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INTRINSIC SQUARE FUNCTION CHARACTERIZATIONS

OF MUSIELAK-ORLICZ HARDY SPACES

YIYU LIANG AND DACHUN YANG

Abstract. Let ϕ : Rn × [0,∞) → [0,∞) be such that ϕ(x, ·) is an Orlicz
function and ϕ(·, t) is a Muckenhoupt A∞(Rn) weight uniformly in t. In this
article, for any α ∈ (0, 1] and s ∈ Z+, the authors establish the s-order in-
trinsic square function characterizations of Hϕ(Rn) in terms of the intrinsic
Lusin area function Sα,s, the intrinsic g-function gα,s and the intrinsic g∗λ-
function g∗λ,α,s with the best known range λ ∈ (2 + 2(α + s)/n,∞), which

are defined via Lipα(R
n) functions supporting in the unit ball. A ϕ-Carleson

measure characterization of the Musielak-Orlicz Campanato space Lϕ,1,s(Rn)
is also established via the intrinsic function. To obtain these characterizations,
the authors first show that these s-order intrinsic square functions are point-
wise comparable with those similar-looking s-order intrinsic square functions
defined via Lipα(R

n) functions without compact supports, which when s = 0
was obtained by M. Wilson. All these characterizations of Hϕ(Rn), even when
s = 0,

ϕ(x, t) := w(x)tp for all t ∈ [0,∞) and x ∈ R
n

with p ∈ (n/(n+ α), 1] and w ∈ Ap(1+α/n)(R
n), also essentially improve the

known results.

1. Introduction

The intrinsic square functions were first introduced by Wilson in [35] to settle a
conjecture proposed by R. Fefferman and E. M. Stein on the boundedness of the
Lusin area function S from the weighted Lebesgue space L2

M(v)(R
n) to the weighted

Lebesgue space L2
v(R

n), where 0 ≤ v ∈ L1
loc (R

n) and M denotes the Hardy-
Littlewood maximal function. Moreover, Wilson [36] proved that these intrinsic
square functions are bounded on the weighted Lebesgue spaces Lp

w(R
n) when p ∈

(1,∞) and w ∈ Ap(R
n) (the class of Muckenhoupt weights). More applications of

such intrinsic square functions were also given by Wilson [37,38] and Lerner [23,24].
These intrinsic square functions can be thought of as “grand maximal” square

functions, in the style of the “grand maximal function” of C. Fefferman and Stein
from [12]: they dominate all the square functions of the form S(f) (and the clas-
sical ones as well), but are not essentially bigger than any one of them. Like the
Fefferman-Stein and Hardy-Littlewood maximal functions, their generic natures
make them pointwise equivalent to each other and extremely easy to work with.
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Moreover, the intrinsic Lusin area function has the distinct advantage of being
pointwise comparable at different cone openings, which is a property long known
not to hold true for the classical Lusin area function; see Wilson [35, 36, 38] and
also Lerner [23, 24].

Recently, Huang and Liu [18] obtained the intrinsic square function characteri-
zations of the weighted Hardy space H1

w(R
n) under the additional assumption that

f ∈ L1
w(R

n), which was further generalized to the weighted Hardy space Hp
w(R

n)
with p ∈ (n/(n + α), 1) and α ∈ (0, 1] by Wang and Liu [34], under the addi-
tional assumption that f ∈ (Lip(α, 1, 0))∗. Moreover, Wang and Liu [33] obtained
the weak type estimates of these intrinsic square functions on the weighted Hardy
space Hp

w(R
n) when p = n/(n+ α).

On the other hand, Birnbaum-Orlicz [2] and Orlicz [29] introduced the Orlicz
space, which is a natural generalization of Lp(Rn). Recently, Ky [21] introduced a
new Musielak-Orlicz Hardy space Hϕ(Rn), which generalizes both the Orlicz-Hardy
space (see, for example, [19, 32]) and the weighted Hardy space (see, for example,
[14, 15, 30]). Moreover, more real-variable characterizations of Hϕ(Rn) were ob-
tained in [17, 25] and the local Musielak-Orlicz Hardy space, hϕ(Rn), was studied
in [39]. Musielak-Orlicz functions are the natural generalization of Orlicz functions
that may vary in the spatial variables; see, for example, [27]. The motivation to
study function spaces of Musielak-Orlicz type comes from their wide applications
in physics and mathematics; see, for example, [4–6, 21, 28] and their references.
In particular, some special Musielak-Orlicz Hardy spaces appear naturally in the
study of the products of functions in BMO(Rn) and H1(Rn) (see [5, 6]), and the
endpoint estimates for the div-curl lemma and the commutators of singular integral
operators (see [3, 5, 22]).

In this article, we establish various s-order intrinsic square function character-
izations of Hϕ(Rn), including the intrinsic Lusin area function, the intrinsic g-
function and the intrinsic g∗λ-function. To this end, we first show that the s-order
intrinsic square functions, defined via Lipα(R

n) functions supporting in the unit
ball, are pointwise comparable with those similar-looking s-order intrinsic square
functions, defined via Lipα(R

n) functions without compact supports, which when
s = 0 were obtained by Wilson [35]. Since the square function characterizations of
Hϕ(Rn) have been obtained in [25] and the intrinsic square function is larger than
the square function pointwise, it suffices to show the boundedness of the intrinsic
square functions from Hϕ(Rn) to Lϕ(Rn). We point out that our characterizations
of Hϕ(Rn), even when s = 0,

(1.1) ϕ(x, t) := w(x)tp for all x ∈ R
n and t ∈ [0,∞)

with p ∈ (n/(n+α), 1] and w ∈ Ap(1+α/n)(R
n), also essentially improve the known

results in [18] and [34] by removing the additional assumptions that f ∈ L1
w(R

n)
or f ∈ (Lip(α, 1, 0))∗. Moreover, by using some ideas from [13], the range of λ in
our intrinsic g∗λ-function characterization of Hϕ(Rn) coincides with the known best
range of the g∗λ-function characterization for Hp(Rn), which improves the ranges of
λ appearing in the corresponding results in [18] and [34].

To state our main results, we begin with some notions and notation. For α ∈
(0, 1] and s ∈ Z+ := {0, 1, . . .}, let Cα,s(Rn) be the family of functions φ ∈ Cs(Rn)
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such that supp φ ⊂ {x ∈ Rn : |x| ≤ 1},∫
Rn

φ(x)xγ dx = 0

for all γ := (γ1, . . . , γn) ∈ Z
n
+ := (Z+)

n and |γ| := γ1 + · · ·+ γn ≤ s, and

|Dνφ(x1)−Dνφ(x2)| ≤ |x1 − x2|α for all x1, x2 ∈ R
n, ν ∈ Z

n
+ and |ν| = s.

Here and in what follows, for all γ := (γ1, . . . , γn) ∈ Zn
+ and x := (x1, . . . , xn) ∈ Rn,

xγ := xγ1

1 · · ·xγn
n and Dγ :=

(
∂

∂x1

)γ1

· · ·
(

∂

∂xn

)γn

.

For all f ∈ L1
loc (R

n) and (y, t) ∈ R
n+1
+ := Rn × (0,∞), let

Aα,s(f)(y, t) := sup
φ∈Cα,s(Rn)

|f ∗ φt(y)| ,

where, for all t ∈ (0,∞), φt(·) := 1
tnφ(

·
t ). Then, the intrinsic g-function, the

intrinsic Lusin area integral and the intrinsic g∗λ-function of f are, respectively,
defined by setting, for all x ∈ Rn,

gα,s(f)(x) :=

{∫ ∞

0

[Aα,s(f)(x, t)]
2 dt

t

}1/2

,

Sα,s(f)(x) :=

{∫ ∞

0

∫
{y∈Rn: |y−x|<t}

[Aα,s(f)(y, t)]
2 dy dt

tn+1

}1/2

(1.2)

and

g∗λ,α,s(f)(x) :=

{∫ ∞

0

∫
Rn

(
t

t+ |x− y|

)λn

[Aα,s(f)(y, t)]
2 dy dt

tn+1

}1/2

.

We also introduce another kind of similar-looking square functions, defined via
convolutions with kernels that have unbounded supports. For α ∈ (0, 1], s ∈ Z+

and ε ∈ (0,∞), let C(α,ε),s(Rn) be the family of functions φ ∈ Cs(Rn) such that,
for all x ∈ Rn, γ ∈ Zn

+ and |γ| ≤ s,

|Dγφ(x)| ≤ (1 + |x|)−n−ε,∫
Rn

φ(x)xγ dx = 0

and, for all x1, x2 ∈ R
n, ν ∈ Z

n
+ and |ν| = s,

(1.3) |Dνφ(x1)−Dνφ(x2)| ≤ |x1 − x2|α[(1 + |x1|)−n−ε + (1 + |x2|)−n−ε].

Observe that, in what follows, the parameter ε usually has to be chosen to be large
enough. For all f satisfying

(1.4) |f(·)|(1 + | · |)−n−ε ∈ L1(Rn)

and (y, t) ∈ R
n+1
+ , let

Ã(α,ε),s(f)(y, t) := sup
φ∈C(α,ε),s(Rn)

|f ∗ φt(y)| .
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Then, for all x ∈ Rn, we define

g̃(α,ε),s(f)(x) :=

{∫ ∞

0

[
Ã(α,ε),s(f)(x, t)

]2 dt

t

}1/2

,

S̃(α,ε),s(f)(x) :=

{∫ ∞

0

∫
{y∈Rn: |y−x|<t}

[
Ã(α,ε),s(f)(y, t)

]2 dy dt

tn+1

}1/2

(1.5)

and

g̃∗λ,(α,ε),s(f)(x) :=

{∫ ∞

0

∫
Rn

(
t

t+ |x− y|

)λn [
Ã(α,ε),s(f)(y, t)

]2 dy dt

tn+1

}1/2

.

When s = 0, these intrinsic square functions were first introduced by Wilson [35].
Recall that a function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is

nondecreasing, Φ(0) = 0, Φ(t) > 0 for all t ∈ (0,∞) and limt→∞ Φ(t) = ∞. Observe
that, different from the classical Orlicz functions being convex, the Orlicz functions
in this article may not be convex. The function Φ is said to be of upper type (resp.
lower type) p for some p ∈ [0,∞) if there exists a positive constant C such that, for
all t ∈ [0,∞) and s ∈ [1,∞) (resp. s ∈ [0, 1]),

Φ(st) ≤ CspΦ(t).

For a given function ϕ : Rn × [0,∞) → [0,∞) such that, for any x ∈ Rn, ϕ(x, ·)
is an Orlicz function, ϕ is said to be of uniformly upper type (resp. uniformly lower
type) p for some p ∈ [0,∞) if there exists a positive constant C such that, for all
x ∈ Rn, t ∈ [0,∞) and s ∈ [1,∞) (resp. s ∈ [0, 1]),

ϕ(x, st) ≤ Cspϕ(x, t).

Moreover, ϕ is said to be of positive uniformly upper type (resp. uniformly lower
type) if it is of uniformly upper type (resp. uniformly lower type) p for some
p ∈ (0,∞). The critical uniformly lower type index of ϕ is defined by

(1.6) i(ϕ) := sup{p ∈ (0,∞) : ϕ is of uniformly lower type p}.
Observe that i(ϕ) may not be attainable; namely, ϕ may not be of uniformly lower
type i(ϕ) (see [25]).

Let ϕ : Rn × [0,∞) → [0,∞) satisfy that x �→ ϕ(x, t) is measurable for all
t ∈ [0,∞). Following [21], the function ϕ(·, t) is said to satisfy the uniformly
Muckenhoupt condition for some q ∈ [1,∞), denoted by ϕ ∈ Aq(R

n), if, when
q ∈ (1,∞), it holds true that

sup
t∈(0,∞)

sup
B⊂Rn

1

|B|q
∫
B

ϕ(x, t) dx

{∫
B

[ϕ(y, t)]−q′/q dy

}q/q′

< ∞,

where 1/q + 1/q′ = 1, or, when q = 1, it holds true that

sup
t∈(0,∞)

sup
B⊂Rn

1

|B|

∫
B

ϕ(x, t) dx

(
ess sup
y∈B

[ϕ(y, t)]−1

)
< ∞.

Here the first supremums are taken over all t ∈ [0,∞) and the second ones over all
balls B ⊂ R

n.
Let

A∞(Rn) :=
⋃

q∈[1,∞)

Aq(R
n).
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The critical weight index of ϕ ∈ A∞(Rn) is defined as follows:

(1.7) q(ϕ) := inf {q ∈ [1,∞) : ϕ ∈ Aq(R
n)} .

Observe that if q(ϕ) ∈ (1,∞), then ϕ 	∈ Aq(ϕ)(R
n) and there exists ϕ 	∈ A1(R

n)
such that q(ϕ) = 1 (see, for example, [20]).

Now we recall the notion of growth functions (see [21]).

Definition 1.1. A function ϕ : Rn × [0,∞) → [0,∞) is called a growth function if
the following conditions are satisfied:

(i) ϕ is a Musielak-Orlicz function; namely,
(i)1 the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for all

x ∈ Rn,
(i)2 the function ϕ(·, t) is a measurable function for all t ∈ [0,∞).

(ii) ϕ ∈ A∞(Rn).
(iii) ϕ is of positive uniformly lower type p for some p ∈ (0, 1] and of uniformly

upper type 1.

Throughout the whole paper, we always assume that ϕ is a growth function as
in Definition 1.1 and, for any measurable subset E of Rn and t ∈ [0,∞), we let

ϕ(E, t) :=

∫
E

ϕ(x, t) dx.

The Musielak-Orlicz space Lϕ(Rn) is defined to be the space of all measurable
functions f such that

∫
Rn ϕ(x, |f(x)|) dx < ∞ with the quasi-norm

‖f‖Lϕ(Rn) := inf

{
λ ∈ (0,∞) :

∫
Rn

ϕ

(
x,

|f(x)|
λ

)
dx ≤ 1

}
.

Observe that ϕ(x, ·) for any x ∈ Rn may not be convex in the time variable, and
hence ‖ · ‖Lϕ(Rn) may not be a Luxembourg norm.

In what follows, we denote by S(Rn) the space of all Schwartz functions and by
S ′(Rn) its dual space (namely, the space of all tempered distributions). For m ∈ N,
let

Sm(Rn) :=

{
ψ ∈ S(Rn) : sup

β∈Zn
+, |β|≤m+1

sup
x∈Rn

(1 + |x|)(m+2)(n+1)|∂β
xψ(x)| ≤ 1

}
.

Then, for all f ∈ S ′(Rn), the nontangential grand maximal function f∗
m of f is

defined by setting, for all x ∈ Rn,

f∗
m(x) := sup

ψ∈Sm(Rn)

sup
|y−x|<t, t∈(0,∞)

|f ∗ ψt(y)|,

where, for all t ∈ (0,∞), ψt(·) := t−nψ( ·t ). When

m(ϕ) := �n[q(ϕ)/i(ϕ)− 1]�,
where q(ϕ) and i(ϕ) are, respectively, as in (1.7) and (1.6), we denote f∗

m(ϕ) simply

by f∗.
Now we recall the definition of the Musielak-Orlicz Hardy space Hϕ(Rn) intro-

duced by Ky [21] as follows.

Definition 1.2. Let ϕ be a growth function. The Musielak-Orlicz Hardy space
Hϕ(Rn) is defined to be the space of all f ∈ S ′(Rn) such that f∗ ∈ Lϕ(Rn) with
the quasi-norm

‖f‖Hϕ(Rn) := ‖f∗‖Lϕ(Rn).
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Since ‖ · ‖Lϕ(Rn) is only known to be a quasi-norm, it follows that Hϕ(Rn)
usually is not a Banach space, but locally convex and therefore good enough to
have non-trivial linear functionals. Indeed, Ky [21] also introduced the following
Musielak-Orlicz BMO-type space BMOϕ(Rn) and proved that the dual space of
Hϕ(Rn) is the Musielak-Orlicz BMO space BMOϕ(Rn) in the case when m(ϕ) = 0.

Definition 1.3. Let ϕ be a growth function. The Musielak-Orlicz BMO-type space
BMOϕ(Rn) is defined to be the space of all f ∈ L1

loc (R
n) such that

‖f‖BMOϕ(Rn) := sup
B⊂Rn

1

‖χB‖Lϕ(Rn)

∫
B

|f(x)− fB | dx < ∞,

where the supremum is taken over all the balls B ⊂ R
n and fB denotes the average

of f on B, namely,

(1.8) fB :=
1

|B|

∫
B

f(y) dy.

To complete the study of Ky [21] on the dual space of Hϕ(Rn), namely, to decide
the dual space of Hϕ(Rn) in the case when m(ϕ) ∈ N, the following Musielak-Orlicz
Campanato spaces Lϕ,q,s(R

n) were introduced in [26] and the space Lϕ,1,s(R
n) was

proved to be the dual space of Hϕ(Rn) for all s ∈ [m(ϕ),∞)∩Z+ in a natural way
(see also Lemma 3.5 below).

In what follows, for any s ∈ Z+, we use Ps(R
n) to denote the set of all polyno-

mials on Rn with order not more than s.

Definition 1.4. Let ϕ be as in Definition 1.1, q ∈ [1,∞) and s ∈ Z+. A locally
integrable function f on Rn is said to belong to the Musielak-Orlicz Campanato
space Lϕ,q,s(R

n) if

‖f‖Lϕ,q,s(Rn) := sup
B⊂Rn

1

‖χB‖Lϕ(Rn)

×
{∫

B

[
|f(x)− P s

Bf(x)|
ϕ(x, ‖χB‖−1

Lϕ(Rn))

]q

ϕ
(
x, ‖χB‖−1

Lϕ(Rn)

)
dx

}1/q

< ∞,

where the supremum is taken over all the balls B ⊂ Rn and P s
Bg denotes the unique

P ∈ Ps(R
n) such that, for all Q ∈ Ps(R

n),

(1.9)

∫
B

[g(x)− P (x)]Q(x) dx = 0.

Remark 1.5. (i) When

ϕ(x, t) := tp for all x ∈ R
n and t ∈ (0,∞)

with p ∈ (0, 1], via some trivial computations, we know that

‖χB‖Lϕ(Rn) = |B|1/p

and

ϕ
(
x, ‖χB‖−1

Lϕ(Rn)

)
= |B|−1

for any ball B ⊂ Rn and x ∈ Rn and hence, in this case,

‖f‖Lϕ,q,s(Rn) := sup
B⊂Rn

|B|1−1/p

{
1

|B|

∫
B

|f(x)− P s
Bf(x)|q dx

}1/q

,
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where the supremum is taken over all the balls B ⊂ Rn and P s
Bg is as in (1.9). That

is, in this case, Lϕ,q,s(R
n) just becomes the classical Campanato space L 1

p−1,q,s(R
n),

which was introduced by Campanato [7].
(ii) When ϕ is as in (1.1) with p ∈ (0, 1] and w ∈ A∞(Rn), via some trivial

computations, we see that

‖χB‖Lϕ(Rn) = [w(B)]1/p

and

ϕ
(
x, ‖χB‖−1

Lϕ(Rn)

)
= w(x)[w(B)]−1

for any ball B ⊂ Rn and x ∈ Rn, where w(B) :=
∫
B
w(x) dx. Thus, in this case,

‖f‖Lϕ,q,s(Rn) := sup
B⊂Rn

[w(B)]1−1/p

{
1

w(B)

∫
B

|f(x)− P s
Bf(x)|q[w(x)]1−q dx

}1/q

,

where the supremum is taken over all the balls B ⊂ Rn and P s
Bg is as in (1.9). That

is, in this case, Lϕ,q,s(R
n) coincides with the weighted Campanato space introduced

by Garćıa-Cuerva [14] as the dual space of the corresponding weighted Hardy space.

Recall that f ∈ S ′(Rn) is said to vanish weakly at infinity if, for every φ ∈ S(Rn),
f ∗φt → 0 in S ′(Rn) as t → ∞; see, for example, [13, p. 50]. The growth function ϕ
is said to satisfy a uniformly locally dominated convergence condition if the following
holds: For every compact K ⊂ Rn and sequence {fm}m∈N of measurable functions
on Rn, if fm → f almost everywhere, and |fm| ≤ g almost everywhere for some
nonnegative measurable function g satisfying that

sup
t∈(0,∞)

∫
K

g(x)
ϕ(x, t)

ϕ(K, t)
dx < ∞,

then

sup
t∈(0,∞)

∫
K

|fm(x)− f(x)| ϕ(x, t)
ϕ(K, t)

dx → 0

as m → ∞.
Observe that the growth functions

ϕ(x, t) := w(x)Φ(t),

with w ∈ A∞(Rn) and Φ being an Orlicz function,

ϕ(x, t) := tp

and

ϕ(x, t) =
tp

[log(e+ |x|) + log(e+ tp)]p
,

with p ∈ (0, 1], for all x ∈ Rn and t ∈ (0,∞), satisfy the uniformly locally dominated
convergence condition. More examples of growth functions satisfying the uniformly
locally dominated convergence condition can be found in [17, 25, 39].

Our main results of this paper are as follows.

Theorem 1.6. Let ϕ be a growth function satisfying the uniformly locally domi-
nated convergence condition, α ∈ (0, 1], s ∈ Z+, ε ∈ (α+s,∞), p ∈ (n/(n+α+s), 1]
and ϕ ∈ Ap(1+(α+s)/n)(R

n). Then f ∈ Hϕ(Rn) if and only if f ∈ (Lϕ,1,s(R
n))∗,
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the dual space of Lϕ,1,s(R
n), f vanishes weakly at infinity and gα,s(f) ∈ Lϕ(Rn);

moreover, when this is obtained, it holds true that

1

C
‖gα,s(f)‖Lϕ(Rn) ≤ ‖f‖Hϕ(Rn) ≤ C‖gα,s(f)‖Lϕ(Rn)

with C being a positive constant independent of f .
The same is true if gα,s(f) is replaced by g̃(α,ε),s(f).

Observe that, for all x ∈ Rn, Sα,s(f)(x) and gα,s(f)(x) are pointwise comparable
(see Proposition 2.4 below), which, together with Theorem 1.6, immediately implies
Corollary 1.7. We omit the details.

Corollary 1.7. Let ϕ be a growth function satisfying the uniformly locally domi-
nated convergence condition, α ∈ (0, 1], s ∈ Z+, ε ∈ (α+s,∞), p ∈ (n/(n+α+s), 1]
and ϕ ∈ Ap(1+(α+s)/n)(R

n). Then f ∈ Hϕ(Rn) if and only if f ∈ (Lϕ,1,s(R
n))∗, f

vanishes weakly at infinity and Sα,s(f) ∈ Lϕ(Rn); moreover, when this is obtained,
it holds true that

1

C
‖Sα,s(f)‖Lϕ(Rn) ≤ ‖f‖Hϕ(Rn) ≤ C‖Sα,s(f)‖Lϕ(Rn)

with C being a positive constant independent of f .

The same is true if Sα,s(f) is replaced by S̃(α,ε),s(f).

Theorem 1.8. Let ϕ be a growth function satisfying the uniformly locally domi-
nated convergence condition, α ∈ (0, 1], s ∈ Z+, ε ∈ (α+s,∞), p ∈ (n/(n+α+s), 1],
ϕ ∈ Ap(1+(α+s)/n)(R

n) and λ ∈ (2+2(α+s)/n,∞). Then f ∈ Hϕ(Rn) if and only if
f ∈ (Lϕ,1,s(R

n))∗, f vanishes weakly at infinity and g∗λ,α,s(f) ∈ Lϕ(Rn); moreover,
when this is obtained, it holds true that

1

C
‖g∗λ,α,s(f)‖Lϕ(Rn) ≤ ‖f‖Hϕ(Rn) ≤ C‖g∗λ,α,s(f)‖Lϕ(Rn)

with C being a positive constant independent of f .
The same is true if g∗λ,α,s(f) is replaced by g̃∗λ,(α,ε),s(f).

Finally, we establish the intrinsic ϕ-Carleson measure characterization of the
space Lϕ,1,s(R

n). We first recall the following ϕ-Carleson measure which was first
introduced in [26].

Definition 1.9. Let ϕ be a growth function. A measure μ on R
n+1
+ is called a

ϕ-Carleson measure if

‖μ‖ϕ := sup
B⊂Rn

1

‖χB‖Lϕ(Rn)

{∫
̂B

tn

ϕ(B(x, t), ‖χB‖−1
Lϕ(Rn))

|dμ(x, t)|
}1/2

< ∞,

where the supremum is taken over all balls B ⊂ Rn and

B̂ := {(x, t) ∈ R
n+1
+ : B(x, t) ⊂ B}

denotes the tent over B.

Remark 1.10. (i) Notice that when

ϕ(x, t) := t for all x ∈ R
n and t ∈ (0,∞),

then, for all B ⊂ Rn, it holds true that

‖χB0
‖−1
Lϕ(Rn) = |B|−1
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and hence

‖μ‖ϕ := sup
B⊂Rn

[
μ(B̂)

|B|

]1/2

,

where the supremum is taken over all balls B ⊂ R
n and B̂ denotes the tent over

B. Thus, in this case, the ϕ-Carleson measure just becomes the classical Carleson
measure, which was introduced by Carleson [8, 9] and was used by Fefferman and
Stein in [12] to characterize the space BMO(Rn).

(ii) When ϕ is as in Remark 1.5(i), in this case, we then have

‖μ‖ϕ := sup
B⊂Rn

[
μ(B̂)

|B|2/p−1

]1/2

,

where the supremum is taken over all balls B ⊂ Rn and B̂ denotes the tent over
B. Thus, in this case, the ϕ-Carleson measure just becomes the fractional Carleson
measure, which was introduced by Essén et al. [11] and was used by Dafni and
Xiao in [10] to characterize the space Qα(R

n).
(iii) When ϕ is as in Remark 1.5(ii), in this case, we have

‖μ‖ϕ := sup
B⊂Rn

{∫
̂B

tn

w(B(x, t))[w(B)]2/p−1
|dμ(x, t)|

}1/2

< ∞,

where the supremum is taken over all balls B ⊂ Rn and B̂ denotes the tent over B.

In what follows, for α ∈ (0, 1], s ∈ Z+, ε ∈ (0,∞) and b ∈ Lϕ,1,s(R
n) such that b

satisfies (1.4) with f replaced by b, the measure μb on R
n+1
+ is defined by setting,

for all (x, t) ∈ R
n+1
+ ,

(1.10) dμb(x, t) := [Ã(α,ε),s(b)(x, t)]
2 dx dt

t
.

Theorem 1.11. Let ϕ be a growth function, α ∈ (0, 1], s ∈ Z+, ε ∈ (α + s,∞),
p ∈ (n/(n+ α + s), 1], ϕ ∈ A1(R

n). Then b ∈ Lϕ,1,s(R
n) if and only if b satisfies

(1.4) with f replaced by b, and μb as in (1.10) is a ϕ-Carleson measure on R
n+1
+ .

Moreover, when this is obtained, there exists a positive constant C, independent of
b, such that

1

C
‖b‖Lϕ,1,s(Rn) ≤ ‖μb‖ϕ ≤ C‖b‖Lϕ,1,s(Rn).

Remark 1.12. (i) We point out that if φ belongs to Cα,s(Rn) or C(α,ε),s(Rn), then
φ ∈ Lϕ,1,s(R

n); see Proposition 2.3 below. Thus, the intrinsic square functions are
well defined for functionals in (Lϕ,1,s(R

n))∗. Observe that if φ ∈ S(Rn), then there
exists a positive constant C such that Cφ satisfies (1.3) and hence φ ∈ Lϕ,1,s(R

n)
(by Proposition 2.3). Thus, if f ∈ (Lϕ,1,s(R

n))∗, then f ∈ S ′(Rn) and f vanishing
weakly at infinity makes sense.

(ii) Recall that the Lipschitz space Lip(α, 1, 0), for α ∈ (0, 1], is defined by

Lip(α, 1, 0)

:=

{
b ∈ L1

loc (R
n) : ‖b‖Lip(α,1,0) := sup

B

1

|B|1+α/n

∫
B

|b(y)− bB| dy < ∞
}
,

where the supremum is taken over all balls B in Rn and bB denotes the average of
b on B; namely, bB is as in (1.8) with f replaced by b.
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When ϕ is as in (1.1), Wang and Liu [34] proved that if f ∈ (Lip(α, 1, 0))∗, then
f ∈ Hp

w(R
n) if and only if f vanishes weakly at infinity, and gα(f) ∈ Lp

w(R
n) or

g̃(α,ε)(f) ∈ Lp
w(R

n) or Sα(f) ∈ Lp
w(R

n) or S̃(α,ε)(f) ∈ Lp
w(R

n) or g∗λ,α(f) ∈ Lp
w(R

n)

or g̃∗λ,(α,ε)(f) ∈ Lp
w(R

n) with λ > 3 + 2α/n. In the present article, we remove the

additional assumption that f ∈ (Lip(α, 1, 0))∗ in [34].
(iii) For p ∈ (0, 1], Folland and Stein [13] established the Littlewood-Paley g∗λ–

characterization, with λ ∈ (2/p,∞), of Hp(Rn), which is the best known range
of λ. For the Littlewood-Paley g∗λ–characterization of the weighted Hardy space
Hp

w(R
n), with p ∈ (0, 1], q ∈ [1,∞) and w ∈ Aq(R

n), the best known range of λ is
λ ∈ (2q/p,∞); see, for example, [25]. If p ∈ (n/(n+ α), 1] and w ∈ Ap(1+α/n)(R

n),
Huang and Liu [18] and Wang and Liu [34] established the intrinsic Littlewood-
Paley g∗λ-characterization of Hp

w(R
n) with λ > 3 + 2α/n. This corresponds to

the case when s = 0 of Theorem 1.8, in which we improve the range of λ to
λ > 2(1+α/n), which coincides with the best known range of λ. Moreover, observe
that it was proved in [35, p. 783] that the intrinsic square functions in (1.2) and
(1.5), defined via using cones with other apertures, are pointwise comparable, which
can give simpler proofs of [18, Theorem 3] and [34, Theorem 3]. We omit the details.

(iv) When
ϕ(x, t) := t for all x ∈ R

n and t ∈ (0,∞),

Theorem 1.11 was obtained by Wilson [38]. In the other case, Theorem 1.11 is new.

This article is organized as follows.
In Section 2, we establish some estimates on the intrinsic square functions, which

are the key tools for the proofs of our main results. In Proposition 2.3 below, we
show that if φ belongs to Cα,s(Rn) or C(α,ε),s(Rn), then φ ∈ Lϕ,1,s(R

n), which
further implies that the intrinsic square functions are well defined for functionals
in (Lϕ,1,s(R

n))∗. In Proposition 2.4 and Theorem 2.6 below, we also show that if
α ∈ (0, 1], s ∈ Z+ and ε ∈ (α+ s,∞), then, for all f satisfying (1.4) and x ∈ Rn,

Sα,s(f)(x) ∼ gα,s(f)(x) ∼ g̃(α,ε),s(f)(x).

We point out that the key point, appearing in the proof of Theorem 2.6, is that a
function in C(α,ε),s(Rn) can be decomposed into a sequence of functions belonging
to Cα,s(Rn), in whose proof we borrow some ideas from Taibleson and Weiss [31]
on how to use the minimal polynomial to construct the higher order vanishing
moments of the functions in Cα,s(Rn).

Section 3 is devoted to the proofs of Theorems 1.6, 1.8 and 1.11. The key
tools used to show Theorem 1.6 are Theorem 2.6 in Section 2 of this article, the
Littlewood-Paley g-function characterization of Hϕ(Rn) from [25, Theorem 4.4],
the atomic characterization of Hϕ(Rn) established by Ky [21] (see also Lemma
3.4 below) and the fact that the dual space of Hϕ(Rn) is Lϕ,1,s(R

n) proved in
[26, Theorem 3.5] (see also Lemma 3.5 below). In the proof of Theorem 1.8, by
borrowing some ideas from Folland and Stein [13] and Aguilera and Segovia [1],
we first establish key technical Lemma 3.6, which clarifies the relation between

the amplitude β and the Orlicz norm of the intrinsic square function S̃β,(α,ε),s(f)
in (3.7) below. This, together with Corollary 1.7, further induces the best range
λ ∈ (2(n+α+s)/n,∞) appearing in Theorem 1.8. Applying Theorem 1.6, we then
complete the proof of Theorem 1.11.

Finally we make some conventions on notation. Throughout the whole article,
we denote by C a positive constant which is independent of the main parameters,
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but it may vary from line to line. The symbol A � B means that A ≤ CB. If
A � B and B � A, then we write A ∼ B. For any measurable subset E of Rn,

we denote by E� the set Rn \E and its characteristic function by χE . We also set
N := {1, 2, . . .} and Z+ := N ∪ {0}.

2. Some estimates of intrinsic square functions

In this section, we prove some key facts on the intrinsic square functions, which
are the key tools for the proof of Theorem 1.6 in Section 3. We begin with recalling
Lemma 2.1 on the properties of growth functions, which is from [21, Lemmas 4.1,
4.2 and 4.5], respectively.

Lemma 2.1. Let ϕ be a growth function. Then the following hold true:
(i) there exists a positive constant C such that, for all (x, tj) ∈ R

n × [0,∞) with
j ∈ N,

ϕ

⎛⎝x,

∞∑
j=1

tj

⎞⎠ ≤ C

∞∑
j=1

ϕ(x, tj);

(ii) for all (x, t) ∈ Rn × [0,∞),

ϕ̃(x, t) :=

∫ t

0

ϕ(x, s)

s
ds

is a growth function equivalent to ϕ; moreover, ϕ̃(x, ·) is continuous and strictly
increasing;

(iii) for all f ∈ Lϕ(Rn) \ {0},∫
Rn

ϕ

(
x,

|f(x)|
‖f‖Lϕ(Rn)

)
dx = 1;

(iv) if ϕ ∈ Aq(R
n) with q ∈ [1,∞), then there exists a positive constant C such

that, for all balls B1, B2 ⊂ Rn with B1 ⊂ B2 and t ∈ (0,∞),

ϕ(B2, t)

ϕ(B1, t)
≤ C

[
|B2|
|B1|

]q
;

(v) if ϕ ∈ Aq(R
n) with q ∈ [1,∞), then there exists a positive constant C such

that, for all balls B(x0, r) ⊂ Rn with x0 ∈ Rn and r ∈ (0,∞), and t ∈ [0,∞),∫
[B(x0,r)]�

ϕ(x, t)

|x− x0|nq
dx ≤ C

ϕ(B(x0, r), t)

rnq
.

The following lemma is from [31, p. 83].

Lemma 2.2. Let g ∈ L1
loc (R

n), s ∈ Z+ and B be a ball in Rn. Then there exists
a positive constant C, independent of g and B, such that

sup
x∈B

|P s
Bg(x)| ≤

C

|B|

∫
B

|g(x)| dx.

The following technical proposition implies that the intrinsic square functions
are well defined for functionals in (Lϕ,1,s(R

n))∗.

Proposition 2.3. Let ϕ be a growth function, α ∈ (0, 1], s ∈ Z+, ε ∈ (α + s,∞),
p ∈ (n/(n + α + s), 1] and ϕ ∈ Ap(1+(α+s)/n)(R

n). If f ∈ C(α,ε),s(Rn), then f ∈
Lϕ,1,s(R

n).
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Proof. For any f ∈ C(α,ε),s(Rn), ball B := B(x0, r) ⊂ Rn with x0 ∈ Rn and
r ∈ (0,∞), and x ∈ Rn, let

pB(x) :=
∑

γ∈Zn
+, |γ|≤s

Dγf(x0)

γ !
(x− x0)

γ ∈ Ps(R
n).

Then, by Lemma 2.2, Taylor’s theorem and (1.3), we see that, for any x ∈ B, there
exists ξ(x) ∈ B such that∫

B

|f(x)− P s
Bf(x)| dx(2.1)

≤
∫
B

[|f(x)− pB(x)|+ |P s
B(pB − f)(x)|] dx

�
∫
B

|f(x)− pB(x)| dx

�
∫
B

∣∣∣∣∣∣
∑

γ∈Zn
+, |γ|=s

Dγf(ξ(x))−Dγf(x0)

γ !
(x− x0)

γ

∣∣∣∣∣∣ dx
� rn+α+s

{
[1 + |ξ(x)|]−n−ε + (1 + |x0|)−n−ε

}
.

For all balls B1, B2 ⊂ Rn with B1 ⊂ B2 and t ∈ [0,∞), by (iii) and (iv) of
Lemma 2.1, the uniformly lower type p property of ϕ and ϕ ∈ Ap(1+(α+s)/n)(R

n),
we conclude that

|B1|1+(α+s)/n

‖χB1
‖Lϕ(Rn)

(2.2)

∼ |B1|1+(α+s)/n

‖χB1
‖Lϕ(Rn)

[
ϕ(B2, ‖χB2

‖−1
Lϕ(Rn))

ϕ(B1, ‖χB1
‖−1
Lϕ(Rn))

]1/p

� |B1|1+(α+s)/n

‖χB1
‖Lϕ(Rn)

[
ϕ(B2, ‖χB1

‖−1
Lϕ(Rn))

ϕ(B1, ‖χB1
‖−1
Lϕ(Rn))

]1/p
‖χB1

‖Lϕ(Rn)

‖χB2
‖Lϕ(Rn)

� |B1|1+(α+s)/n

‖χB2
‖Lϕ(Rn)

[
|B2|
|B1|

]1+(α+s)/n

∼ |B2|1+(α+s)/n

‖χB2
‖Lϕ(Rn)

.

Now, if |x0|+ r ≤ 1, namely, B ⊂ B(0, 1), then, by (2.1) and (2.2), we see that

1

‖χB‖Lϕ(Rn)

∫
B

|f(x)− P s
Bf(x)| dx � |B|1+(α+s)/n

‖χB‖Lϕ(Rn)
(2.3)

� |B(0, 1)|1+(α+s)/n

‖χB(0,1)‖Lϕ(Rn)
∼ 1.

If |x0| + r > 1 and |x0| ≤ 2r, then r > 1/3 and |B| ∼ |B(0, |x0| + r)|. Since
|f(x)| ≤ (1 + |x|)−n−ε for all x ∈ Rn, we have∫

B

|f(x)− P s
Bf(x)| dx �

∫
Rn

(1 + |x|)−n−ε dx � 1.

Thus, from (2.2), it follows that

(2.4)
1

‖χB‖Lϕ(Rn)

∫
B

|f(x)− P s
Bf(x)| dx � 1

‖χB‖Lϕ(Rn)
� 1.
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If |x0|+r > 1 and |x0| > 2r, then, for all x ∈ B, it holds true that 1 � |x| ∼ |x0|,
which, together with (2.1), (2.2) and ε ∈ (α+ s,∞), further implies that

1

‖χB‖Lϕ(Rn)

∫
B

|f(x)− P s
Bf(x)| dx(2.5)

� |B|n+α+s
n

‖χB‖Lϕ(Rn)
|B(0, |x0|+ r)|−

n+ε
n

� |B(0, |x0|+ r)|1+(α+s)/n

|B(0, |x0|+ r)|n+ε
n ‖χB(0,|x0|+r)‖Lϕ(Rn)

� 1.

Combining (2.3), (2.4) and (2.5), we see that f ∈ Lϕ,1,s(R
n) and ‖f‖Lϕ,1,s(Rn) � 1,

which completes the proof of Proposition 2.3. �

Let α ∈ (0, 1], s ∈ Z+ and ε ∈ (0,∞). For all f satisfying (1.4) and x ∈ Rn,
define

σα,s(f)(x) :=

{∑
k∈Z

[
Aα,s(f)(x, 2

k)
]2}1/2

and

σ̃(α,ε),s(f)(x) :=

{∑
k∈Z

[
Ã(α,ε),s(f)(x, 2

k)
]2}1/2

.

Next we show that the intrinsic square functions Sα,s(f), gα,s(f), σα,s(f) and the
similar-looking intrinsic square functions are pointwise comparable.

Proposition 2.4. Let α ∈ (0, 1], s ∈ Z+ and ε ∈ (0,∞). Then, for all f satisfying
(1.4) and all x ∈ Rn, it holds true that

gα,s(f)(x) ∼ Sα,s(f)(x) ∼ σα,s(f)(x)

and

g̃(α,ε),s(f)(x) ∼ S̃(α,ε),s(f)(x) ∼ σ̃(α,ε),s(f)(x)

with the implicit positive constants independent of f .

Proof. Let Cα,s(y, t), with y ∈ Rn and t ∈ (0,∞), be the family of functions φ :
Rn → R, supported in B(y, t), such that, for all γ ∈ Zn

+ and |γ| ≤ s,∫
Rn

φ(x)xγ dx = 0

and, for all x1, x2 ∈ R
n, ν ∈ Z

n
+ and |ν| = s,

|Dνφ(x1)−Dνφ(x2)| ≤ t−n−α|x1 − x2|α.
It is easy to see that

Aα,s(f)(y, t) = sup
φ∈Cα,s(y,t)

∣∣∣∣∫
Rn

f(x)φ(x) dx

∣∣∣∣ .
By the definition of Cα,s(y, t), we know that, for all t ∈ (0,∞),∫

{y∈Rn: |y|<t}
[Aα,s(f)(y, t)]

2 dy

tn
� [Aα,s(f)(0, 2t)]

2
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and

[Aα,s(f)(0, t)]
2 �

∫
{y∈Rn: |y|<t}

[Aα,s(f)(y, 2t)]
2 dy

tn

�
∫
{y∈Rn: |y|<2t}

[Aα,s(f)(y, 2t)]
2 dy

tn
.

Integrating these inequalities in dt
t from 0 to ∞, we then conclude that

gα,s(f)(0) ∼ Sα,s(f)(0),

which, together with the translation transformation, further implies that, for all
x ∈ Rn,

gα,s(f)(x) ∼ Sα,s(f)(x) ∼ σα,s(f)(x).

Similarly, we also see that, for all x ∈ Rn,

g̃(α,ε),s(f)(x) ∼ S̃(α,ε),s(f)(x) ∼ σ̃(α,ε),s(f)(x),

which completes the proof of Proposition 2.4. �

Observe that Proposition 2.4 when s = 0 was first obtained byWilson [35, p. 783],
which shows the advantages of intrinsic square functions.

To show that gα,s(f) and g̃(α,ε),s(f) are pointwise comparable, we need the fol-
lowing technical lemma.

Lemma 2.5. Let α ∈ (0, 1], s ∈ Z+ and ε ∈ (max{s, α},∞). Then, for any ψ ∈
C(α,ε),s(Rn), there exist positive constants C and a sequence {φk}k∈Z+

of functions

such that Cφk ∈ Cα,s(0, 2k) and

ψ =
∑
k∈Z+

2−k(ε−max{s,α})φk.

Proof. Let h ∈ C∞
c (Rn) be real, radial and non-negative, support in

{x ∈ R
n : 1/8 ≤ |x| ≤ 1/2},

and be normalized such that, for all x 	= 0,
∞∑

k=−∞
h(2−kx) = 1.

Let

ρ0(·) := 1−
∞∑
k=1

h(2−k·)

and, for k ∈ N,

ρk(·) := h(2−k·).
Then, supp ρk ⊂ {x ∈ Rn : 2k−3 ≤ |x| ≤ 2k−1},

∑∞
k=0 ρk = 1 and, for all x ∈ Rn,

ψ(x) =

∞∑
k=0

ρk(x)ψ(x).

Let

Mk :=

[∫
Rn

ρk(x) dx

]−1

.

Then Mk ∼ 2−kn.
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For k ∈ Z+, let {φk
l : l ∈ Zn

+ and |l| ≤ s} be the orthogonal polynomials with
weight ρk obtained via the Gram-Schmidt method from

{xβ : β ∈ Z
n
+ and |β| ≤ s};

namely, for all l, ν ∈ Zn
+ and |l|, |ν| ≤ s, φk

l ∈ Ps(R
n) and(

φk
ν , φ

k
l

)
k
:= Mk

∫
Rn

φk
ν(x)φ

k
l (x)ρk(x) dx = δνl,

where δνl := 1 if ν = l and δνl := 0 if ν 	= l.
Let

Pk :=
∑

l∈Zn
+, |l|≤s

(
ψ, φk

l

)
k
φk
l .

Then, for all Q ∈ Ps(R
n), it holds true that∫
Rn

[ψ(x)− Pk(x)]Q(x)ρk(x) dx = 0.(2.6)

For k ∈ Z+, let {ψk
l : l ∈ Z

n
+ and |l| ≤ s} be the dual basis of

{xβ : β ∈ Z
n
+ and |β| ≤ s}

with respect to the weight ρk; that is, for all l, β ∈ Zn
+ and |l|, |β| ≤ s, ψk

l ∈ Ps(R
n)

and (
ψk
l , x

β
)
k
:= Mk

∫
Rn

ψk
l (x)x

βρk(x) dx = δlβ.(2.7)

Then, from the fact that, for all l, β ∈ Zn
+ and |l|, |β| ≤ s,⎛⎝ ∑

ν∈Zn
+, |ν|≤s

(
φk
l , ψ

k
ν

)
k
xν , ψk

β

⎞⎠
k

=

⎛⎝φk
l ,

∑
ν∈Zn

+, |ν|≤s

(
xν , ψk

β

)
k
ψk
ν

⎞⎠
k

=
(
φk
l , ψ

k
β

)
k
,

it follows that, for all x ∈ Rn,

φk
l (x) =

∑
ν∈Zn

+, |ν|≤s

(
φk
l , ψ

k
ν

)
k
xν .

Thus, it holds true that

Pk =
∑

l∈Zn
+, |l|≤s

(
ψ, φk

l

)
k
φk
l(2.8)

=
∑

l∈Zn
+, |l|≤s

⎛⎝ψ,
∑

ν∈Zn
+, |ν|≤s

(
φk
l , ψ

k
ν

)
k
xν

⎞⎠
k

φk
l

=
∑

l∈Zn
+, |l|≤s

∑
ν∈Zn

+, |ν|≤s

(ψ, xν)k
(
φk
l , ψ

k
ν

)
k
φk
l

=
∑

ν∈Zn
+, |ν|≤s

(ψ, xν)k ψ
k
ν .
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For all l, β ∈ Zn
+ and |l|, |β| ≤ s, by the equality

M1

∫
Rn

ψ1
l (y)y

βρ1(y) dy = δlβ = Mk

∫
Rn

ψk
l (x)x

βρk(x) dx

= M1

∫
Rn

(2k−1)|β|ψk
l (2

k−1y)yβρ1(y) dy,

we see that

ψk
l (·) = (2k−1)−|l|ψ1

l (2
−k+1·).

Thus, for all l, β ∈ Zn
+, |l|, |β| ≤ s and k ∈ N, we have

‖Dβψk
l ‖L∞(Rn) � 2−(k−1)(|l|+|β|).(2.9)

For all l ∈ Zn
+, |l| ≤ s and k ∈ Z+, let

Nk
l :=

∞∑
j=k

(
ψ, xl

)
j

∫
Rn

ρj(y) dy.

Then, for all l ∈ Zn
+ and |l| ≤ s, we see that

N0
l =

∞∑
j=0

∫
Rn

ψ(x)xlρj(x) dx =

∫
Rn

ψ(x)xl dx = 0.

From the assumption ε ∈ (α + s,∞), it follows that, for all l ∈ Zn
+, |l| ≤ s and

k ∈ N,

|Nk
l | ≤

∞∑
j=k

∣∣∣∣∫
Rn

ψ(x)xlρj(x) dx

∣∣∣∣ � ∞∑
j=k

2j(−ε+|l|) � 2k(−ε+|l|).(2.10)

Using (2.10) and (2.9), we know that

Mk‖Nk
l ψ

k
l ρk‖L∞(Rn) � 2−k(n+ε) → 0, as k → ∞.(2.11)

Thus, from (2.8) and (2.11), we deduce that

∞∑
k=0

Pkρk =

∞∑
k=0

∑
l∈Zn

+, |l|≤s

(
ψ, xl

)
k
ψk
l ρk

=
∑

l∈Zn
+, |l|≤s

∞∑
k=0

Nk
l

(
Mkψ

k
l ρk −Mk+1ψ

k+1
l ρk+1

)
.

Now, write

ψ =

∞∑
k=0

(ψ − Pk + Pk)ρk

=
∞∑
k=0

⎧⎨⎩(ψ − Pk)ρk +
∑

l∈Zn
+, |l|≤s

Nk
l

(
Mkψ

k
l ρk −Mk+1ψ

k+1
l ρk+1

)⎫⎬⎭
=:

∞∑
k=0

2−k(ε−max{s,α})φ̃k.

We next show that there exists a positive constant C such that, for all k ∈ Z+,

Cφ̃k ∈ Cα,s(0, 2k).
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Obviously, supp φ̃k ⊂ {x ∈ Rn : 2k−3 ≤ |x| ≤ 2k}. From (2.6) and (2.7), it
follows that, for all l ∈ Zn

+ and |l| ≤ s,∫
Rn

φ̃k(x)x
l dx = 0.

By (1.3), we see that, for all k ∈ Z+, ν ∈ Zn
+, |ν| = s and x1, x2 ∈ Rn,

|Dν(ψρk)(x1)−Dν(ψρk)(x2)| � 2−k(n+ε)|x1 − x2|α.(2.12)

On the other hand, by (2.9), we know that, for all k ∈ Z+, l, ν ∈ Zn
+, |l| ≤ s,

|ν| = s and x1, x2 ∈ R
n,

|Dν(ψk
l ρk)(x1)−Dν(ψk

l ρk)(x2)| � 2−k|x1 − x2| � 2−kα|x1 − x2|α.(2.13)

From this and (2.10), we deduce that, for all k ∈ Z+, l, ν ∈ Zn
+, |l| ≤ s, |ν| = s and

x1, x2 ∈ Rn, ∣∣Dν
(
Nk

l Mkψ
k
l ρk

)
(x1)−Dν

(
Nk

l Mkψ
k
l ρk

)
(x2)

∣∣(2.14)

� 2−k(n+ε−s)2−kα|x1 − x2|α ∼ 2−k(n+ε+α−s})|x1 − x2|α.

By (2.13) and (2.8), we also conclude that, for all k ∈ Z+, l, ν ∈ Zn
+, |l| ≤ s, |ν| = s

and x1, x2 ∈ Rn,

|Dν(Pkρk)(x1)−Dν(Pkρk)(x2)|(2.15)

=
∑

l∈Zn
+, |l|≤s

(
ψ, xl

)
k
|Dν(ψk

l ρk)(x1)−Dν(ψk
l ρk)(x2)|

� 2−k(n+ε−s)2−kα|x1 − x2|α

� 2−k(n+ε+α−s)|x1 − x2|α.

Combining (2.12), (2.14), (2.15) and ε ∈ (max{s, α},∞), we see that, for all k ∈ Z+,
ν ∈ Zn

+, |ν| = s and x1, x2 ∈ Rn,

|Dν(φ̃k)(x1)−Dν(φ̃k)(x2)| � 2−k(n+α)|x1 − x2|α,

which further implies that there exists a positive constant C such that

Cφ̃k ∈ Cα,s(0, 2k).

This finishes the proof of Lemma 2.5. �

Using Lemma 2.5, we now prove Theorem 2.6, which, in the case when s = 0,
was first obtained by Wilson [35, Theorem 2].

Theorem 2.6. Let α ∈ (0, 1], s ∈ Z+ and ε ∈ (max{s, α},∞). Then there exists
a positive constant C such that, for all f satisfying (1.4) and x ∈ Rn,

1

C
gα,s(f)(x) ≤ g̃(α,ε),s(f)(x) ≤ Cgα,s(f)(x).

Proof. Obviously, for any α ∈ (0, 1], s ∈ Z+, ε ∈ (0,∞) and x ∈ Rn,

gα,s(f)(x) � g̃(α,ε),s(f)(x).

To finish the proof of Theorem 2.6, we only need to prove the second inequality.
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By Lemma 2.5, ε ∈ (max{s, α},∞) and Hölder’s inequality, we conclude that,
for all ψ ∈ C(α,ε),s(Rn),

|f ∗ ψ(0)| �
∑
k∈Z+

2−k(ε−max{s,α})Aα,s(f)(0, 2
k)(2.16)

�

⎧⎨⎩ ∑
k∈Z+

2−k(ε−max{s,α}) [Aα,s(f)(0, 2
k)
]2⎫⎬⎭

1/2

.

From the definition of Cα,s(0, t), we deduce that if t and r are positive, then φ ∈
Cα,s(0, t) if and only if φr ∈ Cα,s(0, rt). Therefore, by this observation and (2.16),
we see that, for any ψ ∈ C(α,ε),s(Rn) and j ∈ Z, it holds true that

|f ∗ ψ2j (0)| �

⎧⎨⎩ ∑
k∈Z+

2−k(ε−max{s,α}) [Aα,s(f)(0, 2
k+j)

]2⎫⎬⎭
1/2

,

which, together with ε ∈ (max{s, α},∞), implies that, for any sequence {ψ(j)}j∈Z

of functions from C(α,ε),s(Rn), it holds true that∑
j∈Z

|f ∗ ψ(j)
2j (0)|

2 �
∑
j∈Z

∑
k∈Z+

2−k(ε−max{s,α}) [Aα,s(f)(0, 2
k+j)

]2
∼

∑
l∈Z

[
Aα,s(f)(0, 2

l)
]2 l∑

j=−∞
2−(l−j)(ε−max{s,α})

∼
∑
l∈Z

[
Aα,s(f)(0, 2

l)
]2 ∼ [σα,s(f)(0)]

2 ∼ [gα,s(f)(0)]
2 .

Taking the supremum over all the sequences {ψ(j)}j∈Z ⊂ C(α,ε),s(Rn), we then
conclude that

g̃(α,ε),s(f)(0) ∼ σ̃(α,ε),s(f)(0) � σα,s(f)(0) ∼ gα,s(f)(0),

which, together with the translation transformation, further implies that, for all
x ∈ Rn,

g̃(α,ε),s(f)(x) � gα,s(f)(x).

This finishes the proof of Theorem 2.6. �

3. Proofs of Theorems 1.6, 1.8 and 1.11

In this section, we prove Theorems 1.6, 1.8 and 1.11.
We first prove Theorem 1.6. To this end, we need the following technical lemma.

Lemma 3.1. Let α ∈ (0, 1], s ∈ Z+ and ε ∈ (0,∞). Then, Cα,s(Rn) ⊂ Cα,s−1(R
n).

Proof. To show this lemma, it suffices to show that, for α ∈ (0, 1], s ∈ Z+ and any
function φ on Rn satisfying that supp φ ⊂ B(0, 1),∫

Rn

φ(x)xγ dx = 0 for all γ ∈ Z
n
+ and |γ| ≤ s

and

|Dνφ(x1)−Dνφ(x2)| ≤ |x1 − x2|α for all x1, x2 ∈ R
n, ν ∈ Z

n
+ and |ν| = s,
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it also satisfies that, for all x1, x2 ∈ Rn, l ∈ Zn
+ and |l| = s− 1,

|Dlφ(x1)−Dlφ(x2)| ≤ |x1 − x2|α.(3.1)

For all x ∈ B(0, 1), let x̃ := x
|x| ∈ ∂B(0, 1). Then, for all ν, l ∈ Zn

+, |ν| = s and

|l| = s− 1, since |x− x̃| = 1− |x|, by supp φ ⊂ B(0, 1), we see that

|Dνφ(x)| = |Dνφ(x)−Dνφ(x̃)| ≤ |x− x̃|α = (1− |x|)α

and, by this and the mean value theorem, we further conclude that there exists
θ ∈ (0, 1) such that ξ = θx+ (1− θ)x̃ ∈ B(0, 1) and

|Dlφ(x)| = |Dlφ(x)−Dlφ(x̃)| = |∇(Dlφ)(ξ)(x− x̃)|(3.2)

≤ max
γ∈Zn

+, |γ|=s
{|Dγφ(ξ)|}|x− x̃|

≤ (1− |ξ|)α(1− |x|) ≤ (1− |x|)α+1.

Now, we prove (3.1) in the following four cases.

Case i) x1, x2 ∈ [B(0, 1)]�. In this case, the conclusion is trivial.

Case ii) x1 ∈ B(0, 1) and x2 ∈ [B(0, 1)]�. In this case,

|x1 − x2| ≥ |x1 − x̃1| = 1− |x1|,
which, combined with (3.2), further implies that

|Dlφ(x1)−Dlφ(x2)| = |Dlφ(x1)| ≤ (1− |x1|)α+1 ≤ |x1 − x2|α.

Case iii) x1, x2 ∈ B(0, 1) and |x1−x2| ≤ 1. In this case, by the mean value theorem,
we know that there exists θ ∈ (0, 1) such that ξ = θx1 + (1− θ)x2 ∈ B(0, 1) and

|Dlφ(x1)−Dlφ(x2)| = |∇(Dlφ)(ξ)(x1 − x2)|
≤ max

γ∈Zn
+, |γ|=s

{|Dγφ(ξ)|}|x1 − x2|,

which, together with (3.2), further implies that

|Dlφ(x1)−Dlφ(x2)| ≤ (1− |ξ|)α+1|x1 − x2| ≤ |x1 − x2| ≤ |x1 − x2|α.

Case iv) x1, x2 ∈ B(0, 1) and |x1 − x2| > 1. In this case, since

|x1 − x2|+ (1− |x1|) + (1− |x2|) ≤ 2

and |x1 − x2| > 1, we see that (1 − |x1|) + (1 − |x2|) < 1, which, combined with
(3.2), implies that

|Dlφ(x1)−Dlφ(x2)| ≤ |Dlφ(x1)|+ |Dlφ(x2)|
≤ (1− |x1|)α+1 + (1− |x2|)α+1 ≤ 1 ≤ |x1 − x2|α.

This finishes the proof of (3.1) and hence Lemma 3.1. �

From Lemma 3.1, we deduce the following conclusion.

Proposition 3.2. Let α ∈ (0, 1], s ∈ Z+, ϕ be a growth function, q ∈ (1,∞) and
ϕ ∈ Aq(R

n). Then, there exists a positive constant C such that, for all t ∈ [0,∞)
and measurable functions f ,∫

Rn

[gα,s(f)(x)]
qϕ(x, t) dx ≤ C

∫
Rn

|f(x)|qϕ(x, t) dx.
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Proof. From Lemma 3.1, we deduce that, for all x ∈ Rn and s ∈ Z+,

gα,s(f)(x) ≤ gα(f)(x)

which, together with the fact proved in [36, Theorem 7.2] that, for all t ∈ [0,∞),∫
Rn

[gα(f)(x)]
qϕ(x, t) dx �

∫
Rn

|f(x)|qϕ(x, t) dx,

then completes the proof of Proposition 3.2. �

To prove Theorem 1.6, we also need the atomic characterization of Hϕ(Rn) from
[21] and its dual space Lϕ,1,s(R

n) from [26].
Recall that, for any ball B in Rn, the space Lq

ϕ(B) for q ∈ [1,∞] is defined to be
the set of all measurable functions f on Rn, supported in B, such that

‖f‖Lq
ϕ(B) :=

⎧⎪⎪⎨⎪⎪⎩
sup

t∈(0,∞)

[
1

ϕ(B, t)

∫
Rn

|f(x)|qϕ(x, t) dx
]1/q

< ∞, q ∈ [1,∞);

‖f‖L∞(Rn) < ∞, q = ∞.

Now, we recall the atomic Musielak-Orlicz Hardy spaces introduced by Ky [21]
as follows. A triplet (ϕ, q, s) is said to be admissible if q ∈ (q(ϕ),∞] and s ∈ Z+

satisfies s ≥ m(ϕ). A measurable function a is called a (ϕ, q, s)-atom if it satisfies
the following three conditions:

(i) a ∈ Lq
ϕ(B) for some ball B;

(ii) ‖a‖Lq
ϕ(B) ≤ ‖χB‖−1

Lϕ(Rn);

(iii)
∫
Rn a(x)xα dx = 0 for any α ∈ Zn

+ and |α| ≤ s.
The atomic Musielak-Orlicz Hardy space Hϕ,q,s

at (Rn) is defined to be the space
of all f ∈ S ′(Rn) that can be represented as a sum of multiples of (ϕ, q, s)-atoms,
that is,

f =
∞∑
j=1

bj in S ′(Rn),

where, for each j, bj is a multiple of some (ϕ, q, s)-atom supported in some ball Bj ,
with the property

∞∑
j=1

ϕ(Bj , ‖bj‖Lq
ϕ(Bj)) < ∞.

For any given sequence of multiples of (ϕ, q, s)-atoms, {bj}j∈N, let

Λq({bj}j∈N) := inf

⎧⎨⎩λ ∈ (0,∞) :

∞∑
j=1

ϕ

(
Bj ,

‖bj‖Lq
ϕ(Bj)

λ

)
≤ 1

⎫⎬⎭
and then define

‖f‖Hϕ,q,s
at (Rn) := inf

⎧⎨⎩Λq({bj}j∈N) : f =
∞∑
j=1

bj in S ′(Rn)

⎫⎬⎭ ,

where the infimum is taken over all decompositions of f as above.
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Remark 3.3. Observe that when ϕ is as in (1.1) with p ∈ (0, 1] and w ∈ A∞(Rn),
then, for all balls B ⊂ Rn and measurable functions f , it holds true that

‖f‖Lq
ϕ(B) =

‖f‖Lq
w(Rn)

[w(B)]1/q
.

Thus, for all f ∈ Hϕ,q,s
at (Rn), {λj}j∈N ⊂ C and a sequence of (ϕ, q, s)-atoms,

{aj}j∈N, associated with balls {Bj}j∈N such that

f =
∑
j∈N

λjaj in S ′(Rn),

we have

Λq({λjaj}j∈N) =

⎧⎨⎩∑
j∈N

[ |λj |‖aj‖Lq
w(Rn)

[w(B)]1/q−1/p

]p⎫⎬⎭
1/p

≤

⎛⎝∑
j∈N

|λj |p
⎞⎠1/p

,

which further implies that

‖f‖Hϕ,q,s
at (Rn) ≤ inf

⎧⎪⎨⎪⎩
⎛⎝∑

j∈N

|λj |p
⎞⎠1/p

: f =

∞∑
j=1

λjaj in S ′(Rn)

⎫⎪⎬⎪⎭(3.3)

=: ‖f‖
˜Hϕ,q,s
at (Rn),

where the infimum is taken over all decompositions of f as above.
On the other hand, for any j ∈ N, and aj and λj as above, let

λ̃j :=
‖aj‖Lq

w(Rn)λj

[w(B)]1/q−1/p

and

ãj :=
[w(B)]1/q−1/paj

‖aj‖Lq
w(Rn)

.

Then, {ãj}j∈N is also a sequence of (ϕ, q, s)-atoms associated with balls {Bj}j∈N,

f =
∑
j∈N

λ̃j ãj in S ′(Rn)

and ⎛⎝∑
j∈N

|λ̃j |p
⎞⎠1/p

=

⎧⎨⎩∑
j∈N

[ |λj |‖aj‖Lq
w(Rn)

[w(B)]1/q−1/p

]p⎫⎬⎭
1/p

= Λq({λjaj}j∈N),

which, together with (3.3), further implies that

‖f‖Hϕ,q,s
at (Rn) = ‖f‖

˜Hϕ,q,s
at (Rn).

That is, in this case, the quasi-norm ‖ · ‖Hϕ,q,s
at (Rn) just becomes the quasi-norm

‖ · ‖
˜Hϕ,q,s
at (Rn) of the weighted atomic Hardy space in [14].

We use Hϕ,q,s
fin (Rn) to denote the set of all finite combinations of (ϕ, q, s)-atoms.

The norm of f in Hϕ,q,s
fin (Rn) is defined by

‖f‖Hϕ,q,s
fin (Rn) := inf

⎧⎨⎩Λq({bj}kj=1) : k ∈ N and f =
k∑

j=1

bj in S ′(Rn)

⎫⎬⎭ ,
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where the infimum is taken over all finite decompositions of f . It is easy to see that
Hϕ,q,s

fin (Rn) is dense in Hϕ,q,s
at (Rn).

The following Lemmas 3.4 and 3.5 are, respectively, just [21, Theorem 3.1] and
[26, Theorem 3.5], which play a key role in the proof of Theorem 1.6.

Lemma 3.4. Let (ϕ, q, s) be admissible. Then, Hϕ(Rn) = Hϕ,q,s
at (Rn) with equiv-

alent norms.

Lemma 3.5. Let ϕ be a growth function satisfying the uniformly locally dominated
convergence condition and s ∈ [m(ϕ),∞) ∩ Z+. Then the dual space of Hϕ(Rn),
denoted by (Hϕ(Rn))∗, is Lϕ,1,s(R

n) in the following sense:
(i) Suppose that b ∈ Lϕ,1,s(R

n). Then the linear functional

Lb : f → Lb(f) :=

∫
Rn

f(x)b(x) dx,

initially defined for all f ∈ Hϕ,q,s
fin (Rn) with some q ∈ (q(ϕ),∞), has a bounded

extension to Hϕ(Rn).
(ii) Conversely, every continuous linear functional on Hϕ(Rn) arises as in (i)

with a unique b ∈ Lϕ,1,s(R
n).

Moreover,
‖b‖Lϕ,1,s(Rn) ∼ ‖Lb‖(Hϕ(Rn))∗ ,

where the implicit constants are independent of b.

Having these equipment, we can now give the proof of Theorem 1.6.

Proof of Theorem 1.6. Observe that, by Theorem 2.6, we know that for ε ∈
(α + s,∞) and all x ∈ Rn, gα,s(f)(x) and g̃(α,ε),s(f)(x) are pointwise compara-
ble. Thus, to finish the proof of Theorem 1.6, we only need to consider gα,s(f) in
our proof.

Let φ ∈ S(Rn) be a radial function, supp φ ⊂ {x ∈ Rn : |x| ≤ 1},∫
Rn

φ(x)xγ dx = 0 for all |γ| ≤ s

and, for all ξ ∈ Rn\{0}, ∫ ∞

0

|φ̂(ξt)|2 dt
t

= 1.

Recall that, for all f ∈ S ′(Rn), the Littlewood-Paley g-function of f is defined by
setting, for all x ∈ Rn,

gs(f)(x) :=

[∫ ∞

0

|f ∗ φt(y)|2
dt

t

]1/2
.

If f ∈ (Lϕ,1,s(R
n))∗ vanishes weakly at infinity and gα,s(f) ∈ Lϕ(Rn), then, by the

fact that, for all x ∈ R
n,

gs(f)(x) � gα,s(f)(x)

and [25, Theorem 4.4], together with Remark 1.12(i), we conclude that f ∈ Hϕ(Rn)
and

‖f‖Hϕ(Rn) � ‖gs(f)‖Lϕ(Rn) � ‖gα,s(f)‖Lϕ(Rn).

This finishes the proof of the sufficiency of Theorem 1.6.
It therefore remains to prove the necessity. Let q := p[1 + (α + s)/n]. If f ∈

Hϕ(Rn), then, by [17, Lemma 4.12], we know that f vanishes weakly at infinity.
Also, since ϕ satisfies the uniformly locally dominated convergence condition, from
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Lemma 3.5, it follows that f ∈ (Lϕ,1,s(R
n))∗. For any 0 	= f ∈ Hϕ(Rn), let

f =
∑∞

j=1 bj be an atomic decomposition of f as in Lemma 3.4, with supp bj ⊂ Bj

for all j ∈ N. Then, for all φ ∈ S(Rn), it holds true that

∞∑
j=1

bj ∗ φ = f ∗ φ pointwise,

since f =
∑∞

j=1 bj in S ′(Rn). Therefore, for all x ∈ Rn, we have

gα,s(f)(x) ≤
∞∑
j=1

gα,s(bj)(x).

We now claim: it suffices to prove that, for any (ϕ, q, s)-atom a associated with a
ball B := B(x0, r) with x0 ∈ Rn and r ∈ (0,∞), it holds true that

(3.4)

∫
Rn

ϕ(x, gα,s(a)(x)) dx � ϕ(B, ‖a‖Lq
ϕ(B)).

Indeed, from (3.4) and Lemma 2.1(i), we deduce that∫
Rn

ϕ

(
x,

gα,s(f)(x)

Λq({bj}∞j=1)

)
dx �

∞∑
k=1

∫
Rn

ϕ

(
x,

gα,s(bk)(x)

Λq({bj}∞j=1)

)
dx

�
∞∑
k=1

ϕ

(
Bj ,

‖bk‖Lq
ϕ(Bk)

Λq({bj}∞j=1)

)
� 1,

which implies that

‖gα,s(f)‖Lϕ(Rn) � Λq({bj}∞j=1)

for all atomic decompositions f =
∑∞

j=1 bj , and hence

‖gα,s(f)‖Lϕ(Rn) � ‖f‖Hϕ(Rn).

This is the desired conclusion.
It therefore remains to prove (3.4). Let B̃ := 9B and write∫

Rn

ϕ(x, gα,s(a)(x)) dx =

∫
˜B

ϕ(x, gα,s(a)(x)) dx+

∫
˜B�

· · · =: I1 + I2.

Since ϕ is of uniformly upper type 1, by Hölder’s inequality, Proposition 3.2 and
Lemma 2.1(iv), we see that

I1 �
∫

˜B

[
gα,s(a)(x)

‖a‖Lq
ϕ(B)

+ 1

]
ϕ(x, ‖a‖Lq

ϕ(B)) dx

� 1

‖a‖Lq
ϕ(B)

{∫
˜B

[gα,s(a)(x)]
q
ϕ(x, ‖a‖Lq

ϕ(B)) dx

}1/q [
ϕ(B̃, ‖a‖Lq

ϕ(B))
](q−1)/q

+ϕ(B̃, ‖a‖Lq
ϕ(B))

� ϕ(B, ‖a‖Lq
ϕ(B)).

By ϕ ∈ Aq(R
n), we conclude that, for all λ ∈ (0,∞),

(3.5)

∫
B

ϕ(y, λ)dy

{∫
B

[ϕ(y, λ)]−1/(q−1)dy

}q−1

� |B|q.
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Therefore, for any φ ∈ Cα,s(Rn), t ∈ (0,∞) and x ∈ B̃�, by the vanishing moment
condition of a and (3.5), together with Taylor’s theorem, we see that

|a ∗ φt(x)|(3.6)

=
1

tn

∣∣∣∣∣∣
∫
B

a(y)

⎡⎣φ(
x− y

t

)
−

∑
|β|≤s

Dβφ
(
x−x0

t

)
β!

(
x0 − y

t

)β
⎤⎦ dy

∣∣∣∣∣∣
�

∫
B

|a(y)| |y − x0|α+s

tn+α+s
dy

� rα+s

tn+α+s

[∫
B

|a(y)|qϕ(y, λ) dy
]1/q {∫

B

[ϕ(y, λ)]
−1/(q−1)

dy

}(q−1)/q

� ‖a‖Lq
ϕ(B)

(r
t

)n+α+s

.

Notice that supp φ ⊂ {x ∈ Rn : |x| ≤ 1}. If x ∈ B̃� and φt ∗ a(x) 	= 0, then there

exists a y ∈ B such that |x−y|
t ≤ 1, and hence

t ≥ |x− y| ≥ |x− x0| − |x0 − y| ≥ |x− x0|
2

.

This, combined with (3.6), implies that

|gα,s(a)(x)|2 =

∫ ∞

0

[
sup

φ∈Cα,s(Rn)

|a ∗ φt(x)|
]2

dt

t

� ‖a‖2Lq
ϕ(B)r

2(n+α+s)

∫ ∞

|x−x0|
2

t−2(n+α+s)−1 dt

∼ ‖a‖2Lq
ϕ(B)

[
r

|x− x0|

]2(n+α+s)

,

which, together with Lemma 2.1(v), further implies that

I2 =

∫
˜B�

ϕ(x, gα,s(a)(x)) dx �
∫

˜B�

[
r

|x− x0|

](n+α+s)p

ϕ(x, ‖a‖Lq
ϕ(B)) dx

� r(n+α+s)p
ϕ(B̃, ‖a‖Lq

ϕ(B))

r(n+α+s)p
� ϕ(B, ‖a‖Lq

ϕ(B)).

This finishes the proof of Theorem 1.6. �
For all β ∈ (0,∞), f ∈ (Lϕ,1,s(R

n))∗ and x ∈ R
n, let

S̃β,(α,ε),s(f)(x)(3.7)

:=

{∫ ∞

0

∫
{y∈Rn: |y−x|<βt}

[
Ã(α,ε),s(f)(y, t)

]2
(βt)−n dy dt

t

}1/2

.

To prove Theorem 1.8, we need the following technical lemma.

Lemma 3.6. Let q ∈ [1,∞), ϕ be a growth function and ϕ ∈ Aq(R
n). Then there

exists a positive constant C such that, for all β ∈ [1,∞), t ∈ [0,∞) and measurable
functions f ,∫

Rn

ϕ
(
x, S̃β,(α,ε),s(f)(x)

)
dx ≤ Cβn(q−p/2)

∫
Rn

ϕ
(
x, S̃(α,ε),s(f)(x)

)
dx.
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Proof. For all λ ∈ (0,∞), let

Eλ :=
{
x ∈ R

n : S̃(α,ε),s(f)(x) > λβn/2
}

and

U := {x ∈ R
n : M(χEλ

)(x) > (4β)−n},

where M denotes the Hardy-Littlewood maximal function; namely, for all f ∈
L1

loc (R
n) and x ∈ Rn,

M(f)(x) := sup
B	x

1

|B|

∫
B

|f(y)| dy

and the supremum is taken over all balls B � x of Rn. Since ϕ ∈ Aq(R
n), by the

weighted weak-type (q, q) boundedness of M (see, for example, [15]), we see that

ϕ(U, λ) = ϕ
(
{x ∈ R

n : M(χEλ
)(x) > (4β)−n}, λ

)
(3.8)

� (4β)nq‖χEλ
‖q
Lq

ϕ(·,λ)
(Rn)

∼ βnqϕ(Eλ, λ)

and we now claim that

βn(1−q)

∫
U�

[S̃β,(α,ε),s(f)(x)]
2ϕ(x, λ) dx(3.9)

�
∫
E�

λ

[S̃(α,ε),s(f)(x)]
2ϕ(x, λ) dx.

If (3.9) holds true, then, from (3.8) and (3.9), it follows that

ϕ
({

x ∈ R
n : S̃β,(α,ε),s(f)(x) > λ

}
, λ

)
≤ ϕ(U, λ) + ϕ

(
U� ∩ {x ∈ R

n : S̃β,(α,ε),s(f)(x) > λ}, λ
)

� βnqϕ(Eλ, λ) + λ−2

∫
U�

[S̃β,(α,ε),s(f)(x)]
2ϕ(x, λ) dx

� βnqϕ(Eλ, λ) + βn(q−1)λ−2

∫
E�

λ

[S̃(α,ε),s(f)(x)]
2ϕ(x, λ) dx

∼ βnqϕ(Eλ, λ) + βn(q−1)λ−2

∫ λβn/2

0

tϕ
({

x ∈ R
n : S̃(α,ε),s(f)(x) > t

}
, λ

)
dt,
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which, together with the assumption that β ∈ [1,∞), Lemma 2.1(ii), the uniformly
lower type p and upper type 1 properties of ϕ, further implies that∫

Rn

ϕ
(
x, S̃β,(α,ε),s(f)(x)

)
dx

∼
∫ ∞

0

1

λ
ϕ
({

x ∈ R
n : S̃β,(α,ε),s(f)(x) > λ

}
, λ

)
dλ

� βnq

∫ ∞

0

1

λ
ϕ(Eλ, λ) dλ

+βn(q−1)

∫ ∞

0

λ−3

∫ λβn/2

0

tϕ
({

x ∈ R
n : S̃(α,ε),s(f)(x) > t

}
, λ

)
dt dλ

� βn(q−p/2)

∫ ∞

0

1

λ
ϕ
({

x ∈ R
n : S̃(α,ε),s(f)(x) > λ

}
, λ

)
dλ

+βn(q−1)

{∫ ∞

0

λ−3

∫ λ

0

λϕ
({

x ∈ R
n : S̃(α,ε),s(f)(x) > t

}
, t
)
dt dλ

+

∫ ∞

0

λ−3

∫ λβn/2

λ

(λ/t)ptϕ
({

x ∈ R
n : S̃(α,ε),s(f)(x) > t

}
, t
)
dt dλ

}

� βn(q−p/2)

∫
Rn

ϕ
(
x, S̃(α,ε),s(f)(x)

)
dx

+βn(q−1)

{∫ ∞

0

1

t
ϕ
({

x ∈ R
n : S̃(α,ε),s(f)(x) > t

}
, t
)
dt

+

∫ ∞

0

1

t

[
β(2−p)n/2 − 1

]
ϕ
({

x ∈ R
n : S̃(α,ε),s(f)(x) > t

}
, t
)
dt

}
� βn(q−p/2)

∫
Rn

ϕ
(
x, S̃(α,ε),s(f)(x)

)
dx.

It therefore remains to prove (3.9). Let

ρ(y) := inf
{
|y − z| : z ∈ U�

}
.

Then, it holds true that∫
U�

[
S̃β,(α,ε),s(f)(x)

]2
ϕ(x, λ) dx(3.10)

=

∫
U�

[∫ ∞

0

∫
{y∈Rn: |y−x|<βt}

[
Ã(α,ε),s(f)(y, t)

]2
(βt)−n dy dt

t

]
×ϕ(x, λ) dx

=

∫ ∞

0

∫
{y∈Rn: ρ(y)<βt}

[
Ã(α,ε),s(f)(y, t)

]2
(βt)−n

×ϕ(U� ∩B(y, βt), λ)
dy dt

t
.

If ∫
U�

[S̃β,(α,ε),s(f)(x)]
2ϕ(x, λ) dx > 0,
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then, by (3.10), we know that U� ∩ B(y, βt) 	= ∅. Thus, there exists x0 ∈ U� ∩
B(y, βt) and, by the definition of U, we further have

|Eλ ∩B(y, t)|
|B(y, t)| ≤ βn

|B(y, βt)|

∫
B(y,βt)

χEλ
(x) dx ≤ βnM(χEλ

)(x0) ≤ 4−n,

which, together with ϕ ∈ Aq(R
n) and Lemma 2.1(iv), further implies that

ϕ(U� ∩B(y, βt), λ) ≤ ϕ(B(y, βt), λ) � βnqϕ(B(y, t), λ)(3.11)

� βnq

[
|E�

λ ∩B(y, t)|
|B(y, t)|

]q

ϕ
(
E�
λ ∩B(y, t), λ

)
� βnqϕ

(
E�
λ ∩B(y, t), λ

)
.

Thus, from (3.10) and (3.11), it follows that∫
U�

[S̃β,(α,ε),s(f)(x)]
2ϕ(x, λ) dx

�
∫ ∞

0

∫
Rn

[
Ã(α,ε),s(f)(y, t)

]2
(βt)−nβnqϕ

(
E�
λ ∩B(y, t), λ

) dy dt

t

∼ βn(q−1)

∫
E�

λ

∫ ∞

0

∫
{y∈Rn: |y−x|<t}

[
Ã(α,ε),s(f)(y, t)

]2 dy dt

tn+1
ϕ(x, λ) dx

∼ βn(q−1)

∫
E�

λ

[
S̃(α,ε),s(f)(x)

]2
ϕ(x, λ) dx.

This finishes the proof of Lemma 3.6. �

Proof of Theorem 1.8. Let φ ∈ S(Rn) be as in the proof of Theorem 1.6. Recall
that, for all f ∈ S ′(Rn), the Littlewood-Paley g∗λ-function, with λ ∈ (1,∞), of f is
defined by setting, for all x ∈ Rn,

g∗λ,s(f)(x) :=

[∫ ∞

0

∫
Rn

(
t

t+ |x− y|

)λn

|f ∗ φt(y)|2
dy dt

tn+1

]1/2

.

If f ∈ (Lϕ,1,s(R
n))∗ vanishes weakly at infinity and g∗λ,α,s(f) ∈ Lϕ(Rn), then, by

the fact that, for all x ∈ Rn,

g∗λ,s(f)(x) � g∗λ,α,s(f)(x) � g̃∗λ,(α,ε),s(f)(x)

and [25, Theorem 4.8], together with Remark 1.12(i), we know that f ∈ Hϕ(Rn)
and

‖f‖Hϕ(Rn) �
∥∥g∗λ,s(f)∥∥Lϕ(Rn)

�
∥∥g∗λ,α,s(f)∥∥Lϕ(Rn)

�
∥∥∥g̃∗λ,(α,ε),s(f)∥∥∥

Lϕ(Rn)
.

This finishes the proof of the sufficiency of Theorem 1.8.
It therefore remains to prove the necessity. Let q := p[1 + (α + s)/n]. Then,

by λ ∈ ( 2(n+α+s)
n ,∞), we have λ ∈ (2q/p,∞). If f ∈ Hϕ(Rn), as in the proof of

Theorem 1.6, we know that f vanishes weakly at infinity and f ∈ (Lϕ,1,s(R
n))∗.
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For all f ∈ Hϕ(Rn) and x ∈ Rn, we have[
g̃∗λ,(α,ε),s(f)(x)

]2
(3.12)

=

∫ ∞

0

∫
|x−y|<t

(
t

t+ |x− y|

)λn [
Ã(α,ε),s(f)(y, t)

]2 dy dt

tn+1

+
∞∑
k=1

∫ ∞

0

∫
2k−1t≤|x−y|<2kt

· · ·

�
[
S̃(α,ε),sf(x)

]2
+

∞∑
k=1

2−kn(λ−1)
[
S̃2k,(α,ε),sf(x)

]2
.

Then, from (3.12), Lemma 2.1(i) and 3.6, and λ ∈ (2q/p,∞), we deduce that∫
Rn

ϕ
(
x, g̃∗λ,(α,ε),s(f)(x)

)
dx

�
∞∑
k=0

∫
Rn

ϕ
(
x, 2−kn(λ−1)/2S̃2k,(α,ε),s(f)(x)

)
dx

�
∞∑
k=0

2−knp(λ−1)/22kn(q−p/2)

∫
Rn

ϕ
(
x, S̃(α,ε),s(f)(x)

)
dx

�
∫
Rn

ϕ
(
x, S̃(α,ε),s(f)(x)

)
dx.

By Lemma 2.1(iii), we see that∫
Rn

ϕ

(
x,

g̃∗λ,(α,ε),s(f)(x)

‖f‖Hϕ(Rn)

)
dx �

∫
Rn

ϕ

(
x,

S̃(α,ε),s(f)(x)

‖f‖Hϕ(Rn)

)
dx

∼
∫
Rn

ϕ

(
x,

S̃(α,ε),s(f)(x)

‖S̃(α,ε),s(f)‖Lϕ(Rn)

)
dx ∼ 1,

which further implies that

‖g∗λ,α,s(f)‖Lϕ(Rn) � ‖g̃∗λ,(α,ε),s(f)‖Lϕ(Rn) � ‖f‖Hϕ(Rn).

This finishes the proof of Theorem 1.8. �

Proof of Theorem 1.11. Let b satisfy (1.4) with f replaced by b, and let μb, defined
by setting, for all (x, t) ∈ R

n+1
+ ,

dμb(x, t) :=
[
Ã(α,ε),s(b)(x, t)

]2 dx dt

t
,

be a ϕ-Carleson measure on R
n+1
+ . For φ ∈ S(Rn) as in the proof of Theorem 1.6,

let

dμb,0(x, t) := |φt ∗ b(x)|2
dx dt

t
.

Then, by [26, Theorem 4.2], we know that

‖b‖Lϕ,1,s(Rn) � ‖μb,0‖ϕ � ‖μb‖ϕ,

which completes the proof of the sufficiency of Theorem 1.11.
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It remains to prove the necessity. Let b ∈ Lϕ,1,s(R
n) and B0 := B(x0, r) ⊂ Rn,

with x0 ∈ Rn and r ∈ (0,∞). If b ∈ Lϕ,1,s(R
n), it is well known that b satisfies

(1.4) with f replaced by b for any ε ∈ (0,∞); see, for example, [16]. Then,

b = P s
B0

b+ (b− P s
B0

b)χ2B0
+ (b− P s

B0
b)χRn\2B0

=: b1 + b2 + b3.(3.13)

For b1, since
∫
Rn φ(x)xγ dx = 0 for any φ ∈ C(α,ε),s(Rn), γ ∈ Zn

+ and |γ| ≤ s, we

see that Ã(α,ε),s(b1) ≡ 0 and hence∫
̂B0

[Ã(α,ε),s(b1)(x, t)]
2 tn

ϕ(B(x, t), ‖χB0
‖−1
Lϕ(Rn))

dx dt

t
= 0.(3.14)

For b2, by Hölder’s inequality, for all balls B ⊂ R
n and θ ∈ (0,∞), we know that

|B| =
∫
B

[ϕ(x, θ)]1/2[ϕ(x, θ)]−1/2 dx ≤ [ϕ(B, θ)]1/2[ϕ−1(B, θ)]1/2,(3.15)

where above and in what follows, for any measurable set E ⊂ Rn and θ ∈ (0,∞),
we let

ϕ−1(E, θ) :=

∫
E

[ϕ(x, θ)]−1 dx.

From (3.15), it follows that∫
̂B0

[Ã(α,ε),s(b2)(x, t)]
2 tn

ϕ(B(x, t), ‖χB0
‖−1
Lϕ(Rn))

dx dt

t
(3.16)

�
∫
̂B0

[Ã(α,ε),s(b2)(x, t)]
2

∫
B(x,t)

[ϕ(y, ‖χB0
‖−1
Lϕ(Rn))]

−1 dy
dx dt

tn+1

�
∫
B

[ϕ(y, ‖χB0
‖−1
Lϕ(Rn))]

−1

×
∫
{(x,t)∈R

n+1
+ : |x−y|<t}

[Ã(α,ε),s(b2)(x, t)]
2 dx dt

tn+1
dy.

Since ϕ ∈ A1(R
n) ⊂ A2(R

n), it follows that[
ϕ
(
·, ‖χB0

‖−1
Lϕ(Rn)

)]−1

∈ A2(R
n)

(the class of Muckenhoupt weights). By this, (3.16), Proposition 3.2 and [26, The-
orem 2.7], we have∫

̂B0

[Ã(α,ε),s(b2)(x, t)]
2 tn

ϕ(B(x, t), ‖χB0
‖−1
Lϕ(Rn))

dx dt

t
(3.17)

�
∫
Rn

|b2(y)|2
[
ϕ
(
y, ‖χB0

‖−1
Lϕ(Rn)

)]−1

dy

∼
∫
2B0

|b(y)− P s
B0

b(y)|2
[
ϕ
(
y, ‖χB0

‖−1
Lϕ(Rn)

)]−1

dy

�
∫
2B0

[
|b(y)− P s

2B0
b(y)|2 + |P s

2B0
b(y)− P s

B0
b(y)|2

]
×

[
ϕ
(
y, ‖χB0

‖−1
Lϕ(Rn)

)]−1

dy

� ‖χB0
‖2Lϕ(Rn)‖b‖2Lϕ,1,s(Rn),



3254 YIYU LIANG AND DACHUN YANG

where the last inequality is deduced from ϕ ∈ A1(R
n), ϕ(2B0, ‖χB0

‖−1
Lϕ(Rn)) ∼ 1

and, for y ∈ 2B0,

|P s
2B0

b(y)− P s
B0

b(y)| = |P s
B0

(b− P s
2B0

b)(y)|

� 1

|B0|

∫
2B0

|b(x)− P s
2B0

b(x)| dx

�
‖χ2B0

‖Lϕ(Rn)

|B0|
‖b‖Lϕ,1,s(Rn).

Now, for b3, by (1.3) and [26, Theorem 2.7], we conclude that, for all (x, t) ∈ B̂0,

Ã(α,ε),s(b3)(x, t) �
∫
(2B0)�

tε|b(y)− P s
B0

b(y)|
|y − x|n+ε

dy � tε

rε
‖χB0

‖Lϕ(Rn)

|B0|
‖b‖Lϕ,1,s(Rn),

which, together with (3.15), ϕ ∈ A1(R
n) and ϕ(B0, ‖χB0

‖−1
Lϕ(Rn)) = 1, implies that∫

̂B0

[Ã(α,ε),s(b3)(x, t)]
2 tn

ϕ(B(x, t), ‖χB0
‖−1
Lϕ(Rn))

dx dt

t

�
∫
̂B0

t2ε

r2ε
ϕ−1

(
B(x, t), ‖χB0

‖−1
Lϕ(Rn)

) dx dt

tn+1

‖χB0
‖2Lϕ(Rn)

|B0|2
‖b‖2Lϕ,1,s(Rn)

�
∫ r

0

t2ε

r2ε
dt

tn+1

ϕ−1(B0, ‖χB0
‖−1
Lϕ(Rn))

|B0|
‖χB0

‖2Lϕ(Rn)‖b‖2Lϕ,1,s(Rn)

� ‖χB0
‖2Lϕ(Rn)‖b‖2Lϕ,1,s(Rn).

From this, (3.13), (3.14) and (3.17), we deduce that

1

‖χB0
‖Lϕ(Rn)

{∫
̂B0

[Ã(α,ε),s(b)(x, t)]
2 tn

ϕ(B(x, t), ‖χB0
‖−1
Lϕ(Rn))

dx dt

t

}1/2

� ‖b‖Lϕ,1,s(Rn),

which, combined with the arbitrariness of B0 ⊂ Rn, implies that μb, defined by
setting, for all (x, t) ∈ R

n+1
+ ,

dμb(x, t) := [Ã(α,ε),s(b)(x, t)]
2 dx dt

t
,

is a ϕ-Carleson measure on R
n+1
+ and

‖μb‖ϕ � ‖b‖Lϕ,1,s(Rn).

This finishes the proof of Theorem 1.11. �
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[2] Z. Birnbaum and W. Orlicz, Über die verallgemeinerung des begriffes der zueinander kon-
jugierten potenzen, Studia Math. 3 (1931), 1–67.

[3] Aline Bonami, Justin Feuto, and Sandrine Grellier, Endpoint for the DIV-CURL lemma

in Hardy spaces, Publ. Mat. 54 (2010), no. 2, 341–358, DOI 10.5565/PUBLMAT 54210 03.
MR2675927 (2011f:42024)

[4] Aline Bonami and Sandrine Grellier, Hankel operators and weak factorization for Hardy-
Orlicz spaces, Colloq. Math. 118 (2010), no. 1, 107–132, DOI 10.4064/cm118-1-5. MR2600520
(2011d:47066)

[5] Aline Bonami, Sandrine Grellier, and Luong Dang Ky, Paraproducts and products of functions
in BMO(Rn) and H1(Rn) through wavelets (English, with English and French summaries),
J. Math. Pures Appl. (9) 97 (2012), no. 3, 230–241, DOI 10.1016/j.matpur.2011.06.002.
MR2887623

[6] Aline Bonami, Tadeusz Iwaniec, Peter Jones, and Michel Zinsmeister, On the product of
functions in BMO and H1 (English, with English and French summaries), Ann. Inst. Fourier
(Grenoble) 57 (2007), no. 5, 1405–1439. MR2364134 (2009d:42054)
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