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CONGRUENCE FORMULA FOR CERTAIN DIHEDRAL TWISTS

SUDHANSHU SHEKHAR AND R. SUJATHA

Abstract. In this article we prove a congruence formula for the special values
of certain dihedral twists of two primitive modular forms of weight two with
isomorphic residual Galois representation at a prime p.

1. Introduction

Let p be a prime number. Given two normalized Hecke eigenforms whose Fourier
coefficients are integral and congruent modulo p, the congruence properties between
the special values of their associated L-functions have been an important area of
study. In particular, Greenberg and Vatsal [GV], and Vatsal [V] show under certain
hypotheses that when the forms are twisted by Dirichlet characters, the associated
twisted L-values are congruent. It is natural to investigate such congruences when
we consider twists of the L-values for Artin representations of the Galois group
of Q. The aim of this article is to consider some simple Artin representations of
dihedral type and prove congruence properties between the associated twisted p-
adic L-values. Our results should be viewed as a mix of the congruence results for
special algebraic L-values for congruent modular forms and congruence between
p-adic L-values, the latter being predicted by non-commutative Iwasawa theory.

We now explain our results in greater detail. Let f =
∑

n a(n, f)q
n and g =∑

a(n, g)qn be two new normalized Hecke eigenforms of weight 2 and level Nf and
Ng respectively such that a(n, f) and a(n, g) are integers in Q for each n. Let N̄f

and N̄g denote the conductor of the residual Galois representation associated to f
and g respectively. Fix an odd prime p and a positive square free integer d. We shall
assume throughout this article that f and g are p-ordinary. Put K = Q(

√
−d). Let

F be a finite Galois extension of Q such that K ⊂ F, with Gal(F/Q) isomorphic
to the dihedral group of order 2ps for some integer s ≥ 1. Let χ : Gal(F/K) → C×

be an odd character of conductor fχ and order ps. This in particular implies that χ

does not factor through a subextension of F/K. Put ρ = Ind
GQ

GK
χ. We shall assume

that ρ is irreducible. Let Nρ denote the conductor of ρ, D denote the discriminant
of K over Q and D′ denote the prime to p part of D. We define the quantity RS

∗ (ρ)
by the formula

RS
∗ (ρ) := εp(ρ)× u

−vp(Nρ)
∗ × Pp(ρ̂, u

−1
∗ )

Pp(ρ, w
−1
∗ )

× LS(∗, ρ, 1)
(−2πiΩ+

∗ )(−2πiΩ−
∗ )

.(1)

Received by the editors October 27, 2012 and, in revised form, July 2, 2013.
2010 Mathematics Subject Classification. Primary 14H52, 11F80, 11F11, 11F33.
Key words and phrases. Elliptic curve, Galois representation, modular forms, congruences for

modular forms, special values of L-series, periods of modular forms.

c©2014 American Mathematical Society

3579

http://www.ams.org/tran/
http://www.ams.org/tran/
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9947-2014-06232-6


3580 SUDHANSHU SHEKHAR AND R. SUJATHA

Here ∗ denotes either f or g, εp(ρ) is the local epsilon factor of ρ defined as in [DD],
Pp(ρ̂, X) and Pp(ρ,X) respectively are the usual characteristic polynomials associ-
ated with the dual representation ρ̂ and ρ at p, Ω+

∗ and Ω−
∗ denote the canonical

periods associated to ∗ as defined in [V], and u∗ and w∗ are p-adic numbers defined
by

1− a(p, ∗)X + pX2 = (1− u∗X)(1− w∗X), u∗ ∈ Z×
p .

Further, the subscript LS denotes that in the corresponding twisted L-function, we
have removed the Euler factors at the finite set of primes S. The finite set S shall
always be assumed to contain the set

Smin = {p, q|NK/Q(fχ), q|N/N̄∗},(2)

where N denotes the least common multiple of Nf and Ng, and NK/Q is the norm
map. If S = Smin, then for simplicity, we shall remove the superscript S from the
notation of RS

∗ (ρ) and write Rf (ρ).
Suppose that |a(n, f)− a(n, g)|p < 1 for each n coprime to N , where |.|p is the

p-adic norm normalized such that |p|p = p−1. Then, our aim is to show that RS
f (ρ)

and RS
g (ρ) are p-adic integers satisfying the inequality

|RS
f (ρ)−RS

g (ρ)|p < 1.(3)

We in fact prove a more general result. For a Dirichlet character φ of p power
conductor, we consider the special values of the L-functions associated to f ⊗ ρ⊗φ
and g ⊗ ρ ⊗ φ, and prove an analogous congruence formula. We shall prove the
above inequality under certain assumptions made in section 3.

Our proof of (3) relies on the results proved in [B], [V] and [GV]. We make use of
an auxiliary Artin representation σ which is congruent to ρ modulo p that has the
virtue of being much simpler as it splits into a sum of two Dirichlet characters. We
then use the congruence formula proved by Bouganis in [B] to obtain a congruence
between the special values of f ⊗ ρ and f ⊗ σ. A similar result holds for the form
g as well. In [B], the results are proved for the prime p = 3, K = Q(μ3) and
[F : K] = 3, as the author was mainly interested in the special value of L-functions
in the first layer of the false Tate extensions. Using the ideas of loc.cit., we extend
the results to all odd primes and for other dihedral extensions F/Q of degree 2ps.
Additionally, it is assumed in [B] that the conductor of the modular form and
its residual representation are equal and square free. Our results hold under a
weaker hypothesis, and we make use of the results proved in [DDT] which gives a
nice account of some of the techniques used by Wiles in the proof of Fermat’s last
theorem. We then use the results of [GV] to complete the proof of our main result.
Our method requires a finer analysis of periods of modular forms as considered in
[DDT] and a comparison with the ‘canonical period’ that appears in the work of
Vatsal. This is discussed in section 4.

Even though the Artin representations considered here are of a rather special
kind, such questions of course can be posed for more general Artin representations.
We believe that our idea of using an an auxiliary simple Artin representation like σ
to prove the congruence formula involving twists by more general representations
should be applicable in this larger setting. But this is contingent on proving subtle
results of the kind stated in section 3. This is presently a topic of study in non-
commutative Iwasawa theory, and we hope to address this theme in future works.



CONGRUENCE FORMULA FOR CERTAIN DIHEDRAL TWISTS 3581

Another crucial ingredient in the proof here and also in [B] is the use of Hida’s
arithmetic measures in the dihedral context.

2. p-adic modular forms and arithmetic measure

In this section, we briefly recall the definition of the space of p-adic modular
forms. For more details we refer the reader to [H]. We fix an embedding Q̄ ↪→
Q̄p ↪→ Cp, where Cp is the p-adic completion of Q̄p under the normalized p-adic
absolute value |p|p = p−1.

In this section J will denote any positive integer. Let ψ be a Dirichlet character
of conductor dividing J . For any subring R ⊂ Q̄, we consider the R-modules

Mk(Γ0(J), ψ;R) := {f ∈ Mk(Γ0(J), ψ)|f(z) =
∑

a(n, f)qn, a(n, f) ∈ R},

Mk(Γ1(J);R) := {f ∈ Mk(Γ1(J))|f(z) =
∑

a(n, f)qn, a(n, f) ∈ R},
where Mk(Γ0(J), ψ) (resp Mk(Γ1(J))) denotes the space of modular forms with
character ψ , the congruence subgroup Γ0(J) (resp. the congruence subgroup Γ1(J))
and Fourier coefficients in the field of complex numbers C. Let Hk(Γ0(J), ψ;R)
(resp. Hk(Γ1(J), R)) denote the Hecke algebra corresponding to the space
Mk(Γ0(J), ψ;R) (resp. Mk(Γ1(J);R)). The space of cusp forms with coefficients
in R are defined as

Sk(Γ0(J), ψ;R) := Sk(Γ0(J), ψ) ∩Mk(Γ0(J), ψ;R),

Sk(Γ1(J);R) := Sk(Γ1(J)) ∩Mk(Γ1(J);R).

Let hk(Γ0(J), ψ;R) (resp. hk(Γ1(J), R)) denote the Hecke algebra corresponding
to the space Sk(Γ0(J), ψ;R) (resp. Sk(Γ1(J);R)) of cusp forms. The p-adic norm
of a modular form f ∈ Mk(Γ0(J), ψ;R) is defined as |f |p = supn |an|p. Let K0 be
a finite extension of Q and K be the closure of K0 in Cp with respect to the p-adic
topology. Let Mk(Γ0(J), ψ;K) and Mk(Γ1(J);K) denote the p-adic completion
of Mk(Γ0(J), ψ;K0) and Mk(Γ1(J);K0) respectively with respect to the norm |.|p
inside K[[q]], where q is considered to be an indeterminate. Then it is known that

Mk(Γ0(J), ψ;K) = Mk(Γ0(J), ψ;K0)⊗K0
K

and

Mk(Γ1(J);K) = Mk(Γ1(J),K0)⊗K0
K.

Let OK be the ring of integers in K and let A be either K or OK . Then we also
consider the spaces

Mk(J ;A) :=
∞⋃

n=0

Mk(Γ1(Jp
n);A) and Mk(J, ψ;A) :=

∞⋃
n

Mk(Γ0(Jp
n), ψ;A).

The spaces of the p-adic modular forms Mk(J ;A) and Mk(J, ψ;A) of Γ1(J) and
of Γ0(J) and character ψ are defined as the completion of the spaces Mk(J ;A) and
Mk(J, ψ;A) respectively with respect to the norm |.|p. The space of p-adic cusp
forms are analogously defined.

The p-adic Hecke algebras Hk(J, ψ;OK) and Hk(J ;OK) are defined respectively
as the inverse limit lim←−n

Hk(Γ0(Jp
n), ψ;OK) and lim←−n

Hk(Γ1(Jp
n; );OK). Simi-

larly, the spaces hk(J, ψ;OK) and hk(J ;OK) are defined. For each n, we also con-
sider the idempotent operators en = lim−→m

U(p)m! in Hk(Γ0(Jp
n), ψ;OK), where
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U(p) is the p-th Hecke operator. The idempotent operator e in Hk(J, ψ;OK) and
Hk(J ;OK) is defined as lim←−n

en.

Let C(Z×
p ;Zp) and LC(Z×

p ;Zp) denote the space of continuous (respectively

locally constant) functions of Z×
p with values in Zp. Now consider a modular form

h ∈ M1(Γ0(J), ψ;OK) with q-expansion h(z) =
∑

n≥0 a(n, h)q
n. Put J = J0p

β,
where J0 is prime to p. Then we consider the cuspidal arithmetic measure μh of
weight one defined by

μh(φ) =
∑
n≥1

φ(n)a(n, h)qn, φ ∈ C(Z×
p ;Zp).

For the definition of arithmetic measure we refer the reader to [H, page 36]. It is
known that μh(φ) ∈ S̄1(J0;Zp) (see [H, Corollary 2.3]). For every positive integer
L such that J0|L, we have a modified arithmetic measure defined as μL

h (φ) :=
μh(φ)|[L/J0], where the linear map

[L/J0] : S̄1(J0;Zp) −→ S̄1(L;Zp)

is defined by

[L/J0](
∑
n≥1

a(n, h)qn) �→
∑
n≥1

a(n, h)qnL/J0 .

Put ZL = Z×
p × (Z/LZ)×. For z in ZL, we denote the summand in Z×

p by zp.

The group ZL acts on C(Z×
p ;Zp) by the formula (z 
 φ)(x) := ψ(z)zpφ(z

2
px) for

z ∈ ZL and φ ∈ C(ZL;Zp). We also consider the arithmetic measure of weight one
defined by

2E(φ) =

∞∑
n=1

(n,p)=1

( ∑
d|n

(d,L)=1

sgn(d)φ(d)
)
qn ∈ Zp[[q]].

Following [B] we call it the Eisenstein-Katz measure. For a finite order character
η : ZL → C×, we consider the arithmetic measure

(μL
h ∗ E)η : C(Z×

p ;Zp) → S̄2(L;Zp)

of weight 2 defined by the convolution of μL
h and E as follows:

(μL
h ∗ E)η(φ) :=

∫
Z
×
p

∫
ZL

η(z)zp(z
−1 
 φ)(x)dE(z)dμL

h (x).

If η is the trivial character, then we shall drop it from the notation and just write
μL
h ∗ E. For a finite order character φ ∈ C(ZL;Zp) we have (cf. [B, Section 2])

(μL
h ∗ E)(φ) = μL

h (φ) · E(ψ−1 · (φ−2
p )),

where φp(z) = φ(zp).

3. p-adic Rankin-Selberg convolution

In this section, we will use the p-adic Rankin-Selberg convolution considered by
Hida in [H]. We shall use the results proved in this section in the subsequent ones
to prove inequality (3). Let h be a new normalized Hecke eigenform of weight 2,
level Nh and trivial character. Suppose that h is ordinary at p. Then we denote by
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h0 the p-stabilization of h which is a normalized Hecke eigenform of weight 2, level
N0 and trivial character defined by

h0(z) =

{
h(z) if p divides N ;
h(z)− wh(pz) otherwise;

here w is the unique non-unit root of the Hecke polynomial of h at p, N0 := Nhp
if p � Nh and N0 = Nh if p|Nh. Note that a(p, f0) = uf is the unique p-adic unit
root of the Hecke polynomial of f0 at p. We shall sometimes drop the subscript f
from the notation and just write u. Let D denote the discriminant of the quadratic
imaginary extension K = Q(

√
−d) and ε be the quadratic character of K. Recall

that F/Q is a dihedral Galois extension of Q of degree 2ps for some s ≥ 1 such that
K ⊂ F . Also,

χ : Gal(F/K) → C×

is an odd character of conductor fχ and order ps. Now consider the series hρ =∑
a⊂OK

χ(a)qNK/Q(a), where χ(a) = 0 if (a, fχ) �= 1. Here we have used the same
notation for the Galois character χ and the associated ideal character via class
field theory. Since χ is non-trivial, we have that hρ ∈ S1(|D|NK/Q(fχ), εχ|Z) is a
primitive form.

Lemma 3.1. We have

(i) χ|Z is a trivial character.
(ii) Fourier coefficients of hρ are real numbers.

Proof. Let l be a prime of Z. If l is not coprime to fχ, then χ(l) = 0. Therefore we
may assume that χ is unramified at l. In particular, this implies that l is coprime
to fχ. Let l be a prime of K lying over l. Suppose that l is inert in K. This implies
that the decomposition subgroup Dl of a prime of F lying above l in Gal(F/Q)
maps onto Gal(K/Q). If l does not split completely in F , then Dl is a subgroup of
Gal(F/Q) of order 2pr for some r > 0. Since p is odd, Dl is a dihedral group, and
therefore it cannot be cyclic. This implies that l must ramify in F . Being an inert
prime, l is unramified in K/Q, and hence l ramifies in F/K. This implies that l is
not coprime to fχ, and this is a contradiction. Therefore we see that l must split
completely in F/K and the residue field extension at l corresponding to F is trivial.

Hence, χ(l) = χ(Frob−1
l ) = 1, where Frobl is the Frobenius at l. Thus χ(l) = 1.

Now assume that l is ramified in K, i.e. l = l2 in K. If l splits completely
in F , then as above χ(l) = 1. If l does not split completely in F , then by a
similar argument as above we get that the decomposition subgroup Dl maps onto
Gal(K/Q) and the order of Dl is equal to 2pr for some r > 0. Since l remains
unramified in F/K the residue field extension of F/Q at l will have degree pr but
the decomposition group at l is of order 2pr. We hence get a normal subgroup of Dl

of order 2 as an inertia subgroup, which is impossible. Therefore this case cannot
occur and we have χ(l) = χ(l) = 1.

Now suppose that l = l̄l in K. In this case, the action of Gal(K/Q) takes
the Frobenius at l to its inverse as Gal(F/Q) is a dihedral extension. Therefore
χ(̄l) = χ(l)−1. Thus χ(l) = χ(l)χ(̄l) = 1. This proves assertion (i).

Let a(l, ρ) denote the l-th Fourier coefficient of hρ. If l is not coprime to fχ, then
a(l, ρ) = 0. We assume that l is coprime to fχ. If l remains inert in K or ramifies in
K, then we have already seen that χ(l) = 1 for l|l in K. Therefore we can assume
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that l = l̄l. But in this case a(l, hρ) = χ(l) +χ(̄l) = χ(l) +χ(l)−1, and this is a real
number. �

To prove the congruence (3), we need to consider one more Artin representation.

Put σ = Ind
GQ

GK
1, where 1 denotes the trivial representation. Then we have that

hσ :=
1

2
L(0, ε) +

∑
a⊂OK

qNK/Q(a) ∈ M1(Γ0(D), ε).

To prove the inequality stated in section 1 we need to make the following assump-
tions:

(i) N := l.c.m.(Nf , Ng) is coprime to p and Nρ.
(ii) fχ is coprime to D′.
(iii) N/N̄f and N̄f are coprime and N̄f is square free.
(iv) The residual representation of the Galois representation associated to f is

absolutely irreducible.

Let M := |D|NK/Q(fχ) = Jpδ for some integer J coprime to p. By [EK, Theorem

15(a)] there exists a positive integer m such that M = D′pδm2. In particular, m2

is the prime to p part of NK/Q(fχ), and we have

Smin = {p, q|m, q|n},(4)

where n denotes the product of prime divisors of N/N̄f and Smin is the set of
primes defined in (2). Note that assumption (ii) implies that m is coprime to D′

and assumption (iii) implies that n is coprime to N̄ . Also note that J = D′m2.
Since f is congruent to g modulo p, we have N̄f = N̄g. Thus we shall drop the
subscript f(resp. g) from N̄f (resp. N̄g) and write N̄ .

For every integer k, let ik denote the trivial Dirichlet character mod k. For a
modular form h =

∑
n a(n, h)q

n, let h|ik :=
∑

n ik(n)a(n, h)q
n be the modular form

obtained by removing the Euler factors of h at the primes l|k. Then f̃0 := f0|imn ∈
S2(Γ0(N̄n2m2p),Qp) is a normalized Hecke eigenform. Now consider the Zp-algebra

homomorphism h2(Γ0(N̄n2m2p);Zp) −→ Zp induced by T (n) �→ a(n, f̃0). This
map induces a decomposition

h2(Γ0(N̄n2m2p);Qp) = Qp ×A.

For a proof of the above statement see [B, Section 4] and section 4 below in this
article. Let 1f̃0 denote the idempotent attached to the first summand. We fix a

constant c(f) ∈ Zp such that c(f)1f̃0 ∈ h2(Γ0(N̄n2m2p);Zp). The idempotent 1f̃0
induces a map

�f̃0 : eS̄2(N̄fn
2m2p,Qp) −→ Qp

defined as �f̃0(eh) = a(1, h|e|1f̃0), where e is the idempotent operator defined in

section 2. It follows from [H1, Lemma 4.1] that this map is well-defined. Now
consider the measure

μf̃0×h := c(f) ◦ �f̃0 ◦ e ◦ (μ
L
h ∗ E),

where h can take the values hρ and hσ|im and L = N̄fn
2m2. Here ◦ denotes the

composition of maps. Note that hσ|im ∈ M1(Γ0(Dm2), ε).
Below we state a theorem of Hida which we shall use to prove our result. Be-

fore that we recall some notation. Let γ =
(
a b
c d

)
be a real matrix with positive
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determinant. Then for a modular form G of weight k we shall denote by G|kγ the
function defined by

G|kγ(z) = det(γ)k/2G(γ(z))(cz + d)−k,

where det(γ) denotes the determinant of γ. For an integer Q we shall denote by
τQ the matrix

(
0 −1
Q 0

)
. However, to simplify notation, in the special case when

Q = Jpβ for some β ≥ 0, then following [H] and [B] we shall also use the notation
τβ to denote the matrix τJpβ . We then have the following theorem.

Theorem 3.2 (cf. [H, Section 8], [B, Theorem 2.9]). For every finite order char-
acter φ ∈ C(Z×

p ;Zp),

μf̃0×h(φ) = c(f)tpβ/2a(f̃0, p)
1−β D(f̃0, μh(φ)|1τβ, 1)

23π2i3〈f̃0|2τNn2m2p, f̃0〉Nn2m2p

,

where t = l.c.m.(L, J)LJ1/2, h can take the value hρ or hσ|m, β is the small-

est exponent such that μh(φ) ∈ M1(Γ1(Jp
β)), D(f̃0, μhρ

(φ)|1τβ, s) is the standard

Rankin-Selberg L-function, τβ =
( 0 −1

Jpβ 0

)
and 〈, 〉Nn2m2p is the Petersson inner

product.

The above theorem will be used to prove the congruence between the special
values of f ⊗ ρ and f ⊗σ. The crucial point used in the proof is the linearity of the
function μf̃0×h in the variable h.

Let W (hρ) denote the root number of hρ and W (hρ) =
∏

Wq(hρ) be the decom-
position of W (hρ) into local factors. We denote by W ′(hρ) the prime to p part of
W (hρ). We regard ip as a character of Z×

p and extend it to a function on Zp by

defining it to be 0 outside Z×
p . Let Pp(ρ,X) denote the characteristic polynomial

of ρ at p and h denote hσ or hρ. Then the subscript {p, q|mn} in D{p,q|mn}(f, h, 1)
denotes that in the corresponding Rankin-Selberg L-function D(f, h, 1), we have
removed the Euler factors at p and at the prime divisors of mn.

In the following lemma, we shall evaluate the measure μf̃0×h at the character ip,

and express it in terms of the Rankin-Selberg L-values Dp,q|nm(f, hρ, 1) along with
some other factors which occur in the formula for Rf (ρ) in section 1. This mainly
consists of unraveling the action of the operator |1τβ on the modular form μhρ

(ip).
In carrying this out, we also isolate a power of p that occurs in the epsilon factor
εp(ρ).

Lemma 3.3. We have

μf̃0×hρ
(ip) = c(f)utW ′(hρ)u

−vp(Nρ)εp(ρ)

× Pp(ρ, u
−1)

Pp(ρ, w−1)

D{p,q|nm}(f, hρ, 1)

23π2i3〈f̃0|2τNn2m2p, f̃0〉Nn2m2p

.

Proof. We consider the case when δ > 0. First we suppose that p is coprime to
fχ. Then χ is unramified at p. Therefore δ = 1 and β = 2 [H, Lemma 5.2(i)]. In
this case, the proof of Lemma 3.1 shows that a(p, hρ) = 1. Now from a similar
computation as done in [B, Theorem 3.2] we get that

D(f̃0, μhρ
(ip)|1τβ, 1) = p−1/2W (hρ)uPp(ρ, u

−1)D(f̃0, hρ, 1).

The p-part of the conductor of ρ is p. Therefore εp(ρ) = Wp(ρ)p
1/2. Thus we get

u−βpβ/2D(f̃0, μhρ
(ip)|1τβ, 1) = u−vp(Nρ)W ′(hρ)εp(ρ)Pp(ρ, u

−1)D(f̃0, hρ, 1),



3586 SUDHANSHU SHEKHAR AND R. SUJATHA

where W ′(hρ) denotes the prime to p part of W (hρ). Suppose that χ is ramified
at p. In this case a(p, hρ) = 0 and hρ|ip = hρ. Therefore β = δ. Again, by an
argument similar to [B] we have

D(f̃0, μhρ
(ip)|1τβ, 1) = W (hρ)Pp(ρ, u

−1)D(f̃0, hρ, 1).

Now the p-part of the conductor of ρ is pβ. We get

u−βpβ/2D(f̃0, μhρ
(ip)|1τβ, 1) = u−vp(Nρ)W ′(hρ)εp(ρ)Pp(ρ, u

−1)D(f̃0, hρ, 1).

Next, suppose that δ = 0. In this case β = 2. From [H, Lemma 5.2(i)] we have

u−βpβ/2D(f̃0, μhρ
(ip)|1τβ, 1) = u−2εχ|Z(p)W (hρ)

× (1− εχ|Z(p)a(p, hρ)u+ εχ|Z(p)u2)D(f̃0, hρ, 1).

Note that in the above formula we have used the fact that the Fourier coefficients
of hρ are all real numbers. We have

(1− εχ|Z(p)a(p, hρ)u+ εχ|Z(p)u2) = εχ|Z(p)u2Pp(ρ, u
−1).

Therefore we obtain

u−βpβ/2D(f̃0, μhρ
(ip)|1τβ, 1) = W ′(hρ)D(f̃0, hρ, 1).

In this case Wp(hρ) = εp(ρ) = 1, as p does not divide Nρ. Now the lemma follows
from Theorem 3.2 and the fact that

D(f̃0, hρ, 1) = Pp(hρ, w
−1)−1D{p,q|nm}(f, hρ, 1).

�

The following lemma is the analogue of Lemma 3.3 for the representation σ. We
remark that the form hρ is primitive, and hence one could directly apply [H, Lemma
5.2] in the above lemma. As hσ|im is not primitive, we need to argue differently in
the next lemma.

Lemma 3.4. We have

μf̃0×hσ|im(ip) = c(f)utW ′(hσ)m
−1ε(m)u−vp(Nρ)εp(σ)

× Pp(σ, u
−1)

Pp(σ,w−1)

D{p,q|nm}(f, hσ, 1)

23π2i3〈f̃0|2τNn2m2p, f̃0〉Nn2m2p

.

Proof. The proof of this lemma is analogous to the proof of [B, Theorem 3.2],
where the special case when p = D = 3 is considered. We shall explain how the
same can be derived in this general case. The problem can be divided into two
cases. The first case is when p|D and the second when p � D. We shall explain
the second case, as the first case is identical to [B, Theorem 3.2]. If p � D, then
hσ|im|ip ∈ M1(Γ0(Dp2m2), ε), that is, δ = 0 and β = 2. Then for every d|m2 there
exists a constant cd such that

hσ|ip|im =
∑
d|m2

cdhσ|ip|[di],

where [di] denotes the matrix
(
di 0
0 1

)
. Now by a computation similar to [B, Theorem

3.2] we have

hσ|[pjd]|1τDp2m2 = p1−jmd−1W (hσ)hσ|[p2−jm2/d],
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where j can take values from 0 to 2. We also have

hσ|ip|[d]|1τDp2m2

=(hσ − a(p, hσ)hσ|[p] + ε(p)hσ|[p2])|[d]|1τDp2m2

=p−1d−1mW (hσ)(p
2hσ|[p2m2/d]− pa(p, hσ)hσ|[pm2/d] + ε(p)hσ|[m2/d]).

Using the fact that f̃0 has no Euler factor at primes dividing m, it can be shown
that the Rankin-Selberg convolution D(f̃0, hσ|ip|[di]|1τDp2m2 , 1) is non-zero only if
d = m2. Also an easy computation shows that cm2 = ε(m). Therefore we have

D(f̃0, hσ|ip|im|1τDp2m2 , 1)

=ε(m)D(f̃0, hσ|ip|[m2]|1τDp2m2 , 1)

=ε(m)p−1m−1W (hρ)D(f̃0, p
2hσ|[p2]− pa(p, hσ)hσ|[p] + ε(p)hσ, 1)

=ε(m)p−1m−1W (hρ)(u
2 − a(p, hσ)u+ ε(p))D(f̃0, hσ, 1)

=ε(m)p−1m−1W (hρ)u
2Pp(hσ, u

−1)D(f̃0, hσ, 1).

Since p � D we have Wp(hσ) = 1. Therefore we can write

u−βpβ/2D(f̃0, hσ|im|ip|1τDp2m2 , 1) = m−1ε(m)W ′(hρ)Pp(hσ, u
−1)D(f̃0, hσ, 1).

Now the result follows by using the formula

D(f̃0, hρ, 1) = Pp(hσ, w
−1)−1D{p,q|m}(f, hσ, 1)

and the fact that εp(hσ) = 1 and vp(Nσ) = 0. �

Remark 3.5. So far we have assumed that p does not divide Nf . But we remark
that a similar congruence formula holds under the weaker assumption that p|Nf

(resp. p|Ng) but p
2 � Nf (resp. p2 � Ng). We still need to assume that f is ordinary

at p. In this case f0 = f and f̃0 = f |inm, where n is defined to be the prime to p
part of N/N̄f . Further,

D(f̃0, hρ, 1) = D{q|nm}(f, hρ, 1)

and

D(f̃0, hσ, 1) = D{q|nm}(f, hσ, 1).

Thus in this case the denominator Pp(ρ, wf ) (resp. Pp(ρ, wg)) and Pp(σ,wf ) (resp.
Pp(σ,wg)) will not appear in the formula for μf̃0×hρ

(ip) (resp. μf̃0×hσ
(ip)). Fur-

thermore, we need not remove the Euler factors at p in this case. In the rest of
the paper, for simplicity we shall continue to assume that the level of the modular
forms f and g are coprime to p.

Let φ be a primitive Dirichlet character of conductor pγ for some integer γ ≥ 1
and φ̄ be its complex conjugation. Let γ′ denote the conductor of εχ|Z. For a
Dirichlet character η and a modular form h let h|η :=

∑
n η(n)a(n, h)q

n denote
the twist of h by η. In the rest of this section we shall compute the value of
μf̃0×hρ

(φ̄) and μf̃0×hσ|im(φ̄). First, we suppose that φ = (εχ|Z)p, i.e. the p-part

of the character εχ|Z. Note that (εχ|Z)p is non-trivial only if p|D, where we recall
that D denotes the discriminant of K/Q. Let r = r1r2 be a positive integer prime
to p, where r1 is the product of primes which split in K and r2 is the product of
primes which remain inert in K. Then (εχ|Z)p(r) = −1 if and only if r2 is not a
square. If r2 is not a square, then there is no ideal of K whose norm is r2. This



3588 SUDHANSHU SHEKHAR AND R. SUJATHA

shows that a(r, hρ) = a(r, hσ) = 0. We also have that (εχ|Z)p(r) = 1 if and only if
r2 is a square. This shows that hρ|φ = hρ|ip and hσ|φ = hσ|ip. Thus in this case
the value μf̃0×hρ

(φ̄) = μf̃0×hρ
(ip) and μf̃0×hσ|im(φ̄) = μf̃0×hσ|im(ip). Therefore

in the rest of this section we shall assume that φ �= (εχ|Z)p. First we need the
following definition. Let h be a Hecke eigenform and πp be the local automorphic
representation associated to h at p. Then we say that h is p-minimal if either πp is
supercuspidal or the conductor of h is minimal among all its twists by a character
of p-power conductor. In the next two lemmas, we evaluate the measure μf̃0×hρ

(respectively μf̃0×hσ
) at the Dirichlet character φ̄.

Lemma 3.6. Suppose that hρ is p-minimal, and let φ̄ be the complex conjugate of
φ. Then we have

μf̃0×hρ
(φ̄) = c(f)utW ′(hρ|φ̄)u−vp(Nρφ̄)εp(ρφ̄)

×
D{p,q|nm}(f, hρ|φ, 1)

23π2i3〈f̃0|2τNn2m2p, f̃0〉Nn2m2p

.

Proof. Let πp denote the local automorphic representation associated to hρ at p.
We first assume that πp is either a principal series representation πp(α, α

′) with
α unramified or a special representation σ(α, α′) for quasi-characters α, α′ of Q×

p .
Then it is shown in [H, Lemma 5.2(i)] that β = γ + γ′ and

(hρ|φ̄)|1τβ = W (hρ|φ̄)h̄ρ|φ,

where h̄ρ denote the complex conjugate of hρ. From Lemma 3.1 we have that
h̄ρ = hρ. Thus we have

(hρ|φ̄)|1τβ = W (hρ|φ̄)hρ|φ.
From [H, 5.4(c)] we have that

W (hρ|φ̄) = W ′(hρ)φ(J)Wp(hρ|φ̄).
Therefore we get

pβ/2D(f̃0, μh(φ)|1τβ, 1) = W ′(hρ)φ(J)p
β/2Wp(hρ|φ̄)D(f̃0, hρ|φ, 1).

Since we have assumed that φ̄ �= εχ|Z and φ is non-trivial, we have γ > 0, γ′ > 0

and hρ|φ̄ is primitive. Thus the conductor Nρφ̄ of ρφ̄ is Jpγpγ
′
, and therefore

vp(Nρφ̄) = β = γ+γ′. Further, we also have that εp(ρφ̄) = pβ/2Wp(hρ|φ̄). Therefore
we get that

u−βpβ/2D(f̃0, μh(φ)|1τβ, 1) = W ′(hρ)φ(J)u
−vp(Nρφ̄)εp(ρφ̄)D(f̃0, hρ|φ, 1).

Now using Theorem 3.2 and the fact that

D(f̃0, hρ|φ, 1) = D{p,q|nm}(f, hρ|φ, 1),
we get the desired formula. We mention that due to our assumption φ is non-trivial
and φ̄ �= (εχ|Z)p, Pp(hρ|φ̄, X) = 1. Now we assume that πp is supercuspidal at p.
In this case hρ|φ̄ is primitive (see [H, Lemma 5.2(ii)]). The possible values of β can
be obtained from loc. cit. Thus

(hρ|φ̄)|1τβ = W (hρ|φ̄)h̄ρ|φ = W ′(hρ|φ̄)Wp(hρ|φ̄)h̄ρ|φ.
Now the proof follows by a method similar to the previous case. �
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Lemma 3.7.

μf̃0×hσ|im(φ̄) = c(f)utW ′(hσ|φ̄)u−vp(Nσφ̄)εp(σφ̄)

×
D{p,q|nm}(f, hσ|φ, 1)

23π2i3〈f̃0|2τNn2m2p, f̃0〉Nn2m2p

.

Proof. Let β be the smallest integer such that hσ|φ̄|im ∈ S1(Γ1(D
′pβm2)). Recall

that D′ denotes the prime to p part of D. Since we have assume that φ̄ is non-trivial
and φ̄ �= (εχ|Z)p, γ ≥ 1 and γ′ ≥ 1. Therefore β = γ + γ′ and

hσ|φ̄|1τD′pβ = W (hσ|φ̄)hσ|φ.
For every d|m2 there exist constants cd such that

hσ|im =
∑
d|m2

cdhσ|[d].

Therefore,

hσ|im|φ̄ =
∑
d|m2

cdhσ|φ̄|[d].

By a computation similar to [B, Theorem 3.2] we have

hσ|φ̄|[d]|1τDpβm2 = d−1mW (hσ|φ̄)hσ|φ|[m2/d].

Since f̃0 has no Euler factor at primes dividing m, we have that the Rankin-Selberg
L-function D(f̃0, hσ|φ|[di]|1τDp2m2 , 1) is non-zero only when d = m2. Therefore,

D(f̃0, hσ|imφ̄|1τDp2m2 , 1) = ε(m)m−1W (hσ|φ̄)D(f̃0, hσ|φ, 1).
In the above formula we have used the fact that cm2 = ε(m). The rest of the
computation is analogous to the computations in the proof of Lemma 3.4 and
Lemma 3.6, and we again have the desired formula. �

4. Periods for modular forms

Let Ω+
h and Ω−

h denote the canonical periods associated to a Hecke eigenform h
of level M and weight 2 satisfying conditions 1 and 2 stated in [V]. We recall these
conditions now. Let m denote the maximal ideal of h2(Γ1(M);Zp)) associated to the
congruence class of the form h. The form h induces a Qp-algebra homomorphism

πh : h2(Γ1(M);Zp)m ⊗Qp −→ Qp.

Let Rh denote the unique local factor of the Hecke algebra through which πh factors.
For any module B over the Hecke algebra h2(Γ1(M);Zp), let Bm denote the locali-
sation of B at m. We fix an isomorphism C ∼= Cp. Let A be a subring of C (or Cp).
The Hecke algebra h2(Γ1(M);A) acts on the Eichler-Shimura cohomology group
H1(Γ1(M), A) and its parabolic subgroup H1

p (Γ1(M), A). Let H1(Γ1(M),Zp)m
denote the localization of H1(Γ1(M),Zp) at m. The complex conjugation action
on the group H1(Γ1(M), A) decomposes it into the + and − eigenspaces, denoted
respectively by H1(Γ1(M), A)+ and H1(Γ1(M), A)−. The conditions in [V] are:

1. Rh = Qp.
2. There exist isomorphisms of h2(Γ1(M);Zp)-modules

θ± : H1(Γ1(M),Zp)
±
m = H1

p (Γ1(M),Zp)
±
m
∼= HomZp

(h2(Γ1(M);Zp),Zp)m

∼= S2(Γ1(M);Zp)m.
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If we take h = f̃0, then it follows from [Wi, Theorem 2.1] (see also, [V, Theorem

1.13]) that condition 2 is satisfied. Note that p is an odd prime and the weight of f̃0
is 2; therefore the residual representation associated to f̃0 is p-distinguished. The
first equality in condition 2 is a consequence of the assumption that the residual

representation is irreducible. Let m
ψ
0 denote the restriction of the maximal ideal

m of h2(Γ1(N̄pm2n2);Zp) in h2(Γ0(N̄pm2n2), ψ;Zp). Then we have the following
isomorphism of Zp-algebras:

h2(Γ1(N̄pm2n2);Zp)m ∼= h2(Γ0(N̄pm2n2), ψ;Zp)mψ
0
.

This follows from the fact that the Hecke algebra h2(Γ1(N̄pm2n2);Zp) splits as a
product of h2(Γ0(N̄pm2n2), ψ;Zp), where ψ varies over the finite set of characters

of the group (Z/(N̄pm2n2))×. We shall drop the character ψ from the notation mψ
0

if ψ is the trivial character. Thus condition 1 stated in [V] follows from the fact
that the Qp-algebra homomorphism

h2(Γ0(N̄pm2n2),Zp))m0
⊗Qp −→ Qp

induces a splitting

h2(Γ0(N̄pm2n2);Zp))m0
⊗Qp

∼= Qp ×A

([B, Section 4]). We mention that in [B], this splitting is obtained under the as-
sumption that N is square free by using results proved in [DDT, Section 4]. But it
is not difficult to see that the same proof works under the weaker assumption that
N̄ is square free, with N/N̄ and N̄ being mutually coprime. We briefly explain
this fact. Following the notation of loc. cit., let Σ denote the set of finite primes
of Q consisting of the prime divisors of N/N̄ and m. Let NΣ denote the integer
N̄p

∏
q∈Σ q2.

Let ρ and σ respectively denote the residual representation of ρ and σ at p
with the prime to p part of their conductor Nρ and Nσ respectively. Recall that
Nρ = |D|NK/Q(fχ) and D′ is the prime to p part of D. By assumption (ii) it
implies that the prime to p part of Nρ/D

′ and D′ are coprime. By the definition

of χ we have that χpt

= 1. Therefore χ ≡ 1 (mod) p, where p denotes the unique
prime of Q(μt) lying above p. This implies that ρ = σ. Therefore Nρ = Nσ. Since
σ is the sum of the trivial character and a quadratic character we have Nσ = D.
Further, the prime to p part of Nσ is Nσ, and therefore Nσ = D′. Now it follows
from [DDT, Lemma 2.7] that Nρ/Nρ is cube free. Therefore Nρ/D

′ is cube free.
But the prime to p part of Nρ/D

′ is m2, and hence the integer m is square free.
Further, the assumption that N̄ is coprime to N/N̄ implies that N/N̄ is cube free
(See [DDT, Lemma 2.7]). Therefore NΣ is the same as N̄pn2m2. Consider the
Hecke eigenform g′ of level NΣ defined by the following:

• a(q, g′) = a(q, f) if q � NΣ/N ;
• a(q, g′) = 0 if q|NΣ/N ;
• a(q, g′) = uf if q = p.

Then it is shown in [DDT, Lemma 4.6] that the maximal ideal m0 of h2(NΣ;Zp)
determined by the form f corresponds to the congruence class of g′. Further it is
also shown in [B, Section 4] that h2(NΣ;Zp)m0

is a reduced Zp-algebra, and that
the Qp-algebra homomorphism

h2(Γ0(NΣ,Zp))m0
⊗Qp −→ Qp
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induced by g′ induces a splitting

h2(Γ0(NΣ;Zp))m0
⊗Qp

∼= Qp ×A.

Note that the form g′ coincides with the modular form f̃0. Therefore the condition
1 of [V] holds, and we have

Lemma 4.1. The canonical periods Ω±
f̃0

exist. �

Remark 4.2. We remark that for the existence of the above period, we have crucially
used the fact that the algebra h2(NΣ;Zp)m0

is reduced. This in turn relies on the
results proved in [DDT], [Wi] and [B]. The proof of these results depend on the
assumption that N̄f is square free. But this assumption can be relaxed. In fact,
the semisimplicity of this Hecke algebra is still true at weight two as long as NΣ

is cube free (see [CE]). But we shall continue to assume that N̄f is square free, as
we need this assumption to compare the periods which appear in [V] and [B]. We
strongly believe that it should be possible to remove this assumption, though we
have been unable to do this at present.

Next we shall compare the period Ω+

f̃0
Ω−

f̃0
with the period Ω+

f Ω
−
f . We shall be-

gin by recalling the definition of these periods. Let h =
∑

n a(n, h)q
n be a Hecke

eigenform of level M satisfying conditions 1 and 2 above, ωh =
∑

n a(n, h)q
n−1dq

be the holomorphic differential form in H1
p (Γ(M),C) associated to h and ω̄h̄ =∑

n a(n, h)q̄
n−1dq̄, where the bar denotes complex conjugation. Put ω+

h =

(ωh+ω̄h̄)/2 and ω−
h = (ωh−ω̄h̄)/2. Consider the cocycles δ

±
h defined by θ±(δ±h ) = h.

Then the periods Ω±
h are defined as the scalars such that ω±

h = Ω±
h δ

±
h . Such scalars

exist by condition 1 (see [V]). These periods are well defined only up to a multiple
of a p-adic unit which depends on the choice of the isomorphism in condition 2.
Let Ah denote the complex matrix such that (ωh, ω̄h̄) = (δ+h , δ

−
h )Ah. Then we have

that (−1/2)det(Ah) = Ω+
hΩ

−
h . To compare the two periods associated to f |in and

f̃0, we need to compare Af |in and Af̃0
. But it follows from the proof of [DDT, The-

orem 3.36] that in fact Af |in = Af̃0
. We mention that in [DDT] the case of the

congruence subgroup Γ0(M) is considered. But the same proof works for Γ1(M)
as well. Now it is shown in [GV, Lemma 3.6] that up to a factor of a p-adic unit,
Ω±

f |in is the same as Ω±
f . Therefore we have,

Lemma 4.3. The numbers Ω+
f Ω

−
f and Ω+

f̃0
Ω−

f̃0
are equal up to a factor which is a

p-adic unit. �

Next we shall compare the periods considered in [V] with the periods considered
in [B]. We recall the definition of the period considered in [B]. Let θ±0 be the map
considered in condition 2 after replacing the congruence subgroup Γ1(M) with

Γ0(M). We mention that if h = f̃0, then condition 2 holds even for Γ0(N̄n2m2p).
For a Hecke eigenform h in S2(M ;Z) let x±

h denote the image of h by the inverse

of θ±0 . Then there exists a complex matrix A0
h such that (ωh, ω̄h̄) = (x+

h , x
−
h )A

0
h.

Then the period Ωh considered in [B] is defined as the determinant of A0
h. Now
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consider the following commutative diagram:

H1(Γ0(N̄n2m2p);Zp)
±
m0

θ±
0

��

i �� H1(Γ1(N̄n2m2p);Zp)
±
m

θ±

��
S2(Γ0(N̄n2m2p);Zp)m0

j �� S2(Γ1(N̄n2m2p);Zp)m

The horizontal map j is an isomorphism. This follows from the fact that

h2(Γ0(N̄n2m2p);Zp)m0
∼= h2(Γ1(N̄n2m2p);Zp)m

is an isomorphism. Since the two vertical maps are isomorphisms, we get that the
horizontal map i is also an isomorphism. It then follows from the above diagram
that the image of x±

f̃0
under the inclusion i is the same as δ±

f̃0
. Therefore, up to

an invertible element in GL2(Zp), which depends on the choice of the isomorphism
θ±, we have A0

f̃0
= Af̃0

. Therefore we have

Lemma 4.4. The numbers Ωf̃0
and Ω+

f̃0
Ω−

f̃0
are the same up to a factor which is a

p-adic unit. �

We end this section by mentioning that it is known that the period π2Ωf̃0
is the

same as Ω+
Ef

Ω−
Ef

up to a factor of a p-adic unit, where Ω±
Ef

are the Néron periods

associated to the elliptic curve Ef associated to f (see [B, Theorem 4.8, 4.9]). This
follows from the works of Wiles, Diamond-Flach-Guo and Hida (see [DFG], [H2]
and [Wi]).

5. Congruence formula

In this section we shall prove the inequality (3). Recall that f and g are p-
ordinary weight 2 new Hecke eigenforms of level Nf and Ng respectively with
equivalent residual representation at the odd prime p. The prime to p conduc-
tor of this residual representation is denoted by N̄ . The number uf (resp. ug)
denotes the p-adic unit root of the Hecke polynomial of f (resp. g). The modular
form f0 (resp. g0) is the p-stabilization of f (resp. g) and in denotes the trivial

Dirichlet character mod n with n = l.c.m.(Nf , Ng)/N̄ . Also f̃0 (resp. g̃0) denotes
the modular form f0|in (resp. g0|in)). Recall that the integer m2 is the prime to p
part of NK/Q(fχ).

In the theorem below, we prove the congruence between the special values of
f ⊗ ρ and f ⊗ σ using the linearity of μf̃0×h in the variable h and the congruence
between hρ and hσ. We continue with the notation as in the earlier section.

Theorem 5.1. We have

W ′(hρ)u
−vp(Nρ)
f εp(ρ)×

Pp(ρ, u
−1)

Pp(ρ, w−1)

L{p,q|nm}(f, ρ, 1)

23π2i3Ωf̃0

≡ W ′(hσ)m
−1ε(m)u

−vp(Nσ)
f εp(σ)×

Pp(σ, u
−1)

Pp(σ,w−1)

L{p,q|nm}(f, σ, 1)

23π2i3Ωf̃0

mod p.

Proof. Since ρ = σ, we have a(q, hσ) ≡ a(q, hρ) mod p for all q coprime to pm.
Therefore hσ|im|ip ≡ hρ|ip mod p. This shows that

μf̃0×hρ
(ip) ≡ μf̃0×hσ|im(ip) mod p.
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From the discussion in [B, Section 4], we can choose c(f) such that

c(f)

〈f̃0|2τNn2m2p, f̃0〉Nn2m2p

=
1

Ωf̃0

.

Now we have

D{p,q|nm}(f, ρ, 1) = L{p,q|nm}(f, ρ, 1).

Note that here we have used the fact that N is coprime to Nρ. Indeed, if there
exists a prime q such that q2 divides Nf and q divides Nρ, then the above equality
may not hold. Now the theorem follows by using Lemma 3.3, Lemma 3.4 and the
fact that uf t is a p-adic unit. �

The results proved so far for the modular form f can be similarly obtained for
g as well. We now state our main result. Note that in the congruence formula (5)
below, the left hand side is precisely the number Rf (ρ) and the right hand side is
the number Rg(ρ).

Theorem 5.2. We have

u
−vp(Nρ)
f εp(ρ)

Pp(ρ, u
−1
f )

Pp(ρ, w
−1
f )

L{p,q|nm}(f, ρ, 1)

(−2πiΩ+
f )(−2πiΩ−

f )

≡ u−vp(Nρ)
g εp(ρ)

Pp(ρ, u
−1
g )

Pp(ρ, w
−1
g )

L{p,q|nm}(g, ρ, 1)

(−2πiΩ+
g )(−2πiΩ−

g )
mod p.(5)

The proof of the above theorem is an immediate consequence of Theorem 5.1,
Lemma 4.3, Lemma 4.4 and the next lemma. Note that in the formula for Rf (ρ),

Pp(ρ̂, u
−1
f ) appears in the numerator, whereas in Theorem 5.2, we have Pp(ρ, u

−1
f ).

But in our case, ρ is self-dual, and hence ρ and ρ̂ are equivalent. Now, using the
results in [GV] and [V] and the fact that σ is a sum of two Dirichlet characters, we
show that the special values of f ⊗ σ and g ⊗ σ are congruent mod p.

Lemma 5.3. We have

W ′(hσ)m
−1ε(m)u−vp(Nρ)εp(σ)×

Pp(σ, u
−1
f )

Pp(σ,w
−1
f )

L{p,q|nm}(f, σ, 1)

(−2πiΩ+

f̃0
)(−2πiΩ−

f̃0
)

≡ W ′(hσ)m
−1ε(m)u−vp(Nρ)εp(σ)×

Pp(σ, u
−1
g )

Pp(σ,w
−1
g )

L{p,q|nm}(g, σ, 1)

(−2πiΩ+
g̃0
)(−2πiΩ−

g̃0
)
mod p.

Proof. By assumption we have a(q, f) ≡ a(q, g) mod p for all primes q � N . This
says that the residual representations associated to f and g are isomorphic and
N̄f = N̄g. Now let q be a prime dividing N̄f . Then it follows from [DDT, Lemma
4.6] that a(q, f) ≡ a(q, g) mod p. Thus we have a(q, f) ≡ a(q, g) mod p for all

primes q not dividing nm. Therefore a(q, f̃0) ≡ a(q, g̃0) mod p for all primes q.
Consider the Artin representation σ = 1⊕ ε where ε is the non-trivial quadratic

character of Gal(K/Q). We first assume thet p|D. Then we have

u−vp(Nε)τp(ε
−1)

L(f̃0, ε, 1)

(−2πiΩ−
f̃0
)
≡ u−vp(Nε)τp(ε

−1)
L(g̃0, ε, 1)

(−2πiΩ−
g̃0
)
mod p,
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where τp(ε
−1) is the local Gauss sum for ε−1 at p and Nε denotes the conductor of

ε. The above statement follows from [V, Theorem 1.10]. We also have

(1− u−1
f )

L(f̃0, 1)

(−2πiΩ+

f̃0
)
≡ (1− u−1

g )
L(g̃0, 1)

(−2πiΩ+
g̃0
)
mod p.

Further, ε−1 = ε and τp(ε) = εp(σ). Since Pp(σ, T ) = 1− T and Nε = Nσ,

u−vp(Nρ)εp(ρ)Pp(σ, u
−1
f )

L(f̃0, ε, 1)

(−2πiΩ−
f̃0
)

L(f̃0, 1)

(−2πiΩ+

f̃0
)

≡ u−vp(Nρ)εp(ρ)Pp(σ, u
−1
g )

L(g̃0, ε, 1)

(−2πiΩ−
g̃0
)

L(g̃0, 1)

(−2πiΩ+
g̃0
)
mod p.

We have L(f̃0, 1)L(f̃0, ε, 1) = L(f̃0, σ, 1) and

L(f̃0, σ, 1) =
L{p,q|mn}(f, σ, 1)

Pp(σ,w
−1
f )

.

Now the lemma follows from the fact that W ′(hσ)m
−1ε(m) is a p-adic unit.

We next consider the case when p � D. In this case p does not divide the
conductor of ε. Therefore vp(Nσ) = 0 and εp(σ) = 1. Thus we have the following
congruence formula:

(1− ε(p)u−1
f )

L(f̃0, ε, 1)

(−2πiΩ−
f̃0
)
≡ (1− ε(p)u−1

g )
L(g̃0, ε, 1)

(−2πiΩ−
g̃0
)
mod p.

The rest of the argument is analogous to the previous case. Note that in this case

Pp(σ, u
−1
f ) = (1− u−1

f )(1− ε(p)u−1
f ).

�
Let φ be a non-trivial primitive Dirichlet character of a p-power conductor. As-

sume that φ �= (εχ|Z)p. Then using Lemma 3.6 and Lemma 3.7 the following
theorem can be proved using a method analogous to the proof of Theorem 5.1.

Theorem 5.4. We have

W ′(hρ|φ̄)u−vp(Nρφ̄)εp(ρφ̄)×
L{p,q|nm}(f, ρφ, 1)

23π2i3Ωf̃0

≡ W ′(hσ|φ̄)m−1ε(m)u−vp(Nσφ̄)εp(σ)×
L{p,q|nm}(f, σφ, 1)

23π2i3Ωf̃0

mod p.

�
Using [V, Theorem 1.10] the following lemma can be proved by an argument

similar to proof of Lemma 5.3.

Lemma 5.5. We have

W ′(hσ|φ̄)m−1ε(m)u
−vp(Nσφ̄)

f εp(σφ̄)×
L{p,q|nm}(f, σφ, 1)

(−2πiΩ+

f̃0
)(−2πiΩ−

f̃0
)

≡ W ′(hσ|φ̄)m−1ε(m)u
−vp(Nσφ̄)
g εp(σφ̄)×

L{p,q|nm}(g, σφ, 1)

(−2πiΩ+
g̃0
)(−2πiΩ−

g̃0
)
mod p.

�
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As a consequence of Theorem 5.4 and Lemma 5.5 we obtain the following theorem
which shows that Rf (ρ⊗ φ)) ≡ Rg(ρ⊗ σ) mod p.

Theorem 5.6. We have

u
−vp(Nρφ̄)
f εp(ρφ̄)

L{p,q|nm}(f, ρφ, 1)

(−2πiΩ+
f )(−2πiΩ−

f )

≡ u−vp(Nρφ̄)
g εp(ρφ̄)

L{p,q|nm}(g, ρφ, 1)

(−2πiΩ+
g )(−2πiΩ−

g )
mod p.(6)

�
Recall that in section 1 we had considered a set S of primes containing the set

Smin (see also (2) and (4)). In the formula Rf (ρ) (see (1)) we have removed the
local L-factors at primes in the set S from the L-function of f twisted by ρ. The
congruence relation (5) in Theorem 5.2 between RS

f (ρ) and RS
g (ρ) has been proved

in the special case where S = Smin. The congruence relation (5) is in fact valid for
any set S containing Smin. We briefly explain this now.

Let l be a prime number not dividing nmp. If l � N = l.c.m.(Nf , Ng), then by the
assumption that the residual Galois representations of f and g are equivalent, we get
that the Fourier coefficient a(f, l) ≡ a(g, l) mod p. If l|N , then by the assumption
that l � n, we have that l|N̄ . Now, we have mentioned in the proof of Lemma 5.3 (see
[DDT, Lemma 4.6]) that a(l, f) ≡ a(l, g) modulo p. Let Ll(f, ρ, s) (resp. Ll(g, ρ, s))
denote the local L-factor of f (resp. g) twisted by ρ at l. Then using the fact that
a(f, l) ≡ a(g, l) mod p, it can easily be checked that Ll(f, ρ, 1)

−1 ≡ Ll(g, ρ, 1)
−1

mod p. Note that since l �= p, the numbers Ll(f, ρ, 1)
−1 (resp. Ll(g, ρ, 1)

−1) are
p-adic integers. Thus, multiplying the integers Ll(f, ρ, 1)

−1 (resp. Ll(g, ρ, 1)
−1) on

the left (resp. right) hand side of the congruence relation (5) in Theorem 5.2 we
get that

RS
f (ρ) ≡ RS

g (ρ) mod p

for the set S = Smin∪{l}. Applying the above argument successively for the primes
l in the enlarged set S, we can prove the inequality (3) stated in section 1. A similar
argument works if we twist f (resp. g) with a ρ⊗ φ for some Dirichlet character φ
of p-power conductor.

We stress that it is necessary to assume that S contains Smin. In our recent
work [SS] we have discussed a few numerical numerical examples to show that if S
does not contain these primes, then the congruence need not hold. However, under
certain stronger assumptions, the congruence between special values of f (resp.
g) twisted by ρ can be shown without removing the Euler factors at the primes
dividing the integer nm. We discuss these cases below. In particular we now have
the following improvement of Theorem 5.2.

Theorem 5.7. For a prime factor q of m suppose that,

(i) q + 1 + a(q, f) is coprime to p if q is inert in K and
(ii) q + 1− a(q, f) is coprime to p if q is split in K.

Then we have

u
−vp(Nρ)
f εp(ρ)

Pp(ρ, u
−1
f )

Pp(ρ, w
−1
f )

L{p,q|n}(f, ρ, 1)

(−2πiΩ+
f )(−2πiΩ−

f )

≡ u−vp(Nρ)
g εp(ρ)

Pp(ρ, u
−1
g )

Pp(ρ, w
−1
g )

L{p,q|n}(g, ρ, 1)

(−2πiΩ+
g )(−2πiΩ−

g )
mod p.
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Proof. Let q be a prime divisor of m. Then q is unramified in K and ramified
in F . Let M(f) be the p-adic Galois representation associated to f and M(ρ) be
the Galois representation associated to ρ. Therefore the Euler factor of the tensor
product L-function associated to M(f)⊗M(ρ) at q is defined as

Lq(f, ρ, s) := (det(1− Frobq
−1q−s|(M(f)⊗M(ρ))Iq))−1.

Since Nρ is coprime to the conductor of f , M(f) is unramified at q. Therefore we
have

(M(f)⊗M(ρ))Iq ∼= M(f)⊗M(ρ)Iq .

Since F is ramified at q, the inertia subgroup in Gal(F/Q) at q is identified with
Gal(F/K). Thus the action of Gal(F/Q) on M(ρ)Iq factors through Gal(K/Q).
Now suppose that q splits in K. Then Frobq acts trivially on M(ρ)Iq . Therefore
the Euler factor for the tensor product L-function will be equal to the Euler factor
of f at q. But the Euler factor of f evaluated at 1 is equal to (q−1(q+1−a(q, f)))−1.
This shows that Lq(f, ρ, 1) is a p-adic unit. Now suppose that q remains inert in
K. Then the action on Gal(K/Q) on M(ρ)Iq is non-trivial. Thus in this case we
get

Lq(f, ρ, 1) = (q−1(1 + a(f, q) + q))−1.

Again, by assumption, Lq(f, ρ, 1) is a p-adic unit. A similar formula holds for the
modular form g. Since a(q, f) ≡ a(q, g), we have

Lq(f, ρ, 1) ≡ Lq(g, ρ, 1) mod p.

By multiplying the Euler factors at primes dividingm on both side of the congruence
stated in Theorem 5.2, we get the desired congruence. �

Wemention an example of congruence of modular forms satisfying the hypotheses
of the previous theorem. Let f be the modular form associated to the isogeny class
of the elliptic curve E1 of conductor 11 and g be the modular form associated to the
first isogeny class of elliptic curve E2 of conductor 77 in Cremona’s tables [Cr]. The
minimal Weierstrass model of these two elliptic curves are given by the following
equations

E1 : y2 + y = x3 − x2 − 10x− 20; E2 : y2 + y = x3 + 2x.

Then a(n; f) ≡ a(n; g) mod 3 for all n coprime to 7 (see [D]). Also, the residual
representation associated to f is irreducible at 3. Put m = 13, K = Q(μ3) and
F = K(131/3). The 13th Fourier coefficient of f is 4 [WS]. Thus all the assumptions
of Theorem 5.7 hold. Note that 13 splits in K. This is true because 36 = 62 ≡
−3 mod 13. Now using Theorem 5.7 we get that the special value of f twisted by
any irreducible Artin representation ρ of Gal(F/Q) is congruent to the special value
of g twisted by ρ. Note that to get the congruence stated in Theorem 5.7, we need
to remove the Euler factors at 3 and 7.

Corollary 5.8. Suppose that Nf = Ng = N̄f . If the assumptions of Theorem 5.7
hold, then we have

u
−vp(Nρ)
f εp(ρ)

Pp(ρ, u
−1
f )

Pp(ρ, w
−1
f )

L{p}(f, ρ, 1)

(−2πiΩ+
f )(−2πiΩ−

f )

≡ u−vp(Nρ)
g εp(ρ)

Pp(ρ, u
−1
g )

Pp(ρ, w
−1
g )

L{p}(g, ρ, 1)

(−2πiΩ+
g )(−2πiΩ−

g )
mod p. �
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We now mention an example of congruence of modular forms where all the as-
sumptions of the corollary above are satisfied. Let f be the modular form associated
to the 3rd isogeny class of the elliptic curve of conductor 158 and g be the modular
form associated to the 5th isogeny class of the elliptic curve of conductor 158 in
Cremona’s tables [Cr]. Then a(n; f) ≡ a(n; g) mod 3 for all n. This can be shown
using the Sturm bound and the table of Fourier coefficients of f and g obtained
from [Cr]. Further, the members of the 3rd isogeny class of the elliptic curves of
conductor 158 do not have any 3-isogeny, and therefore the residual representation
of the form f at the prime 3 is irreducible. Also, in this case Nf = Ng = N̄f . Put

m = 5,K = Q(μ3) and F = K(51/3). The 5th Fourier coefficient of f is 1 and
5 + 1 + 1 = 7 is coprime to 3. Note that 5 remains inert in K. Thus the con-
gruence stated in the above corollary holds for all irreducible Artin representations
ρ of Gal(F/Q). Finally, we mention that a source of infinitely many examples of
congruence between elliptic curves is [RS] in the case when p = 3 and p = 5.
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