗ψ = Δψ and D0 ⊂ Dom(Δ(M)∗) ⊂ D. It remains to determine the domain
of Δ(M)∗ by specifying the boundary conditions. An integration by parts yields

(3.7) 〈ψ,Δ(M)η〉 − 〈Δψ, η〉 = 〈J [ψ], [η]〉K2

for every η ∈ Dom(Δ(M)) and ψ ∈ D. Define

[·]M : Dom(Δ(M)) → K2, [η]M = [η],

and observe that the range of [·]M is M, and that the boundary term (3.7) vanishes
identically for all ψ ∈ Dom(Δ(M∗)). Hence Δ(M∗) ⊂ Δ(M)∗. Noticing that the
boundary term in (3.7) vanishes for all η ∈ Dom(Δ(M)) if and only if J [ψ] ⊥ M and
using that J is unitary, we have [ψ] ⊥ JM for ψ ∈ Dom(Δ(M)∗). Consequently,
Δ(M)∗ ⊂ Δ(M∗), which proves the claim. �

Corollary 3.6. Let M ∈ K2. Then dimM+ dimM∗ = 2d.

Proof. As J is unitary one has dimM = dim JM, from which the claim follows. �
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3.7. Adjoints for regular boundary conditions. Searching for boundary con-
ditions that define Laplacians with non-empty resolvent set, one needs by the forth-
coming Proposition 4.2 the condition dimM = d, and therefore this case is of par-
ticular interest. For regular boundary conditions the parametrisation in terms of
S(k,A,B) is convenient for this purpose.

Proposition 3.7. Let A,B be such that dimM(A,B) = d and A+ikB is invertible
for the number k 
= 0. Then an equivalent parametrisation of Δ(A,B) is given by

AS := −1

2
(S(k,A,B)− �) and BS :=

1

2ik
(S(k,A,B) + �)

using S(k,A,B) = −(A + ikB)−1(A − ikB), and the adjoint operator Δ(M)∗ =
Δ(M∗) is defined by M∗ = M(A′, B′), where

A′ := −1

2
(S(k,A,B)∗ − �) and B′ :=

1

−2ik
(S(k,A,B)∗ + �) .

Proof. The fact that AS, BS define equivalent boundary conditions has been dis-
cussed already in Subsection 3.2.

Let us first prove that dimM(A′, B′) = d for the operators A′, B′ given in the
proposition. Assume that dimM(A′, B′) > d. Then

M(A′, B′)⊥ = Ran

[
(A′)∗

(B′)∗

]
and dimM(A′, B′)⊥ < d.

Therefore,

Ker

[
(A′)∗

(B′)∗

]
= Ker(A′)∗ ∩Ker(B′)∗ 
= {0};

cf. [27, Ass. 2.1 and below]. Note that

A′ = A∗
S and B′ = B∗

S,

and hence KerAS ∩ KerBS 
= {0}, which implies det(AS + ikBS) = 0 for all
k ∈ C. This is a contradiction to the assumption that A,B define regular boundary
conditions. Hence dimM(A′, B′) = d.

Now one shows that M∗ = M(A′, B′), where M∗ is given in Proposition 3.5. By
the equivalence of boundary conditions, one has M(A,B) = M(AS, BS). Note that
JM(AS, BS) = M(BS,−AS). Hence

(JM(AS, BS))⊥ = Ran

[
B∗

S

−A∗
S

]
and M(A′, B′)⊥ = Ran

[
(A′)∗

(B′)∗

]
.

Observe that〈[
B∗

Sψ
−A∗

Sψ

]
,

[
(A′)∗ϕ
(B′)∗ϕ

]〉
K2

= − 1

4ik

〈
ψ,
(
S2 − �)ϕ〉

K
+

1

4ik

〈
ψ,
(
S2 − �)ϕ〉

K

= 0

for all ψ, ϕ ∈ K, where S = S(k,A,B). Hence (JM(AS, BS))⊥ ⊥ M(A′, B′)⊥,

and since both spaces have dimension equal to d one obtains (JM(AS, BS))⊥ =
M(A′, B′). Applying Proposition 3.5 yields the claim. �

As a consequence, one obtains for m-sectorial operators the following.
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Corollary 3.8. Let P be an orthogonal projector in K, P⊥ = � − P and L an
operator with L = P⊥LP⊥. Then

Δ(P + L, P⊥)∗ = Δ(P + L∗, P⊥).

3.8. Approximation of boundary conditions. One can ask which boundary
conditions are “close to each other”, and to answer this question properly one has
to decide in which topology it is raised. Here, boundary conditions with the same
dimension are compared to each other. Let us thus consider the set of subspaces
M ⊂ K2 with dimM = n; this is the Grassmann manifold Gr(2d, n). For a subspace
M ⊂ K2 denote by PM the orthogonal projector in K2 to M. A metric on Gr(2d, n)
is defined by

dn(M1,M2) := ‖PM1
− PM2

‖.

Lemma 3.9. Let M ⊂ K2 with dimM = n, and let Ml ⊂ K2, l ∈ N, be a sequence
of n-dimensional subspaces with

lim
l→∞

dn(Ml,M) = 0.

Then the sequence of operators −Δ(Ml) converges in the strong graph limit to
−Δ(M).

Proof. Denote by ΓM ⊂ H2 the graph of the operator −Δ(M) for arbitrary M ⊂
K2. In order to prove convergence of −Δ(Ml) to −Δ(M) in the strong graph limit
(see [42, Sec. VIII.7, p. 293] for the definition), one has to prove two items:

(1) For all (ψl,−Δ(Ml)ψl) ∈ H2, with ψl ∈ Δ(Ml) such that ψl → ξ and
−Δ(Ml)ψl → η, it follows that (ξ, η) ∈ ΓM. This means ξ ∈ Dom(−Δ(M))
and η = −Δ(M)ξ.

(2) For all (ψ,−Δ(M)ψ) ∈ ΓM there exists a sequence {ψl}l∈N such that
(ψl,−Δ(Ml)ψl) ∈ ΓMl

and ψl → ψ, −Δ(Ml)ψl → −Δ(M)ψ.

Note that −Δ(M) is an extension of finite rank of −Δ0 for any M ⊂ K2. In
particular, D0 ⊂ D is a closed subspace and the quotient space D/D0 can be
identified with the space of boundary values K2. Hence one has

D = D0+̇K2,(3.8)

where +̇ denotes the direct sum. Let ψl → ξ and −Δ(Ml)ψl → η. Since −Δ
is closed and −Δ(Ml)ψl = −Δψl it follows that η = −ξ′′. By (3.8) one has a
decomposition

ξ = ξ0+̇[ξ] and ψl = ψ0
l +̇[ψl] with ξ0, ψ0

l ∈ D0.

By assumption one has ψl → ξ in the graph norm which is equivalent to the Sobolev
norm in the Hilbert space D. Hence, [ψl] → [ξ] and therefore ξ ∈ Dom(−Δ(M))
which proves (1).

Let ψ ∈ Dom(−Δ(M)). Then by (3.8) one has the decomposition ψ = ψ0+̇[ψ].
By assumption there is a sequence [ψl] → [ψ], and

ψl = ψ0+̇[ψl] ∈ Dom(−Δ(Ml)) such that ψl → ψ and ψ′′
l → ψ′′.

This proves (2) and finishes the proof. �

Theorem 3.10. Let A,B define irregular boundary conditions. Then there is a se-
quence of regular boundary conditions Al, Bl, l ∈ N, such that −Δ(Al, Bl) converges
in the strong graph limit to −Δ(A,B).
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Proof. For M(A,B) ⊂ K2 with dimM(A,B) = d one has by [27, Lem. 3.2]

PM(A,B)⊥ =

(
A∗

B∗

)
(AA∗ +BB∗)−1(A, B).(3.9)

Denote by P the orthogonal projector in K onto KerB. Then A and Bε with

Bε := B + εP

define regular boundary conditions for ε > 0 because Bε is invertible. Note that
by [27, Lem. 3.2] AA∗ + BεB

∗
ε , ε ≥ 0, is invertible since dimM(A,Bε) = d, and

therefore

lim
ε→0

(AA∗ +BεB
∗
ε )

−1 = (AA∗ + BB∗)−1.

Using that PM(A,Bε) = �− PM(A,B)⊥ , ε ≥ 0, and (3.9) one can prove then that

lim
ε→0

‖PM(A,B) − PM(A,Bε)‖ = 0,

where the norm is the operator norm. Since in the finite-dimensional Hilbert space
K2 all norms are equivalent it is also sufficient to prove component-wise convergence.
Applying Lemma 3.9 to −Δ(A,B) and to −Δ(A,B1/l), l ∈ N, proves the claim. �

One has to emphasise that convergence in the strong graph limit does not imply
convergence of spectra. Consider for example the operators −Δ(Aτ , Bτ ) defined in
Example 3.5. These operators converge for τ → π/2 in the strong graph limit to
the operator −Δ(Aπ/2, Bπ/2), which has empty resolvent set, whereas −Δ(Aτ , Bτ )
for τ 
= π/2 are similar to the self-adjoint Laplacian on the real line with spec-
trum [0,∞). The strong graph convergence for this special example was studied
previously in [44, Prop. 2.7].

The approximation of regular boundary conditions in the norm resolvent sense
will be established in Subsection 4.6.

3.9. J-self-adjointness. Let J : H → H be an anti-linear bounded operator with
bounded inverse. The operator Δ(M) is called J-self-adjoint if

Δ(M)∗ = J−1Δ(M)J.

If J is in addition involutive and isometric, then our definition agrees with the stan-
dard notion from [14, Sec. III.5]. The usage of the J-self-adjointness was suggested
in [11] as a generalised concept of PT-symmetry. It was also pointed out there
that the residual spectrum of J-self-adjoint operators is empty. The latter can be
easily seen as follows, also for our broader definition. The equality Δ(M)∗ − λ =

J−1
(
Δ(M)− λ

)
J implies the symmetry relation σp(Δ(M)) = σp(Δ(M)∗). Using

the general characterisation of the residual spectrum

σr(−Δ(M)) = {λ /∈ σp(−Δ(M)) | λ ∈ σp(−Δ(M)∗)},(3.10)

it thus follows that the residual spectrum of Δ(M) is empty.
Let us further assume that J commutes with the maximal operator Δ. Then J

induces by

J : K → K, ψ �→ Jψ

an anti-linear operator in K, because the map ψ �→ ψ is surjective as a map from
W to K.
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Proposition 3.11. Let dimM = d and M = M(A,B) be such that A − κB is
invertible for a κ > 0. Then Δ(M)∗ is J-self-adjoint if and only if S(iκ, A,B) is
J-self-adjoint, i.e.,

S(iκ, A,B)∗ = J−1
S(iκ, A,B)J.

Proof. It is sufficient to prove that J : Dom(Δ(M)∗) → Dom(Δ(M)) is bijective.
This is equivalent to [J]M∗ = M, where Δ(M)∗ = Δ(M∗) and

[J] : K2 → K2, ψ ⊕ ψ′ �→ Jψ ⊕ (Jψ)′.

Let [ψ] = ψ ⊕ ψ′ ∈ M∗. Then by Proposition 3.7

−1

2
(S(iκ, A,B)∗ − �)ψ − 1

2κ
(S(iκ, A,B)∗ + �)ψ′ = 0,

and [J][ψ] ∈ M if and only if

−1

2
(S(iκ, A,B)− �) Jψ − 1

2κ
(S(iκ, A,B) + �) (Jψ)′ = 0.

After applying J−1, this is equivalent to

−1

2

(
J−1

S(iκ, A,B)J− �)ψ − 1

2κ

(
J−1

S(iκ, A,B)J+ �)ψ′ = 0.

Therefore [J]M∗ = M if and only if S(iκ, A,B)∗ = J−1
S(iκ, A,B)J. �

An example for J being in addition involutive and isometric is the operator of
complex conjugation

T : H → H, ψ �→ ψ.

In quantum mechanics, T has the physical meaning of the time-reversion operator.
We remark that time-reversion in quantum mechanics can be more complicated in
spinorial models and it can be non-involutive; cf. for instance [22], where the Pauli
equation is discussed. The origin of non-involutivity is the non-trivial action of J on
the spinor components. The similar structure of J can be considered in the graph
case as well, e.g. the composition of T and permutation of edges.

Corollary 3.12. Let dimM = d and M = M(A,B) such that A− κB is invertible
for a κ > 0. Then Δ(M)∗ is T-self-adjoint if and only if

S(iκ, A,B)∗ = S(iκ, A,B).

Example 3.7 (Complex δ-interactions are T-self-adjoint). Consider a finite metric
graph and at each vertex v ∈ V impose complex δ-interactions with coupling con-
stant γv ∈ C. These are m-sectorial boundary conditions which can be parametrised
at each vertex v ∈ V by a projector Pv and a rank one operator Lv = − γv

deg(v)P
⊥
v ;

cf. Example 3.4. Hence, at each vertex

S(k,Av, Bv) =−
(
Lv + Pv + ikP⊥

v

)−1 (
Lv + Pv − ikP⊥

v

)
=

(
− γv
deg(v)

+ ik

)−1(
γv

deg(v)
+ ik

)
P⊥
v + Pv.

Consequently,

S(iκ, Av, Bv)
∗ = S(iκ, Av, Bv),
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for all κ > 0 such that γv

deg(v) + κ 
= 0. Since

S(iκ, A,B) =
⊕
v∈V

S(iκ, Av, Bv),

where

A =
⊕
v∈V

Av and B =
⊕
v∈V

Bv,

the operator −Δ(A,B) defined by δ-interactions at each vertex is T-self-adjoint for
any complex coupling parameters, whereas it is self-adjoint only for real coupling
parameters; cf. [34, Sec. 3.2.1]. �

4. General spectral properties

In this section we collect some basic facts about the spectrum of the Laplacians
on metric graphs.

4.1. Non-zero eigenvalues. A fundamental system of the equation −ψ′′
k−k2ψk =

0 with k 
= 0 is given by the functions eikx and e−ikx. For Im k > 0 only the first
of the mentioned functions is square integrable on the half-line [0,∞) and hence on
the external edges. Consequently, an Ansatz for an eigenfunction corresponding to
an eigenvalue k2 satisfying Im k > 0 is to consider

ψk(xj) =

{
sj(k)e

ikxj , j ∈ E,

αj(k)e
ikxj + βj(k)e

−ikxj , j ∈ I.

The function ψk has the traces

ψk = X (k; a)

⎡⎣{sj(k)}j∈E

{αj(k)}j∈I

{βj(k)}j∈I

⎤⎦ , ψ′
k = ik · Y (k; a)

⎡⎣{sj(k)}j∈E

{αj(k)}j∈I

{βj(k)}j∈I

⎤⎦ ,

where

X (k; a) =

⎡⎣� 0 0
0 � �
0 eika e−ika

⎤⎦ and Y (k; a) =

⎡⎣� 0 0
0 � −�
0 −eika e−ika

⎤⎦
are given with respect to the decomposition K = KE⊕K−

I ⊕K+
I . Here e±ika denote

(|I| × |I|)-diagonal matrices with entries {e±ika}i,j = δi,je
±ikai .

The function ψk is an eigenfunction to the eigenvalue k2 if and only if ψk ∈
Dom(−Δ(A,B)). This is the case if and only if the Ansatz function ψk satisfies
the boundary conditions, which are encoded in the equation

Z (k;A,B, a)

⎡⎣{sj(k)}j∈E

{αj(k)}j∈I

{βj(k)}j∈I

⎤⎦ = 0,

where

Z (k;A,B, a) = AX(k; a) + ik BY (k; a).

Hence k2 with Im k > 0 is an eigenvalue of Δ(A,B) if and only if

detZ (k;A,B, a) = 0,(4.1)

and k2 has geometric multiplicity dimKerZ (k;A,B, a).
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For E = ∅ the solutions of detZ (k;A,B, a) = 0 for k > 0 are also eigenvalues,
whereas for I = ∅ the solutions of detZ (k;A,B, a) = 0 for k > 0 are not eigenvalues.
In particular, for I = ∅ there are no positive real eigenvalues since neither eikx nor
e−ikx is square integrable on the half-line and therefore on the external edges. This
is illustrated by the following example.

Example 4.1 (Graph with a spectral singularity). Consider the graph consisting
of only one half-line, that is |E| = 1 and I = ∅, and impose the non-self-adjoint
regular boundary conditions defined by A = −i and B = 1, i.e. −iψ(0)+ψ′(0) = 0.
Then k = 1 is a solution of det(A + ikB) = 0, but k2 = 1 is not an eigenvalue of
−Δ(A,B). In [16, Ex. 3] it is shown that 1 is in the continuous spectrum, but it is
a spectral singularity, which means that the limits

lim
ε→0+

∫
I

[
(−Δ(A,B)− λ+ ε)−1 − (−Δ(A,B)− λ− ε)−1

]
dλ,

where I are some bounded real intervals, are singular in a certain sense; see
[16, Def. 1] for the precise definition and for further references on the topic. An
alternative definition of spectral singularities is related to the limit of the resolvent
kernel when approaching non-isolated points in the spectrum [16, Def. 4]. This
phenomenon will be discussed further in Remark 4.9 below, after giving an explicit
expression for the resolvent kernel in Proposition 4.7. �

For self-adjoint boundary conditions it is known that all solutions of (4.1) for
k > 0 are eigenvalues [23, Thm. 3.1], including the cases E 
= ∅ and I 
= ∅. However,
for non-self-adjoint boundary conditions this is not true anymore and it is difficult
to study the positive real eigenvalues when E 
= ∅ and I 
= ∅. These eigenvalues are
embedded in the essential spectrum as shown below in Subsection 4.7.

Remark 4.1. The function k �→ detZ (k;A,B, a) is holomorphic on the whole com-
plex plain, hence it either vanishes identically or its zeros form a discrete set.
Consequently one has for dimM(A,B) ≥ d that cloσp(−Δ(A,B)) is either entire
C or at most discrete, where clo denotes the closure in C.

4.2. Eigenvalue zero. Eigenfunctions to the eigenvalue zero are piecewise affine,
because a fundamental system of the equation ψ′′ = 0 is given by the constant
solution and the linear solution. This gives the Ansatz

ψ0(xj) =

{
0, j ∈ E,

α0
j + β0

jxj , j ∈ I,

with traces

ψ0 = X0 (a)

⎡⎢⎣ 0
{α0

j}j∈I

{β0
j }j∈I

⎤⎥⎦ , ψ′
0 = Y0 (a)

⎡⎢⎣ 0
{α0

j}j∈I

{β0
j }j∈I

⎤⎥⎦ ,

where

X0 (a) =

⎡⎣0 0 0
0 � 0
0 � a

⎤⎦ and Y0 (a) =

⎡⎣0 0 0
0 0 �
0 0 −�

⎤⎦ .
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Consequently zero is an eigenvalue of the operator −Δ(A,B) if and only if there
are α0

j , β
0
j , with j ∈ I, such that

[AX0 (a) +BY0 (a)]

⎡⎢⎣ 0
{α0

j}j∈I

{β0
j }j∈I

⎤⎥⎦ = 0

has a non-trivial solution. For E = ∅ zero is an eigenvalue if and only if

det (AX0(a) +BY0(a)) = 0,

and for I = ∅ zero cannot be an eigenvalue.

4.3. Operators with empty resolvent set. For non-self-adjoint Laplacians the
resolvent set is not always non-empty, and one needs a certain number of boundary
conditions to define operators of which the spectrum forms a proper subset of C.

Proposition 4.2. Let dimM 
= d. Then σ(Δ(M)) = C. In particular, if dimM >
d, then cloσp(Δ(M)) = C, where clo denotes the closure in C.

Proof. For M with dimM > d there are maps A,B in K such that M = M(A,B).
By assumption the map (A, B) is not surjective, and therefore also

Z (k; a,A,B) = (A, B) ◦
(

X(k; a)
ik Y (k; a)

)
is not surjective for any k. Consequently detZ (k; a,A,B) = 0 for all k ∈ C which
proves that C \ [0,∞) ⊂ σp(−Δ(A,B)). Since the spectrum is a closed set, we
conclude with σ(Δ(A,B)) = C.

Let dimM < d. Then, by Corollary 3.6, dimM∗ > d, and hence σ(Δ(M)∗) = C.

Since σ(Δ(M)) = σ(Δ(M)∗) (cf. [20, Thm. III.6.22]), the claim follows. �

As already discussed for irregular boundary conditions defined by A,B, the re-
solvent set can be empty even if dimM(A,B) = d; cf. Example 3.1.

4.4. Residual spectrum for regular boundary conditions. Following [24,
Eq. (3.7)], for regular boundary conditions with A + ikB invertible the secular
equation (4.1) can be rewritten using the identity

Z (k;A,B, a) = (A+ ikB) [�−S(k,A,B)T (k; a)]R+(k; a),(4.2)

where

T (k; a) =

⎡⎣0 0 0
0 0 eika

0 eika 0

⎤⎦ and R+(k, a) =

⎡⎣� 0 0
0 � 0
0 0 e−ika

⎤⎦ .

In particular one obtains

Lemma 4.3. Let A,B define regular boundary conditions. Then

clo σp(−Δ(A,B)) 
= C,

and λ ∈ σp(−Δ(A,B)) \ [0,∞) if and only if λ ∈ σp(−Δ(A,B)∗) \ [0,∞).
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Proof. For A,B defining regular boundary conditions S(iκ, A,B) is defined for
every κ > 0 except a finite set and �−S(iκ, A,B)T (iκ; a) is invertible for κ large
enough; the first claim follows from (4.2).

To prove the second claim, we first notice that for A ± ikB invertible one has
with (4.2)

Z (k;A,B, a)

= (A+ ikB) [�−S(k,A,B)T (k; a)]S(k,A,B)S(k,A,B)−1R+(k; a).

Since Z (k;A,B, a) is holomorphic in entire C the above representation admits
continuous continuation to C. So, taking the adjoint one obtains

detZ (k;A,B, a) = det(A∗ − ikB∗) det
[�−S(k,A,B)∗T (−k; a)

]
detR+(−k; a)

for all k ∈ C except a finite set, where one has used

det
(
[S(k,A,B)∗]

−1
S(k,A,B)∗ [�− T (k; a)∗S(k,A,B)∗]

)
= det

[�−S(k,A,B)∗T (−k; a)
]
.

Applying Proposition 3.7 and choosing the representation AS, BS given there, we
arrive at

S(k,A,B)∗ = S(−k,A′, B′)

and hence

detZ (k;A,B, a) = detZ
(
−k;A′, B′, a

)
for all k ∈ C except a finite set. By continuous continuation the claim follows for

all k ∈ C, and hence k2, Im k > 0, is an eigenvalue of −Δ(A,B) if and only if k
2
is

an eigenvalue of −Δ(A,B)∗. �

Remark 4.4. Note that for E = ∅ one can even show that λ ∈ σp(−Δ(A,B)) if and

only if λ ∈ σp(−Δ(A,B)∗).

Remark 4.5 (Stability of eigenvalues under similarity of scattering matrices). Let
(G, a) be a compact finite metric graph. Let A,B and A′, B′ define regular boundary
conditions, and assume that there is an invertible map G(k), k ∈ C, such that

S(k,A,B) = G(k)−1
S(k,A′, B′)G(k) and G(k)T (k; a) = T (k; a)G(k),

for all k ∈ C. Then using (4.2) one obtains immediately

σp(−Δ(A,B)) = σp(−Δ(A′, B′))

and the geometric multiplicity of the eigenvalues agrees.

Combining Lemma 4.3 with the general characterisation of the residual spectrum
(3.10), we obtain the following useful property.

Proposition 4.6. Let A,B define regular boundary conditions. Then the resid-
ual spectrum σr(−Δ(A,B)) is contained in [0,∞). If E = ∅ or I = ∅, then
σr(−Δ(A,B)) = ∅.

In particular, using (3.10) and Remark 4.1 it follows that the residual spectrum
forms a discrete subset of [0,∞). That the residual spectrum is in general not
empty is shown by the following example.
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Example 4.2 (Graph with a residual spectrum). Consider the metric graph con-
sisting of one internal edge of length a and one external edge. Impose the following
boundary conditions:

ψ′
E(0) = 0, −iψI(0) + ψ′

I(0) = 0, ψE(0) + iψI(a)− ψ′
I(a) = 0.

These are m-sectorial boundary conditions with

P = 0 and L =

⎡⎣0 0 0
0 −i 0
1 0 i

⎤⎦ .

A direct computation shows that

ψ(x) =

{
0, x ∈ E,

eix, x ∈ I,

is an eigenfunction of −Δ(L,�) corresponding to the eigenvalue 1. By Corollary 3.8
the adjoint operator is given by −Δ(L∗,�), which is defined by the boundary
conditions

ψI(a) + ψ′
E(0) = 0, iψI(0) + ψ′

I(0) = 0, iψI(a) + ψ′
I(a) = 0.

For the second condition an eigenfunction corresponding to the eigenvalue 1 would
be e−ix on the internal edge and for the square integrability 0 on the external edge,
but this function does not satisfy the first boundary condition. Therefore 1 is an
eigenvalue of −Δ(L,�), but not an eigenvalue of −Δ(L∗,�). Using the charac-
terisation of the residual spectrum in (3.10), one obtains that 1 ∈ σr(−Δ(L∗,�)).

�

4.5. Resolvents for regular boundary conditions. In [27, Lem. 3.10] an ex-
plicit formula for the resolvent associated with k2 ∈ ρ(−Δ(A,B)) is given. In
this subsection we reproduce the result for regular boundary conditions and add
a criterion for k2 being in the resolvent set. Since the result of [27, Lem. 3.10] is
given without proof (arguing that it can be proved “in exactly the same way” as for
self-adjoint boundary conditions), we provide a short proof in the appendix (where
we also recall the notion of integral operators; cf. Definition A.1). This will make
our paper self-consistent and, moreover, clarify the need for regularity of boundary
conditions in the proof.

Proposition 4.7. Let A,B define regular boundary conditions such that

A± ikB and �−S(k,A,B)T (k; a)

are invertible for k ∈ C with Im k > 0. Then k2 ∈ ρ(−Δ(A,B)) and the resolvent(
−Δ(A,B)− k2

)−1
is the integral operator with the (|E|+ |I|)× (|E|+ |I|) matrix-

valued integral kernel rM(x, y; k), M = M(A,B), admitting the representation

rM(x, y; k) = r0(x, y; k) + r1M(x, y; k)

with {r0(x, y; k)}j,j′ = δj,j′
i
2ke

ik|xj−yj | and

r1M(x, y; k)

=
i

2k
Φ(x, k)R+(k; a)

−1 [�−S(k,A,B)T (k; a)]−1
S(k,A,B)R+(k; a)

−1Φ(y, k)T .
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Here the matrix Φ(x, k) is given by

Φ(x, k) :=

[
φ(x, k) 0 0

0 φ+(x, k) φ−(x, k)

]
with diagonal matrices φ(x, k) = diag{eikxj}j∈E and φ±(x, k) = diag{e±ikxj}j∈I,
and Φ(x, k)T denotes the transpose of Φ(x, k).

Remark 4.8. The statement of the proposition holds also for k > 0 if E = ∅.

Remark 4.9. Note that the resolvent kernel rM(x, y, k) is still well defined for k > 0
such that

A± ikB and �−S(k,A,B)T (k; a)

are invertible. For these k > 0 the kernel rM(x, y, k) still defines an operator
from L2(G, exδdx) to L2(G, dx) for δ > 0. In the sense of [16, Def. 4] the points
k2 > 0 such that limε→0+ rM(x, y, k + iε), k > 0, is unbounded are called spectral
singularities. Example 4.1 shows that the spectral singularities can form a larger
set than the set of embedded eigenvalues.

4.6. Approximation of regular boundary conditions. Using the explicit for-
mula for the resolvent, one can establish a norm resolvent convergence for certain
regular boundary conditions.

Proposition 4.10. Let Aε, Bε, ε ≥ 0, define regular boundary conditions such that

Aε ± ikBε and �−S(k,Aε, Bε)T (k; a)

are invertible for a certain k ∈ C with Im k > 0 and all ε ≥ 0. Assume furthermore
that

lim
ε→0

S(k,Aε, Bε) = S(k,A0, B0).

Then k2 ∈ ρ(−Δ(Aε, Bε)) for all ε ≥ 0, and

lim
ε→0

∥∥∥(−Δ(Aε, Bε)− k2
)−1 −

(
−Δ(A0, B0)− k2

)−1
∥∥∥ = 0.

Proof. Set Mε := M(Aε, Bε) for ε ≥ 0. Then

rMε
(x, y; k)− rM0

(x, y; k) = r1Mε
(x, y; k)− r1M0

(x, y; k).

Note that r1Mε
(·, ·; k) define for every ε ≥ 0 Hilbert-Schmidt operators. One obtains

‖r1Mε
(·, ·; k)− r1M0

(·, ·; k)‖HS

≤ C(k)

2k

∥∥∥ [�−S(k,Aε, Bε)T (k; a)]
−1

S(k,Aε, Bε)

− [�−S(k,A0, B0)T (k; a)]
−1

S(k,A0, B0)
∥∥∥,

because r(x, y; k) = Φ(x, k)R+(k; a)
−2Φ(y, k)T defines a Hilbert-Schmidt operator

R(k), with a finite Hilbert-Schmidt norm ‖r(·, ·; k)‖HS =: C(k). From the con-
vergence of S(k,Aε, Bε) to S(k,A0, B0) it follows under the assumptions imposed
that

lim
ε→0

[�−S(k,Aε, Bε)T (k; a)]
−1 = [�−S(k,A0, B0)T (k; a)]

−1 .



2942 AMRU HUSSEIN, DAVID KREJČIŘÍK, AND PETR SIEGL

Hence,

0 ≤ lim
ε→0

∥∥∥(−Δ(Aε, Bε)− k2
)−1 −

(
−Δ(A0, B0)− k2

)−1
∥∥∥

≤ lim
ε→0

∥∥∥(−Δ(Aε, Bε)− k2
)−1 −

(
−Δ(A0, B0)− k2

)−1
∥∥∥
HS

= 0,

which proves the claim. �
In contrast to the convergence in the strong graph sense established in Subsec-

tion 3.8, the norm resolvent convergence implies a convergence of spectra.

4.7. Essential spectra for regular boundary conditions. For non-self-adjoint
operators there are various notions of the essential spectrum. Five types, defined in
terms of Fredholm properties and denoted by σej for j = 1, 2, 3, 4, 5, are discussed
in detail in [14, Chap. IX]. All these essential spectra coincide for T self-adjoint, but
for closed non-self-adjoint T one has in general only the inclusions σej(T ) ⊂ σei(T )
with j < i. The largest set σe5(T ) is known as the essential spectrum due to Browder
and it coincides with the complement in the spectrum of isolated eigenvalues λ of
finite algebraic multiplicity such that Ran(T − λ) is closed.

Proposition 4.11. Let A,B define through (3.1) regular boundary conditions.
Then ρ(−Δ(A,B)) 
= ∅. For E 
= ∅ one has σe5(−Δ(A,B)) = [0,∞). For E = ∅ the
spectrum is purely discrete and the resolvent is compact, hence σe5(−Δ(A,B)) = ∅.

Proof. From Lemma 4.3 together with Proposition 4.7 it follows that the resolvent
set is not empty and that the resolvents for any regular boundary conditions differ
only by a perturbation of finite rank. In particular, the difference of respective
resolvents is compact.

Assume E 
= ∅. Self-adjoint realisations are also defined by regular bound-
ary conditions and it is well known that the essential spectrum is [0,∞) in this
case. Applying the Weyl-type perturbation result from [14, Thm. IX.2.4], it fol-
lows that σei(−Δ(A,B)) = [0,∞) with i = 1, 2, 3, 4. Since C \ σe1(−Δ(A,B)) has
only one connected component, which intersects the resolvent set of −Δ(A,B),
σe5(−Δ(A,B)) = σe1(−Δ(A,B)) by the very definition of [14, Chap. IX].

Now let E = ∅. Then all self-adjoint realisations have compact resolvent, Propo-
sition 4.7 applies and the resolvents for any regular boundary conditions differ only
by a perturbation of finite rank. Hence the resolvent is compact for all regular
boundary conditions which proves the assertion. �

In particular, one obtains that on finite compact metric graphs for regular bound-
ary conditions the spectrum is purely discrete; consequently, there is no continuous
nor residual spectrum. For graphs with I = ∅ there are at most finitely many
eigenvalues in C \ [0,∞); they have finite algebraic multiplicity, and the continuous
spectrum is [0,∞), whereas the residual spectrum is empty. For the case E 
= ∅ and
I 
= ∅ it is difficult to give general statements on eigenvalues and residual spectrum
contained in [0,∞).

5. Riesz basis on compact graphs

In this section we apply a general result due to Agranovich [1] about a Riesz basis
property to m-sectorial Laplacians on finite compact metric graphs. Throughout
this section let us therefore assume that (G, a) is an arbitrary finite compact metric
graph, i.e. E = ∅.
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Let us first recall the definition of the Riesz basis of subspaces; see, e.g., [38] for
more details. The set of subspaces {Nk}∞k=1 ⊂ H is called a basis of subspaces if
any vector f from the Hilbert space H can be uniquely represented as a series

f =
∞∑
k=1

fk, fk ∈ Nk.

Such a basis is called unconditional or Riesz if it remains a basis after any permu-
tation of the subspaces appearing in it, i.e. if the above series converges uncondi-
tionally for any f . If the subspaces are one-dimensional, we obtain the standard
notion of Riesz basis.

Let P be an orthogonal projector in K, P⊥ = �−P its complementary projector
and L a not necessarily self-adjoint operator in K with L = P⊥LP⊥. Then one
considers −Δ(P + L, P⊥). Recall that this operator is associated with the closed
sectorial form δP,L defined by (3.5). The main result of this section reads as follows.

Theorem 5.1. Let (G, a) be a finite compact metric graph. The spectrum of the
operator −Δ(P +L, P⊥) is purely discrete, and there is a Riesz basis consisting of
finite-dimensional invariant subspaces of −Δ(P + L, P⊥).

The proof of Theorem 5.1 is based on the following abstract result due to Agra-
novich [1].

Theorem 5.2 ([1, Thm. in Sec. 1]). Let H and W ⊂ H be separable Hilbert spaces,
where the imbedding W ↪→ H is compact. Consider a closed sectorial form a with
domain Dom a = W, and denote by A the m-sectorial operator defined by a. Assume
that there are constants c, C > 0 such that

c ‖ψ‖2W ≤ Re a[ψ] for all ψ ∈ W(5.1)

and

|a[ψ, ϕ]|+ |(Re a)[ψ, ϕ]| ≤ C‖ψ‖W‖ϕ‖W for all ψ, ϕ ∈ W,(5.2)

where Re a denotes the real part of the form a. Let B be the operator defined by
Re a and assume furthermore that for some 0 ≤ q < 1 and γ > 0

|Im a[ψ]| ≤ γ‖B1/2ψ‖2q‖ψ‖2−2q for all ψ ∈ W,(5.3)

where Im a denotes the imaginary part of a. Denote by λ1 ≤ λ2 ≤ . . . ≤ λj ≤ . . .
the eigenvalues of B (counting multiplicities) and assume that for some p > 0

lim sup
j→∞

λjj
−p > 0.(5.4)

Then there exist a Bari basis if p(1 − q) > 1, a Riesz basis if p(1 − q) = 1, and
an Abel basis of order β = β0 + β1 if p(1− q) < 1, consisting of finite-dimensional
subspaces invariant with respect to A respectively. Here, β0 = p−1 − (1− q) and β1

is an arbitrarily small positive number.

To apply Theorem 5.2, we need the following elementary inequality, which we
state here without proof.

Lemma 5.3. There exists a constant C > 0 such that for all ψ ∈ W 1,2((0, a))

‖ψ‖2L∞ ≤ C‖ψ‖W‖ψ‖.

Now we are in a position to prove Theorem 5.1.
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Proof of Theorem 5.1. Consider the form a′ := δP,L defined by (3.5). We apply
Theorem 5.2 to the form a := a′ + ε with an appropriate ε > 0.

There is an ε > 0 such that the form b := Re a + ε > 0 defines a norm that
is equivalent to the Sobolev norm of W. Indeed, using Lemma 5.3 together with
Young’s inequality, we have

−〈ReLψ, ψ〉K ≥ −‖ReL‖ ‖ψ‖2 ≥ −C‖ψ‖W‖ψ‖

≥ −δ‖ψ‖2W − C2

4δ
‖ψ‖2, for any δ > 0.

Hence, for δ < 1 and ε > 0 such that C2

4δ < ε, one has∫
G

|ψ′|2 − 〈ReLψ, ψ〉+ ε‖ψ‖2 ≥ γ‖ψ‖2W,

where

γ = min

{
ε− C2

4δ
, 1− δ

}
.

The other inequality can be shown analogously.
Using the notation of Theorem 5.2, we have

Re a[ψ] =

∫
G

|ψ′|2 − 〈ReLP⊥ψ, P⊥ψ〉K + ε‖ψ‖2,

Im a[ψ] = −〈ImLP⊥ψ, P⊥ψ〉K,

where

Dom a = DomRe a = WP := {ψ ∈ W | Pψ = 0} ⊂ H.

The spaceW with the inner product 〈·, ·〉W is a Hilbert space andWP is a closed sub-
space. Since (G, a) is compact, WP is compactly embedded in H. Condition (5.1)
is fulfilled for Re a and condition (5.2) follows as well by applying the Cauchy-
Schwarz inequality. Recall that the norm defined by b is equivalent to the Sobolev
norm in the Hilbert space WP . Therefore, there is a constant C > 0 such that
‖ψ′‖ ≤ ‖ψ‖W ≤ C‖B1/2ψ‖ = Cb[ψ]. Applying Lemma 5.3 to the form Im a yields

|Im a[ψ]| ≤ ‖ImL‖ ‖ψ‖2K ≤ C‖ψ‖‖ψ‖W ≤ C‖ψ‖‖B1/2ψ‖,

where C > 0 is used as universal constant. Thus condition (5.3) is fulfilled with
q = 1/2.

From [18, Thm. 3.1] it follows that the operator associated with b is the self-
adjoint operator B = −Δ(P +ReL, P⊥)+ε. Since its spectrum is discrete, there is
a variational characterisation of the eigenvalues in terms of the minimax principle.
Applying a Dirichlet-Neumann-bracketing one arrives at the conclusion that λj =
O(j2) (see, e.g., [10, Prop. 4.2]), and hence condition (5.4) holds for p = 2.

Putting the pieces together, we obtain that Theorem 5.2 applies to a, which
defines the operator A = A′ + ε, where A′ = −Δ(P + L, P⊥). Since the invariant
subspaces of A and A′ agree, and furthermore p(1 − q) = 1 holds, these form a
Riesz basis. �

Theorem 5.1 can be applied to the following example and its generalisations
mentioned below.
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Example 5.1 (Complex Robin boundary conditions). Consider the interval [0, a]
and impose the boundary conditions

ψ′(0) + (iα− β)ψ(0) and ψ′(a) + (iα+ β)ψ(a) = 0, for α, β ∈ R;

cf. [29, Sec. 6.3]. In matrix notation this becomes

A =

[
iα− β 0

0 −(iα+ β)

]
and B =

[
1 0
0 1

]
,

hence one has also a parametrisation in terms of m-sectorial boundary conditions
with L = A and P = 0. Therefore, the operator −Δ(A,B) is defined by the form
δL,0 and Theorem 5.1 applies.

For β = 0 an explicit computation shows that the spectrum is real. Moreover,
if α 
= nπ/a, n ∈ N, all the eigenvalues have algebraic multiplicity one. We refer
to [29] for more details.

In fact, it is well known that the eigensystem −Δ(A,B) contains a Riesz basis
(without brackets) [39], [13, Sec.XIX.3]. These boundary conditions were intro-
duced in [29] as a toy quasi-self-adjoint model in PT-symmetry and the closed
formula for the metric operator has been found. An alternative method to derive
other closed formulae for the metric operators Θ was developed in [30] and fur-
ther employed in [32], where one can additionally find an explicit formula for the
self-adjoint operator to which −Δ(A,B) is similar. Notice that this self-adjoint
operator is not a graph. The more general model with β 
= 0 is also studied in [31].

A generalisation of this example to metric graphs was proposed in [45]. Consider
a compact star graph and the boundary conditions

A =

[
A+(α) 0

0 A−

]
and B =

[� 0
0 B−

]
,

where {A+(α)}lk = iαδlke
2πi l

deg v , A− = Aν and B− = Bν are the matrices given in
(6.5) below defining the standard boundary conditions at the central vertex v with
deg(v) = ν. Since the standard boundary conditions can be expressed equivalently
by projectors Pν and P⊥

ν (cf. Subsection 6.5), one has that

L(α) =

[
A+(α) 0

0 0

]
and P =

[
0 0
0 Pν

]
.

Hence, Theorem 5.1 applies and there is a Riesz basis of projectors corresponding
to invariant subspaces of −Δ(A,B). �

Theorem 5.1 can also be applied to a compact graph with the combination of
self-adjoint boundary conditions and complex δ-interactions, i.e. a modification of
Example 3.4.

6. Quasi-self-adjointness for symmetric graphs

There are many works dealing with the question of similarity between non-self-
adjoint and self-adjoint operators. In particular, there exists an abstract resolvent
criterion for similarity to self-adjoint operators developed independently in [12],
[37] and [41]. Based on this criteria, the question of when operators with purely
absolutely continuous spectrum are similar to self-adjoint ones was discussed in
[15]. Another approach is through the framework of extension theory for symmetric
operators [3, 21].



2946 AMRU HUSSEIN, DAVID KREJČIŘÍK, AND PETR SIEGL

In this section we follow a completely different approach and succeed in reducing
the question of quasi-self-adjointness for the unbounded operator −Δ(A,B) to a
simple check of the similarity of S(k,A,B) to a unitary matrix. The price we pay
is that the method applies to graphs with equal internal edge lengths only. More
specifically, throughout this section, we always assume

(6.1) ai = a for all i ∈ I.

6.1. From matrices to operators. For any (|I| × |I|)-matrix G(I) = (G(I)ji)
defining an operator in K−

I we introduce the map

ΦG(I) : HI → HI,
(
ΦG(I)ψ

)
(xj) =

n∑
i=1

G(I)jiψi(xj), j ∈ I,

where n = |I|. Accordingly, for a (|E| × |E|)-matrix G(E) = (G(E)ji) defining an
operator in KE we introduce

ΦG(E) : HE → HE,
(
ΦG(E)ψ

)
(xj) =

m∑
i=1

G(E)jiψi(xj), j ∈ E,

where m = |E|. These maps are well defined since the functions ψi are defined on
the i-th edge, which is identified with a half-line or an interval [0, a], respectively,
and hence they can be interpreted as functions on another half-line or interval [0, a]
as well.

For any ψ ∈ D let us also define

ψ
E
= {ψe(0)}e∈E, ψ

I,− = {ψi(0)}i∈I, ψ
I,+

= {ψi(ai)}i∈I,

ψ′
E
= {ψ′

e(0)}e∈E, ψ′
I,− = {ψ′

i(0)}i∈I, ψ′
I,+

= {−ψ′
i(ai)}i∈I,

and

ψ
I
= ψ

I,− ⊕ ψ
I,+

, ψ′
I
= ψ′

I,− ⊕ ψ′
I,+

.

Finally, we set

DE := D ∩HE and DI := D ∩HI.

Here we collect basic properties of the maps ΦG(I) and ΦG(E).

Proposition 6.1. The maps ΦG(E) and ΦG(I) are linear. For matrices G,H one
has ΦG ◦ ΦH = ΦG◦H . In particular, if G(I) or G(E) is invertible, then ΦG(E)

respectively ΦG(I) is invertible with(
ΦG(E)

)−1
= ΦG(E)−1 and

(
ΦG(I)

)−1
= ΦG(I)−1 ,

respectively. Furthermore ΦG(E) maps DE to DE and ΦG(I) maps DI to DI. For
ψ ∈ DE one has

ΦG(E)ψ
E
= G(E)ψ

E
and

(
ΦG(E)ψ

)′
E
= G(E)ψ′

E
.

For ψ ∈ DI one has

ΦG(I)ψ
I
=

[
G(I)ψ

I,−
G(I)ψ

I,+

]
and ΦG(I)ψ

′
I
=

[
G(I)ψ′

I,−
G(I)ψ′

I,+

]
.
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6.2. The main result. Taking advantage of the transformation of the boundary
values one obtains

Theorem 6.2. Let (G, a) be a finite metric graph with equal internal edge lengths,
i.e. (6.1) holds. Let A,B and A′, B′ be linear maps in K such that

A′ = G−1AG and B′ = G−1BG,

for an invertible operator G in K of the block diagonal form

G =

⎡⎣G(E) 0 0
0 G(I) 0
0 0 G(I)

⎤⎦(6.2)

with G(E) an invertible operator in KE and G(I) an invertible operator in K−
I .

Then the Laplacians −Δ(A,B) and −Δ(A′, B′) are similar to each other, i.e.

ΦG−1Δ(A,B)ΦG = Δ(A′, B′)

with similarity transform

(6.3) ΦG−1 := ΦG(E)−1 ⊕ ΦG(I)−1 .

Proof. Let (G, a) be a metric graph with equal internal edge lengths and

A′ = G−1AG and B′ = G−1BG,

where G is of the block-diagonal form given in the theorem. In order to prove that
Δ(A′, B′) = ΦG−1Δ(A,B)ΦG one has to show

(a) ΦG−1 maps DomΔ(A,B) to DomΔ(A′, B′);
(b) ΦG−1Δ(A,B)ΦGψ = Δ(A′, B′)ψ, for ψ ∈ Dom(A′, B′).

Note that ΦG and ΦG−1 commute with Δ, and therefore (b) holds.
It remains to show that ΦG−1(DomΔ(A,B)) = Dom(Δ(A′, B′)). Since ΦG−1

commutes with Δ, it follows also that ΦG−1 RanΔ(A,B) = RanΔ(A′, B′). Con-
sequently, by Proposition 6.1, ΦG−1 maps D to D. If ψ ∈ Dom(Δ(A,B)), then
ψ ∈ D and (3.1) holds. Applying it to the function ΦG−1ψ, we get

G−1
{
AGG−1ψ +BGG−1ψ′} = 0,

therefore ΦG−1(Dom(Δ(A,B))) ⊂ Dom(Δ(A′, B′)). The other way round, one
proves analogously ΦG(Dom(Δ(A′, B′))) ⊂ Dom(Δ(A,B)). Since ΦG−1 is a bijec-
tion this proves the claim. �

The main result of this section is now the following direct consequence of Theo-
rem 6.2.

Corollary 6.3. Let (G, a) be a finite metric graph with equal internal edge lengths,
i.e. (6.1) holds.

(1) Let A,B be linear maps in K such that

S(k,A,B) = G−1UG,

for an invertible operator G in K of the block diagonal form (6.2) with G(E)
an invertible operator in KE and G(I) an invertible operator in K−

I . Then
the Laplacians −Δ(A,B) and −Δ(AU , BU ) with

AU := −1

2
(U − �) and BU :=

1

2ik
(U + �)
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are similar to each other with the similarity transform given in (6.3). In
particular, if U is unitary, then −Δ(A,B) is similar to a self-adjoint Lapla-
cian.

(2) Let L, P and L′, P ′ define m-sectorial boundary conditions. Assume fur-
thermore that there is an invertible operator G in K of the block diagonal
form (6.2) with G(E) an invertible operator in KE and G(I) an invertible
operator in K−

I such that

P = G−1P ′G and L = G−1L′G.

Then −Δ(P+L, P⊥) and −Δ(P ′+L′, (P ′)⊥) are similar to each other with
the similarity transform given in (6.3). In particular, if L′ is Hermitian,
then −Δ(P + L, P⊥) is similar to a self-adjoint Laplacian.

Proof. Consider the boundary conditions

AS := −1

2
(S− �) and BS :=

1

2ik
(S+ �) ,

and k > 0 such that AS + ikBS is invertible, where S := S(k,A,B). These are
equivalent to the boundary conditions defined by A,B. By assumption there is an
invertible operator G in K such that

AS = G−1AUG and BS = G−1BUG.

Applying Theorem 6.2 proves the claim. For m-sectorial boundary conditions the
proof is analogous. �
Remark 6.4. Corollary 6.3 can be alternatively proven by using the resolvent for-
mula given in Proposition 4.7 by proving the similarity of the resolvents where the
similarity transforms are given by means of ΦG.

6.3. Application to star graphs. Theorem 6.2 simplifies in the case of star
graphs. Here a non-compact star graph is a graph with I = ∅, and a compact
star graph with equal edge lengths is a graph with E = ∅ and ai = a for all i ∈ I

such that ∂−(i) = ∂−(i
′) for any i, i′ ∈ I and ∂+(i) 
= ∂+(i

′) whenever i 
= i′.
For a non-compact star graph consider the operator −Δ(A,B) where A,B are

linear maps in K. Two operators −Δ(A,B) and −Δ(A′, B′) are similar whenever
there exists an invertible operator G in KE such that

A′ = G−1AG and B′ = G−1BG.

For the case of regular boundary conditions one has to check only if the matrices
S(k,A,B) and S(k,A′, B′) are similar to each other.

In order to have an equally simple criterion for a compact star graph, one can
consider −Δ(A,B) with boundary conditions of the form

A =

[
A− 0
0 A+

]
and B =

[
B− 0
0 B+

]
,(6.4)

whereA−, B− are arbitrary linear maps inK−
I , andA+ = a+�K+

I
and B+ = b+�K+

I

with a+, b+ ∈ C.
Let A−, B− and A′−, B′− be linear maps in K− such that

A′− = G−1A−G and B′− = G−1B−G,

for an invertible linear operator G in K−. Consider boundary conditions A′, B′

of the form (6.4) defined by A′−, B′− and a+, b+ ∈ C, and A,B also of the form
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(6.4) defined by A−, B− and the same numbers a+, b+ ∈ C. Then −Δ(A,B)
and −Δ(A′, B′) are similar to each other with similarity transform ΦG−1 . Again,
for the case of regular boundary conditions one has to check only if the matrices
S(k,A,B) and S(k,A′, B′) are similar to each other. For taking into account
only the boundary conditions at the central vertex it is crucial to impose identical
boundary conditions at all endpoints.

Example 6.1 (Special case of Example 3.3). Consider Example 3.3 for |E| = 3,
with |E−| = 1, |E+| = 2. Note that

S(k,A,B) = G

⎡⎣1 0 0
0 −1 0
0 0 −1

⎤⎦G−1 with G =

⎡⎣1 −1 1
1 1 0
1 0 1

⎤⎦ .

Hence, by Corollary 6.3, the operator −Δ(A,B) is unitarily equivalent to a self-
adjoint Laplacian, namely to the direct sum of two Neumann Laplacians and one
Dirichlet Laplacian on the half-line. �

Example 6.2 (Star graph with both essential and discrete spectra). Consider a
star graph with only two external edges and the m-sectorial boundary conditions
defined by

P = 0 and L =

[
0 2
1/2 0

]
,

that is 2ψ2(0) + ψ′
1(0) = 0 and 1

2ψ1(0) + ψ′
2(0) = 0. Since

L =

[
1/2 0
0 1/4

]
L′
[
2 0
0 4

]
, where L′ =

[
0 1
1 0

]
,

one has by Corollary 6.3 that −Δ(L,�) is similar to the self-adjoint operator
−Δ(L′,�). Hence, the continuous spectrum of −Δ(L,�) is [0,∞) and the point
spectrum contains only the isolated simple eigenvalue −1. �

6.4. Application to Example 3.5. During our work we had in mind, as a guid-
ing example, the class of point interactions defined at point zero on the intervals
(−L,L), L ∈ (0,+∞], by[

ψ(0+)
ψ′(0+)

]
=

[
eiτ 0
0 e−iτ

] [
ψ(0−)
ψ′(0−)

]
for τ ∈ [0, π/2],

which is also discussed in Example 3.5 above. Actually, this has been the starting
point of our study, and now we are in the position to apply our results to reproduce
some of the results known for it.

6.4.1. Regular case. Let τ ∈ [0, π/2). For the Cayley transform

S(Aτ , Bτ , k) = −(Aτ + ikBτ )
−1(Aτ − ikBτ ),

an explicit computation yields the diagonalisation

1

cos(τ )

[
i sin(τ ) 1

1 −i sin(τ )

]
=

−1

2 cos(τ )

[
1 1

e−iτ −eiτ

] [
1 0
0 −1

] [
−eiτ −1
−e−iτ 1

]
.

Hence, one has using diag{1,−1} = QS(A0, B0, k)Q the similarity

S(Aτ , Bτ , k) = G−1
τ QS(A0, B0, k)QGτ ,
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where

Q =
1√
2

[
1 1
1 −1

]
and Gτ =

i√
2 cos(τ )

[
−eiτ −1
−e−iτ 1

]
.

From Corollary 6.3 it follows that the operator −Δ(Aτ , Bτ ) is similar to the self-
adjoint Laplacian −Δ(A0, B0), and the similarity transform is given by ΦQGτ

:

Δ(A0, B0) = Φ(QGτ )−1Δ(Aτ , Bτ )ΦQGτ
.

In fact, −Δ(A0, B0) is the standard Laplacian on the real line.
One can now compute a metric operator, i.e. the operator Θτ such that

Δ(Aτ , Bτ )
∗ = ΘτΔ(Aτ , Bτ )Θ

−1
τ .

Since Q is unitary, a metric is given by the formula

Θτ = Φ(G∗
τGτ )−1 , where (G∗

τGτ )
−1 =

1

cos(τ )

[
1 i sin(τ )

−i sin(τ ) 1

]
.

We also have Θ−1
τ = ΦG∗

τGτ
, where

G∗
τGτ =

1

cos(τ )

[
1 −i sin(τ )

i sin(τ ) 1

]
.

One can rewrite this as

Θτ =
1

cos(τ )
[�− i sin(τ )MsignP] and Θ−1

τ =
1

cos(τ )
[�+ i sin(τ )MsignP] .

Here the operator P interchanges the edges (therefore it corresponds in fact to the
parity operator in a quantum-mechanical interpretation of the model) and Msign

denotes the multiplication by +1 on the first edge and by −1 on the second edge
(therefore, identifying the graph with the real line, Msign corresponds to the mul-
tiplication by sign). This is, up to a constant factor, the metric operator given
in [44, Chap. 2.5].

Considering the same boundary conditions at the central vertex on the com-
pact star graph with two edges, one obtains that the operator is similar to a
self-adjoint Laplacian for any self-adjoint boundary condition imposed at both end-
points simultaneously, in particular for Dirichlet boundary conditions as considered
in [44, Chap. 2.5]. In all cases a similarity transform is given by ΦQGτ

and a metric
operator is given by Φ(G∗

τGτ )−1 .

6.4.2. Irregular case. Let τ = π/2. One has[
0 1
0 0

]
=

1

2
Aπ/2

[
1 1
−i i

]
and

[
0 0
0 1

]
=

1

2
Bπ/2

[
1 1
−i i

]
.

Hence, by Theorem 6.2, the operator −Δ(Aπ/2, Bπ/2) on the star graph with only
two external edges is unitarily equivalent to −Δ(A′, B′) with

A′ =

[
0 1
0 0

]
and B′ =

[
0 0
0 1

]
.

These boundary conditions are ψ2(0) = ψ′
2(0) = 0, that is −Δ(A′, B′) is the direct

sum of the minimal operator −Δ0 on one edge and the maximal operator −Δ on
the other edge. Recall that σ(−Δ(Aπ/2, Bπ/2)) = C.
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6.4.3. Irregular compact case. Consider a compact star graph and more generally
let A−, B− define arbitrary irregular boundary conditions at the central vertex,
and a+, b+ with Rank(a+, b+) = 1 define boundary conditions at the endpoints,
such that one obtains boundary conditions of the form (6.4). Hence there is a
ψ ∈ KerA− ∩ KerB− 
= {0} with ‖ψ‖ = 1 and there is a unitary map in K

mapping ψ to a unit vector ei, i ∈ I. The boundary conditions

A′− = A−U and B′− = B−U

define a unitarily equivalent operator, but the edge i is decoupled from the rest of
the graph and the operator on this edge has domain

{ψ ∈ Dj | a+ψ(a)− b+ψ′(a) = 0}

which defines by Proposition 4.2 an operator with entire C in the spectrum. This
shows also that the operator defined on a compact star graph with only two internal
edges of equal length, where the boundary conditions at the central vertex are
given by Aπ/2, Bπ/2 and at the endpoint arbitrary regular boundary conditions
are imposed has empty resolvent set. This reproduces some of the results from
[44, Chap. 2.5].

6.4.4. Relation to Example 3.1. Consider the boundary conditions defined by

A =

[
1 −1
0 0

]
and B =

[
0 0
1 −1

]
.

Then one obtains

1√
2
AU =

[
1 0
0 0

]
,

1√
2
BU =

[
0 0
1 0

]
, where U =

1√
2

[
1 1
1 −1

]
,

and U maps KerA ∩KerB to span{e2}. These boundary conditions define on one
edge the minimal operator −Δ0 and on the other edge the maximal operator −Δ.
For a compact star graph with these boundary conditions at the central vertex the
same holds.

Note that for Aπ/2, Bπ/2 one has[
1 −1
0 0

]
= Aπ/2

[
1 0
0 −i

]
and

[
0 0
1 −1

]
= Bπ/2

[
1 0
0 −i

]
,

hence the operator defined by Aπ/2, Bπ/2 at the central vertex of a star graph with
two edges of equal, possibly infinite, length is unitarily equivalent to the operator
− sign(x) d

dx sign(x) d
dx , if in addition at the endpoint the same boundary conditions

are imposed.

6.5. Applications to self-adjoint Laplacians. Theorem 6.2 and its Corollary 6.3
can also be interestingly applied to self-adjoint Laplacians, in order to simplify the
computation of the spectrum. Consider a compact star graph (see Figure 1(a) for
an example with three edges) with standard (or Kirchhoff) boundary condition at
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the central vertex v, where deg(v) = ν, i.e.

Aν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Bν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.(6.5)

It is known that

[S(k,Aν , Bν)]ij =
2

deg(v)
− δij

(see, e.g., [24, Ex. 2.4]), and furthermore, it admits the representation

S(k,Aν , Bν) = P⊥
ν − Pν ,

where Pν is the orthogonal projector onto KerBν and its complementary projector
P⊥
ν = � − Pν is the orthogonal projector onto the space spanned by the vector

{wν}j = 1, j = 1, . . . , deg(v). Hence S(k,Aν , Bν) has the eigenvalues −1 of multi-
plicity deg(v)−1 and +1 of simple multiplicity. At the ends of the leads one imposes
for example Dirichlet boundary conditions. Then by applying Theorem 6.2 one ob-
tains that this operator is iso-spectral to a direct sum of operators on intervals.
Namely, deg(v) − 1 Dirichlet Laplacians on intervals [0, a] and one Laplacian on
[0, a] with Dirichlet boundary condition at a and Neumann boundary condition
at 0. This provides a complete picture of the spectrum. The spectrum is purely
discrete and the solutions kn, n ∈ N, of sin(ka) = 0 yield eigenvalues k2n of multi-
plicity deg(v)− 1 and the solutions km, m ∈ N, of cos(ka) = 0 yield eigenvalues k2m
of multiplicity one.

(a) A compact star graph (b) Loop as a graph with two

vertices

Figure 1. Graphs considered in Subsection 6.5

Consider as a further example a compact graph consisting of two vertices V =
{v1, v2} connected by n edges I = {i1, . . . , in} of the same length a > 0 (see
Figure 1(b) for an example with two edges which is in fact a loop). Each of the
two vertices is a vertex of degree ν = n, and now one imposes at each vertex the
standard boundary conditions (6.5).
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For this graph the boundary conditions have the block structure

A =

[
A++ 0
0 A−−

]
and B =

[
B++ 0
0 B−−

]
with respect to the decomposition KI = K+

I ⊕K−
I . Furthermore A++ = A−− and

B++ = B−−, where

A++ = Aν and B++ = Bν ;

here Aν and Bν are the matrices from (6.5). Applying as in the previous example
the diagonalisation of S(k,Aν , Bν) one arrives at the conclusion that the Laplacian
−Δ(A,B) with standard boundary conditions on this graph with two vertices is
unitarily equivalent to the direct sum of (n − 1) copies of the Dirichlet Laplacian
on the interval of length a and one copy of the Neumann Laplacian on such an
interval. This gives immediately the spectrum of the operator which is purely
discrete, and given by the eigenvalue zero of multiplicity one and by the eigenvalues
k2m of multiplicity n, where km, m ∈ N, solves the equation sin(ka) = 0.

More generally, one can consider such a compact graph where at both vertices
one imposes the same boundary conditions. For instance, consider such a compact
graph with two edges I = {i1, i2} of equal length a > 0 and two vertices V = {v1, v2}
with ∂+(i1) = ∂+(i2) and ∂−(i1) = ∂−(i2), that is a loop with two vertices. One
imposes at each vertex boundary conditions Aτ , Bτ given in Example 3.5, both
with the same τ ∈ [0, π/2). Applying Corollary 6.3 delivers that the corresponding
operator is similar to the Laplacian on the circle with arc length 2a.

Appendix A

This appendix is devoted to the proof of Proposition 4.7.

Definition A.1 ([27, Def. 3.9]). The operator K on the Hilbert space H is called an
integral operator if for all j, j′ ∈ E∪I there are measurable functions Kj,j′(·, ·) : Ij×
Ij′ → C with the following properties:

(1) Kj,j′(xj , ·)ϕj′ ∈ L1(Ij′) for almost all xj ∈ Ij ,
(2) ψ = Kϕ with

ψj(xj) =
∑

j′∈E∪I

∫
Ij′

Kj,j′(xj , yj′)ϕj′(yj′)dyj′ .

The (I ∪ E)× (I ∪ E) matrix-valued function (x, y) �→ K(x, y) with

[K(x, y)]j,j′ = Kj,j′(xj , yj′)

is called the integral kernel of the operator K.

In order to prove Proposition 4.7, we adapt the proof of [24, Lem. 4.2], where
the resolvents of self–adjoint Laplace operators are considered, to the situation of
more general regular boundary conditions.

By assumption the operator S(k,A,B) is defined and � −S(k,A,B)T (k; a) is
invertible for k with Im k > 0. Hence the kernel rM(x, y; k) defined in Proposi-
tion 4.7 is well defined, and with Im k > 0 it defines a bounded operator RM(k) in
H by

RM(k)ϕ =

∫
G

rM(·, y; k)ϕ for ϕ ∈ H.
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In order to prove that RM(k) defines the resolvent operator, it suffices to check

(i) RM(k)ϕ ∈ Dom(Δ(A,B)), for all ϕ ∈ H,
(ii) (−Δ(A,B)− k2)RM(k)ϕ = ϕ, for all ϕ ∈ H, and
(iii) the symmetry relation rM(y, x; k)∗ = rM∗(x, y,−k).

The first two assertions prove that (−Δ(A,B)− k2)RM(k) = �H, that is RM(k) is

the right inverse. By (iii) one proves that also (−Δ(A,B)∗ − k
2
)R(k)∗M = �H, and

taking the adjoints one obtains RM(k)(−Δ(A,B) − k2) ⊂ �H. This proves that
RM(k) is also the left inverse.

Using [24, Lem. 4.2] and (4.2), one can also rewrite rM(x, y; k) as

rM(x, y; k) = r0(x, y; k) + r1M(x, y; k),

r1M(x, y; k) = − i

2k
Φ(x, k)Z(k;A,B, a)−1(A− ikB)R+(k; a)

−1Φ(y, k)T .

One can still prove (i) and (ii) whenever Z(k;A,B, a) is invertible proving that
R(k) defines the right inverse, but one cannot use the same proof for showing that
the symmetry relation (iii) holds.

Proof of (i). With ψ = RM(k)ϕ, for ϕ ∈ H one clearly has ψ ∈ D. Furthermore,
for brevity set

G(k) := −Z(k;A,B, a)−1(A− ikB)R+(k, a)
−1.

Assume that ϕj ∈ Hj vanishes in a small neighbourhood of xj = 0 and, in addition,
in a small neighbourhood of xj = aj if j ∈ I. Then∫

Ij

eik|xj−yj |ϕj(yj)dyj =

∫
Ij

e−ik(xj−yj)ϕj(yj)dyj

holds for sufficiently small xj ∈ Ij , and for xj ∈ Ij sufficiently close to aj one has∫
Ij

eik|xj−yj |ϕj(yj)dyj =

∫
Ij

eik(xj−yj)ϕj(yj)dyj .

Therefore one obtains for the traces

ψ =
i

2k
R+(k; a)

−1

∫
G

Φ(y, k)Tϕ(y)dy +
i

2k
X(k; a)G(k)

∫
G

Φ(y, k)Tϕ(y)dy,

ψ′ =
1

2
R+(k; a)

−1

∫
G

Φ(y, k)Tϕ(y)dy − 1

2
Y (k; a)G(k)

∫
G

Φ(y, k)Tϕ(y)dy.

Hence,

Aψ +Bψ′ =
i

2k

{
(A− ikB)R+(k; a)

−1 + Z(k;A,B, a)G(k)
}∫

G

Φ(y, k)Tϕ(y)dy

= 0.

Thus RM(k) maps a dense subset of H to Dom(Δ(A,B)). By continuous continu-
ation the claim follows for all ϕ ∈ H which proves (i). �

Proof of (ii). Assume that ϕj ∈ C∞
0 (Ij) for every j ∈ I∪E. Since i

2ke
ik|x−y| defines

the Green’s function on the real line it follows that

− i

2k

(
d2

dx2
j

+ k2

)∫
Ij

eik|xj−yj |ϕj(yj)dyj = ϕj(xj), j ∈ I ∪ E.
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Note that the remainder vanishes, and therefore one has proven the identity(
−Δ(A,B)− k2

)
RM(k)ϕ = ϕ

for a dense subset of H and by continuous continuation the claim follows. �

Proof of (iii). The relation r0(y, x; k)∗ = r0(x, y,−k) can be verified directly. For
the remainder one obtains

r1M(y, x, k)∗ =
i

2(−k)
Φ(x,−k)R+(−k; a)−1S(k,A,B)∗

×
[�− T (−k; a)S(k,A,B)∗

]−1
R+(−k; a)−1Φ(y,−k)T .

Note that

S(k,A,B)∗
[�− T (−k; a)S(k,A,B)∗

]−1

=
[�−S(k,A,B)∗T (−k; a)

]−1
S(k,A,B)∗

and S(k,A,B)∗ = S(−k,A′, B′), where

A′ := −1

2
(S(k,A,B)∗ − �) and B′ :=

1

−2ik
(S(k,A,B)∗ + �) .

From Proposition 3.7 it follows that r1M(y, x; k)∗ = r1M∗(x, y;−k), and therefore

RM(k)∗ = RM∗(−k). �
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