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STRONG CONVERGENCE TO THE HOMOGENIZED LIMIT
OF PARABOLIC EQUATIONS
WITH RANDOM COEFFICIENTS

JOSEPH G. CONLON AND ARASH FAHIM

ABSTRACT. This paper is concerned with the study of solutions to discrete
parabolic equations in divergence form with random coefficients and their con-
vergence to solutions of a homogenized equation. It has previously been shown
that if the random environment is translational invariant and ergodic, then so-
lutions of the random equation converge under diffusive scaling to solutions of
a homogenized parabolic PDE. In this paper point-wise estimates are obtained
on the difference between the averaged solution to the random equation and
the solution to the homogenized equation for certain random environments
which are strongly mixing.

1. INTRODUCTION

Let (Q,F, P) be a probability space and denote by ( - ) expectation w.r. to
the measure P. We assume that the d dimensional integer lattice Z? acts on Q by
space translation operators 7,9 : 0 =, x € Z?, which are measure preserving and
satisfy the properties 7,,07y,0 = Taty,0, 70,0 = identity, z,y € Z?. We assume also
that either the integers Z or the real line R acts on 2 by time translation operators
To,t © 8 — €, where t € Z in the former case and ¢t € R in the latter. In either
case we assume that for all ¢, s, one has 74 +79 s = 7o,t+s and that the operators 7y ;
commute with the operators Te,0, SO We may set 7, ¢ = T; 0T0,t = 70,tTa,0-

Consider a bounded measurable function a : Q — RH41D/2 from Q to the space
of symmetric d x d matrices which satisfies the quadratic form inequality

(1.1) Mg <alw) <Al;, weq,

where I is the identity matrix in d dimensions and A, \ are positive constants. In
the case when Z acts on {2 by operators 7y, we shall be interested in solutions
u(x,t,w) to the discrete parabolic equation

(1.2) w(z,t+1,w)—u(z, t,w) = —V*a(ryw)Vu(z, t,w), =z € 7, t>0,weq,
with initial data
(1.3) u(z,0,w) = hz), z€Z% we.

In the case when R acts on Q by operators 7y, we shall be interested in solu-
tions u(z,t,w) to the corresponding continuous in time, discrete in space parabolic
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equation

ou(z,t,w)
ot

with initial data ([3). In (L2) and (L4) we take V to be the discrete gradient
operator, which has adjoint V*. Thus V is a d dimensional column operator and
V* a d dimensional row operator which act on functions ¢ : Z¢ — R by

(1.5)  Vo(z) = (Vio(@),..., Vad(x)), Vid(z)=¢(z+e;) — ¢(2),
Vi) = (Vid(@),..., Vid(z)), Vie(z)=d(x —e;) — d(x).

In (L) the vector e; € Z< has 1 as the ith coordinate and 0 for the other coordi-
nates, 1 <1 <d.

One expects that if the translation operators 7, + are ergodic on €2, then solutions
to the random equation (2] or (I4]) converge to solutions of a constant coefficient
homogenized equation under diffusive scaling. Thus suppose f : R — R is a C®
function with compact support, and for € satisfying 0 < ¢ < 1 set h(z) = f(ex), = €
Z?, in ([L3), and let u.(z,t,w) denote the corresponding solution to (I2) or (L4)
with this initial data. It has been shown in [21], just assuming ergodicity of the
translation operators, that u.(z/e,t/e?,w) converges in probability as e — 0 to a
function upem(z,t), © € R%, t > 0, which is the solution to a constant coefficient
parabolic PDE

1.4 = —V*a(rpw)Vu(z, t,w), zeZ? t>0, weQ,
( :

0 om at %
(1.6) M‘T(x) = —V*apomVipom(z,t), z€R% ¢ >0,
with initial condition
(1.7) Unhom(2,0) = f(z), =z¢€ R% .

The d x d symmetric matrix apon, in (LO) satisfies the quadratic form inequality
(TI). Similar results under various ergodic type assumptions on 2 can be found in
[L6L12L28]. In time-independent environments the corresponding results for elliptic
equations in divergence form have been proven much earlier; see [1920L26133].

In this paper we shall confine ourselves to studying the expectation ( u(z,t,-) )
of the solution u(x,t,w) to (L2) and (L) with initial condition (I3]). Our first
theorem is consistent with the result of [2I] already mentioned:

Theorem 1.1. Let f : R* = R be a O function of compact support and set
h(z) = f(ex), x € Z%, in [L3). For the translation group 7., x € Z%t € Z, on Q
assume that one of the operators Te; 0, j =1,...,d, or 791 is ergodic on (2, F, P).
Then if 4dA < 1 the solution u.(x,t,w) of (L2) with initial date (L3) has the
property

(1.8) lim sup | ue(x/e,t/2,-) ) — tpom(z,t)] = O.

€20 peezd tec2Z+

For the translation group 7,4, * € Z%,t € R, on Q assume that one of the operators
Te;0, J = 1,...,d, or the continuous 1 parameter group 1o, t € R, is ergodic on
(Q,F,P). Then the solution uc(z,t,w) of (L) with initial data (L3) has the
property

(1.9) lim sup [{ us(x/s,t/e2, ) ) — Unom(z,t)] = 0.
e—0 r€eZe >0
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It has been shown in the case of homogenization of elliptic equations in divergence
form with random coefficients that a rate of convergence in homogenization can be
obtained provided the random environment satisfies some quantitative strong mizing
property. The first results in this direction were proven in the 1980’s by Yurinski
[32], but there have been several papers more recently extending his work. In
particular, Caffarelli and Souganidis [10] have obtained rates of convergence results
in homogenization of fully nonlinear PDE. In recent work of Gloria and Otto [15]
an optimal rate of convergence result was obtained for linear elliptic equations in
divergence form. Following an idea of Naddaf and Spencer [24], they express the
quantitative strong mixing assumption as a Poincaré inequality. This formulation
of the strong mixing assumption is very useful when the random environment is a
Euclidean field theory with uniformly convex Lagrangian.

For the case of parabolic equations in divergence form with random coefficients,
we shall obtain a rate of convergence, but only for the averaged solution to the
parabolic equation, as in Theorem 1.1, and for two particular environments. For
the discrete time problem ([2)), (I3]) we assume the environment is i.i.d. That
is, we assume the variables a(7, ), (z,t) € Z9T! are i.i.d. For the continuous
time problem (3], (L4) we assume the environment is the stationary process
associated with a massive Euclidean field theory. The only paper we were able
to find in the literature proving results on rate of convergence in homogenization
for the parabolic problem is the recent paper [23], in which the environment is
assumed fixed in time. In [23] as in the present paper, the results are restricted to
establishing rates of convergence for the mean (u.(z/e,t/e2,-)) of the solution of
the parabolic equation with random coefficients to unom (2, t).

The Euclidean field theory is determined by a potential V : R — R, which is
a C? uniformly convex function, and a mass m > 0. Thus the second derivative
a(-) =V"(:) of V(-) is assumed to satisfy the inequality ([I]). Consider functions
¢ : Z% x R — R, which we denote as ¢(z,t) where z lies on the integer lattice Z?
and t on the real line R. Let 2 be the space of all such functions which have the
property that for each z € Z? the function ¢ — ¢(x,t) on R is continuous, and
let F be the Borel algebra generated by finite dimensional rectangles {¢(-,-) € Q :
|p(xs,t;) —as| <7y, i =1,...,N}, where (z;,t;) € Z* xR, a; €R, 7, >0, i =
1,...,N, N > 1. The translation operators 7., : Q@ — Q, (z,t) € Z¢ x R, are
defined by 7, 1¢(2,8) = ¢(x + z,t + 8), 2 € Z¢, s € R.

For any d > 1 and m > 0 one can define [7}[I4] a unique ergodic translation
invariant probability measure P on (2, F) which depends on the function V' and
m. In this measure the variables ¢(z,t), « € Z¢ t > 0, conditioned on the variables
#(z,0), = € Z%, are determined as solutions of the infinite dimensional stochastic
differential equation

1
(1.10) do(w,1) = — Y. V(o' 0) +m?e(a’,0)°/2} di+dB(a, 1) |

' €Ze

9
O¢(z,t)

where z € Z% and t > 0, and where B(z,-), = € Z¢ are independent copies of
Brownian motion. Formally the invariant measure for the Markov process (LI0) is
the Euclidean field theory measure

(1.11) exp | — Z V (Vé(z)) +m?p(x)?/2 H d¢(x) /normalization.

z€Z4 z€Z4
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Hence if the variables ¢(x,0), x € Z¢, have distribution determined by (LII]), then
¢(-,t), t > 0, is a stationary process and so can be extended to all t € R to yield
a measure P on (€, F). For this measure the translation operators 7., (x,t) €
Z¢ x R, form a group of measure preserving transformations on (£2, F, P).

Theorem 1.2. Let f : R* — R be a C* function of compact support and set

h(z) = f(ex), = € Z%, in (L3). Then if 4dA < 1 and the variables a(1,-), (z,t) €

Z4*Y ) are i.i.d., the solution u.(z,t,w) of (L2) with initial data ([L3) has the

property

(1.12) sup [(us(x/e, t/e,2) ) — tunom(z,t)| < Ce®, 0<e<1,
z€eZd tee?Z+

where a > 0 is a constant depending only on d, A/ and C is a constant depending
only on d, A, A and the function f(-).

Let a : R — RUHD/2 pe g CV function on R with values in the space of
symmetric d X d matrices which satisfy the quadratic form inequality (LI). Let
(Q, F, P) be the probability space of fields ¢(-,-) determined by (LI0), (CII)), and
set a(-) in (L) to be a(p) = a(¢(0,0)), ¢ € Q. Suppose in addition that the
derivative Da(-) of a(-) satisfies the inequality || Da(-)||co < A1. Then the solution
ue(z,t,w) of (LAl) with initial data (3) has the property
(1.13) sup  [{uc(w/e,t/e®,) ) — upom(w,1)] < Ce¥, 0<e<1,

x€eZ t>0
where o > 0 is a constant depending only on d, A/\ and C is a constant depending
only on d, A\, \,m, A1 and the function f(-).

Remark 1. 1t is clear that the exponent « > 0 in Theorem 1.2 must satisfy o < 2.
This follows from the fact that the error in approximating the solution to the heat
equation on R? by the solution to the corresponding lattice problem on ¢Z¢ is
O(£?). One can conclude from our method of proof that if /A is sufficiently close
to 1, then the exponent a can be taken equal to 1. The exponent « can be taken
equal to 2 for A/A sufficiently close to 1 provided V in ([2), (I4)) is defined by
central difference rather than forward difference as in (L3 and a(-) is a diagonal
matrix. In addition the environment (£2, F, P) must satisfy a reflection invariant
condition. The i.i.d. environment satisfies this reflection invariance condition, but
the massive field theory environment determined by (LIO) satisfies it only if the
function V : R? — R is reflection invariant (see Appendix).

We consider what Theorem 1.2 tells us about the expectation of Green’s function
for the equations (I2]) and (). By translation invariance of the measure we have
that

(1.14) (u(@,t,-)) =Y Galz—y,t)h(y), =€z,

yezZd

where G, (z,t) is the expected value of Green’s function. Setting h(z) = f(ex), = €
Z4, then (LI4) may be written as

(1.15) (ue(z/e,t/e?,) ) = /Zd G, <

where integration over eZ¢ is defined by

(1.16) /ng(z) dz = Z g(z) 2.

z€eZ?

r—z t

) f(2) dz, x€eZf,

e g2
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Let Ga,.,. (7,t), z € RY t >0, be Green’s function for the PDE ([LLf]). One easily
sees that Ga, (-, ) satisfies the scaling property

(1.17) e G, (x)e,t)E?) = Ga,,.(2,1), >0, xR t>0.

Hence Theorem 1.2 implies that averages of e~ 9Gq(7 /¢, t/e?) — e~ 9Ga,,. (v /c,1/?)
with respect to & € €Z? are bounded by Ce® for some constant C. Conversely
Theorem 1.2 is implied by the point-wise estimate on Green’s functions:

(1.18) ’E_dGa(,T/E, t/e?) — e Ga,. (x/c, t/e?)]

Ce® .|z | |?
< [At + £2)(d+a)/2 exp | —ymin | =, ;
provided At > €2 and = € ¢Z°.

It is clear that the inequality ([ZI8) for ¢ < 1 follows from the same inequality
fore =1:

C ) ||
(1.19) ’Ga(ac,t)—Gahom(a:,tﬂ < mexp {—’ymm{|x|, At—i—l}} ,

provided At > 1 and 2 € Z¢. We shall prove such an inequality and also similar
inequalities for the derivatives of the expectation of Green’s function,
(1.20)

|VGa(2,t) — VGa,,,. (. 1)]

2
< ¢ exp |—ymin < |z] i
= [At 4 1)(d+1ta)/2 TAt+1)] 7

(1.21)

|VVGa(z,t) = VVGa,,, (2,t)| ¢

: |=[?
= (At + 1)@rzra)/2 P [_Wmm{m’ At+1f]°

Theorem 1.3. Let (2, F, P) and a(w), w € Q, be as in the statement of Theorem
1.2. Then for d > 1 there exists o,y > 0 depending only on d and A/X, such
that (LI9), (C20) and [LZ2I) hold for some positive constant C. In the discrete
time case, C depends only on d, A, \, and in the continuous time case, only on

d,)\,A,TTL,Al.

The proofs of Theorem 1.2 and Theorem 1.3 follow the same lines as the proofs
of the corresponding results for elliptic equations proved in [I0]. One begins with
a Fourier representation for the average of the solution to the random parabolic
equation, which was obtained in [§]. Then for the i.i.d. environment the general-
ization by Jones [I8] of the Calderon-Zygmund theorem [5] to parabolic multipliers,
together with some interpolation inequalities, yields Theorem 1.2 and the inequal-
ities (CI9), (T20) of Theorem 1.3 in the discrete time case. Similarly to [10] we
need to use the result of Delmotte and Deuschel [I1] on the Holder continuity of the
second difference VVGa(z,1) in order to prove (L2I)). In the continuous time case
we need in addition to prove some Poincaré inequalities for time-dependent fields.
To do this we follow the methodology of Gourcy-Wu [16] by using the Clark-Ocone
formula [25].

2. FOURIER SPACE REPRESENTATION AND HOMOGENIZATION

In this section we shall prove the homogenization result Theorem 1.1. The proof
of this is based on a Fourier representation for the solutions of (L2), (L4)), which
was given in [§].
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We begin by summarizing relevant results from [§] for the discrete time equation
(T2). Thus we are assuming a probability space (2, F, P) and a set of translation
operators 7, ¢, T € Ze,t € Z, acting on Q. For ¢ € R% and v : Q — C a measurable
function we define the £ derivative of ¥(-) in the j direction 0, ¢ and its adjoint 8;5
by
(2.1) et (w) e "% Y(Te; 0 W) — (W),

Oiet(w) = €Y(Toe, 0 w) — P(w).
The d dimensional column ¢ derivative operator O¢ is then given by 0 =
(D65, 0a¢). Similarly to (L3) its adjoint J; is given by the row operator
0f = (07 ¢y, 07¢). Let P L3(Q) — L?*(Q) be the projection orthogonal to
the constant function, and n € C with real part be denoted by 7 and imaginary

part by 37 so that n = Rn + i3n. Then for £ € R? and € C with R > 0 there
is a unique square integrable solution ®(&,7n,w) to the equation

(2.2) e"®(&,n, To1w) — (&, m,w) + Pofa(w)de®(§,n,w) = —Pdfa(w),

provided 4dA < 1. Thus there is a unique row vector ®(&,n,w) = [@1(&,n,w), ...,
y(&,m,w)] with ®;(&,m,-) € L*(Q), j = 1,...,d, which satisfies (Z2)). Let ¢(¢,n) =
[gr.~(§,m)] be the d x d matrix function given in terms of the solution to ([2:2) by
the formula

(2.3) q(&n) = (a() )+ (a()9:2(&,n,-) ) -

One can easily see that the homogenized diffusion constant ayem, of (L) in the case
of an ergodic environment (§2, F, P) is given by the formula anom = lim, o ¢(0, n).
This follows by observing that the solution to ([Z2) in the case £ =0, Rn > 0 is
also the solution to the equation

(24) 6”@(0,’)777'0’1(40) - @(577770.}) + 8§a(w)80<1>(§, 77700) = _aga(w) )

since ( ®(0,7n,-) ) = 0. The standard formula for ay., is given by anem =
lim,, 0 ¢(0,7n), where ®(0,7,w) is the solution to (Z4); see [15,32] for the ellip-
tic case 79,1 = identity and [2I] for the parabolic case.

We define the d dimensional periodic column vector e(¢) € C? to have jth entry
given by the formula e;(§) = e7*¢ — 1, 1 < j < d. It was shown in [8] that the
solution u(z,t,w), © € Z4,t =0,1,2,...,w € Q, to the initial value problem (L2,
(@T3) has the representation

(2.5)

u(z,t,w)

B 1 il(g)efié-wn(tﬂ)
a (27T)d+1 /[ﬂ,fr]d+1 en—1+ e(f)*Q(f,n)e(f)

where h(-) is the Fourier transform of h(-),

(2.6) h(¢) = Z h(z)e® .

TEZ?

[1 + CI)(E’ , Tw7tw)e(§)] d[%n] dfa

Note that the integration in (23] with respect to S over the interval [—7, 7] is for
any fixed value of Rn > 0. Since the integrand is a function of n which is analytic
in n for $n > 0 and also periodic of period 27 with respect to I, the integral on
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the RHS of ([2.3) is independent of Ry > 0. It follows from (23] that the Fourier-
Laplace transform Gy (€,7) of the averaged Green’s function G-, ) for (L2), (L3)
given by

(2.7) Gal&,n) = Z Z Galx,t)expliz.é —nt], € €RI, Ry >0,

t=0 zeZd

has the representation

(2.8) Gal€n) = €"/[e" =1+ e(€) (&, m)e(€)] -

The solution to (28] can be generated by a convergent perturbation expansion.
Let H(9) be the Hilbert space of measurable functions ¢ : 2 — C? with norm ||¢)|
given by [[¢]|? = ( [¢(-)]* ). We define an operator T ,, on H(f2) as follows: For
any g € H, let ¢(£,n,w) be the solution to the equation

(29) % [677 1/)(5, UB ’7'07100) - 1/)(5, nvw)] + a§3§¢(f, n, UJ) = 829((")) .
Then T¢ »g(-) = 0:9(§, 7, ), or more explicitly

(2.10) Teyg(w) = AZe 1D N YV G, 1)} expl—iw€] g(7 1 1w),

t=0 rEZ
where G (+) is the solution to the initial value problem
(2.11) Ga(z,t +1) — Ga(x,t) + AV*VGA(z,t) = 0, z2€Z% tcZ t>0,
Ga(2,0) = 0(x), z€Z?.

Equation (ZIT)) has a unique solution provided 4dA < 1, and the function G(x,t)
satisfies an inequality

(2.12) 0 < Ga(z,t) + (At + DY VGA(z, t)] + (AL + 1)|[VV*Ga(z, t)]

< Cy ox _min{|:1:|, lz2/(At+1)}
= (At +1]4/2 P Cy ’

where Cy > 0 is a constant depending only on dimension d. The inequality (2.12])
can be proved using the Fourier inversion formula and contour integration, since
the Fourier transform of G can be explicitly computed from (ZIT)).

The operator T ,, is bounded on H () with || T¢ , || < 1, provided ¢ € R4, Rn > 0.
Now on setting a(-) = A[l4 — b(+)], one sees that (Z2]) is equivalent to the equation

(2.13) O ®(&,1,) = PTen[b(-)0c® (&, n, )] + PTep[b(:)] -
Since ||Te || < 1and ||b(w)|| < 1-XA/A, w € Q, the Neumann series for the solution
o ([2I3) given by
(2.14) 0e8(E ) = 3 [PTenb
m=1

converges in H(2).
It will be useful later to express the operator T¢ , in its Fourier representation.
To do this we use the standard notation for the Fourier transform of a function
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h : Z41 — C which we denote by h(z,t), z € Z%t € Z. Letting B(C,L‘)), ¢ €
[—m,7]%, 6 € [—m, 7], be the Fourier transform of A(-,-), then

(2.15) h(C.0) = D h(z,t)em <ttt

T€Z tEZ
The Fourier inversion formula yields

1

/ h(¢,0)e <0 qc dp, zeZiteZ.
[ ﬂ-’ﬂ.]dﬁ»l

Now the action of the translation group 7,0, = € Z%, on Q can be described by a
set Ay, ..., Aq of commuting self-adjoint operators on L?(f2) so that

(2.17) f(Te0) = expliz. Alf(-), z€Z¢ felL?*Q),

where A = (A1,...,Ay). Similarly the action of the translation group 704, t € Z,
on  can be described by a self-adjoint operator B on L?(£2) which commutes with
Ay, ..., Ag so that

(2.18) f(r04:) = exp[—itB]f(:), t€Z, feL*Q).

It follows then from 2.9)), 2I7), (ZI8) that

Ae(§ — A)e"(€ - A)
2.19 T, ) o= - .
( ) &ng( ) 67],13 -1 4 Ae(f _ A)*e(§ _ A) g( )
The Neumann series ([2.14]) for the solution to (213 yields a convergent pertur-
bation expansion for the function ¢(¢,n) of (Z3). Thus for m = 1,2,..., let the

matrix function h,,(€,7m) be defined for ®n > 0, ¢ € R4, by

(2.20) hm(§,m) = { b(-) [PTenb()]™ ) ;

whence (Z3)), (2I4) imply that

(2.21) a&m) = (al)) =AY hu(&n).
m=1

It is easy to see that the function q(¢,7) is C™ for ¢ € R4, Ry > 0. As in [8[10]
we can extend this result as follows:

Proposition 2.1. Suppose that 4dA < 1 and any of the translation operators
Te; 00 1 < j <d, or o is ergodic on Q. Then the limit lim¢ ) 0,0)9(§,n) =
q(0,0) exists. If any of the translation operators is weak mizing [27] on Q, then
q(€,m), € € RY, Ny >0, extends to a continuous function on & € RY, Rn > 0.

Proof. We follow the same argument as in Lemma 2.5 of [8] and Proposition 2.1 of
[10]. O

Remark 2. Note that the projection operator P in equation (22 plays a critical
role in establishing continuity. For a constant function g(-) = v € C¢, one has

(2.22) Teng() = [e(€) v]e(€)/[(e" = 1)/A+e(€)*e(©)]
which does not extend to a continuous function of (£,7) on the set ¢ € R4, Rn > 0.

Next we show that the function ¢(¢,7n) with domain ¢ € R, 1 > 0, can be
extended to complex & = R¢ + iS¢ € C? with small imaginary part.
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Lemma 2.1. The C* operator valued function (§,n) — Tt with domain {(§,7) :
¢ € R, Ry > 0} and range the space of bounded linear operators B[H ()] on H(L)
has an analytic continuation to a region {(£,m) € CHL .0 < Ry < A, |J¢| <
Cy+/Rn/A}, where Cy is a constant depending only on d. For (§,7) in this region
the norm of T¢,, satisfies the inequality ||T¢ || < 1+ Co|SE?/[Rn/A], where the
constant Co depends only on d.

Proof. That there is an analytic continuation to the region {¢ € C? : 0 < Ry <
A, |S¢] < Ciy/Rn/A} follows from [2.10), (2.12) using the fact that |[VV*Ga(x,t)]
is bounded by (At + 1)~ times the RHS of (ZI2)). For (£,n) in this region one has
that
(2.23)
R[-n(t+1)—iz-& < sup [-0>A(t+1)+Ci0|z|] < min{Cy|z|, C%x|*/4A(t+1)} .
|6]<1

Hence using the representation (2.10) for T¢ ,,, we see that the analytic continuation
extends to any region {¢ € C? : 0 < Rn < A, |S¢| < C1/Rn/A} provided Cy
satisfies the inequalities C; < O ', C? < 4C;', where Cj is the constant in (Z12).

The bound on ||T¢ ;|| can be obtained from (23)). Thus on multiplying (Z3) by
¥(&,m,T0.1w) we see that

e’n 1., -

(2.24) - 0Em, P < FIC0(Em, 7o) = AGZOElP (&, m,) )]

+ [ 9(&,n,70,1)05 () )] -

Since 4dA < 1 it follows that for ¢ € R? the operator I — AO; O is symmetric
non-negative definite. Hence if ¢ € R? one has that

(225) ‘< ¢(§7 UE 7-0,1')[1 - Aagag],(/)(fa m, ) >|
< (& m o) — ABOJH(E m, 70.17) )

+ < 1/;(57777')[1_ Aa§a§]¢(§aﬁa ) > .

N~

Similarly one has that

(2.26) [ B(Em 11105 0())
< (D& 70.0) 006166 01 )

1 2
+ 5 lgC)IP
We conclude from (2.24)-(226)) that ||T¢ ,|| < 1 provided ¢ € R? and Ry > 0. This
argument can then be extended as in Lemma 2.1 of [10] to ¢ € C<. 0

Corollary 2.1. The d x d matriz function q(§,n) with domain {({,n) : £ €
R?, Rn > 0} has an analytic continuation to a region {£ € C? : 0 < Rn <
A, IS¢ < Ci/ARn/A2}, where Cy is a constant depending only on d. There is a
constant Co depending only on d such that for & in this region,

B CoA?  [S¢|
(2.27) llg(€,m) —a(RE )l < — JR/A
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Proof. The fact that ¢(&,n) has an analytic continuation follows from the rep-
resentations (Z20), ([Z2), Lemma 2.1 and the matrix norm bound ||b(w)| <
1 - XA, we Q On summing the perturbation series (2.2I)), we conclude that
for ¢ satisfying |S¢| < C1/ARn/A2, then |q(€,7n)|| < C2A?/X for a constant Cy
depending only on d, provided C; is chosen sufficiently small, depending only on
d. By arguing as in Lemma 2.1 we also see that there are positive constants Cy, Cs
such that

(228)  ||Tey = Treall < ColSEl/VRI/A, €€ C IS¢ < CLy/Ru/A
The inequality ([227)) follows from (228)). O

It follows from Corollary 2.1 that for £ € C¢, n € C with fixed I¢ € R4, Rnp >
0 satisfying 0 < Rn < A, [SE] < Ci/ARn/A2, the periodic matrix function
(RE,3n) — q(&,n) on R4 with fundamental region [—7, 7]%+! is bounded.

Corollary 2.2. There exist positive constants Cy, Cy depending only on d and A/
such that

(2.29) €7 — 1+ e(§)"q(&,me(€)] > Csf Inl+ Ale(RE)?
provided 0 < on < A, || < Cr1/Rn/A.

Proof. The inequality ([2:29) follows from Corollary 2.1 and Lemma 2.7, Lemma 2.8
of [8]. O

Proof of Theorem 1.1 (Discrete time case). Taking h(z) = f(ex), we have from
Z3) that
(2.30)

(ue(x/e, t/E )

€ 621?5(5) —i&.a4n(t+e?)
d[Sn] d
d+1 / [—7/e,m/e]? /—Tr/gz es?n — 14 e(e€)*q(e€, e2n)e(&€) (S d€

where
(2.31) fo(&) = 3 et
yeeZd
We also have that
—zE z+nt
— (@3
(2.32) Unom (T,1) = 271' ey /Rd Rn+£* T ET0.0)E d[Sn] dg,
where f(-) is the Fourier transform of f(-),
(2.33) for = [ swersdy, cere,
R
Since f: R? — R is C™ of compact support it follows from (Z31)), [233) that
(2.34) sup I+ €Y < oo,
0<e<l€[—7/e,m/e]?
sup |f-(€) = FOIL+ €V /e® < o0,

0<e<l,€[—7/e,m/e]?

where N in (Z34) can be arbitrarily large.
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We first observe from ([234]) and Lemma 2.9 and Lemma 2.10 of [§] that

(2.35) j/ J/ﬂ/sz e fe(§e i tnitten
' g[>1/VAe |Jmje2 €71 = 1+ e(e€)*q(e€, e7n)e(e€)

for a constant C' depending only on the function f(-) and d, A\, A. Since the function

q(&,7n) is continuous at (£,7) = (0,0), we similarly see there exists for any § > 0 an

£(d) > 0 depending only on 4, d, A, A such that if ¢ < &(d), then

(2.36)

‘/ﬂ/ez EZen(t+52) 62617(t+62)

d[Sm)| de < Ce,

<9

e T () a6, Pele) | T = 1+ e(e) (0, 0)e(=6) "

for all & € [~7/e,m/e]? such that |¢| < 1/V/Ae. Tt follows from ([234), ([237),
[236)) that for any § > 0 there exists €(d) > 0 depending only on §,d, A, A, and the
function f(-) such that

(2.37)

< us(l'/E,t/SQ, ) >

/e 2 f (&)~ atn(t+e?)
- d[Sm) dg| < 6
/[w/s,w/g]d /ﬂ/sz e=™ 1 — 1 + e(£€)*q(0,0)e(c€) [Sn] d€| <

provided ¢ < e(6). If we use the identities
(2.38)
1 w/e? 62€n(t+52)

27 ez €51 — 1+ €(2£)*q(0,0)e(e€)

sup
r€eZ tee2Zt

d[Sn] = [1—e(€)*q(0,0)e(c&)]"*

1 et
2.39 —/—ds — exp[—{€"q(0,0)6}4] |
230) g [ e A = e H{Ea0.06)
we can conclude from (Z32), [237) that for any § > 0 there exists £(d) > 0
depending only on §,d, A, A, and the function f(-) such that

(2.40) sup ‘( ue(x/e,t/sz, ) - uhom(aj,t)‘ < 4,
z€eZd tee?Z+

provided e < £(9). O

Remark 3. Tt is easy to see that if 7, o for some j, 1 < j < d, or 79 1 acts ergodically
on 2, then

2.41 lim  [e®7 —1]||®(&,n,))? = o.

(2.41) m (e 1] (e, )|

In the case of an elliptic equation with random coefficients, the limit corresponding
to ([2:41) implies that the solution to the random equation converges in distribution
to the solution of the homogenized equation [I0]. This is not the case for the
parabolic problem due to the fact that the integrand in (230), when multiplied
by an arbitrary bounded function of 7, can have a logarithmic divergence upon
integration with respect to 7.
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In the continuous time case there is a similar development to the above. The
solution u(z,t,w) to (L3), (L) has the representation

(2.42)

u(zx,t, w)

B 1 oo ﬁ(g)efi@aﬂrnt Y 5
=T e o T T [ W T (6 )

where now the d dimensional row vector ®(&,n,w) is the solution to the equation
(243)  ®(€m,w) + ID(E, ,w) + POLa(w)IB(E,n,w) = —POLalw)

In (Z43) the operator 9 is the infinitesimal generator of the time translation group
7o, t € R. The d x d matrix function ¢(&,n) in (Z42)) is given in terms of the
solution to 243) by the formula ([Z3]). It follows from (Z42) that the Fourier
transform Ga(&,7) of the averaged Green’s function Gy (-, -) for (I4) defined by

(2.44) Ga(€,n) = /000 dt Z Ga(z,t) explixz.§ — nt]

TEZA

has the representation

(2.45) Ga(&m) = 1/[n+e(€) a&me(©)], R, Ry>0.
Let G(x,t), x € Z%, t > 0, be the solution to the initial value problem
OG (x,t
(2.46) gtc’ ) +V*'VG(z,t) = 0, zeZ t>0,
G(z,0) = 6(z), zeZ?.

Then the equation (243)) is equivalent to ([2.13]), where the operator T, is given
by the formula

(247)  Tenglw) = A / T it ST VY Ga (e, )} expl-iz ] g(ra ) |

0 r€Zd

with Ga(z,t) = G(z,At), x € Z%, t > 0. Note that in the continuous time case
there is no restriction on the value of A > 0. The operator T ,, of (Z47) is bounded
on H(2) with [|T¢ || < 1, provided £ € R4, 1 > 0, and hence the Neumann series
for the solution of [ZI3) converges in H(£2).

As in the discrete time case it will be useful later to express the operator 7% , in
its Fourier representation. To do this we use the standard notation for the Fourier
transform of a function h : Z% x R — C, which we denote by h(z,t), z € Z¢,t € R.
Letting fz((, 0), ¢ € [-m, 7% 6 € R, be the Fourier transform of h(-,-), then

(2.48) h(¢,0) = / T > hw, t)e e

- z€Z?

The Fourier inversion formula yields

1 o - . )
(2.49) h(z,t) = W/ /[ y h(¢,0)e 70 qc dh, 2z ZiteR.



STRONG CONVERGENCE 3053

Now the action of the translation group 7,0, = € Z%, on Q can be described by a
set Ay, ..., Aq of commuting self-adjoint operators on L?(f2) so that

(2.50) f(Te0) = expliz. Alf(-), z€Z¢ felL*Q),

where A = (A, ..., Aq). Similarly the action of the translation group 79, ¢t € R,
on ) can be described by a self-adjoint operator B on L?(€) which commutes with
Aq,..., A4 so that

(2.51) f(rop) = exp[-itB]f(-), teR, felL*Q),
whence the infinitesimal generator 0 in (Z43]) is given by 9 = —iB. It follows now

from (247), (Z50), 35I) that

Aefg — A)e* (€~ A)

(2.52) Teng() = . " g() -
n—iB+ Ae(§ — A)*e(€ — A)

The Neumann series for the solution to (ZI3), with the operator T, given
now by ([Z352), yields a convergent perturbation expansion ([220)), [22I) for the
function ¢(&,n). It is easy to see that the analogues of Proposition 2.1, Lemma 2.1
and Corollary 2.1 continue to hold for the continuous time case. In the continuous
time analogue of Corollary 2.2 the inequality (2:29)) is replaced by

(2.53) 0+ e(©)a(€,me(©)] = C[In] + Ale(RE)[] .
The inequality ([2353) follows from Lemma 5.3 of [§].

Proof of Theorem 1.1 (Continuous time case). We proceed as in the discrete time
case replacing (23] by ([2.42)) and using Lemma 5.4 and Lemma 5.5 of [§] in place
of Lemma 2.9 and Lemma 2.10 of [§]. O

3. RATE OF CONVERGENCE IN HOMOGENIZATION

In this section we shall prove Theorem 1.2 under the assumption that the solu-
tions ®(&,n,w) of (Z2)), 243) satisfy a certain property which we describe below.
In §5 we shall show that this property holds for the independent variable environ-
ment, and in §6 for the massive field theory environment. We first consider the
discrete time case, whence ®(&,n,w) is a solution to (Z2]).

For 1 < p < oo let LP(Z4*!, C? ® C?%) be the Banach space of d x d matrix
valued functions g : Z¥*! — C? ® C? with norm ||g||, defined by

(3.1) gl = sup > gla,tpl? if p < oo,
veC:|v|=1 (z,t)eZd+1

lgllec = sup [ sup Ig(x,t)vllv
veEC:|v|=1 | (z,t)€ZI+!

where |g(z,t)v| is the Euclidean norm of the vector g(z,t)v € C?. We assume the
following:

Hypothesis 3.1. There exists po(A/A) > 1 depending only on d,A/)\ and a con-
stant C' such that for 1 <p < po(A/A),

(3-2) 1P > gl t)b(re—i)[v+ 0 ®(En, e )ol] < Cligllplol
(a,t)€Zd+1

forall¢ € R, ne Cwith0 <Ry <A, and g € LP(ZH,C4 @ CY), v € CI.



3054 JOSEPH G. CONLON AND ARASH FAHIM

Remark 4. Note from Lemma 2.3 of [8] that since [|9:®(&,n, )v||? < AJv|?/A for
¢ € RY Ry > 0, the inequality ([3:2) holds for p = 1. Hence if (32 holds for
p = po(A/N), by the Riesz convexity theorem [31] it also holds for any p satisfying
1< p<po(A/A).

We show that if Hypothesis 3.1 holds, then the function ¢(§,7) defined by ([23)
is Holder continuous with exponent depending on d, A/\.

Lemma 3.1. Assume Hypothesis 3.1 holds. Then there exists a > 0 depending
only on d,A/X\ and a constant C, such that the d x d matriz function q(&,n) of
@3) satisfies the inequality

(3.3) la(¢'sn") = a(€m)ll < Cal[ 1€ =& + 10 —n)/AI? ]
forall¢',6 € RY, 0 < R/, Ry < A.
Proof. Tt follows from (2.20) that

(3.4)
k

hi(€0)~h(€m) = D _(b() [PTeryyb()F ™! PlTery ~Teb() [PTeyb ()] ) .

j=1

Hence we conclude from ([2.13)), (22I) and (B4) upon using the inequality ||T¢: .|| <
1 that for v € C¢,

(35) [l n) — a&mlvll < (A*/N)||P[Teyy — Teub(") [v+ 0e®(&,n, )]l -

From (ZI0) we see that the RHS of (8.1) is the same as the LHS of (8:2) with the
function g(-,-) given by the formula

(3.6) g(z,t) = A[VV*Gp(z,t — 1)) [ e Ttmme —gmm—izg ]
Observe now that for 0 < a < 1 one has
(3.7) |e—n't—iw-£' _ e—nt—ia;»£|
< 2exp [ min(Rn, Ry )t ] {Jal*¢’ - €% + (A)*2|(n' = n)/A1*/2}

Hence from ([ZI2) the function g(,-) is in LP(Z%+!, C? ® C?%) with p > (d + 2)/
(d+ 2 — a) and with ||g(-, )|, satisfying the inequality

(3-8) g )l < CpAVPLIE = €1* + (0 =) /A1 ],

where the constant C), depends only on d,p. The Holder continuity (B3] for suffi-
ciently small o > 0 follows from [B35) and B.g]). O

Proof of Theorem 1.2 (Discrete time case). We follow the proof of Theorem 1.1 us-
ing the Holder continuity of the function ¢(-, ). a

For the continuous time case we prove Theorem 1.2 assuming a hypothesis anal-
ogous to Hypothesis 3.1. For 1 < p < oo let LP(Z? x R, C? @ C?%) be the Banach
space of d x d matrix valued functions g : Z? x R — C¢ ® C? with norm ||g||,
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defined by
o0
(3.9) oz = swp 3 / dt gz, ol if p < o,
vGCd:|v|:1xezd —o0
lgllcc =  sup [ sup g(:vvt)v],
veCe:|v|=1 | (z,t)EZIXR

where |g(z,t)v| is the Euclidean norm of the vector g(z,t)v € C%.

Hypothesis 3.2. There exists po(A/A) > 1 depending only on d,A/)\ and a con-
stant C such that for 1 < p < po(A/N),

(3.10) IIPZ/ dt g(z, )b (7, ) [0 + O ®(&, 1, 7o, )0] || < Cllgllplv]

x€Zd "
forallé e R, ne Cwith0<RNn <A, and g € LP(Z? x R,C? ® C%), v € C?.

It is easy to see that Hypothesis 3.2 implies the Holder continuity of the matrix
function ¢(-,-) defined by ([Z3), 243). We conclude that Theorem 1.2 holds for
the continuous time case also.

4. FLUCTUATIONS OF AVERAGED GREEN’S FUNCTIONS

In this section we shall prove Theorem 1.3 under the assumption that the solu-
tions ®(&,n,w) of (Z2)), (Z43]) satisfy stronger versions of Hypothesis 3.1 and 3.2
of §3. Thus in the discrete time case our hypothesis is:

Hypothesis 4.1. Let Ty ,, be the operator [2.10) on the Hilbert space H(S) and let
Ty, denote its adjoint. Then for k > 1, po =p3=---=pp =1, and S¢; = Te
or S¢n = T¢,, there exists po(A/A) > 1 depending only on d,A/\ and a constant
C(k) such that

k
(4.1) > 9j(xj,t;)70; —t, PB()[I — PS¢ ;,b()] ™" pv
(z1,t1),eees (Tt )€EZAFTL | J=1

k
< Ctk) [ lgjlly, lv]  for g; € LP#(Z*H', C?® CY), j=1,....k veC,

j=1

provided 1 < p1 < po(A/A) and € € C? n € C satisfy 0 < Ry < A, |¥¢] <
Civ/Rn/A, with Cy depending only on d, A/\.

Remark 5. Note that from ([2I3]) and Lemma 2.1 we see that the inequality (T
holds for p; = 1. Hence if [@I) holds for p; = po(A/)N), by the Riesz convexity
theorem [31] it also holds for any p; satisfying 1 < p; < po(A/A).
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We define spaces LP([—m, 7]+ x Q, C? ® C?) of d x d matrix valued functions
g:[-m 74! x Q = C?® C? with norm ||g|, defined by

(4.2)
1
P— _ S Vol2 V2 diSel de i
ol = s o [ (e 7 dfl it <o
oo = sp [ swp (lgf€, Il )2
vECH:|v|=1 | (&§,Sn)€[—m,m]dF,

We consider ¢ € C% 7 € C with ¢ having fixed imaginary part, n having fixed
positive real part, and satisfying the conditions of Hypothesis 4.1. For k > 1 we
define a multilinear operator Tj, g¢ %y, from a sequence [g1, g2, - . ., gx] of k functions
g; 1 ZW — Cl@ CY, j =1,...,k, to periodic functions Ty s¢.ny(91, 92, - - -» gk]
[, 7] x Q = C? @ C? by

(43) Tk,g\f&%ﬂ [glv g2, .- )gk}(%gﬁ 99777 )

- Z Hg] CL'], —i@s- SREth\sn) Ej,*t_jpb(')[j - PTfanb(')]il .

(T1,t1),eens(@ge b ) EZATL =1

Note that the RHS of (£3]) depends on (R¢, ) and (Rn, Sn) through taking & =
RE + 93¢ and n = Ry +iS7 in the operator T¢ , as well as through the exponential
term. We similarly define multilinear operators Tkg,«&m by replacing T ,, in (£3)
with T£ For p satisfying 1 < p < oo let p’ be the conjugate of p, so 1/p+1/p’ = 1.
In [g] the following result was obtained:

Lemma 4.1. Suppose 2 < q < o0 and p1,...,pp with 1 < p1,...,px < 2 satisfy
the identity

1 1 1 1
(4.4) bt = -
V41 D pk q

and for j = 1,...,k, the functions g; € LPi(Z%"1,C? @ C%). Then there ex-
ist positive constants C1,Cs depending only on d,A/X\ such that if 0 < Rn <

A, [S¢] < Ciy/Rn/A, the function Sk,semnlg1, g2, - - - gkl = Th,se (91592, - - - 9k]
or Sk?7%€7§RT] [gla g2,--- 7gk] = T/ﬁ%fﬁRT] [gla g2, - .- agk] 890 Lq([_ﬂ-a 7T]d+1 XQ; Cd@Cd)
and

(4.5) | Sk.semnlg1,92, - 9k) llg <C5 Hllggllpf

If we assume Hypothesis 4.1 we can improve Lemma 4.1 as follows:

Lemma 4.2. Suppose Hypothesis 4.1 holds with po(A/A) < 2, and q,p1, ..., Dk
with 2 < qg<oo, 1 <p1,...,pr < 2 satisfy the inequality

A Ay e |

IN
y
_l_
X
_|_
_|_
X
IN
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Then there exists a positive constant Cy depending only on d and A/X\ such that

if 0 < Rnp < A and [SE] < Ci/Rn/A, the function Sk sewnlor,g2,---,95) =

T se,2n915 925 - -2 gk] o7 Sksewnlgr, 92, 98] = Thsewnlg1,92,---,9k] is in
L([—m, 74! x Q,C? @ C?) and

(4.7) | Sk.sewnlgr g2, 98] lg <C(k H||9j||pj>

for some constant C(k).

Proof. We assume first that po = pg = --- = pr, = 1, in which case Hypothesis 4.1
and Lemma 4.1 imply respectively that (1) holds for 1/p; <1 —1/po(A/N), ¢ =
oo, and for p; = ¢ = 2. The Riesz convexity theorem then implies that (&7
holds if p},q satisfy (@8) with po = p3 = -+ = pr = 1. Next assume for
induction that we have proved [T in the case when (6) holds with p,41 =
Pryo = -+- = pr = 1 for some r > 1. Hence [@7) holds for 1/p} + - -+ 1/pl. <
1—1/po(A/N), pry1 = 1, g = oo, where the functions g,41,. .., gk are fixed with
Pri2 = Prg3 = -+ = pr, = 1. From Lemma 4.1 we see that (7)) also holds for
1/py+--+1/py = 1/2, ¢ = 2, with the same functions g,41,...,gr. Now we
fix the functions ¢1,...,9r,9r+2,---, 9k With pry1 = prya = -+ = pr = 1 and
1/pi+---4+1/p. <1—1/po(A/X) < 1/2. Applying the Riesz convexity theorem to
the functions g,11, we conclude that (7)) holds if pq,...,p,.41 satisfies (0] with
Pry2 =Pry3 = - =pr = L. O

For 1 < p < oo let LP ([—m, w]4"1) be the space of functions g : [-7, 7]+ — C
which are weakly p integrable. The norm ||g||p,« of ¢ is defined to be the minimum
number satisfying the inequality
(4.8)

(2m) " meas{ (&, Sn) € [-m, 7] 1 g(&,Sn)| > 2 } < lgllh /2" for all 2> 0.

Proposition 4.1. Assume Hypothesis 4.1 holds, 4dA < 1 and m is a positive
integer. Then there exist positive constants C, and o < 1 depending only on d and
A/X such that

(4.9) lla(€n) = a(&m)| < CA | 1€ =€l +10f =m)/A1/2 |
for 0 < Ry, Ry’ <A, €,¢ e C? with |S¢| 4 || < C1v/Rn/A |
where C is a constant.

If € € C4 n € C with fived I¢ € RY, Ry > 0 satisfying 0 < Rnp < A, [S¢| <
Ciy/Rn/A, and m < 1+ d/2, then the function

amQT,'r’ (57 "7)
on™ ’

is in the space LP ([—m,7|*1) with p = (14d/2)/(m—a/2) and its norm is bounded
by CAY="tVP for some constant C.

If m is the largest integer strictly less than 1 +d/2 and 0 <6 <1+d/2—m
then for any p € R satisfying |p| < 1, the function

(4.10) (R, Sn) — (RE,Sn) € [—m, w4

m

(@.11) (RE ) = 5 L (€4 i9) = () /1l
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is in the space LP ([—m,7]"1) with p = (14 d/2)/(m + 6 — «/2) and its norm is
bounded by Cp,A'="=9F1/P where the constant C,, can diverge as p — 1.

Proof. The Holder continuity ([f9) of the function g(-, ) has already been proven in
Lemma 3.1. We first prove that the derivative (I0) with m=1is in L2 ([—7, 7]*+1)
with p = (1 +d/2)/(1 — a/2) for some o > 0 depending only on d, A/A. Observe
from (220) and [221)) that

(4.12)

<<%> q(&,m) = =A{b(")[I = PTe,b()]™! {(%Tg,n} Pb(:)[I — PT¢,,b(-)] ") .

Denoting by [-, -] the inner product for #(2), we therefore have for vy, v, € C? that
(4.13)

9 3
(a—n> viq(§,mve = —A | Tigemy 9(RE, SN, - )v1, Thge,mn MRE, SN, -)vo

for certain d x d matrix valued functions g(z,t), h(z,t), z € Z%,t € Z. The functions
g(+y ), h(,-) are determined from their Fourier transforms (215 by the formula

Ae(iS€ — Qe(—iSE — O
[R1=10 — 14 Ae(—iS€ = ) e(iS€ — "
which follows from (ZI9). We take A(-,-) to be given by the formula
. ANY? 1q e(—iS€ — )
4.15 h(¢,0) = | = -
@) 0 = () g A e el
where 14 is the d dimensional column vector with all entries equal to 1. From (21T

and ([I0) it follows that
(4.16)

(4.14) 9(¢,0)"h(¢,0) = —

AN N
h(z,t) = <E> 14 {VGA(z,t — 1)} eS8 if t > 1, h(x,t) = 0 otherwise.

Assuming 0 < Rnp < A, || < C/Rn/A, for sufficiently small positive constant C
depending only on d, it follows from @I2), @I6) that h(-,-) is in L2 (Z4*!) with
p=(d+2)/(d+1) and ||h||p. < CAY271/P for a constant C' depending only on d.

Observe now that by the Hunt interpolation theorem [29] the inequality (7)) also
holds for the operator Ty g¢»y as a mapping from LP! (Z4H1) to LY ([—m, w]?H! x
Q, Cl® C?). Hence T} g¢ mnh is in LI ([—m, 7]+ x Q, CL®@ C?) provided g satisfies
the inequality in ([@6) with p; = (d 4+ 2)/(d + 1). Evidently we can choose ¢
so that ¢/2 > 1+ d/2. Since we can make an exactly similar argument for the
function g(z,t) and Ty g¢ g, we conclude from @I3) that dg. . (€,7)/0n is in the

space LZ,/Q([—W,W]d+1) with norm bounded by A%2~2/P times a constant. We have
proved for m = 1 that the derivative (£I0) is in the appropriate weak LP space.
We proceed similarly to estimate the higher derivatives ([fI0) and the fractional
derivative ([@IT]). O

Remark 6. Proposition 4.1 with o = 0 was proven in [§]. In that case the constant
C' in the statement of the proposition depends only on d, A/A.

Proposition 4.1 enables us to compare the averaged Green’s function Ga(z,t),
r € Z%t € Z* for (L2), (L3J) to the lattice Green’s function Gttice(x ¢) x € Z9,

Ahom
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t € Z™" defined by

4.17 Gl ttice 1 —ietn(ihl) dISn] d

1 At t) = ——— .
0GR = oo [ e e A
Theorem 4.1. Assume Hypothesis 4.1 holds and 4dA < 1. Then there exist pos-
itive constants «,y, with « < 1, depending only on d,A/X and a constant C such
that for x € Z%, t € Z,t > 0,

C ) |z|?
lattice < —
(4.18) [Ga(x,t) — Gat(a,t)| < TSI exp [ ~ min {|x|, Al ,

(4.19)
C
lattice :
VGa(a,t) = VGAE(0,8) < gz oxp | —vmin { el g}

If 6 satisfies 0 < 6 < 1, then there exist o,y > 0 depending only on d,A/\,§ and a
constant Cys such that the following inequality holds:

(420) | [VGa( ) VGlattlce( )] _ [VGa( ) VGlattlce(:E t)] }

Ahom Ahom

g [ Cs exp | —ymin « |z [2I*
(At + 1)@r2z=bra)z P |77 CAt+1f] 7

o' w €2’ 1/2 < (|'| +1)/(|2] +1) < 2.
The constant « in [@L20) must satisfy o < 9.

Proof. From (23), (II7) and Corollary 2.1 there is a constant C' depending only
on A/\ such that for a € RY with |a| <1,

(4.21)
Ga(.’lf, t) Glattwc(x’ t)

Ahom

2
_ oloz/C+ Ala7(t + 1) / emi€e St £ (¢ Q) de d[Sn)
(2m)#H [ i

)
(
e(€ —ia/C)*{q(0,0) — q(€ + ia/C, Ala|? + i) Ye(€ + ia/C)

[exp[Alal? + i3] — 1 4+ e(§ —ia/C)*q(0,0)e(€ + ia/C)]

1
[exp[Alal? + i) — 1+ e(€ — ia/C)*q(€ +ia/C, Alal? + iSn)e(€ +ia/C)]

The exponential decay in the inequalities ([AI8])-(@.20) is obtained by choosing a in
(@Z1) to be given by
(4.23) a = —z/(C+1)(At+1) if |z| < At+1, a=—2z/(C+1)lz|if |z| > At+1.

It follows from (2:29), Proposition 4.1 and Corollary 2.1 that there is a positive
constant Cy such that the function in ([@.22]) is bounded by

Cille(©)]? +al?]
4.24) [fa(&,8n)| < )
42 1o S0 S SGa7A + 1e(OF + a7
To complete the proof of the theorem we need to obtain the polynomial decay in

[At 4+ 1] in (ZI8)-E20), whence we may assume that At > 1. We divide the torus
[—7, ]9+ into various regions, the first of which is

(4.25) Eoo = {(&Sn) € [-m, 7™« Atle(9)P <1, [Sp| <1/t }.

where the function f,(&,3n) is given by the formula

(422)  fa(&,Sn) =

for (¢,9m) € [—m, 74Tt
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It follows then from ([@.24)) that there is a constant Cy such that

(4.20) | 1le sl dedinn) < cafia+ e
Eo,0

Next we consider for kK =1,2,..., regions
(4.27) Eox = {(&,Sn) € [-mal™  Atle() <1, 271/ <[ <2/t )

From (£.24) we see that if |a| < 2/At there is a constant Cs such that
(4.28)

[ e e S0 dg dfon) | < Coz R a4 1) 2,
Eo k

In general a = O(1), so we need to take advantage of the oscillatory nature of the
integral in @28). Let p = m/(t + 1) so that (1) = —1, and Ef, = { (£,9n) :
(&,9n+p) € Eo . }. Then the LHS of (£28)) is bounded by

(120) /E €S — fule S+ )] d [
1 N o X 0
+ i/Eo,kEg,k | fa(&, S d d[Sn) + 5 /Iﬂg,kEo,k |£a(€,Sn + p)| dé d[Sn] .

It follows again from ([@24]) that the last two integrals on the RHS of ([@29]) are
bounded by the RHS of (£2]). In order to bound the first integral we observe from
the Holder continuity (@3] of the function ¢(-,-) that there are constants Cy, Cs
and

Sn) — fal6,S Culle(©)I? + [al*](p/2)*/
(4.30)  [fa(&,Sm) = fa(&, S+ p)| < A[[S7|/A + [e(§)[2 + |a[2]2

Csle(©) | + [al*](p/A)
AlISnl/A + [e(©)]? + |al?]P~/2
Since we are assuming |a| > 2/At it follows from ([@30) that
430 Y [ IR6 ) ule Sn+ )l d i3l < Co/[At+ 142
k>17 FoxNEg

for some constant Cs. We therefore conclude from ([20)-3I) that there is a
constant C7 and

(432) >

k>0

for (£,3n) € Eor, N EY,, .

< Cr/[At + 1)\dF/2

/ eI £ (¢ Sy e d[S)
Eok

The inequality ([£32]) can also be derived by using the fact from Theorem 3.1
that the derivative dq(¢ + ia/C, Ala|? + i3n)/0[Sn)] is in the space LE ([—m, 7]*H!)
with p = (14 d/2)/(1 — «/2). Thus we observe that

(13 ‘ | e e sny de sl | < o [ ifute o) dg
1 9fa(&, Sn) &
+ H—l/EM a5 ‘ d§ d[Sn]
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where OEq . is the union of sets {(£,3n) : Atle(€)]? <1, Sn = constant} with the
constant given by +2% /t or £2F~1 /t. Tt follows from ([@24]) that the first integral on
the RHS of (£33)) is bounded by the RHS of (£28). To bound the second integral
we use the inequality

Ofa(c, ) Culle(©)f? + af?
(4.34) ‘ R ‘— R[S/ £ [(E)F £ [afFFo72
Colle(€)F +lal?]  |0a(é +ia/C, Alaf? + i)
X Snl/A + @) + [T o] ’

where Cg, Cy are constants. We can bound the integral of the first term on the RHS
of (£.34) just as we did with the second term on the RHS of (£30). To bound the
integral of the second term we use the well known fact that if f € L2 ([—, 7]9+1)
with 1 < p < o0, then for any measurable set F', one has

(4.35) /F Il < Coll fllpum(F)17

where the constant C, depends only on p. Taking p = (1 +d/2)/(1 — «/2) we
conclude from Proposition 4.1 that 1/(¢ 4+ 1) times the integral over Eyj of the
second term on the RHS of [@34)) is bounded by

Clo[l/At—I— |a\2] ok(1-1/p)
At[2F /At + |al?]? [At + 1](dte)/2

for some constant C1p. Summing (£30) over k¥ > 1 we obtain the inequality (£.32)
again.
For r > 1, k>0, let E, ; be defined by

(4.37) Erp = {(&,3n) € [-m, 74T o 277 < Atfe(€)]? < 27,
< Sy <28/} k>,

Ero={(&Sn) € [-m, a0 277 < Atle(€) <27, Sl <1/t ).
Then we have that

(4.36)

(4.38) Z/E e €SN £ (e ) de d[S]
k=0 Er.k

_ R e zrisn+1) 9" fa (€ SN) &
s kz_o /E x g e dS]

Just as in ([@34) we see from Proposition 4.1 that

eI le@P el

EIRVIKE A2[|Sml/A + [e(©)? + [af?]2 757> T
where for m < 1+ d/2 the function g, () is in L2 ([-m, 7)) with p =
(14+d/2)/(m — «/2). Thus there is a constant C; such that

(4.39)

(4.40) /|9a,m(£,377)| dé d[S] < Couh' =" VPm(F)! TP F C [ n]
F
It follows from ({39), (@40) that

(4.41)
1 / O™ fa(&, Sn)
t+1)m Jg,, | OSum™

012 2(7‘d/2+k)(171/p)
& <
‘ dediSnl < @ g o
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for some constant C15. Observe that
© 0 2(rd/2+k)(171/p)

k=0r=1

provided m satisfies the inequality m > (d 4+ «)/2. If d is odd, then there is an
integer m satisfying d/2 < m < 1+ d/2, whence (£32), (£3]), and ([@4I) imply
that ([.I8) holds for some o > 0.

In the case when d is even we note from (38) that

(443) > [E e ISR £ (¢, ) dE d[S)
k=0 " Erk

__ S —itatisnr) [0 fa(§,Sn) O™ fa(€, S+ P)} &
2(t + 1)m ];J/E - [ o[Sn|™ RV & diSnl.

where m is the largest integer satisfying m < 1+ d/2 and p = w/(t + 1). Similarly
to ([@39) we have that

1 {Wfa(&%n) B 3mfa(€,‘3n+p)]
ol L O[S CIRVIK
_ le(©)1* + |al? o
= R[S/ e@P + P oS
where for 0 < ¢ < 1+ d/2 — m the function g, (-, -) satisfies an inequality (@.3%])
with p=(1+4+d/2)/(m+ ¢ — «/2). Hence as in ([£4I)) we conclude that

_ 0™ fa(§,Sm) 0™ fa(&, S0+ p)
(4.45) G /E ’

IRV CIRVIK
O 20d/2+K)(-1/p)
[At + 1](d+e)/2 or 4 2k ’
where C13 also depends on ¢ as well as on A,d, A/\. Now [IZ)) for some o > 0
follows from ([{.32), [@43]), and [@4H) by choosing § in [@4H) so that 0 < § < 1.

In order to prove [I9) we follow the previous argument, replacing the function
fa(&,3n) by the function e(£) f,(&,In). To prove ([A20) we use the inequality

(4.44)

d¢ d[Sn]

(4.46) e = — 1) < 10jz — /|l
and replace the function f,(&,3n) by the function |e(€)[270 f.(€,3n) in the argu-
ment to prove ([LIS). O

Remark 7. In the case when a = 0 the constant C' in (LI8)), (£19) depends only
on d,A/X. For a > 0 the constant C also depends on the constant in the inequality
(@1 of Hypothesis 4.1.

The inequalities (I.I9), (I20) of Theorem 1.3 are a consequence now of Theorem
4.1 and the following result which compares the lattice Green’s function Gi2tc(z;, t)

to the Green’s function G, (z,t) for the PDE (L.G):

Lemma 4.3. Assuming 4dA < 1, there exist positive constants v, C' depending only
on d,A/)\ such that for x € Z%, t € Z with At > 1,
(4.47)

atti C . ||
_ lattice _
G 000) = G800, 0] < s oo |~y min {Jal, 17 1]
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(4.48)
i ¢ , |z
lattice
|VGahom(m7t) - VGahom (377t)| S [At + 1}(d+2)/2 eXp |:_ry min {|x7 At + 1 I

(4.49)
|VVGa,.. (z,t) = VVGEtce (g )| < ¢ exp |—ymin { |z] |2/
8hom ’ Ahom ’ — [At+ 1](d+3)/2 P v ) '

At +1

Proof. Taking apom = ¢(0,0) in (L8), we see from @IT) that GE*(. ) is the
Green’s function for the discrete parabolic equation corresponding to (L6l),

(4.50) u(z,t+1,w)—u(z,t,w) = —VayomVu(z,t,w), zcZ? t=0,1,2,....

To prove the theorem we follow a standard method of numerical analysis for esti-
mating error between the solution of a continuous problem and its approximating
discrete problems. The method is to regard the solution of the continuous prob-
lem as an approximate solution to the discrete problem. An alternative approach
based on comparison of the Fourier representation [@.IT) of the lattice Green’s func-
tion Gf}f(f:e(-, -) to the Fourier representation of the continuous Green’s function
Ga,,,. (+,) is pursued in [22] for the case of elliptic equations.

Let f : R = R be a non-negative C™ function with support contained in the
ball {z € R? : |z| < 1} and let u(z,t) = Upom(7,t) be the solution to the initial
value problem (L6), (7). With V., V% denoting the discrete operators (LH), we
have that

(4.51) u(x+z,t+1) —u(z + z,t) + Vianem Vyou(z + z,t)
=u(z+z,t+1) —ulz+ 2,t)
+ Trace[apomA(z + 2,1)], z€Z¢ 2 R4, t=0,1,...,

where the d x d matrix A(y,t) = [4;;(y,t)], y € R%t > 0 is given by the formula

(4.52) Aij(y,t) = uly,t) +uly+e; —e;t) —u(y+ej,t) —uly —eit)

E { &Puly + Ymvt)]
0y;0y; ’

with Y; ; the random variable uniformly distributed in the unit square {y,e; —y;e; €
R?:0 <y;,y; <1}. It follows then from [@EI), (E52) that

(4.53) u(z+z,t+1)—u(x+2,t)+Viapom Vou(z+2,t) = hi(z+z,¢)—ha(x+2,1t) ,

where the functions h;(-,-), j = 1,2, are given by the formulas

[ Ouwt+T)] dulw.t) .
(4.54) hi(y,t) = E [ T ] o 0 YE R ¢t>0,
(4.55)
d
. Ou(y + Y ,t) 0u(y,t)
_ om E 1,79 _ ’ d )
o) = Y mnonliq) {5 | T L TUBOL e gt

ij=1
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In (£54) the random variable T is uniformly distributed in the interval 0 < T < 1.
Since u(x + z,0) = f(x + 2), = € Z%, we conclude from ([E3)) that

(4.56)
u(atz, ) = Y GE(py ) f(y+2 +Z > Gt gy t—r)hy (y+2,7-1)
yeZd r=1yeZ?
_Z Z G:iea;]t;;ce —y,t—"’)hQ(y-f—Z,T—l) .
r=1yecZd

Let Qo C R? be the unit cube centered at the origin. Then we have that

(4.57) / dz |u(z+z,t)— Y GEMe(z—y 1) f(y+2)

yeZd

— [Gay (2,1) Glattioe( (z,1)] /Rd f(y) dy + Error(x) ,

A@hom Ahom

where |Error(z)| is bounded by the RHS of ([@47).
Next observe from (L), (@54), (A55) that

(4.58) / dz Z hi(y+z,t) = 0 forj=1,2.

0 yezd

It follows from (58] that if we integrate the third term on the RHS of ([@56]) with
respect to z € Qg it is equal to

(4.59) / dz Z Z [GEttice(p —y t — 1) — GRUC (gt — 1) ha(y + 2,7 — 1) .

Qo r=1 ycZzd

Using the fact that the distribution of Y} ; is the same as the distribution of —-Y; ;,
we see from ([@5H]) that ha(:,t) is bounded by the fourth derivative of u(+, t), whence
we conclude that there are constants v, C' depending only on d such that

CA[ fll 9yl
[Af + 1)@z &

(4.60) ha(y, )] <

We also have that there are constants v, C' depending only on d such that
(4.61)

attice c : |y‘2
|VG1axht§m (y, )] < m exp {—ymm {|y|a , yezlte"

Using (£.60), (£.61)) we can estimate ([@59) and see that it is bounded by the RHS
of @AT). Since we can do a similar estimate with the function he replaced by

hi, we conclude from (LET) that [@A47) holds. We can obtain the bounds ({48,
([#49) by taking the gradient of (£356]) with respect to « and following the previous
argument. (Il
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The inequality (I2I)) of Theorem 1.3 is a consequence of Lemma 4.3 and the
following:

Theorem 4.2. Assume Hypothesis 4.1 holds and 4dA < 1. Then there exist pos-
itive constants a7y, with a < 1, depending only on d,A/X and a constant C such
that for x € Z%, t € Z,t > 0,

(4.62)
’ c - |z[?
lattice
|IVVGa(z,t) = VVGL (2, t)] < ERCE=TE exp [—’y Imn{ar;|7 AT )

Proof. Let x : R™! — R be a C™ function with compact support such that the

integral of x(-) over R4t equals 1. We write

(4.63) Ga(z,t) = xr1 *Ga(x,t) + [Galz,t) — x1 * Ga(x,t)],

where xp(z,t) = AL~ (2 x(z/L,At/L?), = € R4t € R, and * denotes convo-

lution on Z¥*. Let ¥1((,0), ¢ € [-m, 7]¢, 6 € [—m, ] be the Fourier transform

@I5) of xr(-,-) restricted to the Z4*! lattice. Since xr(-,-) has compact support,

%r(,-) has an analytic continuation to C?*!. Furthermore for L > 1 there is a

constant C' such that

(4.64) |x2(0,0)-1| < C/L, |YL(¢+ia,0—iA|a]?)| < Cexp[Clal’L?] a€R™

There also exist for positive integers n constants C, such that
Cn

1+ L[¢| + L2|6]/A]™

We assume now that R < v/At +1 < 2R and choose L = R'~? for some § > 0.

Then from (2] we see that

(466) XL *kajGa(.’[,t)

(4.65) |XL(¢ +ia, 0 — iA|a]?)| < [ if |a|L < 1.

— W exp [a-z/C + Ala]*(t +1)] /[ i fa(C,0) do d¢
where a is given by (23] and f,(¢,0) is defined by
(4.67)
f (C 9) _ ek(C + ZCL/C)EJ(C + ZQ/O)XL(C —+ ia/c’ 0 — Z’A|a‘2)e—i<,x+i9(t+1)

eMalP+i0 1 4 (¢ —ia/C)*q(¢ +ia/C, Ala|? + i0)e(¢ +ia/C)
It follows from Corollary 2.2 and the second inequality of (A64) that if |a|L > 1
there is a constant C; such that

(4.68) expla-z/C+ Ala]*(t +1)] /[_ ]d/j |f2(¢,0)| df d¢

< Lex —vymin q |z] [2I*
= At + 1@z P CAFLf]

If |a|L < 1 we also have from Corollary 2.2 and (4.65), for some constant C1, that
. / / |FalC.6)] 8 d¢
[=m,m4n{|¢|>1/R =20} J —7

Y
[—7,7]d J[—m,7]n{y/10]/A>1/R1-26}
< Cy/[At + 1]1@HD/2,

|fa(C,0)] d6 dC
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To estimate the integral of f,(¢,8) over the set {(¢,0) : |¢| < 1/R*~2° \/|8]/A <
1/R'=29} we use the Holder continuity ([@9) of the function g(-,-). Thus let g, (-, )
be defined similarly to the function f,(-,-) by

(4.70)
(o) = HCHia/O0)e(C +ia/C)RL(¢ +ia/C, 0 — iM|af?)e~i¢-m+ib(+D)
9a(6,6) = eMal?+i0 — 1 4 ¢(¢ —ia/C)*q(0,0)e(¢ + ia/C)
Then from ([A9) we see that
(4.71)

/ / £2(C.) — 9u(C.6)] B dC < Caf[At 4 1]4+2+0)0-20)
{IcI<1/R1=2%} J4/]6]/A<1/R1 =20

for some constant Cy. We choose now § > 0 in ([@T7I)) sufficiently small so that
(d+2+a)(1—26) > d+ 2. It follows then from (L6]), (£69), (TI) that |xL *
ViV;Ga(z,t) — x1 * Vi V;GEM (5 1)] is bounded by the RHS of ({G2).

To complete the proof of the inequality ([£.62]) we use the Holder continuity result
of [T1]. Thus from the first inequality of (A.64]) and [11] we see that |V;V;Ga(z,t)—
X1 * Vi V;Ga(z,t)| is bounded by the RHS of [@62) for some v > 0. The result
follows. ]

We can essentially repeat the foregoing arguments for the continuous time av-
eraged Green’s function Ga(x,t), = € Z%,t > 0, for (L4). In the continuous time
case our hypothesis is:

Hypothesis 4.2. Let T¢, be the operator 2.40) on the Hilbert space H(Q2) and
let T¢ , denote its adjoint. Then for k> 1, po =p3=---=pr =1, and Sgy =T¢ 5
or Se., = T¢, , there exists po(A/X) > 1 depending only on d, A/ and a constant

&n’
C(k) such that

(4.72)

k
> / dty -~ dty, § ] 9j(@sst5)7a;, 1, Pb()I = PSeyb(-)] 7" p v
T1,...x €ZATL R¥ Jj=1
k
< C(k) H gjllp; [v] for g; € LP(Z* x R,C*® C%), j=1,...,k veC,
j=1
provided 1 < p1 < po(A/A) and € € C4, n € C satisfy 0 < Ry < A, |I¢| <
Civ/Rn/A, with Cy depending only on d, A/A.

Assuming Hypothesis 4.2 holds, we can prove the analogues of Proposition 4.1,
Theorem 4.1 and Theorem 4.2 for the continuous case. Theorem 1.3 therefore
follows in the continuous time case once we are able to establish Hypothesis 4.2.

5. INDEPENDENT VARIABLE ENVIRONMENT

Our goal in this section will be to prove Hypothesis 3.1 and its generalized
form Hypothesis 4.1 in the case when the variables a(7, ), = € Z%t € Z, are
independent. Following [9] we first consider the case of a Bernoulli environment.
Thus for each « € Z% t € Z, let Y.+ be independent Bernoulli variables, whence
Y, = £1 with equal probability. The probability space (2, F,P) is then the
space generated by all the variables Y, ;, (z,t) € Z9*1. A point w € Q is a set of
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configurations {(Y,,,n) : n € Z41}. For (x,t) € Z4! the translation operator 7, ;
acts on Q by taking the point w = {(Y,,n) : n € Z'} to 74w = {(Vag(z,—1), 1) :
n € Z%*1}. The random matrix a(-) is then defined by

(5.1) a(w) = 1 +9Y9)ly, w={(Yn,n):neZ¥t},

where 0 <~y < 1.

In [9] we defined for 1 < p < oo Fock spaces FP(Z*1) of complex valued
functions and observed that F2(Z?*!) is unitarily equivalent to L?(2). We can
similarly define Fock spaces Hp}-(Zd+1) of vector valued functions with range C?
such that HZ(Z*!) is unitarily equivalent to H(Q2). Hence we can regard the
operator T¢, of [I0) as acting on HZ(ZT1), and by unitary equivalence it is
a bounded operator satisfying ||T¢ | < 1 for £ € RY, Ry > 0. From ZI0) we
see that T¢,, acts as a convolution operator on N particle wave functions ¢n(+) in
HZ(ZHY) as

(52) Tf)an(fE17t1,-.-7$N,tN)

=A Z e Z {VV*Ga(2', ¥ — 1)} exp[—iz’ - €]
t'=1 zeZd

X Pn(xy — 'ty —t, L ay —a' iy —t) .

Note that for all N particle wave functions, Tt , acts as a convolution operator on
functions on Z4+1. Hence its action is determined by its action on 1-particle wave
functions. Let (¢, 0), ¢ € [-m, 7|4, 6 € [—m, ), be the Fourier transform (ZI5)
of the 1-particle wave function v, (z,t), = € Z%t € Z. We see from (5.2) that for
¢ € C, Rn > 0, the action of T, in Fourier space is given by

(5.3)

Te i (C.0) = Ae(€ = Qe(€ = Q) .

d
en—it _ 1 +Ae(§_— C)*6(§ _ C) ‘/’1(<79)7 CG [—7T,7T] , 0 € [—7r,7r].

Hence the result of Lemma 2.1 for the Bernoulli case follows from:

Lemma 5.1. Assume 4dA < 1. Then there exist positive constants Cy,Csy depend-
ing only on d such that for (£,n) in the region {(£,m) € CHL 0 < Ry < A, |I¢| <

C1\/Rn/A}, there is the inequality
(5.4)  Amax[ [e(§)]%, [e(©)] < (1+ ColSE?/[Rn/A]) [e" — 1+ Ae(§)e(€)] -
Proof. We have that
(5.5) [e" =1+ Ae(€)*e(€)] > €™ — |1 - Ae(§)e(6)]
> M =1+ Ae(RE) e(RE) — Ale(RE) e(RE) — e(€) e(§)]

where we have used the fact that 4dA < 1. Observe that there is a constant C
depending only on d such that

(5.6) Ale(RE)"e(RE) —e(§)"e(€)] < CA[IIE]* + |3¢]le(RE)]]

< C*{Ae(RE)"e(RE)}ISE?/[Rn/A] + [1/4 + CCTIR .
We conclude then from ([B.3]), (B.G) that
(5.7) |e"=1+Ae(€) e(€)] > [3/4—CCTR+[1-C?ISE?/[Rn/AJAe(RE) " e(RE) -
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The inequality (5.4) follows from (5.7) by observing similarly to (5.0 that
(5-8) Ale(F < Ae(RE)"e(RE) + CA[ISE[* + [3¢]le(RE)]] -
O

Lemma 5.2. Assume 4dA < 1. Then there exist positive constants C1,Cs,Cs
depending only on d such that for (£,m) in the region {(£,m) € CH1 .0 < Ry <
A, |S¢] < C1\/Rn/A}, the operator Te,, of B2 is bounded on HY(ZTY) for
p = 3/2 or p =3, and the norm ||T¢ ||, of Te,, satisfies the inequality ||Te |, <
Cy (14 IS¢/ o/ ).

Proof. It will be sufficient for us to prove the theorem on the space of 1-particle
wave functions. To do this we follow the argument of Jones [I8], which adapts the
methodology of Calderon-Zygmund [5] to Fourier multipliers associated with para-
bolic PDE. A more general theory of Fourier multipliers can be found in Chapter IV
of [30], but because of the generality it is hard to estimate the values of constants
using this theory.

For a set E C Z9*!, we denote by |E| the number of lattice points of Z4+!
contained in E. Let ¢(x,t), v € Z¢ t € Z, be a l-particle wave function with
finite support. We shall show that for any v > 0, the set E., = {(x,t) € Z9*!
|Te nt(z,t)| >~} satisfies the inequality

(5.9) |By| < Ca (14 ColSEP/Rn/Al) v > minfy(x,1)], 11*+C58% (1),

(z,t)ezZd+t

where C} is the constant of Lemma 5.1 and Cy, Cs depend only on d. The function
B¥(+) is defined in [5L8] in terms of the distribution function of ¥(-,-). Once ([5.9)
is proved the result follows from the argument of [5], which shows that ||T¢ ||, is
simply bounded in terms of the constants occurring in (59)).

We use a Calderon-Zygmund decomposition to prove (.9)). Recalling that 1/A >
4d, let Ny > 2 be the integer which satisfies 2No < 1/A < 2No+1 " We choose
a1,...aq,b € Z and sufficiently large integer N such that the rectangle R =
{(z,t) = (21,...,2q,t) € R a; +1/2 < z; < 2M 4 q; +1/2, j =
1,...,d, and b+1/2 <t < 2*NM+No 4 b4 1/2} contains the support of 9 (-, -) and

(5.10) =Y eyl <.

Bl (2,t)€ RNZA+1

Note that the length of the side of R in the t direction is 2™° times the square
of the length of a side in an x; direction for all 1 < 7 < d. We subdivide R into
27 x 4 subrectangles with the same property and continue to similarly subdivide
until we reach a set of disjoint rectangles R,,, m = 1,..., M;, with side in the
z;, 1 < j <d, direction a non-negative power of 2, which satisfy the inequality

1
(511) 7 < ﬁ Z |¢(I7t)| < 2d+27 ) 1 <m< Mla
" (2,t)€Rm

together with a set of rectangles R, m = 1,2,..., My, with side in the z;, 1 <

m
j < d, direction equal to 1 and equal to 2™ in the ¢ direction which satisfy
1
(5.12) = D @] < v
e



STRONG CONVERGENCE 3069

We subdivide the rectangles R, m = 1,..., My, into 2 rectangles with side in the ¢
direction of length 2V~! and continue to subdivide until we reach a set of disjoint

rectangles R,,, m = Mj + 1,..., M, with side in the ¢ direction a non-negative
power of 2, which satisfy the inequality
1
(5.13) v < oYL W@l <2y, Mi+1<m<M,
[ (zt)ERm

together with a set of unit cubes centered at lattice points of Z?*!. Setting D, =
U,I‘,/L[lem, one sees that R+ — D, is a union of unit cubes centered at lattice
points of Z4t1 whence

(5.14) [z, )] < v for (z,t) € Z7 N [RI - D, .

We consider the distribution function v — [{(z,t) € Z41 : |¢(z,t)] > 7}
of ¢(-,-) with domain {y > 0}, which is a piece-wise constant right continu-
ous decreasing function with range 0 < s < |supp[¢)(+,-)]|. The decreasing re-
arrangement 1*(s) of ¥(-,-) with domain s > 0 is also a piece-wise constant right
continuous decreasing function satisfying *(0) = sup |¢(-,-)| and ¢*(s) = 0 for
s > |supp[¥(+, -)]|. Tt is the approximate right continuous inverse of the distribution
function for 0 < s < |supp[¢p(+,-)]| . In view of (EIT)), (EI3) we have that

1 1 ‘D’Y‘
5.15 — B < —— *(s) ds = D,l) ,
(515) 4 < 7, Ewa}(x ) |DV|/O () ds = By(|Ds))

it)
where the function By(s) with domain s > 0 is decreasing and continuous with
range 0 < < sup [#(+, -)|. There is a well-defined inverse function 8% (7) for By (:)
with domain 0 < v < sup |¢(-, )|, and (5.I5) implies that |D.| < 8Y (7).
We write ¥(-,-) = ¥1(-, ) + ¥2(-, -), where the function 11 (-,) is defined by

(5.16)

P1(x,t) = R_\ Z (' t') if (z,t) € Ry, for some m, 1 <m < M,
| m (' t'")ERM,
1 (x,t) = (z,t) otherwise .

From Lemma 5.1 and (514 we have then that

(5.17) [{(z,1) € Z ¢ |Te (1)) > 7/2 }

< (1+GofSER/Rn/A)* {4972 D" minffi(a, 1)), 4]2 + 220D, |
(x,t)€Zd+1
To bound the distribution function of (-, -) which has support contained in D.,
we consider a rectangle R,,, 1 <m < M, with center (z™, ™) € Zt! and let R,,
be the double of R,,. We observe that similarly to (ZI2)) there is a constant Cy
depending only on d such that the function VV*Gj (x,t) satisfies inequalities

(5.18) |e Tt SEgy*Q (x,t 4 1) — e RN SEYVFIG (2, 1)

- Cy o _min{|:1:|, lz2/(At+1)}
= (t+ 1)[At + 1])d/2+1 P Cy ’
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(5.19) e Rnt—i@te) SEGTE Gy (x4 €, 1) — e RMTEIEGYEG Y (2, 1))

< Cy exp _min{|ac|, |ac|2/(At—|—1)}
S INES\ETE Ca !

j=1,....d,

provided & € C?, 5 € C, satisfy the conditions in the statement of the lemma.
Extending the function Gy (z,t), = € Z%, t =0,1,2,..., defined by [ZII) to get
domain Z4*+! by setting Ga(z,t) = 0 for z € Z%, t < 0, we conclude from (5.I8),
EI9) that if (2/,¢') € R, then there is a constant Cy depending only on d such
that

(5.20) Z A |eRnt=t)—ile—a)SEGG Gy (2 — ot — 1)
(z,t)€ZIH1-R,,
_ e*ﬁ%n(tftm)fi(mfzm)-ngv*GA(x _ .Tm,t _ tm)| < Cd-

It follows from (5.IT), (513), (520) that if D, = JY_, R,,, then

(5.21) > [Teyta(a,t)] < Can|D,
(z,t)€Za+1 D,

for some constant C; depending only on d. Hence we have that
(5.22)
{(z,t) € Z7 o |Teyipa(a,t)| > v/2 3 < 2Ca|Ds| +|D,| < [2Cq+2972]|D, ] .

The inequality ([59)) follows from (BI7) and ([@22]). O

Corollary 5.1. Under the assumptions of Lemma 5.2 the operator T ,, is bounded
on HP(Z¥1) for 3/2 < p < 3 and || Te |, < [1+0(p)] (1 + C2|SE2/[Rn/A]), where
the function 6(-) depends only on d and lim,_,, 6(p) = 0.

Proof. The result follows from Lemma 5.1, Lemma 5.2 and the Riesz-Thorin inter-
polation theorem [31]. O

Proof of Hypothesis 4.1. We choose ¢g = go(A/A) with 1 < gp < 2 so that d(gp) <
A/2A, where §(-) is the function in the statement of Corollary 5.1. It follows then
from Young’s inequality that Hypothesis 4.1 holds if we choose py = po(A/A) >
1 with 1/pg + 1/q0 = 3/2. Tt is shown in [9] how to extend the argument for
the Bernoulli environment corresponding to (5] to general i.i.d. environments
a(7.4), (z,t) € Z4*1. We have therefore proven Hypothesis 4.1 for a(7,,4+), (z,t) €
Z4*1 ii.d. such that (TI) holds. O

6. MASSIVE FIELD THEORY ENVIRONMENT

In this section we show that Hypothesis 3.2 and its generalization Hypothesis 4.2
hold if (Q, F, P) is given by the massive field theory environment determined by
(CI0), (CII)). We recall the main features of the construction of this measure. Let L
be a positive even integer and Q = Qr, C Z? be the integer lattice points in the cube
centered at the origin with side of length L. By a periodic function ¢ : @ x R = R
we mean a function ¢ on @ x R with the property that ¢(x,t) = ¢(y,t) for all
z,y € Q, t € R, such that x —y = Lej, for some k, 1 < k < d. Let Qg be
the space of continuous in time periodic functions ¢ : @ x R — R and Fg be the
Borel algebra generated by the requirement that the functions ¢(-,:) — ¢(z,t) from
2o — R are Borel measurable for all z € ) and ¢ rational. For m > 0 we define a
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probability measure Py on (g, Fg) by first defining expectations of functions of
the variables ¢(z,0), = € @, as follows:

(61) (F(8(-.0)aq

S OIS

{V(V(b(x)) + %ngb(a?)Q} H d¢(z) /normalization,
z€Q

z€Q

where F : RX" = R is a continuous function such that |F(z)| < Cexpl[A|z|], z €
RE, for some constants C, A. By translation invariance of the measure @) we
see that (¢(z,0))q, = 0 for all z € @ and hence the Brascamp-Lieb inequality
[2] applied to (@1l and function F(¢(-)) = exp[(f, ¢)], where (-, -) is the Euclidean
inner product for periodic functions on @, yields the inequality

(6:2) Rl one < o 5284w} ).

The variables ¢(x,t), © € Q,t > 0, are determined from the variables ¢(x,0), = €
Q, by solving the stochastic differential equation

(63) doat) =~z 3 V(T 0) +molal 12} dt+ dB(z.t).
’ ' €Q

where z € @ and t > 0, and where B(z,-), € @, are independent copies of Brow-
nian motion modulo the periodicity constraint on Q. Since (6] is the invariant
measure for the stochastic process ¢(-,t), t > 0, it follows that ([@1l), [@3]) deter-
mine a stationary process for ¢ > 0, which therefore can be extended to all ¢t € R.
Furthermore the functions ¢t — ¢(x,t) on R are continuous with probability 1 for
all z € Q. The probability measure Py on (Q¢, Fg) is the measure induced by the
stationary process ¢(-,t), t € R.

The probability space (£, F, P) on continuous in time fields ¢ : Z¢ x R — R is
obtained as the limit of the spaces (Qq, Fo, Pg) as |Q| — oco. In particular one has
from Lemma 2.4 of [7] the following result:

Proposition 6.1. Assume m > 0 and let F : R¥ — R be a C' function which
satisfies the inequality

(6.4) IDF(2)| < Aexp| Bl2| ], =€ R,

for some constants A,B. Then for any x1,...,x; € Z% and t1,...,t, € R, the
limat

(65) \Ql\lgloo<F (¢($1, tl); ¢($2, t2)a RN ¢('T/€7 tk))>QQ

= (F (¢(21,t1), p(w2, t2), ..., P(2k, 1))

exists and is finite.

From (6.2) and the Helly-Bray theorem [3/[13] one sees that Proposition 6.1
implies the existence of a unique Borel probability measure on R* corresponding
to the probability distribution of the variables (¢(z1,t1),. .., d(zx, tx)) € R¥, and
this measure satisfies ([@3]). The Kolmogorov construction [3[I3] then implies the
existence of a Borel measure on fields ¢ : Z¢ x R — R with finite dimensional
distribution functions satisfying (G.5). We have constructed the probability space
(Q, F, P) corresponding to (ILI0), (LII) for which Q is the set of continuous in
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time functions ¢ : Z? x R — R, and it is clear that the translation operators
Tat, T € Ze,t € R, are measure preserving and form a group.

The BL inequality [2] plays a crucial role in establishing the existence of the limit
©3) in [7L[I4]. In particular it yields a Poincaré inequality for the measure (G.1I).
Thus if F : RY" — R is a C! function such that |IDF(z)| < Cexp[Alz]], z € R,
for some constants C, A, then
(6.6)

varag [F(¢(, 0))] = { [F((-,0)) = (F(6(-,0)))]*)a, < #(HdF(MwO))HQmQ ;

where dF(¢(-,0)) € R is the gradient of F at ¢(-,0). A simple proof of (6.6)
follows from the Helffer-Sjostrand (HS) representation [17]:

6.7)  (Fu(¢(-,0)) F2(o(+ 0))eq
= (dF1(¢(,0)[d*d + V*V"(Ve(-)V +m?] " dFs(¢(-,0)))eg

which holds for C! functions Fy, Fy : RE* — R that satisfy |F;(2)| + |DFj(2)| <
CexplAlz|], =z € R, j = 1,2, for some constants C, A, and (F1(#(-,0)))a, = 0.
In (67) the operator d* is the adjoint of the gradient operator d with respect to
the measure (6], and hence d*d is a non-negative self-adjoint operator.

Our first goal here will be to prove strong mixing of the operator 7., o on
(Q,F,P). In order to do this we will need a Poincaré inequality for the measure
(Qq,Fq,Pg), in particular a generalization of ([G.6]) to functions F(¢(-,t1),...,
&(+,tx)) depending on values of the field ¢(:,-) at different times. To do this we
follow the development of Gourcy-Wu [16], who make use of the Malliavin calculus
[25] to prove a log-Sobolev inequality for such measures. The basic insight of the
Malliavin calculus is that the Wiener space generated by independent Brownian
motions B(z,t), * € Q, t > 0, can be identified with a probability space whose
set of configurations is the Hilbert space L?(Q x R*), where R* is the open in-
terval (0,00). We denote the Euclidean inner product on L?(Q x R*) by [-,-].
The measure on L?(Q x R*) is uniquely determined by the requirement that the
variables ¢y — [¢,v,], j = 1,...,k, are i.i.d. standard normal for any set of or-
thonormal vectors v;, j =1,...,k. We denote this Malliavin probability space by
(QQ,Mala-FQ,MalaPQ,MaI), where QQ,Mal = L2(Q X R+) and ‘/—"Q,Mal is determined
by the requirement that the functions ¢y — [1, 1] from Qg ma1 to R are Borel
measurable for all ¥ € L*(Q x RT).

The identification of the Wiener space with (g Mal, FQ,Mal, Po Mal) follows from
the fact that the expectation of a function F'(¢(-, -)) with respect to (¢ Mal; FQ,Mal,
Py nal) is the same as the expectation of F(W (-,-)) with respect to Wiener space,
where W (-, -) is the white noise process corresponding to B(-,-) in (6.3). Hence the
identification may be summarized as follows:

(6.8) Y(x,t) & W(x,t), Wz, t)=dB(z,t)/dt, x€ Q,t>0.

For t > 0 let F; be the o-field generated by the Brownian motions B(z,s), z €
Q,s < t, of [63), so from (68) we can regard F; as a sub o-field of Fg pa. We
consider next vector fields G : L?(Q x R*) — L?(Q x RT) on Qg mal, which are
measurable in the sense that for any vy € L?(Q x RT) the function ¢(-,-) —
[G(¥(-,-)), Vo] is (29 Ma1, FO,Ma1) measurable. The vector field is predictable if for
any t, 0 < t < 00, Yo has support in the interval @ x [0,¢] implying that the
function [G(¢(-,)), o] is F; measurable. The Martingale representation theorem
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[25] implies that for any function F' € L?(£2g ma1) there is a predictable vector field
G:L*(Q xR"Y) = L?(Q x RT) such that

(69) VaI“QQ,Mal[F(')] = < HG()H2 >QQ,NIal ;

Suppose now that F € L2?(Qgma) also has a Malliavin derivative Dy F -
L*(QxRT) = L*(QxR™") with the property that ( [ Dyval F'(-)[|? )y < 00- The
Clark-Ocone formula [25] states that the vector field G(¢(-,-)) in ([E3) can be ex-
pressed in terms of the Malliavin derivative Dyia1 F'(¢(+, ). Denoting the values of

G(d)(’ ))7 DMalF(w('a )) at ({E,t) € Q x R by G(Ivta¢(a ))7 DMalF('rat;d)('a ))
respectively, then

(6.10) Gz, t:9¢(,7) = ( DvaF (2, t:9(,0)) | F >QQ,Ma1 z€Q,t>0.

We show how the Clark-Ocone formula (6.9), (6I0) implies the HS formula
©0). Let ¢(-,T) be the solution at time T' > 0 of (@3] with initial data ¢(-,0) =0
and f : @ — R. We can find an expression for the Malliavin derivative of the
function F(¢(-,-)) = (f(-),¢(-,T)) by analyzing the first variation equation for
©3). Evidently one has that Dy F(z,t;9(-,-)) =0 for x € @Q, t > T. To get an
expression for Dy F'(x,t;9(+,-)) when t < T we first note from (G3]) that

611)  SGO.000) = — 3 {(VIOVI(To,0) +m2 (70, 6(- 1))

+(f(), W(,t), t>0.

It follows from (E.11]) that for ¥ € L2(Q x R™T) the function £(+, ) = [Daa19(+, 1)), 0]
from @ to R is a solution to the initial value problem

(612) S(FO)ECD) =~ (VIO V" (Vo(1)VEC, D)
+ m2(f()7§(’t))} + (f()va(vt)) for ¢ > 0, f Q= Ry f(,O) =0.

From (6I2)) we see that &(x,t), = € Q,t > 0, is the solution to the initial value
problem for the parabolic PDE:

(6.13)% = —%{V*V”(V(]ﬁ(m,t))Vf(x,t)+m2€(x,t)}+¢o(x,t),

&(x,00 = 0.
Consider now the terminal value problem for the backwards in time parabolic PDE:

o LYV (Yol ) Vu(a, 1), 1 < T,

u(z, T) = wo(x),

(6.14)

with solution

(615) U(I, t) = Z G(.I, Y, ¢, Ta d)(a ))UQ(y) , t< T.
yeQ

Then the solution to ([GI3)) is given by the formula

T
(6.16)  £(y,T) = /0 e ™ T020t 5" Gla,y,t, To6(, ) vo(x,t) .y € Q.
TEQR
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We conclude from (6.16]) that
(6.17) (f(), Dmardp(z, 85, T))
= TIOR8, G, 1, T, 6(0), 2 €Qt<T, f:Q—R.

Suppose now that F : RL* R is a C! function such that | DF(z)| < C exp|A|z]],
z € RLd7 for some constants C, A. Then from (617 it follows that
(6.18)
DyaF(x,t:6(, 7)) = e T2 (dF(,0(, 7)), Glo, . T,6(- ), w€Q,t<T.,
DraF(z,t:6(T) =0, zeQ,t>T.
Next we observe from (614)), (6I8) that the conditional expectation (GI0) is given
by the formula
(6.19)  ( DaaF (6, T) | Fi Jagua = ¢ TT2AF(,9(8)) , t<T,
where the operator H is as in (67), so H = d*d+ V*V"(V¢(-))V +m?. Since

for any fixed s > 0 the distribution of ¢(-,T — s) converges as T — oo to the
distribution of ¢(-) for the invariant measure (6.1J), it follows that

(6.20) i { [ DyatF (T = 530, T)) | Fr—s Yoo

= (dF(-,6(-)) e dF (-, ¢()) )ag -

Now ([6.7) for F; = F» follows from (6.9), (6.20) on letting T — oo. The identity
©20) for general Fy, F» is then a consequence of the symmetry of the LHS of (6.7)
in Fl, FQ.

Proposition 6.2. Let (2, F, P) be the massive field theory probability space defined
by Proposition 6.1. Then the operators Te; 0, 1 < j < d, on $ are strong mizing.

2
>QQ‘Ma1

Proof. We proceed as in the proof of Proposition 5.2 of [I0]. It will be sufficient to
prove that for k > 1 and (zj,t;) € Z¢ xR, j=1,...,k,

(6.21)  lim ( f(¢(z1 +nei,tr), ..., dlx + new,tr)) g(o(z1,t1), .., dlzn, b)) )

= (f(o(z1,t1), .., d(xp, te)) ) ( 9(D(z1,t1),- -, d(Ths 1)) )

for all C* functions f,g: R¥ — R with compact support. Let Q C Z? be a large
cube centered at the origin with side of length an even integer L. We define hg r(n)
forn € Z and T > 0 large by

(6.22)
hor(n) = ( f(é(x1+ner,t1+T),...,¢(x, +ner,tp + 7))
x g(¢(x1,t1 +T),..., 0@kt + T)) )og,Mal
— (f(@@1,ta +T),.... 0k, tk + 1)) Yoo Mal
X (glo(xr,t1 +T),..., 0kt +T)) Yoo, Mal -

The function hgr : Z — R is periodic on the interval I, = Z N [-L/2,L/2]. We
shall show that there is a constant C independent of L,T as L,T — oo such that

(6.23) > lhorm)P < C.
nely,
Then ([@21)) follows from ([@23]) and Proposition 6.1 as in Proposition 5.2 of [I0].
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To estimate the LHS of ([6.23]) we go into Fourier variables, using the Plancherel
theorem

(6.24) S horm) = o= / lhaa (O d .

nely,
Let a(f,¢, ¢(-,-)) be the function
(6.25) a(f,¢,0() = Y f(dx1+ner,ts +T),...,¢(xx +ney, ty +T)) "
nely,

Then the Fourier transform of hg r(-) is bounded by

626)  lhor(QF < 75 varagualolf ¢ 6, )] varngulalo, ¢, 6, )]
From (GI7) we see that
(627) |DMa1a(x7t; f7<7¢(7))|

k
2 ap—
< DFOloo D D o™ THTIRG (2,25 + ey t. T+ 15, 9(-,))

j=1lnelg

where we are using the convention G(-,-,s,5) = 0if s > S. It follows from ([6.27)
that

628 Z |DMa1a z, fan(b('v'))F
zeQ

< KL|Df()|IA Z —mA (T4t 1) qup Z Z (z,y +ney, t, T +t;,

j=1 yEQmGQnGIL
X ¢(7))G(‘T>y7tuT+tju¢(7)) .

Observe now that

(629) > Gla.y t,T, () = > Gy, t,T.6(-,) =1, z,yeQ,t<T.

y'eq z'eqQ
We conclude from ([©3), (628), [629) that
(6.30) vargg . [a(f, ¢ 6(, )] < K2LIDf()|5/m? .
The inequality ([6.23]) follows from (©24)), (6:20), [@30). O

To proceed further we need to obtain a more general Poincaré inequality than
was used in Proposition 6.2. In order to do this we consider functions F(¢(-,-)) of
continuous in time fields ¢ : Q x R — R. For h € L?*(Q x R), which is continuous
in time, we define the directional derivative of F(¢(-,+)) in direction h by

(6.31) dFn(9(--)) = Mm[F(6(-) +eh(, ) = F(o(-))l/e -

For the functions F'(¢(-,-)) we shall be interested in, the directional derivative (6.31))
can be written as

(632)  dF(6(,) = 3 / dt dF(x,t; §(-, ))h(a, t) = [dF(4(-, ), h] .

T€EQ Y T
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We shall call dF'(-,-; ¢(-,-)) the field derivative of F(¢(-,-)). One can use the HS
formula ([G7) to obtain a Poincaré inequality for functions F(¢(-,-)) of the form

(6.33) Fo() = [ TG 1)) dt

where g : R — C is a continuous function of compact support and G(4(-)) is a
complex valued C! function of fields ¢ : @ — R which satisfies |G(2)| + |DG(z)| <

Aexp[B|z|], z € RE", for some constants A, B . Evidently from ([632]) we see that
the field derivative of the function (G.33]) is given by the formula

(6.34) dF (z,t;9(-,-)) = g(t)dG(z,¢(-,1)), =€ Q,t€R.
Let us now define the correlation function h : R — C by
(6.35)  h(t) = (G(8(-1)) G((+0)) )ag — ( G(8(-,1)) )ag ( G((-0)) )ag -

Then the variance of F(¢(,)) is given in terms of the Fourier transforms of g(+)
and h(-) by

1o
(6.36) vargg [F(¢(--))] = 19(Q)IR(C) dC -

2m ) o

Note that the function h(-) is real and non-negative. Observe next that h(t) can be
written as an expectation with respect to the measure ([G.I) by using the operator
d*d which occurs in (60). Thus we have that

(6.37)

h(t) = (e~ *2[G(4(-,0)~{G (-, 0)))ao] [G(8(,0) —(G(4(-,0))ag)ag, >0,

with a similar formula for ¢ < 0. For ¢ € R let u(¢, ¢(-)) be the solution to the
elliptic PDE:

(6.38) [d*d/2 +icJu(C, o()) = [G(o() = (G(o())agl, ¢:Q = R.
We conclude from ([6.37), ([6.38) that

(6:39) h(¢) = ([G(¢(-0)) = (G(¢(-0)))ag] [u(¢, 6(-0)) + u(=¢, (- 0))] Dag -

If we apply the gradient operator d to (6.38]) we obtain the equation
(6.40)
[d°d +2iC + V'V (Vo()V +m?] dul-, ¢, 6(-) = 2dG(,6(), ¢:Q - R.

Hence ([639), (€40) and the HS formula (6.7) imply that
(6.41) h(¢) = 4 x real part of
(dG(-,6(-,0)) [*d+ V"V (V6()V +m?] -
X [d*d +2i¢ + V'V (Vo()V +m?] " dG(, (-, 0)) ey, -
Just as ([6.6]) follows from (G.7), we see from ([G.41]) that

1

(6.2 0 < hQ) < (GO, 0) e, -
It follows from (6.36]), ([6.42]) that
643 varag[F(0(: )] £ (GG 000 Py [ oo
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Since from (6.34) the inequality (6.43) can be rewritten as

(6.44) varag [F(9(, ] < —3(1dF (560, Pag

we have obtained a Poincaré inequality for functions F'(¢(,-)) of time dependent
fields which are of the form (6.33]). We generalize this as follows:

Lemma 6.1. Let F(¢(-,+)) be a bounded function of continuous in time fields ¢ :
Q x R — R which is C* with respect to the L*(Q x R) metric, and assume that
the field derivative function dF(-,-, ¢(-,-)) with range L?(Q x R) is also bounded.
Then the inequality ([6.44) holds.

Proof. Let T > 0 be large and consider F(197¢(-,-)) as a function of solutions
d(x,t), x € Q,t > 0, to the stochastic equation ([G3)). By the chain rule we have
that

(6.45) Dy F(z,t;7070(-,-))

oo
= Z / ds dF(y, s;170700(-, ) Dyvarp(z, 69, T+ s) , z€Q,t>0.
veo/t-T

It follows then from (GI7) that
(646) DMalF(LL', t; TO,T¢('7 ))

= Z/ ds dF (y, s;7o7¢(-, ) e (THs=0/2
a0 i-T
>< G(I,y7t’T+S7¢(.7.)) ) I€Q7t>0'

Hence we have that

647) 3 / dt | Dy F (2, t:70,76(-, )

z€Q
=2 Z/ dt ds ds' e ™ (THs=0)/2e=m*(T+s'—0/2p (3 $\}(z. ') |
we JO<t<T+s<T+s'
where
(648) h(I, 5) = Z G(Iv Y, ta T+ S, ¢(7 )) dF(y7 S; TO,T¢('5 )) .
yeQ
It follows from ([6.29) that
(6.49) S h(@,s)? < Y |dF(y, si0.00(, )
zeQ yeQ
and so we conclude from (G.47) that
(6.50)
o0
Z/ dt |Dyia F (2, 810706 ()P < — Z/ ds |dF (y, s; 70.06(-, )|
z€Q 0 yeQ

Hence (€3), (610) imply that

(6.51) varq, Mal[F(70,7¢(-, )] < %wdF('a';TO,T¢(‘,‘))||2>QQ,M3L1-
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The result follows now by observing that the limit of the LHS of ([6.51]) as T' — oo
is equal to the LHS of (6:44)). Similarly the RHS of ([G.51]) converges to the RHS of

©.44). O

We shall show how the Poincaré inequality (6:44) can be used to improve the
most elementary of the inequalities contained in §2. Thus let us consider an equation
which differs from (2.43]) only in that the projection operator P has been omitted:
(6.52)
n®(&,n,w) + 0D(&, n,w) + Ofa(w)de (&, n,w) = —0fa(w), n>0, R we.

For any v € C¢ we multiply the row vector (6.52)) on the right by the column vector
v and by the function ®(£, 7, w)v on the left. Taking the expectation we see that

Al
(6.5) [Poca(e,n, ol < Joc(En ol < S
where || - || denotes the norm in H(Q2). Let g : Z? x R — C? ® C? be in

LP(Z¢ x R,C¢ ® C?%) with norm given by @J). If p = 1, then (653) implies
that

e Alv
659 1PY [ degtenoien el < Sl
xezd” —x
The Poincaré inequality (6.44) enables us to improve (6.54) to allow g €
LP(Z? x R, C? ® C?) for some p > 1.

Proposition 6.3. Suppose a(-) in [@H2) is as in the statement of Theorem 1.2.
Then for ¢ € R4, Rn > 0, there exists po(A/)\) depending only on d and A/
and satisfying 1 < po(A/X) < 2 such that for g € LP(Z? x R,C? ® C?) with
1 <p<po(A/X) and v € CY,

e CAqv]
©55)  1PY [ dtalwn0(en ol < kil

z€Ze Y T

where Ay is the constant in Theorem 1.2 and C' depends only on d and A/ .

Proof. We shall first assume that g(-,-) is continuous in time and has compact
support in Z¢ x R. For a cube @ such that @ x R contains the support of g(-,-), let
D, (&, 7, ) be the solution to ([6.52]) with a(¢) = a(4(0,0)), ¢ € Qg, so the random
environment for ([€52)) is (Qq, Fq, Pg). The inequality (€.44]) implies that

©50) P> [ dt o000 n ol

T€ZLY T

< Y [ aslgts X [ g o el
m —eo P(z, ) —eo
z€Q z€Z
where we are using the notation 9/9¢(z, s)F(¢(+,-)) to denote the value of the field
derivative dF'(z, s; ¢(+,-)) defined by ([€32) of a function F(¢(-,)) at (z, s).
Translation operators 7,:, = € Z¢ t € R, act on functions Fg : Qg — C
by 7w 1 Fo(é(-,-)) = Fo(Tu:¢(-,-)). We shall also need to use translation opera-
tors Ty, © € Z? t € R, which act on functions Gg : @ xR xQg — C by
T:1Go(z,80(-,-)) = Go(z+x,s +t;¢(+,)), so T+ acts on the first two variables
of Gg(+,+;¢(+,+)). The operators 7,,, * € Z%t € R, act on the third variable of
Go(+9(+,+)), and it is clear that they commute with the T}, ;, * € Z%,t € R. Let
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Fgo : Qo — C be a function which is C! with respect to the L?(Q x R) metric as
in Lemma 6.1. One easily sees from (631]), (632) that

(6.57) dlresFgl = Ty 4TeidFg, z€Z% teR,

whence it follows from [21)) that
(6.58) }
[0 ¢Tu,—1 FQ) = [e77 T e, 0Te; 0 — UT-0Ta,—1dFg, 1<j<d, z€Z% teR.

Hence if we define a function Gg : @ x R x Qg — C by

(659) GQ(yv s ¢(a )) = e_iy.ngQ(_ya T Ty,fr(b(', ))a y e Qa e R,
then (6.58) implies that
(6.60)

d0j eTe,—tFQ)(2, =55 9(+, )
= @Y Gole — 2t — 5,70 —sb(,7), 1<j<d, z,2€2Z% t,scR.

On taking Fg(¢(-,-)) = ®o(&,n, ¢(-,-))v and defining Gg by ([659), we conclude
from (G.60) that (6.56]) is the same as

©61) 1P / dt gz, 1B (€, 1, 7o)

T€ZL” T

4 oo oo .
< WZ/OOCZS I Z /Oodt 9(z, 1)t E VG (x — 2t — s, 6(-, ) ||* .

z€Q YT z€Zd”

We can find an equation for Gg(-,-; ¢(-,-)) by applying the operator 9/0¢(-, )
to ([6.52). To see this let h € L?(Q x R) be C! as a function of time and of compact
support. Then ([6.52) holds for w = ¢(+,-) and w = ¢(+,-) +h(-,-). On subtracting
the equations ([6.52]) for the different values of w, dividing by ¢ and letting ¢ — 0,
we have from (G.3T)), [G32) that the first term on the LHS of (G52]) converges to
nd®(&,n, ¢(-,-))v, h] = n[dFg(4(-,-)), h]. To find a similar expression for the limit
as € — 0 of the second term on the LHS of (6.52]), we observe that for § > 0,

(6.62) lim Fo(10,[0(:-) +eh(:,)]) = Fo(m0,50(- )
e—0 £

= [dFQ (7-0,5¢(" ))7 TO,5h] = [T07—5dFQ(TO76¢('a ))7 h] :

Hence, assuming one can interchange the limits ¢ — 0 and § — 0, we see from
([652) that the second term on the LHS of the difference of the two equations

[E52) converges to

lim To,—sdFg(10,69(s-) — dFQ(e(+, )
6—0 1)

(6.63) hi = [DodFo(é(-;-)), h] -

To find the limit as &€ — 0 of the term on the RHS of ([G52]) we use the fact that
a(é(+,+)) = a(¢(0,0)). Thus we obtain the expression

(6.64)
L OEa(8( ) = a9l )+ h-, o

e—0 9

= —[Dz{ 8(--)Da(3(0,0))o}, h] .
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where the operators D¢ = (D1, ..., Dag) and Df = (Dj g, ..., D} ;) are given by
the formulae
(6.65) Dje=[e"" T e, 0Te;0 1], Dje=[c"*Te,0mc,0-1], 1<j<d

The function ¢ : @ x R — R in ([@64)) is the delta function §(0,t) = §(t), 6(z,t) =
0, z # 0, where 4(-) is the Dirac delta function. The limit as ¢ — 0 of the third
term on the LHS of ([G52) can be expressed by a similar formula. Thus we have

(6.66)
|20, )+ Eh(, NOPE M, 6 ) + h))w = OEa(6( ) IR(E . 9L, v
e—0 c

= [Dza($(0,0)) D¢ dFq(¢(:,)) + De{0(,-) Da($(0,0))0:Fo(4( )}, h] -
It follows from (6.52) and ([6.63)-(6.66) that dFg(¢(-,-)) satisfies the equation

(6.67) ndFq(o(:,-)) + DodFqo(e(:;+)) + Dea(p(0,0))De dEFg(4(-,-))

= —Dglo(,-)Da(e(0,0)){v + e Fo(o(-, )} -
Evidently for any (y, —r) € Z¢ x R we can replace ¢(-,-) in ([6.67) by 7, —¢(-,)-
If we now evaluate (6.67) with 7, _,¢(-,-) substituted for ¢(-,-) and with the first

variable of dFg(-, 37y, —r@(-,-)) equal to —y and the second variable equal to r, we
obtain an equation for the function Gg(-,-; ¢(-,-)) of (€.59),

(6:68) nCayriof )~ 2CLETD 4 gratoy, —)v,Galy, 7o)

= _V;; [e—iy-ﬁ(s(_% T)Dé(¢(y7 —T‘)){’U + aﬁFQ(T%frqs(W ))}] :

We define an operator 7;, on functions g : Z% x R x  — C? as follows: Let
u(y,r; ¢(+,-)) be the solution to the equation

(6.69)
du Yy, 7 (b kB * *

s 60,) — 2L ATty 6(,) = AVl 750l )
Then T,,9(y,7; (-, ) = Vyuly,r;6(-,-), y € Z4 r € R. It is easy to see that T,
is a bounded operator on L*(Z¢ x R x 2, C?) with norm ||T;, || satisfying ||T}|| < 1.
We can obtain a formula for T;, which is similar to [24T). Thus we have that

(0.70) Tygluri0(,0) = A [~ e dt 30 (V" Galant)} gly—a.r+t:6(-)
0 z€Z4

with Ga(z,t) = G(x, At), x € Z%,t > 0, and G(-, ), the Green’s function (Z.48). We

can similarly define operators T, ¢ on periodic functions gg : @ xRxQ — C? by ex-

tending g periodically to the function gg : Z x R x Q — C¢ and setting T, 09¢q =
T,9q- If we now take gg to be given by the RHS of (6.68) so Agq(y,r; (")) =
e~ WE5(—y, r)Da(é(y, —r)){v + OcFo(1y,—r9(-,))}, then Ty qgo(y,m (7)) =
ernhQ(ya T, ¢(, )) where

6.71)  ho(y,ri9(-,-) = > e " WIMHEVVGa(y +nl, —r)}
nezd
x Da(¢(0,0){v + 0:Fqo(o(-,-)} ifyeQ, r<0,
ho(y,r,o(,-) = 0if y e @, r >0,
where L is the length of the side of Q.
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We can rewrite (6.68)) using the function hg of (G.I)). Thus let ug(y, r; o(:,-)),
y € Q,r € R, be the solution to the periodic equation (€.69) with ¢ = gg. Then
([©68), ([E69) imply that vg = Gg + ug is the solution to the equation

672) migyriol )~ 2D | Geai(y, ) 9yra (.6, )

= —¢""AV;[b(é(y, —r)hq(y,m; ¢, )],

where a(-) = A[I; — b(-)]. Tt follows from (653) that d:Fo(e(-,-)) is in H(Q)
and ||0:Fg(o(-, )|l < Alv]|/A. Since |[VV*Ga(z,t)|, € Z¢,t > 0, is bounded by
1/(At + 1) times the RHS of (ZI2)), it follows from (@.7I) that hg is in
L2(QxRxQ,C% and ||hg| < CVAA;|v|/), where C is a constant depending only
on d, and A; is the constant in the statement of Theorem 1.2. Since from (672)
we see that | Vug|| < Allhgl|/\, we conclude that |[VGql| < CAq|v|(A/N)?/VA. Tt
follows now from (6.61]) and Young’s inequality that (6.55) holds for p = 1 provided
we can show that the LHS of (6.61) converges as Q — Z< to the LHS of (6.55). To
see this note that we are assuming that the function g(-,-) in (661]) has compact
support and that 1 > 0. Hence we can use the perturbation expansion obtained
from (2I3) and Proposition 6.1 to prove the convergence.

We can also show that the RHS of (6.61]) converges as Q — Z¢ by generating the
function VG from a perturbation expansion. Thus let B : Z¢x R x Q — C¢® C?
be defined by B(y,r;¢(-,-)) = B(¢(y, —r)), y € Z%r € R. Tt follows from (6.69),
([E72) that Vug is the solution to the equation

(673) VUQ("';¢("')) = an[B('a';¢('v')){VUQ("';(b("'))_ernh@('v';¢('v'))}]'

Since g € L'(Z? x R) it follows by the uniform in @ estimates of the previous
paragraph that it is sufficient to prove convergence as Q — Z? for any finite number
of terms in the Neumann series expansion of (6273]). The convergence for a finite
number of terms follows from Proposition 6.1 using the fact that the function g(-,-)
in ([G@61I) has compact support and that $n > 0. We have shown now that

670 [Py / dt g, 0D (€, 7,7 1)

z€Zd "
4 o0 o0 i .
ST 2 / ds |l 3 / dt g, 1)’ E VG(x — 21— 5,60, )
2€Zd Y T xz€zd "~

where VG = Vv — h with
(6.75)  h(y,7;9(-,-)) = {VV*Ga(y, —r)}" Da(¢(0,0)){v + dcFo(s(-,-))}
if yeZd r<0; h(y,re(,-) = 0if yeZd, r>0,
and Vv is the solution to the equation
(676) V’U(, E ¢(7 )) = TT][B(7 E ¢(7 )){V’U(, ) ¢(7 )) - ernh‘('u ) ¢(7 ))}] .

We can now easily extend the previous argument by using the continuous time
version of the Calderon-Zygmund theorem, Corollary 5.1, to prove (6.355]) for a
range of p > 1. Define for ¢ > 1 the Banach space L(Z% x R x €, C?) of functions
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g:Z%x R x Q — C? with norm ||g||, given by

(6.77) lolly = 3> [t latwrit 017
yeZd >

where ||g(y, r; ¢(,))| is the norm of g(y,r;¢(-,-)) € H(Q). By following the ar-
gument of Lemma 5.2, we see that 7}, is bounded on L(Z¢ x R x ,C?) for
g > 1 with norm ||T;||; < 1+ d(q), where limg,20(¢) = 0. Noting that ||hll; <
C A=A ||/ for a constant C,, depending only on d, ¢, we conclude from (G.76)
and the Calderon-Zygmund theorem that there exists go(A/\) < 2 depending only
on d,A/\, such that VG is in L9(Z% x R x Q,C%) for ¢y(A/A\) < ¢ < 2 and
VG|, < CA=Y9A;|v| where the constant C' depends only on d, A/\. The inequal-
ity (655) with p = 2¢/(3¢q — 2) follows from ([G.74) and Young’s inequality. O

In order to establish Hypothesis 4.2 for the massive field theory environment
(Q, F, P) we shall need a refinement of the Poincaré inequality ([644]). We can see
what this refinement should be by considering again functions of the form ([6.33]), for
which ([636]) and (6-41)) hold. It follows from (64T]) that h(¢) satisfies the inequality

- 4
6.78 0 <h(Q) £ ——=(ldG((-,0)[[*)a, -
(6.75) <h(Q) < g (GO 0) Phag
Substituting the RHS of (G.78)) into ([6.36]) we obtain the inequality
(6.79)

arag F00 N < = [ [ g0igGle ™= dt ds {1dGo( ) Pho

< i [ loOF dt (GGC0)IPhag = g (4G50 ) P

mA

Observe now that the first integral on the RHS of (G.79]) can be written as a con-

volution [g, f*g] where f(t) = m~2e~m’1t1/2 ¢ € R. Hence it follows from Young’s
inequality that for 1 < p < 2,

680 varag[F66 ) < s Iol0AG0( 0)Pa -

where | g||,, denotes the L? norm of ¢(-) and C is a universal constant. The Poincaré
inequality (644) only implies ([G.80) for p = 2.

We shall also need a continuous time version of Corollary 5.1, as we already did
in the proof of Proposition 6.3. Thus let T¢ ,, act on functions g : Z% x R — C¢ as

(o]
(6.81) Teng(y,r) = A/ e " dt Z {VV*Ga(z, 1)} gy —a,r+1) .

0 z€Z4
Comparing the operator T¢ , of ([G.8I]) to the operator T¢, of (B.2), we see that
one can easily extend the argument of §4 to obtain a continuous time version of
Corollary 5.1:

Corollary 6.1. For (£,n) satisfying the assumptions of Lemma 5.2 the opera-
tor Te,, of B.81) is bounded on HP(Z? x R) for 3/2 < p < 3, and ||T¢ |, <
[1 4 0(p)] (1 + C2|SE|?/[Rn/A]), where the function 6(-) depends only on d and
lim, 2 6(p) = 0.
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Proof of Hypothesis 4.2. We shall first prove Hypothesis 3.2. We assume g : Z¢ x
R — C? ® C? has compact support, and for k = 1,2,..., we denote by ax(g,&,7)
the random d x d matrix

(6.52) RES | "t gz, 07 o Ph() [PTeb( )] .
xeZd "’ T

Evidently Hypothesis 3.2 will follow if we can show there is a constant C such that

(6.83) Y llar(g.&mol < Clglplol for 1< p < po(A/A), ve C™.
k=1

We establish ([6.83) by obtaining a bound |lax(g,&, n)v]| < Ckllgllplv] where Cy
decays exponentially in k as k — oo.
In the case k = 1 we have from the Poincaré inequality (6.44]) that

630 laenl? < o 3 [ d g0 Dbe.0)?

T€Z " T

20, 2
< \ axlyllzlol)

We also have that a1(g,&,n7) = G(A, B)Pb(:), where § is the Fourier transform
[248) of g and A, B are the self-adjoint operators (Z50), 2Z51)). Hence we have that
lla1 (g, & mv|l < |lglliv]. We conclude therefore from (684)) and the Riesz-Thorin
interpolation theorem [3I] that there is a constant Cy such that ||ai(g, &, n)v|| <
Cillglplv] for 1< p<2.

When k > 1 we write

655 ageme =P [ "t gla ) b(IE(6(- ) |

T€ZL” T

A

where the functions Fy(¢(-,-)) are defined inductively. For ¢ € R? the Fy(¢(-,))
satisfy the recurrence equations

(6.86) [+ O)Fa(¢(-, ) + AEOeF2(0(-, ) = APOZ[B(6(0,0))]
[+ 01 Fu((-, ) + AOZOFi(9(,)) = APOE[b($(0,0))0¢Fe—r(9(-, )] if k > 2.

The Fy(¢(-,-)) for € € C? are defined by analytic continuation from the values
of Fi(¢(-,-)) when ¢ € RY. Similarly to (6.53) we define for k& > 2 functions
Gr:Z xR xQ — Cby

(687) Gk(ya ry ¢(7 )) = eiiyhngk(_ya T;Ty,—r¢('7 ))a RS Zda r € R.
Then from (686) we see that the Gy (y,r; ¢(-,-)) satisfy the equations

688)  nGay o) — 220D 4 agig 6y, ri0(, )

= APV;[e”46(—y,r) Db((y, —r)] ,
WGty 00, ) — PTG Gy ria, )
= APV le™45(~y,r)Db((y, =)0 Fi1(ry, (-, "))
+ B(Qb(yu _T))Vkafl(y7 T3 ¢(7 ))} if k> 2.
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Instead of estimating the norm of the function a(g,&,n)v of ([E.85) directly by
using the Poincaré inequality as in (6.61]), we begin with the Clark-Okone formula
©3). Let ¢(-,t), t > 0, be the solution of (G3) with initial condition ¢(-,0) = 0.
We extend the function ¢(-,¢) to t < 0 by setting ¢(-,¢t) = 0 for ¢t < 0. It is then
easy to see that

(6‘89) Hak(gu&n)'v”z = Th_rg;ovarQQ,Mal[ H(TO,T¢('7'))] )

where the function H(¢(+,-)) is given by the formula
©90)  HO() = 3 [ ds glys)b(o(. ~5)OcFu(r ()

We have now from (6.45]) that for z € @, ¢ > 0, the Malliavin derivative
DMalH(x7 ta TO,T¢('7 )) = UI,T(:E7 t7 ¢(7 )) + 0'27T(.’L', t7 (b(a ))7

where
(6.91) o17(x,t;0(-,-))

T—t
_ Z / ds g(y,8)6_m2(T_t_s)/2G(x,y,t,T_ 3;¢(';'))

y€Zd " ™
X DB(¢(y7 T - S))aﬁFkJ(Ty,T—s¢('a )) ’
with G(-,-, -, -, #(+,)) being Green’s function (6I5). The function oo r(x,t; ¢(-,))
is given by the formula
(6.92)
UZ,T('; 3 ¢(a )) = Z / ds g(ya S)B(¢(y7 T - S))DMal[aﬁFk(Ty,T—s¢('a ))] .
yeZ B
It follows from (@3] that
1/2
©99 Jouts. 6ol < Jim |3 |t ot | 72 gl
1/2

+ lim Z/ dt [{ o2.0(z, t0(,) | Fi Yool
0

T—o0
z€Q

To estimate the first term on the RHS of (6.93)) we argue as in Lemma 6.1. Thus
from (G.91)) we have that

690 Y [ dtlovr(etol.) P

z€Q 0

=2), / dt ds ds' e ™ (T=t=9)/2=m*(T—t=s")/2} (3. o). }(z, 8') |
z€Q 0<t<T —s<T—5s'

where
(6.95)

h(l’, S) = Z G(l'v Y, t, T— S, ¢(a '))g(yv S)DB(¢(Z/’ T—- 3))a§Fk(Ty,Tfs¢('v )) .
yeQ
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It follows from (6.29) that

(6.96) S ()P < Y gy, 5)Db(é(y, T — )0 Fi(ry r—56(-, )
zEQ yeR

and so we conclude from (6.94) that

(6.97) Z/ dt |ovr(,t;6(, ) ”

TEQ
1 > > ,
< —2/ / ds ds' e—m2|5—s ‘/2]45(87’7'0771(;5(.,.)) k(SI,TO,T¢('; )) .
m= Ji—r Jt—1

The function k(s, ¢(-,-)) is given by the formula

1/2
(6.98) k(s, o(:,+)) [Z 19(y; 5) Db((y, —5)) D Fio(y,— 50 (-, ) |

yeQ
Hg(’ 3)”2 kl(sa ¢(’ ))7

where ||g(-, s)||2 denotes the L? norm of the d x d matrix valued function g(y, s),
y € Z%. Observe next that (6.97), (6.98) and the Schwarz inequality imply that

(6.99)

Z/ dt |ovr(2,656(,)) P

TEQ

]. o0 o0 !’
<o [ dsds e R g 9)algt ) sk (s oo, )
m* Ji—1 Ji—

Hence on using the fact that for any s € R one has

2
6100)  lim (ki 7000 ) dngun < ghl 1000, DI e

where the constant C' depends only on d, we conclude as in the argument showing
[6R0) that for 1 < p < 2 there is a constant C' depending only on d such that

101 i 3 / 0t {01 (w00 )) | Fi Dol

CA3 > 2/ )
< oz | |09l ds| - (0eFo D dag

From (6.86) we see that for ¢ € R4,
(6.102) (10cFu(6(, I ag < (1= A/ Dol

and so (G.I01]) implies that for £ € RY the first term on the RHS of (6.93) is bounded
as

(6.103) lim Z/ dt [ o1,7(@,t:6(,) | Fi Dog il
Q 0

T—o0

2
< {AcsAlz/p” ()l (1_>\/A)k_1|v|} ,

where the p norm of g(-,-) is given by ([B.3).



3086 JOSEPH G. CONLON AND ARASH FAHIM

We can estimate the second term on the RHS of (6.93)) by following the argument
of Proposition 6.3. Thus we have that

(6.104)

im 3 / 0t |( ooz (2.6 6(2) | Fo Yy wea?
cQ’0

T—o0

4 & ° - ,

R d d b o i(x—z)-&

< m4ze§%/m . < Z/m ¢ g 1) B(o(z. —1))e
2

X VG/C(J? —zl—s TZ7—S¢('7 )) >

Qq

— i4 Z/ ds< Z / dt g(z,t) B(¢(x —z,5— t))ei(z—z).g
e e zezd
2

x VGi(x — z,t — s;¢(+,+)) > ,
Qq
where we have used the invariance of the operators 7,5, 2z € Z%, s € R, on

(Qq, Fo, Pg). As in Proposition 6.3 we are justified in taking the limit Q — Z¢ in
(6104), and hence ([@.69), (670), ([E88) imply that VGa(:,-; é(-,-)) is given by the
formula
(6.105) VGa(y,m;0(-,-)) = Ae"VV*Ga(y, —r)P[Db(¢(0,0))v]
if ycZ r<0; VGao(y,r;é(,-) = 0if y e Z% r > 0.

We similarly have that for & > 2,
(6.106)

VGk(yv T3 ¢(7 )) = enrhk(yv T3 ¢(a )) + PTﬂ[B(a ) ¢(a '))VGk—l('a ) ¢(a ))] 3
where the function B(-, -; ¢(+,)) is as in ([€173) and

(6.107)  hi(y,m50(--)) = AVV*Galy, —)P[Db(4(0,0))d¢Fir—1(¢(-,))]
if y e Z¢, r < 0; hi(y,r;¢(-,7)) = 0if y € Ze r>0.

Define the function 4y, : ZIxRxQ — C? by A (y,r;¢(-,-)) = eV <VGr(y,;0(-, ).
Then we see from (G.I00) that for & > 2 the function Ag(-,-;¢(:,-)) satisfies the
equation

(6108) Ak('7 2 ¢(7 )) = Dk('a ) ¢(5 )) + PTEW[B('a ) ¢(a '))Ak—l('v ) (b(v ))] )

where Dy (y,7;¢(-,-)) = e+ hy(y,7;¢6(-,-)), and from (G170) it follows that the
operator T¢ , is given by (G.81).

Just as in Proposition 6.3 we see that if || - ||, denotes the ¢ norm (G77), then
for e R%and 1 < ¢ < 2,
(6.109)

[A2lly < Cotalol/AYT . [IDillg < Col = A/A)E"2Asfol/AYY for k> 2,
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where the constant Cj; depends only on d, ¢ and diverges as ¢ — 1. It follows then
from (GI08), (GI09) that for ¢ € R? one has the inequality [Axla <
Ck(1 — A\/A)*=2A,|v|/A? for some constant C' depending only on d. We can
extend this inequality by using Corollary 6.1. Thus for (£,7) satisfying the condi-
tions of Lemma 5.2 for sufficiently small constant C; depending only on d, there
exists go(A/A) < 2 such that for some constant C' depending only on d, A/A one
has the inequality

(6.110) [[Aglly < Ch(1=A/A)F"2 (1 + Cy|SE1%/[Rn/A))" 2 Aol /AVY for k > 2,

provided go(A/A) < ¢ < 2. We can now bound the RHS of (6104)) in terms of ||g||,
with p = 2¢/(3¢ — 2) by using (6I10) and Young’s inequality. If we combine this
with the inequality (6103), then we conclude from (6.93]) that

CA4

(6.111)  [lax(g, & nv]| < mllg(w)llp (1= A/A)* o
CkAq

190 (L= AN2 (14 CalSE/[n/ A" o]

Evidently the inequality (6I11]) implies that ([€83) holds provided (£,7n) satisfy
the conditions of Lemma 5.2 for sufficiently small C; depending only on d, A/\.
Restricting £ to be in R™ BI0) then follows, and hence we have proven that
Hypothesis 3.2 holds in the massive field theory case.

To complete the proof of Hypothesis 4.2 we first observe that the above argu-

+

ment immediately applies to the situation where the functions go, ..., gy are delta
functions g;(x,t) = §(x—x;,t—t;), j = 2,..., k. The inequality (£72) then follows
for general go,...,gr € L'(Z? x R, C? ® CY) from the triangle inequality. O

APPENDIX A. OPTIMAL RATES OF CONVERGENCE

Here we shall show that if A/A is sufficiently close to 1, then one can take o =1
in Theorem 1.2. First we prove that if A\/A is sufficiently close to 1, then some
derivatives of the function ¢(&,n) are uniformly bounded as n — 0.

Lemma A.1. Assume (Q, F, P) and a(-) are as in the statement of Theorem 1.2.
Then there exists 6 > 0 depending only on d such that if 1 — A/A < § the d x d
matriz function q(&,n) of 23] satisfies the inequality
(A.1)

18q(&,m)/0nll + I Vea(& )l + || VeViaE )| < CA, €eR 0< Ry <A,

for some constant C. If (0, F, P) is the i.i.d. environment, then C' depends only
ond,d,A. If (Q, F, P) is the massive field theory environment, then C additionally
depends on m and |Da(")||oc. Furthermore each of the functions on the LHS of
(Ad) are Holder continuous. Thus if g(£,m) is either of the functions dq(&,n)/0n
or vazq(f,n), then there exists o > 0 depending only on d,d such that

(A.2) lg(¢'n") = g(&m)| < CALIE =€ + (' —m)/A[*/? ]

for all £',¢6 € RY, 0 < Ry, Rn < A. The constant C in ([(A2) has the same
dependency as the constant C in (AJ)).

Proof. We just consider the case of the i.i.d. environment, since the proof for the
field theory environment is similar. It is easy to see from the argument of Proposi-
tion 4.1 that ||0g(&,n)/0n|| < C. To see this note that in the representation (£I12)
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for dq(€,m)/0n the function h of [@I6) is in LP(Z*!) for p > (d+2)/(d+1). Since
we can choose p < 2, the uniform boundedness of dq(&,n)/dn, provided A\/A is suf-
ficiently close to 1, follows from the generalized Jones’ theorem [I8]; see Corollary
5.1.

We can bound the derivatives of ¢(&,n) with respect to & similarly. To bound
Veq(€,m) we can argue as in Lemma 3.1. We see from (B.6]) that the function g;(x,t)
corresponding to dq(&,n)/0¢; is given by the formula

(A.3) gi(z,t) = A[VV*Gp(z,t — 1)) e Mm@ 8,

which is in LP(Z*1) for p > (d +2)/(d + 1). Hence dq(£,n)/0¢; is uniformly
bounded, provided /A is sufficiently close to 1, by the argument of the previous
paragraph.

To bound ngzq(f,n) we note that we need to differentiate twice the series
on the RHS of ([ZTI4). The differentiated series can be written as a sum of two
parts. The first part includes all terms where each gradient V¢ and Vg acts on
different operators T ,, on the RHS of (2.14)), whereas the second part includes all
terms where both gradients act on the same operator T¢,. This in turn implies
that a second derivative of viq(&,n)ve with vy,vy € C? is a sum ¥y + $g with )
corresponding to the first part of the differentiated series (214). We therefore have

as in (£I3) that

(92
A4 _— ¥ = by h
( ) (agja€k> UlQ(ga 77)”2 1+ 25 where
00
Yo = —AZ [Tl,gg,énn gr(RE, I, - )vr, T se,mn he(RE, S, -)va
r=1

for any d x d matrix valued functions g, (z,t), h.(x,t), * € Z4t € Z, r = 1,...,100
satisfying
(A.5)
X I 02 Ae(iSE — ¢)e(—iSE — )
> G0(C,0) e ((,0) = : - e :
2 960G ) T — 1+ Ae(—iS€ — () e(iSE — O)]

Since ¥; can be bounded by arguing as in the previous paragraph, it will be suf-
ficient to show that the g, ., r =1,...,100 in (AF) can be chosen so that they
are in LP(Z4*1) for p > (d +2)/(d + 1). Observe that if one of the derivatives on
the RHS of (A.5)) is applied to the denominator and the other to the numerator,
we are in a situation like (£I3]), whence the corresponding functions g, h, on the
LHS of (A3F) can be chosen so that they are in LP(Z9*!) for p > (d 4+ 2)/(d + 1).
If both derivatives on the RHS of ([AJH]) are applied to the denominator, then the
typical situation we are in is to find a factorization

A3€7«1(—C)em(_g)erg(_C)eT4(_C)
[0 — 1+ Ae(—()*e(—()]”

such that g, h are both in LP(Z*1) for p > (d + 2)/(d + 1). Taking §((,6) to be
given by the formula

(A.6) 9(¢,0)*h(¢,0) =

A2€r1 (C)e’l"z (C)em (C)

AT 9(6,6) = ‘
(A7) WO = o 1 1 e(—0)el—OF

)
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it follows from (2.IT]) that g(x,t), h(x,t) are the functions
(A.8) g(z,t) = tVy V. V. G(x,t-2), h(x,t) = AV, G(z,t—-1).

Now (ZI2) implies that h is in LP(Z41) for p > (d +2)/(d + 1), and by a similar
argument we see that ¢ is also.
We have proved (AJ). The proof of (A:2)) is similar. O

Proposition A.1. Let d be as in the statement of Lemma A.1. Then the inequality
([TI2) of Theorem 1.2 holds with « =1 if 1 = X/A < §. If ¢(0,0) is self-adjoint and
Veq(€,m) =0 at (§,m) =0, then (LI2) holds with o = 2.

Proof. We first consider the discrete time case of (I2). Similarly to (Z:35]) we have
from (234) and Lemma 2.9, Lemma 2.10 of [§] that

2 n o .
(A.9) / /w/e 52[]06(5) _ f(g)}efzg‘x+n(t+62)
| () |J—rye2 €71 — 1+ e(e€)*q(e€, 2n)e(&€)
for a constant C' depending only on the function f(-) and d, A, A. We write ¢(§,n) =
G(&,7) where 77 = e” — 1 and use the Taylor inequality

(A.10)
q > 14+a
]q(m) - §(£,0) _ﬁaq@ﬁ)' 2 il

d¢ < Ce?,

d[Sm]

. [afj(f,sﬁ) ~ 8@(£,0>” .

on L+a o<s<t |57 on on
Since
2q(&m) 0q&,0) . 9a&n)  [9q(&n)  9q(£,0)
(A.11) o7 o (e 1) on + on on ,
it follows from Lemma A1l and (AIQ), (AII) that
(A.12)
9q(¢,0)

q(&,m) —q(&,0) — (" = 1) < Cle” 1", ¢eR% 0 <Ry <A,

on

where @ > 0 is as in (A2)). Hence we have that

(A.13) e 14 e(e€)*q(e€, e%n)e(el) = \e(a§)|2|es2" — 1|*"“Error(e¢, %)
+ {1+ e(€)*[0q(e€, 0) /Onle(e€) } (¢ — 1) + e(e€) (&€, 0)e(<€) |

where by (AI2) the function Error(¢,7) is uniformly bounded for ¢ € R%, 0 <
Rn < A. Tt follows from Corollary 2.2, Lemma Al and (AI3) that there are
positive constants v, Cy, Cy such that

] /e Ezen(t+52) o
(A1) |- /_W/g e — 1+ e(c€)"q(e€, e2n)e () d[S)

1 w/e” €2€n(t+62) d[s
_ % /71_/62 {1 + e(gg)*[aq(sf, O)/an]e(ﬁf)} (65277 — 1) + 6(55)*q(5£7 0)6(55) [\W’]

/&> 21,620 _ 1|14+«
o [ P

- e (Il +AJER)E d[Sn) < Colele])? if ele| <w.
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We can restate (A14) similarly to (2.38) as

(A.15)
1 w/e? €2€n(t+52) N
o // T 1 1 e(ed) a(eE. Eye(ed) Lo
_ 1 L el=8) a6, 0)e(=E) ]”E
1+ c(e€)*[0q(2€,0) /mle(e€) |~ 1+ e(e€)*[9q(e€, 0)/anle(=€)
< Colele))? .

Estimating integrals with respect to & for €|¢| > v as in ([238) we conclude from
(T3 that
(A.16)

‘< uE(CL'/E,t/EQ, ) > - uhom(x7t)|

<0+ / ] | el (€ 40,0}

)

- 1 [1_ e(c€)*q(e€, 0)e (=€) T/E
1+ ()" [0q(€, 0) /anle(e€) [ 1+ e(2€)*[0g(e€, 0)/Onle(=E)

for some constant C4. It follows from Lemma A1l upon using the interpolation
identity

1
(A.17) el —et = (b— a)/ ePtt(=rla g4,
0

that there is a constant Cs such that the integral on the RHS of (A.16]) is bounded
by Cse in general and by Cse? if (0, 0) is self-adjoint and V¢g(0,0) = 0. We have
therefore proved the proposition in the discrete time case.

The argument for the continuous time case is similar. Instead of Lemma 2.9,
Lemma 2.10 of [§] we use Lemma 5.4, Lemma 5.5 of [8]. The main point to note is
that integrals with respect to 3n over regions |Sn| > 7/e2 are O(g?). O

Remark 8. The real matrix ¢(0,0) is self-adjoint if the environment is time-
independent; i.e. 79y = identity for all ¢ € Z or ¢t € R. In general it is not
self-adjoint; see Lemma 2.6 of [§].

There does not appear to be any general criteria which would imply that ¢(0,0)
is self-adjoint and V¢q(0,0) = 0 for the PDE ([2), (I.4) with V defined by the
forward difference (I3]). However if we define V by the central difference in which

(A18)  Vie(z) = %[¢(x+ei)—¢(a:—ei)], Vie Vi i=1,....d

then there are such criteria. First we note that for the PDE (L2)), [4) with V
defined by (A1) the identities [22), 23), (23) hold if instead of [2.1]) we set

(A.19) O eh(w) = l[e"’ef'%(n,,,o w) — €Y (T_ 0 W)]

(A.20) e(6) =

DO =N

[emieit —¢ieit] | j=1,....d.
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It follows from ([(A20) that there is a constant C' depending only on d such that
(A21) le~2e(e€)* (0, 0)e(c€) — £*q(0,0)¢]| < Ce*[¢f*, €€ [-m,m]".

Hence if V is defined by the central difference (AI8]) the argument of Proposition
Al and (A2]) imply that we can take o = 2 in (LI2)) provided V¢q(0,0) = 0 and
A/A is sufficiently close to 1.

We show that V¢q(0,0) = 0 if the environment (€2, F, P) is reflection invariant.
To define reflection invariance of € first denote by R; : Z¢ — Z%, i =1,...,d, the
reflections on Z¢ which are the linear maps determined by the relations R;e; =
e; —20(i—j)e;, j=1,...,d. We say that (Q2, F, P) is reflection invariant if there
exist mappings R; : Q — Q, i = 1,...,d, which are measure preserving involutions
(Rf = identity) and Tm,tf{i = RZ‘TRiI’t forz € Z¢ and ¢t in Z or R.

Lemma A.2. Assume (0, F,P) is a reflection invariant environment, a(-) is a

diagonal matriz and a(Rrw) = a(w), w € Q, k = 1,..,d. If V is defined by the
central difference (BI8)) and q(-,-) is the function defined by [Z3)), then

(A.22) q(Rx&,n) = q(&,n) foréeRY, Ry >0, k=1,...,d

Proof. Observe from (AI9) that 07, = —0;¢, j=1,...,d, £ € R?. We also have
that R0 ¢ = 0jr.eRy if k # j and Rpdj ¢ = —0j r,eRy if k = j. Tt follows by
applying Ry to ([22) that if a(-) is a diagonal matrix, then

(A23) (I)j(ga n, Rkw) = [1 - 26(k - ])]@J(nga nvw)v g S Rd, we.

We conclude from (A23) that if ¥(&,n,w) = 0¢P(&,n,w), then the d x d matrix
V(& n,w) = [W;;(§,n,w)] has the property

(A.24) U, i(6,m Rw) = U, (Reé,mw), E€RY we j=1,....d

Now ([A22) follows from (Z3) and (A24) on using the fact that Rj is measure
preserving on 2. O

In the case of an environment (2, F, P) for which Q is a set of mappings w :
Z4 x T — R" with T = Z or R, we can define Ry, by Ryw(z,t) = w(Rpz,t), = €
Z¢, t € T. Both the i.i.d. and massive field theory environments of Theorem 1.2 are
of this nature. In the ii.d. case n = d(d+1)/2 and w(z,t) = a(x,t), z € Z%, t € Z,
with P being a product measure on 2. In the field theory case w(z,t) = ¢(z,t), x €
Z¢ t € R. The mapping Ry, is clearly measure preserving in the i.i.d. case, but is
only measure preserving in the massive field theory case if V(Ryz) = V(2), z € R%.
Hence the i.i.d. environment is always reflection invariant, and the field theory
environment is reflection invariant provided the function V(2), z € R, is reflection
invariant.

ACKNOWLEDGEMENTS

The authors would like to thank Tom Spencer for helpful conversations. They
would also like to thank the referee for helpful comments on the original manuscript.



3092

(1]

2]

(3]

(7]

8

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

JOSEPH G. CONLON AND ARASH FAHIM

REFERENCES

C. Boldrighini, R. A. Minlos, and A. Pellegrinotti, Random walks in quenched i.i.d. space-time
random environment are always a.s. diffusive, Probab. Theory Related Fields 129 (2004),
no. 1, 133-156, DOI 10.1007/s00440-003-0331-x. MR2052866 (2005e:60048)

Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and
Prékopa-Leindler theorems, including inequalities for log concave functions, and with an
application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366-389.
MR0450480 (56 #8774 )

Leo Breiman, Probability, Classics in Applied Mathematics, vol. 7, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1992. Corrected reprint of the 1968 original.
MR1163370|/(93d:60001)

Luis A. Caffarelli and Panagiotis E. Souganidis, Rates of convergence for the homogenization
of fully nonlinear uniformly elliptic pde in random media, Invent. Math. 180 (2010), no. 2,
301-360, DOI 10.1007/s00222-009-0230-6. MR2609244 |(2011c:35041)

A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math.
88 (1952), 85-139. MR0052553|(14,637f)

G. A. Chechkin, A. L. Piatnitski, and A. S. Shamaev, Homogenization, Methods and applica-
tions, Translations of Mathematical Monographs, vol. 234, American Mathematical Society,
Providence, RI, 2007. Translated from the 2007 Russian original by Tamara Rozhkovskaya.
MR2337848|/(2008j:35013)

Joseph G. Conlon, PDE with random coefficients and Euclidean field theory, J. Statist.
Phys. 116 (2004), no. 1-4, 933-958, DOI 10.1023/B:JOSS.0000037204.93858.f2. MR2082201
(20056:81132)

Joseph G. Conlon, Green’s functions for elliptic and parabolic equations with random co-
efficients. II, Trans. Amer. Math. Soc. 356 (2004), no. 10, 4085-4142 (electronic), DOI
10.1090/S0002-9947-04-03467-1. MR2058840//(2005f:35341)

Joseph G. Conlon and Ali Naddaf, On homogenization of elliptic equations with random
coefficients, Electron. J. Probab. 5 (2000), no. 9, 58 pp. (electronic), DOI 10.1214/EJP.v5-
65. MR 1768843 |(2002j:35328)

Joseph G. Conlon and Thomas Spencer, Strong convergence to the homogenized limit of
elliptic equations with random coefficients, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1257—
1288, DOI 10.1090/S0002-9947-2013-05762-5. MR3145731

T. Delmotte and J.-D. Deuschel, On estimating the derivatives of symmetric diffusions in
stationary random environment, with applications to V¢ interface model, Probab. Theory
Related Fields 133 (2005), no. 3, 358-390, DOI 10.1007/s00440-005-0430-y. MR2198017
(2007a:60057)

Dmitry Dolgopyat, Gerhard Keller, and Carlangelo Liverani, Random walk in Markovian en-
vironment, Ann. Probab. 36 (2008), no. 5, 1676-1710, DOI 10.1214/07-A0P369. MR2440920
(2009£:60124)

Richard Durrett, Probability: theory and examples, 2nd ed., Duxbury Press, Belmont, CA,
1996. MR1609153/(98m:60001)

T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau V¢ in-
terface model, Comm. Math. Phys. 185 (1997), no. 1, 1-36, DOI 10.1007/s002200050080.
MR1463032]/(98£:60206)

Antoine Gloria and Felix Otto, An optimal variance estimate in stochastic homogenization of
discrete elliptic equations, Ann. Probab. 39 (2011), no. 3, 779-856, DOI 10.1214/10-AOP571.
MR2789576/(2012j:35018)

Mathieu Gourcy and Liming Wu, Logarithmic Sobolev inequalities of diffusions for the
L? metric, Potential Anal. 25 (2006), no. 1, 77-102, DOI 10.1007/s11118-006-9009-1.
MR2238937|/(2008h:60214)

Bernard Helffer and Johannes Sjostrand, On the correlation for Kac-like models in the convex
case, J. Statist. Phys. 74 (1994), no. 1-2, 349-409, DOI 10.1007/BF02186817. MR1257821
(95g:82022)

B. Frank Jones Jr., A class of singular integrals, Amer. J. Math. 86 (1964), 441-462.
MR0161099 (28 #4308)

S. M. Kozlov, Averaging of random structures (Russian), Dokl. Akad. Nauk SSSR 241 (1978),
no. 5, 1016-1019. MR510894 |(80e:60078)


http://www.ams.org/mathscinet-getitem?mr=2052866
http://www.ams.org/mathscinet-getitem?mr=2052866
http://www.ams.org/mathscinet-getitem?mr=0450480
http://www.ams.org/mathscinet-getitem?mr=0450480
http://www.ams.org/mathscinet-getitem?mr=1163370
http://www.ams.org/mathscinet-getitem?mr=1163370
http://www.ams.org/mathscinet-getitem?mr=2609244
http://www.ams.org/mathscinet-getitem?mr=2609244
http://www.ams.org/mathscinet-getitem?mr=0052553
http://www.ams.org/mathscinet-getitem?mr=0052553
http://www.ams.org/mathscinet-getitem?mr=2337848
http://www.ams.org/mathscinet-getitem?mr=2337848
http://www.ams.org/mathscinet-getitem?mr=2082201
http://www.ams.org/mathscinet-getitem?mr=2082201
http://www.ams.org/mathscinet-getitem?mr=2058840
http://www.ams.org/mathscinet-getitem?mr=2058840
http://www.ams.org/mathscinet-getitem?mr=1768843
http://www.ams.org/mathscinet-getitem?mr=1768843
http://www.ams.org/mathscinet-getitem?mr=3145731
http://www.ams.org/mathscinet-getitem?mr=2198017
http://www.ams.org/mathscinet-getitem?mr=2198017
http://www.ams.org/mathscinet-getitem?mr=2440920
http://www.ams.org/mathscinet-getitem?mr=2440920
http://www.ams.org/mathscinet-getitem?mr=1609153
http://www.ams.org/mathscinet-getitem?mr=1609153
http://www.ams.org/mathscinet-getitem?mr=1463032
http://www.ams.org/mathscinet-getitem?mr=1463032
http://www.ams.org/mathscinet-getitem?mr=2789576
http://www.ams.org/mathscinet-getitem?mr=2789576
http://www.ams.org/mathscinet-getitem?mr=2238937
http://www.ams.org/mathscinet-getitem?mr=2238937
http://www.ams.org/mathscinet-getitem?mr=1257821
http://www.ams.org/mathscinet-getitem?mr=1257821
http://www.ams.org/mathscinet-getitem?mr=0161099
http://www.ams.org/mathscinet-getitem?mr=0161099
http://www.ams.org/mathscinet-getitem?mr=510894
http://www.ams.org/mathscinet-getitem?mr=510894

STRONG CONVERGENCE 3093

[20] S. M. Kozlov, The averaging method and walks in inhomogeneous environments (Russian),
Uspekhi Mat. Nauk 40 (1985), no. 2(242), 61-120, 238. MR786087|(87b:60104)

[21] C. Landim, S. Olla, and H. T. Yau, Convection-diffusion equation with space-time er-
godic random flow, Probab. Theory Related Fields 112 (1998), no. 2, 203-220, DOI
10.1007/s004400050187. MR1653837|/(99j:35084)

[22] Per-Gunnar Martinsson and Gregory J. Rodin, Asymptotic expansions of lattice Green’s
functions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002), no. 2027, 2609—
2622, DOI 10.1098 /rspa.2002.0985. MR 1942800 (2003;:82019)

[23] Jean-Christophe Mourrat, Kantorovich distance in the martingale CLT and quantitative ho-
mogenization of parabolic equations with random coefficients, Probab. Theory Related Fields
160 (2014), no. 1-2, 279-314, DOI 10.1007/s00440-013-0529-5. MR3256815

[24] A. Naddaf and T. Spencer, Estimates on the variance of some homogenization problems,
1998 preprint.

[25] David Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Ap-
plications (New York), Springer-Verlag, Berlin, 2006. MR2200233|/(2006j:60004 )

[26] G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating
random coefficients, Random fields, Vol. I, II (Esztergom, 1979), Colloq. Math. Soc. Jdnos
Bolyai, vol. 27, North-Holland, Amsterdam, 1981, pp. 835-873. MR 712714 (84k:58233)

[27] William Parry, Topics in ergodic theory, Cambridge Tracts in Mathematics, vol. 75, Cam-
bridge University Press, Cambridge, 2004. Reprint of the 1981 original. MR2140546
(2005m:37003)

[28] Rémi Rhodes, On homogenization of space-time dependent and degenerate random flows,
Stochastic Process. Appl. 117 (2007), no. 10, 1561-1585, DOI 10.1016/j.spa.2007.01.010.
MR2353040|/(2008j:60195)

[29] Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier anal-
ysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York,
1975. MR0493420|/(58 #12429b)

[30] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton
Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR0290095
(44 #7280)

[31] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971.
MR0304972 (46 #4102)

[32] V. V. Yurinski”i, Averaging of symmetric diffusion in a random medium (Russian), Sibirsk.
Mat. Zh. 27 (1986), no. 4, 167-180, 215. MR867870|/(88e:35190)

[33] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and
integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A.
Yosifian [G. A. Iosif'yan]. MR1329546//(96h:35003b)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109-
1109
E-mazil address: conlon@umich.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109-
1109

E-mail address: fahimara@umich.edu

Current address: Department of Mathematics, Florida State University, Tallahassee, Florida
32306

E-mail address: fahim@math.fsu.edu


http://www.ams.org/mathscinet-getitem?mr=786087
http://www.ams.org/mathscinet-getitem?mr=786087
http://www.ams.org/mathscinet-getitem?mr=1653837
http://www.ams.org/mathscinet-getitem?mr=1653837
http://www.ams.org/mathscinet-getitem?mr=1942800
http://www.ams.org/mathscinet-getitem?mr=1942800
http://www.ams.org/mathscinet-getitem?mr=3256815
http://www.ams.org/mathscinet-getitem?mr=2200233
http://www.ams.org/mathscinet-getitem?mr=2200233
http://www.ams.org/mathscinet-getitem?mr=712714
http://www.ams.org/mathscinet-getitem?mr=712714
http://www.ams.org/mathscinet-getitem?mr=2140546
http://www.ams.org/mathscinet-getitem?mr=2140546
http://www.ams.org/mathscinet-getitem?mr=2353040
http://www.ams.org/mathscinet-getitem?mr=2353040
http://www.ams.org/mathscinet-getitem?mr=0493420
http://www.ams.org/mathscinet-getitem?mr=0493420
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.ams.org/mathscinet-getitem?mr=0304972
http://www.ams.org/mathscinet-getitem?mr=0304972
http://www.ams.org/mathscinet-getitem?mr=867870
http://www.ams.org/mathscinet-getitem?mr=867870
http://www.ams.org/mathscinet-getitem?mr=1329546
http://www.ams.org/mathscinet-getitem?mr=1329546

	1. Introduction
	2. Fourier space representation and homogenization
	3. Rate of convergence in homogenization
	4. Fluctuations of averaged Green’s functions
	5. Independent variable environment
	6. Massive field theory environment
	Appendix A. Optimal rates of convergence
	Acknowledgements
	References

