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IDEMPOTENT RESIDUATED STRUCTURES:
SOME CATEGORY EQUIVALENCES
AND THEIR APPLICATIONS

N. GALATOS AND J. G. RAFTERY

ABSTRACT. This paper concerns residuated lattice-ordered idempotent com-
mutative monoids that are subdirect products of chains. An algebra of this
kind is a generalized Sugihara monoid (GSM) if it is generated by the lower
bounds of the monoid identity; it is a Sugihara monoid if it has a compatible
involution —. Our main theorem establishes a category equivalence between
GSMs and relative Stone algebras with a nucleus (i.e., a closure operator pre-
serving the lattice operations). An analogous result is obtained for Sugihara
monoids. Among other applications, it is shown that Sugihara monoids are
strongly amalgamable, and that the relevance logic RM?' has the projective
Beth definability property for deduction.

1. INTRODUCTION

The theory of residuated structures descends from three essentially independent
sources—the algebra of binary relations, the study of ideal multiplication in rings,
and the semantic analysis of non-classical logics (see [23] and its references). In
the structures that concern us here, the key ingredients are a commutative monoid
(4;-,t), a lattice order < of A, and a binary operation — such that the law of
residuation

a-c<biff ce<a—b
holds for all elements a, b,c € A. When interpreting some deductive systems at the
intersection of relevance logic and many-valued logic, we encounter the following
properties as well:

e idempotence: a-a = a for all elements a,
e semilinearity: the structure is a subdirect product of chains.

None of these demands implies
e integrality: the monoid identity t is the greatest element.

On the whole, varieties of integral residuated structures are better understood
than their non-integral counterparts, so the discovery of a category equivalence be-
tween a non-integral and an integral class may increase our understanding of the
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former. Amalgamation and epimorphism-surjectivity properties will be preserved,
for instance, because they are purely categorical. As it happens, they reflect in-
terpolation theorems and definability properties of the deductive systems modeled
by the algebras (see Theorem [[T.2]). Moreover, a category equivalence between
varieties induces an isomorphism between their subvariety lattices, along which
categorical properties can still be transferred. Thus, it carries positive and nega-
tive results from one family of logics to another, yielding swift new discoveries in
some cases and easier proofs in others.

This strategy was exploited in [26], where we proved that the variety OSM of odd
Sugihara monoids and the variety RSA of relative Stone algebras are categorically
equivalent. Both classes consist of idempotent semilinear algebras. A residuated
structure of this kind belongs to RSA iff it is integral; it is a Sugihara monoid iff
it possesses a compatible involution —. The odd Sugihara monoids are the ones in
which =t = t. Using known categorical properties of relative Stone algebras, we
were able to establish some new features of the uninorm-based logic IUML (see
[421[45]), which is algebraized by the bounded odd Sugihara monoids.

For the sake of such applications, it is desirable to extend the category equiva-
lence in [26] to a wider class of residuated structures than OSM. The equivalence
functor from OSM to RSA simply constructs the negative cone of the non-integral
algebra, which is based on the lower bounds of t. If this natural construction is
still to be used, then we should deal with non-integral residuated structures that
are determined by their negative cones. Assuming semilinearity and idempotence,
the algebras generated by their negative elements are exactly the ones in which
(a = t) — t = a whenever a > t. This demand defines the variety GSM of general-
ized Sugihara monoids, which is therefore a natural boundary for our investigation.

The negative cone of a generalized Sugihara monoid is still a relative Stone
algebra, but the negative cone construction is no longer a category equivalence. To
restore equivalence in the context of GSM, we must eliminate some RSA—morphisms
by adding structure to the relative Stone algebras. We prove that it suffices to add
a single unary operation ¢ (called a nucleus), with axioms z < Qx = OOz and
Oz A Oy = O(x Ay), where A is the lattice meet. Thus, we arrive at a variety NRSA
of nuclear relative Stone algebras, and our central result shows that GSM and NRSA
are categorically equivalent (Theorem B.7)). Because of the hereditary character of
equivalence, we derive integral reductions of other non-integral classes too.

This allows us to show, for instance, that Sugihara monoids are strongly amal-
gamable, whence they enjoy a strong form of epimorphism-surjectivity. On the
logical front, we obtain the finite Beth definability property for deduction in all ax-
iomatic extensions of the relevance logic RM* (that is, R-mingle, formulated with
Ackermann constants [2]). For RM" itself, we obtain the projective Beth property
for deduction, and a new proof of deductive interpolation. Finally, we generalize the
following result from [49]: in the negation-less fragment of RM?®, every extension
is an axiomatic extension.

2. RESIDUATED STRUCTURES

An algebra A = (A;., =, A, V,t) of type (2,2,2,2,0) is called a commutative
residuated lattice (briefly, a CRL) if (A;-, t) is a commutative monoid, (A;A, V) is
a lattice, and for all a,b,c € A,

c<a—biff a-c<bh,
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where < denotes the lattice order. In this case, A also satisfies

z-(z—y) <y,
Ty <= t<z—=y,
r+z<y-z and
r<ly = z—=x<z—y and
y—z2<x— 2,
t—>zr=urx,
(x-y)mz=y—(x—2)=2— (y— 2).

The class of all CRLs is an arithmetical variety with the congruence extension
property [1,22]. Every CRL A is t—regular, i.e., each congruence 6 of A is deter-
mined by the equivalence class t/0 := {a € A : a =¢ t}. This follows from the
quasi-equations

(1) (reoyPAt=t < z=y,

which are valid in all CRLs, where 2 <+ y := (¢ — y) A (y — ). For additional
background on CRLs; see [2329].

3. SEMILINEARITY AND IDEMPOTENCE

A CRL A is said to be distributive if its lattice reduct is distributive; it is
semilinear if it can be embedded into a direct product of totally ordered CRLs. In
the latter case, A is actually a subdirect product of totally ordered CRLs (because
total order persists in subalgebras) and, when verifying that A satisfies a quasi-
equation, we may assume without loss of generality that (A; <) is a chain.

The semilinear CRLs can be characterized as the distributive ones that satisfy

t<(z—yV(y—az),

whence they form a variety [29]. In the literature, ‘representable’ is a common
synonym for ‘semilinear’.
Whereas every CRL satisfies the distribution laws

(2) z-(yVz) = (z-y)V(r-2),
(3) r—(yNz) = (x = y)A(z = 2),
(4) (zVy) =z =(r—=2)A(y—2),

the semilinear ones also satisfy

(5) z-(yAz) = (z-y) A (z-2),
(6) r—=(yVvz) = (x—=y) V(x—2),
(7) (xAy)—=z=(x—2)V(y—=2).

The following lemma is easily verified (see [20] if necessary).

Lemma 3.1. Let A be a semilinear CRL—or more generally, a CRL satisfying
). Then A satisfies © = (z At) - (x V).

We adopt the abbreviations

*

¥ =z —=t and |z| := x>z



3192 N. GALATOS AND J. G. RAFTERY

Every CRL satisfies
x <z and ™ =2" and t <|z|.

If a CRL is idempotent (i.e., it satisfies « - © = z), then it also satisfies

(8) z < al,

(9) r=lz| <= t<u,
(10) zf =z = z<t,
(11) r=1" <= x=t.

A CRL A is finitely subdirectly irreducible iff its identity element t is join-
irreducible in the lattice reduct (A; A, V); see [24]. If the set {a € A:a <t} hasa
greatest element, then A is subdirectly irreducible. The converse holds when A is
idempotent—and somewhat more generally [48]. Thus, by Jénsson’s Lemma (see
[34] or [12, Thm. IV.6.8]),

a semilinear idempotent CRL A is finitely subdirectly irreducible

iff (A;<) is a chain; it is subdirectly irreducible iff (4;<) is a

chain in which t is the cover of some element.
This remains true for CRL-expansions (i.e., CRLs, possibly enriched with extra
operations), provided that A and its CRL-reduct have the same congruences.

The variety of semilinear idempotent CRLs is locally finite, i.e., every finitely
generated member of this class is a finite algebra [54]. A totally ordered idempotent
CRL A is determined by its reduct (A;*, <); it is also determined by (4; ||, <).
These claims follow from ([@)—(I) and the next theorem.

Theorem 3.2 ([54]). Let A be a totally ordered idempotent CRL. Then
(i) A satisfies
x iyl < ||
Ty =14y if x| <yl and x—>y:{
x Ay if fxf =yl
(ii) Let t < a € A and define
Yo={ceA:c"=a}, ie, Yuo={c€eA:c<t and |c|=a}.

Then Y, is an interval of (A;<). Also, Y, # 0 iff a** = a, in which case
a* 1is the greatest element of Y,.

*Vy if <y
z* ANy if x> .

An element a of a CRL will be called negative if a < t, and positive if t < a.
Given a totally ordered idempotent CRL A, the non-empty sets of the form Y, (a
positive) clearly partition the negative elements. Thus, by Theorem [3.2] A will be
generated as an algebra by its negative elements iff a** = a for all positive a € A.
This motivates the next definition.

Definition 3.3. The variety GSM of generalized Sugihara monoids consists of the
semilinear idempotent CRLs that satisfy

(12) (x V)™ =xVt,

or equivalently, t <z = 2** = x. (The reason for this name will become clear
in Section [Bl) The algebras in GSM are therefore just the subdirect products of
totally ordered idempotent CRLs A in which Y, # ) for all positive a € A.
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b=0" =2" = |z forallzeY,
a =a" =2" = |z forallzeY,
t =1t = 2" = |z| forallzeYs
Yi
a*
Yo
b*
Y,

FIGURE 1. A totally ordered member of GSM, illustrating Theorem B2

Lemma 3.4. FEvery generalized Sugihara monoid satisfies
x=(xAt)-(z"ANt)".

Proof. By ), every CRL satisfies (z V t)* = z* A t* = 2* A t, so GSM satisfies
xVt=(zVt)™* = (z* At)*, and the result follows from Lemma B11 O

Corollary 3.5. A semilinear idempotent CRL is a generalized Sugihara monoid iff
it is generated by its negative elements.

Proof. The forward implication follows from Lemma B4l By semilinearity, the
converse need only be checked in the totally ordered case, as surjective homomor-
phisms always map generating sets onto generating sets. Thus, the remarks before
Definition complete the proof. |

4. RELATIVE STONE ALGEBRAS

An integral CRL is one whose identity element t is its greatest element. In these
algebras, we always have a < b — a, while a < b iff @ — b = t; in particular,
a — t =t and () simplifies to

(13) roy=t <= r=y.

A Brouwerian algebra is an integral idempotent CRL, i.e., a CRL in which
a-b = aAb for all elements a,b. Clearly, these algebras have the contraction
property z — (z = y) =z — y.

Every totally ordered Brouwerian algebra satisfies

_ t if z<y;
(14) x—>y{y if 2>y and

- z if z<uy;
(15) (x—>y)—>x—{t it x>y
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The variety RSA of relative Stone algebras consists of the semilinear Brouwerian
algebras. Thus, RSA is the class of all integral members of GSM and it is very well
understood. If A € RSA is totally ordered, then, in the notation of Theorem B2,
we have Y; = A.

Lemma 4.1. For any elements a,b of a relative Stone algebra, the following con-
ditions are equivalent:
(i)a—=b=band b= a=gq
(ii) aVb=t.
In a totally ordered relative Stone algebra, these conditions are equivalent to
(ili) a=t or b =t.

Proof. Clearly, the lemma’s second assertion follows from its first, and the first
need only be verified in the totally ordered case. The result is therefore an easy
consequence of ([I4]). O

Lemma 4.2. RSA satisfies ((x = y) = )V (z = y) = t.

Proof. Again, an examination of the totally ordered algebras suffices, and the result
follows readily from (I4)) and (3. O

5. INVOLUTION AND SUGIHARA MONOIDS

An involutive CRL is the expansion of a CRL A by a basic unary operation
= such that ——a = a and a — —b = b — —a for all a,b € A. In this case, the
De Morgan laws for =, A,V hold as well. Involutive CRLs still have the congruence
extension property, because they are termwise equivalent to CRLs with a distin-
guished element f such that (a — f) — f = a for all elements a. (Define f = —t in
one direction, and —a = a — f in the other.) In an idempotent involutive CRL, we
always have f < t.

An involutive CRL A is said to be odd if -t = t, i.e., if a** = a for all a € A.
In this case, A is termwise equivalent to its CRL-reduct, as —-a = a* for all a € A.

Definition 5.1.

(i) The variety SM of Sugihara monoids consists of the idempotent distribu-
tive involutive CRLs.
(ii) The class PSM of positive Sugihara monoids consists of the CRLs A
that can be extended to Sugihara monoids (i.e., A is a subalgebra of the
-, —, A, V, t reduct of some Sugihara monoid).
(ili) OSM denotes the variety of odd Sugihara monoids.

J. M. Dunn, in his contributions to [2], showed that Sugihara monoids are semi-
linear. In fact, SM is the smallest variety containing the unique Sugihara monoid

Z-{0}={a:0£a€Z};-,—,AV,—,1)

on the set of all non-zero integers such that the lattice order is the usual total
order, the involution — is the usual additive inversion, and the term function of
|z| := & — «x is the natural absolute value function. In this algebra,

the element of {a,b} with the greater absolute value, if |a| # |b|;
ab = .
aAb if |a| = 18],
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and the residual operation — is given by

= (—a) Vb if a <b;
“ T\ (—a)Ab ifagh

(cf. Theorem [32]). Note that t is 1 and f is —1 in Z — {0}, so (—1)* = 1. Although
Z — {0} is not odd, it has only one element a for which a** # a, namely a = —1.
In particular, the identity ([I2)) is valid in Z — {0}, and hence in SM. It follows that

OSM™ C PSM C GSM,

where OSM™ is the variety of CRL-reducts of odd Sugihara monoids. Both inclu-
sions are strict. It is shown in [49] that PSM is itself a variety.

In the Sugihara monoid Z = (Z;-,—,A,V, —,0) on the set of all integers, the
operations are defined like those of Z — {0}, except that 0 takes over from 1 as the
identity element for -. Both t and f are 0 in Z, so Z € OSM.

It follows from Dunn’s results in [2] that OSM is the smallest quasivariety con-
taining Z, and that SM is the smallest quasivariety containing both Z — {0} and
Z. Observe that Z is a homomorphic image of Z — {0}. The kernel of the homo-
morphism identifies —1 with 1; it identifies no other pair of distinct elements. We
cannot embed Z into Z — {0}, owing to the involution. Nevertheless, the CRL-
reduct of Z is isomorphic to the subalgebra on Z — {—1,0} of the CRL-reduct of
Z —{0}. Consequently, PSM is the smallest quasivariety containing the CRL-reduct
of Z —{0}.

6. CATEGORICAL EQUIVALENCE

Recall that two categories C and D are said to be equivalent if there are functors
F:C— Dand G: D — Csuch that F oG and G o F are naturally isomorphic to
the identity functors on D and C, respectively. In the concrete category associated
with a class of similar algebras, the objects are the members of the class, and the
morphisms are all the algebraic homomorphisms between pairs of objects. The
set of homomorphisms from A into B is denoted, as usual, by Hom(A, B). Two
isomorphically-closed classes of similar algebras, C and D, are said to be categorically
equivalent if the corresponding concrete categories are equivalent. For this, it is
sufficient (and necessary) that some functor F': C — D should have the following
properties:

(i) for each U € D, there exists A € C with F(A) 2 U, and
(ii) the map h+— F(h) from Hom(A, B) to Hom(F(A), F(B)) is bijective, for
all A, B € C.

In this case, F' and some functor G from D to C witness the equivalence of these
concrete categories. We call G a reverse functor for F', and vice versa. Note that
C and D are not assumed to have the same algebraic similarity type.

In [26], we proved that OSM is categorically equivalent to RSA. As categorical
properties often reflect metalogical features of deductive systems, it would be de-
sirable to extend this correspondence beyond OSM—for instance to the variety SM
of all Sugihara monoids, or at least to PSM. These classes model the well-known
system RM?" from relevance logic [2L18] and its negation-less fragment.
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The equivalence functor from OSM to RSA is the ‘negative cone’ functor. In
general, the negative cone of a CRL A = (A;-,—, A, V,t) is the integral CRL

A" = (A, 5 AT,V

on the set A= := {a € A : a < t}, where -7,A7, V™ are just the respective
restrictions of -, A,V to A~ x A~, and the residual —~ is given by

a—"b=(a—b)At foralla,be A™.

(If A is an involutive CRL, then A~ denotes the negative cone of the CRL-reduct
of A.)

The negative cone of a positive Sugihara monoid is still a relative Stone algebra,
but PSM and RSA are not categorically equivalent, as their subvariety lattices
are not isomorphic (see Theorem below). To restore equivalence, we need to
eliminate some RSA-morphisms by adding structure to the relative Stone algebras.
We shall prove that it is sufficient to add a single unary operation, which is a nucleus
in the sense of the next section, having certain properties. But it makes sense to try
to extend the domain of the equivalence from PSM to the widest possible variety
of CRLs, relaxing the properties of the nucleus accordingly. If a negative cone
construction is still to be used, then the non-integral algebras should be determined
by their negative elements. Since a semilinear idempotent CRL is generated by its
negative elements iff it is a generalized Sugihara monoid, the variety GSM is a
natural boundary for this investigation. We shall show that GSM is categorically
equivalent to the variety of all relative Stone algebras with an arbitrary nucleus
(Theorem [B7)).

Once established, the desired equivalence can be restricted to subvarieties of
GSM, including PSM. The algebras in GSM (and PSM) need not have an involu-
tion, however, and every involutive algebra in GSM is in fact a Sugihara monoid.
Therefore, we shall also establish a category equivalence between Sugihara monoids
and another variety of enriched relative Stone algebras. For that purpose, we shall
add a special constant (as well as a nucleus) to the type of RSA; see Theorem

7. NUCLEI
A nucleus of a CRL A is a function N: A — A such that, for all a,b € A,
(16) a < Na= NNa,
(17) if a <b, then Na < Nb,
(18) Na-Nb< N(a-b).

Nuclei are used extensively in the theory of residuated structures, particularly in
connection with embedding problems; see [23]. A nuclear CRL is the expansion of
a CRL A by a nucleus N. In this case, for all a,b € A, we have

(19) a—b< Na— Nb,

because Na - (a — b) < Na+N(a = b) < N(a-(a — b)) < Nb. Consequently, N
is compatible with every congruence 6 of A. Indeed, since A/6 is again a CRL, it
follows from () that, for all a,b € A,

(20) a=yb iff (a+b)At=pt.
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So, if a =¢ b, then

(Na <> Nb) At =g (Na <> Nb)A(a<+b) At [by 20)]
=(a<b) At [by @T)] =0 t,

whence Na =¢ Nb. In other words:

Theorem 7.1. A nuclear CRL B and its CRL-reduct A always have the same
congruences. In particular, B is [finitely] subdirectly irreducible iff A is.

Notation. For a class C of CRLs, we use NC to denote the class of all nuclear CRLs
(A, N) such that A € C.

The inequalities in ([I6)-(I8) can be rendered as equations involving A, and the
definition of a nucleus can be made purely equational, because (IT) can be replaced
by N(a Ab) < Nb. This, with Theorem [T.]] establishes the following facts.

Corollary 7.2. If V is a variety of CRLs, then NV is also a variety, and NV is
arithmetical, congruence extensible and t—regular.

In this case, if B € NV and the CRL-reduct of B is semilinear, then B is a
subdirect product of totally ordered members of NV.

Now suppose A is a Brouwerian algebra and N a nucleus of A. It is easy to see
that N(a Ab) = Na A Nb for all a,b € A, but N need not preserve joins. When A
is a relative Stone algebra, however, the law N(a V b) = Na V Nb follows from the
semilinearity of A and the isotonicity of N. So, in this case, N is an idempotent
endomorphism (i.e., a retraction) of the lattice reduct of A. In summary: a unary
operation N on a relative Stone algebra A is a nucleus iff it is a retraction of the
lattice reduct of A and a < Na for all a € A.

In the variety NRSA of nuclear relative Stone algebras, we tend to denote the
nuclear operation as ), rather than N, because it is a closure operator that preserves
joins.

Example 7.3. For every CRL A, ifa € A™, then a™* € A~. When A is semilinear
and idempotent, then A~ € RSA, and a nucleus of A~ is defined by ¢a = a** (i.e.,
Oa = (a =4 t) =>4 t for all @ € A~). This nucleus need not be a term function
of A7. We use A; to denote the resulting algebra (A™, ) € NRSA, which we call
the nuclear negative cone of A.

Notation. 1f A is a Sugihara monoid, then A, stands for the nuclear negative
cone of the CRL-reduct of A. If C is a class of [involutive] CRLs, then C~ shall
abbreviate {A” : A € C} and, where appropriate, C,; := {A, : A € C}.

Our immediate aim is to prove that GSM and NRSA are categorically equivalent.
Example gives us a way to associate a nuclear relative Stone algebra A with
a given generalized Sugihara monoid A. The construction becomes a functor from
GSM to NRSA if we also restrict GSM-morphisms to the negative cones of their
domains. We call this the nuclear negative cone functor. It is much less obvious
how to construct a reverse functor from NRSA to GSM. That will be done in the
next section.
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8. A FUNCTOR FROM NRSA 1O GSM

Let A = (A; A, —, A, V, 0, t) be a nuclear relative Stone algebra, where, as usual,
< denotes the lattice order of A. We define

S(A) ={{a,ay e Ax A:aVad =t and Qda’ =d'}.
Thus, by Lemma [£1]
S(A)={{a,d'y e AxA:a—ad =d =0d and d' — a = a}.
Let (a,a’), (b,b') € S(A). We define

(a,a’y AN(bV) = (aAb,a V),

(a,d’y v (b)) = (aVb, a AV),

(a,a’y - (b,0") = (((a=V)AN(Db—=a)) = (and), O((a—=V)A (b= d))),
(a,a’y = (b,V) = ((a= AWM —a), 0(((a—=b)A B —a)) = (anl))).

The genesis of these definitions will be discussed in Section [I4}
To see that S(A) is closed under A, observe that

(anb)V(d VDY) = (avd V)N DbV VDY) > (avd)ADbVY) =t

and O(a’ V') = 0d' VOV =a’ VI, because (a,a’), (b,b') € S(A). Similarly, S(A)
is closed under V.

Regarding closure under -, let m = (a — ') A (b — a'). Since O0Om = Om, we
need only show that (m — (aAb))VOm = t. By Corollary[[.2] A is a subdirect prod-
uct of totally ordered nuclear Brouwerian algebras, so it suffices to prove the equality
under the assumption that A is totally ordered. Then, by Lemma [Tl a or a’ is t,
and b or V' is t, because (a,a’), (b,') € S(A). If a =b=t, then m — (a A D) = t,
and if o’ = b’ = t, then m = t, so the result holds in these two cases. If a = b’ = t,
then the equation to be proved is ((b — a’) = b) vV O(b — a’) =t, and, because
NRSA satisfies © < Oz, it suffices to prove ((b — a') — b) V (b — o’) = t. This
follows from Lemma Finally, if o’ = b = t, then the result follows from the
previous case, by symmetry.

Thus, S(A) is closed under -. The proof that S(A) is closed under — is very
similar. Clearly, (t,t) € S(A), so we may consider the algebra

S(A) = (S(A);+, =, AV, (6, 1)),

Theorem 8.1. If A is a nuclear relative Stone algebra, then S(A) is a generalized
Sugihara monoid.

Proof. Because (A;A,V) is a distributive lattice, so is (S(A); A, V). The lattice
order of S(A) is just

(21) (a,a"y < (b,V/) iff (a<b and V' <d').

Note that - is commutative on S(A), by symmetry. Also, - idempotent with identity
(t,t): from a — a’ = a’ = Qa’ and ¢’ — a = a, we infer

{a,d") - {a,d') = ((a = d') — a, O(a — d')) = (d = a, Od') = (a,d’),

and similarly, (a,d’) - (t,t) = (a,a’).
For associativity of -, let v = (a,a’), v = (b,b') and w = (¢, ) be elements of
S(A),soaVad =bVvVld =cVd =tand ¢a’ =d and OV =V and Oc¢’ = /. Let

(p,q) =u-(w-w) and (r,s) = (u-v)-w.
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Each of p, ¢, 7, s has the form f4(a,a’,b,¥,c,c') for some term f in the language of
CRLs. So, by the subdirect decomposition, it suffices to prove that (p,q) = (r,s)
under the assumption that A is totally ordered. This gives rise to eight cases, which
reduce to the following four independent cases, because - is commutative:

(6,a’) - ((6,0) « (t,¢)) = ((t,d) - (£, 1)) - (&, ),
(t,a’) - ((6,0) « (e, 1)) = ((t,d) - (&,1)) - {c, 8),
(t,a’) - ((0,t) - {c,8)) = ((t,a) - (b, 8)) - (e, 1),
{a,t) - (b t) - (¢, 1)) = ((a,t) - (b, 1)) - (¢, 8).

In the first of these equations, both sides simplify to (t, a’ A b A ¢'); in the last,
both sides become (a A b A ¢, t). The second and third equations boil down to

(k= 0((c=b)—=c), 0ky={((c—= (U Ad)) = c, Oc— (b Ad'))) and
(= (bAC),0l) ={(c—=0b—d)) = ((b—d)—=b)Ac),0c— O(b—a))),
respectively, where
k:=0(c—=V)A(((c—=b)—c)—d) and £ := (bAc)—d.

The reader should separate the cases ¢ < b and ¢ > V' when checking the second
equation. In the third, separate b < @’ from b > a’. Properties ([I4) and (3] are
useful in both verifications.

Next, we establish the residuation axiom

(22) w<uy—v iff u-w <o,

where u, v, w are as above. This amounts to showing that, of the four conditions
below, the first two are jointly equivalent to the last two:

(23) c<(a—=bAND —d)

(24) O(((a—=b)A@M —d)) = (and)) <
(25) ((a—= YA (c—d))—=(anc)<b
(26) V <O((a— ')A (c—d)).

Again, we may assume without loss of generality that A is totally ordered.
Suppose ([23) and (24) hold, and note that [23)) yields
(27) aNc<b and Y Ae<d.

We shall prove (26) first. Since A satisfies < Oz, it suffices to show that b’ <
a — ¢ and ¥/ < ¢ — a/. The latter is an immediate consequence of the second
inequality in [27). For the former, set

d:= ((a=b)AD —ad)) = (anl).
Then a Ab < d (as A is integral) < Od < ¢’ (by 24)). So, b’ < a — ¢/, completing
the proof of ([20). Note that (25) will be true if b = t, so assume b # t. Then &’ = t,
because bV b =t and A is totally ordered. Now ¢ < o', by 1), i.e., c = o’ = t.
If ¢ =t, then
(28) ((a—=YAN(c—=ad))—=(anc)=t = (aNc)=aAc<h,
by (&10), i.e., (Z8) holds. We may therefore assume that ¢’ # t, whence ¢ = t, and
so a’ =t (as ¢ < a’). Now, using integrality and ([24)) again, we have

a<(a—b) —va=d<0d<
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i.e., a = ¢ = t. This allows us to repeat the calculation in (28]), thus completing

the proof of ([23]).
Conversely, assume (25]) and (28). Then

aNc<((a—=)YN(c—d))—(anc)<hb,
by ([23), so ¢ < a — b. Also,
VAe<cnO((a— )N (ec—d)) (by 26))
< OcAQ(c—ad)=0(cA(c—d)) <0d =d,
s0 ¢ < b — o, whence [23)) holds. With a view to proving (24)), let
g:=((a—=b AWl —d))— (aNV).
We must show that Og < ¢. This will be true if ¢’ = t, so assume that ¢’ # t, hence
¢ =t. We cannot have a = b’ = t, as that would lead, via (26]), to the contradiction
t=0(Nd) <O = If b=a' =t, then (20) yields ¥’ < {(a — ¢'), whence
0g=0(@nt)<OlanOla— ) =0(aN(a— ) <O =(,
as required. If a = b = t, then 26) gives b’ < O(¢' Aad') = O A Qa’ = Ad/, so
O0g = O(() = d) =) <O(((d ANd') = d') = (d ANd'))
=0t = (dNd))=0( Nd') <O =C.
Finally, suppose ' = b =t. If a > ¢/, then (26) and ([Id]) give t = Oc’ = ¢/, whence
Og < . So, assume a < ¢’. Then (20) entails that a < b, whence
0g=0a <O =¢,
as required. We have now shown that S(A) is a (distributive) CRL.
Because S(A) is distributive, it will be semilinear if
(t,t) < ((a,a') = (b, V) V ((b,1) = (a,d))
for all {(a,a’), (b,t’) € S(A). This translates, via ([2I]), into two inequalities, one

for each co-ordinate. Since t is the greatest element of A, the claim for the second
co-ordinate is trivial. In the first co-ordinate, we need to show that

(29) t=((a—=b) AW = d)V(b—a)A @ — b))

Once again, we may assume that A is totally ordered. Now (29]) will hold when
a=0b=1tand when o’ =V =t, because A satisfies (x — y) V (y — z) = t. In the
remaining cases, viz. a = b =t or ' = b = t, ([29)) is true as well, because it asserts
that t =t V h for a certain h € A. Thus, S(A) is semilinear.

Observe that, for all (a,a’) € S(A), we have

(30) (a,a’)* = (d’, Oa).

Indeed, (a,a’)* = (t Ad/, O((t Ad') — (aAt))) = (d, O(a’ = a)) = (¢, 0a).

To see that S(A) € GSM, suppose (t,t) < (a, > € S(A), so a = t, by (IZI])
We must show that (t,a)** = (t,a’). By @), (t,a’)* = (d/,0t) = <a t), s
(t,a’y** = (d,t)* = (t,0d') = (t,a’}, as required. D

The universe S(A)~ of the negative cone of S(A) is {(a,t) : a € A}, by (2.

Theorem 8.2. If A is a nuclear relative Stone algebra, then A = S(A), the
isomorphism being a — {(a,t).
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Proof. Obviously, a — {(a,t) is a bijection from A to S(A)~ that preserves A,V
and t. It remains to note that if a,b € A, then

(31) (a,t) =~ (b,t) = (a — b, t), and

(32) (a,t)*™ = (Qa, t).

Indeed, ({a,t) — (b,t)) A (t,t) = (a = b,0((a = b) = a)) A (t,t) = (a = b, t),
and, by @30, {(a,t)** = (t,0a)* = (Qa, Ot) = (Oa, t). O
Lemma 8.3. Let A be a nuclear relative Stone algebra, with (a,a’) € S(A). Then
(33) (a,a"y = {a,t)- (t,a).

Proof. This is a special case of Lemma [3.1] in view of Theorem Rl Alternatively,
a—a =a = Qa’ and a’ — a = a, by assumption, so

(a,t) - (t,d') = {((a = d') = a, O(a = d)) = (d — a, Od') = (a,d’). O

Example 8.4. Suppose A € NRSA is based on the chain d < ¢ < t. If ¢ is the
identity function, then S(A) is based on the following chain X:

(d,t) <{c,t) < (t,t) < (t,c) < (t,d).
In this case, S(A) is isomorphic to the CRL-subreduct of Z on
-2<-1<0<1<2,

or equivalently to the CRL-subreduct of Z — {0} on -3 < -2 <1<2< 3.[1 On
the other hand, if 0d = d and Oc = t, then S(A) is based on X — {{t,c)} and it
matches —2 < —1 < 1 < 2 in the CRL-reduct of Z — {0}. If 0d = Oc = t, then
S(A) = A. Finally, if Od = ¢, then A is the free 1-generated algebra in NRSA,
while S(A) is based on X — {(t,d)} and is generated by (d, t). In this case, S(A)
is isomorphic to the (unique) algebra in GSM freely generated by a single element
a subject to the relation a A t = a. These facts will be needed in Corollary [[4.4]

Theorem 8.5. Let A be a generalized Sugihara monoid. Then A = S(Ay). The
isomorphism h is given by a — (a At, a* At).
Proof. Note first that h(a) € S(Ay) for all a € A, because
(ant) V™ (a"At) = (ant)V(a" At)
=(avVa)Art=(t—=a)V(e—=t)At=t,
by the semilinearity of A, while {(a* At) = (a* At)™ = a™* At*™ =a* At, by (D)

and (@).

It follows from Lemma [B.4] that h is one-to-one. To see that it is onto, let
(a,a") € S(Ay),s0t > a,a’ € Aand aVa' =aV™ad =t and Qa’ = a’. Let
b= (a— a') — a. We claim that h(b) = (a,a’), i.e., that

((a—d)—=a)At, ((a—ad)—a)" At) = (a,d).
Because A is semilinear, it suffices to prove this under the assumption that A is

totally ordered, whence a or a’ is t. If @ = t, then, since a’ < t, we have b =a'* > t
and b* = a/** = Qa’ = d/, hence

h(b) = (a'* ANt,d' Nt) = (t,d') = (a,d’).

L A subreduct of an algebra A is a subalgebra of the indicated reduct of A.
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On the other hand, if @’ = t > a, then a* > t, whence a* > a, so by Theorem B.2({),
b=a* — a=a" ANa=a. In this case,

BB) = (ant, a* At) = {a,t) = {a,a),
so h is indeed onto.

Clearly, h(t) = (t,t). To see that h preserves V and A, use the fact that semi-
linear CRLs satisfy (x V y)* = 2* Ay* and (x Ay)* = z* Vy* (by @) and (@), as
well as the distributive laws for A, V.

To show that h preserves -, let a,b € A. AsaAt,bAt < t, we have t <
(ant)*, (bAt)*. The desired result h(a) - h(b) = h(a - b) boils down to
(34) (u—="(aAbAL), Qu) = ((a-b) At, (a-b)* At),
where

u:= ((ant) =7 (" At)A((BAL) =7 (a" AL))
(ant) = O"A))A((DAL) = (6" At)) AL
(ant) 2 )A (@A) A((BAL) = a")A(BAE)" At (by @)
(ant) =2 )A((BAL) = a") At
(a=bd)V)IAN((b—=a*)Va")At (by [@).
Again, we may assume that A is totally ordered.

Suppose first that ¢ < b*. This means that a - b < t, whence b < a*. Thus,
t <a—b*, b— a*, and sou = t. Recall that a-b € {aAb, aVb}, by Theorem [32(I).
Buta-b=a-a-b<a-t=aanda-b=a-b-b<t-b=0>b,s0a-b<aAb, hence
a-b=aNnb. Now

u—="(aAbAt)=(t = (a-b)At=(a-b)At,
and (a-0)*At=((a-b) > t)At=1t=u,
because a - b < t = u. In other words, (84]) holds when a < b*.

We may therefore assume that a £ b*, i.e., a-b £ t, i.e., b £ a*, so b* < a and
t < a-band a® < b. Dualizing the argument in the previous paragraph, we obtain
a-b=aVb. Also,a — b* =a* Ab* and b — a* = b* A a*, by Theorem B2({). So,
u=((a* Ab*) VI )A((D* ANa*)Va*) At =b" Aa* At. Tt follows that

Ou=u"=u=(@Vbh*ANt=(a-b)"At.
Also, u < a AbAt, because b* < a and a* < b. So,

(
(
= (
(

u—=" (aAbAt)=(u—= (aANDAL)At=t=(a-D)At,

i.e., (B4) holds. Thus, h preserves -.

We have shown that A is an isomorphism between the lattice-ordered monoid
reducts of A and S(A;). In each of these reducts, we already know that = — y is
always the largest z for which x -z <y, so — is first order definable in terms of -, A.
Therefore, h(a — b) = h(a) — h(b) for all a,b € A, whence h is an isomorphism of
generalized Sugihara monoids. ([l

Theorem 8.6. Let A and B be nuclear relative Stone algebras.
(i) If h: A — B is a homomorphism, then S(h): {(a,a’) — (h(a),h(a’)) is
a homomorphism from S(A) into S(B).
(ii) The map h— S(h) is a bijection from Hom(A, B) to Hom(S(A), S(B)).
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Proof. () follows straightforwardly from the definitions of the operations.

) If a € A, then (a,t) € S(A). From this it follows easily that the function
h +— S(h) is injective on Hom(A, B).

For surjectivity, consider ¢ € Hom(S(A), S(B)). If t5(4) > w € S(A), then
g(w) < g(t5(A)) = t5(B) 50 there is a function §: A — B such that

(g(a),t) = g({a,t)) for all a € A.

We claim that § € Hom(A, B). This follows from the fact that g is a homomor-
phism. For example, let a,a’ € A. Then

(gla = d), t) = g({a = d', t)) = g((a,t) =~ (d',t)) (by BI))
= g((a,;t)) =~ g((a’,t)) = (g(a),t) =~ (3(a’),t)
= (g(a) = g(a'), t)  (by EI),
so gla = a') = g(a) — g(a'), while
(9(0a), t) = g({0a,t)) = g((a,t)™") (by B2))
(a,t))" = (9(a),t)™ = (0g(a),t) (by B2)),

9(
whence g(Qa) = 0g(

Moreover, if (a, g(a'), and so

a') € S(A) then ¢a’ = a’, hence ¢g(a’) =
(t,g(a")),

(35) (d/;t)" = (t,a') and (g§(a'),t)" =
by @B0). In this case, by B3] and (B3],

9((a,a)) = g({a,t) - (t,a')) = g({a,t) - (a',t)")

= g({a,t)) - g((d',£))" = (9(a),t) - (9(a"), )"

= (g(a),t) - (t,9(a")) = (§(a), §(a")).
Thus, g = S(g), and the proof of surjectivity is complete. O

(a
t

Theorem 8.7. The variety of generalized Sugihara monoids and the variety of
nuclear relative Stone algebras are categorically equivalent.

In particular, a category equivalence from NRSA to GSM is witnessed by the
functor that sends A to S(A) and h to S(h) for all A,B € NRSA and all h €
Hom(A, B) (where S(h) is as in Theorem B.6l).

The nuclear negative cone functor (sending A to Ay and g to gla- for all
A, B € GSM and g € Hom(A, B)) is a reverse functor for S.

Proof. The first two assertions follow from Theorems B.1] and (cf. items (i)
and (@) in the first paragraph of Section [B]). The last assertion follows easily from
Theorems and O

9. CATEGORICAL ALGEBRAIC PROPERTIES

By Theorem B all purely categorical properties of NRSA will persist in GSM,
and some of them are easier to establish in the integral setting of NRSA. We identify
a number of properties of this kind.

Let K be a quasivariety of algebras. A congruence 6 of an algebra A is called
a K—congruence if A/ € K. We say that K has the relative congruence extension
property if, for each B € K, the K—congruences of any subalgebra A of B are just
the restrictions to A x A of the K—congruences of B. This reduces to the ordinary
congruence extension property when K is a variety.
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Recall that a homomorphism h between algebras in K is called a (K-) epimor-
phism provided that, for any two homomorphisms f,g from the target of h to
a single member of K, if foh = go h, then f = g. Clearly, every surjective
homomorphism between algebras in K is an epimorphism, but the converse is not
generally true. If every K-epimorphism h is surjective, then K is said to have the
ES property. Note that, when verifying this property, we may assume without loss
of generality that h is an inclusion map.

The strong epimorphism-surjectivity (or strong ES) property for K asks that
whenever A is a subalgebra of some B € K and b € B — A, then there are two
homomorphisms from B to a single member of K that agree on A but not at b. This
clearly implies the ES property. The weak ES property for K forbids non-surjective
K-epimorphisms h: A — B in all cases where B is generated (as an algebra) by
X U h[A] for some finite X C B. It makes no difference to this definition if we
stipulate that X is a singleton.

The amalgamation property for a class K of similar algebras is the demand that,
for any two embeddings gp: A — B and go: A — C between algebras in K|
there exist embeddings fg: B — D and fo: C — D, with D € K, such that
fBognr = fc ogc. The strong amalgamation property for K asks, in addition, that
D, fg and fc can be chosen so that (fg o gg)[A] = fB[B] N fc[C].

These conditions are linked as follows (see [33,B7[55] and [32], Sec.2.5.3]).

Theorem 9.1. A quasivariety has the strong amalgamation property iff it has the
amalgamation and weak ES properties. In that case, it also has the strong ES

property.

Clearly, a category equivalence functor F' between quasivarieties sends mono-
morphisms (i.e., embeddings) to monomorphisms, and epimorphisms to epimor-
phisms. Less obviously, the same applies to surjective homomorphisms (see [44]
p. 222], for instance). Thus, the amalgamation, ES and relative congruence exten-
sion properties are preserved by F. Consequently, strong amalgamation transfers
as well, by Theorem The strong and weak ES properties persist under F' too,
even in the absence of amalgamation (see [26, Remark 5.10]).

We shall want to apply Theorem BT in conjunction with the following general
result, which derives from [5L[6] (see [26l Remark 7.2] for an explanation).

Theorem 9.2. Suppose F': C — D witnesses a category equivalence between qua-
siwarieties. Then, for each subquasivariety E of C, the restriction of F' to E wit-
nesses a category equivalence between the concrete categories E and

E':= {BeD:BxF(A) for some A € E},
and the map E — E’ defines an isomorphism between the subquasivariety lattices of
C and D, which takes the subvarieties of C onto those of D.
Let F' be as in Theorem If an algebra A € C possesses one of the following

properties, then so does the algebra F(A) € D:

A is finite,

A is finitely generated.
This is explained in [44]. Consequently, if C is locally finite, then so is D. For

example, Theorem [B.7] implies that NRSA is locally finite, although it is not hard
to prove this directly.
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We have noted that F' preserves the injectivity and surjectivity of homomor-
phisms, and it sends products to products, as these are determined, up to iso-
morphism, by their categorical features. So, if g is a subdirect embedding of A
into [],c; Ai, where A, A; € C for all i € I, then F(g) is a subdirect embedding
of F(A) into [],.; F(As). In particular, when C and D are varieties, the list of
F-invariant properties includes:

A is finitely subdirectly irreducible,
A is subdirectly irreducible.

From Theorem and the above remarks, we obtain:

Theorem 9.3. Let F': C — D be a category equivalence between varieties. Let
X be a subvariety of C and Y a subvariety of D. Then F restricts to a category
equivalence from X to Y iff the [finitely] subdirectly irreducible algebras in Y are
exactly the isomorphic copies of the F—images of the [finitely] subdirectly irreducible
algebras in X.

10. SUBVARIETIES AND EXPANSIONS OF GSM

Definition 10.1. The variety CGSM of centred generalized Sugihara monoids con-
sists of the algebras in GSM that satisfy

t<z™ V(@™ - ).

The finitely subdirectly irreducible algebras in CGSM are exactly the totally
ordered idempotent CRLs A such that, for all a € A, we have

*

a*=aor a" =t>a.

In this case, in the notation of Theorem B2M), if t < b € A, then |V3| = 1 or
Y, = Y;. The CRL-reduct of Z — {0} is therefore centred (with ¥; = {—1,1} and
Y, = {-b} for 2<b € Z), so PSM C CGSM.

Y:

b*

FIGURE 2. A totally ordered centred algebra in GSM

Theorems B and show that CGSM and PSM are categorically equivalent to
suitable subvarieties of NRSA. Let us identify those subvarieties.
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Lemma 10.2. The following conditions on an algebra A € NRSA are equivalent.
(i) A satisfies O(Qx — z) =t.
(il) A satisfies x — Oy = O(x — y).
(iii) A satisfies x — Oy < O(x — y).
Proof. Assume without loss of generality that A is totally ordered. We make re-
peated use of (I4]).
@ = (@): Let a,b € A. If a < b, then a < Qb and
a—0b=t=0t="0(a = b).
Now assume a > b, so a — b ="b. If a > b, then a — 0b = Qb = O(a — b). And if
a < Ob, then Ob > b, whence
a—0b=t=30(0b—0b) [by @] = 0b=C(a—b).
@) = (@) is trivial.
@) = [@: Given a € A, we have ¢(0a — a) <t = Ca — Oa < O(0a — a), by
[, so O(¢a — a) =t. O

Let V be the subvariety of NRSA axiomatized (relative to NRSA) by

O(0x — x) =t.

By Theorem [1] the finitely subdirectly irreducible algebras in V are the totally
ordered nuclear Brouwerian algebras A such that, for each a € A, the element {2a
is @ or t. In any such A, the set

F:={acA:0% =t}
is upward-closed, and {4 is the identity function on the complement of F.
Theorem 10.3. CGSM is categorically equivalent to V.

Proof. Let A be a generalized Sugihara monoid. Then A = S(A(), by Theo-
rem So, by the above remarks, A is a finitely subdirectly irreducible member
of CGSM iff Ay is a finitely subdirectly irreducible member of V, and the result
follows from Theorem O

Let W be the subvariety of NRSA axiomatized by
Oz —=2)V((yV (y—z)) ANOz) =t.
By Theorem [l the finitely subdirectly irreducible algebras in W are the totally
ordered nuclear Brouwerian algebras A such that

either (1) 04 is the identity function of A, or (2) (A4;<) has a
co-atom ¢ and O04¢c = t and 0*a = a whenever ¢ #*a € A.

Consequently, W C V and, if B denotes the CRL-reduct of Z —{0}, then B,; € W.
Theorem 10.4. PSM is categorically equivalent to W.

Proof. Whenever C' is a subdirectly irreducible algebra in the quasivariety gener-
ated by a class Y of similar algebras, then C' can be embedded into an ultraproduct
of members of Y.J So, because PSM is the smallest quasivariety containing the
CRL-reduct B of Z — {0}, every subdirectly irreducible positive Sugihara monoid

2 This is well known. For a stronger result; see [I6, Lem. 1.5].
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embeds into an ultrapower of B. Theorems [B.7 and show that PSM is categori-
cally equivalent to PSM,,, and that PSMy is a variety (because PSM is). We show
that PSMg = W.

Let A € PSM and suppose A, is finitely generated (hence finite). Then A
is finite, because A = S(A ), by Theorem Consequently, A is a subdirect
product of finite algebras A; (i € I), each of which embeds into an ultrapower
of B. For each i, the property of not containing a subalgebra isomorphic to A;
persists in ultraproducts, as it is first order (owing to the finite size and type of A;).
So, each A; embeds into B itself. Because the nuclear negative cone functor is a
category equivalence from GSM to NRSA, it follows that A is a subdirect product
of the algebras (A;),, i € I, and that each (A;), embeds into By, whence A, € W
(because B, € W). Therefore, PSM,; C W, as every variety is generated by its
finitely generated members.

Conversely, suppose A € W. Since A = S(A); (Theorem B2), it suffices to
show that S(A) € PSM. Again, because S is an equivalence functor, S(A) is
a subdirect product of algebras S(A;) (i € I), where each A; is a subdirectly
irreducible member of W. Thus, each A; is a totally ordered Brouwerian algebra
with a co-atom ¢;, and (4 fixes all elements of A; except possibly ¢; (in which
case, Odic; = t; := tA47). It follows that each S(A;) is a totally ordered member
of GSM, and that the universe S(A;) of S(A;) is

X = (Az X {tz}) U ({tz} X Al)
if 04 is the identity function on A;; otherwise, S(A;) = X — {{t;,¢;)}. It is then
easy to see that every finitely generated—i.e., finite—subalgebra of each S(A;)

embeds into B (cf. Example [84]). Therefore, each S(A;) belongs to PSM, and so
S(A) € PSM. O

Sugihara Monoids.
Let X be the class of all (A, f), with A € NRSA and f € A, satisfying
(36) zV(zx—=f)=t=0(0r — x),
(37) r=t «<— f <z
By considering subdirectly irreducible algebras, we can show that the equations
Of =t and (Qz —wz)V({f—2)=t
could replace ([B7) in the definition of X, so X is a variety.

For A € NRSA and f € A, the algebra (A, f) is a finitely subdirectly irreducible
member of X iff it is totally ordered and
either (1) f =t and O is the identity function of A, or (2) f is
a co-atom of (A; <) and Of =t and $a = a whenever f # a € A.
Thus, if (A,f) € X, then A € W.

Theorem 10.5. SM is categorically equivalent to X.
Proof. Given (A, f) € X, we define S((A,f)) := (S(A), ), where
(38) ={a,a’) := {(a,d’) — (f,t) for all (a,a’) € S(A).

Note that S(A) € PSM, by the proof of Theorem [[0.41 We claim that S((A,f))
satisfies ——x = x. As in the proof of Theorem [RJ], it suffices to verify this under
the assumption that A is totally ordered, whence, for each (a,a’) € S(A), either
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aor a is t, and Qa’ = a’. It follows straightforwardly from the definition of — in
S(A) that == (t,a’) = (t,a’) if Oa’ = a’. To show that =—(a,t) = (a, t), the reader
should separate the cases a < f, a =f, a = t. Thus, S((4,f)) € SM.

Because — is defined in terms of — on S({A, f)), TheoremsBHland B.6lgo through
with X and SM in the respective roles of RSA and GSM. This gives an equivalence
functor S from X to SM. (]

It is easily checked that a reverse functor F': SM — X for S is given by F(A) =
(Ay,—t) and F(h) = h[4- for all A, B € SM and h € Hom(A, B).

If A € RSA is considered as a member of X satisfying Ox = x and f = t, then
B8)) simplifies to

—(a,a’y = (a’,a) for all (a,a’) € S(A)
and (S(A), —) is an odd Sugihara monoid. This recaptures the category equivalence
between OSM and RSA established in [26].

The above results are summarized in Figure 3. The horizontal double lines
signify category equivalence, while the solid single lines indicate containment. The
broken single lines signify that the algebras in the lower variety are (or are termwise
equivalent to) expansions of suitable algebras in the upper variety.

GSM NRSA
CGSM v
PSM w
| |
| |
SM $ X
|
|
OSM ® RSA

FIGURE 3. Summary of category equivalences

Bounds.

If a CRL A has a least element L, then T = 1 — L is its greatest element. In
this case, the expansion B of A by the distinguished element L is called a bounded
CRL, and we sometimes write B = A ). The negative cone B~ of B is defined as
before, except that LP is distinguished in B~. If C is a class of CRLs, then C
shall denote the class of all bounded CRLs whose CRL-reducts belong to C. We
extend these conventions to involutive and nuclear CRLs in the obvious way. We
also extend the notation NC to bounded classes C.

Let GA denote the variety of bounded relative Stone algebras, a.k.a. Gddel al-
gebras. The category equivalence between GSM and NRSA can be extended to
one between GSM,; and NGA. In the construction of S(A), we simply define
15(4) = (14 t) for A € NGA. Similarly, CGSM , PSM , SM, and OSM are
categorically equivalent to V, W, X, and GA, respectively.
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11. DEDUCTIVE SYSTEMS

For present purposes, a deductive system is any substitution-invariant finitary
consequence relation F over formulas in an algebraic language. In this context,
basic operation symbols and terms are usually called connectives and formulas,
respectively. Substitutions are the homomorphisms between formula algebras, i.e.,
between absolutely free algebras generated by sets of variables of the language.
Thus, the defining postulates of deductive systems are as follows, where TUITU{s}
is any set of formulas:

if s €T, then I' - s;

if 't forall t € II, and 1T+ s, then I' |- s;

if I' F s, then A[I'] - h(s) for every substitution h;

if I' - s, then I I s for some finite I C T' (finitarity).

The theorems of | are the formulas s such that 0 F s (briefly, - s). We signify ‘T - ¢
forallt € Il by I' FII, and ‘T' - IT and II - I by I' 4 II. Also, I',r F s means
IF'U {r} F s. Deductive systems can be characterized as the natural deducibility

relations g of arbitrary formal systems F consisting of axioms and finite inference
rules [39].

Example 11.1. For each quasivariety K of CRL-expansions, we define a binary
relation kg from sets of formulas to single formulas as follows:

I' Fk s iff, for some finite IV C T', the quasi-equation
(&rer t <7(T)) = t < s(T)
is valid in K.

Here, & denotes first order conjunction. Many familiar non-classical logics are
specified by formal systems F, where g is Fg for some such K. For example, RM®
and IUML correspond in this way to the varieties SM and OSM |, respectively
(see [2L[I8[45]), while exponential-free linear logic corresponds to the variety of all
bounded involutive CRLs (see [427,[57]). Since CRLs satisfy (), Fx is always an
algebraizable deductive system in the sense of [I1], with K as its equivalent algebraic
semantics. This allows us to apply ‘bridge theorems’ such as those in the next result.

Theorem 11.2. Let K be a [quasi]variety that is the equivalent algebraic semantics
for a deductive system .

(1) ([IO]) F has a local deduction theorem iff K has the [relative] congruence
extension property.

(ii) ([9]) F has the infinite Beth definability property iff all epimorphisms be-
tween algebras in K are surjective.

(iii) ([9)) F has the finite Beth property iff K has the weak epimorphism-
surjectivity property.

(iv) ([31]) F has the projective Beth property iff K has the strong epimorphism-
surjectivity property.

(v) ([I7]) When the conditions in [ll) hold, then + has the interpolation prop-
erty iff K has the amalgamation property.

The metalogical notions in Theorem are defined below.[

3 Ttems ({)—(@®@) of Theorem [[I.2] appear in their full generality in the sources cited, but they
were first established in more concrete settings. For accounts of their antecedents; see Czelakowski



3210 N. GALATOS AND J. G. RAFTERY

Definition 11.3. Let F be a deductive system.

(i) F has the interpolation property if the following is true: whenever I' | s,
then I' + IV and I + s for some set I of formulas, where every variable
occurring in a formula from IV already occurs both in s and in some formula
from T" (unless I and s have no common variable).

(ii) ([I4]) F has a local deduction (-detachment) theorem if there is a family
{A; : i € I} of sets of binary formulas such that the rule

I',r s iff there exists ¢ € I such that (I' - £(r, s) for all £ € A;)

applies to all sets of formulas I' U {r, s}. The word ‘local’ is dropped if we
can arrange that |I| = 1.

Example 11.4 (cf. [25]). Let K be a variety of [involutive] [bounded] CRLs. Then
Fk has the following local deduction theorem:

(39) T,r kg s iff there exists n € w such that I'Fx (r At)" — s.

Here, 29 := t and 2""! := 2" .z for each n € w. If K satisfies (z A t)? =z A t,
then ([BY) becomes a deduction theorem:

Tyrbks iff ThHe (rAt) — s.
It reduces to the classical deduction theorem
(40) Irtks it 'k r — s

when the algebras in K are integral and idempotent. In [{0), the implication from
right to left does not depend on any special assumptions about K.

We continue to use x,y, z, with or without indices, to denote variables. If X is a
set of variables, then Fm(X) denotes the set of all formulas involving only variables
from X.

From now on, our deductive systems F will be assumed equivalential in the sense
of [I562], i.e., there is a set A of binary formulas such that

FA(z,xz) (ie., Fd(z,z) for all d € A)

{z}UA(z,y) Fy

Ui Almi, yi) E A (21, - 2n), 7 (Y15 - -, Yn))
for every connective r, where n is the rank of ». Any such A is essentially unique,
i.e., if A’ serves the same purpose, then A(z,y) 4 A’(z,y). All algebraizable

systems are equivalential [I1]. For the systems Fg in Example [Tl we can take A
to be {z — y, y — x}, or alternatively {z < y}.

Definition 11.5. The following terminology applies if X, Y and Z are disjoint
sets of variables, where X # () or the language contains some constant symbols.

Let ' C Fm(XUY UZ). We say that T implicitly defines Z in terms of X via' Y
in F provided that, for every z € Z and every substitution A, defined on XUY U Z,
if h(z) = for all x € X, then

T UA[D] F A(z, h(2)).

and Pigozzi [I7], Gabbay and Maksimova [2I], Hoogland [32], and Kihara and Ono [36]. In
particular, (i) was proved in a restricted form by I. Nemeti in [30, Thm. 5.6.10].
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In the event that Y = (), we simply say that T' implicitly defines Z in terms of X.
On the other hand, we say that I' explicitly defines Z in terms of X via Y in F
provided that, for each z € Z, there exists ¢, € F'm(X) such that

' A(z,t,).
Again, we omit ‘via Y if Y = ().
Example 11.6. In classical propositional logic (CPL), the set
F:={z—>x1,2—> 2,11 = (22 > 2)}

implicitly defines {z} in terms of {z1,z2}. It does so explicitly as well, because
I Fepr z ¢ (1 A 22). In the implication fragment of CPL, however, I" still
defines {z} implicitly in terms of {x;, x5}, but there is demonstrably no explicit
definition (see [9]).

Definition 11.7.

(i) ([9) F has the infinite Beth (definability) property provided that, in F,
whenever I' C Fm/(X U Z) implicitly defines Z in terms of X, then I" also
explicitly defines Z in terms of X.

(ii) The finite Beth property is defined like the infinite one, except that Z is
required to be finite in the definition.

(iii) (cf. [8, p.76]) F has the projective Beth property provided that, in F,
whenever I' C Fm(X UY U Z) implicitly defines Z in terms of X via Y,
then I" also explicitly defines Z in terms of X via Y.

In the definitions of the finite and projective Beth properties, it makes no dif-
ference if we stipulate that Z is a singleton (see [931]). According to [9], it is not
known whether the finite Beth property implies the infinite one, but the latter is
strictly weaker than the projective property.

12. BROUWERIAN EXPANSIONS

Our category equivalences reduce a number of questions about non-integral struc-
tures to questions about (integral) Brouwerian algebras and their expansions. In
this section, therefore, we gather some facts about the latter. The following obser-
vation is well known.

Lemma 12.1. Let A be a Brouwerian algebra with a;,b;,c,d € A, fori=1,...,n,
and let 6 be the congruence of A generated by {{a;,b;) :i=1,...,n}. Then c =g d
’Lﬁ /\?:lai (—)bz <c+d.

Recall the definition of kg from Example [1.0l Note that when K consists of
integral algebras and I is finite, then I' ¢ s iff K satisfies

(&rerr=t) = s=t.

4 There is a subtlety here. The meaning of a Beth property should not depend on the number
of variables of F, otherwise Theorems mkﬂ)fﬁ) could not hold. But the cardinality of a set
of variables constrains the options for I' and the meaning of implicit definability. The problem
is resolved by assuming that the variables of F form a proper class V, and that I is really a
family of relations—one for each infinite subset of V; see [9[17]. (Because F is finitary, it can be
recovered from any one of these relations.) This explains why substitutions have been defined here
as homomorphisms between formula algebras, rather than endomorphisms of a single algebra.
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Lemma 12.2. Let K be a variety of enriched Brouwerian algebras. Then the
classical deduction theorem [@0Q) holds for bk iff every member of K has the same
congruences as its Brouwerian algebra reduct.

Proof. (=) Let f be an n-ary basic operation symbol of K. By (I3)),

T YLy ey Ty Yn P f@1,.o20) < FYr, -, Yn)-

So, the deduction theorem and the Brouwerian identity

(41) r—=(y—=z2)=(xAy)—z
vield Fx (Aioq @i < yi) = (f(z1,- .o, 20) < f(Y1,---,Yn)), L6, K satisfies
(42) /\:lzlxi oy < flan,.ooxn) < FY1, - Un)-

Let 6 be a congruence of the Brouwerian reduct B of some A € K, and suppose
a; =¢ b; for i = 1,...,n. Then fA(a1,...,a,) =¢ fA(b1,...,b,), by @2) and
Lemma [T2.1]

(<) Suppose T',r’ g s, where, without loss of generality, T is finite. Let r be
the A—conjunction of ' and the elements of T, so r by s, i.e., K satisfies r =t =
s = t. We aim to show that g r — s, as this, with {I), yields ' Fx ' — s.
Let A € K and let A be a homomorphism from a formula algebra for Fg into
A. Then (h(s),t) belongs to the congruence of A generated by (h(r),t), because
K is closed under homomorphic images. So, by assumption, (h(s),t) belongs to
the congruence of B generated by (h(r),t), where B is the Brouwerian reduct of
A. Then, by Lemma 021 h(r) < h(s), i.e., h(r — s) = t. Since A and h were
arbitrary, this shows that Fgx r — s. |

The next theorem generalizes an argument of G. Kreisel [38] straightforwardly.
It will be important in the sequel, so we include a proof.

Theorem 12.3. Let K be a variety of enriched Brouwerian algebras, where every
member of K has the same congruences as its Brouwerian algebra reduct. Then g
has the finite Beth property.

Proof. We abbreviate Fk as . The classical deduction theorem holds for F,
by Lemma Let X U {z} be a set of variables, with z ¢ X, and suppose
I' C Fm(X U{z}) defines {z} implicitly in terms of X in . By the remark after
Definition IT.7(), it suffices to show that I' defines {z} explicitly in terms of X
in k. Choose a substitution h such that h(z) = z for all z € X and h(z) =t. By
assumption, ' U A[l'] F z <> t, hence T' U A[['] F z. Since F is finitary, there is a
finite subset IV = {ry,...,r,} of T such that IV U A[I'] F z. Let r be the formula
1 Ao ATy, so h(r) € Fm(X), by definition of h, and T' - r and =, h(r) - 2.
Then r F h(r) — z, by the deduction theorem. On the other hand, K satisfies the
quasi-equation
(r=t & z=t) = h(r)=t,

by definition of h, so r,zF h(r). By the deduction theorem, r F z — h(r), so
rt z < h(r), whence I' - z <> h(r). O

A Heyting algebra is a bounded Brouwerian algebra. Let BrA and HA denote
the varieties of Brouwerian and Heyting algebras, respectively. For any class K of
CRL-expansions, let K¢ be the class of all algebras (A, f) such that A € K and
feA
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Lemma 12.4. Let A be an algebra in one of the following varieties: NBrA, NBrAg,
NHA, NHA¢. Then A has the same congruences as its Brouwerian algebra reduct.

Proof. The case of NBrA is covered by Theorem [Tl In the other cases, A is an
expansion by constants only of some algebra in NBrA, so the result follows. O

Corollary 12.5. Let K be a subvariety of one of the following varieties: NBrA,
NBrAg, NHA, NHA¢. Then K has the weak ES property.

Proof. This follows from Theorems IT.2|{) and I23] and by Lemma 1241 O

Theorem 12.6 (Maksimova). Let K be a variety of enriched Brouwerian algebras,
where every member of K has the same congruences as its Brouwerian algebra
reduct. Then the following conditions are equivalent:

(i) K has the amalgamation property.
(ii) The class of finitely subdirectly irreducible algebras in K has the amalga-
mation property.

This is shown in Chapter 6 of [2I], without the provision for extra operations.
The proof needs no modification, however, in view of the additional assumptions,
Lemma and the characterization of finitely subdirectly irreducible algebras
in Section Bl The result below is derived as a corollary in [2I]. Both theorems
originate in [40,41].

Theorem 12.7. The variety RSA of relative Stone algebras and the variety GA of
Gaodel algebras have the amalgamation property.

Suppose A and B are totally ordered Brouwerian algebras with a common great-
est element t, where AN B = {t}. The ordinal sum A @ B is the unique totally
ordered Brouwerian algebra with universe AU B such that the order < of A® B re-
stricts to the original order of A and to that of B, while a < b whenever t # a € A
and b € B. The same construction produces a Godel algebra when A is bounded,
regardless of whether B is bounded.

Lemma 12.8. The varieties V, W and X from Section [LU have the amalgamation
property, and so do V., W, and X .

Proof. We deal with V first. Let V be the class of all totally ordered (i.e., finitely
subdirectly irreducible) algebras in V. Let A1, As € V, and let Ay be a subalgebra
both of A; and of Ay. By Theorem [I2.6, we need only show that there exist B € V
and embeddings hy: A; — B and he: Ay — B, with hy|a, = ha|a,. We may
assume without loss of generality that Ag = A1 N As.
Given i € {0, 1,2}, the sets
Al = {a€ A : Qa=t} and A} := (4; — AY) U {t}
are subuniverses of A; and, because Ay is a subalgebra of A;, we have
AL =A]NA, and Af = A] N AL,

Let A} and A be the RSA-subreducts of A; whose universes are A, and A/,
respectively. By Theorems and 2.7 there exist totally ordered algebras
B', B"” € RSA such that, for each i € {1,2}, there are embeddings ¢.: A, — B’
and g}’ : A} — B" with gi|a; = gb|a; and g{|ay = g5|ay. Let B = B’ @ B", so
B € RSA, and B is totally ordered. Let B® € NRSA be the expansion of B in which
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Ob="b for all b€ B’ and Ob =t for all b € B”, so B®° € V. For each i € {1,2}, the
relation h; = ¢g; U g/ is a function embedding A; into B®, and hq|a, = ha|a,. This
completes the proof in the case of V.

In the case where W replaces V, the argument needs modification. In an algebra
from W, if ¢ maps an element other than t to t, then that element must be a
co-atom of the algebra. However, the algebra need not have a co-atom, and ¢ need
not map a co-atom to t. Because Ay is a subalgebra of A; and of As, we must have
1 < |AG| < |AY],1AS] < 2, and if |Af| = 2, then Af = AY = AY. If AY = AY, we
replace B” by A and g/’ by the identity automorphism of AY for each i € {1,2}.
If |AY| = 2 and |AY| = 1, replace B” by A} and g{ by the identity function and g4
by the inclusion map. We proceed symmetrically if the roles of 1 and 2 are reversed.
Finally, suppose A} = {a1,t} and AJ = {as,t}, where the elements aj,as,t are
distinct, hence ay,as ¢ Ag. In this case, replace B” by A and g/ by the identity
function and ¢4 by the isomorphism that sends as to a;. These amendments ensure
that B® € W, without compromising the amalgamation process.

Now consider the case where X replaces W. An algebra from X is an f-expansion
of one from W, and if f # t, then fis a co-atom with Of = t. Because Ay is a
subalgebra of A; and of As, the identity f = t holds in all three algebras or in none
of them. Also, A{j already contains the Ag—interpretations of both f and t, and it
has no other element. Consequently, no modification of the W—approach is needed,
although some cases disappear. The B®-value of f is defined as the gf—image of
the Ag—value of f.

The entire argument can be carried out in the bounded case, with no essential
modification. Because the algebras A} are bounded, the amalgamation property
for GA (Theorem [[Z.7)) is applied to them, but the A are still amalgamated in
RSA, before the ordinal sum is constructed. O

Theorem 12.9. FEvery subquasivariety of V is a variety.

Proof. The argument is well known, except for the involvement of (). Let Q be
a subquasivariety of V, and let h: A — B be a surjective homomorphism, with
A € Q. We must show that B € Q. Every quasivariety is axiomatized by quasi-
equations (of finite length), so it suffices to show that every finitely generated
subalgebra of B belongs to Q. Any such subalgebra is the image under h of a
finitely generated subalgebra of A, and Q is closed under subalgebras, so we may
assume without loss of generality that A is finitely generated. But NRSA is a locally
finite variety containing V, so A is finite.

Let 8 = ker h (the congruence kernel of h). By Theorem [(T], the congruences of
A are just those of the {—free reduct of A. This reduct is a relative Stone algebra,
so t/6 is a filter of the lattice (A; A, V). Since A is finite, t/6 has a least element,
¢ say. Define g: A — A by g(a) = ¢ — a (a € A). Clearly, g preserves A and t.
Integrality and contraction can be used to show that g preserves —, so it preserves
V as well, because RSA satisfies

eVy=(x—=y) =y A(y—2z)—= ).

Furthermore, g preserves O, because £ — ¢a = O(f — a) for all a € A, by
Lemma and the definition of V. Thus, ¢ is an endomorphism of A, so its
image g[A] is a subalgebra of A, hence g[A] € Q. For each a € A, we have

act/kerg iff l—a=tiff {<a iff a €t/0,
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so t/kerg = t/6. Since V is a t-regular variety, it follows that kerg = 6. By the
Homomorphism Theorem, B =~ A/6 = A/ker g = g[A], so B € Q.F O

The following quasi-equations prevent us from extending Theorem [[2.91to NRSA,
to V1, and to Vg, respectively, as they are not preserved by homomorphic images
in these varieties:

dr=t — =z =t,
Ol =t = x=y,
f=t = z=y.

13. APPLICATIONS

We can now present some new results about non-integral varieties and logics,
which follow from the category equivalences proved here.

Theorem 13.1. Let K be any variety of (possibly bounded) generalized Sugihara
monoids or Sugihara monoids. Then K has the weak ES property.

Proof. This follows from Corollary [2.5] Theorems B and 0.5 their bounded
extensions (at the conclusion of Section [[0)) and Theorem O

From Theorems and [[3.7] we infer:

Corollary 13.2. If a variety of (possibly bounded) generalized Sugihara monoids
or Sugihara monoids has the amalgamation property, then it has the strong amal-
gamation property.

Theorem 13.3. The varieties CGSM, PSM and SM have the strong amalgamation
property, and therefore the strong ES property. The same applies to their bounded
expansions.

Proof. Amalgamation follows from Lemma [[2.8 the category equivalences in The-
orems [L[0.3HI0.5] and the bounded extensions of these. Then strong amalgamation
follows from Corollary 0[3.2] and the strong ES property from Theorem |

On the other hand, most of the varieties mentioned in Theorem [I3.1] are not
amalgamable; see [21126,143].

Theorem 13.4. Every quasivariety of centred generalized Sugihara monoids is a
variety.

Proof. This follows from Theorems [0.2] [0.3] and 129 a

Theorem [[3.4] generalizes the main result of [49], which showed directly that
every subquasivariety of PSM is a variety. The present proof is much simpler,
modulo the category equivalence.

5 g is the algebraic analogue of ‘Prucnal’s substitution’ from [51]. In general, a locally finite va-
riety K has no subquasivarieties other than varieties iff every finite subdirectly irreducible member
of K embeds into each of its homomorphic pre-images in K; see Gorbunov [28].
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Applications to Deductive Systems.

A formal system F is said to aziomatize a deductive system F if F and kg
coincide. An extension of - is a deductive system in the same language that is a
superset of . It is an aziomatic extension if it has the form Fg/, where F/ adds
only axioms (not inference rules) to some axiomatization of .

A postulate r1,...,r, F s is called an admissible rule of F if its addition to
F yields no new theorems. We say that F (or bg) is structurally complete if its
admissible rules are already derivable, i.e., they belong to Fg. Hereditary structural
completeness makes this demand for the axiomatic extensions of the system as well,
and it is equivalent to the claim that every extension is an axiomatic extension (see
[50]).

Remark 13.5. For any variety K of CRL-expansions, the map M — Fy defines a
lattice anti-isomorphism from the subquasivarieties of K onto the extensions of F,
and it takes the subvarieties of K onto the axiomatic extensions of k. (This follows
from results in [II]; it is explained in greater generality in [53].)

Remark and Theorem [[3.4] yield the next result.
Theorem 13.6.

(i) Fcesm is hereditarily structurally complete. In particular:
(ii) ([49]) The negation-less fragment of RM?" is hereditarily structurally com-
plete.

As we pointed out in [26], hereditary structural completeness for TUML follows
similarly from the category equivalence between GA and OSM,, because every
quasivariety of Godel algebras is a variety [20].

We say that a formal system F has the finite Beth property for deduction if Fg
has the finite Beth property according to Definitions and [T.71 Similarly for
the other two Beth properties. This terminology becomes necessary in substruc-
tural logics (e.g., RMt), as these have an implication connective — for which the
classical deduction theorem may fail. In such cases, there are rival notions of defin-
ability, where — takes over the role of Fg in Definition [IT.5] and we want to avoid
confusion.

Theorem 13.7. All aziomatic extensions of RMY and all extensions of the
negation-less fragment of RM® have the finite Beth property for deduction.

Proof. This follows from Remark [[3.5] together with Theorems [[3.1] T2/ and
3.61(). O

Theorem 13.8. RM"® and its negation-less fragment have the projective Beth prop-
erty for deduction.

Proof. This follows from Theorems IT.2[v) and 331 O

Note that relevant and many-valued logics rarely possess even the finite Beth
property [9,[47,59]. Tt seems to be difficult to prove Theorems [[3] and [33] and
Corollary (and therefore Theorems [[3.7] and [[3.8)) without using the category
equivalences revealed here.

For the reasons given before Theorem [I3.7] a formal system F is said to have
the deductive interpolation property if Fg has the interpolation property in the

6 RM?* itself is not structurally complete, e.g., <> ~z F y is admissible but not derivable.
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sense of Definition [T3|[). In substructural logics, the rival (implicative) form of
interpolation is usually called Craig interpolation.

It follows from Theorems [T2(®) and and the congruence extensibility of
[involutive] CRLs that

RM" and its negation-less fragment have the deductive interpola-

tion property,
but the former assertion is not new. Indeed, R. K. Meyer established Craig inter-
polation for RM* in [46], inferring deductive interpolation as a corollary (see [3]
also). Recently, E. Marchioni and G. Metcalfe have shown that deductive and Craig
interpolation coincide for axiomatic extensions of RM®, and they have isolated the
axiomatic extensions with this property by determining the amalgamable varieties
of Sugihara monoids [43].

14. GENESIS OF THE FUNCTOR S

To conclude this paper, we explain how we arrived at the definition of S(A) in
Section [§

An algebraic characterization of categorical equivalence for arbitrary pairs of
quasivarieties is provided in R. McKenzie’s paper [44]. This makes it easier, in
principle, to establish an equivalence without producing two explicit functors. The
characterization involves two constructions: idempotent images and matrix powers.
We recall the definitions here.

Given an algebra A and a positive integer k, let Tj(A) be the set of all k-ary
terms in the language of A, and let T(A) = Uy ,,c, Tn(A). For a unary term o of
A, the o-image of A is the algebra

A(o) = (o[A];{ts : t € T(A)}),

where, for each positive n and each t € T,,(A),
tA (ay, ... a,) = oAt ay, ..., a,)) for ay,... a, € o[A].
Thus, every term of A gives rise to a basic operation of A(o).
For each positive n, the n-th matriz power of A is the algebra
Al = (A" {m, : t € (Tin(A))" for some positive k € w}),
where, for each t = (t1,...,t,) € (Tin(A))", we define m;: (A")F — A" as
follows: if a; = (a;1,...,a;,) € A" for j=1,... k, then
mi(my(ar, ..., ax)) = t2(a11, ... Qin, ..y Qk1y - oo s Qi)

for each of the n projections m;: A™ — A. In short, Al has A™ as its universe, and
its basic operations are all conceivable operations on n-tuples that can be defined
using the terms of A.

Let K be a class of similar algebras. A unary term o of K is said to be

idempotent in K if K satisfies o(o(z)) = o(x), and invertible in K if K satis-
fies © = t(o(t1(x)),...,0(t-(z))) for some positive integer r, some unary terms
t1,...,t. and some r-ary term ¢. Let K(o) and K" denote the isomorphic closures

of {A(0) : A € K} and {Al" : A € K}, respectively. Thus, KIU(o) = K(o). If K
is a [quasi]variety then so are K(o) and K™ provided that o is idempotent in K.
McKenzie’s result, restricted to quasivarieties, is as follows.



3218 N. GALATOS AND J. G. RAFTERY

Theorem 14.1 (McKenzie [44]). Two quasivarieties K and M are categorically
equivalent iff there is a positive integer n and an invertible idempotent term o of
K" such that M is termuwise equivalent to KI"(c).

In [26], we proved directly that OSM(c) and RSA are termwise equivalent, where
o(x)is z At. This o is obviously still idempotent in GSM. Tt is also invertible there,
because Lemma [34] says that GSM satisfies

(43) z=(zAt)- (27 At)" =t(o(t1(2)), o(t2(2))),
where
t1(x) is x and ta(z) is ¢* and ¢(x,y) is z - y™.
If A € GSM, then A, is areduct of A(o) (see Example[T.3]), and it seems reasonable

to hope that NRSA is termwise equivalent to GSM(o). This assertion amounts to
the following:

for every term s of GSM, there exists a term r of NRSA such
that, for every A € GSM, we have (s At)4|4- = r40.

Unfortunately, the terms of GSM are not as tame as those of OSM. We shall return
to the above claim shortly. For the moment, we make do with two special cases,
set out in the next lemma. Note that

x —, y abbreviates (z — y) At
in the language of GSM.

Lemma 14.2. Let A be a generalized Sugihara monoid, with a,b € A~. Then

(44) a-b* =(a—,b") = ((a =, b)) =, a),
(45) (a+b")" =a—b".

Consequently, by the contraction property,

(46) (a-b*) At = (a =4 Ob) -4 a,
(47) (a-b*)* At =a—% Ob.

Proof. Since CRLs satisfy (z +y) — 2z = ¢ — (y — z), they also satisfy ({3)).
So, it suffices to prove ([#4)), and we may assume without loss of generality that
A is totally ordered. The proof is accomplished with the aid of Theorem B2 by
considering cases. ]

Taking the term equivalence of GSM(o) and NRSA as a working hypothesis, and
using the analysis of [44], we can partially predict the form of a category equiva-
lence functor S from NRSA to GSM. More exactly, we can determine analytically
the universe of the GSM—image of each A € NRSA. Indeed, by the symmetry
of categorical equivalence and Theorem [I4.1] our hypothesis implies that GSM is
termwise equivalent to NRSA[™] (1) for some positive integer m and some invertible
idempotent term 7 of NRSA[™. Because the term ¢ in ([@3)) is binary, we can pre-
dict from [44], Remark 2] that m = 2, so 7 has the form (7 (z,y), 72(z,y)) for some
binary terms 71 and 75 of NRSA.

Since NRSA and GSM(c) were assumed to be termwise equivalent, GSM will be
termwise equivalent to GSM(c)[?/(7') for a suitable invertible idempotent term 7’ of
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GSM(0)l. As it happens, we can solve for 7/, and hence for 7. Indeed, Remark 2
of [44] tells us that

m'(x,y) = (o(t1(t(z,y))), ot2(t(z,y)))) = ((x-y") At, (z-y")" At)
will be a solution and, using ([@6]) and T, we obtain
(48) T(z,y) = {(x = Qy) = z, z — Qy).

Now let A be a nuclear relative Stone algebra. According to [44], the equivalence
functor S can be chosen so that the GSM-image S(A) of A is termwise equivalent
to AP(7). Its universe S(A) must then consist of the fixed points of 7 in A x A,
because T is idempotent. In other words,

S(A)={(a,a’y e AxA:(a— Qa') v a=a and a — Qa’ =a'}.
It follows readily that
S(A)={(a,d’y e Ax A:aVvad =t and Od’ =d'}
(use ([I4), (I5) and Lemma HA.T]).

The general theory in [44] deals with the full clone of term operations of a class,
so it doesn’t tell us how to isolate appropriate basic operations for S(A). There
seems to be no analytical way to determine these in advance. In [26], where we dealt
only with the special case of RSA and OSM, our simpler definitions of -5(4) and
—5(4) were partly inspired by Dunn’s semantic analysis of the logic R-mingle (see
[19]), but it is not obvious how to incorporate ¢ when constructing the operations
of generalized Sugihara monoids.

In [26] Sec.9], however, we noted a serendipitous connection between our con-
struction and an earlier one of P. H. Chu (discussed in [7LI356,58]). When applied
to any integral non-trivial CRL A, Chu’s construction yields a non-integral invo-
lutive CRL with universe A x A, but it fails to preserve the idempotence of A, so
it is not directly applicable to our investigation. Nevertheless, when A € NRSA,
it can be shown that Chu’s operations A,V and t are invariant under the function
7 in (@), making them plausible candidates for AS(A) vS(A) and t5(4), (They
also feature in an earlier and simpler construction of J. A. Kalman [35], which does
not deal with operations like - and —.) Chu’s - and — are not T-invariant, but
their 7-images become experimental candidates for -5(4) and —5(4) because 7
is idempotent. These images are very complicated in the first instance, but they
can be shown to coincide, over S(A), with the ones in Section [ provided that
A € NRSA. In the special case where A € RSA, i.e., 04 is the identity function
on A, our =5(4) reduces to Chu’s (and Kalman’s) =, which is then 7-invariant.
It ceases to be 7-invariant when A merely belongs to X, i.e., when the intended
Sugihara monoid S(A) is not expected to be odd. But in that case, our inferential
definition of =5(4) in ([BY) is a natural idea.

These considerations motivate the operations of S(A), but they contain no guar-
antee of success, and no short-cut to the work done in Section[8l Since the nuclear
negative cone functor turns out to reverse S, our working hypothesis can be con-
firmed via the next result—which is the case n =1 of [44, Thm.6.1].

Theorem 14.3 (McKenzie). Let F: K — M be a category equivalence between
quasivarieties, and let o be an invertible idempotent unary term of K. Let A be
the free 1—generated algebra in M, and B the algebra in K freely generated by a
single generator b subject to the relation o(b) = b.
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If F(B) = A, then K(o) and M are termwise equivalent, and the algebras C(o)
and F(C) are termwise equivalent for all C € K.

Corollary 14.4. The varieties GSM(c) and NRSA are termwise equivalent, where
o(x) 1= x At.

Proof. Set K= GSM and M = NRSA. Let F be the nuclear negative cone functor, A
the algebra in Example B4 with {d = ¢, and B = S(A). Now apply Theorems [87]
and [T4.31 O

Although we need a description of S in Section[I0, a direct proof of Corollary 14.4]
would yield categorical equivalence for GSM and NRSA, without recourse to S.
And it would be enough to show that for any term s involving only -,— and *,
there exists a term r of NRSA such that (s A t)4|,- = r4¢ for every generalized
Sugihara monoid A (cf. the proof of [20, Thm.5.5]). This is made plausible by
Lemma[I4.2] and the next proposition, the non-trivial parts of which can be verified
using Theorem

Proposition 14.5. Let a,b, c be negative elements of a generalized Sugihara monoid
A. Then
(i) a-b=aAb,

(ii) a*-b* = (a A b)*,
iii) a* > b=a™ Ab,
(iv) a = b* = (a A b)¥,
(v) c=(a—b)=(cNa)—Db,

) (a+b*) = c=a— (b* Nc),
(vii) a > b= (a =4 b) - [(a =4 b) =4 a]*.

With the exception of (), the right hand sides of these equations contain no
occurrence of -, and the - in () can be eliminated by a subsequent application of
@4). Thus, when a,b,c € A~ and s“(a,b,c) is the right hand side of one of the
above equations, we can easily find an NRSA—term r such that

s%(a,b,c) ANt =140 (a,b,c).

It seems likely that, by composing these seven re-write rules and (@4)-H7) judi-
ciously, we can extract a suitable r from every GSM-term s. In the final step,
we would trade in all occurrences of the GSM-symbols —, and ** for the NRSA-
symbols — and ¢, respectively. In the penultimate step, where ‘At’ is applied, the
contraction property allows us to shorten any (¢ — (@ =4 b)) At to a —, b. The
following examples are obtained in this way.

(x—=y)” (@ = y) = 0z = y) =)
= (y-2") (A (y—02)) = ((y = 02) = y)
(x—vy)-z w— (zA(x—y))

In the last line, w abbreviates (z A (z = y)) — O((z = y) — z).
These calculations pre-date the proof of Theorem [B.7] but they gave us enough
confidence in Corollary [[44] to develop the material in Section Bl
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