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COUPLED CELL NETWORKS:

SEMIGROUPS, LIE ALGEBRAS AND NORMAL FORMS

BOB RINK AND JAN SANDERS

Abstract. We introduce the concept of a semigroup coupled cell network and
show that the collection of semigroup network vector fields forms a Lie alge-
bra. This implies that near a dynamical equilibrium the local normal form
of a semigroup network is a semigroup network itself. Networks without the
semigroup property will support normal forms with a more general network
architecture, but these normal forms nevertheless possess the same symme-
tries and synchronous solutions as the original network. We explain how to
compute Lie brackets and normal forms of coupled cell networks and we char-
acterize the SN-decomposition that determines the normal form symmetry.
This paper concludes with a generalization to nonhomogeneous networks with
the structure of a semigroupoid.

1. Introduction

Coupled cell networks appear in many of the sciences and range from crystal
models and electrical circuits to numerical discretization schemes, Josephson junc-
tion arrays, power grids, the world wide web, ecology, neural networks and systems
biology. Not surprisingly, there exists an overwhelming amount of literature on
coupled cell networks.

The last decade has seen the development of an extensive mathematical theory
of dynamical systems with a network structure; cf. [16], [24], [35], [48], [51]. In
these network dynamical systems, the evolution of the state of a constituent or
“cell” is determined by the states of certain particular other cells. It is generally
believed that a network structure has an impact on the behavior of a dynamical
system, but it is not always clear how and why.

As an example, let us mention a system of differential equations with a homo-
geneous coupled cell network structure of the form

ẋi = f(xσ1(i), . . . , xσn(i)) for 1 ≤ i ≤ N.(1.1)

These differential equations generate a dynamical system in which the evolution of
the variable xi is only determined by the values of xσ1(i), . . . , xσn(i). The functions

σ1, . . . , σn : {1, . . . , N} → {1, . . . , N}
can thus be thought of as a network that prescribes how which cells influence which
cells.

The literature on network dynamical systems focuses on the analysis of equilib-
ria, periodic solutions, symmetry, synchrony, structural stability and bifurcations.
As in the classical theory of dynamical systems, one often faces the task here of
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computing a local normal form near a dynamical equilibrium. These normal forms
are obtained from coordinate transformations, and in their computation one calcu-
lates Lie brackets of vector fields, either implicitly or explicitly. It is here that one
encounters an important technical problem:

Differential equations of the form (1.1) in general do not form a Lie algebra.

As a consequence one can not expect that the normal form of a coupled cell network
is a coupled cell network as well. This complicates the local analysis and classi-
fication of network dynamical systems, because it means that one always has to
compute the normal form of a network explicitly to understand its generic behavior
- unless one is willing to assume that the network is given in normal form from the
beginning; cf. [24], [29]. Normal form computations in [13], [21], [26] have revealed
that a network structure can have a nontrivial impact on this generic behavior.
One wants to understand and predict this.

In this paper, we will formulate an easily verifiable condition on a network struc-
ture under which the coupled cell network vector fields do form a Lie subalgebra of
the Lie algebra of vector fields. Our main result is the following:

If {σ1, . . . , σn} is a semigroup, then the differential equations (1.1) form a Lie
algebra.

In this case, the local normal form of (1.1) is also of the form (1.1).

In addition, we show that the Lie bracket of semigroup coupled cell network vector
fields can be lifted to a symbolic bracket that only involves the function f . Normal
form calculations can be performed at this symbolic level, and one only returns to
the reality of the differential equation when one is done computing. We also show
that the symbolic space carries a dynamics of its own, determined by a certain
fundamental network.

This situation is analogous to that of Hamiltonian vector fields, of which the
Lie bracket is determined by the Poisson bracket of Hamiltonian functions. As
a consequence, Hamiltonian normal forms are usually computed at the level of
functions. Moreover, the symbolic dynamics of Hamiltonian functions is determined
by a Poisson structure; cf. [41].

When σ1, . . . , σn do not form a semigroup, then we suggest that one simply
completes them to the smallest collection

σ1, . . . , σn, σn+1, . . . , σn′ : {1, . . . , N} → {1, . . . , N}
that does form a semigroup under composition. Then (1.1) can be written as

ẋi = f ′(xσ1(i), . . . , xσn′ (i)) with f ′(X1, . . . , Xn, Xn+1, . . . , Xn′) := f(X1, . . . , Xn) .

The normal form of (1.1) will now lie within the extended class of semigroup coupled
cell networks, there being no guarantee that it is again of the original form (1.1).

Thus one can choose: either to respect any given network structure as if it
were a law of nature, so that no normal form can be computed, or to extend
every network to a semigroup network and live with the consequences. One can
object that even simple networks may need a lot of extension before they form a
semigroup. But as an argument in favor of the semigroup approach, let us mention
that the symmetries and synchrony spaces of a network are not at all affected by
our semigroup extension. This implies in particular that these symmetries and
synchrony spaces will also be present in the local normal form of the network.
This latter property is both pleasant and important, if only in view of the large
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amount of research that has been devoted to symmetry [5], [6], [9], [18], [25], [31]
and synchrony [2], [3], [4], [8], [10], [11], [27], [32], [34], [38], [49], [51], [53] in
coupled cell networks. Semigroups may well be the natural invariants of coupled
cell networks, even more than groups and symmetries.

Normal forms are computed by applying coordinate transformations [42], [45],
[46], [47]. These transformations can be in the phase space of a differential equation,
but in our case they take place in the space of functions f and have the form of a
series expansion

f �→ ead
Σ
g f = f + adΣg (f) +

1
2 (ad

Σ
g )

2(f) + . . . .

Here f is the function to be transformed and normalized, g generates the coor-
dinate transformation and adΣ denotes a representation, in this case the adjoint
representation of the Lie algebra of f ’s. Although at first sight this may seem a
needlessly complicated way to describe coordinate transformations, this “Lie for-
malism” allows for a very flexible theory which streamlines both the theory and the
computations.

The actual computation of the normal form of the function f , and in particular
the matter of solving homological equations, will not be entirely standard in the
context of networks. Some things remain as in the theory of generic vector fields.
For example, we show that the adjoint action of a linear element admits an SN-
decomposition that determines a normal form symmetry. Other aspects may not
carry through, such as the applicability of the Jacobson-Morozov lemma to char-
acterize the complement of the image of the adjoint action of a nilpotent element
[7]. This is because the Lie algebra of the linear coupled cell network vector fields
need not be reductive.

This paper is organized as follows. After giving a formal definition of a homo-
geneous coupled cell network in Section 2, we show in Section 3 that semigroups
arise naturally in the context of coupled cell networks. In Sections 4 and 5 we prove
that semigroup network dynamical systems are closed under taking compositions
and Lie brackets. Section 6 explains how to compute the normal form of a network
dynamical system, while in Sections 7 and 8 we prove that this normal form inherits
both the symmetries and the synchrony spaces of the original network. In Section
9 we investigate the SN-decomposition of a linear coupled cell network vector field.
This decomposition determines the normal form symmetry. Section 10 describes the
aforementioned fundamental network. In Section 11 we actually compute the nor-
mal forms of some simple but interesting coupled cell networks, thus demonstrating
that a coupled cell network structure can force anomalous steady state bifurcations.
Finally, we show in Section 12 that our theory is also applicable to nonhomogeneous
or “colored” networks that display the structure of a semigroupoid.

Issues that we do not touch in this paper but aim to treat in subsequent work
include:

1. The development of a linear algebra of semigroup coupled cell systems in
order to define for example a “semigroup network Jordan normal form”.

2. Application of the results in this paper to semigroup networks that arise in
applications, such as feed-forward motifs.

3. Better understanding the relation between semigroups and the well-known
“groupoid formalism”. The results of this paper mainly apply to networks
for which the groupoid is trivial, and it would be interesting to study the
impact of nontrivial “input symmetries” on bifurcations and normal forms.



3512 BOB RINK AND JAN SANDERS

2. Homogeneous coupled cell networks

We shall be interested in dynamical systems with a coupled cell network struc-
ture. Such a structure can be determined in various ways [16], [35], [38], [51], but
we choose to describe it here by means of a collection of distinct maps

Σ = {σ1, . . . , σn} with σ1, . . . , σn : {1, . . . , N} → {1, . . . , N} .

The collection Σ has the interpretation of a network with 1 ≤ N < ∞ cells. Indeed,
it defines a directed multigraph with N vertices and precisely n arrows pointing
into each vertex, where the arrows pointing towards vertex 1 ≤ i ≤ N emanate
from the vertices σ1(i), . . . , σn(i). The number n of incoming arrows per vertex is
sometimes called the valence of the network.

In a network dynamical system we think of every vertex 1 ≤ i ≤ N in the network
as a cell, of which the state is determined by a variable xi that takes values in a
vector space V .

Definition 2.1. Let Σ = {σ1, . . . , σn} be a collection of n distinct maps on N
elements, V a finite-dimensional real vector space and f : V n → V a smooth
function. Then we define

γf : V N → V N by (γf )i(x) := f(xσ1(i), . . . , xσn(i)) for 1 ≤ i ≤ N.(2.2)

Depending on the context, we will say that γf is a homogeneous coupled cell network
map or a homogeneous coupled cell network vector field subject to Σ.

Remark 2.2. In the literature, γf is also called an admissible map/vector field.
These maps and vector fields are commonly defined in terms of the groupoid of
input equivalences of the cells in the network; see [35], [38] and [51]. For network
maps/vector fields of the form (2.2) the corresponding groupoid is trivial though:
every cell i unambiguously has precisely one well-defined j-th input. A nontrivial
groupoid arises when two or more different inputs of a cell can be interchanged
without any effect on the dynamics. This case will be discussed in some detail in
Section 8.

Dynamical systems with a coupled cell network structure arise when we iterate
the map γf or integrate the vector field that it defines. The iterative dynamics on
V N has the special property that the state of cell i at time m+ 1 depends only on
the states of the cells σ1(i), . . . , σn(i) at time m:

x(m+1) = γf (x
(m)) if and only if x

(m+1)
i = f(x

(m)
σ1(i)

, . . . , x
(m)
σn(i)

) for 1 ≤ i ≤ N.

(2.3)

The continuous-time dynamical system on V N displays the same property infinites-
imally: it is determined by the ordinary differential equations

ẋ = γf (x) if and only if ẋi = f(xσ1(i), . . . , xσn(i)) for 1 ≤ i ≤ N.(2.4)

We aim to understand how the network structure of γf impacts these dynamical
systems.

Example 2.3. An example of a directed multigraph is shown in Figure 1, where
the number of cells is N = 3 and the valence is equal to n = 2. The maps σ1 and
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Figure 1. The collection {σ1, σ2} depicted as a directed multigraph.

σ2 are given by

σ1(1) = 1, σ1(2) = 2, σ1(3) = 3 ,

σ2(1) = 1, σ2(2) = 1, σ2(3) = 2 .

A coupled cell network map/vector field subject to {σ1, σ2} is of the form

γf (x1, x2, x3) = (f(x1, x1), f(x2, x1), f(x3, x2)) .(2.5)

This network has obtained some attention [13], [24], [26], [29], [40] because it
supports an anomalous codimension one nilpotent double Hopf bifurcation when
dimV = 2.

Example 2.4. In this example we let σ1, σ2 be as in Example 2.3 and we also
define σ3 as

σ3(1) = 1, σ3(2) = 1, σ3(3) = 1 .

The network defined by {σ1, σ2, σ3} is depicted in Figure 2.

x1

x2

x3

x1

x2

x3

x1

x2

x3

Figure 2. The collection {σ1, σ2, σ3} depicted as a directed multigraph.
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A coupled cell network map/vector field subject to {σ1, σ2, σ3} has the form

γg(x1, x2, x3) = (g(x1, x1, x1), g(x2, x1, x1), g(x3, x2, x1)) .(2.6)

We remark that this example is a generalization of Example 2.3: if γf is as in
Example 2.3 and if we define g(X1, X2, X3) := f(X1, X2), then γg = γf . In other
words, (2.5) arises as a special case of (2.6).

3. Semigroups

A first and obvious difficulty that arises in the study of coupled cell network
dynamical systems is that the composition γf ◦γg of two coupled cell network maps
with an identical network structure may not have that same network structure.

Dynamically, this implies for example that the equation γf (x) = x for the steady
states of γf and the equation (γf )

m(x) = x for its periodic solutions may have quite
a different nature. We illustrate this phenomenon in the following example:

Example 3.1. Again, let N = 3 and let σ1, σ2, σ3 be defined as in Examples 2.3
and 2.4. If

γf (x1, x2, x3) = (f(x1, x1), f(x2, x1), f(x3, x2)) ,

γg(x1, x2, x3) = (g(x1, x1), g(x2, x1), g(x3, x2))

are coupled cell network maps subject to {σ1, σ2}, then the composition

(γf ◦ γg)(x1, x2, x3)

= (f(g(x1, x1), g(x1, x1)), f(g(x2, x1), g(x1, x1)), f(g(x3, x2), g(x2, x1)))

in general is not a coupled cell network map subject to {σ1, σ2}.
On the other hand, when γf and γg are network maps subject to {σ1, σ2, σ3},

i.e.

γf (x1, x2, x3) = (f(x1, x1, x1), f(x2, x1, x1), f(x3, x2, x1)) ,

γg(x1, x2, x3) = (g(x1, x1, x1), g(x2, x1, x1), g(x3, x2, x1)) ,

then it holds that

(γf ◦ γg)1(x1, x2, x3) = f(g(x1, x1, x1), g(x1, x1, x1), g(x1, x1, x1)) ,

(γf ◦ γg)2(x1, x2, x3) = f(g(x2, x1, x1), g(x1, x1, x1), g(x1, x1, x1)) ,

(γf ◦ γg)3(x1, x2, x3) = f(g(x3, x2, x1), g(x2, x1, x1), g(x1, x1, x1)) .

This demonstrates that γf ◦ γg is also a coupled cell network map subject to
{σ1, σ2, σ3}. Indeed, γf ◦ γg = γh, where

h(X1, X2, X3) = f(g(X1, X2, X3), g(X2, X3, X3), g(X3, X3, X3)) .

To understand when, in general, the composition of two coupled cell network
maps is again a coupled cell network map, we compute that

(γf ◦ γg)i(x) = f(. . . , (γg)σj(i)(x), . . .) = f(. . . , g(xσ1(σj(i)), . . . , xσn(σj(i))), . . .) .

(3.7)
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The right hand side of (3.7) is an i-independent function of (xσ1(i), . . . , xσn(i))
precisely when for all 1 ≤ j1, j2 ≤ n and all 1 ≤ i ≤ N it holds that σj1(σj2(i)) =
σj3(i) for some 1 ≤ j3 ≤ n. In other words, γf ◦ γg is a coupled cell network map
when Σ is a semigroup:

Definition 3.2. We say that Σ = {σ1, . . . , σn} is a semigroup if for all 1 ≤ j1, j2 ≤
n there is a unique 1 ≤ j3 ≤ n such that σj1 ◦ σj2 = σj3 .

Viewing Σ as a directed multigraph, the condition that it is a semigroup just
means that this directed multigraph is closed under the backward concatenation of
arrows.

Of course, an arbitrary collection Σ = {σ1, . . . , σn} need not be a semigroup.
Even so, Σ generates a unique smallest semigroup

Σ′ = {σ1, . . . , σn, σn+1, . . . , σn′} that contains Σ .

It is clear that every coupled cell network map γf subject to Σ is also a coupled
cell network map subject to the semigroup Σ′. Indeed, if we define

f ′(X1, . . . , Xn, Xn+1, . . . , Xn′) := f(X1, . . . , Xn),

then it obviously holds that

(γf ′)i(x) = f ′(xσ1(i), . . . , xσn(i), xσn+1(i), . . . , xσn′ (i))

= f(xσ1(i), . . . , xσn(i)) = (γf )i(x) .

We thus propose to augment Σ to the semigroup Σ′ and to think of every coupled
cell network map subject to Σ as a (special case of a) coupled cell network map
subject to Σ′.

Example 3.3. Again, let N = 3 and let σ1, σ2, σ3 be defined as in Examples 2.3
and 2.4. It holds that σ2

2 = σ3, so the collection {σ1, σ2} is not a semigroup. On
the other hand, one quickly computes that the composition table of {σ1, σ2, σ3} is
given by

◦ σ1 σ2 σ3

σ1 σ1 σ2 σ3

σ2 σ2 σ3 σ3

σ3 σ3 σ3 σ3 .

This shows that {σ1, σ2, σ3} is closed under composition and hence is the smallest
semigroup containing {σ1, σ2}.

4. Composition of network maps

To better understand how network maps behave under composition and in order
to simplify our notation, let us define the maps

πi : V
N → V n by πi(x1, . . . , xN ) := (xσ1(i), . . . , xσn(i)) for 1 ≤ i ≤ N .

This definition allows us to write (2.2) simply as

(γf )i := f ◦ πi .(4.8)

Expression (3.7) moreover turns into the formula

(γf ◦ γg)i = f ◦ (g ◦ πσ1(i) × . . .× g ◦ πσn(i)) .(4.9)

The following technical result helps us write the right hand side of (4.9) in the form
h ◦ πi for some function h : V n → V , whenever Σ is a semigroup.
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Theorem 4.1. Let Σ = {σ1, . . . , σn} be a semigroup. Then for all 1 ≤ j ≤ n there
exists a linear map Aσj

: V n → V n with the property that

Aσj
◦ πi = πσj(i) for all 1 ≤ i ≤ N and all 1 ≤ j ≤ n .(4.10)

Moreover, it holds that Aσj1
◦Aσj2

= Aσj1
◦σj2

for all 1 ≤ j1, j2 ≤ n.

Proof. Because Σ is a semigroup, we can associate to each map σj ∈ Σ a unique
map

σ̃j : {1, . . . , n} → {1, . . . , n} defined via the formula σσ̃j(k) = σj ◦ σk .(4.11)

We now define the map Aσj
: V n → V n as

Aσj
(X1, . . . , Xn) := (Xσ̃1(j), . . . , Xσ̃n(j)) .(4.12)

With this definition it holds that

(Aσj
◦ πi)(x) = Aσj

(xσ1(i), . . . , xσn(i)) = (xσσ̃1(j)(i), . . . , xσσ̃n(j)(i))

= (xσ1(σj(i)), . . . , xσn(σj(i))) = πσj(i)(x) .

Remarking moreover that

σσ̃σ̃k(j1)(j2) = σσ̃k(j1) ◦ σj2 = σk ◦ σj1 ◦ σj2 = σk ◦ σσ̃j1
(j2) = σσ̃k(σ̃j1

(j2)) ,

and hence that σ̃σ̃k(j1)(j2) = σ̃k(σ̃j1(j2)) for all 1 ≤ k ≤ n, we also find that

(Aσj1
◦Aσj2

)(X1, . . . , Xn) = Aσj1
(Xσ̃1(j2), . . . , Xσ̃n(j2))

= (Xσ̃σ̃1(j1)(j2), . . . , Xσ̃σ̃n(j1)(j2)) = (Xσ̃1(σ̃j1
(j2)), . . . , Xσ̃n(σ̃j1

(j2)))

= Aσσ̃j1
(j2)

(X1, . . . , Xn) = Aσj1
◦σj2

(X1, . . . , Xn) .

This proves the theorem. �

The identity Aσj1
◦Aσj2

= Aσj1
◦σj2

expresses that the Aσj
form a representation

of the semigroup Σ. Using this representation we obtain:

Theorem 4.2. Let Σ = {σ1, . . . , σn} be a semigroup. Define for f, g : V n → V the
function

f ◦Σ g : V n → V by f ◦Σ g := f ◦ ((g ◦Aσ1
)× . . .× (g ◦Aσn

)) .(4.13)

Then

γf ◦ γg = γf◦Σg .

Proof. From formula (4.9) and Theorem 4.1. �

Theorem 4.2 reveals once more that if Σ is a semigroup, then the composition
of two coupled cell network maps γf and γg is again a coupled cell network map,
namely γf◦Σg. More importantly, it shows how to compute f ◦Σ g “symbolically”,
i.e. using only the functions f and g and a representation of the network semigroup.

The final result of this section ensures that the “symbolic composition” ◦Σ makes
the space C∞(V n, V ) into an associative algebra.

Lemma 4.3.

(f ◦Σ g) ◦Σ h = f ◦Σ (g ◦Σ h) .
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Proof.

(f ◦Σg)◦Σh(X)=(f ◦Σg)(. . . , h(Aσk
X), . . .) = f(. . . , g(Aσj

(. . . , h(Aσk
X), . . .)), . . .)

= f(. . . , g(. . . , h(Aσσ̃k(j)
X), . . .)) = f(. . . , g(. . . , h(Aσk◦σj

X), . . .))

= f(. . . , g(. . . , h(Aσk
Aσj

X), . . .), . . .) = f(. . . , (g ◦Σ h)(Aσj
X), . . .)

= f ◦Σ (g ◦Σ h)(X) .

�

With Lemma 4.3 at hand, Theorem 4.2 just means that the linear map

γ : C∞(V n, V ) → C∞(V N , V N ) that sends f to γf

is a homomorphism of associative algebras.

Example 4.4. Again, let N = 3 and let σ1, σ2, σ3 be defined as in Examples 2.3
and 2.4. We recall that the composition table of {σ1, σ2, σ3} was given in Example
3.3. The rows of this table express that

σ̃1(1) = 1, σ̃1(2) = 2, σ̃1(3) = 3 ,

σ̃2(1) = 2, σ̃2(2) = 3, σ̃2(3) = 3 ,

σ̃3(1) = 3, σ̃3(2) = 3, σ̃3(3) = 3 .

This implies in particular that

Aσ1
(X1, X2, X3) = (X1, X2, X3) ,

Aσ2
(X1, X2, X3) = (X2, X3, X3) ,

Aσ3
(X1, X2, X3) = (X3, X3, X3) .

Substitution in (4.13) therefore yields that

f ◦Σ g (X1, X2, X3) = f(g(X1, X2, X3), g(X2, X3, X3), g(X3, X3, X3)) .

We conclude that f ◦Σ g equals the function h found in Example 3.1.

Remark 4.5. The defining relation

σσ̃j(k) = σj ◦ σk for σ̃j : {1, . . . , n} → {1, . . . , n}

expresses that the map σ̃j describes the left-multiplicative behavior of σj . The
computation

σ
˜σj1

◦σj2
(k) = σj1 ◦ σj2 ◦ σk = σj1 ◦ σσ̃j2

(k) = σσ̃j1
(σ̃j2

(k))

moreover reveals that

˜σj1 ◦ σj2 = σ̃j1 ◦ σ̃j2 for all 1 ≤ j1, j2 ≤ n .

This means in particular that the collection {σ̃1, . . . , σ̃n} is closed under composi-
tion.

The maps σ̃1, . . . , σ̃n will play an interesting role in this paper. In fact, we
will show in Section 10 that they are themselves the network maps of a certain
“fundamental network” that fully determines the fate of all network dynamical
systems subject to Σ.
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Remark 4.6. For a map σ : {1, . . . , n} → {1, . . . ,m} let us denote by λσ : V m → V n

the linear map

λσ(X1, . . . , Xm) := (Xσ(1), . . . , Xσ(n)) .

This means that the matrix of the map λσ has precisely one idV on each row and
zeroes elsewhere. We will denote the space of such maps by

Λ(m,n) := {λσ : V m → V n |σ : {1, . . . , n} → {1, . . . ,m}} .

One quickly checks that the assignment λ : σ �→ λσ is contravariant. More precisely,
if σ : {1, . . . , n} → {1, . . . ,m} and τ : {1, . . . ,m} → {1, . . . , l}, then

λσ ◦ λτ = λτ◦σ .

In particular, Λ(m,m) is a semigroup and the map σ �→ λσ an anti-homomorphism
from the semigroup of all maps from {1, . . . ,m} to itself to the semigroup Λ(m,m).

The maps πi and Aσj
defined above are examples of such maps:

πi =λσi with σi : {1, . . . , n} → {1, . . . , N} defined as σi(j) := σj(i),

Aσj
=λσ̃j with σ̃j : {1, . . . , n} → {1, . . . , n} defined by σ̃j(k) := σ̃k(j) .

This observation can be used give a proof of Theorem 4.1 that is free of coordinates:

Proof of Theorem 4.1 without coordinates. We observe that

σi(σ̃j(k)) = σi(σ̃k(j)) = σσ̃k(j)(i) = (σk ◦ σj)(i) = σk(σj(i)) = σσj(i)(k)

and hence that σi ◦ σ̃j = σσj(i). Using this, we find that

Aσj
◦ πi = λσ̃j ◦ λσi = λσi◦σ̃j = λ

σσj(i) = πσj(i) .

Similarly, the computation

σ(σ̃j2◦σ̃j1 )(k) = σσ̃j2 (σ̃j1(k)) = σσ̃j2 (σ̃k(j1)) = σσ̃σ̃k(j1)(j2)

= σσ̃k(j1)◦σj2 = σk ◦ σj1 ◦ σj2 = σk ◦ σσ̃j1
(j2) = σσ̃k(σ̃j1

(j2)) = σ
σ̃
σ̃j1

(j2)
(k)

reveals that

σ̃j2 ◦ σ̃j1 = σ̃σ̃j1
(j2) .

As a consequence,

Aσj1
◦Aσj2

= λσ̃j1 ◦ λσ̃j2 = λσ̃j2◦σ̃j1 = λ
σ̃
σ̃j1

(j2) = Aσσ̃j1
(j2)

= Aσj1
◦σj2

.

�

Unfortunately, this coordinate free proof of Theorem 4.1 is relatively long.

5. A coupled cell network bracket

We will now think of γf : V N → V N as a vector field that generates the differ-
ential equation

ẋ = γf (x) .

We suggestively denote by etγf the time-t flow of the vector field γf on V N and by
(etγg)∗γf the pushforward of the vector field γf under the time-t flow of γg. We
recall that the Lie bracket of γf and γg is then the vector field [γf , γg] : V

N → V N

defined as

[γf , γg](x) :=
d

dt

∣∣∣∣
t=0

(etγf )∗γg = Dγf (x) · γg(x)−Dγg(x) · γf (x) .(5.14)
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The main result of this section is that if Σ is a semigroup, then the collection of
coupled cell network vector fields is closed under taking Lie brackets.

Theorem 5.1. Let Σ = {σ1, . . . , σn} be a semigroup and let the Aσj
: V n → V n

be as in Theorem 4.1. Define, for f, g : V n → V , the function [f, g]Σ : V n → V by

[f, g]Σ :=
n∑

j=1

Djf · (g ◦Aσj
)−Djg · (f ◦Aσj

) .(5.15)

Then

[γf , γg] = γ[f,g]Σ .(5.16)

Proof. We start by remarking that

γf (x+ tγg(x))i = f(. . . , xσj(i) + tγg(x)σj(i), . . .)

= f(. . . , xσj(i) + tg(xσ1(σj(i)), . . . , xσn(σj(i))), . . .)

= f(. . . , xσj(i) + tg(Aσj
(xσ1(i), . . . , xσn(i))), . . .) .

Differentiating this identity with respect to t and evaluating the result at t = 0
gives that

(Dγf (x) · γg(x))i =
n∑

j=1

Djf(xσ1(i), . . . , xσn(i))g(Aσj
(xσ1(i), . . . , xσn(i))) .

This proves that (Dγf ·γg)i =
(∑n

j=1Djf · (g ◦Aσj
)
)
◦πi, and hence that Dγf ·γg

is a coupled cell network vector field. With a similar computation for Dγg · γf , we
thus find that the Lie bracket between γf and γg is given by

γf , γg]i = (Dγf · γg)i − (Dγg · γf )i =
n∑

j=1

[
Djf · (g ◦Aσj

)−Djg · (f ◦Aσj
)
]
◦ πi

= [f, g]Σ ◦ πi .

This proves the theorem. �

Lemma 5.2 below states that the “symbolic bracket” [·, ·]Σ is a Lie bracket.

Lemma 5.2. The bracket [·, ·]Σ makes C∞(V n, V ) a Lie algebra. Moreover, the
linear map

γ : C∞(V n, V )→C∞(V N , V N ) that sends f to γf is a Lie algebra homomorphism.

Proof. Anti-symmetry of [·, ·]Σ is clear from formula (5.15). The Jacobi identity

[f, [g, h]Σ]Σ + [g, [h, f ]Σ]Σ + [h, [f, g]Σ]Σ = 0

follows from a somewhat lengthy computation as follows. First of all, because

Aσj
(. . . , h(Aσk

X), . . .) = (. . . , h(Aσσ̃k(j)
X), . . .) = (. . . , h(Aσk

Aσj
X), . . .) ,

we find that

(g ◦Aσj
)(X + t( . . . , h(Aσk

X), . . .)) = g(Aσj
X + tAσj

(. . . , h(Aσk
X), . . .))

= g(Aσj
X + t(. . . , h(Aσk

Aσj
X), . . .)) .
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Differentiating this identity with respect to t and evaluating the result at t = 0
yields that

n∑
k=1

Dk(g ◦Aσj
) · (h ◦Aσk

) =
n∑

k=1

(Dkg ◦Aσj
) · (h ◦Aσk

◦Aσj
) .

With this in mind, we now compute that

[f, [g, h]Σ]Σ =
∑n

j=1
Djf · ([g, h]Σ ◦Aσj

)−Dj [g, h]Σ · (f ◦Aσj
)

=
∑n

j,k=1
Djf · (Dkg ◦Aσj

) · (h ◦Aσk
◦Aσj

)

−Djf · (Dkh ◦Aσj
) · (g ◦Aσk

◦Aσj
)

−Dkg ·Dj(h ◦Aσk
) · (f ◦Aσj

) +Dkh ·Dj(g ◦Aσk
) · (f ◦Aσj

)

−D2
j,kg · (h ◦Aσk

, f ◦Aσj
) +D2

j,kh · (g ◦Aσk
, f ◦Aσj

)

=
∑n

j,k=1
Dkf ·Dj(g ◦Aσk

) · (h ◦Aσj
)−Dkf ·Dj(h ◦Aσk

) · (g ◦Aσj
)

−Dkg ·Dj(h ◦Aσk
) · (f ◦Aσj

) +Dkh ·Dj(g ◦Aσk
) · (f ◦Aσj

)

−D2
j,kg · (h ◦Aσk

, f ◦Aσj
) +D2

j,kh · (g ◦Aσk
, f ◦Aσj

) .

Using the symmetry of the second derivatives, the Jacobi identity follows from
cyclically permuting f, g and h in the above expression and summing the results.
This proves that C∞(V n, V ) is a Lie algebra. Theorem 5.1 means that γ is a Lie
algebra homomorphism. �

Example 5.3. Again, let N = 3 and let σ1, σ2, σ3 be defined as in Examples 2.3
and 2.4. We recall that Aσ1

, Aσ2
and Aσ3

were computed in Example 4.4. It follows
that

[f, g]Σ(X) = D1f(X1, X2, X3) · g(X1, X2, X3) +D2f(X1, X2, X3) · g(X2, X3, X3)

+D3f(X1, X2, X3) · g(X3, X3, X3)−D1g(X1, X2, X3) · f(X1, X2, X3)

−D2g(X1, X2, X3) · f(X2, X3, X3)−D3g(X1, X2, X3) · f(X3, X3, X3) .

6. Coupled cell network normal forms

Normal forms are an essential tool in the study of the dynamics and bifurcations
of maps and vector fields near equilibria; cf. [42], [47]. In this section we will show
that it can be arranged that the normal form of a semigroup coupled cell network
is a coupled cell network as well. This normal form can moreover be computed
“symbolically”, i.e. at the level of the function f . With Theorem 5.1 at hand, this
result is perhaps to be expected. We nevertheless state two illustrative theorems in
this section and sketch their proofs.

We start by making a few standard definitions. First of all, we define for f ∈
C∞(V n, V ) the operator adΣf : C∞(V n, V ) → C∞(V n, V ) by

adΣf (g) := [f, g]Σ .

Next, we define for every k = 0, 1, 2, . . . the finite-dimensional subspace

P k := {f : V n → V homogeneous polynomial of degree k + 1 } ⊂ C∞(V n, V ) .

(6.17)
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One can observe that P 0 = L(V N , V ) and that if f ∈ P k and g ∈ P l, then
[f, g]Σ ∈ P k+l, as is obvious from formula (5.15). In particular, we have that

if f0 ∈ L(V n, V ), then adΣf0 : P k → P k .

With this in mind, we formulate the first main result of this section. It essentially
states that one may restrict the study of semigroup coupled cell networks near local
equilibria to semigroup coupled cell networks of a very specific “normal form”.

Theorem 6.1 (Coupled cell network normal form theorem). Let Σ = {σ1, . . . , σn}
be a semigroup, f ∈ C∞(V n, V ) and assume that f(0) = 0. We Taylor expand f
as

f = f0 + f1 + f2 + . . . with fk ∈ P k .

Let 1 ≤ r < ∞, and for every 1 ≤ k ≤ r, let Nk ⊂ P k be a subspace such that

Nk ⊕ im adΣf0

∣∣∣
Pk

= P k .

Then there exists an analytic diffeomorphism Φ, sending an open neighborhood of 0
in V N to an open neighborhood of 0 in V N , that conjugates the coupled cell network
vector field γf to a coupled cell network vector field γf with

f = f0 + f1 + f2 + . . . and fk ∈ Nk for all 1 ≤ k ≤ r .

Proof. [Sketch] We only sketch a proof without estimates here, because the con-
struction of a normal form by means of “Lie transformations” is very well known.

For g ∈ C∞(V n, V ) with g(0) = 0, the time-t flow etγg defines a diffeomorphism
of some open neighborhood of 0 in V N to another open neighborhood of 0 in
V N . Thus we can consider, for any f ∈ C∞(V n, V ), the curve t �→ (etγg)∗γf ∈
C∞(V N , V N ) of pushforward vector fields. This curve satisfies the linear differential
equation

d

dt
(etγg )∗γf =

d

dh

∣∣∣∣
h=0

(ehγg)∗((e
tγg)∗γf ) = [γg, (e

tγg)∗γf ] = adγg
((etγg)∗γf ) ,

(6.18)

where the second equality holds by definition of the Lie bracket of vector fields
(5.14) and we have used the conventional definition of adγg

: C∞(V N , V N ) →
C∞(V N , V N ) as

adγg
(γf ) := [γg, γf ] .

Solving the linear differential equation (6.18) together with the initial condition
(e0γg)∗γf = γf , we find that the time-1 flow of γg transforms γf into

(eγg)∗γf = eadγg (γf ) = γf + [γg, γf ] +
1

2
[γg, [γg, γf ]] + . . . .

The main point of this proof is that by Theorem 5.1 the latter expression is also
equal to

γf+[g,f ]Σ+ 1
2 [g,[g,f ]Σ]Σ+...=γ

e
adΣg (f)

.

The diffeomorphism Φ in the statement of the theorem is now constructed as the
composition of a sequence of time-1 flows eγgk (1 ≤ k ≤ r) of coupled cell network
vector fields γgk with gk ∈ P k. We first take g1 ∈ P 1, so that γf is transformed by
eγg1 into

(eγg1 )∗γf = γ
e
adΣg1 (f)

= γf0+f1
1+f1

2+...
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in which

f1
1 = f1 + [g1, f0]Σ ∈ P 1,
f1
2 = f2 + [g1, f1]Σ + 1

2 [g1, [g1, f0]Σ]Σ ∈ P 2,
f1
3 = f3 + . . . ∈ P 3,
etc.

It is the fact that N1⊕ im adΣf0

∣∣∣
P 1

= P 1 that allows us to choose a (not necessarily

unique) g1 ∈ P 1 in such a way that

f1
1 = f1 + [g1, f0]Σ = f1 − adΣf0(g1) ∈ N1 .

We proceed by choosing g2 ∈ P 2 in such a way that

(eγg2 ◦ eγg1 )∗γf = (eγg2 )∗((e
γg1 )∗γf ) = γf0+f1

1+f2
2+...

with f2
2 ∈ N2. Continuing in this way, after r steps we obtain that

Φ := eγgr ◦ . . . ◦ eγg1

transforms γf into Φ∗γf = γf = γf0+f1+..., where fk = fk
k ∈ Nk for all 1 ≤ k ≤ r.

Being the composition of finitely many flows of polynomial coupled cell network
vector fields, Φ is obviously analytic. �

In applications, one is often interested in the bifurcations that occur in the
dynamics of a map or differential equation under the variation of external pa-
rameters. In the case of coupled cell networks, we may for example assume that
f ∈ C∞(V n × Rp, V ) and let

fλ(X) := f(X;λ)

define a smooth parameter family in C∞(V n, V ). Correspondingly, the coupled cell
networks γfλ form a smooth parameter family in C∞(V N , V N ).

To formulate an appropriate normal form theorem for parameter families of
coupled cell networks, we define for k ≥ −1 and l ≥ 0,

P k,l := {f : V n × Rp → V homogeneous polynomial

of degree k + 1 in X and degree l in λ} .
We observe that

[P k,l, PK,L]Σ ⊂ P k+K,l+L ,

which leads to the following

Theorem 6.2 (Coupled cell network normal form theorem with parameters). Let
Σ = {σ1, . . . , σn} be a semigroup, f ∈ C∞(V n×Rp, V ) and f(0; 0) = 0. We Taylor
expand

f = (f−1,1 + f−1,2 + . . .) + (f0,0 + f0,1 + f0,2 + . . .) + (f1,0 + f1,1 + f1,2 + . . .) + . . .

with fk,l ∈ P k,l.
Let 1 ≤ r1, r2 < ∞, and for every −1 ≤ k ≤ r1 and 0 ≤ l ≤ r2, let N

k,l ⊂ P k,l

be a subspace such that

Nk,l ⊕ im adΣf0,0

∣∣∣
Pk,l

= P k,l .

Then there exists a polynomial family Φλ of analytic diffeomorphisms, defined for
λ in an open neighborhood of 0 in Rp and each sending an open neighborhood of 0
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in V N to an open neighborhood of 0 in V N , with the property that Φλ conjugates
γfλ to γ

f
λ , where

f = (f−1,1 + f−1,2 + . . .) + (f0,0 + f0,1 + f0,2 + . . .) + (f1,0 + f1,1 + f1,2 + . . .) + . . .

and

fk,l ∈ Nk,l for all − 1 ≤ k ≤ r1 and 0 ≤ l ≤ r2 .

Sketch of proof. The procedure of normalization is similar to the proof of Theo-
rem 6.1. With respect to adΣf0,0 , one consecutively normalizes

f1,0, f2,0, . . . , fr1,0; f−1,1, f0,1, f1,1, . . . , fr1,1;

f−1,2, f0,2, f1,2, . . . , fr1,2; . . . ;f−1,r2 , f0,r2 , f1,r2 , . . . , fr1,r2 .

Because [P k,l, PK,L]Σ ⊂ P k+K,l+L, we see that once fk,l has been normalized to

fk,l, it is not changed/affected anymore by any of the subsequent normalization
transformations. �

Of course, Theorem 5.1 implies that many other standard results from the theory
of normal forms will have a counterpart in the context of semigroup coupled cell
networks as well.

We will compute the normal forms of some network differential equations in
Section 11.

Example 6.3. Again, let N = 3 and let σ1, σ2, σ3 be defined as in Examples 2.3
and 2.4. If

γf (x1, x2, x3) = (f(x1, x1), f(x2, x1), f(x3, x2))

is a coupled cell network subject to {σ1, σ2}, then its normal form will in general
be a network subject to {σ1, σ2, σ3}, i.e.

γf (x1, x2, x3) = γf (x1, x2, x3) = (f(x1, x1, x1), f(x2, x1, x1), f(x3, x2, x1)) .

7. Symmetry and synchrony

Symmetry [5], [6], [18], [25], [31] and synchrony [2], [3], [10], [11], [27], [32],
[34], [38], [49], [51], [53] have obtained much attention in the literature on coupled
cell networks. They generate and explain interesting patterns, including synchro-
nized states [30], multirythms [19], [36], [44], [52], rotating waves [24], [32] and
synchronized chaos [20], [24] and can lead to symmetry and synchrony breaking
bifurcations; cf. [1], [4], [8], [9], [14], [15], [17], [22], [25], [31], [33], [43], [50]. In
short, symmetry and synchrony heavily impact the dynamics and bifurcations of a
network.

In this section, we relate some of the existing theory on symmetry and synchrony
to the semigroup extension that we propose. More precisely, we show that the semi-
group extension does not affect the symmetries or synchrony spaces of a network.
This implies in particular that the symmetries and synchrony spaces of a network
are also present in its normal form. The semigroup extension is thus quite harmless
and very natural.

To start, let us say that a permutation p : {1, . . . , N} → {1, . . . , N} of the cells is
a network symmetry for Σ if it sends the inputs of a cell to the inputs of its image.
That is, if

p ◦ σj = σj ◦ p for all 1 ≤ j ≤ n .
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The permutations with this property obviously form a group. More importantly,
they are of dynamical interest because the corresponding representations

λp : V N → V N , (x1, . . . , xN ) �→ (xp(1), . . . , xp(N))

conjugate every coupled cell network map γf to itself:

(γf ◦ λp)i(x) = f(πi(xp(1), . . . , xp(N))) = f(xp(σ1(i)), . . . , xp(σn(i)))

= f(xσ1(p(i)), . . . , xσn(p(i))) = f(πp(i)(x)) = (γf (x))p(i) = (λp ◦ γf )i(x) .
In turn, this means that when t �→ (x1(t), . . . , xN (t)) is a solution to the differential
equations ẋ = γf (x), then so is t �→ (xp(1)(t), . . . , xp(N)(t)). And similarly that

when m �→ (x
(m)
1 , . . . , x

(m)
N ) is an orbit of the map x(m+1) = γf (x

(m)), then so is

m �→ (x
(m)
p(1), . . . , x

(m)
p(N)).

The following lemma states that network symmetries are trivially preserved by
our semigroup extension:

Lemma 7.1. Let Σ = {σ1, . . . , σn} be a collection of maps, not necessarily forming
a semigroup, and p : {1, . . . , N} → {1, . . . , N} a permutation.

Then p is a network symmetry for Σ if and only if it is a network symmetry for
the semigroup Σ′ generated by Σ.

Proof. Elements of the semigroup Σ′ are of the form σj1◦. . .◦σjl for certain σjk ∈ Σ.
But if p◦σjk = σjk ◦p for k = 1, . . . , l, then also p◦(σj1 ◦. . .◦σjl) = (σj1 ◦. . .◦σjl)◦p.
Thus, the collection of network symmetries of Σ is the same as the collection of
network symmetries of Σ′. �

Lemma 7.1 implies in particular that the composition γf ◦ γg = γf◦Σg and the
Lie bracket [γf , γg] = γ[f,g]Σ will exhibit the same network symmetries as γf and
γg.

Though not much more complicated, the situation is slightly more interesting
for the synchronous solutions of a network. We recall that a synchrony space of
a coupled cell network is an invariant subspace in which certain of the xi (with
1 ≤ i ≤ N) are equal. First of all, the following result is classical; see [24], [49].

Proposition 7.2. Let Σ = {σ1, . . . , σn} be a collection of maps, not necessarily
forming a semigroup, and P = {P1, . . . , Pr} a partition of {1, . . . , N}. The follow-
ing are equivalent:

i) For all 1 ≤ j ≤ n and all 1 ≤ k1 ≤ r there exists a 1 ≤ k2 ≤ r so that
σj(Pk1

) ⊂ Pk2
.

ii) For every f ∈ C∞(V n, V ) the subspace

SynP := {x ∈ V N | xi1 = xi2 when i1 and i2 are in the same element of P }
is an invariant submanifold for the dynamics of γf .

Proof. The subspace SynP is invariant under the flow of the differential equation
ẋ = γf (x) if and only if the vector field γf is tangent to SynP . Similarly, SynP is

invariant under the map x(m+1) = γf (x
(m)) if and only if γf sends SynP to itself.

Both properties just mean that for all x ∈ SynP it holds that

f(xσ1(i1), . . . , xσn(i1))=f(xσ1(i2), . . . , xσn(i2)) for all i1, i2 in the same element of P .

The latter statement holds for all f ∈ C∞(V n, V ) if and only if for all x ∈ SynP ,

xσj(i1) = xσj(i2) for all 1 ≤ j ≤ n and all i1, i2 in the same element of P .
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It is not hard to see that this is true precisely when all σj ∈ Σ map the elements
of P into elements of P . �

A partition P of {1, . . . , N} with property i) is sometimes called a balanced
partition or balanced coloring and a subspace SynP satisfying property ii) a (robust)
synchrony space.

The following result says that the synchrony spaces of a network do not change
if one extends the network architecture to a semigroup:

Lemma 7.3. Let Σ = {σ1, . . . , σn} be a collection of maps, not necessarily forming
a semigroup, and P = {P1, . . . , Pr} a partition of {1, . . . , N}.

Then SynP is a (robust) synchrony space for Σ if and only if it is a (robust)
synchrony space for the semigroup Σ′ generated by Σ.

Proof. Elements of the semigroup Σ′ are of the form σj1◦. . .◦σjl for certain σjk ∈ Σ.
This implies that the elements of Σ send the elements of P inside elements of P if
and only if the elements of Σ′ do. In other words: that the collection of balanced
partitions of Σ and of Σ′ are the same. The result now follows from Proposition
7.2. �

Lemma 7.3 implies in particular that the composition γf ◦ γg = γf◦Σg and the
Lie bracket [γf , γg] = γ[f,g]Σ will exhibit the same synchrony spaces as γf and γg.

We conclude this section with the following simple but important observation:

Corollary 7.4. Let Σ = {σ1, . . . , σn} be a collection of maps, not necessarily
forming a semigroup, and γf a coupled cell network vector field subject to Σ.

Then a local normal form γf of γf has the same network symmetries and the
same synchrony spaces as γf .

Proof. γf is a coupled cell network with respect to the semigroup Σ′ generated by
Σ. Thus, the result follows from Lemma 7.1 and Lemma 7.3. �

Example 7.5. Again, let N = 3 and let σ1, σ2, σ3 be defined as in Examples 2.3
and 2.4. Recall that a coupled cell network differential equation subject to {σ1, σ2}
is of the form

ẋ1 = f(x1, x1), ẋ2 = f(x2, x1), ẋ3 = f(x3, x2) .

These equations do not have any network symmetries, but they do admit the non-
trivial balanced partitions

{1, 2} ∪ {3} and {1, 2, 3} .
The corresponding invariant synchrony spaces {x1 = x2} and {x1 = x2 = x3} are
preserved in the normal form because the latter is a coupled cell network subject
to {σ1, σ2, σ3}.

8. Input symmetries

As mentioned in Remark 2.2, the admissible maps and vector fields of a network
system can be determined from its groupoid of input equivalences; see [35], [38] and
[51]. This groupoid consists of all possible ways to identify the inputs of cell i with
the inputs of cell j, for all the cells 1 ≤ i, j ≤ N .

In case the network is homogeneous, the groupoid of the network is the obvious
one that identifies the k-th input of cell i with the k-th input of cell j for all
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1 ≤ k ≤ n. No inputs can therefore be interchanged and, putting it equivalently,
there exists only one way to identify the inputs of one cell among themselves. The
so-called vertex group of the groupoid therefore consists of only one element.

On the other hand, many coupled cell networks that appear in the mathematical
literature display a nontrivial network groupoid. This case arises when the response
function f is assumed invariant under the permutation of some of its inputs. Such
an input symmetry can be dynamically relevant because it may give rise to nontrivial
robust synchrony spaces.

In this section, we point out one condition under which an input symmetry can
be preserved in the normal form of f . Although rather intuitive, this condition
appears far from optimal. As a consequence, this section is not important for the
remainder of this paper and can be skipped at first reading.

Concretely, an input symmetry is reflected by a permutation q : {1, . . . , n} →
{1, . . . , n} with the property that f ◦ λq ◦ πi = f ◦ πi for all 1 ≤ i ≤ N . That is, for
which

f(xσ1(i), . . . , xσn(i)) = f(xσq(1)(i), . . . , xσq(n)(i)) for all x ∈ V N and all 1 ≤ i ≤ N .

(8.19)

The input symmetries of f obviously form a group. In fact, this group is equal to
the vertex group of the network groupoid.

In the remainder of this section, we will only consider the case that an input
symmetry gives rise to a network symmetry. This means that along with the
permutation q of the inputs {1, . . . , n} there exists a permutation p of the cells
{1, . . . , N} that sends the j-th input of each cell to the q(j)-th input of its image,
i.e. that

p ◦ σj = σq(j) ◦ p for all 1 ≤ j ≤ n .(8.20)

We call a permutation q for which there exists a permutation p so that (8.19) and
(8.20) hold a dynamical input symmetry. We remark that if p1 ◦ σj = σq1(j) ◦ p1
and p2 ◦ σj = σq2(j) ◦ p2 for all 1 ≤ j ≤ n, then

(p1 ◦ p2) ◦ σj = σ(q1◦q2)(j) ◦ (p1 ◦ p2) .

This implies that the dynamical input symmetries form a subgroup of the group of
all input symmetries. They are precisely the input symmetries that correspond to
a dynamical symmetry of the network:

Proposition 8.1. Let p be a permutation of {1, . . . , N} and q a permutation of
{1, . . . , n}. Assume that p ◦ σj = σq(j) ◦ p for all 1 ≤ j ≤ n and that (8.19) holds.
Then

γf ◦ λp = λp ◦ γf .

Proof. First of all we claim that

when p ◦ σj = σq(j) ◦ p for all 1 ≤ j ≤ n, then πi ◦ λp = λq ◦ πp(i) for all 1≤ i≤N .
(8.21)

This follows from a little computation:

(πi◦λp)(x) = πi(xp(1), . . . , xp(N)) = (xp(σ1(i)), . . . , xp(σn(i)))

= (xσq(1)(p(i)), . . . , xσq(n)(p(i))) = λq(xσ1(p(i)), . . . , xσn(p(i))) = (λq ◦ πp(i))(x) .
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Using (8.21) and our assumption (8.19) that f ◦ λq = f on every imπi, we hence
find that

(γf ◦ λp)i = f ◦ πi ◦ λp = f ◦ λq ◦ πp(i) = f ◦ πp(i) = (γf )p(i) = (λp ◦ γf )i .

�

The relevance of dynamical input symmetries for normal forms is explained be-
low. We first show that dynamical input symmetries survive the semigroup exten-
sion.

Lemma 8.2. Let Σ = {σ1, . . . , σn} be a collection of maps, not necessarily forming
a semigroup, and let q : {1, . . . , n} → {1, . . . , n} be a dynamical input symmetry for
Σ.

Then the latter extends to a unique dynamical input symmetry

q′ : {1, . . . , n, n+ 1, . . . , n′} → {1, . . . , n, n+ 1, . . . , n′}

for the semigroup Σ′ = {σ1, . . . , σn, σn+1, . . . , σn′} generated by Σ.

Proof. Recall that elements of Σ′ are of the form σj1 ◦ . . . ◦ σjl for certain σjk ∈ Σ.
Assume now that p ◦ σj1 = σq(j1) ◦ p and p ◦ σj2 = σq(j2) ◦ p. Then it follows that

p ◦ σσ̃j1
(j2) = p ◦ (σj1 ◦ σj2) = σq(j1) ◦ p ◦ σj2 = (σq(j1) ◦ σq(j2)) ◦ p = σσ̃q(j1)(q(j2)) ◦ p .

This means that if an extension q′ : {1, . . . , n, n + 1, . . . , n′} → {1, . . . , n,
n+ 1, . . . , n′} exists, then it must be unique and satisfy

q′(σ̃j1(j2)) = σ̃q(j1)(q(j2)) .

If now p◦σj3 = σq(j3) ◦p and p◦σj4 = σq(j4) ◦p and σ̃j1(j2) = σ̃j3(j4), then actually

σσ̃q(j1)(q(j2)) ◦ p = p ◦ σσ̃j1
(j2) = p ◦ σσ̃j3

(j4) = σσ̃q(j3)(q(j4)) ◦ p .

From this it follows that σ̃q(j1)(q(j2)) = σ̃q(j3)(q(j4)) if σ̃j1(j2) = σ̃j3(j4) and hence
that q′ is well defined. �

The following result explains that network symmetries are preserved under taking
compositions and Lie brackets:

Theorem 8.3. Let Σ be a semigroup and assume p◦σj = σq(j)◦p for all 1 ≤ j ≤ n.
Then

(f ◦Σ g) ◦ λq = (f ◦ λq) ◦Σ (g ◦ λq) on every imπi ,
[f, g]Σ ◦ λq = [f ◦ λq, g ◦ λq]Σ on every imπi .

(8.22)

Proof. With a slight abuse of notation, we write

(f ◦Σ g) ◦ λq ◦ πp(i) = f(. . . , g(Aσj
◦ λq ◦ πp(i)), . . .) = f(. . . , g(Aσj

◦ πi ◦ λp), . . .)

= f(. . . , g(πσj(i) ◦ λp), . . .) = f(. . . , g(λq ◦ πp(σj(i))), . . .)

= f(. . . , (g ◦ λq)(πp(σj(i))), . . .) = f(. . . , (g ◦ λq)(πσq(j)(p(i))), . . .)

= (f ◦ λq)(. . . , (g ◦ λq)(πσj(p(i))), . . .) = (f ◦ λq)(. . . , (g ◦ λq)(Aσj
◦ πp(i)), . . .)

= ((f ◦ λq) ◦Σ (g ◦ λq)) ◦ πp(i) .

This proves that (f ◦Σ g) ◦ λq = (f ◦ λq) ◦Σ (g ◦ λq) on each imπp(i) and hence,
because p is invertible, on each imπi. The proof for the Lie bracket is similar. �
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Finally, we conclude

Corollary 8.4. Let Σ = {σ1, . . . , σn} be a collection of maps, not necessarily
forming a semigroup, and γf a coupled cell network vector field subject to Σ.

Then the local normal form γf of γf can be chosen to have the same dynamical
input symmetries as γf .

Proof. LetG denote the group of dynamical input symmetries of f = f0+f1+f2+. . .
and let us define the set of G-invariant functions

C∞
G (V n, V ) := {g ∈ C∞(V n, V ) | g◦λq◦πi = g◦πi for all q ∈ G and all 1 ≤ i ≤ N} .

Theorem 8.3 implies that if g, h ∈ C∞
G (V n, V ), then also

[g, h]Σ ∈ C∞
G (V n, V ) .

The fact that f ∈ C∞
G (V n, V ) moreover implies that

fk ∈ P k
G := {gk ∈ P k | gk ◦ λq ◦ πi = gk ◦ πi for all q ∈ G and all 1 ≤ i ≤ N}

is a G-invariant polynomial of degree k + 1.
It clearly holds that [P k

G, P
l
G]Σ ⊂ P k+l

G . As a consequence, we can repeat the
proof of Theorem 6.1 by replacing P k with P k

G and choosing the normal form spaces
Nk

G ⊂ P k
G so that

im adf0 |Pk
G
⊕Nk

G = P k
G .

This produces a normal form f ∈ C∞
G (V n, V ). �

Example 8.5. Consider the class of differential equations of the form

ẋ1 = f(x1, x2, x2, x1) ,
ẋ2 = f(x1, x2, x1, x2) .

These differential equations have a semigroup coupled cell network structure with
N = 2 and n = 4; see Figure 3.

x1

x2

x1

x2

x1

x2

x1

x2

Figure 3. The network with N = 2 and n = 4.

The semigroup Σ in this case is the full non-Abelian semigroup of maps on 2
symbols. In other words, Σ = {σ1, σ2, σ3, σ4}, where

σ1(1)=1, σ1(2)=1, σ2(1)=2, σ2(2)=2, σ3(1)=2, σ3(2)=1, σ4(1)=1, σ4(2)=2 .

There is only one nontrivial permutation p : {1, 2} → {1, 2} of the cells, which is
defined by p(1) := 2 and p(2) := 1. It is easily checked that

p ◦ σ1 = σ2 ◦ p, p ◦ σ2 = σ1 ◦ p, p ◦ σ3 = σ3 ◦ p, p ◦ σ4 = σ4 ◦ p .



COUPLED CELL NETWORKS 3529

In other words, p ◦ σj = σq(j) ◦ p if we let q : {1, 2, 3, 4} → {1, 2, 3, 4} be defined by

q(1) = 2, q(2) = 1, q(3) = 3, q(4) = 4 .

Thus, the (in this case identical) invariances

f(x1, x2, x2, x1) = f(x2, x1, x2, x1), f(x1, x2, x1, x2) = f(x2, x1, x1, x2)

can be preserved in the normal form of f . These are precisely the invariances that
make λp : (x1, x2) �→ (x2, x1) a symmetry of the differential equations.

9. SN-decomposition

We recall from the previous sections that when f0 ∈ L(V n, V ), then adΣf0 : P k →
P k. The operators adΣf0 |Pk are called “homological operators”, and they play an
important role in normal form theory. This is first of all because the normal form
spaces Nk ⊂ P k of Theorem 6.1 must be chosen complementary to their images,
and secondly because in computing a normal form one needs to “invert” them when
solving the homological equations adΣf0(gk) − hk ∈ Nk; see the proof of Theorem
6.1.

For this reason, it is convenient to have at one’s disposal the “SN-decompositions”
(also called “Jordan-Chevalley decompositions”) of the homological operators [7],

[42], [47]. We recall that, since P k is finite-dimensional, the map adΣf0 |Pk admits a
unique SN-decomposition

adΣf0 |Pk = (adΣf0 |Pk)S + (adΣf0 |Pk)N(9.23)

in which the map (adΣf0 |Pk)S is semisimple, the map (adΣf0 |Pk)N is nilpotent and

the two maps (adΣf0 |Pk)S and (adΣf0 |Pk)N commute. The aim of this somewhat
technical section is to characterize this SN-decomposition in as simple a way as
possible. We will do this in a number of steps, starting from the following technical
result:

Proposition 9.1. Assume that Σ is a semigroup. Then the linear map

γ|L(V n,V ) : L(V
n, V ) → L(V N , V N ) sending f0 to γf0 is injective .

Proof. The definition (γf0)i := f0 ◦ πi implies that when f0 is linear, then γf0 = 0
precisely when f0 vanishes on imπ1 + . . . + imπN . Thus, all we need to show is
that

im π1 + . . .+ im πN = V n .

Equivalently, we will show by contradiction that the map

“π1 + . . .+ πN” : (V N )N → V n , (x(1), . . . , x(N)) �→ π1(x
(1)) + . . .+ πN (x(N))

must be surjective. To this end, let us define for 1 ≤ j ≤ n the maps

πj : (V N )N → V by πj(x(1), . . . , x(N)) = (π1(x
(1)) + . . .+ πN (x(N)))j

= x
(1)
σj(1)

+ . . .+ x
(N)
σj(N) .

In other words, πj is “π1 + . . .+ πN” followed by the projection to the j-th factor
of V n. In particular, if “π1 + . . .+ πN” is not surjective, then there is a relation of
the form

πj =

n∑
k �=j

λkπ
k .
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This means that

x
(1)
σj(1)

+ . . .+ x
(N)
σj(N) =

∑
k �=j

λk

(
x
(1)
σk(1)

+ . . .+ x
(N)
σk(N)

)
for all x(1), . . . , x(N) ∈ V N .

It is clear that this can only be true if σj = σk for some k �= j. This is a contradic-
tion, because we assumed that the elements of Σ are distinct. �

Next, we recall that when f0 ∈ L(V n, V ), then γf0 ∈ L(V N , V N ), and thus also
the latter has an SN-decomposition

γf0 = γS
f0 + γN

f0

for certain γS
f0
, γN

f0
∈ L(V N , V N ). We are going to relate the SN-decomposition of

γf0 to that of adΣf0 |Pk . But first we show that both γS
f0

and γN
f0

are coupled cell
network maps:

Lemma 9.2. For every f0 ∈ L(V n, V ) there exist unique fS
0 , f

N
0 ∈ L(V n, V ) so

that
γS
f0 = γfS

0
and γN

f0 = γfN
0
.

It holds that f0 = fS
0 + fN

0 and that [fS
0 , f

N
0 ]Σ = 0. In particular, adΣfS

0
◦ adΣfN

0
=

adΣfN
0
◦ adΣfS

0
.

Proof. We recall - see for instance [39], p. 17 - that both the semisimple part γS
f0

and the nilpotent part γN
f0

of γf0 are polynomial functions of γf0 . More precisely,

γS
f0

= p(γf0) and γN
f0

= γf0 − p(γf0), where

p(γ) = a0I + a1γ + . . .+ adγ
d

is a polynomial with coefficients a0, . . . , ad ∈ C.
Theorem 4.2 then implies that γS

f0
= p(γf0) = γp(f0) = γfS

0
for fS

0 ∈ L(V n, V )
defined as

fS
0 = p(f0) = a0f0 + a1(f0 ◦Σ f0) + . . .+ ad(f0 ◦Σ . . . ◦Σ f0) .(9.24)

By Lemma 4.3 this fS
0 is well defined, while by Proposition 9.1 it is unique. Simi-

larly, γN
f0

= γfN
0

for a well-defined and unique fN
0 = f0−p(f0) ∈ L(V n, V ). Clearly,

f0 = fS
0 + fN

0 .
Because [fS

0 , f
N
0 ]Σ ∈ L(V n, V ) and

γ[fS
0 ,fN

0 ]Σ = [γfS
0
, γfN

0
] = [γS

f0 , γ
N
f0 ] = 0,

it follows from Proposition 9.1 that [fS
0 , f

N
0 ]Σ = 0. The Jacobi identity

[adΣfS
0
, adΣfN

0
] = adΣ[fS

0 ,fN
0 ]Σ

then confirms that adΣfS
0
and adΣfN

0
commute as operators on C∞(V n, V ). �

Before we come to the desired characterization of the SN-decomposition of
adΣf0 |Pk , we need to make one simple observation. It concerns the fact that two
functions f, g ∈ C∞(V n, V ) generate the same network map (in the sense that
γf = γg) if and only if f − g ∈ ker γ = {h | γh = 0} ⊂ C∞(V n, V ). Thus, ker γ
consists of those functions h : V n → V that are irrelevant for the dynamics of
coupled cell networks.

One can remark that when f, g ∈ C∞(V n, V ) and f ∈ ker γ, then γ[f,g]Σ =
[γf , γg] = 0 and hence also [f, g]Σ ∈ ker γ. This means ker γ ⊂ C∞(V n, V ) is a Lie
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algebra ideal. In particular, it holds for every f ∈ C∞(V n, V ) that the adjoint map

adΣf : C∞(V n, V ) → C∞(V n, V ) sends ker γ to ker γ and hence that adΣf descends
to a well-defined map on C∞(V n, V )/ ker γ. We can now formulate our result:

Theorem 9.3. For every k = 0, 1, 2, . . . the maps

(adΣf0 |Pk)S and adΣfS
0

∣∣∣
Pk

respectively (adΣf0 |Pk)N and adΣfN
0

∣∣∣
Pk

descend to the same map on P k/ ker γ.

Proof. We start by repeating that adΣf0 maps ker γ into itself and hence descends to

a well-defined map on C∞(V n, V )/ ker γ that moreover sends P k/ ker γ into itself.

More interestingly, since
(
adΣf0 |Pk

)S

and
(
adΣf0 |Pk

)N

are polynomial functions of

adΣf0 |Pk , also these latter maps send ker γ into itself and thus descend to P k/ ker γ.
For the actual proof of the theorem, we define for k ≥ 0 the vector spaces

Pk := {homogeneous polynomial vector fields on V N of degree k + 1} .
It is clear that γ : P k/ ker γ → Pk is an injective linear map. Moreover, the
computation

(γ ◦ adΣf0)(gk) = γ[f0,gk]Σ = [γf0 , γgk ] = (adγf0
◦ γ)(gk)

reveals that the maps adΣf0 : P k/ ker γ → P k/ ker γ and adγf0
: Pk → Pk are

conjugate by the map γ : P k/ ker γ → Pk. Similarly, adΣfS
0

is conjugate to adγ
fS
0

and adΣfN
0

is conjugate to adγ
fN
0

. Now we recall the well-known fact that the SN-

decomposition of adγf0
|Pk is

adγf0
|Pk =

(
adγf0

|Pk

)S
+
(
adγf0

|Pk

)N
= adγS

f0

∣∣∣
Pk

+ adγN
f0

∣∣∣
Pk

= adγ
fS
0

∣∣∣
Pk

+ adγ
fN
0

∣∣∣
Pk

.

Because γ is injective, we have thus proved that

adΣf0

∣∣∣
Pk

= adΣfS
0

∣∣∣
Pk

+ adΣfN
0

∣∣∣
Pk

: P k/ ker γ → P k/ ker γ

is the SN-decomposition of the quotient map. Because the SN-decomposition of
the quotient is the quotient of the SN-decomposition, this proves the theorem. �

Because the elements of ker γ are dynamically completely irrelevant, for all prac-
tical purposes we can think of Theorem 9.3 as saying that

“ adΣf0

∣∣∣
Pk

= adΣfS
0

∣∣∣
Pk

+ adΣfN
0

∣∣∣
Pk

is the SN-decomposition of adΣf0

∣∣∣
Pk

” .

This is very convenient, because it means that one can determine the SN-decomposi-

tions of all operators adΣf0

∣∣∣
Pk

simultaneously by simply determining the splitting

f0 = fS
0 + fN

0 .

Example 9.4. Even though by Proposition 9.1 the restriction γ|L(V n,V ) is injective,

the full map γ : C∞(V n, V ) → C∞(V N , V N ) may fail to be so. This situation

occurs when
⋃N

i=1 imπi �= V n, because γf = 0 already when f vanishes on every
imπi. This is the reason for the somewhat difficult formulation of Theorem 9.3.
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To illustrate this phenomenon, we refer to Example 8.5 in which

π1(x1, x2) = (x1, x2, x2, x1) and π2(x1, x2) = (x1, x2, x1, x2) ,

so that in particular imπ1∪ imπ2 �= V 4. When for instance V = R in this example,
then ker γ ⊂ C∞(R4,R) is the ideal generated by

(X1−X4)(X1−X3), (X1−X4)(X2−X4), (X2−X3)(X1−X3) and (X2−X3)(X2−X4).

We conclude this section with the following dynamical implication of Theorem
9.3:

Corollary 9.5. Let 0 ≤ r < ∞. Then it can be arranged that the normal form
f = f0+f1+ . . . ∈ C∞(V n, V ) of an f = f0+f1+ . . . ∈ C∞(V n, V ) has the special
property that the truncated normal form coupled cell map/vector field γf0+f1+...+fr

commutes with the continuous family of maps

t �→ e
tγ

fS
0 .

Proof. Recall that each one of the normal form spaces Nk ⊂ P k of Theorem 6.1 is

required to have the property that Nk ⊕ im adΣf0

∣∣∣
Pk

= P k. It is not hard to see

that whenever

Nk ⊂ ker (adΣf0 |Pk)S is complementary to im (ad
Σ
f0
|Pk)N ,(9.25)

then this condition is fulfilled. Thus, let us choose Nk so that it satisfies (9.25). The

fact that
(
adΣfS

0
|Pk

)S

and adΣfS
0

∣∣∣
Pk

descend to the same map on P k/ ker γ implies

in particular that for such Nk it holds that adΣfS
0
(Nk) ⊂ ker γ.

Now let f = f0 + f1 + f2 + . . . be any normal form of f of order r with respect
to the Nk, meaning that fk ∈ Nk for all 1 ≤ k ≤ r. Such a normal form exists by

Theorem 6.1. Then it holds that adΣfS
0
(fk) ∈ ker γ, and in view of Theorem 4.2 we

therefore have

[γfS
0
, γf0+f1...+fr

] = γ[fS
0 ,f0+f1+...+fr ]Σ

= γadΣ

fS
0

(f0+f1+...+fr)
= 0 .

Hence, d
dt

∣∣
t=0

(e
tγ

fS
0 )∗(γf0+f1...+fr

) = 0, and thus the truncated normal form com-

mutes with the flow t �→ e
tγ

fS
0 of the coupled cell network vector field γfS

0
. �

The continuous family

t �→ e
tγ

fS
0

of transformations of V N is called a normal form symmetry. This symmetry is
sometimes used to characterize vector fields that are in normal form. It also plays
an important role in finding periodic solutions near equilibria of the vector field γf ,
using for example the method of Lyapunov-Schmidt reduction [12], [23], [28], [33],
[37].

10. A fundamental semigroup network

As a byproduct of Theorem 4.1, and perhaps as a curiosity, we will show in this
section that the dynamics of γf on V N is conjugate to the dynamics of a certain
network Γf on V n. We will argue that Γf acts as a “fundamental network” for γf .
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We recall that if Σ = {σ1, . . . , σn} is a semigroup, then every σj ∈ Σ induces a
map

σ̃j : {1, . . . , n} → {1, . . . , n} via the formula σσ̃j(k) = σk ◦ σj .

We saw that ˜σj1 ◦ σj2 = σ̃j1 ◦ σ̃j2 , and hence the collection Σ̃ := {σ̃1, . . . , σ̃n} is

closed under composition. One can now study coupled cell networks subject to Σ̃.
They have the form

Γf : V n→V n with (Γf )j(X) :=f(Xσ̃1(j), . . . , Xσ̃n(j))=f(Aσj
X) for all 1 ≤ j ≤ n .

The following theorem demonstrates that γf and Γf are dynamically related:

Theorem 10.1. All maps πi : V
N → V n conjugate γf to Γf ; that is,

Γf ◦ πi = πi ◦ γf for all 1 ≤ i ≤ N .

Proof. For x ∈ V N we have that

(Γf ◦ πi)j(x) = f((Aσj
◦ πi)(x)) = f(πσj(i)(x)) = (γf (x))σj(i) = (πi ◦ γf )j(x) .

�
Theorem 10.1 implies that every πi sends integral curves of γf to integral curves

of Γf and discrete-time orbits of γf to discrete-time orbits of Γf .
In addition, the dynamics of γf can be reconstructed from the dynamics of Γf .

More precisely, when X(i)(t) are integral curves of Γf with X(i)(0) = πi(x(0)), then
an integral curve x(t) of γf can simply be obtained by integration of the equations

ẋi(t) = f(X(i)(t)) for 1 ≤ i ≤ N .

Similarly, if X
(m)
(i) are discrete-time orbits of Γf with X

(m)
(i) (0) = πi(x(0)), then

x
(m+1)
i := f(X

(m)
(i) ) defines a discrete-time orbit of γf .

The transition from γf to Γf is thus reminiscent of the symmetry reduction of
an equivariant dynamical system: the dynamics of γf descends to the dynamics
of Γf , and the dynamics of γf can be reconstructed from that of Γf by means of
integration. Nevertheless, n can of course be both smaller and larger than N . In
the latter case, the dynamics of Γf may be much richer than that of γf , and it is
confusing to speak of reduction. In either case, Γf captures all the dynamics of γf .

Example 10.2. Again, let N = 3 and let σ1, σ2, σ3 be defined as in Example 2.4.
Recall

Aσ1
(X1, X2, X3) = (X1, X2, X3) ,

Aσ2
(X1, X2, X3) = (X2, X3, X3) ,

Aσ3
(X1, X2, X3) = (X3, X3, X3) .

This means that the network map Γf is given by

Γf (X1, X2, X3) = (f(X1, X2, X3), f(X2, X3, X3), f(X3, X3, X3)) .

In this example, the conjugacies from γf to Γf are

π1 : (x1, x2, x3) �→ (X1, X2, X3) := (x1, x1, x1) ,

π2 : (x1, x2, x3) �→ (X1, X2, X3) := (x2, x1, x1) ,

π3 : (x1, x2, x3) �→ (X1, X2, X3) := (x3, x2, x1) .

The conjugacy π3 is bijective, which explains that Figures 1 and 4 are isomorphic.
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X3

X2

X1

X3

X2

X1

X3

X2

X1

Figure 4. The fundamental network of our three cell feed-forward network.

Example 10.3. Recall Example 8.5 that features a semigroup with 4 elements. To
determine the maps Aσj

, we compute the multiplication table of this semigroup:

◦ σ1 σ2 σ3 σ4

σ1 σ1 σ1 σ1 σ1

σ2 σ2 σ2 σ2 σ2

σ3 σ2 σ1 σ4 σ3

σ4 σ1 σ2 σ3 σ4 .

This implies that

Aσ1
(X1, X2, X3, X4) = (X1, X2, X2, X1),

Aσ2
(X1, X2, X3, X4) = (X1, X2, X1, X2),

Aσ3
(X1, X2, X3, X4) = (X1, X2, X4, X3),

Aσ4
(X1, X2, X3, X4) = (X1, X2, X3, X4).

Hence, the corresponding fundamental network is given by

Ẋ1 = f(X1, X2, X2, X1) ,

Ẋ2 = f(X1, X2, X1, X2) ,

Ẋ3 = f(X1, X2, X4, X3) ,

Ẋ4 = f(X1, X2, X3, X4) .

This fundamental network has been depicted in Figure 5. It is clear that the maps

π1 : (x1, x2) �→ (X1, X2, X3, X4) := (x1, x2, x2, x1) ,

π2 : (x1, x2) �→ (X1, X2, X3, X4) := (x1, x2, x1, x2)

conjugate γf to Γf .

The advantage of studying Γf instead of γf is that the definition (Γf )j := f ◦Aσj

explicitly displays the representation of the semigroup Σ, whereas the definition
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X2

X3

X4

X1

X2
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X4

X1

X2

X3

X4

Figure 5. A fundamental network with n = 4.

(γf )i := f ◦ πi clearly does not. This has as a consequence that the transformation
formulas for the composition and the Lie bracket become completely natural:

Lemma 10.4. It holds that

Γf ◦ Γg = Γf◦Σg and [Γf ,Γg] = Γ[f,g]Σ .

Proof. First of all,

Aσj
(g(Aσ1

X), . . . , g(Aσn
X)) = (g(Aσσ̃1(j)

X), . . . , g(Aσσ̃n(j)
X))

= (g(Aσ1◦σj
X), . . . , g(Aσn◦σj

X)) .

This gives that

(Γf ◦ Γg)j(X) = f(Aσj
(g(Aσ1

X), . . . , g(Aσn
X)))

= f(g(Aσ1◦σj
X), . . . , g(Aσn◦σj

X))

= f(g(Aσ1
(Aσj

X)), . . . , g(Aσn
(Aσj

X)))

= (f ◦Σ g)(Aσj
X) = (Γf◦Σg)j(X) .

The computation for the Lie bracket is similar. �

We stress that Lemma 10.4 holds due to the definition (Γf )j := f ◦ Aσj
and

the fact that σj �→ Aσj
is a homomorphism. Lemma 10.4 implies for example that

the symbolic computation of the normal form of Γf is the same as the symbolic
computation of the normal form of γf .

We propose to call Γf the fundamental network of γf . Two properties make
this fundamental network fundamental: first of all, the network architecture of the
fundamental network only depends on the multiplicative structure of the semigroup
Σ and not on the explicit realization of Σ itself; in particular, it does not depend
on N . This means that two semigroup networks have isomorphic fundamental
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networks if and only if their semigroups are isomorphic. The second fundamental
property of the fundamental network is that it is equal to its own fundamental
network, if the latter is defined. This follows from Proposition 10.5 below, in which
we call a homomorphism of semigroups faithful if it is injective.

Proposition 10.5. Assume that the homomorphism σj �→ σ̃j is faithful. Then

˜̃σj = σ̃j , and therefore Aσj
= Aσ̃j

for all 1 ≤ j ≤ n .

Proof. Recall that Σ̃ = {σ̃1, . . . , σ̃n} is closed under composition. Thus, the condi-

tion that the homomorphism σj �→ σ̃j from Σ to Σ̃ is faithful just means that Σ̃

is a semigroup. In particular, each map ˜̃σj : {1, . . . , n} → {1, . . . , n} is then well
defined. Now we compute

σ̃
˜σ̃j(k)

= σ̃j ◦ σ̃k = σ̃j ◦ σk = σ̃σ̃j(k) = σ̃σ̃j(k) .

This proves that ˜̃σj = σ̃j for all 1 ≤ j ≤ n and hence that Aσ̃j
= Aσj

for all
1 ≤ j ≤ n. �

Proposition 10.5 brings up the question of when the homomorphism σj �→ σ̃j

is faithful, i.e. under which conditions the elements of Σ all have different left-
multiplicative behavior. We give a partial answer to this question in Remark 10.9
below. The upshot of this remark is that one may essentially always assume the
homomorphism to be faithful.

We finish this section with a few simple observations on synchrony and symmetry
for Γf . First of all, a direct consequence of Theorem 10.1 is that each im πi ⊂ V n

is an invariant subspace for the dynamics of Γf . Interestingly, another way to see
this is by the following

Proposition 10.6. Every imπi ⊂ V n is a robust synchrony space for the Γf ’s.

Proof. Let us define a partition P of {1, . . . , n} by letting 1 ≤ j1, j2 ≤ n be in the
same element of P if and only if σj1(i) = σj2(i). Then

SynP ={X ∈ V n |Xj1 = Xj2 whenσj1(i) = σj2(i)}
= {(xσ1(i), . . . , xσn(i)) |x ∈ V N} = im πi .

It remains to show that the partition P is balanced for Σ̃. This is easy though:
when 1 ≤ j1, j2 ≤ n are in the same element of P , then it holds for all 1 ≤ k ≤ n
that

σσ̃k(j1)(i) = (σk ◦ σj1)(i) = (σk ◦ σj2)(i) = σσ̃k(j2)(i) ,

where the middle equality holds because σj1(i) = σj2(i). This proves that also

σ̃k(j1) and σ̃k(j2) are in the same element of P and hence that the elements of Σ̃
preserve P . �

Recall that Aσj
◦ πi = πσj(i). This implies that Aσj

sends the Γf -invariant
subspace imπi to the Γf -invariant subspace imπσj(i). But much more is true: the
following result shows that Aσj

sends all orbits of Γf to orbits of Γf , even though
Aσj

may not be invertible.

Proposition 10.7.

Γf ◦Aσj
= Aσj

◦ Γf .



COUPLED CELL NETWORKS 3537

Proof.

(Γf ◦Aσj
)k(X) = f(Aσk

◦Aσj
X) = f(Aσk◦σj

X)

= f(Aσσ̃k(j)
X) = (Γf )σ̃k(j)(X) = (Aσj

◦ Γf )k(X) .

�

The final result of this section shows that Γf may have even more symmetry:
the dynamical input symmetries of γf are true symmetries of Γf .

Proposition 10.8. If p is a permutation of {1, . . . , N} and q is a permutation of
{1, . . . , n} so that p ◦ σj = σq(j) ◦ p for all 1 ≤ j ≤ n and if f ◦ λq ◦ πi = f ◦ πi for
all 1 ≤ i ≤ N , then

Γf ◦ λq = λq ◦ Γf on every imπi .

Proof. Recall that under the conditions of the proposition, it holds that πi ◦ λp =
λq ◦ πp(i) and that from this it followed that λp ◦ γf = γf ◦ λp. As a consequence,

Γf ◦λq◦πp(i) = Γf ◦πi◦λp = πi◦γf ◦λp = πi◦λp◦γf = λq◦πp(i)◦γf = λq◦Γf ◦πp(i) .

Because p is a permutation, this means that Γf ◦ λq = λq ◦ Γf on every imπi. �

Remark 10.9. To explain when the homomorphism σj �→ σ̃j is faithful, we can
make the following definition: we say that 1 ≤ i ≤ N is a slave for the network Σ
if there are no 1 ≤ j ≤ n and 1 ≤ k ≤ N so that σj(k) = i. Thus, a slave is a cell
that does not act as input for any other cell, not even for itself. The point of this
definition is the following:

Proposition 10.10. If Σ has no slaves, then σj �→ σ̃j is a faithful homomorphism.

Proof. The relation σ̃j1 = σ̃j2 means that σj1 ◦ σk = σj2 ◦ σk for all k. This implies
in particular that σj1 = σj2 on im σk for all k. But if Σ is free of slaves, then⋃n

j=1 imσj = {1, . . . , N}. Hence, σj1 = σj2 . �

If a network has slaves, then we can reduce it until no slaves remain. This works
as follows: first of all, we remove any slave from the network. Because slaves do
not affect the dynamics of other cells, this can be done without any effect on the
network dynamics. Removing slaves may create new slaves: these are the cells that
acted as inputs only for the original slaves. These new slaves can also be removed,
etc., until a network free of slaves remains.

The remaining network may not be defined unambiguously, because some of the
maps in Σ may coincide after the removal of the slaves. This happens when distinct
maps in Σ differ only at slaves. Such maps can be identified though, while f must
be redefined. In this way, we produce an unambiguous network that is free of slaves.
For such a network γf , the corresponding Γf is a true fundamental network.

11. Some examples and their normal forms

In this section we illustrate the methods and results of this paper by computing
the normal forms of two coupled cell networks. Keeping things simple, we restrict
our attention to synchrony breaking steady state bifurcations in one parameter
families of networks with one-dimensional cells.
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11.1. A skew product network. In the first example, we consider the homoge-
neous skew product differential equations

ẋ1 = f(x1, x1;λ) ,
ẋ2 = f(x2, x1;λ) .

(11.26)

Here x1, x2 ∈ R and f : R2 × R → R. As usual, we will denote the right hand side
of (11.26) by γf (x1, x2;λ), and we will henceforth assume that

γf (0, 0; 0) = 0 and Dxγf (0, 0; 0) is not invertible.

This means that at the parameter value λ = 0, the origin (x1, x2) = (0, 0) is a fully
synchronous equilibrium point of (11.26) that undergoes a steady state bifurcation.
We wish to study the generic nature of this bifurcation. So let us write

f0,0(X1, X2) = DXf(0, 0; 0)(X1, X2) = a1X1 + a2X2 with a1, a2 ∈ R .

With this notation, we have that

matDxγf (0, 0; 0) =

(
a1 + a2 0

a2 a1

)
.

We remark that this linearization matrix is semisimple and moreover that a steady
state bifurcation occurs when one of its eigenvalues a1 + a2 or a1 vanishes.

The obvious but important remark is now that equations (11.26) define a semi-
group coupled cell network. The corresponding semigroup consists of σ1 and σ2,
where

σ1(1) = 1, σ1(2) = 2 and σ2(1) = 1, σ2(2) = 1 .

We depicted this network in Figure 6.

X1

X2

X1

X2

Figure 6. A homogeneous skew product network.

The composition table of {σ1, σ2} reads

◦ σ1 σ2

σ1 σ1 σ2

σ2 σ2 σ2 .

From this table, we can read that

Aσ1
(X1, X2) = (X1, X2) , Aσ2

(X1, X2) = (X2, X2) ,

and hence that the symbolic Lie bracket of this network is given by

[f, g]Σ(X1, X2) =D1f(X1, X2)g(X1, X2) +D2f(X1, X2)g(X2, X2)

−D1g(X1, X2)f(X1, X2)−D2g(X1, X2)f(X2, X2) .
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Since Dxγf (0, 0; 0) is semisimple, so is adΣf0,0 : P k,l → P k,l for every k ≥ −1
and l ≥ 0. Its kernel determines the normal form of f . It only requires a little
computation to check that

adΣf0,0 :

⎧⎨
⎩

(X1 −X2)
αXβ

2 �→ [(1− α)a1 − β(a1 + a2)](X1 −X2)
αXβ

2

for α≥1 and β≥0 ,

Xβ
2 �→ (1− β)(a1 + a2)X

β
2 for β ≥ 0 .

This formula nicely confirms that adΣf0,0 is semisimple. We now consider the two
different codimension one cases:

1. When a1+a2 = 0 but a1 �= 0, then the kernel of Dxγf (0, 0; 0) is tangent to

the synchrony space {x1 = x2}. In this case, the kernel of adΣf0,0 is spanned

by elements of the form (X1 − X2)X
β
2 and Xβ

2 , where β ≥ 0. Thus, the
general normal form of f is

f(X1, X2;λ) = (X1 −X2)F (X2;λ) +G(X2;λ) ,

with F (X2;λ) = A(λ) + O(X2), G(X2;λ) = B(λ) + C(λ)X2 +D(λ)X2
2 +

O(X3
2 ) and A(0) = a1, B(0) = C(0) = 0. The normal form equations of

motion become

ẋ1 = G(x1;λ) ,
ẋ2 = G(x1;λ) + (x2 − x1)F (x1;λ) .

This implies first of all that the stationary points of the normal form
satisfy x1 = x2 and secondly that x1 solves the equation G(x1;λ) =
B(λ) + C(λ)x1 +D(λ)x2

1 +O(x3
1) = 0. Under the generic conditions that

B′(0), D(0) �= 0, we thus find the saddle node branches

x1 = x2 = ±
√
(−B′(0)/D(0))λ+O(λ)

of synchronous steady states. A straightforward stability analysis reveals
that one of these branches consists of equilibria that are linearly stable
in the direction of the synchrony space, while the other branch consists
of unstable points. We remark that the saddle node bifurcation is also
generic in codimension one in the context of vector fields without any special
structure.

2. When a1 + a2 �= 0 and a1 = 0, then the kernel of adΣf0,0 is spanned by

elements of the form (X1−X2)
α, where α ≥ 1, and the element X2. Hence

the general normal form of f is given by

f(X1, X2;λ) = (X1 −X2)F (X1 −X2;λ) +A(λ)X2 ,

with F (X1 −X2;λ) = B(λ) + C(λ)(X1 −X2) +O(X1 −X2)
2 and A(0) =

a2, B(0) = 0. The normal form differential equations are

ẋ1 = A(λ)x1 ,
ẋ2 = A(λ)x1 + (x2 − x1)F (x2 − x1;λ) .

This implies that the stationary points of the normal form satisfy x1 = 0,
while either x2 = 0 or x2 solves the equation F (x2;λ) = B(λ) + C(λ)x2 +
O(x2

2) = 0. Under the generic conditions that B′(0), C(0) �= 0, we thus find
the two steady state branches

x1 = x2 = 0 and x1 = 0, x2 = (−B′(0)/C(0))λ+O(λ2) .
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These branches exchange stability when they cross. This means that the
normal form displays a synchrony breaking transcritical bifurcation. Such
a bifurcation is not generic in codimension one in the context of vector
fields without any special structure, and is hence forced by the network
structure. More precisely, it follows from the presence of the invariant
synchrony space.

11.2. A nilpotent feed-forward network. Next, we consider differential equa-
tions with the network structure defined in Example 2.4:

ẋ1 = f(x1, x1, x1;λ) ,
ẋ2 = f(x2, x1, x1;λ) ,
ẋ3 = f(x3, x2, x1;λ) .

(11.27)

Here x1, x2, x3 ∈ R and f : R3 × R → R. Again, let us write

f0,0(X1, X2, X3) = DXf(0, 0, 0; 0)(X1, X2, X3)

= a1X1 + a2X2 + a3X3 for a1, a2, a3 ∈ R .

Then it holds that

matDxγf (0, 0, 0; 0) =

⎛
⎝ a1 + a2 + a3 0 0

a2 + a3 a1 0
a3 a2 a1

⎞
⎠ .

This shows that a steady state bifurcation takes place when either a1+a2+a3 = 0
or a1 = 0. Moreover, the linearization matrix is not semisimple. In fact, its SN-
decomposition reads⎛
⎝ a1 + a2 + a3 0 0

a2 + a3 a1 0
a3 a2 a1

⎞
⎠ =

⎛
⎝ a1 + a2 + a3 0 0

a2 + a3 a1 0
a2 + a3 0 a1

⎞
⎠+

⎛
⎝ 0 0 0

0 0 0
−a2 a2 0

⎞
⎠ .

As a consequence, we should accordingly decompose f0,0 as

f0,0 = fS
0,0 + fN

0,0,

where

fS
0,0(X1, X2, X3)=a1X1 + (a2 + a3)X3, f

N
0,0(X1, X2, X3)=a2(X2 −X3) .

Recalling that for this network the expression for the symbolic bracket is given in
Example 5.3, it again requires a little computation to find that

adfS
0,0

:

⎧⎪⎪⎨
⎪⎪⎩
Xγ

3 �→ (1− γ)(a1 + a2 + a3)X
γ
3 for γ ≥ 0 ,

(X1 −X3)
α(X2 −X3)

βXγ
3 �→

[(1−α−β)a1−γ(a1+a2+a3)](X1 −X3)
α(X2 −X3)

βXγ
3 for α+ β ≥ 1,

γ ≥ 0 .

and similarly that

adfN
0,0

:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(X1 −X3)
α(X2 −X3)

βXγ
3 �→

−αa2(X1 −X3)
α−1(X2 −X3)

β+1Xγ
3 for α, β ≥ 1, γ ≥ 0 ,

(X1 −X3)
αXγ

3 �→
a2(X2 −X3)

αXγ
3 − αa2(X1 −X3)

α−1(X2 −X3)X
γ
3 for α ≥ 1, γ ≥ 0 ,

(X2 −X3)
βXγ

3 �→ 0 for β, γ ≥ 0 .
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Once more, we now consider the two codimension one cases:

1. If a1+a2+a3 = 0 and a1 �= 0, then the kernel of adΣf0,0 is spanned by terms

(X1 −X3)X
γ
3 , (X2 −X3)X

γ
3 and Xγ

3 with γ ≥ 0 .

One checks that adfN
0,0

vanishes on this kernel, so the general normal form

of f is

f(X1, X2, X3;λ) = (X1 −X3)F (X3;λ) + (X2 −X3)G(X3;λ) +H(X3;λ) ,

where F (X3;λ) = A(λ) + O(X3), G(X3;λ) = B(λ) + O(X3), H(X3;λ) =
C(λ) + D(λ)X3 + E(λ)X2

3 + O(X3
3 ) and A(0) = a1, B(0) = a2, C(0) =

D(0) = 0. The normal form equations of motion are

ẋ1 = H(x1;λ) ,
ẋ2 = (x2 − x1)F (x1;λ) +H(x1;λ) ,
ẋ3 = (x3 − x1)F (x1;λ) + (x2 − x1)G(x1;λ) +H(x1;λ) .

(11.28)

It follows that the steady states of the normal form satisfy x1 = x2 = x3,
where x1 satisfies H(x1;λ) = C(λ)+D(λ)x1+E(λ)x2

1+O(x3
1) = 0. Under

the generic conditions that C ′(0), E(0) �= 0, this yields the fully synchronous
saddle node branches

x1 = x2 = x3 = ±
√
−(C ′(0)/E(0))λ+O(λ) .

Again, one of these branches is stable and the other one is unstable in the
direction of the maximal synchrony space.

2. When a1 = 0, a2 �= 0 and a1 + a2 + a3 �= 0, then ker adΣfS
0,0

is spanned by

the elements

X3 and (X1 −X3)
α(X2 −X3)

β with α+ β ≥ 1 .

This time the action of adΣfN
0,0

on ker adΣfS
0,0

is nontrivial. The only terms in

the kernel that are not in im adfN
0,0

are actually those of the form

(X1 −X3)
α, X2 −X3 and X3, with α ≥ 1 .

This means that the general normal form of f is

f(X1, X2, X3;λ) = (X1 −X3)F (X1 −X3) +A(λ)(X2 −X3) +B(λ)X3 ,

where F (X1 −X3) = C(λ) +D(λ)(X1 −X3) + O(X1 −X3)
2 and A(0) =

a2, B(0) = a1 + a2 + a3, C(0) = 0. This gives the equations of motion

ẋ1 = B(λ)x1 ,
ẋ2 = B(λ)x1 + (x2 − x1)F (x2 − x1;λ) ,
ẋ3 = B(λ)x1 +A(λ)(x2 − x1) + (x3 − x1)F (x3 − x1;λ) .

(11.29)

Under the generic assumption that C ′(0), D(0) �= 0, we now find three
branches of steady states:

x1 = x2 = x3 = 0 ,

(11.30)

x1 = x2 = 0, x3 = −(C ′(0)/D(0))λ+O(λ2) ,

x1 = 0, x2 = −(C ′(0)/D(0))λ+O(λ2), x3 = ±
√
(a2C ′(0)/D(0)2)λ+O(λ) .
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This means that our normal form equations undergo a very particular syn-
chrony breaking steady state bifurcation that comprises a fully synchro-
nous trivial branch, a partially synchronous transcritical branch and fully
nonsynchronous saddle node branches. The solutions on these branches
exchange stability in a specific way, as for example depicted in Figure 7.

- - + +

- +

+ -

- +

- -

Figure 7. Bifurcation diagram of a codimension one steady state
bifurcation in the normal form of a three cell feedforward net-
work. Pluses and minuses refer to positive and negative eigen-
values in the eigendirections other than the maximal synchrony
space. This figure depicts the solutions of formula (11.30) in the
case a2, C

′(0), D(0) > 0.

12. Colored coupled cell networks

In this final section, we describe how our results on homogeneous coupled cell
networks generalize to certain nonhomogeneous coupled cell networks. So let us
imagine a coupled cell network with cells of different types. We will refer to the
different types of cells as colors.

More precisely, let us assume that there are 1 ≤ C < ∞ colors and that for every
color 1 ≤ c ≤ C there are precisely Nc cells of color c. We label the cells of color c
by 1 ≤ i ≤ Nc and assume that the state of the i-th cell of color c is described by

x
(c)
i ∈ Vc, where Vc is a linear space that depends on c.

We furthermore assume that the discrete- or continuous-time evolution of x
(c)
i

is determined by precisely n(1,c) cells of color 1, by n(2,c) cells of color 2, etc. This
assumption is made precise in Definition 12.1 below that, although lengthy, is a
straightforward generalization of Definition 2.1.

Definition 12.1. For every 1 ≤ c, d ≤ C and every 1 ≤ j ≤ n(d,c), assume there is
a map

σ
(d,c)
j : {1, . . . , Nc} → {1, . . . , Nd} .
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We denote the collection of these maps by

Σ := {σ(1,1)
1 , . . . , σ(1,1)

n(1,1)
; . . . ;σ

(C,C)
1 , . . . , σ(C,C)

n(C,C)
} .

Next, we define for all 1 ≤ c ≤ C and 1 ≤ i ≤ Nc the maps

π
(c)
i : V N1

1 × . . .× V NC

C → V
n1,c

1 × . . .× V
nC,c

C by

π
(c)
i (x(1); . . . ;x(C)) :=

(
x
(1)

σ
(1,c)
1 (i)

, . . . , x
(1)

σ
(1,c)
n(1,c)

(i)
; . . . ;x

(C)

σ
(C,c)
1 (i)

, . . . , x
(C)

σ
(C,c)
n(C,c)

(i)

)
.

Now assume that f = (f (1), . . . , f (C)) is a collection of functions with

f (c) : V
n(1,c)

1 × . . .× V
n(C,c)

C → Vc .

Then we define γf : V N1
1 × . . .× V NC

C → V N1
1 × . . .× V NC

C by

(γf )
(c)
i := f (c) ◦ π(c)

i for all 1 ≤ c ≤ C and 1 ≤ i ≤ Nc.

We say that γf is a colored coupled cell network map/vector field subject to Σ.

It is important to note that only the compositions

σe,d
j1

◦ σd,c
j2

: {1, . . . , Nc} → {1, . . . , Ne}
are sensibly defined. This inspires the following definition:

Definition 12.2. We say that Σ is a semigroupoid if for every 1 ≤ c, d, e ≤ C and
every 1 ≤ j1 ≤ nd,c and 1 ≤ j2 ≤ ne,d there is precisely one 1 ≤ j3 ≤ ne,c such that

σ
(e,d)
j1

◦ σ(d,c)
j2

= σ
(e,c)
j3

.

When a collection Σ as in Definition 12.1 is not a semigroupoid, then it generates
one: the smallest semigroupoid Σ′ containing Σ.

Example 12.3. The completely general C-dimensional differential equation

ẋ(c) = f (c)(x(1); . . . ;x(C)) for 1 ≤ c ≤ C and x(c) ∈ Vc

is an example of a colored coupled cell network with C colors and one cell of each

color. The elements of Σ = {σ(1,1)
1 ; . . . ;σ

(C,C)
C } are all defined by σ

(d,c)
j (1) = 1.

They obviously form a semigroupoid.

Example 12.4. The general 2-dimensional skew product differential equation

ẋ(1) = f (1)(x(1)),

ẋ(2) = f (2)(x(1);x(2))

with x(1) ∈ V1 and x(2) ∈ V2 is an example of a colored coupled cell network with

two colors and one cell of each color. The elements of Σ = {σ(1,1)
1 ;σ

(1,2)
1 , σ

(2,2)
1 } are

all defined by σ
(d,c)
1 (1) = 1 and thus form a semigroupoid. See Figure 8.

Example 12.5. The 3-dimensional differential equation

ẋ
(1)
1 = f (1)(x

(1)
2 ;x

(2)
1 ),

ẋ
(1)
2 = f (1)(x

(1)
2 ;x

(2)
1 ),

ẋ
(2)
1 = f (2)(x

(1)
2 )
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x
(1)
1 x

(1)
1

x
(2)
1 x

(2)
1

Figure 8. A colored skew product network.

with x
(1)
1 , x

(1)
2 ∈ V1 and x

(2)
1 ∈ V2 is an example of a colored coupled cell net-

work with two colors: two cells of color 1 and one cell of color 2. Here, Σ =

{σ(1,1)
1 , σ

(1,2)
1 ;σ

(2,1)
1 }, where these maps are defined by

σ
(1,1)
1 (1) = 2, σ

(1,1)
1 (2) = 2;σ

(1,2)
1 (1) = 2;σ

(2,1)
1 (1) = 1, σ

(2,1)
1 (2) = 1 .

Again, one quickly checks that Σ is a semigroupoid. See Figure 9.

x
(1)
1

x
(1)
2 x

(1)
2

x
(1)
1

x
(2)
1

x
(1)
2

x
(2)
1

Figure 9. An example of a colored network with three cells of two colors.

Under the condition that Σ is a semigroupoid, all results of this paper on Lie
algebras and normal forms can be generalized to colored coupled cell networks. As
an illustration, we state a few facts here without proof.

Theorem 12.6. If Σ is a semigroupoid, then for each σ
(d,c)
j ∈ Σ there is a unique

linear map

A
σ
(d,c)
j

: V
n(1,c)

1 × . . .× V
n(C,c)

C → V
n(1,d)

1 × . . .× V
n(C,d)

C

such that for all 1 ≤ i ≤ Nc it holds that

A
σ
(d,c)
j

◦ π(c)
i = π

(d)

σ
(d,c)
j (i)

.

These maps satisfy the relations A
σ
(e,d)
j1

◦ A
σ
(d,c)
j2

= A
σ
(e,d)
j1

◦σ(d,c)
j2

and thus form a

representation of the semigroupoid Σ.
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Theorem 12.7. If Σ is a semigroupoid, then

γf ◦ γg = γf◦Σg

in which (f ◦Σ g)(c) is equal to

f (c) ◦
(
g(1) ◦A

σ
(1,c)
1

× . . .× g(1) ◦A
σ
(1,c)
n(1,c)

× . . .× g(C)

◦A
σ
(C,c)
1

× . . .× g(C) ◦A
σ
(C,c)
n(C,c)

)
.

Theorem 12.8. If Σ is a semigroupoid, then

[γf , γg] = γ[f,g]Σ

in which [f, g]
(c)
Σ equals∑

d

∑
j

(
D

X
(d)
j

f (c) · (g(d) ◦A
σ
(d,c)
j

)−D
X

(d)
j

g(c) · (f (d) ◦A
σ
(d,c)
j

)
)

.

In turn, Theorem 12.7 can be used to prove normal form theorems for colored
coupled cell networks. That is, the theorems of Sections 6 and 9 remain true with
the word “semigroup” replaced by “semigroupoid”.

We conclude with two results that say that the network symmetries and the
robust synchrony spaces of a network remain unchanged by the semigroupoid ex-
tension.

Lemma 12.9. Let Σ be as in Definition 12.1, not necessarily forming a semi-
groupoid, and let p be a permutation of the cells so that the restriction p : {1, . . . , Nc}
→ {1, . . . , Nc} preserves the cells of each color. We say that p is a network sym-
metry if

p ◦ σ(d,c)
j = σ

(d,c)
j ◦ p for all 1 ≤ c, d ≤ C and all 1 ≤ j ≤ n(d,c) .

This means that λp sends orbits of γf to orbits of γf .
Then the collection of network symmetries of Σ is the same as the collection of

network symmetries of the semigroupoid Σ′ generated by Σ.

Lemma 12.10. Let Σ be as in Definition 12.1, not necessarily forming a semi-
groupoid, and let P = {P (1), . . . , P (C)} be a collection of partitions; i.e. for all

1 ≤ c ≤ C, we have that P (c) = {P (c)
1 , . . . , P

(c)
rc } is a partition of {1, . . . , Nc}. Then

the following are equivalent:

i) The collection of partitions is balanced; i.e. for all 1 ≤ c, d ≤ C, all 1 ≤ j ≤
n(d,c) and all 1 ≤ k1 ≤ rc there exists a 1 ≤ k2 ≤ rd so that σ

(d,c)
j (P

(c)
k1

) ⊂
P

(d)
k2

.

ii) The subspace

SynP := {x ∈ V N1 × . . .× V NC | x(c)
i1

= x
(c)
i2

when i1 and i2

are in the same element of P (c)}
is a robust synchrony space for the networks subject to Σ.

The collection of robust synchrony spaces of Σ is the same as the collection of robust
synchrony spaces of the semigroupoid Σ′ generated by Σ.
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