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SOME NEW RESULTS ON DIFFERENTIAL INCLUSIONS

FOR DIFFERENTIAL FORMS

SAUGATA BANDYOPADHYAY, BERNARD DACOROGNA, AND OLIVIER KNEUSS

Abstract. In this article we study some necessary and sufficient conditions

for the existence of solutions in W 1,∞
0 (Ω; Λk) of the differential inclusion

dω ∈ E a.e. in Ω

where E ⊂ Λk+1 is a prescribed set.

In this article we discuss the existence of a k−form ω, 0 ≤ k ≤ n− 1, verifying{
dω ∈ E in Ω,
ω = 0 on ∂Ω,

where Ω ⊂ R
n is a bounded open set and E ⊂ Λk+1 is a given set of (k + 1)−forms.

For the precise notation we refer to Section 1.
This problem has been mostly studied in the case k = 0 (dω can then be identified

with gradω); see [3], [4], [5], [9], [10], [11] and, for an extensive bibliography on the
subject, see [7].

The case k = 1 (dω is then identified with curlω) has also received some atten-
tion; see [1], [2], [8], [12].

The general case, 0 ≤ k ≤ n− 1, was first considered in [1].
We improve here on [1] in two directions. The first result concerns the existence

part (cf. Theorem 3.7).

Theorem 0.1. Let 0 ≤ k ≤ n − 1 be two integers, Ω ⊂ R
n a bounded open set,

b ∈ Λk \ {0} and E ⊂ Λk+1. Then the following statements are equivalent.

(i) There exists ω ∈ W 1,∞
0

(
Ω;Λk

)
of the form ω (x) = u (x) b where u ∈

W 1,∞
0 (Ω) such that

dω = (gradu) ∧ b ∈ E a.e. in Ω and

∫
Ω

ω �= 0.

(ii) The following holds:

0 ∈ intRn∧b co[E ∩ (Rn ∧ b)].

This result was already obtained in [1] but only for b of the form

b = b1 ∧ · · · ∧ bk

where b1, · · · , bk ∈ Λ1. Our present theorem allows us (cf. Corollary 3.9) to get a
complete picture when

dim spanE = n− k.
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Our second contribution concerns necessary conditions (cf. Theorem 2.5).

Theorem 0.2. Let 0 ≤ k ≤ n − 1 be two integers, let Ω ⊂ R
n be a bounded open

set, and let E ⊂ Λk+1 and ω ∈ W 1,∞
0

(
Ω;Λk

)
be such that

dω ∈ E a.e. in Ω and

∫
Ω

ω �= 0.

Then

dim spanE ≥ n− k

and more precisely

R
n ∧

(∫
Ω

ω

)
⊂ spanE.

Moreover, if

dim spanE = n− k,

then

R
n ∧

(∫
Ω

ω

)
= spanE and

∫
Ω

ω = b1 ∧ · · · ∧ bk

for some b1, · · · , bk ∈ Λ1.

1. Notation

We gather here the notation which we will use throughout this article. For more
details on exterior algebra and differential forms see [6] and for convex analysis see
[7] or [13].

(1) Let k, n be two integers.
• We write Λk (Rn) (or simply Λk) to denote the vector space of all
alternating k−linear maps f : Rn × · · · × R

n︸ ︷︷ ︸
k−times

→ R. For k = 0, we set

Λ0 (Rn) = R. Note that Λk (Rn) = {0} for k > n and, for k ≤ n,
dim

(
Λk (Rn)

)
=

(
n
k

)
.

• ∧, � , 〈; 〉 and, respectively, ∗ denote the exterior product, the interior
product, the scalar product and, respectively, the Hodge star operator.

• For b ∈ Λk, rank[b] denotes the rank of the exterior k−form b.
• If

{
e1, · · · , en

}
is a basis of Rn, then, identifying Λ1 with R

n,{
ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n

}
is a basis of Λk.

• For E ⊂ Λk, spanE denotes the subspace spanned by E.
• Let W be a subspace of Λk. We write dimW to denote the dimension
of W and W⊥ to denote the orthogonal complement of W.

• For b ∈ Λk, we write, identifying again Λ1 with R
n,

R
n ∧ b = Λ1 ∧ b = {x ∧ b : x ∈ Λ1} ⊂ Λk+1.

(2) Let Ω ⊂ R
n be a bounded open set.

• The spaces C1
(
Ω;Λk

)
, W 1,p

(
Ω;Λk

)
and W 1,p

0

(
Ω;Λk

)
, 1 ≤ p ≤ ∞,

are defined in the usual way.
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• For ω ∈ W 1,p
(
Ω;Λk

)
,
∫
Ω
ω denotes the exterior k−form obtained

by integrating componentwise the differential form ω. Explicitly, for
1 ≤ i1 < · · · < ik ≤ n,(∫

Ω

ω

)
i1···ik

=

∫
Ω

ωi1···ik .

• For ω∈W 1,p
(
Ω;Λk

)
, the exterior derivative dω belongs to Lp(Ω; Λk+1)

and is defined by

(dω)i1···ik+1
=

k+1∑
j=1

(−1)j+1 ∂ωi1···ij−1ij+1···ik+1

∂xij

,

for 1 ≤ i1 < · · · < ik+1 ≤ n. If k = 0, then dω � gradω. If k = 1, then
for 1 ≤ i < j ≤ n,

(dω)ij =
∂ωj

∂xi
− ∂ωi

∂xj
,

i.e. dω � curlω.
(3) For subsets C, V ⊂ Λk,

• coC denotes the convex hull of C;
• intV C denotes the interior of C with respect to the topology relative
to V.

(4) For a convex set C ⊂ Λk,
• aff C denotes the affine hull of C which is the intersection of all affine
subsets of Λk containing C;

• riC denotes the relative interior of C which is the interior of C with
respect to the topology relative to the affine hull of C. Equivalently
riC = intaff C C;

• rbdC denotes the relative boundary of C which is C \ riC.

2. Necessary conditions

2.1. Preliminaries.

Lemma 2.1. Let 0 ≤ k ≤ n− 1 and let b ∈ Λk \ {0}. Then
dim (Rn ∧ b) ≥ n− k.

Furthermore,

dim (Rn ∧ b) = n− k ⇔ b = b1 ∧ · · · ∧ bk for some bi ∈ Λ1.

Proof.

Step 1. We prove the first part. By definition of the interior product and the Hodge
star operator (cf. Definition 2.11 in [6]), we have that

R
n � (∗b) = (−1)

k2

∗ (Rn ∧ b) .

Hence, since (cf. Proposition 2.32 (i) in [6])

dim (Rn � (∗b)) = rank [∗b] ,
and since (cf. Proposition 2.37 (ii) of [6])

rank [∗b] ≥ n− k,

we have proved the first part of the lemma.
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Step 2. We prove the second part. First note that if b = b1∧· · ·∧ bk where bi ∈ Λ1,
it is elementary to see that

dim (Rn ∧ b) = n− k.

We prove the converse. In this case

n− k = dim (Rn ∧ b) = dim (Rn � (∗b)) ,
and so, as in Step 1, rank [∗b] = n − k and hence (cf. Proposition 2.43 (ii) in [6])
there exist c1, · · · , cn−k ∈ Λ1 such that

∗b = c1 ∧ · · · ∧ cn−k.

Using Proposition 2.19 in [6], it is not difficult to see that

b = b1 ∧ · · · ∧ bk

for some bi ∈ Λ1. The lemma is therefore proved. �
Proposition 2.2. Let 0 ≤ k ≤ n − 1 be two integers and let f : Rn → Λk be
continuous at 0 and such that f (0) �= 0. Then

R
n ∧ f (0) ⊂ span {x ∧ f (x) : x ∈ R

n}
and therefore

dim span {x ∧ f (x) : x ∈ R
n} ≥ n− k.

Moreover, if

dim span {x ∧ f (x) : x ∈ R
n} = n− k,

then

R
n ∧ f (0) = span {x ∧ f (x) : x ∈ R

n} and f (0) = b1 ∧ · · · ∧ bk

for some bi ∈ Λ1.

Proof.

Step 1. From Lemma 2.1, since f (0) ∈ Λk and f (0) �= 0, we have

dim span{x ∧ f (0) : x ∈ R
n} ≥ n− k.

Moreover, if dim span {x ∧ f (0) : x ∈ R
n} = n− k, then

f (0) = b1 ∧ · · · ∧ bk

for some bi ∈ Λ1.

Step 2. We prove the first assertion. Let x ∈ R
n \{0} be fixed. Note that, for every

λ ∈ R \ {0},

x ∧ f (λx) =
1

λ
[λx ∧ f (λx)] ∈ span {y ∧ f (y) : y ∈ R

n} .

Since span {y ∧ f (y) : y ∈ R
n} is closed and f is continuous at 0, it follows, letting

λ → 0, that

x ∧ f (0) ∈ span {y ∧ f (y) : y ∈ R
n} .

Therefore

R
n ∧ f (0) ⊂ span {y ∧ f (y) : y ∈ R

n}
which directly shows that (cf. Step 1)

dim span {y ∧ f (y) : y ∈ R
n} ≥ dim (Rn ∧ f (0)) ≥ n− k.
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Step 3. We finally prove the extra assertion. We already know (cf. Step 2) that

R
n ∧ f (0) ⊂ span {x ∧ f (x) : x ∈ R

n} .
Since, by hypothesis,

dim span {x ∧ f (x) : x ∈ R
n} = n− k,

we directly deduce from Step 1 that

R
n ∧ f (0) = span {x ∧ f (x) : x ∈ R

n}
and that

f (0) = b1 ∧ · · · ∧ bk

for some bi ∈ Λ1. The proof is therefore complete. �

Remark 2.3. (i) With a very similar proof one can show that if f : Rn → Λk is
differentiable at some point x0 ∈ R

n, then, for every x ∈ R
n,

x0 ∧Df(x0;x) + x ∧ f(x0) ⊂ span{y ∧ f(y) : y ∈ R
n}

where Df(x0;x) denotes the directional derivative of f at x0 in the direction of x.
In particular if Df(x0) = 0, then

R
n ∧ f(x0) ⊂ span{y ∧ f(y) : y ∈ R

n}.
(ii) It can also be proved that if f : Rn → Λk is continuous and x0 ∈ R

n is such
that

x0 ∧ f(x0) �= 0,

then, necessarily (even if f (0) = 0),

dim span {x ∧ f (x) : x ∈ R
n} ≥ n− k.

The following lemma will be used in the proofs of Theorems 2.6 and 3.7 and
Corollary 3.9.

Lemma 2.4. Let 0 ≤ k ≤ n− 1 be two integers, let Ω ⊂ R
n be a bounded open set,

and let E ⊂ Λk+1 and ω ∈ W 1,∞
0

(
Ω;Λk

)
be such that

dω ∈ E a.e. in Ω.

Then

0 ∈ coE.

Moreover, if 0 /∈ ri co(E), then there exists D ⊂ Ω such that meas(Ω \ D) = 0,
dω(D) ⊂ E and

dim span(dω(D)) < dim spanE.

Proof. Since ω ∈ W 1,∞
0

(
Ω;Λk

)
and hence∫

Ω

dω = 0,

we deduce, using Proposition 2.36 in [7] and Jensen’s inequality, that

0 ∈ coE.

Suppose that 0 /∈ ri co(E) and hence (using the previous observation)

0 ∈ rbd coE.
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Using the Separation Theorem (cf. Theorem 2.10 in [7]), we easily deduce from the
previous equation that there exists b ∈ (spanE) \ {0} such that

〈h; b〉 ≥ 0 for every h ∈ coE.

In particular 〈dω; b〉 ≥ 0 a.e. in Ω. But, as ω ∈ W 1,∞
0

(
Ω;Λk

)
and∫

Ω

〈dω; b〉 = 0,

we therefore obtain that

〈dω; b〉 = 0 a.e. in Ω.

Let D ⊂ Ω be the set where the previous equation holds. Taking D smaller if
necessary we can assume without loss of generality that dω(D) ⊂ E (and of course
meas(Ω \D) = 0) and hence

span dω(D) ⊂ spanE.

As 〈dω (x) ; b〉 = 0 for every x ∈ D and b ∈ (spanE) \ {0}, we deduce that

span dω(D) ⊂
�=
spanE

and thus

dim span dω(D) < dim spanE

as wished. �

2.2. The main results. We first state the main results of this section.

Theorem 2.5. Let 0 ≤ k ≤ n − 1 be two integers, let Ω ⊂ R
n be a bounded open

set, and let E ⊂ Λk+1 and ω ∈ W 1,∞
0

(
Ω;Λk

)
be such that

dω ∈ E a.e. in Ω and

∫
Ω

ω �= 0.

Then

R
n ∧

(∫
Ω

ω

)
⊂ spanE and dim spanE ≥ n− k.

Moreover, if

dim spanE = n− k,

then

R
n ∧

(∫
Ω

ω

)
= spanE and

∫
Ω

ω = b1 ∧ · · · ∧ bk

for some bi ∈ Λ1.

The following result improves Theorem 3.6 of [1], since E is not assumed to be
finite and F is given explicitly.

Theorem 2.6. Let 0 ≤ k ≤ n − 1 be integers, let Ω ⊂ R
n be a bounded open set,

and let E ⊂ Λk+1 \ {0}. Let ω ∈ W 1,∞
0

(
Ω;Λk

)
be such that

dω ∈ E a.e. in Ω.

Then there exists F ⊂ E such that

0 ∈ ri coF.

More precisely F can be taken as dω(D) for some D ⊂ Ω with meas(Ω \D) = 0.
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We start with the proof of Theorem 2.5.

Proof. Let P : Λk+1 → Λk+1 denote the projection onto the orthogonal complement
of spanE. Since ω ∈ W 1,∞

0

(
Ω;Λk

)
, extending ω by 0 to R

n, it follows that

P(dω) = 0 a.e. in R
n.

Applying the Fourier transform we obtain (recalling that the Fourier transform of
ω is continuous)

P

(
x ∧

[∫
Rn

ω(y) cos (2π〈x; y〉) dy
])

= 0 for every x ∈ R
n

which is equivalent to

x ∧
[∫

Rn

ω(y) cos (2π〈x; y〉) dy
]
∈ spanE for every x ∈ R

n.

Letting

f (x) =

∫
Rn

ω(y) cos (2π〈x; y〉) dy

we get

f (0) =

∫
Ω

ω �= 0.

Then, applying Proposition 2.2 to the above f , we have indeed established the
theorem. �

We next prove Theorem 2.6.

Proof. Let D ⊂ Ω (not necessarily unique) be such that

meas(Ω \D) = 0, dω (D) ⊂ E

and, for every D1 ⊂ D with meas(Ω \D1) = 0, then

(2.1) dim span dω (D1) = dim span dω (D) .

If such a D did not exist, we would find, after a finite induction on the dimension,
that

dω = 0 a.e. in Ω

which contradicts the fact that 0 /∈ E. Letting F = dω(D) ⊂ E, it remains to show
that

0 ∈ ri coF.

For the sake of contradiction suppose that this is not the case. Hence using Lemma
2.4 (with E replaced by F ) there exists a set D1 ⊂ D (in the conclusion of Lemma
2.4 the set D1 is only contained in Ω but taking it smaller, if necessary, we can
assume that D1 ⊂ D) such that meas(Ω \D1) = 0 and

dim span dω(D1) < dim spanF.

This is the desired contradiction since, using (2.1),

dim span dω(D1) = dim spanF.

The proof is therefore complete. �



3126 S. BANDYOPADHYAY, B. DACOROGNA, AND O. KNEUSS

2.3. Further remarks. In this section we want to discuss the hypothesis∫
Ω

ω �= 0

that was made in Theorem 2.5. We will concentrate on the case k = 1. We start
with an elementary lemma.

Lemma 2.7. Let E ⊂ Λ2 (Rn) be such that there exists a non-degenerate g ∈ Λ2

(i.e. h � g �= 0 for every h ∈ Λ1 \ {0}) and

g ∈ (spanE)⊥ .

Then the two following statements hold true.
(i) There exists no b ∈ Λ1 (Rn) \ {0} such that

R
n ∧ b ⊂ spanE.

(ii) There exists no ω ∈ W 1,∞
0 (Ω; Λ1) such that

dω ∈ E a.e. in Ω and

∫
Ω

ω �= 0.

Proof. (i) We proceed by contradiction and assume that R
n ∧ b ⊂ spanE with

b �= 0. Since g ∈ (spanE)⊥ , we deduce that

g ∈ (Rn ∧ b)
⊥

which is equivalent to

〈g; a ∧ b〉 = 0 for every a ∈ Λ1.

This in turn is equivalent to (cf. Proposition 2.16 in [6])

〈b � g; a〉 = 0 for every a ∈ Λ1.

Since the previous equation is the same as

b � g = 0,

we deduce, appealing to the fact that g is non-degenerate, that b = 0. This is the
desired contradiction.

(ii) Indeed, if such a solution exists, then (cf. Theorem 2.5)

R
n ∧

(∫
Ω

ω

)
⊂ spanE.

Define b =
∫
Ω
ω and apply the previous point (i) to get the result. �

The next proposition shows that the hypothesis
∫
Ω
ω �= 0 cannot be removed, in

general, in Theorem 2.5.

Proposition 2.8. Let B ⊂ R
4 be the unit ball centered at 0. Then there exists

E ⊂ Λ2
(
R

4
)
\ {0} with the following properties.

(i) There exists ω0 ∈ W 1,∞
0

(
B; Λ1

)
such that

dω0 ∈ E a.e. in B.

(ii) There exists no b ∈ Λ1
(
R

4
)
\ {0} such that

R
4 ∧ b ⊂ spanE.
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(iii) For every ω ∈ W 1,∞
0

(
B; Λ1

)
such that dω ∈ spanE a.e. in B then, neces-

sarily, ∫
B

ω = 0.

Remark 2.9. (i) Using the Vitali covering theorem (see [10]), the same set E also
works for any open set Ω (instead of B).

(ii) This phenomenon only occurs where n ≥ 4. Indeed if n ≤ 3 we can always
find (cf. Theorem 3.11) a solution with a non-zero average (as far as there exists a
non-trivial solution).

(iii) The previous proposition has an interesting implication for differential in-

clusions where we seek solutions u ∈ W 1,∞
0

(
Ω;RN

)
, and Ω ⊂ R

n, verifying

∇u ∈ F a.e. in Ω.

In the scalar case N = 1, we can always ensure (cf. Theorem 3.5) that if there is
a non-trivial solution u of the differential inclusion, then there are some solutions
with non-zero average. This is no longer the case in the vectorial context when
n,N > 1. Indeed let n = N = 4 and define F ⊂ R

4×4 ≈ R
4 × R

4 × R
4 × R

4 by

F =
{
(u1, u2, u3, u4) ∈ R

4×4 : u1 ∧ dx1 + u2 ∧ dx2 + u3 ∧ dx3 + u4 ∧ dx4 ∈ E
}

where E is as in the proposition. Noticing that, for ω = u1dx
1 + · · ·+ u4dx

4,

dω ∈ E ⇔ ∇u = (∇u1,∇u2,∇u3,∇u4) ∈ F

we have the result.
(iv) If dim spanE = n− 1, then, as far as there exists a non-trivial solution (cf.

Theorem 4.13 [1]), we always have (without assuming the existence of a solution
with non-zero average) spanE = R

n ∧ b for some b ∈ Λ1 \ {0}.

Proof. (i) Let

ω0 (x) =
(
|x|2 − 1

) (
x1 dx

1 + x2 dx
2 + 2x3 dx

3 + 2x4 dx
4
)
.

Obviously ω0 ∈ W 1,∞
0 (B; Λ1) and

dω0(x) = 2x1x3 dx
1 ∧ dx3 + 2x1x4 dx

1 ∧ dx4 + 2x2x3 dx
2 ∧ dx3 + 2x2x4 dx

2 ∧ dx4.

Let
Σ = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0} ∪ {x4 = 0} .

Note in particular that

dω0(x) �= 0 for every x ∈ R
4 \ Σ.

Observe that ω0 and
E = dω0 (B \ Σ)

satisfy all the requirements of the first statement of the proposition, since, trivially,
0 /∈ E, ω0 ∈ W 1,∞

0

(
B; Λ1

)
and dω0 ∈ E a.e. in B.

(ii) We now prove the second statement. First observe that for every h ∈ E
we have h12 = h34 = 0. We thus deduce that for every h ∈ spanE we also have

h12 = h34 = 0. In other words dx1 ∧ dx2, dx3 ∧ dx4 ∈ (spanE)⊥ and hence, in
particular,

g = dx1 ∧ dx2 + dx3 ∧ dx4 ∈ (spanE)
⊥
.

Note that g is non-degenerate. We can therefore invoke Lemma 2.7 (i) to get the
claim.
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(iii) The last statement of the proposition is a direct consequence of Theorem
2.5 and of the previous point (ii). �

3. Necessary and sufficient conditions

3.1. Preliminaries. We start with an elementary lemma whose proof is straight-
forward.

Lemma 3.1. Let X be a normed linear space, Y ⊂ X a subspace and A ⊂ X.
Then 0 ∈ intY co (A ∩ Y ) if and only if

span (A ∩ Y ) = Y and 0 ∈ ri co (A ∩ Y ) .

We next recall Caratheodory’s theorem (see Corollary 2.16 in [7]).

Lemma 3.2 (Caratheodory’s theorem). Let X be a normed linear space and E ⊂
X. Then 0 ∈ ri coE if and only if there exist m ∈ N, m ≥ dim spanE + 1, zi ∈ E,
ti > 0 for every 1 ≤ i ≤ m, such that

m∑
i=1

tizi = 0,

m∑
i=1

ti = 1 and span
{
z1, · · · , zm

}
= spanE.

In what follows we will constantly identify Λ1 with R
n.

Lemma 3.3. Let 0 ≤ k ≤ n−1 be two integers, and let b ∈ Λk \{0} and E ⊂ Λk+1

be such that

0 ∈ intRn∧b co [E ∩ (Rn ∧ b)] .

Then there exists F ⊂ R
n such that

E ∩ (Rn ∧ b) = F ∧ b and 0 ∈ int coF.

Proof.

Step 1. Let us define

F = {x ∈ R
n : x ∧ b ∈ E}.

Evidently, E ∩ (Rn ∧ b) = F ∧ b. Since 0 ∈ intRn∧b co [E ∩ (Rn ∧ b)] , it follows from
Lemma 3.1 that

(3.1) span [E ∩ (Rn ∧ b)] = R
n ∧ b and 0 ∈ ri co [E ∩ (Rn ∧ b)] .

Using Lemma 3.2 we find m ∈ N, m ≥ dim span [E ∩ (Rn ∧ b)] + 1, zi ∈ E ∩
(Rn ∧ b) , ti > 0 for every 1 ≤ i ≤ m, such that

(3.2)
m∑
i=1

tizi = 0,
m∑
i=1

ti = 1

and

(3.3) span
{
z1, · · · , zm

}
= span [E ∩ (Rn ∧ b)] = R

n ∧ b.

As zi ∈ E ∩ (Rn ∧ b) , for every 1 ≤ i ≤ m, there exists ai ∈ F such that

(3.4) zi = ai ∧ b for every 1 ≤ i ≤ m.

It therefore follows from (3.2) that

(3.5)

(
m∑
i=1

tiai

)
∧ b = 0.
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We next define

W = {x ∈ R
n : x ∧ b = 0}.

Note that it follows from Lemma 2.1 that 0 ≤ dimW ≤ k. We now consider two
cases (cf. Steps 2 and 3).

Step 2. We prove the lemma when dimW = 0. Note that in this case dim (Rn ∧ b) =
n and hence m ≥ n+ 1. Since dimW = 0, we deduce from (3.5) that

m∑
i=1

tiai = 0.

Observe that span{a1, · · · , am} = R
n. Indeed if span{a1, · · · , am} was a proper

subspace of Rn, so would span{z1, · · · , zm} be a proper subspace of Rn ∧ b which
contradicts (3.3). Therefore, using Lemma 3.2, we have that 0 ∈ int coF. This
proves the lemma when dimW = 0 (or equivalently when b does not have any
1−form as a factor).

Step 3. We prove the lemma when dimW = r, where 1 ≤ r ≤ k.

Step 3.1. In this case, we have that

dim (Rn ∧ b) = n− r

and thus m ≥ n − r + 1. Let {b1, · · · , br} be an orthonormal basis of W . Without
loss of generality, we can assume that

bj = ej for every 1 ≤ j ≤ r

where {e1, · · · , en} is the standard basis of Rn. Since ei ∧ b = 0 for every 1 ≤ i ≤ r,
we have, invoking Cartan’s Lemma (cf. Theorem 2.42 in [6]), that b can be written
as

b = e1 ∧ · · · ∧ er ∧ b̄

where b̄ ∈ Λk−r does not have any 1−form as a factor; i.e. we have that

x ∧ b̄ �= 0 for every x ∈ R
n \ {0} .

Note that

zi = ai ∧ b = ai ∧ e1 ∧ · · · ∧ er ∧ b =

⎛
⎝ n∑

j=r+1

aije
j

⎞
⎠ ∧ e1 ∧ · · · ∧ er ∧ b.

Hence, without loss of generality, we assume that {a1, · · · , am} in (3.4) also satisfy

(3.6) aij = 0 for every 1 ≤ i ≤ m and 1 ≤ j ≤ r.

In addition, since x ∧ b �= 0 for every x ∈ R
n \ {0} and using (3.6), we deduce that

(3.7) dim
(
span{a1, · · · , am}

)
= dim

(
span{z1, · · · , zm}

)
= n− r.
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Step 3.2. To show that 0 ∈ int coF, let us define vi,j ∈ R
n, for 1 ≤ i ≤ m and

1 ≤ j ≤ 2r, as

(3.8) vi,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1
1

air+1
...
ain

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, vi,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1
−1
air+1
...
ain

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · , vi,2r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
...
−1
−1
air+1
...
ain

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly vi,j ∈ F, for every 1 ≤ i ≤ m and 1 ≤ j ≤ 2r, since

vi,j ∧ b = ai ∧ b ∈ E for every 1 ≤ i ≤ m and 1 ≤ j ≤ 2r.

Furthermore, defining

ti,j =
ti

2r
for every 1 ≤ i ≤ m and 1 ≤ j ≤ 2r

it is easy check that m2r ≥ n+ 1 for every 1 ≤ r ≤ n− 1 and

m∑
i=1

2r∑
j=1

ti,jvi,j = 0

and
m∑
i=1

2r∑
j=1

ti,j = 1.

If we show (cf. Step 3.3) that

(3.9) span{vi,j : 1 ≤ i ≤ m; 1 ≤ j ≤ 2r} = R
n,

then, using Lemma 3.2, we will have proved that 0 ∈ int coF and the proof will be
finished.

Step 3.3. We show (3.9). Let y ∈ R
n be such that 〈y; vi,j〉 = 0, for every 1 ≤ i ≤ m

and 1 ≤ j ≤ 2r. It is enough to prove that y = 0 to have the claim. Let 1 ≤ i ≤ m
be fixed. For every 1 ≤ p ≤ r, we choose 1 ≤ j, l ≤ 2r such that

vi,j − vi,l = 2ep.

Then

0 = 〈y; vi,j − vi,l〉 = 2〈y; ep〉 for every p ∈ {1, · · · , r}
which shows that yp = 0, for every 1 ≤ p ≤ r. The system

〈y; vi,j〉 = 0 for every 1 ≤ i ≤ m and 1 ≤ j ≤ 2r

is therefore equivalent to the system

(3.10)
n∑

j=r+1

aijyj = 0 for every 1 ≤ i ≤ m.
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We now define a matrix A ∈ R
m×(n−r) as

Ai
j = aij+r for every 1 ≤ i ≤ m and 1 ≤ j ≤ n− r.

Then (3.10) can be written as

Aȳ = 0

where ȳ = (yr+1, · · · , yn).
To show that ȳ = 0, it is enough to prove that rankA = n − r (recall that

m ≥ n − r + 1) which directly follows from (3.6) and (3.7). Therefore, ȳ = 0 and
hence, y = 0. This proves the claim and concludes the proof. �

Definition 3.4. A map ω : Ω → Λk (Rn) is said to be (locally finite) piecewise

affine if there exist Ai ∈ R
(nk)×n, αi ∈ R

(nk) and Ωi ⊂ Ω open sets where i runs
through an at most countable set I such that

(1) ω (x) = Aix+ αi in Ωi for every i ∈ I,
(2) meas

(
Ω \

⋃
i∈I Ωi

)
= 0 and Ωi ∩ Ωj = ∅ for i, j ∈ I with i �= j,

(3) for every compact K ⊂ Ω

{i ∈ I : K ∩ Ωi �= ∅} is finite.

We recall a result concerning the scalar gradient case (see Lemma 2.11 in [10]
and its proof).

Theorem 3.5 (Gradient case). Let Ω ⊂ R
n be open and F ⊂ R

n. Then there exists

u ∈ W 1,∞
0 (Ω) such that

gradu ∈ F a.e. in Ω

if and only if

0 ∈ F ∪ int coF.

If moreover 0 ∈ int coF, then u can be taken piecewise affine, u ≥ 0 and∫
Ω

u > 0.

Finally we give the following elementary lemma.

Lemma 3.6. Let 0 ≤ k ≤ n be two integers and let ω ∈ C∞ (
R

n; Λk
)
be such that

ω (x) = Ax+ a for every x ∈ R
n

where a ∈ R
(nk) and A ∈ R

(nk)×n is such that

rankA ≤ 1.

Then there exists b ∈ Λ1 \ {0} such that

b ∧ dω = 0.

Proof. Since we will use the lemma only when k = 1, we prove it in this context;
the general case is similar. The result being trivial if rankA = 0, we assume that
rankA = 1. Hence there exist α ∈ R

n \ {0} and b ∈ R
n \ {0} such that

Ai
j = αibj for every 1 ≤ i, j ≤ n.
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We claim that

b ∧ dω = 0

which will prove the lemma. Since, for 1 ≤ j1 < j2 ≤ n,

(dω)j1j2 = αj1bj2 − αj2bj1 ,

we deduce that, for every 1 ≤ r1 < r2 < r3 ≤ n,

(b ∧ dω)r1r2r3 = (αr1br2 − αr2br1) br3 − (αr1br3 − αr3br1) br2

+ (αr2br3 − αr3br2) br1
= 0.

This proves the claim and concludes the lemma. �

3.2. Statement of the main results.

Theorem 3.7 (Necessary and sufficient condition). Let 0 ≤ k ≤ n − 1 be two
integers, let Ω ⊂ R

n be a bounded open set, and let b ∈ Λk \ {0} and E ⊂ Λk+1.
Then the following statements are equivalent.

(i) There exists u ∈ W 1,∞
0 (Ω) such that

(gradu) ∧ b ∈ E a.e. in Ω and

∫
Ω

u �= 0.

(ii) The following holds:

0 ∈ intRn∧b co[E ∩ (Rn ∧ b)].

Remark 3.8. (i) The u will be constructed piecewise affine with u ≥ 0.

(ii) Letting ω (x) = u (x) b, we get that ω ∈ W 1,∞
0

(
Ω;Λk

)
,

dω ∈ E a.e. in Ω and

∫
Ω

ω �= 0.

Corollary 3.9. Let 0 ≤ k ≤ n − 1 be two integers, let Ω ⊂ R
n be a bounded open

set and let E ⊂ Λk+1 be such that

dim spanE = n− k.

Then the following statements are equivalent.
(i) There exists ω ∈ W 1,∞

0

(
Ω;Λk

)
such that

dω ∈ E a.e. in Ω and

∫
Ω

ω �= 0.

(ii) There exist b = b1 ∧ · · · ∧ bk �= 0 where bi ∈ Λ1 such that

(3.11) 0 ∈ ri coE and spanE = R
n ∧ b.

Remark 3.10. Using Lemma 3.1, note that (3.11) implies (since in this case E =
E ∩ (Rn ∧ b))

0 ∈ intRn∧b coE.

In the case n = 3 the result, obtained in Theorem 4.15 of [1], takes the following
optimal form. Note that in this case we can identify dω with curlω and Λ2

(
R

3
)

with R
3.
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Theorem 3.11. Let Ω ⊂ R
3 be a bounded open set and E ⊂ R

3. Then the three
following assertions are equivalent.

(i) There exists ω ∈ W 1,∞
0

(
Ω;R3

)
such that

curlω ∈ E a.e. Ω.

(ii) There exists a piecewise affine ω ∈ W 1,∞
0

(
Ω;R3

)
such that

curlω ∈ E a.e. Ω and

∫
Ω

ω �= 0.

(iii) There exists F ⊂ E such that

dim spanF ≥ 2 and 0 ∈ ri coF.

It is interesting to compare Theorems 3.7 and 3.11. Indeed one should not infer
from the first theorem that any solution of dω ∈ E is of the form ω = u b, as the
following proposition shows.

Proposition 3.12. Let Ω ⊂ R
3 be a bounded open set. Then there exists a set

E ⊂ Λ2 \ {0} such that

0 ∈ int coE

with the following properties.
(i) There exists no b ∈ Λ1 \ {0} such that

0 ∈ intR3∧b co
[
E ∩

(
R

3 ∧ b
)]

and therefore there is no u ∈ W 1,∞
0 (Ω) such that

(gradu) ∧ b ∈ E a.e. in Ω.

(ii) There exists ω ∈ W 1,∞
0

(
Ω;Λ2

)
such that

dω ∈ E a.e. in Ω.

The general situation when n ≥ 4 is considerably harder in view of the following
considerations. The situation in Theorem 3.11 is very specific to the dimension
n = 3. In the next proposition we will exhibit a set E ⊂ Λ2

(
R

4
)
with

0 ∈ intR4∧e1+R4∧e2 co
[
E ∩

(
R

4 ∧ e1 + R
4 ∧ e2

)]
for which there cannot exist a piecewise affine solution ω of dω ∈ E. However when
n = 3, since R

3 ∧ e1 + R
3 ∧ e2 = Λ2

(
R

3
)
, we always have

intR3∧e1+R3∧e2 co
[
E ∩

(
R

3 ∧ e1 + R
3 ∧ e2

)]
= int coE.

Therefore, appealing to Theorem 3.11, if

0 ∈ intR3∧e1+R3∧e2 co
[
E ∩

(
R

3 ∧ e1 + R
3 ∧ e2

)]
we can find a piecewise affine solution ω of dω ∈ E.

Proposition 3.13. There exists a set E ⊂ Λ2
(
R

4
)
with

0 ∈ intR4∧e1+R4∧e2 co
[
E ∩

(
R

4 ∧ e1 + R
4 ∧ e2

)]
with the following property: for every bounded open set Ω ⊂ R

4 there exists no
piecewise affine ω ∈ W 1,∞

0

(
Ω;Λ1

)
such that

dω ∈ E a.e. in Ω.
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3.3. Proof of the main results. We start by showing Theorem 3.7.

Proof.

Part 1. (i) ⇒ (ii). Using Lemma 3.1 we have to show that

(3.12) R
n ∧ b = span [E ∩ (Rn ∧ b)]

and

(3.13) 0 ∈ ri co [E ∩ (Rn ∧ b)] .

Let ω = u b ∈ W 1,∞
0

(
Ω;Λk

)
. Obviously

dω ∈ E ∩ (Rn ∧ b) a.e. in Ω and

∫
Ω

ω =

(∫
Ω

u

)
b �= 0.

Hence using Theorem 2.5 (with E replaced by E ∩ (Rn ∧ b)), we obtain that

R
n ∧ b ⊂ span [E ∩ (Rn ∧ b)]

which obviously implies (3.12). We now show (3.13). For the sake of contradiction
suppose that (3.13) does not hold. Then using Lemma 2.4 (with E replaced by
E ∩ (Rn ∧ b)) there exists a set D ⊂ Ω such that meas(Ω \ D) = 0, dω(D) ⊂
E ∩ (Rn ∧ b) and

(3.14) dim span dω(D) < dim span [E ∩ (Rn ∧ b)] .

But, since dω ∈ dω(D) a.e. in Ω, we deduce, using again Theorem 2.5, that

R
n ∧ b ⊂ span (dω(D)) .

This is the desired contradiction since, using (3.12) and (3.14), we have

dim (Rn ∧ b) ≤ dim span (dω(D)) < dim span [E ∩ (Rn ∧ b)] = dim (Rn ∧ b) .

Part 2. (ii) ⇒ (i). Using Lemma 3.3, we find F ⊂ R
n such that

(3.15) E ∩ (Rn ∧ b) = F ∧ b and 0 ∈ int coF.

Appealing to Theorem 3.5, we find u ∈ W 1,∞
0 (Ω) such that

(3.16) gradu ∈ F a.e. in Ω.

Moreover u can be chosen piecewise affine and such that
∫
Ω
u �= 0 (and also such

that u ≥ 0). Let us now define ω ∈ W 1,∞
0

(
Ω;Λk

)
by

ω (x) = u (x) b for every x ∈ Ω.

It is easy to check that

dω = (gradu) ∧ b a.e. in Ω.

It therefore follows from (3.15) and (3.16) that

dω ∈ E ∩ (Rn ∧ b) ⊂ E a.e. in Ω.

This finishes Part (ii) and the proof. �
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We now prove Corollary 3.9.

Proof.

Part 1. (i) ⇒ (ii). Since dim spanE = n − k, using Theorem 2.5, there exist
b1, · · · , bk ∈ Λ1 such that

R
n ∧

(∫
Ω

ω

)
= spanE and

∫
Ω

ω = b1 ∧ · · · ∧ bk

which shows the second part of (3.11). Proceeding exactly as in Part 1 of the proof
of Theorem 3.7, we can prove that

0 ∈ ri coE.

This concludes Part 1.

Part 2. (ii) ⇒ (i). Using Lemma 3.1, we have that (3.11) implies (since E =
E ∩ (Rn ∧ b))

0 ∈ intRn∧b co [E ∩ (Rn ∧ b)] .

Hence, by Theorem 3.7, there exists u ∈ W 1,∞
0 (Ω) such that

(gradu) ∧ b ∈ E a.e. in Ω and

∫
Ω

u �= 0.

Thus ω = u b has the desired properties. This concludes Part 2 and the proof. �
We next turn to the proof of Proposition 3.12.

Proof. Let

E =
{
e1 ∧ e2,−e1 ∧ e2 + e1 ∧ e3,−e1 ∧ e2 − e1 ∧ e3 + e2 ∧ e3,

−e1 ∧ e2 − e1 ∧ e3 − e2 ∧ e3
}
.

It is easy to see that

0 /∈ intR3∧b co
[
E ∩

(
R

3 ∧ b
)]

for every b ∈ Λ1

but that
0 ∈ int coE.

(i) The first statement combined with Theorem 3.7 shows that there is no u ∈
W 1,∞

0 (Ω) such that
(gradu) ∧ b ∈ E a.e. in Ω.

(ii) The second statement implies (cf. Theorem 3.11) the existence of ω ∈
W 1,∞

0 (Ω; Λ1) such that
dω ∈ E a.e. in Ω.

The proof of the proposition is therefore complete. �
Finally we establish Proposition 3.13.

Proof.

Step 1. Let

a1 = e1 ∧ e2, a2 =
(
e1 + e2

)
∧ e3, a3 =

(
e1 + 2e2

)
∧ e3,

a4 =
(
e1 + 3e2

)
∧ e4, a5 =

(
e1 + 4e2

)
∧ e4,

a6 = −
5∑

j=1

ai = −
(
e1 ∧ e2 + 2e1 ∧ e3 + 2e1 ∧ e4 + 3e2 ∧ e3 + 7e2 ∧ e4

)
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and finally let

E =
{
a1, · · · , a6

}
.

We will show that E has all the desired properties (cf. Steps 2 and 3).

Step 2. Note that

spanE = R
4 ∧ e1 + R

4 ∧ e2.

Since obviously
6∑

j=1

1

6
aj = 0,

it follows directly from Lemmas 3.1 and 3.2 that

0 ∈ intR4∧e1+R4∧e2 co
[
E ∩

(
R

4 ∧ e1 + R
4 ∧ e2

)]
.

A simple calculation shows that, for every 1 ≤ j ≤ 5,(
aj − a6

)
∧
(
aj − a6

)
�= 0.

This says that

rank
[
aj − a6

]
= 4 for every 1 ≤ j ≤ 5

which is equivalent, in view of Cartan’s Lemma (cf. Theorem 2.42 in [6]), to saying
that, for every 1 ≤ j ≤ 5,

(3.17) b ∧
(
aj − a6

)
�= 0 for every b ∈ Λ1 \ {0}.

Step 3. Let Ω ⊂ R
4 be a bounded open set. We claim that there does not exist

ω ∈ W 1,∞
0 (Ω; Λ1) piecewise affine such that

dω ∈ E = {a1, · · · , a6} a.e. in Ω.

By contradiction assume that such a map exists. Therefore (cf. Definition 3.4)
there exist Ai ∈ R

4×4, αi ∈ R
4 and Ωi ⊂ Ω open sets where i runs through an at

most countable set I such that

(1) ω (x) = Aix+ αi in Ωi for every i ∈ I,
(2) meas

(
Ω \

⋃
i∈I Ωi

)
= 0 and Ωi ∩ Ωj = ∅ for every i, j ∈ I with i �= j,

(3) for every compact K ⊂ Ω

{i ∈ I : K ∩ Ωi �= ∅} is finite.

It is well known and easy to see that if ∂Ωi ∩ ∂Ωj contains a 3 dimensional subset
of a hyperplane, then necessarily

(3.18) rank [Ai −Aj ] ≤ 1.

From now on we assume that Ω is connected, otherwise we reason separately on
every connected component of Ω. Since the partition of Ω is locally finite (cf. Point
3 above) it is easy to see that for every i, j ∈ I with i �= j there exist l1 = i,
l2, · · · , lN = j such that, for every 2 ≤ m ≤ N, either Alm−1

= Alm or

(3.19) ∂Ωlm−1
∩ ∂Ωlm contains a 3 dimensional subset of a hyperplane.

Since (cf. Lemma 2.4) 0 ∈ coE = coE and since

{a1, · · · , a5} are linearly independent,

we deduce that there exists i such that

dω = a6 in Ωi .
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Let I1 ⊂ I be defined by

{i ∈ I : dω ∈ {a6} in Ωi}.
We claim that I1 = I which implies that

dω ∈ {a6} a.e. in Ω

and this is the desired contradiction. Choose i ∈ I with i �= i. Combining (3.18)
and (3.19), there exist l1 = i, l2, · · · , lN = i such that, for every 2 ≤ j ≤ N,

rank
[
Alj−1

−Alj

]
≤ 1.

For every 1 ≤ j ≤ N, let rj ∈ {1, · · · , 6} be such that

dω = arj in Ωlj .

Note that, in particular, rN = 6. Using Lemma 3.6 we find that, for every 2 ≤ j ≤
N, there exists bj ∈ Λ1 \ {0} such that

bj ∧ (arj−1 − arj ) = 0.

Combining the previous equation with (3.17) we immediately deduce that

r1 = · · · = rN = 6

and hence i ∈ I1 . This shows that I1 = I and proves the proposition. �
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