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CONSTRUCTING SPOKE SUBFACTORS

USING THE JELLYFISH ALGORITHM

SCOTT MORRISON AND DAVID PENNEYS

Abstract. Using Jones’ quadratic tangles formulas, we automate the con-
struction of the 4442, 3333, 3311, and 2221 spoke subfactors by finding sets of
1-strand jellyfish generators. The 4442 spoke subfactor is new, and the 3333,
3311, and 2221 spoke subfactors were previously known. This is the published
version of arXiv:1208.3637.

1. Introduction

In this paper, we construct a number of subfactors by giving explicit generators
and relations for the corresponding planar algebras. In particular, we use Jones’
analysis of quadratic tangles to systematically derive ‘jellyfish relations’, which
are straightforward to analyze. We construct one new subfactor as well as three
previously known subfactors. The main result of the paper is:

Theorem 1.1. There is a ‘4442’ subfactor at index 3 +
√
5 with principal graphs(

,
)
.

At this point, there are very strong number theoretic and combinatorial con-
straints on the possible principal graphs of subfactors. Indeed, when we find a
graph that satisfies all these constraints, we reasonably suspect that there are ac-
tually subfactors with that principal graph. Nevertheless, the final step of actually
constructing such subfactors remains very difficult.

It is known that every subfactor planar algebra embeds in the graph planar alge-
bra of its principal graph [JP11,MW]. Thus, a standard approach to constructing a
planar algebra is to identify some candidate elements in the appropriate graph pla-
nar algebra, and then prove that the subalgebra they generate is a subfactor planar
algebra with the desired principal graph. In many cases, it is not that difficult to
obtain the candidate elements, for example, by solving certain polynomial equations
in the graph planar algebra, or finding flat elements in the graph planar algebra
with respect to some connection. Note that the existence of flat elements does
not imply the connection itself is flat; the flat elements could generate a subfactor
planar algebra with different principal graphs.

Thus, given some candidate generators, the challenge is to show that these ele-
ments generate the desired planar algebra. An initial difficult step is to show that
they generate an evaluable planar algebra; that is, every closed diagram is a mul-
tiple of the empty diagram (equivalently, the zero box space is 1 dimensional). Of
course, if we obtained our elements as flat elements with respect to a connection,
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this step is automatic. Once we have established the planar algebra is evaluable,
we have some subfactor planar algebra. We need to identify its combinatorial in-
variants. Often, the analysis of some small projections in the subalgebra and some
combinatorial arguments suffice to determine the principal graph.

In [BMPS12], Bigelow, Morrison, Peters and Snyder constructed the extended
Haagerup planar algebra, which had long been expected to exist, with principal
graphs (

,
)
.

The essential insight was the jellyfish algorithm, introduced therein, which provides
a powerful framework for proving a planar algebra is evaluable and has the desired
supertransitivity (the length of the initial arm of the principal graph).

Suppose we have a set of elements in a planar algebra, each a lowest weight
rotational eigenvector, which we are thinking of as generators. A ‘jellyfish relation’
is an identity in which the left hand side is simply a single generator with some
number of strands between it and the starred point on the boundary, and the
right hand side is some linear combination, in every term of which every generator
is adjacent to the starred point on the boundary. In [BMPS12], there were two
jellyfish relations (here n = 4 corresponds to the Haagerup planar algebra, and
n = 8 corresponds to the extended Haagerup planar algebra):

2n

Š
�

f (2n+2)�
=

√
[n][n+ 2]

[n+ 1]

n − 1

n + 1 n + 1

S S

��

f (2n+2)�

2n

S

�

f (2n+4)�
=

[2][2n+ 4]

[n+ 1][n+ 2]

n − 1 n − 1

n + 1 2 n + 1

S S S

���

f (2n+4)�

These are actually box jellyfish relations; it is easy enough to see that by expanding
out the Jones-Wenzl idempotent on the left hand side in terms of Temperley-Lieb
diagrams, and moving all non-identity terms to the right, that these relations be-
come jellyfish relations as described above. See Subsection 2.5 for more details.

In a k-strand jellyfish relation, the left hand side has k strands above the gener-
ator. Above, we have a 1-strand jellyfish relation for Š, the Fourier transform, and
a 2-strand jellyfish relation for S.

A complete set of jellyfish relations is one such that by repeated application,
we can rewrite any diagram as a linear combination of diagrams in which every
generator is adjacent to the ‘outside’ starred region. We picturesquely refer to this
process as ‘the jellyfish algorithm’: we gradually float all the jellyfish to the surface
of the ocean, possibly creating new jellyfish along the way. The pair of relations
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above is a complete set: the one-strand relation removes all the instances of Š, and
then the two-strand relation allows us to float all the instances of S to the surface.

It is typically easy to see that any closed diagram with all generators adjacent to
the boundary is evaluable by iteratively finding an adjacent pair of generators which
are connected by sufficiently many strands. The entire jellyfish algorithm is some-
what unusual amongst algorithms for simplifying a planar diagram; at intermediate
steps, it requires making the diagram much more complicated.

In this paper, we present a systematic approach to identifying jellyfish relations
using Jones’ paper analyzing quadratic tangles [Jon12]. In particular, we show how
to find all 1-strand jellyfish relations for which the right hand side involves at most
two generators in each term. We find that for quite a number of potential principal
graphs, the jellyfish relations obtained in this way constitute a complete set. This
assures us that we have constructed some subfactor planar algebra, and a little
separate work in each case identifies the principal graph as the intended graph.

It is worth noting, however, that this approach is far from uniformly successful!
In [BMPS12], the authors needed 2-strand jellyfish relations. Indeed, a result of
Bigelow and Penneys [BP14] shows that having a complete set of 1-strand jellyfish
relations implies that both the principal and dual principal graphs are spoke graphs.
Thus by the triple point obstruction [Haa94,MPPS12], any subfactor with principal
graphs beginning with a triple point cannot have a complete set of 1-strand jellyfish
relations. We anticipate the results of [BP14] giving strong constraints on subfactors
whose principal graphs are not both spokes.

Even with these limitations, we do have a number of interesting examples. We
give a jellyfish presentation of the new 4442 subfactor along with the 3311 subfactor
[GdlHJ89], the 2221 subfactor constructed in [Izu01] (reproducing all the work
of Han’s thesis [Han10], in an entirely automated fashion!), and one of the 3333
subfactors previously constructed by Izumi in unpublished work. These graphs
appear in Figure 1.

, , , .

Figure 1. The principal graphs of the four subfactors we con-
struct in this paper. In each case, the dual principal graph is the
same as the principal graph.

Immediately after hearing about our construction of a 4442 subfactor, Izumi
noticed that a 4442 subfactor can be constructed using a Z/3Z quotient of the
3333 subfactor. This will appear in one of his forthcoming papers. Conversely, we
constructed the 3333 subfactor only after hearing Izumi’s construction.

In addition to giving a generators and jellyfish relations presentation of each
of these four subfactor planar algebras, we show that the 4442, 3333, and 2221
subfactors are each self-dual, and moreover symmetrically self-dual. This essentially
means that one can ignore the shading in the planar algebras, and thus there exist
fusion categories with the same principal graphs. We will investigate this further
in a future paper [MP].

1.1. The FusionAtlas. This paper relies on some substantial calculations. In
particular, our efforts to find the generators in the various graph planar algebras
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made use of a variety of techniques, some ad-hoc, some approximate, and some
computationally expensive. This paper essentially does not address that work.
Instead, we merely present the discovered generators and verify some relatively
easy facts about them. In particular, the proofs presented in this paper rely on the
computer in a much weaker sense. We need to calculate certain numbers of the form
Tr(STR), where S, T , and R are rather large matrices, and the computer does this
for us. We also entered all the formulas derived in this paper into Mathematica,
and had the computer automatically evaluate the various quantities which appear
in our derivation of jellyfish relations. As a reader may be interested in seeing these
programs, we include a brief instruction on finding and running these programs.

The arXiv sources of this article contain in the code subdirectory a number of
files, including:

• Generators.nb, which reconstructs the generators from our terse descrip-
tions of them in Appendix A.

• QuadraticTangles.nb, which calculates the requisite moments of these
generators, and performs the linear algebra necessary to derive the jellyfish
relations.

• GenerateLaTeX.nb, which typesets each subsection of Section 4 for each
planar algebra, and many mathematical expressions in Appendices A and
B.

The Mathematica notebook Generators.nb can be run by itself. The final cells
of that notebook write the full generators to the disk; this must be done before
running QuadraticTangles.nb. The QuadraticTangles.nb notebook relies on
the FusionAtlas, a substantial body of code the authors have developed along
with Emily Peters, Noah Snyder and James Tener to perform calculations with
subfactors and fusion categories. To obtain a local copy, you first need to ensure
that you have Mercurial, the distributed version control system, installed on your
machine. With that, the command

hg clone https://bitbucket.org/fusionatlas/fusionatlas

will create a local directory called fusionatlas containing the latest version. In the
QuadraticTangles.nb notebook, you will then need to adjust the paths appearing
in the first input cell to ensure that your local copy is included. After that, running
the entire notebook reproduces all the calculations described below.

We invite any interested readers to contact us with questions or queries about
the use of these notebooks or the FusionAtlas package.

2. Background

2.1. Graph planar algebra embedding. A finite depth subfactor planar algebra
embeds in the graph planar algebra of its principal graph [JP11,MW]. We begin by
assuming that the desired planar algebra is n− 1 supertransitive, so Pk,+ = TLk,+

for k = 0, . . . , n− 1 and is generated by the orthogonal complement Pn,+ � TLn,+

of the Temperley-Lieb algebra in the n-box space. If this orthogonal complement
has dimension k, we say that the planar algebra is n − 1 supertransitive of excess
k. The excess can be read from the principal graph; it’s the sum of the squares of
the multiplicities of the edges immediately beyond the branch point, minus one (or
simply two less than the valence of the branch point, in the simply laced case).
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To construct the subfactor planar algebras in these papers, we first find a
connection on the desired pair of principal graphs (Γ,Γ′). We do so by first comput-
ing a numerical approximation to high precision, then guessing the exact solution
using Mathematica’s RootApproximant function, and finally verifying using exact
arithmetic in a number field that the candidate exact solution satisfies the neces-
sary equations. As we use this numerical method, we cannot say with certainty
how many connections exist on these graphs. However, Izumi has determined all
such connections, and we believe our list of possible connections coincides with his.
As the main goal of this paper is to construct the new 4442 subfactor by the devel-
opment of methods for deriving jellyfish relations, rather than proving uniqueness,
we restrict our attention to a single connection.

Using this connection, it is possible to discover the rotational eigenvalues of the
desired generators via [Izu01, Theorem 1.7]; in a certain gauge, tr(UU t) = 2+

∑
ω,

where U is the ‘branch matrix’ of connection entries going through the branch point,
and the sum is over the k rotational eigenvalues ω, with multiplicity, of the lowest
weight vectors in the n-box space. We then compute the equations for flatness and
find k flat n-boxes with respect to the connection. (Note that these flat elements
are not necessarily self-adjoint as in [Jon12].)

However, merely having flat elements for a connection does not imply that the
connection itself is flat. The planar algebra generated by the flat n-boxes is nec-
essarily evaluable, and indeed a subfactor planar algebra, which we denote by PΓ

• .
Thus we have constructed some subfactor by [Ocn88,EK98,Jon11,MW]. This sub-
factor, however, need not have the principal graphs we started with; indeed, it could
have smaller supertransitivity. Determining even the supertransitivity of the prin-
cipal graph of the subfactor planar algebra generated by the flat n-boxes requires
some knowledge of the skein theory of the planar algebra, which is of comparable
difficulty with directly computing jellyfish relations. In fact, by Lemma 5.1, having
jellyfish relations ensures that the supertransitivity is correct. One could attempt
to verify that the connection itself is flat, which would also ensure that the super-
transitivity is correct, but this is extremely computationally expensive. The point
of this paper is to avoid this work using planar algebras and the jellyfish algorithm.

Hence, we still need to analyze the subfactor planar algebra PΓ
• . In the analysis

which follows, we never rely on the fact that we obtained these elements as flat
elements with respect to some connection. In particular, nothing that follows relies
on the correctness of the method described above for guessing the generators!

First, we need to calculate the principal graphs of PΓ
• (which we are hoping are

the graphs we started with, (Γ,Γ′)). Second, we would like to know how to evaluate
closed diagrams in the generators.

For the spoke graphs we consider in this paper, Γ and Γ′ always coincide, and
are drawn from the set {4442, 3333, 3311, 2221} (see Figure 1), where the numbers
refer to the length of the spokes emanating from the central vertex. By [BP14],
if such subfactor planar algebras were to exist with the desired principal graphs,
they would have 1-strand jellyfish generators at depth n. We use Jones’ quadratic
tangles techniques [Jon12] to find these 1-strand jellyfish relations in PΓ

• . We then
use the generators to determine that PΓ

• has the correct principal graph.

2.2. Quadratic tangles. In [Jon12], Jones uses quadratic tangles techniques to
prove a number of formulas about planar generators in a subfactor planar algebra.
In fact, many of the formulas there hold in more generality.
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Notation 2.1. Recall that the Fourier transform F is given by

F =
��

· · ·

.

For a rotational eigenvector S ∈ Pn,± corresponding to an eigenvalue ωS = σ2
S ,

we define another rotational eigenvector Š ∈ Pn,∓ by Š = σ−1
S F(S). Note that

F(Š) = σSS, so
ˇ̌S = S.

Definition 2.2. Suppose P• is a not necessarily evaluable ∗-planar algebra, i.e.,
we don’t know if dim(Pn,±) < ∞ or if dim(P0,±) = 1. We call P• unitary if for
all n ≥ 0, the P0,±-valued sesquilinear form on Pn,± given by 〈x, y〉 = Tr(y∗x) is
positive definite (in the operator-valued sense).

Definition 2.3. Suppose P• is a unitary, spherical, shaded planar algebra with
modulus δ > 2 which is not necessarily evaluable. A finite set B ⊂ Pn,+ is called
a set of generators if the elements of B are linearly independent, self-adjoint, low-
weight eigenvectors for the rotation, i.e, for all S ∈ B,

• S = S∗,
• S is uncappable, and
• ρ(S) = ωSS for some n-th root of unity ωS .

Given a set of generators B, we get a set of dual generators B̌ =
{
Š
∣∣S ∈ B

}
.

We say a set of generators B has scalar moments if Tr(R),Tr(RS),Tr(RST ) and

Tr(Ř),Tr(ŘŠ),Tr(ŘŠŤ ) are scalar multiples of the empty diagram in P0,+ and
P0,− respectively for each R,S, T ∈ B.

If a set of generators B has scalar moments, we say it is orthonormal if for all
S, T ∈ B, 〈S, T 〉 = Tr(ST ) = δS,T .

Notation 2.4. Since δ > 2, given a generator R ∈ B, the annular tangles

�
�

· · ·
Ř

∪0(R)

,
�

�

· · ·
R

∪1(R)

,
��

· · ·
Ř

∪2(R)

,
�

�

· · ·
R

∪3(R)

, . . .

are a basis for An+1(R), the annular consequences of R inside Pn+1,+ [Jon01,
Jon12]. One calculates the dual annular basis

{
∪̂i(R)

∣∣i = 0, . . . , 2n+ 1
}

from

〈∪̂i(R),∪j(R)〉 = δi,j , where the inner product is linear on the right. See Defi-
nition 4.2.6 of [Jon12] for an explicit formula.

Theorem 2.5. All the formulas of §4 of [Jon12] hold in any unitary, spherical,
shaded planar algebra with modulus δ > 2 for any orthonormal set of generators B

with scalar moments.

Proof. Jones explicitly restricts to an evaluable planar algebra (in fact, he says
‘subfactor’, but evaluable is the only condition we’re now leaving off) before proving
these formulas, but upon reading through the proofs, it is clear that the generators
having scalar moments is sufficient to work in the generality we need here. �
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2.3. Spherical and lopsided planar algebras. In [MP14], Morrison and Peters
describe the spherical and lopsided conventions for planar algebras. In the spher-
ical convention, both shaded and unshaded contractible closed loops count for a
multiplicative factor of δ; however, in the lopsided convention, shaded contractible
closed loops count for 1 while unshaded contractible closed loops count for δ2. The
main advantage of working in the lopsided planar algebra is that there are fewer
square roots, so arithmetic is easier. In particular, the number field in which we
calculate is much smaller. Hence we use the lopsided planar algebra to compute
the moments of our generators.

The map �:P spherical
• → P lopsided

• from [MP14] is not a planar algebra map,
but it commutes with the action of the planar operad up to certain scalars. When
we draw our tangles in the standard form where each input and output disk is a
rectangle with the distinguished interval on the left and the same number of strings
attach to the top and bottom of each rectangle, then there is a power of δ±1 for
each critical point which is shaded above, and the power of δ corresponds to the
sign of the critical point:

←→ δ, ←→ δ−1.

Example 2.6. We will work out the correction factor arising when commuting �
and F . Note that

F(S) =
��

· · ·
S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S

· · ·

· · ·

if n is even,

S

· · ·

· · ·

if n is odd.

Hence we have

�F =

{
F� if n is even,

δ−1F� if n is odd.

Example 2.7. Similarly one can calculate that

Tr(S) = �Tr(S) =

{
Tr(�S) if n is even,

δTr(�S) if n is odd,

Tr(Š) = �Tr(Š) =

{
Tr(�Š) if n is even,

δ−1 Tr(�Š) if n is odd.

Hence if S1, . . . , Sk ∈ B, we compute the moment

Tr(F(S1) · · · F(Sk)) =

{
δ−k Tr(F(�S1) · · · F(�Sk)) if n is even,

δ−1 Tr(F(�S1) · · · F(�Sk)) if n is odd,

which implies

Tr(Š1 · · · Šk) =

{
δ−k Tr(�Š1 · · · �Šk) if n is even,

δ−1 Tr(�Š1 · · · �Šk) if n is odd.
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2.4. The jellyfish algorithm. The jellyfish algorithm was invented in [BMPS12]
to construct the extended Haagerup subfactor planar algebra with principal graphs(

,
)
.

One uses the jellyfish algorithm to evaluate closed diagrams on a set of generators.
There are two ingredients:

(1) The generators in Pn,± satisfy jellyfish relations, i.e., for each generator
S, T ,

j(Š) =
2n

Š
�

, j2(S′) =
2n

T

�

can be written as linear combinations of trains, which are diagrams where
any region meeting the distinguished interval of a generator meets the dis-
tinguished interval of the external disk, e.g.,

�

� � �

· · ·

T

S1 S2 S�

k k

2n 2n 2n

,

where S1, . . . , S� are generators, and T is a single Temperley-Lieb diagram.
(Note that j(S), j(Š) means the same thing as ∪0(S),∪0(Š), but we will
use the j notation to emphasize its importance to the jellyfish algorithm.)

(2) The generators in Pn,± are uncappable and together with the Jones-Wenzl

projection f (n) form an algebra under the usual multiplication

ST =

T�

S�

n

n

n

=
∑
R

αR
S,T R�

n

n

.

(Note that the Mathematica package FusionAtlas multiplies in this order;
reading from left to right in products corresponds to reading from bottom
to top in planar composites.)

Given these two ingredients, one can evaluate any closed diagram using the following
two step process:

(1) Pull all generators S to the outside of the diagram using the jellyfish rela-
tions, possibly getting diagrams with more S’s.

(2) Use uncappability and the algebra property to iteratively reduce the num-
ber of generators. Any non-zero train which is a closed diagram is either
a Temperley-Lieb diagram, has a capped generator, or has two generators
S, T connected by at least n strings, giving ST .

Section 3 is devoted to our procedure for computing the jellyfish relations nec-
essary for the first part of the jellyfish algorithm, while the second part is rather
easy.
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One can see that if {A,B, f (n)} span a subalgebra of Pn,+, their structure coef-
ficients must be given by

αR
S,T =

Tr(STR)

Tr(R2)
,

and thus determined by the moments given in Appendix B. We check that the
algebra generated by {A,B, f (n)} is closed under multiplication directly in the
graph planar algebra, in Lemma 4.1.

Note that if we have an orthonormal set of generators, then in the notation of
[Jon12], αR

S,T = Tr(STR) = aST
R . There are similar easy calculations to determine

the structure coefficients βR
S,T of the algebra generated by {Ǎ, B̌, f̌ (n)} ⊂ Pn,−, and

in the orthonormal case, βR
S,T = bST

R .

In [BMPS12], they found 2-strand jellyfish relations, i.e., j(Š) and j2(S) lie in
the span of the trains of S. For spoke subfactors, we can find 1-strand jellyfish

relations by [BP14], i.e., for each S ∈ B and Š ∈ B̌, j(Š) lies in the span of the

trains from B, and j(S) lies in the span of the trains from B̌. These 1-strand
jellyfish relations are sufficient to evaluate all closed diagrams from our generators,
and thus B generates some subfactor planar algebra.

We need further arguments to prove that the resulting subfactor planar algebra
has the desired principal graphs. It turns out that at the relatively low index of
3 +

√
5 these arguments are easy.

2.5. Jellyfish to box jellyfish and back again. Given a set of jellyfish relations,
we may write them in a more compact form in which we multiply the diagrams by a
Jones-Wenzl idempotent to get rid of simpler diagrams. We present the arguments
back and forth in the case of one generator, and it is clear how to generalize to the
multi-generator case.

If we know

j(Š) =
2n

Š
�

= γS,S
n − 1

n + 1 n + 1

S S

��

+
2n+1∑
i=1

γS,i ∪′
i (S) +X,

where X ∈ TLn+1,+ with all strings turned down, and

∪′
1(S) =

2n

S

�

, ∪′
i(S) =

i − 1 2n − i + 1

S

�

, and ∪′
2n+1 (S) =

2n

S

�

(note that the ∪′
i(S)’s for i = 1, . . . , 2n + 1 can be obtained from the ∪j(S)’s for

j = 1, . . . , 2n + 1 by applying suitable powers of the rotation and multiplying by
suitable powers of σS), applying the Jones-Wenzl f (2n+2) to the bottom of the
diagram gives the simpler box jellyfish relation

f · j(Š) = 2n

Š
�

f (2n+2)�
= γS,S

n − 1

n + 1 n + 1

S S

��

f (2n+2)�
.
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Conversely, given a box jellyfish relation of the above form, we get a jellyfish
relation by expanding the Jones-Wenzl idempotents.

(1) First, note that the coefficient of the identity in the Jones-Wenzl idempotent
f (2n+2) is 1. This term gives us a j(Š) on the left hand side and an S ◦ S
on the right hand side.

(2) On the left hand side, all other terms of the Jones-Wenzl either cap off the
Š, giving zero, or there is exactly one cup on the top and one cap on the
bottom, and the cup on the top is between the 1-st and 2-nd strings or the
(2n+1)-th and (2n+2)-th strings. In this case, we get a scalar multiple of
an annular consequence of S (which is not j(Š)), and these terms can be
subtracted off to the right hand side of the equation.

(3) On the right hand side, there are a few more options. First, if any S is
capped off, we get zero. Otherwise there is a cup between the (n + 1)-th
and (n+2)-th strings, and we get an an S2 which can be written as a linear
combination of S and Temperley-Lieb diagrams. Now if there are more
cups on top of the term in the Jones-Wenzl, the S term vanishes, and we
get a Temperley-Lieb diagram. If there are no extra cups, then we are left
with some Temperley-Lieb diagrams and some scalar multiple of an annular
consequence of S (which is not j(Š)).

Hence we get a jellyfish relation.

3. Computing jellyfish relations with quadratic tangles

In Subsection 2.1, we explained how we obtained the subfactor planar algebra
PΓ
• generated by the flat elements at depth n with respect to some connection in

the graph planar algebra of Γ. We now describe how to calculate 1-strand jellyfish
relations.

The calculations in these subsections, based on the techniques from [Jon12], rely
on knowing the cubic moments of the generators and the structure coefficients for
the algebra generated by {A,B, f (n)}. This requires a computer calculation, but
it is no more difficult than multiplying some large matrices, with entries in a fixed
number field, and then taking a trace. These moments are given in Appendix B.

We perform three calculations to derive the jellyfish relations. In Subsection
3.1, we find those linear combinations of the quadratic tangles which lie in annular
consequences of the generators. In Subsection 3.2, we express these quadratic tan-
gles in the basis of annular consequences of our generators. Finally in Subsection
3.3, we invert the relations found in Subsection 3.2 to express the relevant annular
consequences back in terms of the quadratic tangles.

Remark 3.1. In Subsections 3.1 through 3.3, our formulas are for orthonormal sets
of self-adjoint generators. However, the programs in the Mathematica notebook
QuadraticTangles.nb are slightly more general and include the necessary correc-
tion factors allowing us to work with orthogonal generators with arbitrary norms
as well.

In Subsection 3.4, we describe two ways that we verify our formulas. Since the
computer is doing the arithmetic, we like to verify our calculations in as many ways
that we can think of.
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3.1. Identify quadratic tangles in annular consequences. Given our set of
generators B = {A,B} ⊂ Pn,+, we have the dual generators B̌ = {Ǎ, B̌} ⊂ Pn,−,

and B and B̌ each give 4 quadratic tangles:

{A ◦A,A ◦B,B ◦A,B ◦B} ⊂ Pn+1,+

and

{Ǎ ◦ Ǎ, Ǎ ◦ B̌, B̌ ◦ Ǎ, B̌ ◦ B̌} ⊂ Pn+1,−,

where

S ◦ T =
n − 1

n + 1 n + 1

S T

��

.

Since we expect these generators to give a subfactor planar algebra with the prin-
cipal graph being the underlying graph of the graph planar algebra in which they
were found, we hope that some linear combinations of these quadratic tangles lie in
the space A(A,B, ∅) of annular consequences of A,B, and the empty diagram (the
annular consequences of the empty diagram are the diagrams in Temperley-Lieb),
and the same for the checked generators:

QTAC = A(A,B, ∅) ∩ span({A ◦A,A ◦B,B ◦A,B ◦B}),
QTAC∨ = A(Ǎ, B̌, ∅) ∩ span({Ǎ ◦ Ǎ, Ǎ ◦ B̌, B̌ ◦ Ǎ, B̌ ◦ B̌})

(QTAC stands for “quadratic tangles in annular consequences”).

Remark 3.2. In our notation A(A,B, ∅) includes Temperley-Lieb. When we refer
to the annular consequences of A,B only, we will call this space A(A,B) (which is
what is referred to simply by A in [Jon12]).

Example 3.3. Starting with our 2 generators found in the graph planar algebras
of the 4442 or 3333 principal graphs, since 4442 and 3333 each have annular mul-
tiplicites ∗22, we hope that dim(QTAC) = dim(QTAC∨) = 2, i.e., the quadratic
tangles are as linearly independent as possible.

Example 3.4. Starting with our 2 generators found in the graph planar algebra
of the 3311 principal graph, since 3311 has annular multiplicites ∗20, we hope that
dim(QTAC) = dim(QTAC∨) = 4.

Example 3.5. Starting with our 2 generators found in the graph planar algebra
of the 2221 principal graph, since 2221 has annular multiplicites ∗21, we hope that
dim(QTAC) = dim(QTAC∨) = 3.

We use formulas from [Jon12] to calculate bases for QTAC and QTAC∨. We first
describe how to find a basis for QTAC.

First, we calculate the 4× 4 matrix of inner products modulo the annular con-
sequences of A,B:(

〈[S ◦ T − PA(A,B)(S ◦ T )], P ◦Q〉
)
(S,T ),(P,Q)∈B2 .
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The inner products are given by the following formulas, where the second comes
from Proposition 4.4.2 of [Jon12]:

〈S ◦ T, P ◦Q〉 = 1

[n]
Tr(QT ) Tr(SP ),

〈PA(A,B)S ◦ T, P ◦Q〉 =
∑
R∈B

1

WR

{(
aST
R aPQ

R +σTσSσQσP bST
R bPQ

R

) (
ω−1
R +[2n+2]

)
+(−1)n+1σR

(
σQσPaST

R bPQ
R +σTσSbST

R aPQ
R

)(
2ω−1

R [n+ 1]
)}

,

where aST
R = Tr(RST ), bST

R = Tr(ŘŠŤ ), and WR = q2n+2 + q−2n+2 − ωR − ω−1
R .

Here, q > 1 such that δ = [2] = q + q−1.
Taking a basis for the nullspace of this matrix gives us a basis for QTAC.

Remark 3.6. To calculate a basis for QTAC∨, one passes to the dual planar alge-
bra of the graph planar algebra (the same planar algebra, but with the shading
reversed), and uses the same formulas above. This amounts to switching aST

R and

bST
R , since S and Š have the same chirality for each S ∈ B.

3.2. Find the jellyfish matrices. Now we want to write each basis element of
QTAC or QTAC∨ as a linear combination of the ∪i(R),∪i(Ř)’s for R ∈ B, Ř ∈ B̌

respectively. We describe the process for the basis elements of QTAC, and the
checked versions are again computed by passing to the dual as in Remark 3.6.
Using Proposition 4.4.1.i in [Jon12], we have

(3.1) PA(A,B)(S ◦ T ) =
∑
R∈B

σn
Ra

ST
R ∪̂n+1(R) + σ−1

T σSb
ST
R ∪̂0(R).

We can express ∪̂n+1(R), ∪̂0(R) (in the dual annular basis) in terms of the annular
basis ∪i(R) for R ∈ B, using the formulas from Proposition 4.2.9 of [Jon12]:

∪̂0(R) =
1

WR

(
[2n+ 2] ∪0 (R) + ((−σ)n+1 + (−σ)−n−1)[n+ 1] ∪n+1 (R) +X

)
,

∪̂n+1(R) =
1

WR

(
[2n+ 2] ∪n+1 (R) + ((−σ)n+1 + (−σ)−n−1)[n+ 1] ∪0 (R) + Y

)
,

where X,Y ∈ A(R) = span {∪i(R)|i �= 0, n+ 1}.

Remark 3.7. Our calculations, available bundled with the arXiv sources for this
paper in the Mathematica notebook QuadraticTangles.nb, are slightly more com-
plicated; we don’t actually use the formulas from Proposition 4.2.9 above, but in-
stead directly compute the change of basis matrix from the dual annular basis to
the annular basis as an extra check of these formulas. The change of basis matrix
is computed as follows.

First, letting U and Û be the column vectors corresponding to the basis elements

∪i(R) and ∪̂i(R), there is some matrix V ∈ M2n+2(C) such that V U = Û . From
the formulas 〈∪̂i(R),∪j(R)〉 = δi,j and

Wi,j = 〈∪i(R),∪j(R)〉 =

⎧⎪⎨⎪⎩
δ if i = j,

σ±1
R if j = i± 1,

0 else,

we have V = W−1 (remember that the inner product is linear on the right).
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Putting it all together, we can express v in our basis of QTAC as a linear com-
bination of ∪0(A),∪0(B),∪n+1(A),∪n+1(B), plus another element in A(A,B, ∅) =
TLn+1,± ⊕ span({∪i(R)|R ∈ B and i �= 0, n+ 1}):

v =
∑

S,T∈B

γS,T
n − 1

n + 1 n + 1

S T

��

= μA

2n

Ǎ
�

+ μB

2n

B̌
�

+ νA
n n

A∨n

�
+ νB

n n

B∨n

�
+ Z,

where Z ∈ A(A,B, ∅) and

S∨n =

{
S if n is even,

Š if n is odd,
Š∨n =

{
Š if n is even,

S if n is odd.

Given such an equation, we can multiply by a Jones-Wenzl idempotent in two
ways to find the following relations, from which we will derive the desired box
jellyfish relations:

(1) We can multiply by f (2n+2) on the bottom to isolate the ∪0(A),∪0(B):

∑
S,T∈B

γS,T

n − 1

n + 1 n + 1

S T

��

f (2n+2)�
= μA

2n

Ǎ
�

f (2n+2)�
+ μB

2n

B̌
�

f (2n+2)�
,

as any cap on top of f (2n+2) gives zero.
(2) We can bend f (2n+2) around the top to isolate the ∪n+1(A),∪n+1(B):

∑
S,T∈B

γS,T
n − 1

n + 1n + 1

S T

��
f (2n+2)

= νA
n n

f (2n+2)

�

A∨n

�
+ νB

n n

f (2n+2)

�

B∨n

�
,

which is equivalent to

∑
S,T∈B

γS,Tσ
1−n
S σn−1

T

n − 1

n + 1 n + 1

Š∨n Ť∨n

��

f (2n+2)�
= νA

2n

A∨n

�

f (2n+2)�
+ νB

2n

B∨n

�

f (2n+2)�
.

Remark 3.8. The second relation above is actually superfluous. It suffices to con-
sider the relations above of the first type for both B and B̌. On the other hand,
the computer is doing the arithmetic, so we prefer to get a nice consistency check
on all our formulas with little extra work.
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Notation 3.9. For S, T ∈ B, B̌, we use the notation

j(S) =
2n

S

�
, f · j(S) = 2n

S

�

f (2n+2)�
, and f(S ◦ T ) =

n − 1

n + 1 n + 1

S T

��

f (2n+2)�
.

Definition 3.10. Suppose {v1, . . . , vk} ⊂ QTAC, {v̌1, . . . , v̌k} ⊂ QTAC∨ are bases
(in our examples, 2 ≤ k ≤ 4). First, we use the above method to calculate coeffi-
cients μi

A, μ
i
B, μ̌

i
A, μ̌

i
B so that

vi =
∑

S,T∈B

γi
S,T f(S ◦ T ) = μi

A[f · j(Ǎ)] + μi
B [f · j(B̌)] and

v̌i =
∑

Š,Ť∈B̌

γ̌i
S,T f(Š ◦ Ť ) = μ̌i

A[f · j(A)] + μ̌i
B [f · j(B)].

The jellyfish matrices are the matrices J, J̌ whose i-th rows are
(
μi
A μi

B

)
,
(
μ̌i
A μ̌i

B

)
respectively. The quadratic tangles matrices are the matrices K, Ǩ whose i-th rows

are
(
γi
A,A γi

A,B , γ
i
B,A, γ

i
B,B

)
,
(
γ̌i
A,A γ̌i

A,B, γ̌
i
B,A, γ̌

i
B,B

)
respectively.

Note that

K

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ = J

(
f · j(Ǎ)
f · j(B̌)

)
,

and similarly for the checked version.

3.3. Invert the jellyfish matrices to get box jellyfish relations. Given the
jellyfish matrices J, J̌ , we check if they have rank 2. If they do (and we know they
should by [BP14]), then we find a left inverse by the formula

JL = (J∗J)−1J∗

(and similarly for J̌), since J∗J ∈ M2(C) has rank 2. We then use JL, J̌L to get
the box jellyfish relations

(
f · j(Ǎ)
f · j(B̌)

)
= JLK

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠
which express f · j(Ǎ), f · j(B̌) as linear combinations of quadratic tangles, and
similarly for the checked versions.

3.4. Checking our formulas. As emphasized in Remarks 3.7 and 3.8, since the
computer is doing the arithmetic, we like to check our formulas in as many ways as
we can think of. We perform two extra checks of the formulas obtained from the
above calculations.

(1) Given our set of generators B in the graph planar algebra, we can compute
the annular bases for A(A), A(B) and the quadratic tangles S ◦T for S, T ∈
B directly from the graph planar algebra. We can then use numerical linear
algebra to compute an approximate basis for QTAC, and we can compare
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these results with those obtained in Subsection 3.1. We do a similar check
for B̌ and QTAC∨.

Similarly, we can compute numerical approximations for the coefficients
of the quadratic tangles in annular consequences with respect to the annular
basis directly in the graph planar algebra. We compare these numbers with
those computed from Equation (3.1) using Remark 3.7.

Finally, we can numerically find the jellyfish formulas JLK, J̌LǨ directly
from the generators in the graph planar algebra and compare them with
the JLK, J̌LǨ computed in Subsection 3.2.

All of these checks are carried out in QuadraticTangles.nb, in the “QT
Direct” sections for the graphs 3333, 3311, and 2221.

(2) It would be beneficial to check the actual jellyfish formulas directly in the
graph planar algebra. Since the Jones-Wenzl idempotent, written in the
graph planar algebra, is expensive to compute, this is only feasible for the
smallest graph 2221, and even then, we need a clever trick introduced in
[BMPS12] by Stephen Bigelow. First, note that

n − 1

n + 1 n + 1

f (n+1)

f (2n+2)�

�

= 0,

which implies that for S, T ∈ B and all γ,

f(S ◦ T ) =

n − 1

n + 1 n + 1

S T

��

f (2n+2)�
=

n − 1

n + 1 n + 1

S T

��

f (2n+2)�
− γ

n − 1

n + 1 n + 1

f (n+1)

f (2n+2)�

�

.

Note that ST − Tr(ST )
[n+1]2 f

(n) is uncappable, as it lies in span{A,B}. Hence

applying any two caps which do not enclose � to S ◦ T − Tr(ST )
[n+1][n+2]f

(n+1)

gives zero, and therefore f(S ◦ T ) is equal to

n − 1

n + 1 n + 1

S T

��

+

n − 1

n + 1 n + 1

S T

��

f
(2n+2)
1−cup

�
− Tr(ST )

[n+ 1][n+ 2]

n − 1

n + 1 n + 1

f (n+1)

f
(2n+2)
1−cup

�

�

,

where f
(2n+2)
1−cup is the sum of all terms in the Jones-Wenzl f (2n+2) with

exactly one cup on the top and one cup on the bottom. A formula for the
1-cup Jones-Wenzl in terms of Temperley-Lieb diagrams can be deduced
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easily from [Rez07,Mor]:

f
(k)
1−cup = −

k−2∑
a=0

[a+ 1][k − a− 1]

[k]
· · · · · ·︸︷︷︸
a

+
∑

a+b+c=k−2
c>0

(−1)c+1 [a+ 1][b+ 1]

[k]

⎛⎜⎝ · · · · · · · · ·︸︷︷︸
a

︸︷︷︸
b

︸︷︷︸
c

+ · · · · · · · · ·︸︷︷︸
a

︸︷︷︸
b

︸︷︷︸
c

⎞⎟⎠ .

Note that the number of terms in the 1-cup Jones-Wenzl grows linearly,
whereas the number of terms in the Jones-Wenzl idempotent, given by
Catalan numbers, grows exponentially.

Using this trick, we numerically check the jellyfish formulas calculated
in Section 4.4 in the graph planar algebra of 2221.

4. Generators and relations

We now have a subsection for each of our subfactor planar algebras. The three
lemmas in each section show the results of the calculations described above. The
proofs are simply substituting the appropriate quantities (moments, chiralities, etc.)
into the formulas above. You can verify all these calculations using the Mathematica
notebooks included with the arXiv sources of this paper.

Throughout, the notation λ
(z)
an,...,a0 denotes the root of the polynomial

∑
i aix

i,
which is closest to the approximate real number z. (The digits of precision of z
are in each case chosen so that this unambiguously identifies the root.) Thus for

example λ
(0.3278)
1024,0,−864,0,81 denotes the root of 1024x4 − 864x2 + 81, which is closest

to 0.3278.
In this section, A,B denote the specific generators denoted by A,B given in the

appendix for each respective graph.

Lemma 4.1. For each of the graphs Γ = 4442, 3333, 3311 or 2221, the elements
A,B and f (n) in the (n,+)-box space of the graph planar algebra are closed under
multiplication, and their structure coefficients

ST = αA
S,TA+ αB

S,TB + αf
S,T f

(n)

are given the following ratio of moments:

αR
S,T =

Tr(STR)

Tr(R2)
.

A similar result holds for the elements Ǎ, B̌ and f (n) in the (n,−)-box space.

Proof. The program VerifyClosedUnderMultiplication in the Mathematica

notebook QuadraticTangles.nb verifies that the algebra generated by the set
{f (n), A,B} is closed under multiplication directly in the graph planar algebra.
Once we know this, the formula claimed for the structure coefficients follows by
taking inner products. �
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4.1. 4442.

Lemma 4.2. The linear combinations

K

⎛⎜⎜⎝
A ◦A
A ◦B
B ◦A
B ◦B

⎞⎟⎟⎠ and Ǩ

⎛⎜⎜⎝
Ǎ ◦ Ǎ
Ǎ ◦ B̌
B̌ ◦ Ǎ
B̌ ◦ B̌

⎞⎟⎟⎠
lie in annular consequences, where

K =

(
1 0 0 −1

0 1 λ
(0.809+0.588i)
1,−1,1,−1,1 0

)
and

Ǩ =

(
1 0 0 −1

0 1 λ
(0.809+0.588i)
1,−1,1,−1,1 0

)
.

Lemma 4.3. In particular, we have

K

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ = J

(
f · j(Ǎ)
f · j(B̌)

)
and Ǩ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠ = J̌

(
f · j(A)
f · j(B)

)
,

where

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
(7.275)
109,0,−5770,0,25 λ

(−7.275)
109,0,−5770,0,25

λ
(6.745+2.191i)
11881,
0,
−966285,
0,
30007665,
0,
1366875,
0,
164025

λ
(6.745+2.191i)
11881,
0,
−966285,
0,
30007665,
0,
1366875,
0,
164025

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

J̌ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
(7.275)
109,0,−5770,0,25 λ

(−7.275)
109,0,−5770,0,25

λ
(6.745+2.191i)
11881,
0,
−966285,
0,
30007665,
0,
1366875,
0,
164025

λ
(6.745+2.191i)
11881,
0,
−966285,
0,
30007665,
0,
1366875,
0,
164025

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 4.4. The elements A and B satisfy the box jellyfish relations

(
f · j(Ǎ)
f · j(B̌)

)
= JLK

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ and

(
f · j(A)
f · j(B)

)
= J̌LǨ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠ ,
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where

JLK=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
(0.06872)
400,0,
−23080,0,109

λ
(0.067054−0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(0.067054+0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(−0.06872)
400,0,
−23080,0,109

λ
(−0.06872)
400,0,
−23080,0,109

λ
(0.067054−0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(0.067054+0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(0.06872)
00,0,
−23080,0,109

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

J̌LǨ=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
(0.06872)
400,0,
−23080,0,109

λ
(0.067054−0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(0.067054+0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(−0.06872)
00,0,
−23080,0,109

λ
(−0.06872)
400,0,
−23080,0,109

λ
(0.067054−0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(0.067054+0.021787i)
41990400,
0,
87480000,
0,
480122640,
0,
−3865140,
0,
11881

λ
(0.06872)
00,0,
−23080,0,109

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4.2. 3333.

Lemma 4.5. The linear combinations

K

⎛⎜⎜⎝
A ◦A
A ◦B
B ◦A
B ◦B

⎞⎟⎟⎠ and Ǩ

⎛⎜⎜⎝
Ǎ ◦ Ǎ
Ǎ ◦ B̌
B̌ ◦ Ǎ
B̌ ◦ B̌

⎞⎟⎟⎠
lie in annular consequences, where

K =

(
1 0 0 1

6

(
−3−

√
5
)

0 1 1 0

)
and

Ǩ =

(
1 0 0 1

6

(
−3−

√
5
)

0 1 1 0

)
.



SPOKE SUBFACTORS USING THE JELLYFISH ALGORITHM 3275

Lemma 4.6. In particular, we have

K

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ = J

(
f · j(Ǎ)
f · j(B̌)

)
and Ǩ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠ = J̌

(
f · j(A)
f · j(B)

)
,

where

J =

(
1
8

(√
5− 1

)
1
4

(
−2−

√
5
)

1
8

(
−3− 3

√
5
)

1
8

(
1−

√
5
) )

and

J̌ =

(
λ
(−1.102)
1024,0,−1344,0,121 λ

(−0.2860)
1024,0,−96,0,1

λ
(−0.3278)
1024,0,−864,0,81 λ

(1.102)
1024,0,−1344,0,121

)
.

Lemma 4.7. The elements A and B satisfy the box jellyfish relations

(
f · j(Ǎ)
f · j(B̌)

)
= JLK

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ and

(
f · j(A)
f · j(B)

)
= J̌LǨ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠ ,

where

JLK =

(
1
2

(√
5− 2

)
1
4

(
−1−

√
5
)

1
4

(
−1−

√
5
)

1
12

(
1−

√
5
)

1
4

(
3− 3

√
5
)

1
2

(
2−

√
5
)

1
2

(
2−

√
5
)

1
4

(
1 +

√
5
) )

and

J̌LǨ =

(
λ
(−0.8422)
64,0,−216,0,121 λ

(−0.2185)
64,0,−24,0,1 λ

(−0.2185)
64,0,−24,0,1 λ

(0.7349)
5184,0,−3024,0,121

λ
(−0.2504)
64,0,−1296,0,81 λ

(0.8422)
64,0,−216,0,121 λ

(0.8422)
64,0,−216,0,121 λ

(0.2185)
64,0,−24,0,1

)
.

4.3. 3311.

Lemma 4.8. The linear combinations

K

⎛⎜⎜⎝
A ◦A
A ◦B
B ◦A
B ◦B

⎞⎟⎟⎠ and Ǩ

⎛⎜⎜⎝
Ǎ ◦ Ǎ
Ǎ ◦ B̌
B̌ ◦ Ǎ
B̌ ◦ B̌

⎞⎟⎟⎠
lie in annular consequences, where

K =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ and Ǩ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .
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Lemma 4.9. In particular, we have

K

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ = J

(
f · j(Ǎ)
f · j(B̌)

)
and Ǩ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠ = J̌

(
f · j(A)
f · j(B)

)
,

where

J =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1

33

(
−7− 3

√
3
)

λ
(−0.7113i)
144,0,312,0,121

1
6

(
1−

√
3
)

λ
(0.7113i)
144,0,312,0,121

1
6

(
1−

√
3
)

0 1
12

(
7
√
3− 9

)

⎞⎟⎟⎟⎟⎟⎟⎠
and

J̌ =

⎛⎜⎜⎜⎜⎜⎜⎝
λ
(−0.1888)
7776,0,−3672,0,121 λ

(−0.0621864)
58806,0,−486,0,1

λ
(−0.2832i)
1536,0,1632,0,121 λ

(0.4953i)
864,0,216,0,1

λ
(0.2832i)
1536,0,1632,0,121 λ

(−0.4953i)
864,0,216,0,1

λ
(0.860)
24576,0,−2414976,0,1771561 λ

(0.2832)
1536,0,−1632,0,121

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 4.10. The elements A and B satisfy the box jellyfish relations

(
f · j(Ǎ)
f · j(B̌)

)
= JLK

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ and

(
f · j(A)
f · j(B)

)
= J̌LǨ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠ ,

where

JLK =

⎛⎝ 0 λ
(0.7029i)
121,0,78,0,9 λ

(−0.7029i)
121,0,78,0,9 0

−137208−77672
√
3

172163
−33708−32332

√
3

172163
−33708−32332

√
3

172163
52626+80142

√
3

172163

⎞⎠
and

J̌LǨ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
(−0.205052)
1559184260929,
0,
−65569974336,
0,
497664

λ
(0.27984i)
3872,0,648,0,27 λ

(−0.27984i)
3872,0,648,0,27 λ

(0.93378)
1559184260929,
0,
−1362157739172,
0,
2305430424

λ
(−0.11725)
1559184260929,
0,
−23898282768,
0,
33872256

λ
(−0.850i)
512,0,4896,0,3267 λ

(0.850i)
512,0,4896,0,3267 λ

(0.53393)
3118368521858,
0,
−1989820501362,
0,
313826716467

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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4.4. 2221.

Lemma 4.11. The linear combinations

K

⎛⎜⎜⎝
A ◦A
A ◦B
B ◦A
B ◦B

⎞⎟⎟⎠ and Ǩ

⎛⎜⎜⎝
Ǎ ◦ Ǎ
Ǎ ◦ B̌
B̌ ◦ Ǎ
B̌ ◦ B̌

⎞⎟⎟⎠
lie in annular consequences, where

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
50

(
−23− 7

√
21
)

0 1 0 λ
(1.050−1.818i)
625,
0,
2300,
0,
10464,
0,
−7360,
0,
6400

0 0 1 λ
(1.050+1.818i)
625,
0,
2300,
0,
10464,
0,
−7360,
0,
6400

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Ǩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
50

(
−23− 7

√
21
)

0 1 0 λ
(1.050−1.818i)
625,
0,
2300,
0,
10464,
0,
−7360,
0,
6400

0 0 1 λ
(1.050+1.818i)
625,
0,
2300,
0,
10464,
0,
−7360,
0,
6400

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 4.12. In particular, we have

K

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ = J

(
f · j(Ǎ)
f · j(B̌)

)
and Ǩ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠ = J̌

(
f · j(A)
f · j(B)

)
,



3278 SCOTT MORRISON AND DAVID PENNEYS

where

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3

(
−6−

√
21
)

λ
(1.326)
225,0,−393,0,−5

λ
(1.680−4.996i)
2025,
0,
90855,
0,
1616571,
0,
931200,
0,
160000

λ
(−0.6319−1.0945i)
9,9,12,−3,1

λ
(1.680+4.996i)
2025,
0,
90855,
0,
1616571,
0,
931200,
0,
160000

λ
(−0.6319+1.0945i)
9,9,12,−3,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

J̌ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3

(
−6−

√
21
)

λ
(1.326)
225,0,−393,0,−5

λ
(1.680−4.996i)
2025,
0,
90855,
0,
1616571,
0,
931200,
0,
160000

λ
(−0.6319−1.0945i)
9,9,12,−3,1

λ
(1.680+4.996i)
2025,
0,
90855,
0,
1616571,
0,
931200,
0,
160000

λ
(−0.6319+1.0945i)
9,9,12,−3,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 4.13. The elements A and B satisfy the box jellyfish relations

(
f · j(Ǎ)
f · j(B̌)

)
= JLK

⎛⎜⎜⎝
f(A ◦A)
f(A ◦B)
f(B ◦A)
f(B ◦B)

⎞⎟⎟⎠ and

(
f · j(A)
f · j(B)

)
= J̌LǨ

⎛⎜⎜⎝
f(Ǎ ◦ Ǎ)
f(Ǎ ◦ B̌)
f(B̌ ◦ Ǎ)
f(B̌ ◦ B̌)

⎞⎟⎟⎠
where

JLK =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
51

(
33− 8

√
21
)

λ

(0.034194
+0.063236i)

4228250625,
0,
18810887175,
0,
36065983311,
0,
203997780,
0,
960400

λ

(0.034194
−0.063236i)

4228250625,
0,
18810887175,
0,
36065983311,
0,
203997780,
0,
960400

659
√
21−2049
2550

λ
(0.3277)
2601,0,885,0,−125 λ

(−0.1561+0.1682i)
601,4896,18981,
5700,925

λ
(−0.1561−0.1682i)
601,4896,18981,
5700,925

λ
(−0.07717)
5025,0,1149168,
0,−6845

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

J̌LǨ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
51

(
33− 8

√
21
)

λ

(0.034194
+0.063236i)

4228250625,
0,
18810887175,
0,
36065983311,
0,
203997780,
0,
960400

λ

(0.034194
−0.063236i)

4228250625,
0,
18810887175,
0,
36065983311,
0,
203997780,
0,
960400

659
√
21−2049
2550

λ
(0.3277)
2601,0,885,0,−125 λ

(−0.1561+0.1682i)
601,4896,18981,
5700,925

λ
(−0.1561−0.1682i)
601,4896,18981,
5700,925

λ
(−0.07717)
5025,0,1149168,
0,−6845

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5. Self-duality and calculating principal graphs

We now know that our elements A,B ∈ PA(Γ) generate an evaluable planar
subalgebra PΓ

• , and hence a subfactor planar algebra. By the next lemma, we
know that the principal graphs have the desired supertransitivity since we have
1-strand jellyfish relations.

Lemma 5.1. Suppose a planar algebra P• is generated by uncappable elements
A1, . . . , Ak ∈ Pn,+ such that

(1) the Aj’s satisfy 1-strand jellyfish relations, and

(2) the complex span of {A1, . . . , Ak, f
(n)} forms an algebra under the usual mul-

tiplication.

Then P• is (n− 1) supertransitive.

Proof. Suppose x ∈ Pn−1,+. Use the jellyfish relations to get a linear combination
of diagrams in jellyfish form. Use the facts that the Aj ’s are uncappable and that

the Aj ’s and f (n) form an algebra to reduce the linear combination of diagrams so
that no two generators are connected by more than n strands, and no generator is
connected to itself. Since there are only 2n− 2 external boundary points, it is easy
to see that the diagrams in the resulting linear combination have no generators,
i.e., x ∈ TLn−1,+. �

We now show that the principal graphs of the PΓ
• planar algebra are, in fact,

(Γ,Γ).

5.1. Self-duality. In this subsection, we show that P 4442
• , P 3333

• and P 2221
• are self-

dual, i.e., there is a planar algebra isomorphism Φ:P• → P∨
• , where P∨

• is the dual
planar algebra obtained from P• by reversing the shading. Note that this means
for all k, there is a map Φk,±:Pk,± → P∨

k,± = Pk,∓, and these maps commute with
the action of the planar operad.

In fact, these three subfactor planar algebras are more than self-dual; they are
symmetrically self-dual, i.e., for every n, Φn,∓ ◦ Φn,± = 1n,±. Hence by [MP],
we can lift the shading to get fantastic planar algebras, i.e., unshaded, spherical,
evaluable C∗-planar algebras.

Given a fantastic planar algebra P•, we have an associated rigid C∗-tensor cate-
gory CP• whose objects are the projections of P• and a morphism in HomC(p → q)
is an element x ∈ P• such that x = pxq (see [MPS10] for more details). Note
further that CP• is generated by a single self-dual object X (the strand), and CP•
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is Z/2-graded. The fusion graph with respect to X is exactly the principal graph
of P•. If the fusion graph is finite, then CP• is a unitary fusion category.

Hence the subfactor planar algebras P 4442
• , P 3333

• , P 2221
• give rise to Z/2-graded

unitary fusion categories generated by a single self-dual object with fusion graphs
4442, 3333, 2221 respectively. Note that a fusion category with fusion graph 2221
has previously been constructed by Ostrik in the appendix to [CMS11].

Theorem 5.2. The map P 4442
5,+ ↔ P 4442

5,− exchanging A ↔ Ǎ and B ↔ B̌ gives a
symmetric self-duality of planar algebras.

Proof. By the symmetry of the moments in Appendix B.1, the map clearly preserves
the moments. Hence the box jellyfish relations of Subsection 4.1 are preserved under
Φ. Moreover, the structure coefficients in the algebra P5,± are also preserved, so
by the jellyfish algorithm the map preserves the evaluation of all closed diagrams
and so is an isomorphism. �

Theorem 5.3. The map Φ3,+:P
3333
4,+ → P 3333

4,− by

(
A
B

)
�→ M

(
Ǎ
B̌

)
, where M =

⎛⎝ √
5
2

2

√
3+

√
5

4
3
√

3−
√
5

4 −
√

5
2

2

⎞⎠ ,

gives a symmetric self-duality of planar algebras.

Remark 5.4. It might be possible to choose generators so that (A,B) �→ (Ǎ, B̌) is
already a symmetric self-duality of planar algebras, but it seems that one would
have to work in a larger number field for this to be possible.

Proof. One can easily verify that this map preserves the moments given in Appendix
B.2, so the argument from the proof of Theorem 5.2 applies. (In fact, we do this
verification in the Mathematica notebook QuadraticTangles.nb.) Finally, note
that M2 = 1, so Φn,∓ ◦ Φn,± = 1n,±. �

Theorem 5.5. The map P 2221
3,+ ↔ P 2221

3,− swapping A ↔ Ǎ and B ↔ B̌ gives a
symmetric self-duality of planar algebras.

Proof. Similar to the proof of Theorem 5.2. �

Note, however, that the result is not true for 3311. This result has been known
since [Kaw95], and we give another proof for completeness.

Theorem 5.6. P 3311
• is not self-dual.

Proof. Suppose there were a self-duality Φ. Since Φ is a map of planar algebras,
Φ must preserve the Temperley-Lieb planar subalgebras TLk,± and also the low-
weight spaces for the rotation in P 3311

4,± . Since the rotational eigenvalues are ωA =

−1 and ωB = 1, we know that Φ(A) = μǍ for some μ ∈ C×. However, this clearly
violates

Tr(A3) =
1

27

(
−6− 4

√
3
)

and Tr(Ǎ3) = 0

(see Appendix B.3). �
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5.2. Identifying principal graphs.

Theorem 5.7. The principal graphs of P 4442
• are(

,
)
.

Proof. First, note that the modulus of the given subfactor planar algebra is
√
3+

√
5

� 2.28825. Let Γ denote the principal graph. Using the moments calculated from
our generators in Appendix B.1, we find all solutions to the equation

(aA+ bB + cf (5))2 = aA+ bB + cf (5)

to get that the minimal projections one past the branch point are given by the
equations

(a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
(0.042252+0.036141i)
332150625,
−7418030625,
60616258875,
−208296167625,
266656517775,
−15736631400,
328666680,
13223880,
190096

, λ
(−0.011821−0.010111i)
332150625,
−7418030625,
60616258875,
−208296167625,
266656517775,
−15736631400,
328666680,
13223880,
190096

,
1

5

(
−5 + 3

√
5
)

λ
(−0.011821−0.010111i)
332150625,
−7418030625,
60616258875,
−208296167625,
266656517775,
−15736631400,
328666680,
13223880,
190096

, λ
(0.042252+0.036141i)
332150625,
−7418030625,
60616258875,
−208296167625,
266656517775,
−15736631400,
328666680,
13223880,
190096

,
1

5

(
−5 + 3

√
5
)

λ
(−0.030431−0.026030i)
2025,45225,274635,16620,436 , λ

(−0.030431−0.026030i)
2025,45225,274635,16620,436,

1

5

(
15− 6

√
5
)
.

Note that the dimensions of these projections agree with the dimensions of the
vertices on the 4442 graph, so all the arms on the principal graph Γ must continue.
Two branches cannot merge since∥∥∥ ∥∥∥ ≈ 2.33743,

no branch can split since∥∥∥ ∥∥∥ ≈ 2.31725,

and no branch can have a double edge since∥∥∥ 2

∥∥∥ ≈ 2.4761,

and all of these numbers are already too large. Hence all branches continue simply.
By counting Frobenius-Perron dimensions, one arm must stop, but the other two
must continue. Again, the branches cannot merge or split as∥∥∥ ∥∥∥ ≈ 2.32033,∥∥∥ ∥∥∥ ≈ 2.29079, and∥∥∥ 2

∥∥∥ ≈ 2.41976.
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Again, both branches must continue simply. Once more by counting dimensions,
the two remaining arms must continue, and again they cannot merge or split as∥∥∥ ∥∥∥ ≈ 2.30231,∥∥∥ ∥∥∥ ≈ 2.29193, and∥∥∥ 2

∥∥∥ ≈ 2.37309.

We conclude by counting dimensions again that Γ is 4442.
The dual principal graph is also 4442 by Theorem 5.2.
To determine the dual data, we run the program FindGraphPartners on the

graph

which determines all possible pairs of principal graphs and dual data for which
one of the graphs is 4442. The only possibilities for which the principal and dual
principal graph are both 4442 are(

,
)

and(
,

)
.

We rule out the second pair by noting that the dimension 1 bimodules form a group,
and thus the vertices at the far right must be dual to each other. �

If we already knew P 4442
• was finite depth, we could give an alternative argument

identifying the principal graph as 4442 as follows. We omit the details, as this is
redundant with the argument in Theorem 5.7.

Theorem 5.8. The only finite depth subfactor principal graphs with index 3 +
√
5

starting like 4111 are 4442.

Proof. If any of the edges above the quadruple point end immediately, that vertex
has dimension which is not an algebraic integer (a root of 81 − 126x2 + 4x4).
Otherwise, graph enumeration in the style of [MS12] shows that two of the legs end,
with lengths 2, 2 or with lengths 2, 3. In second case, there’s a dimension which isn’t
an algebraic integer. In the other case, the graph contains 4422. (There are two
possibilities for the dual data.) We can look for connections on this graph (without
assuming that it ends), and show that there are no bi-unitary connections. �

Theorem 5.9. The principal graphs of P 3333
• are(

,
)
.

Proof. The proof is similar to that of Theorem 5.7. Again, the modulus is
√
3 +

√
5

� 2.28825, and we find that the minimal projections one past the branch are given
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by aA+ bB + cf (4), where

(a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
1

4

(
−1 +

√
5
)
,−

√
5

6
,
1

3

)
,(

−1

2
,
1

12

(
−3 +

√
5
)
,
1

3

)
,(

1

4

(
3−

√
5
)
,
1

12

(
3 +

√
5
)
,
1

3

)
.

Since Tr(f (4)) = 6 + 3
√
5, all the minimal projections have trace 2 +

√
5, which

agree with the Frobenius-Perron dimensions of the vertices of

at depth 4. Once again, counting Frobenius-Perron dimensions and noting that∥∥∥ ∥∥∥ ≈ 2.33441,∥∥∥ ∥∥∥ ≈ 2.31384,∥∥∥ 2

∥∥∥ ≈ 2.47485,∥∥∥ ∥∥∥ ≈ 2.31725,∥∥∥ ∥∥∥ ≈ 2.29813, and∥∥∥ 2

∥∥∥ ≈ 2.41856

yields the result.
The dual principal graph is also 3333 by Theorem 5.3.
To determine the dual data, we run FindGraphPartners as in the proof of The-

orem 5.7 on the graph

.

The only possibilities for which the principal and dual principal graph are both
3333 are (

,
)

and(
,

)
.

Since ωA = ωB = 1 (see Appendix A.2), the two click rotation ρ must be the
identity on P 3333

4,+ � TL4,+, and thus all vertices at depth 4 must be self-dual. �

Theorem 5.10. The principal graphs of P 3311
• are(

,
)
.
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Proof. Similar to the proofs of Theorems 5.7 and 5.9. The modulus is
√

3 +
√
3 �

2.17533, and the minimal projections are given by aA+ bB + cf (4), where

(a, b, c) =

⎧⎪⎪⎨⎪⎪⎩
(
−

√
3
2 , 1

11

(
4− 3

√
3
)
, 1
11

(
1 + 2

√
3
))

,(
1
4

(
3−

√
3
)
, 1
22

(
7 + 3

√
3
)
, 1
11

(
5−

√
3
))

,(
1
4

(
−3 + 3

√
3
)
, 1
22

(
−15 + 3

√
3
)
, 1
11

(
5−

√
3
))

.

Since Tr(f (4)) = 4+3
√
3, the traces of the minimal projections are 2+

√
3, 1+

√
3,

and 1 +
√
3 respectively, which agree with the Frobenius-Perron dimensions of the

vertices of

at depth 4 reading from bottom to top. Finally,∥∥∥ ∥∥∥ ≈ 2.33441,∥∥∥ ∥∥∥ ≈ 2.23607 and∥∥∥ 2

∥∥∥ ≈ 2.47485.

Hence the principal graph is 3311.
For the dual graph, note that the minimal projections in P4,− are given by

ǎǍ+ b̌B̌ + čf̌ (4), where

(ǎ, b̌, č) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
0, 1

11

√
2
(
27−

√
3
)
, 1
11

(
1 + 2

√
3
))

,(
− 1

2

√
3
2

(
3−

√
3
)
,− 1

11

√
1
2

(
27−

√
3
)
, 1
11

(
5−

√
3
))

,(
1
2

√
3
2

(
3−

√
3
)
,− 1

11

√
1
2

(
27−

√
3
)
, 1
11

(
5−

√
3
))

.

Since Tr(f̌ (4)) = Tr(f (4)), the same argument as above applies, and the dual prin-
cipal graph is 3311.

To determine the dual data, we note there are only two possibilities for each
graph: either the singly valent vertices at depth 4 are self-dual or they are dual to
each other. Since ωA = −1 and ωB = 1 (see Subsection A.3), we know that ρ2 = 1
on P 3311

4,+ � TL4,+. Hence the singly valent vertices must be self-dual. �

Theorem 5.11. The principal graphs of P 2221
• are(

,
)
.

Proof. Similar to the proof of Theorems 5.7, 5.9, and 5.10. The modulus is√
(5 +

√
21)/2 ≈ 2.1889,
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and the minimal projections are given by aA+ bB + cf (3) where

(a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
(−0.0476+0.2030i)
729,
−4374,
9477,
−8586,
2943,
−270,
153,
−6,
1

, λ
(0.010242−0.025430i)
455625,
364500,
1293975,
−439020,
1378809,
119772,
31257,
−570,
25

,
1

10

(
−1 +

√
21
)

λ
(0.02010−0.08568i)
729,
−4374,
9477,
−8586,
2943,
−270,
153,
−6,
1

, λ
(−0.05749+0.14274i)
455625,
364500,
1293975,
−439020,
1378809,
119772,
31257,
−570,
25

,
1

10

(
−1 +

√
21
)

λ
(0.02753−0.11731i)
9,54,66,−3,1 , λ

(0.04725−0.11731i)
225,−180,−294,27,−5,

1

5

(
6−

√
21
)
.

Since Tr(f (3))=
√
19+4

√
21, the traces of the minimal projections are

√
5
2 +

√
21
2 ,√

5
2 +

√
21
2 , and

√
3 respectively, which agree with the Frobenius-Perron dimensions

of the vertices of

at depth 3 reading from bottom to top. Finally,∥∥∥ ∥∥∥ ≈ 2.32437,∥∥∥ ∥∥∥ ≈ 2.22158, and∥∥∥ 2

∥∥∥ ≈ 2.46991.

The dual principal graph is also 2221 by Theorem 5.5.
Finally, since the dimension one bimodules form a group, the dual data must be

as claimed. �

Appendix A. Generators in the graph planar algebra

Specifying an element of the graph planar algebra of a large graph can be a
somewhat cumbersome process; the element is a function on loops of a certain
length on the graph, and we need to specify each value. Fortunately, if the element
is a lowest weight vector, this can be significantly abbreviated.

Throughout this section, we assume that Γ is a spoke graph with m + 1 arms,
and the initial arm is at least as long as any of the other arms. (This obviously
holds for the graphs in which we are interested.)

Lemma A.1.

(1) A lowest weight vector in A ∈ G(Γ)n,+ is determined by its values on ‘col-
lapsed’ loops which stay within distance one of the central vertex.

(2) In fact, it is determined by its values on such loops which never enter one
of the spokes of our choice.
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(3) Further, the value on any loop which has more than 2k + 1 consecutive
vertices which either lie on a particular arm of the graph of length k− 1 or
are the central vertex is zero.

Proof. We’ll work in the spherical graph planar algebra, as it is somewhat easier
to state the requisite formulas there. Obviously the lemma holds in the spherical
planar algebra if and only if it holds in the lopsided graph planar algebra.

Call the central vertex of Γ c. We’ll write ||γ|| =
∑

i d(γ(i), c). For a collapsed
loop, ||γ|| = n/2, while for any other loop, ||γ|| > n/2. We’ll show that for any
non-collapsed loop γ, if A is a lowest weight vector, then A(γ) is determined by the
value of A on loops of strictly smaller norm. Inductively, this gives the result.

Suppose γ is a loop of length n on Γ, with d(γ(i), c) ≥ 2 and d(γ(i ± 1), c) =
d(γ(i), c)−1. (That is, i is a position on the loop where γ reaches a local maximum
distance from the centre.) Consider the modified loop γ′, which agrees with γ
except at position i, where it passes through the vertex 2 closer to the centre than
γ(i) (possibly the central vertex itself). Consider also the ‘snipped’ loop π of length
n− 2, obtained from γ or γ′ by removing the i-th and i+1-th positions. We name
the vertices as s = γ(i), r = γ(i± 1), and t = γ′(i).

Applying a cap at position i to A, we have ∩i(A) = 0. Evaluating this at π gives

0 =
√
dim(r)

ki ∩i(A)(π) =
√

dim(s)
ki

A(γ) +
√
dim(t)

ki

A(γ′).

(Here ki is the number of critical points in the cap strand, either 1, 2 or 3 depending
on the position of the point i around the boundary of the rectangular box, as follows:

ki =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when we have

i

or
i
,

2 when we have i or i ,

3 when we have

i

or i ,

although the case k = 3 never occurs for us as we always consider boxes with equal
numbers of strands above and below.)

For the second statement, consider some collapsed loop α of length n− 2. Write
αi,j for the collapsed loop of length n which makes an extra visit to the j-th spoke
of the graph at position i, and write uj for the vertex adjacent to the central vertex
on the j-th spoke. (If the graph has even supertransitivity, then i ought to be odd,
while if the graph has odd supertransitivity, i is even.) Now,

(A.1) 0 =
√
dim(c)

ki ∩i(A)(π) =
∑
j

√
dim(uj)

ki

A(αi,j).

Using this formula, we can express the value of A on any collapsed loop which visits
some spoke in terms of other collapsed loops which visit that spoke strictly fewer
times.

For the final statement, note that A has value zero on any loop which visits a
univalent vertex at positions i and i+2 by a similar argument as above. The value
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of A on a loop with 2k + 1 consecutive vertices either in a fixed spoke of length
k − 1 or at the central vertex is then a multiple of the value of A on a loop that
visits the end of that spoke twice consecutively by our first argument, and is thus
also zero. �

Corollary A.2. If A is a lowest weight vector in a spherical graph planar algebra,
and γ̂ denotes the ‘collapsed’ loop corresponding to γ, then

(A.2) A(γ) = (−1)(||γ||−||γ̂||)/2

⎛⎝∏
i

√
dim(γ̂(i))

dim(γ(i))

ki
⎞⎠A(γ̂).

The corresponding formula for a lowest weight vector in a lopsided graph planar
algebra is

(A.3) A(γ) = (−1)(||γ||−||γ̂||)/2

(∏
i

(
dim(γ̂(i))

dim(γ(i))

)�i
)
A(γ̂),

where

�i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when we have

i

,

1 when we have
i
, i , i or

i

,

2 when we have i .

(The exponent �i is just the number of minima on the strand.)
Rotation acts on the set of collapsed loops, so if we are trying to specify a lowest

weight vector A which is also a rotational eigenvector, then it suffices to specify A
only on a representative of each such orbit.

Lemma A.3. Fix ω an n-th root of unity. Suppose we have specified the values of
an element A on a rotation representative of each collapsed loop which avoids the
initial arm, and further that

(a) if a representative is fixed by the k-fold rotation, and ωk �= 1, the corresponding
value of A is zero, and

(b) condition (3) of Lemma A.1 holds where appropriate on these values; i.e., if a
loop visits an arm of length k−1 at least k consecutive times, the corresponding
value of A is zero.

Then we can make three consecutive well-defined extensions, defining, in turn, the
values of A:

(1) on every collapsed loop avoiding the initial arm, using the condition that A is
a rotational eigenvector with some eigenvalue ω,

(2) on every collapsed loop, via Equation (A.1), and finally
(3) on every loop, via Equation (A.2).
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The resulting element A is a rotational eigenvector, and is a lowest weight vector
if and only if

A(00 · · · 0) = (−1)n
∑

ai=1,...,m

(
n∏

i=1

(
dimuai

dim u0

)ki/2
)
A(a1a2 · · · an) = 0

(here we denote the value of A on the collapsed loop which successively visits arms
a1, a2, . . . , an by A(a1a2 · · · an)).

Example A.4. Consider the Haagerup principal graph, with n = 4 and three
arms of length 3. There are 5 representatives under rotation of collapsed loops
avoiding the initial arm, namely 1111, 1112, 1122, 1212, 1222 and 2222. Condition
(3) of Lemma A.1 says that A(1111) and A(2222) must be zero if we want to
extend A to a lowest weight vector. Further, if ω = ±i, then A(1212) must be
zero also. Finally, the condition A(0000) = 0 is trivially true when ω �= 1, since
there A(0000) = ωA(0000), while it is non-trivial when ω = 1. Thus the rotational
eigenspaces of lowest weight 4-boxes in the graph planar algebra are 3 dimensional
for ω = 1, i,−i, and 4 dimensional for ω = −1.

Thus, in each of the following subsections, we list representatives of the rotational
orbits of the collapsed loops avoiding the initial spoke. We then list the values of
our generators on these loops, and refer to the function lowestWeightCondition

in the Mathematica notebook Generators.nb (included with the arXiv sources of
this article) for the elementary check of Lemma A.3 that these actually determine
a lowest weight vector with the desired rotational eigenvector. Note that this note-
book takes quite a while to run on 4442, as it needs to lift the specified values,
expressed as particular roots of their minimal polynomials, back to the fixed num-
ber field Q(μ4442) described below. This notebook also regenerates all the values in
accordance with the above lemma, in a format compatible with the FusionAtlas

package. This notebook, however, is completely independent of that package. We
note that this method of describing lowest weight vectors was implicitly used in
[BMPS12], but without explanation of why it is always possible.

A.1. 4442. We give here two generators A0 and B0 which are rotational eigen-
vectors and lowest weight vectors, but are not self-adjoint. We’ll correct them in
Subsection B.1 by a phase to obtain self-adjoint elements.

The two generators A0, B0 for 4442 have rotational eigenvalues

ωA = exp

(
2πi

3

5

)
, ωB = exp

(
2πi

2

5

)
,

and we chose square roots σA, σB:

σA = exp

(
2πi

8

10

)
, σB = exp

(
2πi

2

10

)
.

We express A0, B0 here by giving their coefficients on representatives of the rota-
tional orbits of the collapsed loops. We write these coefficients as algebraic numbers,
that is, roots of certain integer coefficient polynomials. Recall that the notation

λ
(z)
an,...,a0 indicates the root of the polynomial

∑
aix

i which is approximately equal
to z. (We give z to sufficiently high precision that it clearly distinguishes amongst
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the roots.) In fact, we know that all of these numbers lie in a single number field,
but it is a terrifying one: Q(μ4442), where μ4442 is the root of

x16 − 137624x15 + 8933996874x14 − 350479594607884x13

+ 9011981487580477099x12 − 153965505437561352450336x11

+ 1677614319697333636358399288x10 − 10020910478354387137539071365292x9

+ 14924720493503061057816631839615921x8

+ 106599644350188183735570113321511839620x7

+ 190438222993363250317220258290893662331668x6

+ 186721586395717486269136749424837851231468948x5

+ 116885475358299597752661285079387479235051171199x4

+ 48661380081758389460116404892672194953761868153880x3

+ 13292626196670539867585523753990034583320535147867050x2

+ 2196889811116840388811767217587569058102181055950438988x

+ 171603625204099732635330174190840922237651443646904957481,

which is approximately 17589.4 + 13246.7i. The polynomials in μ4442 required to
express these numbers themselves tend to be horrific (coefficients whose numerator
and denominator may have hundreds of digits), and we chose to spare the reader
from the danger of trying to read them. The overenthusiastic may of course view
them in the Mathematica notebook. Nevertheless, it is important to remember
that the calculation of moments in §B must be performed inside this number field
in order to be tractable.

The reason we work with the non-self-adjoint generators A0 and B0 is simply
that the coefficients of the phase corrected generators require an even larger number
field; sufficiently large, in fact, that our computers can’t perform the necessary
calculations there!

A0(11112) = λ
(0.009547+0.023000i)
3941830656,370676736,12897792,−5087232,111600,36792,852,−6,1

A0(11113) = λ
(0.026510+0.063867i)
1247219856,379505736,55366092,5211378,385155,25407,1422,54,1

A0(11122) = λ
(−0.37586+0.02986i)
3941830656,2911168512,562837248,25208064,6989040,233784,7428,42,1

A0(11123) = λ
(0.13774+0.13191i)
77951241,−40286727,21922488,−4650534,645165,−27324,2988,−27,31

A0(11132) = λ
(0.11518−0.15201i)
1247219856,652215888,202145868,6602796,6554925,997056,165888,9768,496

A0(11133) = λ
(0.22307−0.01772i)
77951241,−34088769,8046702,−1582902,130005,−10098,2412,24,16

A0(11212) = λ
(−0.15040+0.62850i)
15397776,−13490712,3167748,−6096654,2141865,640836,414528,2883,961

A0(11213) = λ
(−0.57158−1.17710i)
247219856,3177168624,5503926672,4667265522,2501734815,231250113,72236142,
4203666,122461

A0(11222) = λ
(0.024549−0.102591i)
3941830656,2911168512,562837248,25208064,6989040,233784,7428,42,1

A0(11223) = λ
(−0.181705−0.437753i)
1247219856,−598818096,213923592,−131814378,67404555,−2266407,34767,−279,1

A0(11232) = λ
(−0.23036+0.96265i)
1247219856,1315874160,1776121020,856453500,225182025,32508000,1964250,13125,625

A0(11233) = λ
(0.48303−0.03838i)
77951241,−49106898,33170958,−32103216,9349425,−303966,101448,1392,16

A0(11312) = λ
(1.04250−0.79086i)
247219856,−884877696,195611112,−129102498,2093568525,564703758,25239672,
−2431059,122461

A0(11313) = λ
(−0.08426+0.35214i)
77951241,74852262,35328798,11706039,2207655,166914,12168,432,16
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A0(11322) = λ
(0.360178−0.308085i)
35316,−24678,7389,168,1

A0(11323) = λ
(−0.18246+0.76250i)
77951241,−155425716,96700392,−79082163,68641425,−4964112,278712,−144,16

A0(11332) = λ
(−0.41334−0.25287i)
77951241,121336947,113029263,60444549,17861715,2067174,73368,−1248,16

A0(12122) = λ
(0.77203−0.06134i)
15397776,−13490712,3167748,−6096654,2141865,640836,414528,2883,961

A0(12123) = λ
(−0.3333+1.0259i)
81,108,144,72,16

A0(12132) = λ
(−0.4911−0.9604i)
77951241,−75805794,99558072,−91700667,145832805,−61946748,27924912,−9145536,3041536

A0(12133) = λ
(1.15226−0.09155i)
77951241,−151373205,49269465,15230025,11397915,918000,319500,6000,400

A0(12213) = λ
(−0.06347−0.15291i)
1247219856,−2526859800,1974773520,−491005800,55811025,−10587375,2076750,−45000,625

A0(12222) = λ
(0.075927+0.046450i)
3941830656,370676736,12897792,−5087232,111600,36792,852,−6,1

A0(12223) = λ
(0.13497−0.38939i)
77951241,31228173,13579083,7130106,2059425,324216,29448,1458,31

A0(12232) = λ
(0.49113−0.87531i)
247219856,1670588064,−268120368,1191806622,1842147765,−527829912,98070912,
−6203229,122461

A0(12233) = λ
(−0.70611+0.05610i)
77951241,83195667,22443723,14206509,7526925,−899316,106308,−48,16

A0(12313) = λ
(0.07491+1.38254i)
7951241,−175449888,329852088,−416257056,333376560,−158331456,44336448,
−6899328,476416

A0(12322) = λ
(−0.55570+0.83581i)
247219856,−884877696,195611112,−129102498,2093568525,564703758,25239672,
−2431059,122461

A0(12323) = λ
(−0.24343−0.67826i)
77951241,325154412,587305728,611166384,426416400,193325184,52769088,7788672,476416

A0(12332) = λ
(0.031564+0.019310i)
77951241,−134686395,185147775,−112077675,34665165,−5968350,586800,−24000,400

A0(13132) = λ
(1.1727−0.5217i)
190096,−298224,48892,140748,−31635,79392,9592,14424,29776

A0(13133) = λ
(−1.3384+0.1063i)
11881,31174,44152,52112,25680,11968,17152,−1024,4096

A0(13222) = λ
(−0.26442+0.27576i)
3041536,−390656,219552,−53008,49325,−14677,3417,−389,31

A0(13223) = λ
(−0.90634−0.55448i)
190096,419432,437068,227614,74265,−12256,2458,97,1

A0(13232) = λ
(−0.6626+0.0854i)
190096,−298224,48892,140748,−31635,79392,9592,14424,29776

A0(13233) = λ
(0.6692−0.0532i)
11881,−15587,11038,−6514,1605,−374,268,8,16

A0(13322) = λ
(−0.25174−0.60649i)
190096,155216,93912,6998,−10335,−2908,1022,39,1

A0(13323) = λ
(0.2574+0.6200i)
11881,−3052,1228,1861,255,−1174,628,−152,16

A0(22223) = λ
(0.026510+0.063867i)
1247219856,379505736,55366092,5211378,385155,25407,1422,54,1

A0(22233) = λ
(0.22307−0.01772i)
77951241,−34088769,8046702,−1582902,130005,−10098,2412,24,16

A0(22323) = λ
(−0.08426+0.35214i)
77951241,74852262,35328798,11706039,2207655,166914,12168,432,16

A0(23233) = λ
(−1.3384+0.1063i)
11881,31174,44152,52112,25680,11968,17152,−1024,4096

B0(11112) = λ
(0.075927+0.046450i)
3941830656,370676736,12897792,−5087232,111600,36792,852,−6,1

B0(11113) = λ
(−0.058988−0.036087i)
1247219856,379505736,55366092,5211378,385155,25407,1422,54,1

B0(11122) = λ
(0.024549−0.102591i)
3941830656,2911168512,562837248,25208064,6989040,233784,7428,42,1

B0(11123) = λ
(0.11968+0.39436i)
77951241,−40286727,21922488,−4650534,645165,−27324,2988,−27,31

B0(11132) = λ
(−0.28523+0.29746i)
1247219856,652215888,202145868,6602796,6554925,997056,165888,9768,496

B0(11133) = λ
(0.05208−0.21763i)
77951241,−34088769,8046702,−1582902,130005,−10098,2412,24,16
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B0(11212) = λ
(0.77203−0.06134i)
15397776,−13490712,3167748,−6096654,2141865,640836,414528,2883,961

B0(11213) = λ
(−0.68071−0.73758i)
247219856,3177168624,5503926672,4667265522,2501734815,231250113,72236142,
4203666,122461

B0(11222) = λ
(−0.37586+0.02986i)
3941830656,2911168512,562837248,25208064,6989040,233784,7428,42,1

B0(11223) = λ
(0.404307+0.247347i)
1247219856,−598818096,213923592,−131814378,67404555,−2266407,34767,−279,1

B0(11232) = λ
(−0.16504+0.01311i)
1247219856,1315874160,1776121020,856453500,225182025,32508000,1964250,13125,625

B0(11233) = λ
(−0.16485+0.68888i)
77951241,−49106898,33170958,−32103216,9349425,−303966,101448,1392,16

B0(11312) = λ
(−0.55570+0.83581i)
247219856,−884877696,195611112,−129102498,2093568525,564703758,25239672,
−2431059,122461

B0(11313) = λ
(−0.36094+0.02868i)
77951241,74852262,35328798,11706039,2207655,166914,12168,432,16

B0(11322) = λ
(0.360178−0.308085i)
35316,−24678,7389,168,1

B0(11323) = λ
(1.14251−0.09077i)
77951241,−155425716,96700392,−79082163,68641425,−4964112,278712,−144,16

B0(11332) = λ
(−0.27155−0.65421i)
77951241,121336947,113029263,60444549,17861715,2067174,73368,−1248,16

B0(12122) = λ
(−0.15040+0.62850i)
15397776,−13490712,3167748,−6096654,2141865,640836,414528,2883,961

B0(12123) = λ
(−0.3333−1.0259i)
81,108,144,72,16

B0(12132) = λ
(0.7616−0.7639i)
77951241,−75805794,99558072,−91700667,145832805,−61946748,27924912,−9145536,3041536

B0(12133) = λ
(−0.008611+0.035986i)
77951241,−151373205,49269465,15230025,11397915,918000,319500,6000,400

B0(12213) = λ
(0.84435+0.51656i)
1247219856,−2526859800,1974773520,−491005800,55811025,−10587375,2076750,−45000,625

B0(12222) = λ
(0.009547+0.023000i)
3941830656,370676736,12897792,−5087232,111600,36792,852,−6,1

B0(12223) = λ
(−0.18897−0.02576i)
77951241,31228173,13579083,7130106,2059425,324216,29448,1458,31

B0(12232) = λ
(−1.29611+0.17986i)
247219856,1670588064,−268120368,1191806622,1842147765,−527829912,98070912,
−6203229,122461

B0(12233) = λ
(0.11277−0.47125i)
77951241,83195667,22443723,14206509,7526925,−899316,106308,−48,16

B0(12313) = λ
(0.56984−0.44112i)
7951241,−175449888,329852088,−416257056,333376560,−158331456,44336448,
−6899328,476416

B0(12322) = λ
(1.04250−0.79086i)
247219856,−884877696,195611112,−129102498,2093568525,564703758,25239672,
−2431059,122461

B0(12323) = λ
(−1.29172+0.49847i)
77951241,325154412,587305728,611166384,426416400,193325184,52769088,7788672,476416

B0(12332) = λ
(0.44313+1.06757i)
77951241,−134686395,185147775,−112077675,34665165,−5968350,586800,−24000,400

B0(13132) = λ
(−0.6626+0.0854i)
190096,−298224,48892,140748,−31635,79392,9592,14424,29776

B0(13133) = λ
(−0.3125+1.3058i)
11881,31174,44152,52112,25680,11968,17152,−1024,4096

B0(13222) = λ
(0.10678−0.14092i)
3041536,−390656,219552,−53008,49325,−14677,3417,−389,31

B0(13223) = λ
(−0.27865−0.67130i)
190096,419432,437068,227614,74265,−12256,2458,97,1

B0(13232) = λ
(1.1727−0.5217i)
190096,−298224,48892,140748,−31635,79392,9592,14424,29776

B0(13233) = λ
(0.1562−0.6529i)
11881,−15587,11038,−6514,1605,−374,268,8,16

B0(13322) = λ
(−0.38319−0.23443i)
190096,155216,93912,6998,−10335,−2908,1022,39,1

B0(13323) = λ
(−0.5727−0.3503i)
11881,−3052,1228,1861,255,−1174,628,−152,16

B0(22223) = λ
(−0.058988−0.036087i)
1247219856,379505736,55366092,5211378,385155,25407,1422,54,1
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B0(22233) = λ
(0.05208−0.21763i)
77951241,−34088769,8046702,−1582902,130005,−10098,2412,24,16

B0(22323) = λ
(−0.36094+0.02868i)
77951241,74852262,35328798,11706039,2207655,166914,12168,432,16

B0(23233) = λ
(−0.3125+1.3058i)
11881,31174,44152,52112,25680,11968,17152,−1024,4096

A.2. 3333. The self-adjoint generators A,B of P 3333
• have chiralities σA = 1 and

σB = 1. Their values on collapsed loops are as follows:

A(1112) =
1

4

(
2−

√
5
)

A(1113) =
1

8

(
3
√
5− 7

)

A(1122) =
1

4

(√
5− 3

)
A(1123) =

1

8

(
3−

√
5
)

A(1132) =
1

8

(
3−

√
5
)

A(1133) =
1

4

(
3−

√
5
)

A(1212) =
1

4

(√
5− 1

)
A(1213) =

1

8

(
−1−

√
5
)

A(1222) =
1

4

(
2−

√
5
)

A(1223) =
1

8

(√
5− 1

)

A(1232) =
1

8

(√
5− 1

)
A(1233) = −1

4

A(1313) =
1

4

(
3−

√
5
)

A(1322) =
1

8

(√
5− 1

)

A(1323) =
1

4
A(1332) = −1

4

A(1333) =
1

8

(
3
√
5− 7

)
A(2223) =

1

8

(
3−

√
5
)

A(2233) = 0 A(2323) = −1

2

A(2333) =
1

8

(
3−

√
5
)

B(1112) =
1

8

(
7
√
5− 15

)
B(1113) =

1

8

(√
5− 3

)

B(1122) =
1

2

(
2−

√
5
)

B(1123) =
1

4

B(1132) =
1

4
B(1133) =

1

2

(
2−

√
5
)

B(1212) =
1

4

(
5− 3

√
5
)

B(1213) =
1

4

(
2−

√
5
)

B(1222) =
1

8

(
7
√
5− 15

)
B(1223) =

1

8

(
5− 3

√
5
)

B(1232) =
1

8

(
1 +

√
5
)

B(1233) =
1

8

(
3
√
5− 7

)

B(1313) =
1

2
B(1322) =

1

8

(
5− 3

√
5
)

B(1323) =
1

8

(√
5− 5

)
B(1332) =

1

8

(
3
√
5− 7

)

B(1333) =
1

8

(√
5− 3

)
B(2223) =

1

4

(
9− 4

√
5
)

B(2233) =
√
5− 2 B(2323) =

1

4

(
3
√
5− 7

)

B(2333) =
1

4

(
9− 4

√
5
)

Clearly all of these entries lie in the field Q(
√
5).
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A.3. 3311. The self-adjoint generators A,B of P 3311
• have chiralities σA = i, ωA =

σ2
A = −1, and σB = ωB = 1. Their values on collapsed loops are as follows:

A(1112) =
1

6

(
9− 5

√
3
)

A(1113) =
1

6

(
3
√
3− 5

)

A(1123) =
1

3

(√
3− 1

)
A(1132) =

1

3

(
1−

√
3
)

A(1212) =
1

6

(
5
√
3− 9

)
A(1213) =

1

6

(√
3− 3

)

A(1232) =
1

3

(√
3− 1

)
A(1313) =

1

6

(
7− 3

√
3
)

A(1323) =
1

3

(
1−

√
3
)

A(2323) = 0

B(1112) =
1

4

(
9− 5

√
3
)

B(1113) =
1

12

(√
3− 3

)

B(1123) =
1

6

(
3−

√
3
)

B(1132) =
1

6

(
3−

√
3
)

B(1212) =
1

4

(
13

√
3− 21

)
B(1213) =

1

4

(√
3− 3

)

B(1232) =
1

6

(
7
√
3− 15

)
B(1313) =

1

12

(
1−

√
3
)

B(1323) =
1

6

(√
3− 1

)
B(2323) =

1

3

(
2
√
3− 2

)

Clearly these entries all lie in Q(
√
3).

A.4. 2221. As in Subsection A.1, we work with non-self-adjoint generators for
2221. We will correct them by phases in Subsection B.4 to get self-adjoint elements.

The generators A0, B0 have rotational eigenvalues

ωA = exp

(
2πi

1

3

)
, ωB = 1,

for which we choose square roots

σA = exp

(
2πi

4

6

)
, σB = 1.

Their values on collapsed loops are as follows:

A0(112) = λ
(0.5762−0.5412i)
9,9,9,−18,21,−12,12,−6,1 A0(113) = λ

(−0.4208+0.3953i)
81,81,54,−27,−27,−9,6,3,1

A0(122) = λ
(0.3194+0.0964i)
9,9,9,−18,21,−12,12,−6,1 A0(123) = λ

(−0.6319−1.0945i)
9,9,12,−3,1

A0(132) = λ
(−1.1319+0.5621i)
9,27,30,12,1 A0(223) = λ

(−0.4208+0.3953i)
81,81,54,−27,−27,−9,6,3,1

B0(112) = λ
(−0.0605−0.1502i)
225,−45,288,−45,201,−39,36,3,1 B0(113) = λ

(−0.3528−0.8759i)
45,36,42,3,−1

B0(122) = λ
(0.3396+0.8433i)
225,−45,288,−45,201,−39,36,3,1 B0(123) = λ

(−0.9110+0.8759i)
45,54,24,−39,5

B0(132) =
1

6

(
3 +

√
21

)
B0(223) = λ

(−0.3528−0.8759i)
45,36,42,3,−1

These entries all lie in the number field Q(μ2221), where μ2221 is the root of

x8 − 18x7 − 345x6 + 7146x5 + 84726x4 − 1458918x3

− 13821786x2 + 101759328x+ 1245393549,

which is approximately 14.85 + 9.90i.
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In fact, we could have tried working directly with self-adjoint generators, but
this would have required a degree 32 number field. We could still calculate the
requisite moments, however we could not express the values of the generators on
collapsed loops in the above compact form; instead, we would have to write out the
32 coefficients in the number field for each value.

Appendix B. Moments

In the following subsections, we give the quadratic and cubic moments for our
generators calculated directly from the graph planar algebra. Recall that the gen-
erators given in Appendix A are not normalized, so Tr(A2) and Tr(B2) need not
be equal to 1.

B.1. 4442. Recall from Appendix A.1 that the generators given for 4442 are not
self-adjoint, since it would require working in an even larger number field (as if
Q(μ4442) isn’t terrifying enough)! However, for each non-self-adjoint S0 ∈ B0,
there is a γS ∈ U(1) such that S = γSS0 is self-adjoint. Hence we compute the
moments in the graph planar algebra using the non self-adjoint generators, and
we correct them afterward to agree with what we would get from first making our
generators self-adjoint. This amounts to multiplying the moment by the correction
factor for each generator that appears, e.g.,

Tr(A2B) = Tr((γAA0)
2γBB0) = γ2

AγB Tr(A2
0B0).

In the case of 4442, the correction factors for A0, B0 are equal and given by

γA = γB =

√
437

872
− 135

√
5

872
+

1

436
i

√
15

2

(
15943 + 3933

√
5
)
,

and the corrected moments are as follows:

Tr(A2) =

√
12706131015

11881
+

5682354525
√
5

11881

Tr(AB) = 0

Tr(B2) =

√
12706131015

11881
+

5682354525
√
5

11881

Tr(A3) =

√
36768021311025

2590058
+

16443159009075
√
5

2590058

Tr(A2B) = −

√
25201176715665

1295029
+

11270308849830
√
5

1295029

Tr(AB2) = −

√
25201176715665

1295029
+

11270308849830
√
5

1295029
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Tr(B3) =

√
36768021311025

2590058
+

16443159009075
√
5

2590058

Tr(Ǎ2) =

√
12706131015

11881
+

5682354525
√
5

11881

Tr(ǍB̌) = 0

Tr(B̌2) =

√
12706131015

11881
+

5682354525
√
5

11881

Tr(Ǎ3) =

√
36768021311025

2590058
+

16443159009075
√
5

2590058

Tr(Ǎ2B̌) = −

√
25201176715665

1295029
+

11270308849830
√
5

1295029

Tr(ǍB̌2) = −

√
25201176715665

1295029
+

11270308849830
√
5

1295029

Tr(B̌3) =

√
36768021311025

2590058
+

16443159009075
√
5

2590058

B.2. 3333. Since the generators of 3333 are self-adjoint, no corrections are needed.
The moments are as follows:

Tr(A2) =
1

2

(
11 + 5

√
5
)

Tr(Ǎ2) =
1

2

(
11 + 5

√
5
)

Tr(AB) = 0 Tr(ǍB̌) = 0

Tr(B2) = 6 + 3
√
5 Tr(B̌2) = 6 + 3

√
5

Tr(A3) =
1

8

(
−27− 12

√
5
)

Tr(Ǎ3) = 0

Tr(A2B) =
1

16

(
−25− 11

√
5
)

Tr(Ǎ2B̌) = −

√
123

4
+

55
√
5

4

Tr(AB2) =
1

16

(
63 + 27

√
5
)

Tr(ǍB̌2) = 0

Tr(B3) =
1

8

(
15 + 6

√
5
)

Tr(B̌3) = 3

√
1

2

(
9 + 4

√
5
)
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B.3. 3311. Since the generators of 3311 are self-adjoint, no corrections are needed.
The moments are as follows:

Tr(A2) =
1

9

(
12 + 8

√
3
)

Tr(Ǎ2) =
1

9

(
12 + 8

√
3
)

Tr(AB) = 0 Tr(ǍB̌) = 0

Tr(B2) =
1

3

(
9 + 4

√
3
)

Tr(B̌2) =
1

3

(
9 + 4

√
3
)

Tr(A3) =
1

27

(
−6− 4

√
3
)

Tr(Ǎ3) = 0

Tr(A2B) =
1

9

(
−3− 2

√
3
)

Tr(Ǎ2B̌) = −
√

44

27
+

76

27
√
3

Tr(AB2) =
1

18

(
15 + 14

√
3
)

Tr(ǍB̌2) = 0

Tr(B3) =
1

12

(
23− 2

√
3
)

Tr(B̌3) =

√
9

4
+

1

4
√
3

B.4. 2221. As in Subsection B.1 for 4442, we now correct our non-self-adjoint
generators for 2221 by multiplying by the following phases:

γA =
1

2

√
1−

√
21− i

√
2
(√

21− 3
)
,

γB =

√
−19

20
+

√
21

20
− 1

10
i

√
1

2

(
9 + 19

√
21
)
,

which yield the corrected moments:

Tr(A2) = 3

√
55 + 12

√
21 Tr(Ǎ2) = 3

√
55 + 12

√
21

Tr(AB) = 0 Tr(ǍB̌) = 0

Tr(B2) =

√
60093

50
+

13113
√
21

50
Tr(B̌2) =

√
60093

50
+

13113
√
21

50

Tr(A3) = −18− 4
√
21 Tr(Ǎ3) = −18− 4

√
21

Tr(A2B) =

√
4413

10
+

963
√
21

10
Tr(Ǎ2B̌) =

√
4413

10
+

963
√
21

10

Tr(AB2) =
1

5

(
198 + 43

√
21
)

Tr(ǍB̌2) =
1

5

(
198 + 43

√
21
)

Tr(B3) = −

√
11667

250
+

2547
√
21

250
Tr(B̌3) = −

√
11667

250
+

2547
√
21

250
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