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BOUNDED MEAN OSCILLATION AND THE UNIQUENESS

OF ACTIVE SCALAR EQUATIONS

JONAS AZZAM AND JACOB BEDROSSIAN

Abstract. We consider a number of uniqueness questions for several wide
classes of active scalar equations, unifying and generalizing the techniques of
several authors. As special cases of our results, we provide a significantly
simplified proof to the known uniqueness result for the 2D Euler equations in
L1 ∩BMO and provide a mild improvement to the recent results of Rusin for
the 2D inviscid surface quasi-geostrophic (SQG) equations, which are now to
our knowledge the best results known for this model. We also obtain what
are (to our knowledge) the strongest known uniqueness results for the Patlak-
Keller-Segel models with nonlinear diffusion. We obtain these results via tech-

nical refinements of energy methods which are well-known in the L2 setting
but are less well-known in the Ḣ−1 setting. The Ḣ−1 method can be consid-
ered a generalization of Yudovich’s classical method and is naturally applied
to equations such as the Patlak-Keller-Segel models with nonlinear diffusion
and other variants. Important points of our analysis are an Lp-BMO interpo-
lation lemma and a Sobolev embedding lemma which shows that velocity fields
v with ∇v ∈ BMO are locally log-Lipschitz; the latter is known in harmonic
analysis but does not seem to have been connected to this setting.

1. Introduction

The term active scalar refers to a wide variety of nonlinear advection-diffusion
equations for a scalar density which, through a nonlocal operator such as an elliptic
PDE, gives rise to the advective velocity field (to the authors’ knowledge, the
terminology is originally due to P. Constantin [12], although we are using it for
a wider class). The purpose of this paper is to study the uniqueness of sufficiently
regular weak solutions to such equations in R

d for dimensions d ≥ 2. Our main
interest will be achieving uniqueness at relatively low regularity, and we will not
be overly concerned with how quickly our solutions decay at infinity. The methods
can also be extended to more general domains, for example, bounded Lipschitz
domains, as elaborated further in §5.

The best known active scalar equations are the 2D Euler equations (ν = 0) and
Navier-Stokes equations (ν > 0) in vorticity form{

ωt + v · ∇ω = νΔω,
v = ∇⊥(Δ)−1ω.

The classical proof of uniqueness due to Yudovich [39] proves that weak solutions
are unique provided ω(t) ∈ L∞(0, T ;L1(R2)) ∩ L∞(0, T ;L∞(R2)). He also devel-
oped the classical existence theory for solutions to 2D Euler of this form based
on the method characteristics (see also [27]). Given two weak solutions ω1, ω2 his

Received by the editors August 21, 2011 and, in revised form, November 3, 3012.
2010 Mathematics Subject Classification. Primary 35A02; Secondary 35Q92, 35Q35, 76B03.

c©2014 American Mathematical Society
Reverts to public domain 28 years from publication

3095

http://www.ams.org/tran/
http://www.ams.org/tran/
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9947-2014-06040-6


3096 JONAS AZZAM AND JACOB BEDROSSIAN

method estimated the evolution of ‖v1(t) − v2(t)‖2 (with the obvious notation).
Measuring ‖ω1 − ω2‖Ḣ−1 , however, provides a natural generalization of Yudovich’s
method to many other active scalars of interest (see [4, 5, 7, 29] and below). Later,
Yudovich extended his proof to cover cases with unbounded vorticity [40], but with
certain restrictions on the growth of ‖ω‖p as p → ∞, which ruled out logarith-
mic singularities. In that article, Yudovich also seems to have been the first to
note the connection between the Osgood condition for the uniqueness of ODEs
and the uniqueness of the 2D Euler equations. Vishik [37] later proved what is
to our knowledge the optimal known uniqueness results, which include the class
ω(t) ∈ L∞(0, T ;L1(R2)) ∩ L∞(0, T ;BMO(R2)). His methods, in which of course
the Osgood condition plays a role, are based on wavelet decompositions and a
precise Littlewood-Paley decomposition of solutions to the 2D Euler equations in
standard Eulerian form. One of the several results of our article is that Yudovich’s
significantly simpler method can also be used to prove uniqueness to the 2D Euler
equations with ω ∈ L1 ∩BMO. We emphasize here that we only prove uniqueness
in this class, not the more difficult question of existence. Ultimately, the reason
this is possible rests on the facts that Calderón-Zygmund-type singular integral
operators map BMO to itself [34] and vector fields v with ∇v ∈ BMO are locally
log-Lipschitz (Lemma 1 below) and hence satisfy the Osgood condition.

The first class of active scalars we study are PDE of the form

(1) ρt +∇ · (ρV ρ) = ΔA(ρ),

where A is nondecreasing (potentially zero) and V is a linear operator which is
roughly smoothing of order one (e.g. derivatives of solutions to second order ellip-
tic PDEs, S−1 pseudo-differential operators, etc.). As mentioned above, the most
famous of such equations are of course the 2D Euler and Navier-Stokes equations.
Other examples include the parabolic-elliptic Patlak-Keller-Segel model and related
variants [4, 7–9], where one would have for example V ρ = −∇(Δ)−1ρ, as well as
the inviscid aggregation equations [5,6,24]. As alluded to above, we will essentially
apply Yudovich’s energy method to these equations, measuring the difference of
weak solutions in Ḣ−1. This also has the very useful additional benefit of treating
nonlinear filtration-type diffusion very naturally, which is well-known to be a mono-
tone operator in H−1 [36]. Indeed, the proof applies regardless of how pathological
or strongly degenerate the nonlinear diffusion is. This technique was applied in
[4, 7] to Patlak-Keller-Segel models and aggregation equations with porous media
type diffusion.

A second class of active scalar we consider is essentially variants of the 2D surface
quasi-geostrophic (SQG) equations studied by, for example, [10, 13, 21, 22, 30, 38],

(2) ρt +∇ρ · V ρ = −ν(−Δ)γρ,

with ν ≥ 0, γ ∈ (0, 1] and V a linear operator of roughly Calderón-Zygmund-type
which is divergence free, i.e. ∇ · V ρ = 0. The 2D SQG equations are the special
case given by V ρ = ∇⊥(−Δ)−1/2ρ = (−R2ρ,R1ρ), where Rj are the standard Riesz
transforms. To study these equations we measure the difference of weak solutions
in L2, but largely we use similar methods and techniques as used for the class (1).
Uniqueness results for both (1) and (2) are discussed below in §3.

For inviscid active scalar equations, the authors are not aware of any uniqueness
results which extend to problems with velocity fields less regular than those that
satisfy the Osgood condition. Quantitative stability estimates, such as those here
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and those in [25,26,30,37], transfer the regularity of the velocity field into stability

in time of the norm being measured. In the Eulerian framework of an Ḣ−1 estimate
here, or in the work of Vishik [37], the intuition for this is not immediately apparent,
as the modulus of continuity of the velocity field is not explicitly used in the proof.
However, the Lagrangian methods of Loeper [6, 11, 25, 26], which measure stability
in the Euclidean Wasserstein distance, make direct use of the Osgood condition as
one which ensures that characteristics are well-posed and hence the induced flow
map has sufficient stability and regularity properties. In contrast, nonuniqueness
results for the 2D Euler equations [15, 31, 32] apply only to problems of far lower
regularity than those which satisfy the Osgood condition, leaving a rather wide gap
between the cases which are settled. The DiPerna-Lions theory of renormalized
solutions provides uniqueness for linear transport equations under very weak hy-
potheses; however, perhaps not coincidentally, these solutions do not seem to have
well understood stability properties [1, 16].

For viscous problems, it is well-known that linear diffusion should improve the
picture by providing a potentially useful negative term in stability estimates. In §4
we show that this can be applied also in the Ḣ−1 method for models of the form (1)

with A(ρ) = ρ. As a special case, our results show that
∫ t

0

∫
|ρ|2 + |∇ρ|2 dxdt < ∞

is sufficient for uniqueness of weak solutions to (1).
Some of the simplicity of the method arises from the use of scale-invariant (ho-

mogeneous) norms: for the first class we estimate stability in Ḣ−1, for the second
class, we estimate stability in L2. The use of more norms which could treat specific
length-scales with more precision, such as Besov-type norms as in [37], likely allows
one to loosen requirements on the integrability of solutions at infinity and also treat
active scalars such that the velocity operator V is of a type in-between those above,
for example, as studied in [14]. All of this, of course, would complicate the proof
significantly.

Turning back to the 2D Euler equations as the canonical example, we point out
here that the regularity implied by ω ∈ BMO, as opposed to the integrability,
is very crucial. Lemma 2 below shows that ω ∈ L1 ∩ BMO imparts a certain
amount of control on the integrability, that is, ‖ω‖p � p as p → ∞. However, we
emphasize that this integrability alone is not enough for the following proof to work.
Yudovich’s proof in [40] uses only integrability and requires a stronger restriction
on how fast ‖ω‖p can be allowed to grow in p. The results in [20] indicate that
initial data which satisfies Yudovich’s restrictions (but are not BMO) can result
in velocity fields which are not log-Lipschitz (but still Osgood), and hence are in
fact less regular than those studied here. Hence, it is important to emphasize that
simply having logarithmic singularities in the density is not the key idea. The
regularity conveyed by BMO is used twice in our work: that Calderón-Zygmund-
type singular integral operators map BMO to itself and that velocity fields with
∇v ∈ BMO are locally log-Lipschitz (Lemma 1).

Notation and conventions. We briefly mention the definitions of weak solution we
are using. Our theorems will generally require stronger regularity assumptions than
these definitions; these simply provide the baseline. We use the following defini-
tion of weak solution to (1). This notion is stronger than a standard distribution

solution, as we must be able to measure the stability of solutions Ḣ−1, which will
require taking test functions in Ḣ1. In 2D, a slight modification (suggested in [5])

must be made as Ḣ1(R2) is not a sensible function space.
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Definition 1 (Weak solution to (1)). If d ≥ 3, let V = Ḣ1 (hence V� = Ḣ−1);
and if d = 2, then let V =

{
f ∈ L∞ : ∇f ∈ L2

}
. We say a measurable function

ρ : [0, T ] × R
d → R is a weak solution on some time interval [0, T ] to (1) if ρt ∈

L2(0, T ;V�(Rd)), ∇A(ρ) ∈ L2(0, T ;L2(Rd)), ρV ρ ∈ L2(0, T ;L2(Rd)) and for all
φ ∈ L2(0, T ;V) we have∫ T

0

〈ρt, φ(t)〉 dt = −
∫ T

0

∫
(∇A(ρ(t))− ρ(t)V ρ(t))∇φ(t)dt.

For (2) we may take the standard notion of distribution solution, as we need
only to measure stability in L2.

Definition 2 (Weak solution to (2)). We say a measurable function ρ : [0, T ]×R
d →

R is a weak solution on some time interval [0, T ] to (2) if ρ ∈ L2(0, T ;L2) and for
all φ ∈ C∞

c ((0, T )× R
d) we have∫ T

0

∫
ρ (φt − V ρ · ∇φ+ ν(−Δ)γφ) dxdt = 0.

We denote the set {u > k} := {x ∈ D : u(x) > k} if S ⊂ R
d; then |S| denotes the

Lebesgue measure and 1S denotes the standard characteristic function. We denote

fA :=

∫
A

fdx =
1

|A|

∫
A

f.

We denote the standard Lebesgue spaces ‖f‖p =
(∫

|f |p dx
)1/p

. We take the uni-
tary convention of the Fourier transform,

f̂(ξ) =
1

(2π)d/2

∫
f(x)e−ix·ξdξ,

and denote the homogeneous Sobolev spaces Ḣs as the closure of the Schwartz space

under the norm ‖f‖Ḣs := ‖ |ξ|s f̂‖L2
ξ
and the inhomogeneous Sobolev spaces Hs as

the closure of the Schwartz space under the norm ‖f‖Hs := ‖(1 + |ξ|2)s/2f̂‖L2
ξ
.

We use N to denote the Newtonian potential:

N (x) =

{ 1
2π log |x| , d = 2,

Γ(d/2+1)
d(d−2)πd/2 |x− y|2−d , d ≥ 3.

We will denote space-time norms with the shorthand

‖f‖Lp
tL

q
x
= ‖f‖Lp

t (0,T ;Lq
x(Rd)),

as the time interval and domain will usually be obvious from context. In formulas
we use the notation C(p, k,M, . . . ) to denote a generic constant, which may be
different from line to line or even from term to term in the same computation.
In general, these constants will depend on more parameters than those listed, for
instance, those associated with the problem such as K and the dimension, but
these dependencies are suppressed. We use the notation f �p,k,... g to denote
f ≤ C(p, k, . . . )g, where again, dependencies that are not relevant are suppressed.
We will also frequently work with dyadic cubes,⋃

n∈Z

{
d∏

i=1

[ai, ai + 2n] : ai ∈ 2nZ

}
,
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and the side length of such a cube Q in this collection will be denoted by 	(Q). For
λ > 0, we write λQ for the cube of the same center as Q but λ times the radius.

2. Lemmas

We begin with a few relatively short lemmas which, while simple, provide the key
technical tools for this work. The first lemma is essentially a logarithmic variant of
Morrey’s inequality, allowing one to assert the log-Lipschitz regularity of a vector
field based on the gradient having bounded mean oscillation. Although, as discussed
above, we do not need to make explicit use of this lemma, it reflects probably the
most fundamental observation, as this regularity is ultimately connected to the
stability necessary to prove the uniqueness theorems below. It also shows that for
inviscid problems, the Lagrangian proof of Loeper [26] could likely be extended
to cover all of the (inviscid) cases considered in Theorem 2 below as well as the
Vlasov-Poisson equation (one would only need to extend Theorem 2.9 in [26]).

Lemma 1. Let v ∈ Lp(Rd) for some 1 ≤ p ≤ ∞ such that ∇v ∈ BMO(Rd) and

sup
x∈Rd

∫
B(x,1)

|∇v| dz < ∞.

Then v ∈ L∞ and for |x− y| sufficiently small (depending on supx∈Rd

∫
B(x,1)

|∇v| dz
but not on x, y),

|v(x)− v(y)| � |x− y| |log |x− y|| ‖∇v‖BMO.

This lemma is known in harmonic analysis (cf. [28, Theorem A.2, Proposition
A.3]). In the aforementioned reference, for example, it is used to establish that
quasi-conformal vector fields are log-Lipschitz. A standard proof involves first show-
ing that a function satisfying the conditions of the lemma is in the Zygmund class
whose functions are log-Lipschitz continuous. For the reader’s convenience, how-
ever, we supply a self-contained proof in the appendix.

The John-Nirenberg inequality [34] is one classical way to quantify the idea that
functions in BMO have at most logarithmic singularities and, in particular, asserts
that any f ∈ BMO is in Lp

loc. The following interpolation-type lemma provides
a slight variant of this idea which will prove to be a simple but very important
technical tool. In order to treat bounded domains, we will also prove the lemma in
the natural class of so-called uniform domains.

Definition 3. A domain Ω is a C-uniform domain if, for any points x, y ∈ Ω, there
is a curve γ ⊆ Ω connecting x and y with length(γ) ≤ C|x − y| and such that for

all z ∈ γ, B(z, min{|x−z|,|y−z|}
C ) ⊆ Ω.

There are several different equivalent definitions of uniform domains in the lit-
erature (see [35]), but this one will suffice for our purposes. Visually, a uniform
domain is one where any pair of points x and y have a crescent shape1 of bounded
eccentricity contained in Ω whose corners are x and y. Moreover, it is straight-
forward to confirm that Lipschitz domains are uniform. The class of C-uniform
domains is natural here due to the extension theorem of Peter Jones [19], which we
will exploit in proving the following lemma.

1A “cigar” shape is the more common, albeit misleading, terminology in the literature.
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Lemma 2. Let f ∈ Lp0 ∩ BMO(Ω), where Ω is a C-uniform domain, p0 < ∞.
Then, for p, p0 < p < ∞,

(3) ||f ||p �d,p0
p1−

p0
p ||f ||1−

p0
p

BMO||f ||
p0
p
p0 .

In particular, for large p, the Lp norm grows at most linearly as p → ∞.

Proof. We first prove the lemma in the case of Ω = R
d where the proof proceeds

naturally. We will use the Calderón-Zygmund decomposition which splits f into a
sum of two parts: a “good” part that is uniformly bounded, which we will bound
using the p0-norm of f , and a “bad” part, which, though not bounded, has mean
zero locally and may be bounded by the BMO norm of f (see [34, I.4]).

Without loss of generality, we may assume f has compact support. Define the
dyadic maximal function

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f | (y)dy,

where the supremum is taken over all dyadic cubes Q containing x.
Let α > 0 be chosen later, Eα = {Mf > α}, f1 = fχEc

α
, f2 = f − f1. Note by

the Lebesgue differentiation theorem f1 ≤ α. Then

(4) ||f1||pp ≤ αp−p0 ||f ||p0
p0
.

Let {Qk} be the collection of maximal dyadic cubes with disjoint interiors such
that ∫

Qk

|f | > α.

Each x ∈ Eα is certainly contained in such a cube Q by the definition of Eα, and
that cube must necessarily be contained in Eα, for otherwise, there is y ∈ Q ∩Ec

α,
and by definition of Mf(y), Mf(y) > α, a contradiction. This maximality also
implies that ∫

Qk

|f | �d α.

Since f is in BMO, we also have (see [34, IV.1.3 (13)])∫
Qk

|f − fQk
|p �d (p‖f‖BMO)

p .

We now estimate ∫
|f2|p =

∑
k

∫
Qk

|f |p

≤ 2p
∑
k

(∫
Qk

|f − fQk
|p +

∫
Qk

|fQk
|p

)
�d 2p

∑
k

(p‖f‖BMO)
p |Qk|+ αp|Qk|

= 2p ((p‖f‖BMO)
p + αp) |{Mf > α}|

�p0,d 2p((p‖f‖BMO)
p + αp)

||f ||p0
p0

αp0
,
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where in the last line we used the Chebichev and Hardy-Littlewood maximal in-
equalities in showing

|{Mf > α}| ≤
||Mf ||p0

p0

αp0
�p0,d

||f ||p0
p0

αp0
.

We now let α = ||f ||p0
and obtain

(5)

∫
|f2|p �d 2p((p‖f‖BMO)

p + ||f ||pp0
).

Note that (4) implies ||f1||pp ≤ ||f ||pp0
. Adding this estimate to (5) and taking

pth-roots of both sides gives

(6) ‖f‖p �d,p0
p‖f‖BMO + ‖f‖p0

.

Now, since this holds for all functions f ∈ BMO ∩ Lp0 and this class is scale and
dilation invariant, we can scale the argument of f by a factor δ and the inequality
will still hold. Let fδ(x) = f(δx). The effect on the norms is

||fδ||p = δ−
d
p ||f ||p, ||fδ||p0

= δ−
d
p0 ||f ||p0

, and ||fδ||BMO = ||f ||BMO.

Hence, letting η = δ−
1
d , we have that for all η,

η
1
p ‖f‖p �d,p0

p‖f‖BMO + η
1
p0 ‖f‖p0

.

Choosing η such that

η =

(
p||f ||BMO

||f ||p0

)p0

implies

‖f‖p �d,p0
η−

1
p (p‖f‖BMO + η

1
p0 ‖f‖p0

)

= 2η−
1
p p||f ||BMO

= 2

(
p||f ||BMO

||f ||p0

)− p0
p

p||f ||BMO

= 2p1−
p0
p ||f ||1−

p0
p

BMO||f ||
p0
p
p0 .

We now begin the process of generalizing the lemma to C-uniform domains, but
first focus on the case of unbounded domains. The proof of Rd does not translate
immediately to this setting; if we pick α > 0 and maximal cubes Qj in Ω as before,
the cubes may be maximal merely because their parent cubes are not contained in
Ω, and hence we cannot guarantee

∫
Qj

|f | ∼ α. To overcome this issue, we employ

an extension theorem of Peter Jones to reduce to the R
d case.

Theorem 1 ([19]). If Ω is a C-uniform domain, there is a bounded linear extension
operator from BMO(Ω) onto BMO(Rd) whose norm depends quantitatively on d and
C.

We can actually write the extension operator explicitly. First, let W = W (Ω)
be the Whitney cube decomposition for the domain Ω (cf. [33, p. 16]). The cubes
W have disjoint interiors,

⋃
Q∈W Q = Ω, and satisfy that for all z ∈ Q ∈ W ,

(7) 	(Q) ∼d dist(Q, ∂Ω) ∼d dist(z, ∂Ω)

with constants independent of Ω (such a collection exists for any open set Ω).
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Let W ′ be a Whitney decomposition for (Ωc)◦, and for each Q′ ∈ W ′, assign to
it the closest cube T (Q′) ∈ W such that 	(T (Q′)) ≥ 	(Q′). If Ω is an unbounded C-
uniform domain, then we may always find such a T (Q′). To see this, pick x, y ∈ Ω
and connect them by a curve satisfying the properties in Definition 3. Pick z ∈ γ

such that min{|x − z|, |y − z|} ≥ |x−y|
2 . Then z is contained in a Whitney cube Q

such that

dist(Q, ∂Ω) ∼d dist(z, ∂Ω) � |x− y|.
Thus, if Ω is unbounded, we may pick x and y so that |x− y| is as large as we like,
and hence, for any Q′ ∈ W ′, we may always find T (Q′) ∈ W with 	(T (Q′)) ≥ 	(Q′).

Now we can write the extension. For f ∈ BMO(Ω), define (cf. [19, pp. 54-57])

(8) f̃ = f +
∑

Q′∈W ′

∫
T (Q′)

f.

We claim that there is C ′′ depending only on C and d so that

(9) T (Q′) ⊆ C ′′Q′ and Q′ ⊆ C ′′T (Q′) whenever 	(T (Q′)) ≥ 	(Q′).

By Lemma 2.10 in [19], we know that

(10) if 	(T (Q′)) ≥ 	(Q′), then d(Q′, T (Q′)) �C,d 	(Q′) ≤ 	(T (Q′))

(which holds regardless of whether Ω is bounded or unbounded), and by virtue
of T (Q′) and Q′ being Whitney cubes in Ω and (Ωc)◦ respectively, we also know
	(T (Q′)) ∼C,d 	(Q), which implies (9).

Hence, if x ∈ Q′ ∈ W ′, then

(11) |f̃(x)| ≤
∫

T (Q′)

|f | �C′′,d

∫
C′′Q′

|f | �d Mf(x),

where, by an abuse of notation, Mf now denotes the uncentered maximal function
(that is, Mf(x) is the supremum of averages over all cubes containing x, not just
dyadic cubes). Moreover, we are considering f to be defined over Rd with f = 0 in
Ωc. Hence, by Theorem 1, (3) (which we have proved for functions in BMO(Rd)),
and the Hardy-Littlewood maximal inequality,

||f ||Lp(Ω) ≤ ||f̃ ||Lp(Rd)

(3)

�p0,d
p1−

p0
p ||f̃ ||1−

p0
p

BMO(Rd)
||f̃ ||

p0
p

Lp0 (Rd)

(11)

� C,d p1−
p0
p ||f ||1−

p0
p

BMO(Ω)||Mf ||
p0
p

Lp0 (Rd)

�d,p0
||f ||1−

p0
p

BMO(Ω)||f ||
p0
p

Lp0 (Rd)
.

We now prove Lemma 2 in the case of a bounded C-uniform domain. In this
setting (again, citing the construction in [19]), the extension f̃ is defined in a way
similar to before, but we need to address the fact that for any cube Q′ there
might not be a cube T (Q′) ∈ Ω with 	(T (Q′)) ≥ 	(Q′) (recall that, before, the
unboundedness of Ω played a role in showing that one existed).

First, we claim that there is C ′ depending only on C and d so that any bounded
C-uniform domain Ω contains a Whitney cube Q0 so that

(12) Q0 ⊆ Ω ⊆ C ′Q0.
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To see this, pick x, y ∈ Ω so that |x − y| ≥ �(Ω)
2 . Then, just as we did earlier, we

can find Q0 ⊆ Ω such that

	(Q0) �C,d |x− y| � 	(Ω),

which proves the claim.

Next, the proof is simpler if we scale R
d by a factor t =

(
|Ω|

1
p

|Q0|
1
p0

)d
(

1
p0

− 1
p

)

so

that |tΩ| 1p = |tQ0|
1
p0 . Notice (3) is invariant under such dilations, and tΩ remains

C-uniform with the same constant C. It is easy to verify that the collection tW =
{tQ : Q ∈ W} still satisfies the properties of a Whitney cube decomposition for
tΩ (with constants depending only on d and not on t). To simplify notation, we
will suppress the value t below or assume without loss of generality that t = 1, and
henceforth we assume that

(13) |Ω| 1p = |Q0|
1
p0 .

Now for each Q′ ∈ W ′, assign to it a cube T (Q′) ∈ W closest to Q′ such that
	(T (Q′)) ≥ 	(Q′) if such a cube exists; if not, choose T (Q′) = Q0.

Let f ∈ BMO(Ω), and define f̃ exactly as in (8) (which the association Q′ →
T (Q′) just defined). Applying Theorem 1 directly to f would again immediately

imply (3) if we knew ||f̃ ||p0
� ||f ||p0

, but f̃ is constant and potentially nonzero
outside far away from Ω. To remedy this, we instead consider g = f−fQ0

extended
to be zero in Ωc, and our first goal is to show that for all x ∈ R

d,

(14) |g̃(x)| �C,d Mg(x).

Establishing this estimate is similar to (11). Let x ∈ Q′ ∈ W ′. If T (Q′) < 	(Q′),
then T (Q′) = Q0 and (14) is trivial since g̃(x) = 0. Otherwise, T (Q′) ≥ 	(Q′), and
we may apply (9) and proceed as we did in (11) to obtain

|g̃(x)| ≤
∫

T (Q′)

|g| �C′′,d

∫
B(x,C′′�(Q′))

|g| ≤ Mg(x),

which proves (14).
Now we may proceed:

||g̃||Lp0 (Rd)

(14)

� ||Mg||Lp0 (Rd) �p0,d ||g||Lp0 (Ω) ≤ ||f ||Lp0 (Ω) + |Ω|
1
p0

∫
Q0

|f |(15)

≤ ||f ||Lp0 (Ω) + |Ω|
1
p0

( ∫
Q0

|f |p0

) 1
p0

(16)

≤ ||f ||Lp0 (Ω) +

(
|Ω|
|Q0|

) 1
p0

(∫
Q0

|f |p0

) 1
p0

(17)

(12)

� C′,d ||f ||Lp0 (Ω).(18)
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Thus,

||f ||Lp(Ω) ≤ ||g||Lp(Ω) + |Ω| 1p
∫

Q0

|f |

≤ ||g̃||Lp(Rd) + |Ω| 1p
( ∫

Q0

|f |p0

) 1
p0

(13),(6)

�d,p0
p||g̃||BMO(Rd)||+ ||g̃||Lp0 (Rd) + ||f ||Lp0 (Ω)

(18)

� C′,d p||g||BMO(Ω) + ||f ||Lp0 (Ω)

= p||f ||BMO(Ω) + ||f ||Lp0 (Ω),

where in the last line we used the fact that the BMO norm of a function is unaf-
fected by adding or subtracting a constant (in this case, the constant is fQ0

). The
penultimate line used Theorem 1. We have now arrived at (6), and from here we
may proceed as before in the R

d case. �

The next lemma provides straightforward sufficient conditions to be in the Hardy
space H1, which arises when treating the R

2 case in Theorem 2 below. It is not
relevant for the treatment of bounded domains. The lemma is also general enough
to find used elsewhere [3].

Lemma 3. Let f ∈ L1 ∩ Lp for some p > 1 and satisfy
∫
fdx = 0, M1 =∫

|x| |f(x)| dx < ∞. Then f ∈ H1 and

‖f‖H1 �d,p ‖f‖p +M1.

Proof. We will prove this using the duality between BMO and H1. Therefore, let
‖K‖BMO = 1. In what follows, we denote KR := 1

|BR(0)|
∫
|x|≤R

K(x)dx. By the

mean-zero condition on f ,∣∣∣∣∫ Kfdx

∣∣∣∣ ≤ ∫
|x|≤1

|K − K1| |f | dx+

∫
|x|>1

|K − K1| |f | dx.

:= T1 + T2.

By Hölder and p > 1 with ‖K‖BMO = 1, we have

T1 ≤ ‖f‖p

(∫
|x|≤1

|K − K1|p
′
dx

)1/p′

�p′ ‖f‖p.
The second inequality can be found in the proof of the John-Nirenberg inequality
in [34]. We now deal with the second term. Define the dyadic annuli An :={
x ∈ R

d : 2n < |x| < 2n+1
}

for n ≥ 0. Let En := {x ∈ An : |K − K1| > 2n}. By
definition we have then

T2 =
∑
n≥0

∫
En

|K − K1| |f | dx+

∫
An\En

|K − K1| |f | dx = T21 + T22.

The second term can be estimated via

(19) T22 ≤ 2n
∫
An

|f | dx ≤
∫
An

|x| |f(x)| dx.
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Since K ∈ BMO, we have |K2n+1 −K2n | �d 1, and therefore |K2n −K1| �d n.
Applying this to T21 implies

T21 ≤
(∫

En

|K − K1|p
′
dx

)1/p′

‖f‖p

=

(
p′

∫ ∞

2n
|{|K − K1| > λ} ∩ An|λp′−1dλ

)1/p′

‖f‖p

≤
(
p′

∫ ∞

2n
|{|K − K2n | > λ− Cn} ∩An|λp′−1dλ

)1/p′

‖f‖p,

for some C = C(d) > 0. Using the John-Nirenberg inequality [34], there is some
c = c(d) > 0 such that∫

En

|K − K1| |f | dx �
(
|An|

∫ ∞

2n
e−c(λ−Cn)λp′−1dλ

)1/p′

‖f‖p

�
(
2ndeCcn

∫ ∞

2n
e−λcλp′−1dλ

)1/p′

‖f‖p.

Therefore, for large n we have

(20)

∫
En

|K − K1| |f | dx � 2(d+p′−1)n/p′
eCcn/p′

e−c2n/p′‖f‖p.

Summing (19) and (20) over n then implies

T2 �p ‖f‖p +M1. �

3. Uniqueness of weak solutions to (1) and (2)

We will require that the nonlocal linear operator V satisfy the following three
conditions.

C1. ‖V ρ‖q � ‖ρ‖p with 1 + 1
q = d−1

d + 1
p and 1 < p < q < ∞.

C2. The regularity requirement that ∇V : BMO(Rd) → BMO(Rd) is a
bounded linear operator which additionally satisfies ‖∇V f‖p � p‖f‖p for
all p sufficiently large.

C3. The Ḣ−1 stability estimate ‖V f‖2 � ‖f‖Ḣ−1 .

Remark 1. The first condition can be weakened to require that V : Lq1 → Lq2 for
any 1 < q1, q2 < ∞.

Remark 2. Condition C1 is a basic integrability requirement which is mainly to
control the decay of the velocity field at infinity. Condition C2 is what provides
sufficient regularity on the vector field to ensure log-Lipschitz continuity via Lemma
1. Only these two conditions are necessary to apply the proof of Theorem 2 to
linear problems in which the vector field is fixed independent of ρ. Condition C3
will be used as a stability condition which controls the dependence of the vector
field V (ρ1−ρ2) on ρ1−ρ2, and hence is necessary to deal with the nonlinear aspect
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of the problem. Condition C3 holds in several classes in known cases, including:

(a) If V is a Fourier multiplier, then C2 implies C3, since differentiation and

V will commute. This covers all cases of the form V ρ = �K ∗ ρ for any �K
such that ∇K is a singular integral operator of Calderón-Zygmund type.
Common examples include: the 2D Euler equations, a number of parabolic-
elliptic Patlak-Keller-Segel systems and many general aggregation equa-
tions.

(b) V ρ = ∇c and Lc = f , where L is a second-order uniformly elliptic PDE,
will satisfy C3 with minimal conditions on the coefficients. For example,
for Lc = −∇ · (A(x)∇c) + γ(x)c = f , it suffices to take A, γ ∈ L∞ with
A symmetric and uniformly positive definite and γ(x) ≥ 0. Hence in this
case it seems C2 is more stringent than C3. Theorem 2 is applied in this
context in [3].

(c) If V ρ is a pseudo-differential operator in the standard symbol class S−1 (as
defined in [34]), then it will satisfy both C2 and C3.

Of course, C3 fails for many models. For example, in the case of the 2D SQG
equations, V ρ = ∇⊥(−Δ)−1/2ρ = (−R2ρ,R1ρ), and C3 fails in this case (it holds

with Ḣ−1 replaced by L2, which allows Theorem 3). It can also fail in the case
of (b) above if A(x) is only symmetric positive semi-definite. However, we should
note that we are unaware of an example in which C2 holds and C3 fails, unless one
is interested in extending this method to nonlinear nonlocal operators V [ρ], where
C3 must be replaced by ‖V [ρ1]− V [ρ2]‖2 � ‖ρ1 − ρ2‖Ḣ−1 .

Theorem 2 (Ḣ−1 method). Suppose V satisfies properties C1-3 and consider the
active scalar

(21) ρt +∇ · (ρV ρ) = ΔA(ρ),

where A : R → [0,∞) is measurable and nondecreasing (possibly zero). Suppose
there exist two weak solutions ρ1(t), ρ2(t) defined on [0, T ] which satisfy ρi(t) ∈
L2
t (0, T ;BMO(Rd)) ∩ Ct([0, T ];L

p0
x (Rd)), where if d ≥ 3 we assume 1 ≤ p0 <

2d/(d+ 2) and if d = 2 we take p0 = 1. In d = 2 we additionally assume ρi(x)x ∈
L∞
t (0, T ;L1

x(R
d)). Then if ρ1(0) = ρ2(0), then ρ1(t) = ρ2(t) on [0, T ].

Proof. Define w := ρ1 − ρ2 and let φ = −N ∗ w. First, notice by Lemma 2 that
ρi(t) ∈ L2

t (0, T ;L
p
x) for all p > p0. If d ≥ 3, note also that p0/(p0− 1) > 2d/(d− 2).

By Young’s inequality we have

‖∇φ(t)‖∞ ≤ ‖∇N1B1(0)‖ 2d
2d−1

‖w‖2d + ‖∇N1Rd\B1(0)‖ p0
p0−1

‖w‖p0
,

which implies ∇φ ∈ L2
tL

∞
x . If d ≥ 3 we similarly have

‖φ(t)‖∞ ≤ ‖N1B1(0)‖ 2d
2d−1

‖w‖2d + ‖∇N1Rd\B1(0)‖ p0
p0−1

‖w‖p0
,

and therefore φ(t) ∈ L2
tL

∞
x . In R

2, by Lemma 3, w(t) ∈ H1 uniformly for a.e. time;
hence, φ(t) ∈ L∞

t L∞
x from the duality of H1 and BMO,

|φ(t, x)| =
∣∣∣∣∫ 1

2π
log |x− y|w(y)dy

∣∣∣∣ � ‖w‖H1 .

In particular, −Δφ defines a bounded distribution, and hence we have −Δφ = w

in the weak sense. In d ≥ 3 note by Young’s inequality for L
d

d−1 ,∞ that

‖∇φ(t)‖2 � ‖w‖ 2d
d+2

‖∇N‖ d
d−1 ,∞

;
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hence ∇φ ∈ L2
tL

2
x. Proving this in d = 2 is more delicate as it does not follow

from only Lp estimates on w; we follow a procedure similar to that taken in [5]. By

Parseval’s theorem it suffices to prove that ∇̂φ ∈ L2
tL

2
x. First, notice that

∫
|∇φ(t, x)|2 dx =

∫ ∣∣∣∇̂φ(t, ξ)
∣∣∣2 dξ �

∫
|ξ|≤1

|ŵ(t, ξ)|2

|ξ|2
dξ +

∫
|ŵ(t, ξ)|2 dξ.

The latter term is controlled by Parseval’s theorem since w ∈ L2
tL

2
x. The first

term is not a priori controlled as |ξ|−2
is not integrable in R

2; however, it suffices
to prove that ŵ(t) is uniformly Lipschitz continuous. By the Riemann-Lebesgue
lemma, w(t, x) ∈ Ct([0, T ];L

1
x(R

2)) implies ŵ(t, ξ) ∈ Ct([0, T ];Cx(R
2)). Since (21)

is in divergence form, we have
∫
w(t, x)dx ≡ 0 and therefore ŵ(t, 0) ≡ 0. The

Lipschitz continuity follows from the control on the first moment: let ξ1, ξ2 ∈ R
2;

then by the mean value theorem for i ∈ {1, 2},

|ρ̂i(ξ1)− ρ̂i(ξ2)| ≤
1

(2π)d/2

∣∣∣∣∫ ρi(x)
(
e−ix·ξ1 − e−ix·ξ2) dx∣∣∣∣

≤ 1

(2π)d/2

∫
|ρi(x)|

∣∣∣1− eix·(ξ1−ξ2)
∣∣∣ dx

� |ξ1 − ξ2|
∫

|ρi(x)| |x| dx

= M1(ρi) |ξ1 − ξ2| .

Hence, ∇φ(t) ∈ L2
x uniformly in time. Therefore, regardless of dimension we have

that∇φ ∈ L2
tL

2
x∩L2

tL
∞
x and we can finally compute the evolution. By the regularity

assumptions of the solution and the regularity properties of φ deduced above, we
may use φ as a test function in the definition of weak solution and compute the
time evolution of ‖∇φ(t)‖2:

1

2

d

dt

∫
|∇φ|2 dx =

∫
∇φ · ∇φtdx =

∫
φwtdx

=

∫
φ∇ · (∇A(ρ1)−∇A(ρ2)− wV ρ1 − ρ2(V ρ1 − V ρ2)) dx

= −
∫

(A(ρ1)− A(ρ2)) (ρ1 − ρ2)dx+

∫
∇φ · wV ρ1dx

+

∫
∇φ · ρ2(V ρ1 − V ρ2)dx

:= T1 + T2 + T3.

Since A is nondecreasing we have

T1 = −
∫

(A(ρ1)−A(ρ2)) (ρ1 − ρ2)dx ≤ 0.

We now deal with T2, which is most related to the regularity of the advective ve-
locity field. Since w = −Δφ and the boundary terms vanish due to the integrability
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conditions on w,

T2 = −
∑
ij

∫
∂iiφ∂jφ(V ρ1)jdx

=
∑
ij

∫
∂iφ∂ijφ(V ρ1)j + ∂iφ∂jφ∂i(V ρ1)jdx

=
∑
ij

∫
∂j

(
1

2
|∂iφ|2

)
(V ρ1)j + ∂iφ∂jφ∂i(V ρ1)jdx

�
∫

|∇V ρ1| |∇φ|2 dx.

Using ∇V ρ1 ∈ L2
tBMOx and Lemma 2 we then have∫

|∇V ρ1| |∇φ|2 dx ≤ ‖∇V ρ1‖p
(∫

|∇φ|2p/(p−1) dx

)1−1/p

� (p‖∇V ρ1‖BMO + ‖∇V ρ1‖p0
)

(
‖∇φ‖2p/(p−1)−2

∞

∫
|∇φ|2 dx

)1−1/p

� (p‖∇V ρ1‖BMO + 1) ‖∇φ‖1/p∞ ‖∇φ‖2−2/p
2 .

Now we turn to T3, which concerns the stability of the map ρ �→ V ρ. By Lemma
2 again we have

|T3| ≤ ‖ρ2‖p‖∇φ · (V ρ1 − V ρ2)‖p/(p−1)

� (p‖ρ2‖BMO + ‖ρ2‖p0
) ‖∇φ‖2p/(p−1)‖V ρ1 − V ρ2‖2p/(p−1)

� (p‖ρ2‖BMO + 1) ‖∇φ‖1/p∞ ‖V ρ1 − V ρ2‖1/p∞ ‖∇φ‖1−1/p
2 ‖V ρ1 − V ρ2‖1−1/p

2 .

Assumptions C1 and C2 together with Morrey’s inequality imply V ρi ∈ L2
tL

∞
x .

Assumption C3 implies ‖V (ρ1 − ρ2)‖2 � ‖∇φ‖2. Therefore, for all p sufficiently
large we have

d

dt
‖∇φ(t)‖22 ≤ pf(t)‖∇φ(t)‖2−2/p

2 ,

for some positive f(t) ∈ L
2/(1+2/p)
t . Integrating, we get

‖∇φ(t)‖2/p2 − ‖∇φ(0)‖2/p2 ≤
∫ t

0

f(s)ds.

Since ρ1(0) = ρ2(0) this implies

‖∇φ(t)‖22 ≤
(∫ t

0

f(s)ds

)p

≤
(
‖f‖

L
3/2
t (0,T )

t1/3
)p

.

Hence, if we restrict t ≤ t0 < 2−3‖f‖−3

L
3/2
t (0,T )

, we have ‖∇φ(t)‖22 ≤ 2−p, we may

send p → ∞ and we prove ‖∇φ(t)‖2 ≡ 0 a.e. in time 0 ∈ [0, t0]. However, clearly we
can simply iterate and prove that ‖∇φ(t)‖2 ≡ 0 on [0, T ] and therefore w(t) ≡ 0. �

The following result combines the methods of the above theorem with an L2

estimate to provide a simplified and more general proof of the results in [30]. In
particular, we do not need to assume that logarithmic singularities in the derivatives
occur on a bounded set.
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Theorem 3 (L2 estimates). Let V be a bounded linear operator V :BMO(Rd;R) →
BMO(Rd;Rd) which satisfies ‖V f‖p � p‖f‖p for all 2 ≤ p < ∞ and ∇ · V f ≡ 0.
Consider the active scalar,

ρt + V ρ · ∇ρ = −ν(−Δ)γρ,

for some γ ∈ (0, 1] and ν ≥ 0. Suppose there exist two weak solutions ρ1(t),
ρ2(t) defined on [0, T ] which satisfy ρi(t) ∈ Ct([0, T ];L

2
x(R

d)) and ∇ρi ∈
L2
t (0, T ;BMO(Rd) ∩ Lp0(Rd)) for some p0 ∈ [1,∞). If ρ1(0) = ρ2(0), then

ρ1(t) = ρ2(t) on [0, T ].

Remark 3. It will be evident from the proof that we need only assume ∇ρ ∈
L1+
t (0, T ;BMO ∩ Lp0).

Remark 4. If ν > 0, then we may potentially relax the conditions of this theorem;
see §4 below. However, note that depending on the decay of ∇ρ, there are still
dissipative cases covered by this theorem that are not covered by Theorem 4 below.

Proof. We estimate the L2 norm of w := ρ1 − ρ2. First, notice that by Lemma 1,
ρi, w ∈ L2

tL
∞
x and are in fact log-Lipschitz continuous for a.e. time. Using the

divergence free condition,

1

2

d

dt

∫
|w|2 dx = −ν

∫
w(−Δ)γwdx−

∫
wV ρ2∇w + w∇ρ2 · V wdx

= −ν

∫
||∇|γ w|2 dx+

∫
w∇ρ2 · V wdx

≤
∫

w∇ρ2 · V wdx.

Using Lemma 2 for p > p0 and the boundedness of the mapping V : L2p/(p−1) →
L2p/(p−1), we get

1

2

d

dt

∫
|w|2 dx ≤ ‖∇ρ2‖p

[∫
|wV w|

p
p−1 dx

]1−1/p

� (p‖∇ρ2‖BMO + ‖∇ρ2‖p0
)

[∫
|V w|

2p
p−1 dx

](p−1)/2p [∫
|w|

2p
p−1 dx

](p−1)/2p

� (p‖∇ρ2‖BMO + ‖∇ρ2‖p0
)

(
2p

p− 1

) [∫
|w|

2p
p−1 dx

](p−1)/p

� (p‖∇ρ2‖BMO + ‖∇ρ2‖p0
) ‖w‖2/p∞ ‖w‖2−2/p

2 .

Since ∇ρi ∈ L2
t (0, T ;BMOx ∩ Lp0

x ), for p sufficiently large we have

1

2

d

dt
‖w‖22 � pf(t)‖w‖2−2/p

2 ,

for some 0 < f(t) ∈ L
2/(1+2/p)
t (0, T ). As above in the proof of Theorem 2, this

suffices. �

4. Stability results for active scalars with dissipation

In §3, the sign-definite dissipative effects were ignored and viscous and inviscid
systems were treated in the same fashion. It is well-known that for the dissipative
2D quasi-geostrophic equations one can still have uniqueness at lower regularities
than what is provided by Theorem 3 (see for example [21, 38] and the references
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therein). In light of existing results on 2D SQG, the following easy general theorem
is proved by a standard application of Gagliardo-Nirenberg or Sobolev embedding
and essentially mirrors contraction mapping arguments for local existence and small
data critical theory, but we state and prove it for completeness.

Theorem 4 (L2 estimates for dissipative active scalars). Suppose there is some

q ≥ d/(2γ) with q > 1 such that V : L
2q

q−1 → L
2q

q−1 is a bounded linear operator.
Consider the dissipative active scalar,

ρt + V ρ · ∇ρ = −ν(−Δ)γρ,

for some γ ∈ (0, 1] and ν > 0. Suppose there exist two weak solutions ρ1(t), ρ2(t)
defined on [0, T ] which satisfy ρi(t) ∈ Ct([0, T ];L

2
x(R

d)) ∩ L2
t (0, T ;H

γ) and ∇ρi ∈
Lr
t (0, T ;L

q
x) with r = 2γq

2γq−d . Then, if q > d/(2γ) we have the stability estimate

(22) ‖ρ1(t)− ρ2(t)‖2 ≤ exp
[
ν−

d
2γq−dC(d, q, ‖∇ρi‖Lr

tL
q
x
,

‖V ‖L2q/(q−1)→L2q/(q−1))
]
‖ρ1(0)− ρ2(0)‖2.

If d > 2γ and the critical norm satisfies

‖∇ρi‖
L∞

t L
d
2γ
x

≤ νε0(d, ‖V ‖L2d/(d−2γ)→L2d/(d−2γ)),

for some absolute ε0 depending only on those quantities indicated, then the solution
map is a contraction in L2; that is, for all t > s ≥ 0,

‖ρ1(t)− ρ2(t)‖ ≤ ‖ρ1(s)− ρ2(s)‖2, ∀t ≥ s.

Proof. Beginning as before we define w := ρ1 − ρ2, and using the divergence free
condition, we get

1

2

d

dt

∫
|w|2 dx = −ν

∫
w(−Δ)γwdx−

∫
wV ρ2∇w + w∇ρ2 · V wdx

= −ν

∫
||∇|γ w|2 dx+

∫
w∇ρ2 · V wdx,

where |∇| is the Fourier multiplier |∇| f := (2π)−d/2
∫
|ξ| f̂(ξ)eix·ξdξ. First consider

the subcritical case q > d
2γ . By Gagliardo-Nirenberg we have

‖w‖ 2q
q−1

≤ C(d, q, γ)‖w‖1−
d

2qγ

2 ‖ |∇|γ w‖
d

2qγ

2 ,

which implies

1

2

d

dt

∫
|w|2 dx ≤ −ν‖ |∇|γ w‖22 + ‖w‖ 2q

q−1
‖V w‖ 2q

q−1
‖∇ρ2‖q

≤ −ν‖ |∇|γ w‖22 + ‖w‖22q
q−1

‖V ‖
L

2q
q−1 →L

2q
q−1

‖∇ρ2‖q

≤ −ν‖ |∇|γ w‖22 + C(d, q, γ)‖w‖2−
d
qγ

2 ‖ |∇|γ w‖
d
qγ

2 ‖V ‖
L

2q
q−1 →L

2q
q−1

‖∇ρ2‖q.
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By weighted Young’s inequality,

1

2

d

dt

∫
|w|2 dx

≤ −ν

2
‖ |∇|γ w‖22 +

(ν

2

)− d
2γq−d

C
(
d, q, γ, ‖V ‖

L
2q

q−1 →L
2q

q−1

)
‖∇ρ2‖

2γq
2γq−d
q ‖w‖22

≤
(ν

2

)− d
2γq−d

C
(
d, q, γ, ‖V ‖

L
2q

q−1 →L
2q

q−1

)
‖∇ρ2‖

2γq
2γq−d
q ‖w‖22,

which implies the assertion (22) by Grönwall’s inequality.
We now prove the critical regularity assertion (4). Beginning as before we have

1

2

d

dt

∫
|w|2 dx = −ν

∫
w(−Δ)γwdx−

∫
wV ρ2∇w + w∇ρ2 · V wdx

= −ν

∫
||∇|γ w|2 dx+

∫
w∇ρ2 · V wdx

≤ −ν‖ |∇|γ w‖22 + ‖w‖2 2d
d−2γ

‖V ‖
L

2d
d−2γ →L

2d
d−2γ

‖∇ρ2‖ d
2γ
.

By (homogeneous) Sobolev embedding we have

1

2

d

dt

∫
|w|2 dx = −ν‖ |∇|γ w‖22 + C(γ, d)‖V ‖

L
2d

d−2γ →L
2d

d−2γ
‖∇ρ2‖ d

2γ
‖ |∇|γ w‖22.

Hence, provided
C(γ, d)‖V ‖

L
2d

d−2γ →L
2d

d−2γ
‖∇ρ2‖ d

2γ
≤ ν,

the solution map is a contraction in L2. �

Using the Sobolev inequalities to capitalize on the stabilizing effects of the diffu-
sion was straightforward in the previous theorem. A similar (but slightly less obvi-

ous) approach can also be adapted for the Ḣ−1 method used above in Theorem 2.
The proof is limited to linear diffusion since, due to the lack of an appropriate em-
bedding theorem, there does not seem to be an obvious way to extract a stabilizing
effect from the nonlinear diffusions. One way this theorem is useful is that it shows

solutions to (1) with “finite energy dissipation”,
∫ t

0

∫
|ρ|2 + |∇ρ|2 dxdt < ∞, are

unique (see Remark 5 below). However, this theorem is obviously not as powerful
as the deep methods of [18], which ultimately prove that measure-valued solutions
to the 2D Navier-Stokes equations in vorticity form are unique. N. Masmoudi and
one of the authors recently extended these methods to include the 2D parabolic-
elliptic Patlak-Keller-Segel system in [2]. A primary aspect of these methods is the
approximation of the contribution of the atomic part of the initial data as forward
self-similar solutions and a good understanding of the linearization around these so-
lutions, an approach which could prove difficult or impossible in some cases covered
by Theorem 5.

Theorem 5 (Ḣ−1 method for dissipative active scalars). Suppose if d ≥ 3 that
there is a q ≥ d/2 or if d = 2 that there is a q > 1 such that ∇V : Lq → Lq and

V∇· : L
2q

q−1 → L
2q

q−1 are both bounded linear operators. Consider the viscous active
scalar

ρt +∇ · (ρV ρ) = νΔρ, ν > 0.

Suppose there exist two weak solutions ρ1(t), ρ2(t) defined on [0, T ] which satisfy

ρi(t) ∈ Lr
t (0, T ;L

q(Rd)) ∩ L2(0, T ;L2) ∩ Ct([0, T ];L
2d

d+2
x (Rd))
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with r = 2q/(2q−d). In d = 2 we further assume u(x)x ∈ L∞
t (0, T ;L1

x(R
d)). Then

we have the stability estimate

(23) ‖ρ1(t)−ρ2(t)‖Ḣ−1 ≤ exp
[
ν−

d
2q−dC(d, q, V )‖ρi‖rLr

tL
q
x(0,t)

)
‖ρ1(0)−ρ2(0)‖Ḣ−1 .

If d > 2 and the critical norm satisfies ‖ρi(t)‖d/2 ≤ νε0(d, V ) for some ε0 > 0
depending only on the quantities specified for a.e. t ∈ (0, T ), then the solution map

is a contraction in Ḣ−1; that is, for all t > s ≥ 0,

‖ρ1(t)− ρ2(t)‖Ḣ−1 ≤ ‖ρ1(s)− ρ2(s)‖Ḣ−1 .

Remark 5. Many solutions one can construct will not only have ρi ∈ L2(0, T ;L2)
but also have ∇ρi ∈ L2(0, T ;L2). In this case, Sobolev embedding (in d ≥ 3)
or Gagliardo-Nirenberg (in d = 2) imply that ρi ∈ Lr

t (0, T ;L
q
x) for a range of

admissible pairs (r, q), and hence all such active scalars are unique with only the

assumption of ρi ∈ L2(0, T ;H1) ∩ Ct([0, T ];L
2d/(d+2)
x (Rd)) (with the appropriate

modification in 2D). An interesting side note is that in 2D, Theorem 5 is only
slightly stronger than Theorem 2, as H1(R2) ↪→ BMO(R2) ∩ L2(R2) [23].

Proof. We prove the assertion (23) first. Let w := ρ1−ρ2 and −Δφ = w, equivalent
to −N ∗ w = φ, since as in the proof of Theorem 2 we have φ ∈ Lr

tL
∞
x . Moreover,

∇φ ∈ L2
tL

2
x and computing the evolution of ‖∇φ(t)‖2 similar to Theorem 2,

1

2

d

dt

∫
|∇φ|2 dx ≤ −ν

∫
|w|2 dx+ 2

∫
|∇V ρ1| |∇φ|2 dx+

∫
ρ2∇φ · V wdx

≤ −ν‖w‖22 + 2‖∇V ρ1‖q‖∇φ‖22q
q−1

+ ‖ρ2‖q‖V w‖ 2q
q−1

‖∇φ‖ 2q
q−1

≤ −ν‖w‖22 + 2‖∇V ‖Lq→Lq‖ρ1‖q‖∇φ‖22q
q−1

+ ‖ρ2‖q‖V∇ · ‖
L

2q
q−1 →L

2q
q−1

‖∇φ‖22q
q−1

.

By the Gagliardo-Nirenberg inequality and the Calderón-Zygmund inequality,

‖∇φ‖ 2q
q−1

�d ‖∇φ‖1−
d
2q

2 ‖D2φ‖
d
2q

2 � ‖∇φ‖1−
d
2q

2 ‖Δφ‖
d
2q

2 = ‖∇φ‖1−
d
2q

2 ‖w‖
d
2q

2 .

Hence,

1

2

d

dt

∫
|∇φ|2 dx ≤− ν‖w‖22 + C(d,∇V )‖ρ1‖q‖∇φ‖2−

d
q

2 ‖w‖
d
q

2

+ C(d, V∇·)‖ρ2‖q‖∇φ‖2−
d
q

2 ‖w‖
d
q

2 .

By weighted Young’s inequality,

1

2

d

dt

∫
|∇φ|2 dx

≤ −ν

2
‖w‖22 + ν−

d
2q−dC(d, q,∇V, V∇·)

(
‖ρ1‖

2q
2q−d
q + ‖ρ2‖

2q
2q−d
q

)
‖∇φ‖22.

Hence, by Grönwall’s inequality,

‖∇φ(t)‖22 ≤ ‖∇φ(0)‖22 exp
[
ν−

d
2q−dC(d, q,∇V, V∇·)

∫ t

0

(
‖ρ1(s)‖rq + ‖ρ2(s)‖rq

)
ds

]
.

This proves the first (subcritical) assertion.
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The second (critical) assertion follows similarly, with modifications to deal with
the criticality. Beginning as before,

1

2

d

dt

∫
|∇φ|2 dx ≤ −ν

∫
|w|2 dx+ 2

∫
|∇V ρ1| |∇φ|2 dx+

∫
ρ2∇φ · V wdx

≤ −ν

∫
|w|2 dx+ 2‖∇V ‖Ld/2→Ld/2‖ρ1‖d/2‖∇φ‖22d

d−2

+ ‖ρ2‖d/2‖V∇ · ‖L2d/(d−2)→L2d/(d−2)‖∇φ‖22d
d−2

.

By Sobolev embedding and the Calderón-Zygmund inequality again,

1

2

d

dt

∫
|∇φ|2 dx

≤ −ν‖w‖22 + C(d)
(
‖∇V ‖

L
d
2 →L

d
2
‖ρ1‖ d

2
+ ‖V∇ · ‖

L
2d

(d−2) →L
2d

(d−2)
‖ρ2‖ d

2

)
‖w‖22.

Hence, the result follows immediately. �

5. Extension to bounded domains

In this section we discuss how to extend Theorem 2 to bounded domains with
Lipschitz boundaries. Recall that a bounded domain Ω is a Lipschitz domain if, for
every ξ ∈ ∂Ω, there is a neighborhood U of ξ and a Lipschitz function A : Rn−1 → R

such that

U ∩ ∂Ω ⊆ T{(x,A(x)) : x ∈ R
n−1}

where T is some linear transformation formed by a rotation and translation. Less
regular domain boundaries may be treatable under certain conditions, but we will
not consider these cases here. For certain PDE, the method would also require that
Ω be convex or that Ω be simply connected.

Following [4, 7], the most important consideration is to replace Ḣ−1 with the
following natural analogue: define

−Δφ = f −
∫
Ω

fdx,

∇φ · n̂|∂Ω = 0,

where n̂ denotes the outward unit normal; then the H−1(Ω) norm is given by

‖f‖H−1(Ω) := ‖∇φ‖L2(Ω).

We will need now the following three conditions, which are similar to conditions
C1-3 in §3.

B1. The no-penetration condition: V ρ · n̂|∂Ω ≤ 0 for all solutions ρ.
B2. The regularity requirement that ∇V : BMO(Ω) → BMO(Ω) is a bounded

linear operator which additionally satisfies ‖∇V f‖p � p‖f‖p for all p suffi-
ciently large.

B3. The H−1 stability estimate ‖V f‖2 � ‖f‖H−1(Ω).

Remark 6. All three conditions hold, for example, in the case of the 2D Euler/
Navier-Stokes equations if Ω is simply connected. They also hold for the parabolic-
elliptic Patlak-Keller-Segel model with homogeneous Neumann or Dirichlet data
(the latter requiring nonnegative solutions) on the chemo-attractant. See also [4,7]
for other examples, which require convexity of Ω in order to satisfy B1.
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Theorem 6 (H−1 method on Lipschitz domains). Suppose Ω is a bounded, Lips-
chitz domain and V satisfies properties B1-3. Also consider the active scalar with
the no-flux boundary condition,

ρt +∇ · (ρV ρ) = ΔA(ρ),

(∇A(ρ) + ρV ρ) · n̂|∂Ω = 0,

with A : R → [0,∞) nondecreasing and measurable (possibly zero). Suppose
there exist two weak solutions ρ1(t), ρ2(t) defined on [0, T ] which satisfy ρi(t) ∈
L2
t (0, T ;BMO(Ω)) ∩ Ct([0, T ];L

p0
x (Ω)) where p0 ≥ 1. If ρ1(0) = ρ2(0), then

ρ1(t) = ρ2(t) on [0, T ].

Remark 7. See also [7] for a similar method in a periodic setting.

Proof. Define w := ρ1 − ρ2, φ as the unique mean-zero solution to the Neumann
problem

−Δφ = w,

∇φ · n̂|∂Ω = 0,

and note ‖w‖H−1(Ω) := ‖∇φ‖2. Similarly to the above, by Lemma 2 and standard

elliptic regularity, φ ∈ L2
tL

∞
x and ∇φ ∈ L2

tL
2
x. Note that since Ω is bounded, this

holds in two dimensions without requiring any additional assumptions or the use of
Lemma 3. Similarly to the proof of Theorem 2, we may use φ as a test function in
the definition of weak solution and compute the time evolution of ‖∇φ(t)‖2. Using
the homogeneous Neumann data on φ and no flux conditions on ρi, we get as in
Theorem 2,

1

2

d

dt

∫
|∇φ|2 dx = −

∫
(A(ρ1)−A(ρ2)) (ρ1 − ρ2)dx+

∫
∇φ · wV ρ1dx

+

∫
∇φ · ρ2(V ρ1 − V ρ2)dx

:= T1 + T2 + T3.

The T1 and T3 terms may be treated as in Theorem 2 (although checking condition
B3 may be harder than in the R

d case). Condition B1 arises in the treatment of
T2. Indeed, using the boundary condition on φ and B3 in the last line,

T2 =
∑
ij

∫
∂iφ∂ijφ(V ρ1)j + ∂iφ∂jφ∂i(V ρ1)jdx

=
∑
ij

∫
∂j

(
1

2
|∂iφ|2

)
(V ρ1)j + ∂iφ∂jφ∂i(V ρ1)jdx

=
∑
ij

∫
∂Ω

(
1

2
|∂iφ|2

)
(V ρ1)jn̂jdS

−
∑
ij

∫ (
1

2
|∂iφ|2

)
∂j(V ρ1)j − ∂iφ∂jφ∂i(V ρ1)jdx

�
∫

|∇V ρ1| |∇φ|2 dx.

From here the proof proceeds as in Theorem 2. �
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Appendix: Proof of Lemma 1

We assume v ∈ S(Rd) and use density to extend to more general functions. Let
x, y ∈ R

d and let r = |x− y|. Define W := B(x, r) ∩ B(y, r). By the triangle
inequality,

|v(x)− v(y)| ≤
∫

W

|v(x)− v(z)| dz +
∫

W

|v(y)− v(z)| dz.

Moreover, ∫
W

|v(x)− v(z)| dz ≤ C

|B(x, r)|

∫
|v(x)− v(z)| dz,

where C depends on the ratio between |B(x, r)| and |W |, which is fixed in r. A
standard fundamental theorem of calculus argument (see e.g. [17], p. 267) implies

(24)
1

|B(x, r)|

∫
|v(x)− v(z)| dz �

∫
B(x,r)

|∇v(z)|
|x− z|d−1

dz.

We are concerned with controlling this integral for r � 1. Without loss of generality
we may assume x = 0. For notational simplicity, define ∇v(y) = f(y) and Bk :=
B(0, 2−k). Now,∫

B(0,r)

|f(z)|
|z|d−1

dz ≤
∫
B(0,r)

|f(z)− fB1
|

|z|d−1
dz + fB1

C(d)r.

Let us now focus on the first term, as the latter term is uniformly O(r) by the
assumption on the local averages of ∇v. By f ∈ BMO, for all k ∈ N we have∫

Bk

|f − fBk
| dx ≤ c2−dk‖f‖BMO.

Moreover, as f ∈ BMO, we have

|fBk
− fBk+1

| �d ||f ||BMO,

which implies |fBk
− fB1

| ≤ ck‖f‖BMO. We come to the main estimate, which
breaks the integral into successive length-scales,∫

|z|<r

|f − fB1
|

|z|d−1
dz ∼

∞∑
k≥log2 r

∫
|z|∼2−k

|f − fB1
|

2−k(d−1)
dz ≤

∞∑
k≥log2 r

∫
|z|≤2−k

|f − fB1
|

2−k(d−1)
dz

�d ‖f‖BMO

∞∑
k≥log2 r

k2−kd

2−k(d−1)
= ‖f‖BMO

∑
k≥log2 r

k2−k.

An elementary computation shows∑
k≥log2 r

kxk−1 =
d

dx

∑
k≥log2 r

xk =
d

dx

xlog2 r

1− x
.

This finally implies∫
B(x,r)

∇v(z)

|z − x|n−1 dz � ‖∇v‖BMO(r |log r| − r),
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for r sufficiently small depending on
∫
B(x,1)

|∇v| dx, which is uniformly bounded.

Hence, for r sufficiently small,

|v(x)| ≤
∫

B(x,r)

|v(x)− v(y)| dy +
∫

B(x,r)

|v(y)| dy

≤
∫
B(x,r)

∇v(z)

|z − x|n−1 dz + Crd/p−d‖v‖Lp(B(x,r))

� ‖∇v‖BMO(r |log r| − r) + Crd(p−1)/p−d‖v‖p.
This completes the lemma.
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[3] Jacob Bedrossian and Nancy Rodŕıguez, Inhomogeneous Patlak-Keller-Segel models and ag-
gregation equations with nonlinear diffusion in R

d, Discrete Contin. Dyn. Syst. Ser. B 19
(2014), no. 5, 1279–1309, DOI 10.3934/dcdsb.2014.19.1279. MR3199780
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sional aggregation equation, Comm. Pure Appl. Math. 64 (2011), no. 1, 45–83, DOI
10.1002/cpa.20334. MR2743876 (2012d:35036)
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[15] Camillo De Lellis and László Székelyhidi Jr., On admissibility criteria for weak solu-
tions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 225–260, DOI
10.1007/s00205-008-0201-x. MR2564474 (2011d:35386)

[16] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Invent. Math. 98 (1989), no. 3, 511–547, DOI 10.1007/BF01393835. MR1022305
(90j:34004)

[17] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19,
American Mathematical Society, Providence, RI, 1998. MR1625845 (99e:35001)

[18] Isabelle Gallagher and Thierry Gallay, Uniqueness for the two-dimensional Navier-Stokes
equation with a measure as initial vorticity, Math. Ann. 332 (2005), no. 2, 287–327, DOI
10.1007/s00208-004-0627-x. MR2178064 (2007b:35252)

[19] Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1,
41–66, DOI 10.1512/iumj.1980.29.29005. MR554817 (81b:42047)

[20] James P. Kelliher, On the flow map for 2D Euler equations with unbounded vorticity,
Nonlinearity 24 (2011), no. 9, 2599–2637, DOI 10.1088/0951-7715/24/9/013. MR2824024
(2012i:35286)

[21] A. Kiselev, Regularity and blow up for active scalars, Math. Model. Nat. Phenom. 5 (2010),
no. 4, 225–255, DOI 10.1051/mmnp/20105410. MR2662457 (2011e:35303)

[22] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative
quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445–453, DOI 10.1007/s00222-
006-0020-3. MR2276260 (2008f:35308)

[23] Hideo Kozono and Hidemitsu Wadade, Remarks on Gagliardo-Nirenberg type inequality with
critical Sobolev space and BMO, Math. Z. 259 (2008), no. 4, 935–950, DOI 10.1007/s00209-
007-0258-5. MR2403750 (2009f:46051)

[24] Thomas Laurent, Local and global existence for an aggregation equation, Comm. Partial
Differential Equations 32 (2007), no. 10-12, 1941–1964, DOI 10.1080/03605300701318955.
MR2372494 (2008k:35475)

[25] G. Loeper, A fully nonlinear version of the incompressible Euler equations: the semi-
geostrophic system, SIAM J. Math. Anal. 38 (2006), no. 3, 795–823 (electronic), DOI
10.1137/050629070. MR2262943 (2007j:35173)
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62 (2005), no. 4, 579–594, DOI 10.1016/j.na.2005.03.053. MR2149903 (2006a:76011)
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