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DIVERGENCE IN RIGHT-ANGLED COXETER GROUPS

PALLAVI DANI AND ANNE THOMAS

Abstract. Let W be a 2-dimensional right-angled Coxeter group. We charac-
terise such W with linear and quadratic divergence, and construct right-angled
Coxeter groups with divergence polynomial of arbitrary degree. Our proofs use
the structure of walls in the Davis complex.

1. Introduction

The divergence of a pair of geodesics is a classical notion related to curvature.
Roughly speaking, given a pair of geodesic rays emanating from a basepoint, their
divergence measures, as a function of r, the length of a shortest “avoidant” path
connecting their time-r points. A path is avoidant if it stays at least distance r
away from the basepoint. In [15], Gersten used this idea to define a quasi-isometry
invariant of spaces, also called divergence. We recall the definitions of both notions
of divergence in Section 2.

The divergence of every pair of geodesics in Euclidean space is a linear function,
and it follows from Gersten’s definition that any group quasi-isometric to Euclidean
space has linear divergence. In a δ-hyperbolic space, any pair of non-asymptotic
rays diverges exponentially; thus the divergence of any hyperbolic group is expo-
nential. In symmetric spaces of non-compact type, the divergence is either linear
or exponential, and Gromov suggested in [16] the same should be true in CAT(0)
spaces.

Divergence has been investigated for many important groups and spaces, and
contrary to Gromov’s expectation, quadratic divergence is common. Gersten first
exhibited quadratic divergence for certain CAT(0) spaces in [15]. He then proved
in [14] that the divergence of the fundamental group of a closed geometric 3-
manifold is either linear, quadratic or exponential, and characterised the (geo-
metric) ones with quadratic divergence as the fundamental groups of graph man-
ifolds. Kapovich–Leeb [17] showed that all graph manifold groups have quadratic
divergence. More recently, Duchin–Rafi [13] established that the divergence of
Teichmüller space and the mapping class group is quadratic (for mapping class
groups this was also obtained by Behrstock in [5]). Druţu–Mozes–Sapir [12] have
conjectured that the divergence of lattices in higher rank semisimple Lie groups
is always linear, and proved this conjecture in some cases. Abrams et al. [1] and
independently Behrstock–Charney [2] have shown that if AΓ is the right-angled
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Artin group associated to a graph Γ, the group AΓ has either linear or quadratic
divergence, and its divergence is linear if and only if Γ is (the 1-skeleton of) a join.

In this work we study the divergence of 2-dimensional right-angled Coxeter
groups. Our first main result is Theorem 1.1 below, which characterises such groups
with linear and quadratic divergence in terms of their defining graphs. This result
can be seen as a step in the quasi-isometry classification of (right-angled) Coxeter
groups, about which very little is known.

We note that by [10], every right-angled Artin group is a finite index subgroup of,
and therefore quasi-isometric to, a right-angled Coxeter group. However, in contrast
to the setting of right-angled Artin groups, where one sees only linear and quadratic
divergence, even the class of 2-dimensional right-angled Coxeter groups exhibits a
greater variety of divergence functions. For example, there exist 2-dimensional
right-angled Coxeter groups that are hyperbolic, and therefore have exponential
divergence. Our second main result provides further evidence of this phenomenon:
in Theorem 1.2 below, we construct right-angled Coxeter groups with divergence
polynomial of any degree.

Given a finite simplicial graph Γ, the associated right-angled Coxeter group WΓ

has generating set S the vertices of Γ, and relations s2 = 1 for all s ∈ S and st = ts
whenever s and t are adjacent vertices. We restrict our attention to WΓ one-ended
and of dimension 2; equivalently, Γ is connected, triangle-free and has no separating
vertices or edges. The group WΓ acts geometrically on its Davis complex ΣΓ. As
ΣΓ is a CAT(0) square complex, WΓ is a CAT(0) group. We investigate divergence
by considering geodesics and paths in the Cayley graph of WΓ with respect to the
generating set S. This Cayley graph may be identified with the 1-skeleton of the
Davis complex ΣΓ, and we use many properties of walls in the Davis complex to
determine upper and lower bounds on lengths of avoidant paths. See Section 3 for
details and further background on WΓ and ΣΓ, including references.

By Moussong’s Theorem [9, Corollary 12.6.3], WΓ is hyperbolic if and only if
Γ has no embedded cycles of length four. In order to investigate divergence for
WΓ not hyperbolic, we consider the set of embedded four-cycles in Γ. Each such
four-cycle induces a family of isometrically embedded flats in ΣΓ. In Section 4 we
define an explicit, easy-to-check condition, which we call CFS, on the graph Γ. If Γ
is CFS, then ΣΓ has a distinguished collection of flats coming from a specific class
of four-cycles in Γ, with these flats intersecting along infinite bands, such that each
generator of WΓ is in the four-cycle for at least one such flat.

Theorem 1.1. Let Γ be a finite, simplicial, connected, triangle-free graph which
has no separating vertices or edges. Let WΓ be the associated right-angled Coxeter
group.

(1) The group WΓ has linear divergence if and only if Γ is a join.
(2) The group WΓ has quadratic divergence if and only if Γ is CFS and is not

a join.

Note that part (1) is equivalent to saying that WΓ has linear divergence if and
only if it is reducible, since for Γ triangle-free, WΓ is reducible if and only if Γ is
a join. Our proof of part (1) is similar to that of the corresponding result for AΓ

in [1].
To establish a quadratic upper bound on divergence when the graph Γ is CFS, we

construct, given a pair of geodesic segments based at a common point, an avoidant
path between their endpoints which travels only in flats from the distinguished
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collection of flats guaranteed by the CFS condition. Since the divergence within
a flat is linear, the quadratic upper bound comes from showing that this path
only needs to pass through linearly many flats. As pointed out by the referee,
this quadratic upper bound could also be obtained using the thickness machinery
developed by Behrstock–Druţu [3]. (See Remark 4.8.)

The more delicate direction of part (2) of Theorem 1.1 is proving that CFS
graphs are exactly the class of graphs for which there is a quadratic upper bound
on divergence. We in fact establish a cubic lower bound on divergence when Γ is
not CFS. To obtain lower bounds on the lengths of avoidant paths, we consider
van Kampen diagrams whose boundaries consist of a pair of geodesic segments with
common basepoint and an avoidant path between their endpoints. The fact that
the defining graph is not CFS has certain implications on the cell structure of the
van Kampen diagram, which force a lower bound on the length of its boundary
(and therefore of the avoidant path).

In contrast with the classes of groups discussed above, right-angled Coxeter
groups may have divergence other than linear, quadratic or exponential. We prove:

Theorem 1.2. For all d ≥ 1, there is a right-angled Coxeter group Wd with diver-
gence polynomial of degree d.

In [14], Gersten asked whether polynomial divergence of degree ≥ 3 is possible
for CAT(0) groups. Macura [19] constructed a family of CAT(0) groups Gd with
divergence polynomial of degree d ≥ 2. These groups Gd are the same as the
“hydra groups” investigated by Dison–Riley [11]. Behrstock–Druţu [3] subsequently
obtained examples of CAT(0) groups Hd with divergence polynomial of any degree
d ≥ 2, with Hd the amalgamated free product of two copies of Hd−1 along an
infinite cyclic subgroup. The groups Wd that we construct are not of this form.
Most recently, Behrstock–Hagen [4] used a similar construction to that of [3] to
obtain fundamental groups of CAT(0) cube complexes with divergence polynomial
of any degree. Theorem 1.2 provides an answer to Gersten’s question within a
well-known class of CAT(0) groups.

We prove Theorem 1.2 in Section 5, where we inductively construct a family
of graphs Γd such that Wd = WΓd

has divergence polynomial of degree d. We
prove upper and lower bounds on the divergence of Wd in Propositions 5.1 and 5.3
respectively. As discussed in Remark 5.2, the upper bound for the divergence of
Wd could also be derived from thickness considerations. Our arguments to obtain
the lower bounds on divergence are considerably shorter than Macura’s.

After proving Theorem 1.2, we noticed that Macura’s group Gd and our group
Wd both act geometrically on a CAT(0) square complex with all vertex links equal to
the graph Γd (namely the Cayley 2-complex for Gd, and the Davis complex for Wd,
respectively). A natural question is thus whether Gd and Wd are commensurable.
Since our techniques for addressing this question are quite different to those used
to prove Theorems 1.1 and 1.2, we discuss this question in Appendix A. We first
show in Proposition A.8, using covering theory and complexes of groups, that G2

and W2 are commensurable. While attempting to prove commensurability of Gd

and Wd for d > 2, we were surprised to discover that their corresponding square
complexes are not in fact isometric (see Corollary A.10). Hence the strategy of
finding a common finite cover to establish commensurability fails. We do not know
whether Gd and Wd are commensurable or even quasi-isometric for d > 2.
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2. Divergence

In this section we recall Gersten’s definition of divergence as a quasi-isometry
invariant from [15]. We restrict ourselves to spaces which are one-ended.

Let (X, d) be a one-ended geodesic metric space. For p ∈ X, let S(p, r) and
B(p, r) denote the sphere and open ball of radius r about p. A path inX is said to be
(p, r)-avoidant if it lies inX−B(p, r). Then, given a pair of points x, y ∈ X−B(p, r),
the (p, r)-avoidant distance davp,r(x, y) between them is the infimum of the lengths
of all (p, r)-avoidant paths connecting x and y.

Now fix a basepoint e ∈ X. In the rest of the paper we will write r-avoidant
or simply avoidant for (e, r)-avoidant, and dav(x, y) for dave,r(x, y), indicating the
basepoint and radius only if they differ from e and r.

For each 0 < ρ ≤ 1, let

δρ(r) = sup
x,y∈S(e,r)

davρr(x, y).

Then the divergence of X is defined to be the resulting collection of functions

divX = {δρ | 0 < ρ ≤ 1}.
The spaces X that we will consider (Cayley graphs of right-angled Coxeter

groups) have the geodesic extension property (i.e. any finite geodesic segment can
be extended to an infinite geodesic ray). It is not hard to show that in a metric
space X with this property, δρ � δ1 for all 0 < ρ ≤ 1, where � is the equivalence
on functions generated by

f � g ⇐⇒ ∃ C > 0 such that f(r) ≤ Cg(Cr + C) + Cr + C.

Thus in this paper, we think of divX as a function of r, defining it to be equal to δ1.
We say that the divergence of X is linear if divX(r) � r, quadratic if divX(r) � r2,
and so on.

The divergence of X is then, up to the relation �, a quasi-isometry invariant
which is independent of the chosen basepoint (see [15]). Thus it makes sense to
define the divergence of a finitely generated group to be the divergence of one of
its Cayley graphs.

The divergence of a pair of geodesic rays α and β with the same initial point p,
or of a bi-infinite geodesic γ, are defined as, respectively,

divα,β(r) = davp,r(α(r), β(r)) and divγ(r) = davγ(0),r(γ(−r), γ(r)).

Note that in a geodesic metric spaceX, if divα,β(r) ≤ f(r) for all pairs of geodesic
rays in X with initial point e, then divX(r) ≤ f(r). On the other hand, if there
exists a pair of geodesic rays (or a bi-infinite geodesic) such that divα,β(r) 
 f(r),
then divX(r) 
 f(r). Finally, if X is CAT(0) and divα,β(r) ≥ f(r), then, using the
fact that projections do not increase distances, one can show that davp,r(α(s), β(t)) ≥
f(r) for any s, t ≥ r. These observations will be used repeatedly in the proofs.

3. Coxeter groups and the Davis complex

In this section, we recall definitions and results concerning right-angled Coxeter
groups (Section 3.1) and their associated Davis complexes (Section 3.2). Section 3.3
then gives a careful discussion of walls in the Davis complex. Section 3.4 discusses
paths in the Cayley graph of WΓ and their relationship to walls in the Davis com-
plex. We mostly follow Davis’ book [9].
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3.1. Right-angled Coxeter groups. Let Γ be a finite simplicial graph with ver-
tex set S and let WΓ be the associated right-angled Coxeter group, as defined in
the introduction. The group WΓ is reducible if S can be written as a disjoint union
S1 � S2 of non-empty subsets such that W1 := 〈S1〉 commutes with W2 := 〈S2〉, in
which case W = W1 ×W2.

In this paper we restrict ourselves to Γ triangle-free. Then it is easy to see that
WΓ is reducible if and only if Γ is a join (i.e. a complete bipartite graph). Also,
with this assumption, WΓ is one-ended if and only if Γ is connected and has no
separating vertices or edges (see Theorem 8.7.2 of [9]).

Given T ⊆ S, the subgroup WT := 〈T 〉 of WΓ is called a special subgroup. By
convention, W∅ is the trivial group. If Λ is an induced subgraph of Γ with vertex
set T , we may write WΛ for the special subgroup WT . Denote by C2 the cyclic
group of order 2 and by D∞ the infinite dihedral group. Then for each s ∈ S, the
special subgroup W{s} is isomorphic to C2. If s and t are adjacent vertices, then
W{s,t} ∼= C2×C2, while if s and t are non-adjacent vertices, we have W{s,t} ∼= D∞.

Example 3.1. Suppose T = {s, t, u, v} ⊂ S is such that s, t, u and v are, in cyclic
order, the vertices of an embedded four-cycle in Γ. Then WT is reducible with

WT = W{s,u} ×W{t,v} ∼= D∞ ×D∞.

Now suppose T1 and T2 are distinct subsets of S such that T1 ∩T2 = {s, t, u}, with
s and u both adjacent to t. Since Γ is triangle-free, this implies that s and u are
not connected by an edge. Then

WT1∩T2
= W{s,u} ×W{t} ∼= D∞ × C2

and WT1∪T2
splits as the amalgamated free product

WT1∪T2
= WT1

∗WT1∩T2
WT2

∼= WT1
∗D∞×C2

WT2
.

A special subgroup WT is said to be a spherical special subgroup if WT is finite.
The set of spherical subsets of S, denoted S, is the set of subsets T ⊆ S such
that WT is spherical. (The reason for the terminology “spherical” is that if WT is
finite, then WT acts as a geometric reflection group on the unit sphere in R|T |; see
Theorem 6.12.9 of [9].) It follows from the paragraph before Example 3.1 that for
Γ triangle-free, the only spherical subsets of S are the empty set, the sets {s} for
s ∈ S, and the sets {s, t} where s and t are adjacent vertices. The corresponding
spherical special subgroups ofW are isomorphic to the trivial group, C2, and C2×C2

respectively.
A word in the generating set S is a finite sequence s = (s1, . . . , sk) where each

si ∈ S. We denote by w(s) = s1 · · · sk the corresponding element of W . The
support of a word s is the set of generators which appear in s. A word s is said to
be reduced if the element w(s) cannot be represented by any shorter word, and a
word s is trivial if w(s) is the trivial element. We will later by abuse of notation
write s1 · · · sk for both words and group elements. A word s in the generating set S
of a right-angled Coxeter group is reduced if and only if it cannot be shortened by
a sequence of operations of either deleting a subword of the form (s, s), with s ∈ S,
or replacing a subword (s, t) such that st = ts by the subword (t, s). (This is a
special case of Tits’ solution to the word problem for Coxeter groups; see Theorem
3.4.2 of [9].)
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3.2. The Davis complex. From now on, Γ is a finite, simplicial, connected,
triangle-free graph with no separating vertices or edges, and W = WΓ is the asso-
ciated right-angled Coxeter group. In this section, we discuss the Davis complex
for W .

By our assumptions on Γ, we may define the Davis complex Σ = ΣΓ to be the
Cayley 2-complex for the presentation of WΓ given in the introduction, in which all
disks bounded by a loop with label s2 for s ∈ S have been shrunk to an unoriented
edge with label s. Then the vertex set of Σ is WΓ and the 1-skeleton of Σ is the
Cayley graph CΓ of W with respect to the generating set S. Since all relators in this
presentation other than s2 = 1 are of the form stst = 1, Σ is a square complex. We
call this cellulation of Σ the cellulation by big squares, with the big squares being
the 2-cells. Note that the link of each vertex in this cellulation is the graph Γ.

We next define the cellulation by small squares of Σ to be the first square sub-
division of the cellulation by big squares, with the small squares being the squares
obtained by subdividing each big square into four. We will use both of these cellu-
lations in our proofs.

We now assign types T ∈ S to the vertices of the cellulation by small squares. If
σ is also a vertex of the cellulation by big squares, then σ has type ∅. If σ is the
midpoint of an edge in the cellulation by big squares, then since CΓ is the 1-skeleton
of the cellulation by big squares, σ is the midpoint of an edge connecting g and gs
for some g ∈ W and s ∈ S, and we assign type {s} ∈ S to σ. Finally, if σ is the
centre of a big square, then σ is assigned type {s, t} ∈ S, where two of the vertices
adjacent to σ have type {s}, and two of the vertices adjacent to σ have type {t}.

Consider Σ with the cellulation by small squares. The group W naturally acts
on the left on Σ, preserving types, so that the stabiliser of each vertex of type T ∈ S
is a conjugate of the finite group WT . Let σ be the vertex of type ∅ corresponding
to the identity element of W . The base chamber K is the union of the set of
small squares which contain σ. Any translate of K by an element of W is called a
chamber. For each T ∈ S, we denote by σT the unique vertex of type T ∈ S in the
base chamber. The quotient of Σ by the action of W is the base chamber K, and
the W -stabiliser of σT is precisely the spherical special subgroup WT .

For s ∈ S, the mirror Ks is the union of the set of edges in the base chamber
which contain σ{s} but not σ∅. The mirror Ks is thus the star graph of valence n,
where n is the cardinality of the set {t ∈ S | st = ts, t �= s}. Note that n ≥ 2, since
Γ has no isolated vertices or vertices of valence one. The centre of the mirror Ks is
the vertex σ{s}. Any translate of Ks by an element of W is called a panel (of type
s).

Let Σ be the Davis complex cellulated by either big or small squares. We now
metrise Σ so that each big square is a unit Euclidean square, hence each small
square is a Euclidean square of side length 1

2 . By [9, Theorem 12.2.1], this piecewise
Euclidean cubical structure on Σ is CAT(0). Since the group W acts on Σ with
compact quotient K and finite stabilisers, W is a CAT(0) group.

Let WT be a special subgroup of W . Then the Cayley graph of WT (with respect
to the generating set T ) embeds isometrically in CΓ ⊂ Σ. Hence for each g ∈ W and
each special subgroup WT of W , left-multiplication of the Cayley graph of WT by
g results in an isometrically embedded copy of the Cayley graph of WT in CΓ ⊂ Σ,
which contains the vertex g. We will refer to this copy as the Cayley graph of WT

based at g. For each special subgroup WT of W , and each coset gWT , there is also



DIVERGENCE IN RIGHT-ANGLED COXETER GROUPS 3555

an isometrically embedded copy of ΣT in Σ. If Θ is an induced subgraph of Γ, we
may denote by ΣΘ the Davis complex for the special subgroup WΘ, and by CΘ the
Cayley graph for WΘ with generating set the vertices of Θ.

Remark 3.2. Suppose that T is the set of vertices of an embedded four-cycle in Γ,
so that WT

∼= D∞ ×D∞. Then each copy of ΣT in Σ is an isometrically embedded
copy of the Euclidean plane (tessellated by either big or small squares). Now
consider Σ with the cellulation by big squares and let T1 and T2 be sets of vertices
of embedded four-cycles in Γ such that WT1∪T2

splits over WT1∩T2
∼= D∞ × C2.

Then each intersection of a copy of the flat ΣT1
with a copy of the flat ΣT2

in Σ is
an infinite band of big squares corresponding to a copy of ΣT1∩T2

. To be precise,
this infinite band of big squares is the direct product R×[0, 1] tessellated by squares
of side length 1.

3.3. Walls. Consider the Davis complex Σ = ΣΓ with the cellulation by small
squares. Recall that an element r ∈ W = WΓ is a reflection if r = gsg−1 for some
g ∈ W and s ∈ S. A wall in Σ is defined to be the fixed set of a reflection r ∈ W .
For each reflection r, the wall associated to r separates Σ, and r interchanges the
two components of the complement. Each wall is a totally geodesic subcomplex of
the CAT(0) space Σ, hence each wall is contractible. By the construction of Σ, each
wall in Σ is a union of panels, and so is contained in the 1-skeleton of Σ. Hence
each wall of Σ is a tree.

We now assign types s ∈ S to the walls. To show that this can be done in
a well-defined fashion, suppose first that gsg−1 = s′, where g ∈ W and s, s′ ∈
S. Fix a reduced word (s1, . . . , sk) for g, and consider the trivial word s =
(s1, . . . , sk, s, sk, . . . , s1, s

′), which corresponds to the equation gsg−1s′ = 1. Since
s is non-reduced, by Tits’ solution to the word problem for W (see the final para-
graph of Section 3.1 above), we must be able to reduce s to the empty word by a
sequence of operations of deleting repeated letters, and swapping ut for tu, where
u, t ∈ S are adjacent vertices. It follows that the number of instances of each letter
in s must be even. Thus s = s′; in other words, no two distinct elements of S are
conjugate in W . Hence for any reflection r ∈ W , there is a unique s ∈ S so that
r = gsg−1 for some g ∈ W . It is thus well-defined to declare the type of the wall
which is the fixed set of the reflection r = gsg−1 to be s. A wall of type s is a union
of panels of type s, and in fact is a maximal connected union of panels of type s.
So if each panel of type s is a star-graph of valence n ≥ 2, each wall of type s will
be a (2, n)-biregular tree.

For each generator s ∈ S, we denote by Hs the unique wall of type s which
contains a panel of the base chamber, and by gHs, for g ∈ W , the unique translate
of the wall Hs which contains a panel of the chamber gK. If H is a wall of type
s, then all walls that intersect H are of types which commute with s (and are not
equal to s). Since Γ is triangle-free, there are no triples of pairwise intersecting
walls. All intersections of walls consist of two walls intersecting at right angles at
the centre of some big square, thus subdividing it into four small squares.

3.4. Paths. A path in CΓ is a map from an interval (finite or infinite) to CΓ, such
that each integer is mapped to a vertex of CΓ and consecutive integers are mapped
to adjacent vertices. Given a path α, we may use α(i) to denote either the image
vertex in CΓ or the group element in WΓ associated with that vertex.
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As noted in Section 3.2, the Cayley graph CΓ is the 1-skeleton of the cellulation
of Σ by big squares. In this cellulation, each edge of CΓ crosses a unique wall in
Σ. Thus the length of a path in CΓ is equal to its number of wall-crossings (note
that a path may cross a given wall more than once). We will sometimes describe
paths using the labels of the walls they cross. For example, by the statement “α is
the geodesic ray emanating from (or based at) g labelled a1a2a3 . . . ” we will mean
that α is a geodesic path such that α(0) = g and α(i) = ga1a2 . . . ai for i > 0. The
path will be a geodesic if each subsegment ai . . . aj is reduced. We will often use
the fact that a path is a geodesic if and only if it does not cross any wall twice
(compare Lemma 3.2.14 and Theorem 3.2.16 of [9]). If α is a geodesic, we will
use the notation α[i1,i2] to denote the part of α that lies between α(i1) and α(i2),
including these endpoints. The support of a path is the set of labels of the walls
that it crosses.

Since Γ is triangle-free, the set of all generators that commute with a given one,
say a, generate a special subgroup WT of WΓ which is a free product of finitely
many copies of C2. Thus the Cayley graph of WT (with generating set T ) is a tree.
Now consider a wall gHa of type a. There is a copy of the Cayley graph of WT

based at g which runs parallel to the wall gHa, at constant distance 1
2 from this

wall. We say that a path emanating from g runs along the wall gHa if it is a path
in this copy of the Cayley graph of WT . Equivalently, the path emanates from g
and has support contained in the set of generators labelling the link of a in Γ.

Another fact that will be used repeatedly is the following: Suppose γ is a geodesic
segment, and η is any path between its endpoints. Let H be a wall that is crossed
by γ. Then η crosses H at least once. This is because H (like any wall) separates
the Davis complex, and γ, being a geodesic, crosses H exactly once. Thus the
endpoints of γ are in different components of the complement of H. Since η is a
(continuous) path connecting them, η must cross H.

4. Linear and quadratic divergence in right-angled Coxeter groups

In this section we prove Theorem 1.1 of the introduction. We characterise the
defining graphs of 2-dimensional right-angled Coxeter groups with linear and qua-
dratic divergence in Sections 4.1 and 4.2 respectively.

All the graphs Γ considered in this section satisfy our standing assumptions: they
are connected, simplicial, triangle-free and have no separating vertices or edges.
Recall from Section 2 that the divergence of WΓ is by definition the divergence of
one of its Cayley graphs. We denote by divΓ the divergence of the Cayley graph
CΓ ⊂ ΣΓ. All distances below will be measured in the Cayley graph CΓ, that is,
using the word metric on WΓ with respect to the generating set S, and all paths
considered will be in CΓ.

4.1. Linear divergence. In this section we prove the following result.

Theorem 4.1. The divergence divΓ is linear (i.e. divΓ(r) � r) if and only if Γ is
a join.

As noted in Section 3.1, the graph Γ is a join if and only if WΓ is reducible (that
is, W splits as a direct product of special subgroups). It is proved in [1, Lemma
7.2] that a direct product H ×K has linear divergence if both H and K have the
geodesic extension property. This property certainly holds for right-angled Coxeter
groups. Thus if Γ is a join, WΓ has linear divergence.
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In Proposition 4.3 below, we prove that when Γ is not a join, the Cayley graph
of WΓ contains a bi-infinite geodesic γ such that divγ(r) 
 r2. This completes the
proof of Theorem 4.1, as divΓ(r) 
 r2 in this case.

Definition 4.2 (The word w and bi-infinite geodesic γ). Recall that the comple-
mentary graph of Γ, denoted by Γc, is the graph with the same vertex set as Γ, in
which two vertices are connected by an edge if and only if they are not connected
by an edge in Γ. Since Γ is not a join, Γc is connected. Choose a loop in Γc which
visits each vertex (possibly with repetitions). Choose a vertex a1 on this loop,
and let w = a1 · · · ak be the word formed by the vertices of this loop in the order
encountered along the loop, where ak is the last vertex encountered before the loop
closes up at its starting point a1. We assume that the loop is never stationary at
a vertex, so that ai �= ai+1 for any i. Then w is a word in the generators of Γ
such that no two consecutive generators commute, and ak does not commute with
a1. It follows that wn is reduced for all n ∈ Z. Let γ be the bi-infinite geodesic
in CΓ which passes through e and is labelled by . . . wwww . . . , so that γ(0) = e,
γ(i) = a1 · · · ai for 1 ≤ i ≤ k, γ(−1) = ak, and so on.

Proposition 4.3. If Γ is not a join, and γ is the bi-infinite geodesic in CΓ from
Definition 4.2, then divγ(r) 
 r2.

The idea of the proof is similar to that of the corresponding result for right-
angled Artin groups in Lemma 7.3 in [1], although we write it in terms of crossings
of walls rather than van Kampen diagrams. We include the proof here because it
sets the stage for the proof of Proposition 4.9.

Proof. It is enough to obtain a lower bound on dav(γ(−nk), γ(nk)) as a quadratic
function of n (where k is the length of the word w from Definition 4.2). Let η be
an arbitrary avoidant path from γ(−nk) to γ(nk). Since γ[−nk,nk] is a geodesic and
η is a path with the same endpoints, η must cross each wall crossed by γ at least
once. For notational convenience, we will focus on the walls wiHa1

for 0 ≤ i ≤ n−1
which are crossed by γ[0,nk]. Now let (gi, gia1) be the edge of CΓ at which η first

crosses wiHa1
, where gi is the vertex in the component of the complement of wiHa1

containing e. Let ηi be the part of η between gi and gi+1 (so that the first edge of
ηi is (gi, gia1)).

For 0 ≤ i ≤ n − 1, let νi denote the geodesic connecting wi and gi which runs
along wiHai

, and let Hi be the first wall crossed by νi, with type aj for some
j. We claim that Hi does not intersect νi+1. Since aj belongs to the support
of w, the segment of γ between wi and wi+1 crosses a wall of type aj . By the
construction of w, this wall cannot intersect wiHa1

. It is therefore distinct from
Hi and consequently separates Hi from νi+1. It follows that no subsequent wall
crossed by νi intersects νi+1 either. Thus each wall crossed by νi separates gi and
gi+1 into distinct components. Since ηi is a path from gi to gi+1, it must cross all
of these walls. Thus 
(ηi) ≥ 
(νi) ≥ k(n− i), and


(η) ≥
n−1∑
i=0


(ηi) ≥
n−1∑
i=0

k(n− i) ≥ k

2
n2,

which completes the proof. �
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Figure 4.1. Some CFS graphs. (The middle two are actually the
same graph.)

Figure 4.2. Some non-CFS graphs. (The four-cycle graph of
the first one is empty. In the second one the four-cycle graph is
connected but does not have full support, while in the third, the
four-cycle graph has full support, but is not connected and does
not have a component with full support.)

4.2. Quadratic divergence. We first introduce the CFS terminology for the
graphs which give rise to right-angled Coxeter groups with quadratic divergence.
The main result of this section is Theorem 4.6 below.

Given a graph Γ, define the associated four-cycle graph Γ4 as follows. The
vertices of Γ4 are the embedded loops of length four (i.e. four-cycles) in Γ. Two
vertices of Γ4 are connected by an edge if the corresponding four-cycles in Γ share
a pair of adjacent edges. For example, if Γ is the join K2,3, then Γ4 is a triangle.
Given a subgraph Θ of Γ4, we define the support of Θ to be the collection of vertices
of Γ (i.e. generators of WΓ) that appear in the four-cycles in Γ corresponding to
the vertices of Θ.

Definition 4.4 (CFS). A graph Γ is said to be CFS if there exists a component
of Γ4 whose support is the entire vertex set of Γ, i.e., there is a “Component with
Full Support”.

Figures 4.1 and 4.2 show some examples of CFS graphs and non-CFS graphs
respectively. Note that any join is CFS. The last example in Figure 4.1 shows that
the four-cycle graph of a CFS graph need not be connected. However, the following
observation will be useful in what follows:

Observation 4.5. The graph Γ is CFS if and only it if has a subgraph Λ such
that Λ4 is connected, and the support of Λ4 is the vertex set of Γ. The graph Λ is
obtained from Γ by (possibly) deleting some edges, while keeping all the vertices.

We now characterise the graphs which give rise to right-angled Coxeter groups
with quadratic divergence.

Theorem 4.6. The divergence divΓ is quadratic (i.e. divΓ(r) � r2) if and only if
Γ is CFS and not a join.

In Proposition 4.7 below we obtain a quadratic upper bound on divΓ when Γ is
a CFS graph. On the other hand, Proposition 4.3 above shows that if Γ is not a
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join, then there is a quadratic lower bound on divΓ. This proves one direction of
Theorem 4.6. The other direction follows from Proposition 4.9 below, in which we
show that if Γ is not CFS, then CΓ contains a bi-infinite geodesic whose divergence
is at least cubic.

Proposition 4.7. If Γ is CFS, then divΓ(r) � r2.

Proof. By Example 3.1, a four-cycle in Γ corresponds to a subgroup W ′ isomorphic
to D∞×D∞. Recall from Section 3.2 that for every g ∈ W , there is an isometrically
embedded copy of the Cayley graph of W ′ based at g ∈ CΓ. By Theorem 4.1,
divD∞×D∞(r) � r. In fact it is not hard to see directly that given a pair of
geodesic rays α and β emanating from e in CD∞×D∞ , there is an r-avoidant path
connecting α(r) and β(r) of length at most 2r.

Step 1. We first address the case that Γ4 has a single component. Fix a 4-cycle
Θ in Γ and a geodesic ray α emanating from e ∈ CΓ whose support is contained
in the set of vertex labels of Θ. Thus α lies in the copy of CΘ based at e. We
show below that if β is an arbitrary geodesic ray in CΓ emanating from e, then
divα,β(r) ≤ Mr2 for every r, where M = 2diam(Γ4). This proves the quadratic
upper bound on divΓ, since it implies that if β1 and β2 are arbitrary geodesic rays
based at e, then divβ1,β2

(r) ≤ 2Mr2.
Now let β be an arbitrary geodesic ray labelled b1b2b3 . . . and emanating from

e. We first divide β[0,r] into pieces as follows, and then carry out induction on the
number of pieces. Starting at b1, choose the first piece to be the maximal word
b1 · · · bi such that {b1, b2, . . . , bi} is contained in the set of vertex labels of a single
4-cycle of Γ. Now repeat this procedure starting at bi+1, and continue until β[0,r]

is exhausted.
If β[0,r] consists of a single piece, then b1, . . . , br are among the vertices of a

single 4-cycle Θ′ of Γ. Since Γ4 is connected, it contains a path connecting the
fixed vertex Θ to Θ′. Let Θ = Θ1,Θ2, . . . ,Θl = Θ′ be the vertices of Γ4 along this
path. For each 1 ≤ i ≤ l − 1, since Θi and Θi+1 are joined by an edge in Γ4, the
intersection WΘi

∩WΘi+1
is isomorphic to WΘi∩Θi+1

∼= C2 ×D∞.
Recall from Remark 3.2 that each ΣΘi

is an isometrically embedded Euclidean
plane tesselated by big squares, and ΣΘi

and ΣΘi+1
intersect in an infinite band of

big squares corresponding to a copy of ΣΘi∩Θi+1
. We proceed below by introducing

geodesic rays νi based at e, where νi lies in CΘi∩Θi+1
⊂ ΣΘi∩Θi+1

for 1 ≤ i ≤
l − 1. Since successive geodesics in the sequence α = ν0, ν1, . . . , νl−1, νl = β lie
in a Euclidean plane, there are linear length avoidant paths between them, and
concatenating these gives an avoidant path between α and β.

Let ν denote the geodesic in CC2×D∞ that is based at the identity and labelled
g1g2g1g2 . . . , where g1 and g2 are the generators of the D∞ factor. For 1 ≤ i ≤ l−1,
let νi denote the image of this geodesic in the copy of CΘi∩Θi+1

based at e in CΓ
(for some identification of g1 and g2 with the Coxeter generators of the D∞ factor
of WΘi

∩ WΘi+1
). Define ν0 = α and νl = β, and observe that for 1 ≤ i ≤ l,

the geodesics νi−1 and νi are supported on a single 4-cycle of Γ, namely Θi. Thus
νi−1(r) and νi(r) can be connected by an avoidant path of length at most 2r in the
copy of CΘi

based at e. Concatenating all of these paths, one obtains an r-avoidant
path connecting α(r) and β(r), with length at most 2rl ≤ Mr, since l ≤ diam(Γ4).

We now induct on the number of pieces of β[0,r] to show that dav(α(r), β(r)) is at
most Mr times the number of pieces. Suppose β[0,r] has k+1 pieces and is labelled
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by w1w2 . . . wkwk+1, where each wi is a piece. Then it is not hard to construct a
word w such that:

(1) the support of w is contained in the support of the 4-cycle corresponding
to the piece wk;

(2) the word wkw is reduced; and
(3) |w| = |wk+1| (so that |w1w2 · · ·wkw| = r), where |w| is the length of w.

It follows that the path μ emanating from e labelled w1w2 . . . wkw is a geodesic of
length r with k pieces. By the inductive hypothesis, there is an r-avoidant path
connecting α(r) to μ(r) of length at most Mkr.

Further, if s = r− |wk+1|, then β[s,r] and μ[s,r] are supported on 4-cycles Ψ and
Ψ′ respectively, and β(s) = μ(s). A more careful version of the construction for the
base case yields an r-avoidant path from μ(r) to β(r), as follows. As before, choose a
path in Γ4 which visits the vertices Ψ = Ψ1,Ψ2, . . . ,Ψm = Ψ′, and for each i, choose
a geodesic ray νi emanating from β(s) in the copy of CWΨi

∩WΨi+1
based at β(s), but

this time require νi to have the additional property that β[0,s] concatenated with
νi is a geodesic. (This will be true for at least one of the two possibilities for νi.)
Now the construction from the base case (applied with basepoint β(s) instead of e)
yields a path that avoids not only the ball of radius |wk+1| based at β(s), but also
the ball of radius r based at e. The length of this path is at most M |wk+1| ≤ Mr.
Concatenating the paths from α(r) to μ(r) and from μ(r) to β(r), one has the
desired r-avoidant path, with length clearly bounded above by M(k + 1)r.

Finally, since the total number of pieces is bounded above by r, the length of
this avoidant path is bounded above by Mr2.

Step 2. Now suppose that Γ is CFS but Γ4 is not connected. Then by Obser-
vation 4.5, there exists a subgraph Λ of Γ, such that Λ4 is connected, and Γ is
obtained from Λ by adding edges (between vertices that are at least distance 3
apart in Λ). Since the effect of adding edges is to add more commuting relations in
the presentation, there is a natural quotient map q : WΛ → WΓ. Hence if β1 and
β2 are arbitrary geodesic rays emanating from e in CΓ, they have pullbacks β′

1 and
β′
2 which are geodesic rays emanating from e in CΛ.
We claim that the pushforward of the r-avoidant path constructed in Step 1

between β′
1(r) and β′

2(r) is r-avoidant in CΓ. The path was constructed by concate-
nating several subpaths, each of which was r-avoidant in a subgraph CΨ, where Ψ is
a single four-cycle. The claim follows from the observation that if Ψ is an embedded
four-cycle in Λ, then it is an embedded four-cycle in Γ, and the composition of the
induced map q : CΛ → CΓ with the inclusion CΨ ↪→ CΛ is actually an isometric
embedding of CΨ into CΓ. �
Remark 4.8. Proposition 4.7 is a special case of the upper bound on divergence
given by Theorem 4.9 of [3]. To see this, suppose Γ is CFS and let H be the
collection of special subgroups of WΓ generated by the embedded four-cycles in Γ
which are the vertices of a component of Γ4 with full support. Then it is easy to
see that WΓ is strongly algebraically thick of order at most 1 with respect to H.
Hence by results in [3], the divergence of WΓ is at most quadratic. In fact, together
with Proposition 4.3 above, one sees that WΓ is strongly algebraically thick of order
exactly equal to 1 if and only if Γ is CFS but not a join.

We now show that graphs which are not CFS give rise to right-angled Coxeter
groups with super-quadratic divergence. If Γ is not CFS, then, in particular, it is
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not a join, and there is a word w (of length k) and bi-infinite geodesic γ in CΓ as
described in Definition 4.2. We show that in this setting, the divergence of γ is at
least cubic.

Proposition 4.9. If Γ is not CFS, and γ is the bi-infinite geodesic in CΓ from
Definition 4.2, then divγ(r) 
 r3.

Proof. Let η be an arbitrary avoidant path from γ(−nk) to γ(nk). We begin exactly
as in the first paragraph of the proof of Proposition 4.3 and define the subpaths
ηi of η as we did there. However, this time we use the fact that Γ is not CFS to
obtain a quadratic lower bound on 
(ηi). This is a consequence of the following
lemma, which is proved separately below.

Lemma 4.10. Suppose Γ is a graph that is not CFS and w is the word from
Definition 4.2. Let α be an arbitrary geodesic ray emanating from e that travels
along Ha1

and let β be a path emanating from e consisting of a geodesic segment
labelled w followed by an arbitrary geodesic ray emanating from w that travels along
wHa1

. Then β is a geodesic, and for any r > 2k,

divα,β(r) ≥
1

16
r2.

Note that γ crosses the wall wiHa1
at the edge (wi, wia1). Let νi denote the

geodesic segment that connects wi to gi and runs along wiHa1
. Let μi be the path

emanating from wi consisting of the part of γ between wi and wi+1 concatenated
with νi+1. Lemma 4.10, applied with basepoint wi instead of e, implies that μi is
a geodesic, and that for 0 ≤ i ≤ n− 2, and n > 2,


(ηi) ≥ davwi(gi, gi+1) ≥ davwi(νi(kn− ki), μi(kn− ki)) ≥ k2

16
(n− i)2.

For the middle inequality above, we use the observation in the last paragraph of
Section 2. In conclusion,


(η) ≥
n−2∑
i=0


(ηi) ≥
n−2∑
i=0

k2

16
(n− i)2.

This is a cubic function of n. �

Proof of Lemma 4.10. We first show that β is a geodesic ray. Since β[0,k] (which
is labelled by w) and β[k,∞] are geodesics, the only way β can fail to be a geodesic
is if there is a wall which intersects both of these. Recall that w = a1 · · · ak, so
that the walls crossed by β[0,k] are β(i− 1)Hai

for 1 ≤ i ≤ k, where β(0) = e and
β(i) = a1 · · · ai. By construction, ai and ai+1 don’t commute for any i (mod k),
so it follows that these walls are pairwise disjoint, and are all disjoint from wHa1

.
On the other hand every wall that intersects β[k,∞] necessarily crosses wHa1

, since
β[k,∞] runs along wHa1

. It follows that no wall can cross both β[0,k] and β[k,∞].
Similarly, since α is a geodesic emanating from e along the wall Ha1

, the same
argument shows that no wall can cross both β[0,k] and α, a fact that will be useful
later in this proof.

To obtain a lower bound on divα,β , choose an arbitrary r-avoidant path η between
α(r) and β(r). Then one obtains a loop in CΓ by concatenating α[0,r], followed by η,
and followed by β[0,r] traversed in the negative direction. There is a van Kampen
diagram D with boundary label equal to the word encountered along this loop.
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Note that by construction, α[0,r], β[0,r] and η do not have any common edges in CΓ.
It follows that every edge of ∂D is part of a 2-cell of D, and that D is homeomorphic
to a disk. We will abuse notation and use α, β and η to denote the parts of ∂D
that are labelled by these paths.

There is a label-preserving combinatorial map from D to ΣΓ with the cellulation
by big squares. Under this map, edges and vertices of D go to edges and vertices
of CΓ, which is the 1-skeleton of the cellulation by big squares. We may assume
that each 2-cell in D is a square, since any 2-cell with boundary label of the form
s2 maps to an edge of ΣΓ and can therefore be collapsed to an edge in D. Thus the
map takes each 2-cell of D homeomorphically to a big square of ΣΓ. Further, if we
metrise each square of D as [0, 1]× [0, 1], then we can arrange that the restriction
of this map to a square of D is an isometry onto its image of a big square.

We will work primarily with a cell structure on D that is dual to the one just
described. We first define walls of D, record some of their properties, and then use
them to define the dual structure on D. The dual structure is then used to divide
D into strips, and we will show that the length of a strip is a lower bound on the
length of η. We then finish the proof by inductively estimating the lengths of the
strips. The fact that Γ is not CFS is used to show that the lengths of strips grow
quadratically.

Walls of D. Recall that each big square in ΣΓ is subdivided into four small squares
by a pair of (segments of) walls which intersect at the centre of the big square. For
each square in D, we pull back this pair of segments to D, and label them with the
type of walls they came from. The types of the two wall-segments in a square of D
are necessarily distinct. Now suppose there are two squares in D which share an
edge ε. By construction, both squares contain a wall-segment that intersects ε at
its midpoint, and these wall-segments must have the same label. To see this, recall
that the image of ε in ΣΓ is the side of a big square, and the midpoint of such a
side cannot be the point of intersection of a pair of walls. Thus, starting at any
wall-segment in a square of D, one can continue it through adjacent squares until it
eventually meets ∂D. We call a path constructed in this way a wall of D, and the
type of wall is the type of any of its wall-segments. Walls are similar to corridors:
if one “fattens up” a wall of type a by taking the union of the squares containing
its individual wall-segments, then one has an a-corridor of D.

Two walls of D intersect each other at most once; they intersect only if their
types commute and are distinct. A wall of D cannot intersect itself, as this would
require there to be a square in D in which both wall-segments have the same type.
Thus each wall of D is an embedded interval connecting a pair of points on ∂D.
We record the following observation for future use.

Observation 4.11. Every wall of D has at least one endpoint on η.
To see this, recall from the first paragraph of this proof that in ΣΓ, and therefore

in D, any wall intersecting β[0,k] is disjoint from both β[k,r] and α[0,r]. Thus any
wall in D with an endpoint on β[0,k] has its other endpoint on η. Now suppose there
is a wall P in D with one endpoint on α and the other on β[k,r]. Then P separates
D, putting β[0,k] and η in different components. This implies that every wall with
an endpoint on β[0,k] intersects P . However, one of these walls has the same type
as P , since β[0,k], which is labelled by w, has as its support the full vertex set of Γ.
This is a contradiction.
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α β[k,r]

η

β[0,k]
e

S0

S1

S2

Figure 4.3. The van Kampen diagram D. The light edges and
bold dots are the 1-cells and 0-cells, respectively, of the original
cell structure on D. The walls of D, which bound the dual 2-cells,
are shown in bold. The strips are shaded.

The dual cell structure on D. We now define the dual structure on D. Its
1-skeleton is the union of the walls of D, together with ∂D; see Figure 4.3. Thus
the vertices are points of intersection of a pair of walls (i.e. centres of squares in the
original structure) or points of intersection of a wall with ∂D. Removing the vertices
from the 1-skeleton yields several components; the edges are the closures of these
components. The 2-cells are the closures of the components of the complement of
the 1-skeleton in D. We use the terms dual cells and original cells to distinguish
between cells from the two structures on D. A dual cell is called a boundary cell if
it intersects ∂D. Otherwise it is called an interior cell. Since Γ is a triangle-free
graph, it is easy to see that the boundary of any interior dual 2-cell is a polygon
with at least four sides.

Strips in D. We now use the dual structure to define strips Si in D, for 0 ≤ i <
(r − k)/2.

Define the 0th strip S0 to be the union of all the dual 2-cells intersecting β[0,k].
Define the top boundary B0 of S0, by B0 = ∂S0 \ ∂D. Let εα(j) (respectively εβ(j))
denote the dual edge of ∂D containing the original vertex α(j) (respectively β(j)).
Observe that:

(1) S0 is connected and consists of an ordered collection of dual 2-cells, each
intersecting the previous one in a dual edge, and going from εα(0) to εβ(k).

(2) If Q is a wall that forms part of B0, then S0 is contained in a single com-
ponent of D \Q.

(3) B0 is connected, and all but the first and last dual edges of B0 are interior
edges.

Note that (1) follows from the fact that every edge of β[0,k] is part of a 2-cell,
and that D is homeomorphic to a disk. If (2) fails, then Q crosses S0 and has an
endpoint on β[0,k]. On the other hand, since it is part of B0, it contributes to the
boundary of a boundary 2-cell, and two of the boundary edges of this 2-cell are
parts of walls P1 and P2 which intersect β[0,k]. In order to intersect S0, the wall Q
must cross either P1 or P2. This is a contradiction, since by construction, no two
walls with endpoints on β[0,k] intersect each other. Finally, (3) follows from (1),



3564 PALLAVI DANI AND ANNE THOMAS

together with the fact that the construction forces B0 to consist solely of parts of
walls.

Now suppose Si−1 and its top boundary Bi−1 have been defined, with properties
analogous to (1)–(3) above. In particular, the 2-cells of Si−1 go from εα(i−1) to
εβ(k+i−1). Define Si to be the union of all the dual 2-cells intersecting Bi−1. Then
Si contains the dual 2-cells whose boundaries contain the edges εα(i) and εβ(k+i).
Define the top boundary Bi to be ∂Si \ {Bi−1, εα(i), εβ(k+i)}. We claim that if
i < (r − k)/2, then Si has properties analogous to (1)–(3) above.

To see (1), note that property (1) for Si−1 implies that Si−1, and therefore Bi−1,
separates D. Let Di be the closure of the component of D \ Bi−1 not containing
Si−1 (so that ∂Di consists of Bi−1 and a part of ∂D). By property (3) for Bi−1, all
but the first and last dual edges of Bi−1 are interior edges of D, so every edge of
Bi−1 is part of a 2-cell in Di and Di is homeomorphic to a disk. It follows that Si

is connected and consists of an ordered collection of dual 2-cells, each intersecting
the previous one in a dual edge, going from εα(i) to εβ(k+i).

An argument involving intersections of walls similar to the S0 case proves prop-
erty (2) for Si.

Property (3) would fail for Bi if one of the dual 2-cells of Si other than the first
and the last is a boundary cell, as this would mean that Bi contains part of α[i+1,r],
β[k+i+1,r], or η. (Note that α[0,i−1] and β[0,k+i−1] cannot be part of Bi since Bi−1

separates Si from these parts of ∂D.)
We first rule out α[i+1,r] and β[k+i+1,r]. Let Ai denote the wall of D with an

endpoint at the intersection of εα(i) and εα(i+1). Note that α[i+1,r] cannot cross
Ai by construction. Now Ai is a part of Bi, so by property (2) for Si it separates
α[i+1,r] from Si. This implies that Si cannot have any boundary cells intersecting
α[i+1,r]. By the same argument, Si does not have any boundary cells intersecting
β[k+i+1,r].

The map from D to CΓ takes each original vertex contained in a dual cell of
Si into B(e, k + 2i) ⊂ CΓ. To see this observe that each original vertex of S0 is
mapped into B(e, k), and for j > 0, the image of an original vertex in Sj is at most
distance two from the image of the vertices of Sj−1. So if i < (r − k)/2, then the
original vertices of Si are mapped into B(e, r− 1), and therefore cannot be vertices
of η, which is r-avoidant. Thus Si−1 does not have any boundary cells intersecting
η. This shows that all but the first and last 2-cells of Si are interior cells, which
implies (3).

Lengths of strips. Define the length of Si, denoted 
(Si), to be the number of
interior dual 2-cells in it.

Claim 4.12. For i < (r − k)/2, we have 
(Si) ≤ 
(η).

Proof. Let P be a wall of D which is transverse to Si, meaning that it crosses Si

at least once, intersecting both Bi−1 and Bi. We now show that P crosses Si at
most twice. Further, the number of times P crosses Si is equal to the number of
endpoints of P on η.

Suppose P crosses Si at least twice. Starting at the endpoint of P on η (guaran-
teed by Observation 4.11), follow P until its second crossing of Si, and let Q denote
the top boundary wall at the second crossing. By property (2) for Si, we know that
Si is contained in a single component of D \Q. Thus, in order to cross Si again, P
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Figure 4.4. A strip which has no large 2-cells is either a single
row of squares (left) or a sequence of such rows (right).

would have to cross Q a second time, which is impossible. So P crosses Si at most
twice.

Now suppose the second endpoint of P is on α. Since Q can cross neither P (a
second time) nor Si, it must also have an endpoint on α. This is a contradiction,
since by construction, two walls with endpoints on α cannot intersect each other.
By the same argument, P cannot have an endpoint on β. Thus, if P crosses Si

twice, it has two endpoints on η. If P crosses Si exactly once, then Observation 4.11
and the fact that Si separates D putting η in a single component imply that P has
exactly one endpoint on η, completing the proof of the second statement above.

Thus there is an injective map from the set of transverse intersections of walls
with Si into the set of walls crossed by η in ∂D. This proves the claim, as the number
of such transverse intersections is 
(Si) + 1, and the number of walls crossed by η
in ∂D (and therefore in ΣΓ) is 
(η). �

Lower bounds. We now inductively obtain lower bounds on the lengths of strips.
Define an interior dual 2-cell to be large if its boundary has five or more sides.

Claim 4.13. Every strip has at least one large 2-cell.

Proof. If not, then there is a strip Si built entirely out of squares. There are two
possibilities: either this strip consists of a single row of squares, or it consists of a
sequence of such rows of squares, with each such row connected to the next at right
angles as in Figure 4.2.

Since two walls intersect only if the corresponding generators commute, it is
possible to reconstruct a subgraph of Γ using Si, as follows. The vertices of this
subgraph are the labels of the walls which meet Si (either transversely or as part
of Bi or Bi−1). We add an edge between two such vertices of Γ whenever the
corresponding walls intersect in Si. It is easy to see that a single row of squares
reconstructs a join subgraph, while a sequence of rows of squares meeting at right
angles reconstructs a CFS subgraph. Every wall which has an endpoint on β[0,k]

crosses Si, since by Observation 4.11 its other endpoint is on η, and Si separates η
from β[0,r]. Thus the generators corresponding to walls with endpoints on β[0,k] are
vertices of the subgraph constructed above. But the support of β[0,k] is the entire
vertex set of Γ, so we obtain a CFS subgraph of Γ which uses all the vertices of Γ.
Then Γ itself is CFS, by Observation 4.5. This is a contradiction. �

An interior dual 2-cell in Si intersects Si−1 in either an edge or a vertex. Define
the 2-cell to be skew if this intersection is a vertex. Let ui denote the number of
skew 2-cells in Si.

Claim 4.14. For 1 ≤ i < (r − k)/2, we have ui ≥ i.

Proof. To see that u1 ≥ 1, note that B0 cannot consist of a single wall, by Obser-
vation 4.11. So it contains at least one pair of walls that intersect at a point and
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Figure 5.1

then pass through S1, giving rise to a skew 2-cell whose closure intersects S0 in the
point of intersection of the walls.

For the inductive step, observe that a skew 2-cell in Si−1 whose boundary is a
j-gon gives rise to j − 3 skew 2-cells in Si. Since each interior dual 2-cell has at
least 4 sides, j − 3 ≥ 1. Similarly, a non-skew large 2-cell in Si−1 whose boundary
is a j-gon gives rise to j − 4 ≥ 1 skew 2-cells in Si. By Claim 4.13, every strip has
at least one large 2-cell. Now if one of the skew cells in Si−1 is large, it gives rise
to at least two skew cells in Si, and we have ui ≥ ui−1 + 1. Otherwise there is a
non-skew large cell in Si−1, which gives rise to a skew cell in Si which does not
come from a skew cell of Si−1, and we have the same relation. It follows that ui ≥ i
for 1 ≤ i < (r − k)/2. �

There is a map from the 2-cells of Si to the 2-cells of Si−1 defined as follows.
The image of a skew 2-cell c is the unique 2-cell in Si−1 which shares a vertex with
c. The image of a non-skew 2-cell c is the unique 2-cell of Si−1 which shares an edge
with c. This is surjective by property (1) for Si. The cardinality of the preimage is
at least 1 for a non-skew 2-cell, and at least 3 for a skew 2-cell of Si−1. Thus one
has the relation 
(Si) ≥ 
(Si−1) + 2ui−1, since the length of a strip is the number
of interior 2-cells in it. Then, using Claim 4.14, we have:


(Si) ≥ 
(Si−1) + 2ui−1 ≥ · · · ≥
i∑

j=1

2uj ≥ 2

i∑
j=1

j ≥ (i)(i+ 1) ≥ i2.

Finally, if r > 2k, then r/4 < (r − k)/2, and by Claim 4.12, we have 
(η) ≥

(Sr/4) ≥ 1

16r
2. �

5. Higher-degree polynomial divergence

in right-angled Coxeter groups

We now prove Theorem 1.2 of the introduction, by producing examples to show
that the divergence of a 2-dimensional right-angled Coxeter group can be a poly-
nomial of any degree. More precisely, if Γd is the sequence of graphs shown in
Figure 5.1 (d ≥ 1), then we show that divΓd

(r) � rd. We prove the upper and
lower bounds on divΓd

(r) in Propositions 5.1 and 5.3 respectively.

Proposition 5.1. divΓd
(r) � rd.

Proof. Observe that the statement is true for d = 1 and 2, as Γ1 is a join and Γ2 is a
CFS graph. We proceed by induction on d. Assume that there is a constant C such
that if μ and ν are arbitrary geodesic rays based at e in CΓd−1

, then dav(μ(r), ν(r)) ≤
Crd−1 for any r.
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Now let α and β be an arbitrary pair of geodesic rays based at e in CΓd
. If

neither of them crosses any walls of type ad or bd, then they actually lie in the copy
of CΓd−1

based at e, and the induction hypothesis yields the desired avoidant path.
Thus we may assume that at least one of them, say α, crosses a wall of type ad

or bd. Let H1, . . . , Hk be the ordered set of walls of type ad or bd that α crosses
between e and α(r), and let xi denote the type of Hi. Then the label on α[0,r] is
w1x1w2x2 · · ·wkxkwk+1, where each wi is a (possibly empty) word in the letters
a0, a1, . . . , ad−1, b0, b1, . . . , bd−1, and each xi is ad or bd. For 1 ≤ i ≤ k, let gi denote
the word w1x1w2x2 · · ·wi. Then there exists a geodesic ray λi emanating from gi
with the following properties:

(1) The path emanating from e consisting of the segment labelled gi followed
by λi is a geodesic.

(2) The geodesic λi runs along Hi. (That is, the support of λi is either {a0, b0}
or {ad−1, bd−1}, depending on whether xi is ad or bd, respectively.)

If xi = ad, the label of λi must be of the form a0b0a0b0 . . . or b0a0b0a0 . . . . Choose
the former if the projection of gi to the group 〈a0, b0〉 ends with b0 and the latter
otherwise. This guarantees that there is no cancellation when gi is concatenated
with the label of λi. The case xi = bd is similar.

For 1 ≤ i ≤ k, let νi be the geodesic ray emanating from gixi with the same label
as λi. (See Figure 5.2.) For 0 ≤ i ≤ k − 1, let μi be the geodesic ray emanating
from gixi (or e when i = 0) consisting of the segment with label wi+1 followed by
λi+1. The choice of the λi guarantees that these are geodesics. Finally, define μk

to be the infinite part of α emanating from gkxk.
If β does not cross any walls of type ad or bd, then define μ′

0 = β. Otherwise
define H ′

1, . . . , H
′
l , as well as x′

i, g
′
i, u

′
i, ν

′
i, and μ′

i analogous to the corresponding
objects for α.

By construction, the supports of νi, μi, ν
′
i, μ

′
i are contained in {a0, a1, . . . , ad−1,

b0, b1, . . . , bd−1}. Thus there exist paths ηi connecting νi(2r) and μi(2r) with length
at most C(2r)d−1, which avoid a ball of radius 2r based at gixi, and therefore
avoid a ball of radius r based at e. Similarly, there are r-avoidant paths η′i and η0
connecting ν′i(2r) and μ′

i(2r) and μ0(2r) and μ′
0(2r) respectively, each with length

at most C(2r)d−1.
For each i, the points μi(2r) and νi+1(2r) are connected by an edge, as are

μ′
i(2r) and ν′i+1(r). Using these k+ l edges to connect ηi, η

′
i and η0, one obtains an

r-avoidant path between μk(2r) and μ′
k(2r). Finally, η is constructed by attaching

the segment of α from α(r) to μk(2r) and the segment of β from β(r) to μ′
k(2r),

each with length at most 2r. Since k and l are at most r, we have


(η) ≤ 4r + k + l + (k + l + 1)C(2r)d−1 ≤ 6r + (2r + 1)C2d−1rd−1 ≤ C ′rd,

where C ′ = 6 + 2d+1C. �

Remark 5.2. This upper bound could also be obtained by arguments in [3], as the
group Wd is strongly algebraically thick of order at most d−1. To see this, for each
n ≥ d ≥ 1 define a right-angled Coxeter group Wn,d to be the special subgroup of
Wn generated by the set {a0, a1, . . . , an, b0, b1, . . . , bd}. Note that Wd,d = Wd. Now
Wn,2 is strongly algebraically thick of order at most 1 since its defining graph is CFS
(see Remark 4.8 above). By induction on d, the group Wn,d is strongly algebraically
thick of order at most d− 1 with respect to H = {Wn,d−1, bdWn,d−1bd}. Hence in
particular, Wd is strongly algebraically thick of order at most d− 1.
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Figure 5.2. Construction of the avoidant path η. The geodesic
rays μi and μk are shown in bold.

Proposition 5.3. divΓd
(r) 
 rd.

Proof. We prove the lower bound by producing a pair of geodesic rays in CΓd
whose

divergence is bounded below by a constant multiple of rd. This will follow from a
more general statement about the divergence of certain pairs of geodesics in CΓd+2

.
For 1 ≤ n ≤ d, let αn and βn be any geodesic rays in CΓd+2

satisfying the
following conditions:

(1) αn emanates from e and travels along Hbn+1
; and

(2) βn emanates from e and travels along one of Han
, Hbn , or Hbn+2

. (Note
that {an, bn, bn+2} is exactly the set of types of walls which can intersect
Hbn+1

.)

Then we show below that

(5.1) dav(αn(r), βn(r)) ≥
1

2n(n+1)
rn.

When n = d, one can take αd to be the geodesic ray based at e with label
bdadbdad . . . , as this travels along Hbd+1

, and βd to be the geodesic ray based at
e with label bd−1ad−1bd−1ad−1 . . . , as this travels along Hbd . Observe that these
geodesics are actually in the copy of CΓd

based at e. Any avoidant path between
αd(r) and βd(r) in CΓd

remains avoidant under the isometric inclusion CΓd
↪→ CΓd+2

,

and therefore has length bounded below by (1/2d(d+1))rd, by (5.1). This completes
the proof of the proposition.

We establish (5.1) by proving the following equivalent statement by induction
on k: for all 1 ≤ k ≤ d and all k ≤ n ≤ d, if αn and βn satisfy the conditions (1)
and (2) respectively, then dav(αn(r), βn(r)) ≥ (1/2k(k+1))rk.

Observe that for any n, if αn and βn are chosen as above, then αn concatenated
with βn at e is a bi-infinite geodesic, since αn and βn have disjoint supports, regard-
less of the type of wall along which βn travels. Thus any avoidant path between
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Figure 5.3. Construction of μi and νi. Here μi(0) = gi and
νi(0) = μi(1).

αn(r) and βn(r) must cross the 2r walls crossed by this bi-infinite geodesic. This
proves the case k = 1, as dav(αn(r), βn(r)) ≥ 2r > (1/4)r for all n ≥ 1.

Now suppose n ≥ k+1, and let η be an avoidant path connecting βn(r) to αn(r).
Focus on the r/2 walls that αn crosses between αn(0) and αn(r/2). Each of these
is of type an, bn, or bn+2. Since two consecutive walls cannot be of the same type,
at most half of these walls are of type an. Thus, in this range, αn (and hence η)
crosses at least r/4 walls of type b∗, where the subscript is either n or n+ 2. Call
them H1, . . . , Hl, where l ≥ r/4. Let (gi, gib∗) be the edge where αn crosses Hi

and let (hi, hib∗) be the first edge where η crosses Hi, going from βn(r) to αn(r).
Let μi denote the unique geodesic connecting gi to hi that travels along Hi. (See
Figure 5.3.) Define μ0 = βn and h0 = βn(r).

For 1 ≤ i ≤ l, let H ′
i denote the second wall crossed by μi starting at gi. Note

that H ′
i intersects Hi, and therefore cannot intersect αn, since no two walls crossed

by αn intersect. We claim that H ′
i also does not intersect μi−1. The support of μi is

contained in either {an−1, bn−1, bn+1} or {an+1, bn+1, bn+3}, depending on the type
of Hi. If the first wall crossed by μi doesn’t intersect μi−1, then H ′

i can’t either,
as H ′

i is separated from μi−1 by the first wall. Otherwise, the first wall crossed by
μi has to be of type bn+1, which means that H ′

i is not of type bn+1. If the types of
Hi and Hi−1 are different, then the type of H ′

i is not in the support of μi−1, so H ′
i

cannot intersect μi−1. Finally, if the types of Hi and Hi−1 are the same, then they
must be separated by a wall of type an, since αn can’t cross two consecutive walls
of the same type. Now H ′

i can’t intersect this wall, since it is not of type a0, b0 or
bn+1. So H ′

i can’t intersect μi−1 either.
It follows that for 1 ≤ i ≤ l, the wall H ′

i separates the points hi−1 and hi, since
the path formed by concatenating μi−1, the part of αn between gi−1 and gi, and
μi crosses H

′
i exactly once. Now η contains a sub-path connecting hi−1 and hi, so

η must cross H ′
i. Let (pi, pixi) be the first edge along which it crosses H ′

i, where xi

is the type of H ′
i. Let ηi denote the part of η between pi and hi, and let νi denote

the unique geodesic connecting μi(1) to pi, which travels along H ′
i .



3570 PALLAVI DANI AND ANNE THOMAS

Observe that μi is a geodesic that travels along a wall of type bn or bn+2, and
νi is a geodesic that travels along a wall that intersects it. This means that the
pair μi and νi is either of the form αn−1 and βn−1 or αn+1 and βn+1 (if we allow
the geodesics to emanate from μ(1) instead of e). Since n − 1 ≥ k, the inductive
hypothesis applies, and we have that davμ(1)(μi(s+1), νi(s)) ≥ (1/2k(k+1))sk for all s.

Since we are restricted to the wallsH1, . . . , Hl crossed by αn between e and αn(r/2),
we know that |gi| ≤ r/2. On the other hand, since hi and pi are r-avoidant, the
lengths of μi and νi are at least r/4. By the observation and the end of Section 2,

(ηi) ≥ (1/2k(k+1))(r/4)k for all i. So, since l ≥ 4, we have


(η) ≥
l∑

i=1


(ηi) ≥ l

(
1

2k(k+1)

)(r

4

)k

≥
(r

4

) (
rk

2k(k+1)+k

)
=

1

2(k+1)(k+2)
rk+1,

as required. �

Appendix A. Relationship with examples of Macura

In this appendix we discuss the relationship between our constructions of CAT(0)
groups with divergence polynomial of any degree, and those of Macura [19].

For d ≥ 2, we denote by Gd the group constructed in [19] with presentation

Gd = 〈a0, a1, . . . , ad | a0a1 = a1a0 and a−1
i a0ai = ai−1 for 2 ≤ i ≤ d〉.

Let Xd be the presentation 2-complex for this presentation of Gd. Then Xd has a
single vertex v, d + 1 oriented edges labeled by a0, a1, . . . , ad, and d squares with
boundary labels a0a1a

−1
0 a−1

1 and a−1
i a0aia

−1
i−1 for 2 ≤ i ≤ d. Equip Xd with the

metric such that each square is a unit Euclidean square. Then the universal cover

X̃d is a CAT(0) square complex, in which the link of every vertex is the graph Γd

from Figure 5.1 above. The link of any vertex in the Davis complex for Wd = WΓd

with the cellulation by big squares is also Γd. This observation is why we consider
the relationship between Gd and Wd. To avoid confusion with Macura’s notation,
in this section we relabel the vertices of Γd by si+ = ai and si− = bi for 0 ≤ i ≤ d.

We would like to use covering theory to investigate common finite index sub-
groups of Gd and Wd. Any finite index subgroup of Gd is the fundamental group
of a finite square complex Q such that there is a combinatorial covering map
Ψ : Q → Xd. However, since the group Wd has torsion a more sophisticated cov-
ering theory is needed; as we explain below, its finite index subgroups correspond
to finite-sheeted covers of complexes of groups. We first recall some background on
complexes of groups in Section A.1. We then use this theory to show in Section A.2
that W2 and G2 are commensurable, and to explain in Section A.3 why for d > 2
we do not know if Wd and Gd are commensurable.

A.1. Complexes of groups. We adapt the theory of complexes of groups and
their coverings to our situation. The general theory and details can be found
in [7, Chapter III.C]. Throughout this section, W = WΓ is a right-angled Coxeter
group with Γ satisfying the hypotheses of Theorem 1.1, and Σ is the associated
Davis complex.

Let Y be a square complex. Assume that the edges of Y may be oriented so
that:

(∗) for each square of Y , if the positively oriented edge labels of this square are
a, b, a′ and b′, then b′a′a−1b−1 is the boundary label.
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For an oriented edge e of Y , we denote by i(e) its initial vertex and by t(e) its
terminal vertex.

Examples A.1. Two important examples of square complexes with edge orienta-
tions satisfying (∗) are the following:

(1) Let Y be the chamber K with the cellulation by small squares. For all pairs
of spherical subsets T ′ � T , we orient the edge of Y connecting the vertices
σT ′ and σT so that this edge has initial vertex σT ′ and terminal vertex σT .
Note that every edge incident to σ∅ has initial vertex σ∅.

(2) Similarly, if Y = Σ with the cellulation by small squares, then the edges of
Σ may be oriented by inclusion of type.

Now suppose that Y and Z are square complexes with edge orientations satisfying
(∗).

Definition A.2. A non-degenerate morphism f : Y → Z is a map taking vertices
to vertices and edges to edges, such that:

(1) for each square of Y , the restriction of f to this square is a bijection onto
a square of Z; and

(2) for each vertex σ of Y , the restriction of f to the set of edges with initial
vertex σ is a bijection onto the set of edges of Z with initial vertex f(σ).

For example, if Y = Σ and Z = K with the orientations specified in Exam-
ples A.1 above, then the quotient map f : Y → Z induced by the action of W on
Σ is a non-degenerate morphism.

Definition A.3. Let Y be a square complex with edge orientations satisfying (∗).
A complex of groups G(Y ) = (Gσ, ψe) over Y consists of:

(1) a group Gσ for each vertex σ of Y , called the local group at σ; and
(2) a monomorphism ψe : Gi(e) → Gt(e) along each edge e of Y .

A complex of groups is trivial if each local group is trivial.

Example A.4. We construct a canonical complex of groups W(K) over K as
follows. For each spherical subset T ∈ S, the local group at the vertex σT is the
special subgroup WT . All monomorphisms along edges are inclusions.

The complex of groups W(K) in Example A.4 is canonically induced by the
action of W on Σ. More generally, if G is a subgroup of W , then the action of G
on Σ induces a complex of groups G(Y ) over Y = G\Σ, such that for each vertex
σ of Y , the G-stabiliser of each lift σ of σ in Σ is a conjugate of the local group
Gσ of G(Y ). A complex of groups is developable if it is isomorphic to a complex of
groups induced by a group action. Complexes of groups, unlike graphs of groups,
are not in general developable.

See [7] for the definition of the fundamental group π1(G(Y )) and universal cover
of a (developable) complex of groups G(Y ). The universal cover of G(Y ) is a
connected, simply-connected square complex X, equipped with an action of G =
π1(G(Y )) so that Y = G\X.

Examples A.5.

(1) The complex of groups W(K) has fundamental group W and universal
cover Σ.
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(2) Let G(Y ) be the trivial complex of groups over a square complex Y . Then
π1(G(Y )) is the (topological) fundamental group of Y , and π1(G(Y )) acts
freely on the universal cover of G(Y ).

If a complex of groups G(Y ) is developable, then each local group Gσ naturally
embeds in the fundamental group π1(G(Y )).

We now discuss coverings of complexes of groups. We will only need to construct
coverings G(Y ) → W(K) where G(Y ) is a trivial complex of groups, and so do not
give the general definition, which is considerably more complicated.

Definition A.6. Let Y be a square complex with edge orientations satisfying (∗).
Let G(Y ) be the trivial complex of groups over Y . A covering of complexes of
groups Φ : G(Y ) → W(K) consists of:

(1) a non-degenerate morphism f : Y → K; and
(2) for each edge e of Y , with f(t(e)) = σT , an element φ(e) ∈ WT ;

such that for each vertex σ of Y and each edge e′ of K, with t(e′) = f(σ) = σT and
i(e′) = σT ′ , the map

Φσ/e′ : {e ∈ f−1(e′) | t(e) = σ} → WT /WT ′

induced by e �→ φ(e) is a bijection.

Observe that if e′ is an edge of K with t(e′) = σT and i(e′) = σT ′ , then |T | =
|T ′| + 1; hence if T = T ′ ∪ {t} we have WT /WT ′ ∼= 〈t〉 ∼= C2. So the condition in
Definition A.6 that Φσ/e′ is a bijection is equivalent to the condition that the set

{e ∈ f−1(e′) | t(e) = σ} has two elements, say e1 and e2, such that without loss of
generality φ(e1) ∈ WT ′ and φ(e2) ∈ tWT ′ . In particular, it suffices to put φ(e1) = 1
and φ(e2) = t. A covering Φ : G(Y ) → W(K) as in Definition A.6 is finite-sheeted
if Y is finite.

The following result is a special case of a general theorem on functoriality of
coverings of complexes of groups. The general result is implicit in [7], and stated
and proved explicitly in [18].

Theorem A.7. Let Kd be the chamber for Wd, cellulated by small squares. Let
W(Kd) be the complex of groups over Kd described in Example A.4 above, with
fundamental group Wd. Then any subgroup of Wd is the fundamental group of a
complex of groups G(Y ′) (not necessarily trivial) over a square complex Y ′, such
that there is a covering of complexes of groups Φ : G(Y ′) → W(Kd). Moreover, a
subgroup of Wd has finite index if and only if it is the fundamental group of G(Y ′)
such that there is a finite-sheeted covering Φ : G(Y ′) → W(Kd).

A.2. Commensurability in the case d = 2. We now use covering theory to
prove the following.

Proposition A.8. The groups G2 and W2 are commensurable.

Proof. Denote by Z2 the first square subdivision of the presentation 2-complex X2.
We will construct a finite square complex Y such that:

(1) there is a combinatorial covering map Ψ : Y → Z2; and
(2) there is a covering of complexes of groups Φ : G(Y ) → W(K2), where G(Y )

is the trivial complex of groups over Y .
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Since G(Y ) is the trivial complex of groups, the fundamental group of G(Y ) is
just the (topological) fundamental group of Y . It follows that G2 and W2 are
commensurable.

The square complex Y will be the first square subdivision of the square complex
Q constructed below. We will show that there is an 8-sheeted combinatorial covering
map from Q to X2, which implies (1). See Figure A.1; the complex Q is obtained
by carrying out some further edge identifications on this square complex.

v5

v1 v2

v6 v5

v4

v8

v1

v1

v5

v1v2v1

v5

v4

v8

v4

v1 v2

v3

v7

v3

v6

v4

Figure A.1. The square complex Q, with vertices labelled and
edges oriented, prior to some edge identifications. All squares ex-
cept for the four squares with vertex set {v5, v6, v7, v8} are shaded.

The complex Q has 8 vertices v1, . . . , v8, each of which get mapped to the vertex
v of X2. There are 24 oriented edges of Q which form three families as follows.
Here, ai,j = (vk, vl) means that the edge ai,j is the unique edge of Q with initial
vertex vk and terminal vertex vl.

(1) The following 8 edges get mapped to the edge a0 of X2: a0,1 = (v1, v2),
a0,2 = (v2, v1), a0,3 = (v4, v3), a0,4 = (v3, v4), a0,5 = (v6, v7), a0,6 =
(v7, v6), a0,7 = (v5, v8), a0,8 = (v8, v5).

(2) The following 8 edges get mapped to the edge a1 of X2: a1,1 = (v1, v4),
a1,2 = (v4, v1), a1,3 = (v2, v3), a1,4 = (v3, v2), a1,5 = (v5, v6), a1,6 =
(v6, v5), a1,7 = (v8, v7), a1,8 = (v7, v8).

(3) The following 8 edges get mapped to the edge a2 of X2: a2,1 = (v1, v5),
a2,2 = (v5, v1), a2,3 = (v4, v8), a2,4 = (v8, v4), a2,5 = (v3, v7), a2,6 =
(v7, v3), a2,7 = (v2, v6), a2,8 = (v6, v2).
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Table 1. Types of vertices in Y which are midpoints of edges of Q

Midpoint of edges Type Midpoint of edges Type Midpoint of edges Type

a1,1, a1,3, a0,5, a0,7 0+ a0,1, a0,3, a1,5, a1,7 1+ a2,2, a2,4, a2,6, a2,8 2+

a1,2, a1,4, a0,6, a0,8 0− a0,2, a0,4, a1,6, a1,8 1− a2,1, a2,3, a2,5, a2,7 2−

We then attach 16 squares along the following edge labels, forming two families as
follows:

(1) The following 8 squares get mapped to the square of X2 attached along
a0a1a

−1
0 a−1

1 :

a0,1a1,3a
−1
0,3a

−1
1,1, a0,2a1,1a

−1
0,4a

−1
1,3, a0,3a1,4a

−1
0,1a

−1
1,2, a0,4a1,2a

−1
0,2a

−1
1,4,

a0,7a1,7a
−1
0,5a

−1
1,5, a0,8a1,5a

−1
0,6a

−1
1,7, a0,5a1,8a

−1
0,7a

−1
1,6, a0,6a1,6a

−1
0,8a

−1
1,8.

(2) The following 8 squares get mapped to the square of X2 attached along
a−1
2 a0a2a

−1
1 :

a−1
2,1a0,1a2,7a

−1
1,5, a−1

2,7a0,2a2,1a
−1
1,6, a−1

2,3a0,3a2,5a
−1
1,7, a−1

2,5a0,4a2,3a
−1
1,8,

a−1
2,2a0,7a2,4a

−1
1,1, a−1

2,4a0,8a2,2a
−1
1,2, a−1

2,8a0,5a2,6a
−1
1,3, a−1

2,6a0,6a2,8a
−1
1,4.

This completes the construction of Q, together with a combinatorial covering Q →
X2.

Now let Y be the first square subdivision of Q and let G(Y ) be the trivial complex
of groups over Y . We assign types T ∈ S to the vertices of Y , as follows. If a vertex
of Y is one of the vertices of Q, it has type ∅. Next consider the vertices of Y which
are midpoints of edges of Q. Table 1 shows the assigned types of these vertices. To
simplify notation, we write i± for the type {si±} ∈ S, for i = 0, 1, 2.

Finally, consider the vertices of Y which are at the centres of squares of Q. Let
σ be such a vertex. Then for some pair of types iεi and jεj with i, j ∈ {0, 1, 2},
i �= j, and εi, εj ∈ {±}, two of the vertices of Y which are adjacent to σ are of type
iεi , and two of the vertices of Y which are adjacent to σ are of type jεj . Moreover,
{iεi , jεj} ∈ S. We then assign type {iεi , jεj} to the vertex σ.

After assigning these types, it may be verified that Y is obtained by taking 8
copies of the chamber K2 and gluing together certain pairs of mirrors of the same
type. We note also that the above assignment of types allows us to orient the edges
of Y in the same way as in K2, that is, an edge a has initial vertex of type T ′ and
terminal vertex of type T if and only if T ′ � T .

Next, define f : Y → K2 to be the only possible type-preserving morphism. It
may be checked that f is a non-degenerate morphism. We construct a covering of
complexes of groups Φ : G(Y ) → W(K2) over f . In order to define the elements
φ(a) for the edges a of Y , we put an equivalence relation, parallelism, on the set
of edges of Y , so that if a and b are parallel, then we will have φ(a) = φ(b). The
relation is generated by saying that two edges are parallel if they are opposite
edges of a (small) square of Y . The values of φ(a) for representatives a of certain
parallelism classes of edges in Y are specified in Table 2. For all edges a of Y which
are not parallel to an edge appearing in Table 2, we put φ(a) = 1.

To verify that Φ is a covering of complexes of groups, we simplify notation and
write s for the vertex σ{s} of the chamber K2. For each vertex siε of K2, where
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Table 2. Non-trivial values of φ(a), for representatives a of cer-
tain parallelism classes of edges

Vertex i(a) Type of t(a) φ(a) Vertex i(a) Type of t(a) φ(a)
v1 0+ s0+ v1 2− s2−

v4 0− s0− v4 2− s2−

v1 1+ s1+ v5 2+ s2+

v2 1− s1− v6 2+ s2+

i ∈ {0, 1, 2} and ε ∈ {±}, there is a unique edge b of K2 such that siε is the terminal
vertex of b. Fix a vertex σ ∈ f−1(siε). Then there are two edges a1 and a2 of Y
with terminal vertex σ such that f(a1) = f(a2) = b. By construction, without loss
of generality we have φ(a1) = siε and φ(a2) = 1. Therefore Φσ/b is a bijection to
〈siε〉 ∼= C2, as required. Now consider a vertex σT of K2 where T ∈ S with |T | = 2.
Write T = {iεi , jεj}. If b is an edge ofK2 with terminal vertex σT , then without loss
of generality b has initial vertex of type iεi . Fix a vertex σ ∈ f−1(σT ). Then there
are two edges a1 and a2 of Y with terminal vertex σ such that f(a1) = f(a2) = b.
By construction, without loss of generality we have φ(a1) = sjεj and φ(a2) = 1.
Thus Φσ/b is a bijection to WT /〈siεi 〉 ∼= 〈sjεj 〉 ∼= C2, as required. Therefore Φ is a
covering of complexes of groups. �
A.3. Discussion of case d > 2. We conclude with a brief discussion of whether
Gd and Wd are commensurable when d > 2.

The following result shows that the strategy used to prove that G2 and W2 are
commensurable cannot be implemented for d > 2. The proof of Proposition A.9
uses covering theory for complexes of groups, and may be found in the first version
of this paper on the arXiv. We denote by Zd the first square subdivision of Xd.

Proposition A.9. If d > 2 there is no square complex Y such that both of the
following conditions hold:

(1) there is a combinatorial covering map Ψ : Y → Zd; and
(2) there is a covering of complexes of groups Φ : G(Y ) → W(Kd).

Note that Proposition A.9 does not require Y to be finite. In particular, it follows
that:

Corollary A.10. For d > 2, the universal cover X̃d is not isometric to the Davis
complex Σd.

This is surprising, since both X̃d and Σd are CAT(0) square complexes with all
vertex links the graph Γd.

For d > 2 we do not know if Gd and Wd are commensurable, or even quasi-
isometric. If they are commensurable, then there are finite square complexes Y
and Y ′ such that there is a combinatorial covering map Y → Zd and a covering of
complexes of groups G(Y ′) → W(Kd), with π1(Y ) ∼= π1(G(Y ′)). Moreover, since
Gd is torsion-free it is not hard to show that such a G(Y ′) must be the trivial
complex of groups over Y ′, hence π1(G(Y ′)) = π1(Y

′). Now by Corollary A.10, the
universal covers of Y and Y ′ are not isometric. Hence if there is some Mostow-type
rigidity result which implies that the isomorphism π1(Y ) ∼= π1(Y

′) is induced by
an isometry of universal covers, we would obtain that Wd and Gd are not in fact
commensurable. However, the only Mostow-type rigidity results for CAT(0) square
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complexes that we know of are Theorem 1.4.1 of [8], for certain uniform lattices on
products of trees, and Corollary 1.8 of [6], concerning right-angled Artin groups,
and neither of these results can be applied here.
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