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EXISTENCE AND SYMMETRY

OF POSITIVE GROUND STATES

FOR A DOUBLY CRITICAL SCHRÖDINGER SYSTEM

ZHIJIE CHEN AND WENMING ZOU

Abstract. We study the following doubly critical Schrödinger system:⎧⎪⎪⎨
⎪⎪⎩

−Δu− λ1
|x|2 u = u2∗−1 + ναuα−1vβ , x ∈ RN ,

−Δv − λ2
|x|2 v = v2

∗−1 + νβuαvβ−1, x ∈ RN ,

u, v ∈ D1,2(RN ), u, v > 0 in RN \ {0},

where N ≥ 3, λ1, λ2 ∈ (0,
(N−2)2

4
), 2∗ = 2N

N−2
and α > 1, β > 1 satisfying

α+β = 2∗. This problem is related to coupled nonlinear Schrödinger equations
with critical exponent for Bose-Einstein condensate. For different ranges of
N , α, β and ν > 0, we obtain positive ground state solutions via some quite

different variational methods, which are all radially symmetric. It turns out
that the least energy level depends heavily on the relations among α, β and
2. Besides, for sufficiently small ν > 0, positive solutions are also obtained
via a variational perturbation approach. Note that the Palais-Smale condition
cannot hold for any positive energy level, which makes the study via variational
methods rather complicated.

1. Introduction

In this paper we consider solitary wave solutions of coupled nonlinear Schrödinger
equations, known in the literature as Gross-Pitaevskii equations ([19, 34]):

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−i ∂

∂tΦ1 = ΔΦ1 − a(x)Φ1 + μ1|Φ1|2Φ1 + ν|Φ2|2Φ1, x ∈ RN , t > 0,

−i ∂
∂tΦ2 = ΔΦ2 − b(x)Φ2 + μ2|Φ2|2Φ2 + ν|Φ1|2Φ2, x ∈ RN , t > 0,

Φj = Φj(x, t) ∈ C, j = 1, 2,

Φj(x, t) → 0, as |x| → +∞, t > 0, j = 1, 2,

where i is the imaginary unit, a(x), b(x) are potential functions, μ1, μ2 > 0 and
ν �= 0 is a coupling constant. System (1.1) appears in many physical problems,
especially in nonlinear optics. Physically, the solution Φj denotes the j

th component
of the beam in Kerr-like photorefractive media (see [3]). The positive constant μj

is for self-focusing in the jth component of the beam. The coupling constant ν
is the interaction between the two components of the beam. Problem (1.1) also
arises in the Hartree-Fock theory for a double condensate, i.e., a binary mixture of
Bose-Einstein condensates in two different hyperfine states |1〉 and |2〉 (see [14]).
Physically, Φj are the corresponding condensate amplitudes, and μj and ν are the
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intraspecies and interspecies scattering lengths. The sign of ν determines whether
the interactions of states |1〉 and |2〉 are repulsive or attractive, i.e., the interaction
is attractive if ν > 0, and the interaction is repulsive if ν < 0, where the two states
are in strong competition.

To obtain solitary wave solutions of system (1.1), we set Φ1(x, t) = eiλ1tu(x) and
Φ2(x, t) = eiλ2tv(x). Write V1(x) = a(x)+λ1 and V2(x) = b(x)+λ2 for convenience,
and as we are only interested in nonnegative solutions, then system (1.1) is reduced
to the following elliptic system:

(1.2)

⎧⎪⎨⎪⎩
−Δu+ V1(x)u = μ1u

3 + νuv2, x ∈ RN ,

−Δv + V2(x)v = μ2v
3 + νvu2, x ∈ RN ,

u ≥ 0, v ≥ 0 in RN , u(x), v(x) → 0 as |x| → ∞.

This Bose-Einstein condensate type system (1.2) is a special case of the following
problem:

(1.3)

⎧⎪⎨⎪⎩
−Δu+ V1(x)u = μ1u

2p−1 + νup−1vp, x ∈ R
N ,

−Δv + V2(x)v = μ2v
2p−1 + νvp−1up, x ∈ RN ,

u ≥ 0, v ≥ 0 in RN , u(x), v(x) → 0 as |x| → ∞,

where p > 1 and p ≤ 2∗/2 if N ≥ 3, and 2∗ = 2N
N−2 is the critical Sobolev exponent.

If p = 2, then (1.3) turns to be the cubic system (1.2). For further introduction
about this problem, readers can also see the survey articles [16, 20], which also
contain information about the physical relevance of noncubic nonlinearities (e.g.
quintic). For the subcritical case p < 2∗/2, the existence and multiplicity of solu-
tions to (1.3) have been widely studied under different assumptions on Vi and ν;
see [4, 22, 25–28,34] and the references therein.

Notice that all the papers mentioned above deal with the subcritical case. To
the best of our knowledge, there are no existence results for (1.3) in the critical
case 2p = 2∗ in the literature.

In this paper, we study (1.3) in critical case where N ≥ 3 and 2p = 2∗. In this
case, if Vi(x) = λi are nonzero constants with the same sign, then by Pohozaev iden-
tity, we easily conclude that any solution (u, v) of (1.3) satisfies

∫
RN λ1u

2+λ2v
2 = 0,

and so (u, v) = (0, 0). Hence we do not consider the case Vi(x) = λi here, and in
the sequel we assume that Vi(x) = − λi

|x|2 are Hardy type potentials. The Hardy

type potentials, which arise in several physical contexts (e.g., in nonrelativistic
quantum mechanics, molecular physics, quantum cosmology, and linearization of
combustion models), do not belong to Kato’s class, so they cannot be regarded as a
lower order perturbation term. In particular, any nontrivial solutions of (1.3) with
Vi(x) = − λi

|x|2 are singular at x = 0. For the sake of simplicity, in the sequel we

assume that μ1 = μ2 = 1. Then, to study (1.3) with 2p = 2∗, Vi(x) = − λi

|x|2 and

μ1 = μ2 = 1, we turn to study the following general problem:

(1.4)

⎧⎪⎨⎪⎩
−Δu− λ1

|x|2 u = u2∗−1 + ναuα−1vβ , x ∈ RN ,

−Δv − λ2

|x|2 v = v2
∗−1 + νβuαvβ−1, x ∈ RN ,

u, v ∈ D1,2(RN ), u, v > 0 in RN \ {0},
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where N ≥ 3, λ1, λ2 ∈ (0,ΛN ), ΛN := (N−2)2

4 ,

(1.5) α > 1, β > 1, α+ β = 2∗,

and D1,2(RN ) is the completion of C∞
0 (RN ) with respect to the norm

‖u‖ :=

(∫
RN

|∇u|2 dx
)1/2

.

Note that if α = β = p = 2∗/2, then (1.4) turns to be (1.3) with Vi(x) = − λi

|x|2
and μ1 = μ2 = 1. The mathematical interest in system (1.4) relies on their double
criticality, due to the fact that both the exponent of the nonlinearities (which is
critical in the sense of the Sobolev embedding) and the singularities share the same
order of homogeneity as the Laplacian. The main goal of this paper is to study the
existence and radial symmetry of ground state solutions to system (1.4), where the
ground state solution is defined in Definition 1.1 below.

Recall that λ1, λ2 ∈ (0,ΛN ); from Hardy’s inequality

(1.6) ΛN

∫
RN

u2

|x|2 dx ≤
∫
RN

|∇u|2 dx, ∀u ∈ D1,2(RN ),

we see that ‖ · ‖λi
, i = 1, 2, are equivalent norms to ‖ · ‖, where

(1.7) ‖u‖2λi
:=

∫
RN

|∇u|2 − λi

|x|2 u
2 dx.

Denote the norm of Lp(RN ) by |u|p = (
∫
RN |u|p dx) 1

p . The case of a single equation
has been deeply investigated in the literature. In particular, by [33], the problem

(1.8)

{
−Δu− λi

|x|2 u = u2∗−1, x ∈ R
N ,

u(x) ∈ D1,2(RN ), u > 0 in RN \ {0}

has exactly a one-dimensional C2 manifold of positive solutions given by

(1.9) Zi =

{
ziμ(x) = μ−N−2

2 zi1

(
x

μ

)
, μ > 0

}
,

where

(1.10) zi1(x) =
A(N, λi)

|x|aλi

(
1 + |x|2−

4aλi
N−2

)N−2
2

,

aλi
= N−2

2 −
√

(N−2)2

4 − λi and A(N, λi) =
N(N−2−2aλi

)2

N−2 . Moreover, all positive

solutions of (1.8) satisfy

(1.11) S(λi) := inf
u∈D1,2(RN )\{0}

‖u‖2λi

|u|22∗
=

‖ziμ‖2λi

|ziμ|22∗
=

(
1− 4λi

(N − 2)2

)N−1
N

S,

and

(1.12) Iλi
(ziμ) =

1

N
‖ziμ‖2λi

=
1

N
|ziμ|2

∗

2∗ =
1

N
S(λi)

N/2,

where S is the sharp constant of D1,2(RN ) ↪→ L2∗(RN ),

(1.13)

∫
RN

|∇u|2 dx ≥ S

(∫
RN

|u|2∗ dx
) 2

2∗

,
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and

(1.14) Iλi
(u) :=

1

2
‖u‖2λi

− 1

2∗

∫
RN

|u|2∗ dx, i = 1, 2;

see [33]. There are also many papers working on related equations with a Hardy
type potential and a critical nonlinearity; we refer the readers to [2,15,29] and the
references therein.

We call a solution (u, v) of (1.4) nontrivial if both u �≡ 0 and v �≡ 0; we call a
solution (u, v) positive if both u > 0 and v > 0 in R

N \ {0}; we call a solution (u, v)
semi-trivial if (u, v) is a type of (u, 0) or (0, v).

One of the difficulties in the study of (1.4) is that it has semi-trivial solutions
(z1μ, 0) and (0, z2μ). Here, we are only interested in nontrivial solutions of (1.4).

Define D := D1,2(RN )×D1,2(RN ) with the norm

‖(u, v)‖2D := ‖u‖2λ1
+ ‖v‖2λ2

.

Then nontrivial solutions of (1.4) can be found as nontrivial critical points of the
C1 functional Jν : D → R, where

Jν(u, v) := Iλ1
(u) + Iλ2

(v)− ν

∫
RN

|u|α|v|β dx.

Another difficulty is the failure of the Palais-Smale condition, which makes
the study of (1.4) very tough. Since (1.4) is invariant under the transformation

(u(x), v(x)) 
→ (μ
N−2

2 u(μx), μ
N−2

2 v(μx)), where μ > 0, it is easy to see that the
Palais-Smale condition ((PS) condition for short) cannot hold for any energy level
c > 0. In fact, assume by contradiction that the (PS) condition holds for some c >
0, and let (un, vn) be a (PS)c sequence; that is, Jν(un, vn) → c and J ′

ν(un, vn) → 0
as n → ∞. Then up to a subsequence, we may assume that (un, vn) → (u, v)

strongly in D. Define (ũn(x), ṽn(x)) := (n
N−2

2 un(nx), n
N−2

2 vn(nx)); then it is easy
to check that (ũn, ṽn) is also a (PS)c sequence and (ũn, ṽn) ⇀ (0, 0) weakly in D.
Since the (PS)c condition holds, we have (ũn, ṽn) → (0, 0) strongly in D, which
contradicts with c > 0.

Definition 1.1. We say a solution (u0, v0) of (1.4) is a ground state solution if
(u0, v0) is nontrivial and Jν(u0, v0) ≤ Jν(u, v) for any other nontrivial solution
(u, v) of (1.4).

To obtain ground state solutions of (1.4), as in [22], we define

Nν :=
{
(u, v) ∈ D : u �≡ 0, v �≡ 0, ‖u‖2λ1

=

∫
RN

(|u|2∗ + να|u|α|v|β),

‖v‖2λ2
=

∫
RN

(|v|2∗ + νβ|u|α|v|β)
}
.(1.15)

Then any nontrivial solution of (1.4) has to belong to Nν . Take ϕ, ψ ∈ C∞
0 (RN )

with ϕ, ψ �≡ 0 and supp(ϕ) ∩ supp(ψ) = ∅; then there exist t1, t2 > 0 such that
(t1ϕ, t2ψ) ∈ Nν for any ν �= 0. So Nν �= ∅. We set

(1.16) cν := inf
(u,v)∈Nν

Jν(u, v) = inf
(u,v)∈Nν

1

N

(
‖u‖2λ1

+ ‖v‖2λ2

)
.

By (1.11) we have

(1.17) ‖u‖2λi
≥ S(λi)|u|22∗ , ∀u ∈ D1,2(RN ), i = 1, 2.
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Then it is easy to see that cν > 0 for all ν. Moreover, if (u0, v0) is a non-
trivial solution satisfying Jν(u0, v0) = cν , then (u0, v0) is a ground state solu-
tion. Our first result is concerned with ground state solutions with energy below
1
N min{S(λ1)

N/2, S(λ2)
N/2}.

Theorem 1.1. Assume that N ≥ 3, λ1, λ2 ∈ (0,ΛN ) and (1.5) holds.

(1) If ν < 0, then cν ≡ 1
N S(λ1)

N/2 + 1
N S(λ2)

N/2, and cν cannot be attained.
(2) Let

(1.18) ν0 :=
1

2∗

[(
1 + max

{
ΛN − λ1

ΛN − λ2
,
ΛN − λ2

ΛN − λ1

}) 2∗
2

− 2

]
> 0;

then for all ν > ν0, (1.4) has a positive ground state solution (uν , vν) ∈ D,
which is radially symmetric and satisfies

(1.19) Jν(uν , vν) = cν <
1

N
min

{
S(λ1)

N/2, S(λ2)
N/2

}
.

(3) If one of the conditions
(C1) N ≥ 5 and max{α, β} < 2,
(C2) λ1 ≤ λ2 and α < 2,
(C3) λ2 ≤ λ1 and β < 2
holds, then for all ν > 0, (1.4) has a positive ground state solution (uν , vν) ∈
D, which is radially symmetric and satisfies (1.19).

Now we want to obtain ground state solutions with energy above the value
1
N max{S(λ1)

N/2, S(λ2)
N/2}, which seems much more interesting to us. To this

goal, by Theorem 1.1 (2)-(3) we have to assume that min{α, β} ≥ 2 and ν > 0 is
small. In this case, since 4 ≤ α + β = 2∗, then N = 3 or N = 4. Moreover, if
N = 4, then we must have α = β = 2. Note that if N = 4 and α = β = 2, then
(1.4) turns to be the cubic system

(1.20)

⎧⎪⎨⎪⎩
−Δu− λ1

|x|2 u = u3 + 2νuv2, x ∈ R
4,

−Δv − λ2

|x|2 v = v3 + 2νu2v, x ∈ R4,

u, v ∈ D1,2(R4), u, v > 0 in R4 \ {0},

which is just the Bose-Einstein condensate type system (1.2) with Vi(x) = − λi

|x|2 in

the critical case N = 4. Note that Λ4 = 1. Then we have the following results.

Theorem 1.2. Assume that N = 4, α = β = 2 and λ1, λ2 ∈ (0, 1). Define

(1.21) ν1 := min
1

2

{
1− λ1

1− λ2
,
1− λ2

1− λ1
,

(1− λ1)
3
4 (1− λ2)

3
4

(1− λ1)
3
2 + (1− λ2)

3
2

}
.

Then for any ν ∈ (0, ν1), (1.20) has a positive ground state solution (uν , vν) ∈ D,
which satisfies

(1.22) cν = Jν(uν , vν) →
1

4

(
S(λ1)

2 + S(λ2)
2
)
, as ν → 0.

Theorem 1.3. Assume that N = 3, α+β = 2∗, α ≥ 2, β ≥ 2 and λ1, λ2 ∈ (0,Λ3).
Then there exists ν̃1 > 0 such that for any ν ∈ (0, ν̃1), (1.4) has a positive ground
state solution (uν , vν) ∈ D, which satisfies

(1.23) Jν(uν , vν) →
1

3

(
S(λ1)

3/2 + S(λ2)
3/2

)
, as ν → 0.
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Remark 1.1. (1) (1.22)-(1.23) yield cν > 1
N max{S(λ1)

N/2, S(λ2)
N/2} for ν >

0 small appropriately. That is, we obtain positive ground state solutions
with energy above 1

N max{S(λ1)
N/2, S(λ2)

N/2}, so the case min{α, β} ≥ 2
is completely different from the cases studied in Theorem 1.1-(3). As we
can see in the following sections, the case min{α, β} ≥ 2 is much more
complicated (see Theorem 2.1 for an example). Besides, if λ1 = λ2, then
Theorem 1.2 will be improved by Theorem 7.1 in Section 7.

(2) The case N = 3 is much tougher than the case N = 4, and we cannot give
an accurate definition of ν̃1 in Theorem 1.3 as (1.21) unfortunately. As we
will see in the following sections, the idea of proving Theorem 1.2 takes
full use of the fact that α = β = 2 and thus cannot be used in the case
N = 3. Meanwhile, the idea of proving Theorem 1.3 is quite different and
more general.

As we will see in Section 2, the radial symmetry of ground state solutions ob-
tained in Theorem 1.1 is an easy corollary of the Schwartz symmetrization. How-
ever, the Schwartz symmetrization cannot be used to prove the radial symmetry of
ground state solutions obtained in Theorems 1.2 and 1.3. Here, to get the radial
symmetry of solutions obtained in Theorems 1.2 and 1.3, we will use the moving
planes method. Precisely, we have the following result.

Theorem 1.4. Assume that N = 3 or N = 4, α+ β = 2∗, α ≥ 2, β ≥ 2, λ1, λ2 ∈
(0,ΛN ) and ν > 0. Then any positive solution of (1.4) is radially symmetric
with respect to the origin. Therefore, ground state solutions (uν , vν) obtained in
Theorems 1.2 and 1.3 are radially symmetric.

There are some other special cases, such as the case in which N = 3, 4, 5, 1 <
α < 2 ≤ β, α+β = 2∗, λ2 < λ1 and ν > 0 sufficiently small, where we have no idea
whether the ground state solutions exist or not. This remains to be an interesting
open question. Here we can obtain positive solutions for these cases if ν > 0 is
sufficiently small. Precisely, we have the following result, which plays a crucial role
in the proof of Theorem 1.3.

Theorem 1.5. Assume that N ≥ 3, λ1, λ2 ∈ (0,ΛN ) and (1.5) hold. Then there
exists ν2 > 0 such that for any ν ∈ (0, ν2], (1.4) has a positive solution (uν , vν) ∈ D,
which is radially symmetric with respect to the origin and satisfies

(1.24) Jν(uν , vν) <
1

N

(
S(λ1)

N
2 + S(λ2)

N
2

)
.

We should mention that Abdellaoui, Felli and Peral [1] studied the following
class of weakly coupled nonlinear elliptic equations:

(1.25)

⎧⎪⎨⎪⎩
−Δu− λ1

|x|2 u = u2∗−1 + νh(x)αuα−1vβ , x ∈ R
N ,

−Δv − λ2

|x|2 v = v2
∗−1 + νh(x)βuαvβ−1, x ∈ RN ,

u, v ∈ D1,2(RN ), u, v > 0 in RN \ {0}.

Note that if h(x) ≡ 1, then (1.25) turns to be (1.4). For the case (1.5), they assumed
the following condition on h(x):

(H1) h ∈ L∞(RN ), h ≥ 0, h �≡ 0, h is continuous in a neighborhood of 0 and ∞,
and h(0) = lim|x|→∞ h(x) = 0.
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Then they proved some existence results of ground state solutions for (1.25) in the
case ν > 0 (see Section 4 in [1]). We should point out that, under condition (H1),
the Palais-Smale condition holds for energy level c with

(1.26) c <
1

N
min

{
S(λ1)

N/2, S(λ2)
N/2

}
(see [1, Lemmas 4.1 and 4.3]), which plays a crucial role in obtaining ground state
solutions in [1]. Therefore, problem (1.4) is completely different from (1.25). More-
over, there are no results about the existence of ground state solutions to (1.25)
with energy above 1

N max{S(λ1)
N/2, S(λ2)

N/2} in [1]. It was only pointed out in
[1, Remark 4.6] that for the case where h(x) ≡ 1, ν > 0, α+β = 2∗ and λ1 = λ2 = λ,
it is easy to construct, by a direct computation, positive solutions to (1.4) of the
form (φ, cφ), c > 0. We remark that whether these solutions (φ, cφ) are ground
state solutions is not known in [1], and there are not any conclusions about (1.4)
for the general case λ1 �= λ2 in [1].

The rest of this paper proves these theorems, and we give some notation here.
In the sequel, we denote positive constants (possibly different in different places)
by C,C1, C2, · · · , and B(x, r) := {y ∈ RN : |x− y| < r}. Denote Br := B(0, r) for
convenience. The paper is organized as follows.

We give the proof of Theorem 1.1 in Section 2, where we will use the concentra-
tion-compactness principle from Lions ([23,24]) and some ideas from [1]. The proof
of Theorem 1.2 is given in Section 3, where we will borrow some ideas from [33]
and the authors’ paper [12].

In Section 4, we will prove Theorem 1.5 via a perturbation method, where we
will use some ideas from Byeon and Jeanjean [9]. In order to construct a spike
solution of the nonlinear elliptic problem

−ε2Δu+ V (x)u = f(u), u ∈ H1(RN ),

for a general subcritical nonlinearity f(u) and sufficiently small ε > 0, Byeon and
Jeanjean [9] developed a new variational approach. We will mainly follow this
variational approach to prove Theorem 1.5. Note that this approach cannot be
used directly, and we need some crucial modifications for our proof. For example,
we will define a special mountain-pass value aν , where all paths are required to be
bounded in D by the same constant which is independent of ν. This special aν is
essential to our proof. Moreover, we should point out that the lack of compactness
is the main difficulty because of the failure of the (PS) condition of (1.4), and
especially because Zi, i = 1, 2, are not compact in D.

In Section 5, we will prove Theorem 1.3 with the help of Theorem 1.5. Here, quite
different ideas are needed compared to those of proving Theorem 1.2 in Section 3.

In Section 6, we will prove Theorem 1.4 via the moving planes method. The
moving planes method has been used by many authors to prove symmetry and
monotonicity of positive solutions to various nonlinear elliptic problems; we refer
the readers to [10, 11, 17, 18] and the references therein.

Finally, by following some arguments from the authors’ papers [12, 13], we will
give some remarks for the special case λ1 = λ2, α = β = 2∗/2 and ν > 0 in Section
7, where some uniqueness results about the ground state solutions will be obtained;
see Theorems 7.1 and 7.2. In the authors’ papers [12,13], we studied the following
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Bose-Einstein condensation system for the critical case:

(1.27)

⎧⎪⎨⎪⎩
−Δu+ λ1u = μ1u

2∗−1 + νu
2∗
2 −1v

2∗
2 , x ∈ Ω,

−Δv + λ2v = μ2v
2∗−1 + νv

2∗
2 −1u

2∗
2 , x ∈ Ω,

u ≥ 0, v ≥ 0 in Ω, u = v = 0 on ∂Ω.

Here, Ω ⊂ RN (N ≥ 4) is a smooth bounded domain and μ1, μ2 > 0 (the special
case N = 4 was studied in [12], and the general case N ≥ 5 in [13]). When ν = 0,
(1.27) turns to be the well-known Brezis-Nirenberg problem ([8]). Thanks to the
celebrated idea from Brezis and Nirenberg [8], we can show that the (PS) condition
of (1.27) holds for some ranges of energy level (see [12, 13] for details). Therefore,
problem (1.4) is also completely different from (1.27). Fortunately, some ideas of
studying (1.27) in [12, 13] can be used in this paper.

2. Proof of Theorem 1.1

2.1. The case ν < 0.

Lemma 2.1. If cν is attained by a couple (u, v) ∈ Nν , then this couple is a critical
point of Jν , provided ν < 0.

Proof. This proof is standard. Let ν < 0. Assume that (u, v) ∈ Nν such that
cν = Jν(u, v). Define

G1(u, v) = ‖u‖2λ1
−

∫
RN

(|u|2∗ + να|u|α|v|β),

G2(u, v) = ‖v‖2λ2
−

∫
RN

(|v|2∗ + νβ|u|α|v|β).

Then there exist two Lagrange multipliers K1,K2 ∈ R such that

(2.1) J ′
ν(u, v) +K1G

′
1(u, v) +K2G

′
2(u, v) = 0.

Testing (2.1) with (u, 0) and (0, v) respectively, we conclude from (u, v) ∈ Nν that(
(2∗ − 2)|u|2∗2∗ + α(2− α)|ν|

∫
RN

|u|α|v|β
)
K1 − αβ|ν|

(∫
RN

|u|α|v|β
)
K2 = 0,(

(2∗ − 2)|v|2∗2∗ + β(2− β)|ν|
∫
RN

|u|α|v|β
)
K2 − αβ|ν|

(∫
RN

|u|α|v|β
)
K1 = 0.

Recall that |u|2∗2∗ > α|ν|
∫
RN |u|α|v|β and |v|2∗2∗ > β|ν|

∫
RN |u|α|v|β ; we see from

α+ β = 2∗ that(
(2∗ − 2)|u|2∗2∗ + α(2− α)|ν|

∫
RN

|u|α|v|β
)

×
(
(2∗ − 2)|v|2∗2∗ + β(2− β)|ν|

∫
RN

|u|α|v|β
)

>

(
αβ|ν|

∫
RN

|u|α|v|β
)2

.

From this we deduce that K1 = K2 = 0, and so J ′
ν(u, v) = 0. �

Lemma 2.2. Let ν < 0. For any (u, v) ∈ D with u �≡ 0 and v �≡ 0, if

(2.2)

(∫
RN

|u|2∗
)α (∫

RN

|v|2∗
)β

> ααββ

(
|ν|

∫
RN

|u|α|v|β
)2∗

,

then there exist t1 > 0, s1 > 0, such that (t1u, s1v) ∈ Nν .
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Proof. For simplicity, we denote

A1 = ‖u‖2λ1
, B1 = |u|2∗2∗ , C = |ν|

∫
RN

|u|α|v|β , A2 = ‖v‖2λ2
, B2 = |v|2∗2∗ .

Recall definition (1.15) of Nν ; we see that (tu, sv) ∈ Nν for t, s > 0 is equivalent to
t, s > 0 satisfying

A1t
2−α = B1t

β − αCsβ, A2s
2−β = B2s

α − βCtα.(2.3)

If C = 0, then it is trivial to see that (2.3) has a solution (t1, s1) with t1, s1 > 0.
So we may assume that C > 0. Then the equation A1t

2−α = B1t
β − αCsβ is

equivalent to

s = g(t) :=

(
B1t

β −A1t
2−α

αC

)1/β

> 0, t > t0 :=

(
A1

B1

) 1
2∗−2

.

Therefore, it suffices to prove that

(2.4) A2

(
B1t

β −A1t
2−α

αC

) 2−β
β

−B2

(
B1t

β −A1t
2−α

αC

)α
β

+ βCtα = 0

has a solution t > t0. Note that (2.4) is equivalent to

f(t) := A2

(
B1 −A1t

2−2∗

αC

) 2−β
β

+ t2
∗−2

[
βC −B2

(
B1 −A1t

2−2∗

αC

)α
β
]
= 0.

Note that (2.2) implies that

βC −B2

(
B1

αC

)α
β

< 0;

then it is easy to check that limt↘t0 f(t) > 0 and limt→+∞ f(t) = −∞. So there
exists t1 > t0 > 0 such that f(t1) = 0. Let s1 = g(t1); then s1 > 0 and (t1u, s1v) ∈
Nν . This completes the proof. �

Proof of Theorem 1.1-(1). Fix any ν < 0. Recall (1.9)-(1.12). It is easy to see that
z2μ ⇀ 0 weakly in D1,2(RN ) and so (z2μ)

β ⇀ 0 weakly in L2∗/β(RN ) as μ → +∞.
That is,

lim
μ→+∞

|ν|
∫
RN

(z11)
α(z2μ)

β dx = 0.

Then (2.2) holds for (z11 , z
2
μ) when μ > 0 sufficiently large, and so there exist

tμ, sμ > 0 such that (tμz
1
1 , sμz

2
μ) ∈ Nν . Denote Fμ := |ν|

∫
RN (z11)

α(z2μ)
β dx. Then

(2.5) t2μS(λ1)
N
2 = t2

∗

μ S(λ1)
N
2 − αtαμs

β
μFμ, s2μS(λ2)

N
2 = s2

∗

μ S(λ2)
N
2 − βtαμs

β
μFμ.

Assume that, up to a subsequence, tμ → +∞ as μ → ∞. Then by

β(t2
∗

μ − t2μ)S(λ1)
N
2 = α(s2

∗

μ − s2μ)S(λ2)
N
2

we also have sμ → +∞. Then

t2
∗

μ − t2μ ≥ 1

2
t2

∗

μ , s2
∗

μ − s2μ ≥ 1

2
s2

∗

μ for μ large enough.

Combining this with (2.5) we see that(
tμ
sμ

)β

≤ 2αS(λ1)
−N

2 Fμ → 0,

(
sμ
tμ

)α

≤ 2βS(λ2)
−N

2 Fμ → 0, as μ → +∞,
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a contradiction. Therefore, tμ and sμ are uniformly bounded. Then by (2.5) and
Fμ → 0 as μ → ∞, we get that limμ→+∞(tμ, sμ) = (1, 1). Note that (tμz

1
1 , sμz

2
μ) ∈

Nν , and we see from (1.12) and (1.16) that

cν ≤ Jν(tμz
1
1 , sμz

2
μ) =

1

N

(
t2μ‖z11‖2λ1

+ s2μ‖z2μ‖2λ2

)
=

1

N

(
t2μS(λ1)

N/2 + s2μS(λ2)
N/2

)
.

Letting μ → +∞, we get that cν ≤ 1
N (S(λ1)

N/2 + S(λ2)
N/2). On the other hand,

for any (u, v) ∈ Nν , we see from ν < 0 and (1.17) that

‖u‖2λ1
≤

∫
RN

|u|2∗ dx ≤ S(λ1)
−2∗/2‖u‖2∗λ1

,

and so ‖u‖2λ1
≥ S(λ1)

N/2. Similarly, ‖v‖2λ2
≥ S(λ2)

N/2. Combining these with

(1.16), we get that cν ≥ 1
N (S(λ1)

N/2 + S(λ2)
N/2). Hence,

(2.6) cν =
1

N

(
S(λ1)

N/2 + S(λ2)
N/2

)
.

Now, assume that cν is attained by some (u, v) ∈ Nν ; then (|u|, |v|) ∈ Nν and
Jν(|u|, |v|) = cν . By Lemma 2.1, we know that (|u|, |v|) is a nontrivial solution of
(1.4). By the maximum principle, we may assume that u > 0, v > 0 in R

N \ {0},
and so

∫
RN uαvβ dx > 0. Then

‖u‖2λ1
<

∫
RN

|u|2∗ dx ≤ S(λ1)
−2∗/2‖u‖2∗λ1

.

Therefore, it is easy to see that cν = Jν(u, v) >
1
N (S(λ1)

N/2 + S(λ2)
N/2), which is

a contradiction. This completes the proof. �

2.2. The case ν > 0. In this subsection, we let ν > 0. Define

(2.7) c′ν := inf
(u,v)∈N ′

ν

Jν(u, v),

where

N ′
ν :=

{
(u, v) ∈ D \ {(0, 0)} : J ′

ν(u, v)(u, v) = 0
}
.(2.8)

Note that Nν ⊂ N ′
ν , so c′ν ≤ cν . By (1.17) it is easy to prove that c′ν > 0. Moreover,

it is standard to prove that

c′ν = inf
(u,v)∈D\{(0,0)}

max
t>0

Jν(tu, tv)

= inf
(u,v)∈D\{(0,0)}

1

N

⎡⎣ ‖u‖2λ1
+ ‖v‖2λ2(∫

RN |u|2∗ + 2∗ν|u|α|v|β + |v|2∗
) 2

2∗

⎤⎦
N
2

.(2.9)

Define E(u, v) := |∇u|2 + |∇v|2 − λ1

|x|2 |u|2 − λ2

|x|2 |v|2 and F (u, v) := |u|2∗+
2∗ν|u|α|v|β + |v|2∗ for simplicity; then

(2.10)

∫
RN

E(u, v) dx ≥ (Nc′ν)
2
N

(∫
RN

F (u, v) dx

) 2
2∗

, ∀ (u, v) ∈ D.

The following lemma is the counterpart of the Brezis-Lieb Lemma ([7]) for (u, v),
and the idea of its proof comes from [7] (see also [35, Lemma 1.32]).



A DOUBLY CRITICAL SCHRÖDINGER SYSTEM 3609

Lemma 2.3. Let Ω ⊂ RN be an open set and (un, vn) be a bounded sequence in
L2∗(Ω)× L2∗(Ω). If (un, vn) → (u, v) almost everywhere in Ω, then

lim
n→∞

∫
Ω

(
|un|α|vn|β − |un − u|α|vn − v|β

)
dx =

∫
Ω

|u|α|v|β dx.

Proof. Fatou Lemma yields∫
Ω

|u|2∗ ≤ lim inf
n→∞

∫
Ω

|un|2
∗
< ∞,

∫
Ω

|v|2∗ ≤ lim inf
n→∞

∫
Ω

|vn|2
∗
< ∞.

Recall that α, β satisfy (1.5). For any a1, a2, b1, b2 ∈ R and ε > 0, we deduce from
the mean value theorem and Young’s inequality that∣∣∣|a1 + a2|α|b1 + b2|β − |a1|α|b1|β

∣∣∣
≤
∣∣∣|a1 + a2|α − |a1|α

∣∣∣|b1 + b2|β + |a1|α
∣∣∣|b1 + b2|β − |b1|β

∣∣∣
≤C

[
(|a1|+ |a2|)α−1(|b1|+ |b2|)β|a2|+ |a1|α(|b1|+ |b2|)β−1|b2|

]
≤Cε

[
(|a1|+ |a2|)2

∗
+ (|b1|+ |b2|)2

∗
]
+ Cε1−2∗

(
|a2|2

∗
+ |b2|2

∗
)

≤Cε
(
|a1|2

∗
+ |a2|2

∗
+ |b1|∗ + |b2|2

∗
)
+ Cε1−2∗

(
|a2|2

∗
+ |b2|2

∗
)
.

Denote ωn = un − u and σn = vn − v. Then

fε
n :=

[∣∣∣|un|α|vn|β − |ωn|α|σn|β − |u|α|v|β
∣∣∣

− Cε
(
|ωn|2

∗
+ |u|2∗ + |σn|∗ + |v|2∗

)]
+

≤|u|α|v|β + Cε1−2∗
(
|u|2∗ + |v|2∗

)
,

and so the dominated convergence theorem yields
∫
Ω
fε
n dx → 0 as n → ∞. Note

that∣∣∣|un|α|vn|β − |ωn|α|σn|β − |u|α|v|β
∣∣∣ ≤ fε

n + Cε
(
|ωn|2

∗
+ |u|2∗ + |σn|∗ + |v|2∗

)
,

so we obtain

lim sup
n→∞

∫
Ω

∣∣∣|un|α|vn|β − |ωn|α|σn|β − |u|α|v|β
∣∣∣ ≤ Cε.

Since C > 0 is independent of ε > 0, the proof is complete. �

The following lemma is the counterpart of Lions’ concentration-compactness
principle ([23, 24]) for problem (1.4).

Lemma 2.4. Let (un, vn) ∈ D be a sequence such that

(2.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(un, vn) ⇀ (u, v) weakly in D,

(un, vn) → (u, v) almost everywhere on R
N ,

E(un − u, vn − v) ⇀ μ in the sense of measures,

F (un − u, vn − v) ⇀ ρ in the sense of measures.
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Define

μ∞ := lim
R→∞

lim sup
n→∞

∫
|x|≥R

E(un, vn) dx,

ρ∞ := lim
R→∞

lim sup
n→∞

∫
|x|≥R

F (un, vn) dx.(2.12)

Then it follows that

‖μ‖ ≥ (Nc′ν)
2
N ‖ρ‖ 2

2∗ ,(2.13)

μ∞ ≥ (Nc′ν)
2
N ρ

2
2∗∞ ,(2.14)

lim sup
n→∞

∫
RN

E(un, vn) dx =

∫
RN

E(u, v) dx+ ‖μ‖+ μ∞,(2.15)

lim sup
n→∞

∫
RN

F (un, vn) dx =

∫
RN

F (u, v) dx+ ‖ρ‖+ ρ∞.(2.16)

Moreover, if (u, v) = (0, 0) and ‖μ‖ = (Nc′ν)
2
N ‖ρ‖ 2

2∗ , then μ and ρ are concentrated
at a single point.

Proof. In this proof we mainly follow the argument of [35, Lemma 1.40]. First we
assume (u, v) = (0, 0). For any h ∈ C∞

0 (RN ), we see from (2.10) that

(2.17)

∫
RN

E(hun, hvn) dx ≥ (Nc′ν)
2
N

(∫
RN

|h|2∗F (un, vn) dx

) 2
2∗

.

Since un → 0, vn → 0 in L2
loc(R

N ), we have∫
RN

E(hun, hvn) dx−
∫
RN

|h|2E(un, vn) dx → 0 as n → ∞.

Then by letting n → ∞ in (2.17), we obtain

(2.18)

∫
RN

|h|2 dμ ≥ (Nc′ν)
2
N

(∫
RN

|h|2∗ dρ
) 2

2∗

;

that is, (2.13) holds.
For R > 1, let ψR ∈ C1(RN ) be such that 0 ≤ ψR ≤ 1, ψR(x) = 1 for |x| ≥ R+1

and ψR(x) = 0 for |x| ≤ R. Then we see from (2.10) that∫
RN

E(ψRun, ψRvn) dx ≥ (Nc′ν)
2
N

(∫
RN

|ψR|2
∗
F (un, vn) dx

) 2
2∗

.

Since un → 0, vn → 0 in L2
loc(R

N ), then

lim sup
n→∞

∫
RN

|ψR|2E(un, vn) dx

≥ (Nc′ν)
2
N lim sup

n→∞

(∫
RN

|ψR|2
∗
F (un, vn) dx

) 2
2∗

.(2.19)

Note that
∫
|x|≥R+1

F (un, vn) ≤
∫
RN |ψR|2

∗
F (un, vn) ≤

∫
|x|≥R

F (un, vn), so

ρ∞ = lim
R→∞

lim sup
n→∞

∫
RN

|ψR|2
∗
F (un, vn) dx.(2.20)
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On the other hand,

lim sup
n→∞

∫
RN

|ψR|2E(un, vn) dx

= lim sup
n→∞

∫
|x|≥R+1

E(un, vn) dx+ lim sup
n→∞

∫
R≤|x|≤R+1

|ψR|2E(un, vn) dx

= lim sup
n→∞

∫
|x|≥R+1

E(un, vn) dx+ lim sup
n→∞

∫
R≤|x|≤R+1

|ψR|2(|∇un|2 + |∇vn|2) dx

≥ lim sup
n→∞

∫
|x|≥R+1

E(un, vn) dx.

Letting R → ∞ we see that μ∞ ≤ limR→∞ lim supn→∞
∫
RN |ψR|2E(un, vn) dx.

Similarly,

lim sup
n→∞

∫
RN

|ψR|2E(un, vn) dx

= lim sup
n→∞

∫
|x|≥R

E(un, vn) dx− lim inf
n→∞

∫
R≤|x|≤R+1

(1− |ψR|2)E(un, vn) dx

≤ lim sup
n→∞

∫
|x|≥R

E(un, vn) dx.

Letting R → ∞ we see that μ∞ ≥ limR→∞ lim supn→∞
∫
RN |ψR|2E(un, vn) dx.

Hence

(2.21) μ∞ = lim
R→∞

lim sup
n→∞

∫
RN

|ψR|2E(un, vn) dx.

Then (2.14) follows directly from (2.19), (2.20) and (2.21).

Assume moreover that ‖μ‖ = (Nc′ν)
2
N ‖ρ‖ 2

2∗ . Then by Hölder inequality and
(2.18), we have∫

RN

|h|2∗ dρ ≤ (Nc′ν)
− 2

N−2 ‖μ‖ 2
N−2

∫
RN

|h|2∗ dμ, ∀h ∈ C∞
0 (RN ).

From this we deduce that ρ = (Nc′ν)
− 2

N−2 ‖μ‖ 2
N−2μ. So μ = (Nc′ν)

2
N ‖ρ‖− 2

N ρ, and
we see from (2.18) that

‖ρ‖ 2
N

(∫
RN

|h|2∗ dρ
) 2

2∗

≤
∫
RN

|h|2 dρ, ∀h ∈ C∞
0 (RN ).

That is, for each open set Ω, we have ρ(Ω)
2
2∗ ρ(RN )

2
N ≤ ρ(Ω). Therefore, ρ is

concentrated at a single point.
For the general case, we denote ωn = un − u and σn = vn − v; then (ωn, σn) ⇀

(0, 0) weakly in D. From the Brezis-Lieb Lemma ([7]) and Lemma 2.3, we obtain
for nonnegative h ∈ C0(R

N ) that∫
RN

hE(u, v) dx = lim
n→∞

(∫
RN

hE(un, vn) dx−
∫
RN

hE(ωn, σn) dx

)
,∫

RN

hF (u, v) dx = lim
n→∞

(∫
RN

hF (un, vn) dx−
∫
RN

hF (ωn, σn) dx

)
,
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so

E(un, vn) ⇀ E(u, v) + μ, F (un, vn) ⇀ F (u, v) + ρ, in the sense of measures.

(2.22)

Inequality (2.13) follows from the corresponding one for (ωn, σn). From the Brezis-
Lieb Lemma ([7]) and Lemma 2.3 again, it is easy to prove that

μ∞ := lim
R→∞

lim sup
n→∞

∫
|x|≥R

E(ωn, σn) dx,

ρ∞ := lim
R→∞

lim sup
n→∞

∫
|x|≥R

F (ωn, σn) dx,

and so inequality (2.14) follows from the corresponding one for (ωn, σn). For any
R > 1, we deduce from (2.22) that

lim sup
n→∞

∫
RN

F (un, vn)

= lim sup
n→∞

(∫
RN

|ψR|2
∗
F (un, vn) +

∫
RN

(1− |ψR|2
∗
)F (un, vn)

)
= lim sup

n→∞

∫
RN

|ψR|2
∗
F (un, vn) +

∫
RN

(1− |ψR|2
∗
)F (u, v) +

∫
RN

(1− |ψR|2
∗
) dρ.

Letting R → ∞, we see from (2.20) that (2.16) holds. The proof of (2.15) is similar.
This completes the proof. �

Lemma 2.5. Let ν > 0. Then (1.4) has a solution (u, v) ∈ D \ {(0, 0)} (maybe
semi-trivial) such that Jν(u, v) = c′ν and u, v ≥ 0 are radially symmetric with respect
to the origin. Moreover, if c′ν < 1

N min{S(λ1)
N/2, S(λ2)

N/2}, then (u, v) ∈ D is a
positive ground state solution of (1.4), and cν = c′ν = Jν(u, v).

Proof. For (u, v) ∈ N ′
ν with u ≥ 0, v ≥ 0, we denote by (u∗, v∗) its Schwartz

symmetrization. Then by the properties of Schwartz symmetrization (see [21] for
example), we see from λ1, λ2, ν > 0 that∫
RN

(|∇u∗|2+ |∇v∗|2− λ1

|x|2 |u
∗|2− λ2

|x|2 |v
∗|2) ≤

∫
RN

(|u∗|2∗ +2∗ν|u∗|α|v∗|β + |v∗|2∗).

Therefore, there exists 0 < t∗ ≤ 1 such that (t∗u∗, t∗v∗) ∈ N ′
ν , and then

Jν(t
∗u∗, t∗v∗) =

1

N
(t∗)2(‖u∗‖2λ1

+ ‖v∗‖2λ2
)

≤ 1

N
(‖u‖2λ1

+ ‖v‖2λ2
) = Jν(u, v).(2.23)

Therefore, we may take a minimizing sequence (ũn, ṽn) ∈ N ′
ν of c′ν such that

(ũn, ṽn) = (ũ∗
n, ṽ

∗
n) and Jν(ũn, ṽn) → c′ν as n → ∞. Define the Lévy concentration

functions

Qn(R) := sup
y∈RN

∫
B(y,R)

F (ũn, ṽn) dx.

Since ũn, ṽn ≥ 0 are radially symmetric nonincreasing, one has that Qn(R) =∫
B(0,R)

F (ũn, ṽn) dx. Then there exists Rn > 0 such that

Qn(Rn) =

∫
B(0,Rn)

F (ũn, ṽn) dx =
1

2

∫
RN

F (ũn, ṽn) dx.
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Define

(un(x), vn(x)) :=
(
R

N−2
2

n ũn(Rnx), R
N−2

2
n ṽn(Rnx)

)
.

Then by a direct computation, we see that (un, vn) ∈ N ′
ν , Jν(un, vn) → c′ν , un, vn ≥

0 are radially symmetric nonincreasing, and

(2.24)

∫
B(0,1)

F (un, vn) dx =
1

2

∫
RN

F (un, vn) dx = sup
y∈RN

∫
B(y,1)

F (un, vn) dx.

From (2.23) we know that (un, vn) are uniformly bounded in D. Then passing to a
subsequence, there exist (u, v) ∈ D and finite measures μ, ρ such that (2.11) holds.
Define μ∞, ρ∞ as in (2.12); then by Lemma 2.4 we see that (2.13)-(2.16) hold. Note
that

(2.25) ‖un‖2λ1
+ ‖vn‖2λ2

=

∫
RN

F (un, vn) dx → Nc′ν , as n → ∞.

We conclude from (2.13)-(2.16) and (2.10) that

Nc′ν =

∫
RN

F (u, v) dx+ ‖ρ‖+ ρ∞,

Nc′ν ≥ (Nc′ν)
2
N

[(∫
RN

F (u, v) dx

) 2
2∗

+ ‖ρ‖ 2
2∗ + ρ

2
2∗∞

]
.

Therefore,
∫
RN F (u, v) dx, ‖ρ‖ and ρ∞ are equal either to 0 or to Nc′ν . By (2.24)-

(2.25), we have ρ∞ ≤ 1
2Nc′ν , so ρ∞ = 0. If ‖ρ‖ = Nc′ν , then one has that∫

RN F (u, v) dx = 0, and so (u, v) = (0, 0). Moreover, since ‖μ‖ ≤ Nc′ν , we de-

duce from (2.13) that ‖μ‖ = (Nc′ν)
2
N ‖ρ‖ 2

2∗ . Then Lemma 2.4 implies that ρ is
concentrated at a single point z, and we see from (2.24)-(2.25) that

1

2
Nc′ν = lim

n→∞
sup
y∈RN

∫
B(y,1)

F (un, vn) ≥ lim
n→∞

∫
B(z,1)

F (un, vn) = ‖ρ‖,

a contradiction. Therefore,
∫
RN F (u, v) dx = Nc′ν . Since ‖u‖2λ1

+ ‖v‖2λ2
≤ Nc′ν , we

deduce from (2.10) and (2.25) that

Nc′ν = ‖u‖2λ1
+ ‖v‖2λ2

=

∫
RN

F (u, v) dx = lim
n→∞

(‖un‖2λ2
+ ‖vn‖2λ2

),

that is, (un, vn) → (u, v) strongly in D, (u, v) ∈ N ′
ν and Jν(u, v) = c′ν . Recall

that c′ν > 0, so (u, v) �= (0, 0). By definition (2.5) of N ′
ν and using the Lagrange

multiplier method, it is standard to prove that J ′
ν(u, v) = 0, so (u, v) is a solution

of (1.4). Moreover, u, v ≥ 0 are radially symmetric.
Now, assume that c′ν < 1

N min{S(λ1)
N/2, S(λ2)

N/2}. Then it is easy to prove
that both u �≡ 0 and v �≡ 0, that is, (u, v) ∈ Nν , and so Jν(u, v) = c′ν = cν . Hence,
(u, v) is a ground state solution of (1.4). By the maximum principle, u, v > 0 in
RN \ {0} and are radially symmetric. This completes the proof. �

Since (z1μ, 0) and (0, z2μ) belong to N ′
ν , thus c′ν ≤ 1

N min{S(λ1)
N
2 , S(λ2)

N
2 } al-

ways holds. However, the following result says that the conclusion

c′ν <
1

N
min{S(λ1)

N
2 , S(λ2)

N
2 }

cannot always hold unfortunately.



3614 ZHIJIE CHEN AND WENMING ZOU

Theorem 2.1. Assume that α, β ≥ 2. Then there exists ν̃ > 0 such that for all
ν ∈ (0, ν̃) there holds

c′ν =
1

N
min

{
S(λ1)

N
2 , S(λ2)

N
2

}
.

Moreover c′ν is achieved by and only by⎧⎪⎨⎪⎩
(0,±z2μ), μ > 0, if λ1 < λ2,

(±z1μ, 0), μ > 0, if λ1 > λ2,

(0,±z2μ), (±z1μ, 0), μ > 0, if λ1 = λ2.

Proof. Thanks to Lemma 2.5, this proof is completely the same as that of [1,
Theorem 3.4], and we omit the details here. �

Proof of Theorem 1.1 (2)-(3). Let ν > 0. By Lemma 2.5 and Theorem 2.1 we know
that we have to require further assumptions on α, β and ν to obtain positive ground

state solutions with energy below 1
N min{S(λ1)

N
2 , S(λ2)

N
2 }.

Denote

d1 :=
ΛN − λ2

ΛN − λ1
, d2 :=

ΛN − λ1

ΛN − λ2
.

Recall (1.18); we let ν > ν0. Then

(2.26) 1 + max{d1, d2} < (2 + 2∗ν)
2
2∗ .

Without loss of generality, we may assume that λ1 ≤ λ2. Then (1.11) yields S(λ2) ≤
S(λ1). By Hardy inequality (1.6) we have ‖u‖2λ1

≤ d2‖u‖2λ2
for all u ∈ D1,2(RN ).

Then we deduce from (1.11), (2.9) and (2.26) that

c′ν ≤ 1

N

⎡⎣ ‖z2μ‖2λ1
+ ‖z2μ‖2λ2(∫

RN |z2μ|2
∗ + 2∗ν|z2μ|2

∗ + |z2μ|2
∗) 2

2∗

⎤⎦
N
2

≤ 1

N

⎡⎣ 1 + d2

(2 + 2∗ν)
2
2∗

·
‖z2μ‖2λ2(∫

RN |z2μ|2
∗) 2

2∗

⎤⎦
N
2

<
1

N

⎡⎣ ‖z2μ‖2λ2(∫
RN |z2μ|2

∗) 2
2∗

⎤⎦
N
2

=
1

N
S(λ2)

N
2

=
1

N
min

{
S(λ1)

N
2 , S(λ2)

N
2

}
.

Hence, conclusion (2) follows from Lemma 2.5.
Repeating the proof of [1, Theorem 2.2 (iii)-(iv)] with minor modifications, we

can show that if α < 2, then for all μ > 0, (0, z2μ) is a saddle point for Jν in N ′
ν ,

and so c′ν < 1
N S(λ2)

N/2; if β < 2, then for all μ > 0, (z1μ, 0) is a saddle point for Jν
in N ′

ν , and so c′ν < 1
N S(λ1)

N/2. Meanwhile, by (1.11) we see that λ1 < λ2 implies
S(λ1) > S(λ2) and λ1 > λ2 implies S(λ1) < S(λ2). Then under any one condition
of (C1), (C2) and (C3), we have that c′ν < 1

N min{S(λ1)
N/2, S(λ2)

N/2}, and so
conclusion (3) follows from Lemma 2.5. This completes the proof. �
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3. Proof of Theorem 1.2: The case N = 4

In this section, we assume that N = 4, α = β = 2 and λ1, λ2 ∈ (0, 1). By
Theorem 2.1 we know that the ideas of proving Theorem 1.1 cannot be used here,
and we need to use a different approach, which is much more complicated. This
approach will take full use of the fact α = β = 2, and so cannot be used in the case
N = 3 unfortunately.

3.1. The special case λ1 = λ2 = 0. Consider the following problem:

(3.1)

⎧⎪⎨⎪⎩
−Δu = u3 + 2νuv2, x ∈ R4,

−Δv = v3 + 2νvu2, x ∈ R4,

u, v ∈ D1,2(R4), u, v > 0 in R4.

For ε > 0 and y ∈ R4, we consider the Aubin-Talenti instanton [6, 32] Uε,y ∈
D1,2(R4) defined by

(3.2) Uε,y(x) :=
2
√
2ε

ε2 + |x− y|2 .

Then Uε,y satisfies −Δu = u3 in R4 and

(3.3)

∫
R4

|∇Uε,y|2 dx =

∫
R4

|Uε,y|4 dx = S2.

Furthermore, {Uε,y : ε > 0, y ∈ R4} contains all positive solutions of the equation
−Δu = u3 in R4. Note that (3.1) has semi-trivial solutions (Uε,y, 0) and (0, Uε,y).
Here we are only interested in nontrivial solutions of (3.1), which can be found as
nontrivial critical points of the C2 functional Lν : D → R, where

Lν(u, v) =
1

2

(
‖u‖2 + ‖v‖2

)
− 1

4

∫
R4

(
u4 + 4νu2v2 + v4

)
.(3.4)

Definition 3.1. We say a solution (u0, v0) of (3.1) is a ground state solution if
(u0, v0) is nontrivial and Lν(u0, v0) ≤ Lν(u, v) for any other nontrivial solution
(u, v) of (3.1).

Define the general Nehari manifold of (3.4) as

Mν :=
{
(u, v) ∈ D : u �≡ 0, v �≡ 0,

∫
R4

|∇u|2 =

∫
R4

(u4 + 2νu2v2),∫
R4

|∇v|2 =

∫
R4

(v4 + 2νu2v2)
}
.

Then any nontrivial solution of (3.1) has to belong to Mν . Similarly as Nν , we see
that Mν �= ∅. We set

(3.5) mν := inf
(u,v)∈Mν

Lν(u, v) = inf
(u,v)∈Mν

1

4

∫
R4

(
|∇u|2 + |∇v|2

)
dx.

By Sobolev inequality (1.13), it is easily seen that mν > 0 for all ν. Moreover, if
(u0, v0) is a nontrivial solution of (3.1) satisfying Lν(u0, v0) = mν , then (u0, v0) is a
ground state solution. Then we have the following result, which will play a crucial
role in the proof of Theorem 1.2. Part of this result comes from the authors’ paper
[12].
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Theorem 3.1. Let ν > 0.

(1) If ν �= 1/2, then for any ε > 0, y ∈ R4, ((1+2ν)−1/2Uε,y, (1+2ν)−1/2Uε,y)
is a positive ground state solution of (3.1), with

(3.6) mν = Lν

(
(1 + 2ν)−1/2Uε,y, (1 + 2ν)−1/2Uε,y

)
=

1

2(1 + 2ν)
S2.

Moreover, the set {(1 + 2ν)−1/2Uε,y, (1 + 2ν)−1/2Uε,y) : ε > 0, y ∈ R4}
contains all positive ground state solutions of (3.1).

(2) If ν = 1/2, then for any ε > 0, y ∈ R4, θ ∈ (0, π/2), (sin θ Uε,y, cos θ Uε,y)
is a ground state solution of (3.1), and m1/2 = 1

4S
2. Moreover, the set

{(sin θ Uε,y, cos θ Uε,y) : ε > 0, y ∈ R4, θ ∈ (0, π/2)} contains all positive
ground state solutions of (3.1).

Proof. (1) Let ν > 0 and ν �= 1/2. Then this result follows directly from [12,
Theorem 1.5 and Theorem 4.1].

(2) Let ν = 1/2. Firstly, note that for any θ ∈ (0, π/2), (sin θ Uε,y, cos θ Uε,y) is
a positive solution of (3.1) when ν = 1/2, so

(3.7) m1/2 ≤ L1/2(sin θ Uε,y, cos θ Uε,y) =
1

4
S2.

Secondly, take any (u, v) ∈ M1/2. If

(3.8)

(∫
R4

u2v2 dx

)2

=

∫
R4

u4 dx

∫
R4

v4 dx,

then by Hölder’s inequality we may assume that v = Cu for some constant C �= 0.
Recall the definition of Mν . We see from (1.13) that∫

R4

|∇u|2 = (1 + C2)

∫
R4

u4 ≤ (1 + C2)S−2

(∫
R4

|∇u|2
)2

,

so
∫
R4 |∇u|2 ≥ (1 + C2)−1S2 and then

L1/2(u, v) = L1/2(u,Cu) ≥ 1

4
S2.

If (3.8) does not hold, then(∫
R4

u2v2 dx

)2

<

∫
R4

u4 dx

∫
R4

v4 dx,

and it is easy to prove that for any ν ∈ (0, 1/2), there exist tν , sν > 0 such that
(
√
tνu,

√
sνv) ∈ Mν and (tν , sν) → (1, 1) as ν → 1/2. This implies that

L1/2(u, v) = lim
ν↗1/2

Lν(
√
tνu,

√
sνv) ≥ lim

ν↗1/2
mν =

1

4
S2.

Therefore, for any (u, v) ∈ M1/2, we have L1/2(u, v) ≥ 1
4S

2, and so m1/2 ≥ 1
4S

2.
Combining this with (3.7), we see that (sin θ Uε,y, cos θ Uε,y) is a ground state so-
lution of (3.1) when ν = 1/2.

Now assume that (u, v) is any positive ground state solution of (3.1) when ν =
1/2. Then we deduce from (1.13) that

S|u|24 ≤ ‖u‖2 = |u|44 +
∫
R4

u2v2 dx ≤ |u|44 + |u|24|v|24,
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that is, |u|24 + |v|24 ≥ S. Meanwhile, since L1/2(u, v) = m1/2 = 1
4S

2, we have

S2 = ‖u‖2 + ‖v‖2 ≥ S|u|24 + S|v|24,

that is, |u|24 + |v|24 ≤ S. So |u|24 + |v|24 = S, that is,

S|u|24 = ‖u‖2 = |u|44 +
∫
R4

u2v2 = |u|44 + |u|24|v|24.

First this means that v = Cu for some C > 0. Second, combining (1.13) with
‖u‖2 = S|u|24, it is well known that u = C1Uε,y for some C1 > 0, ε > 0 and y ∈ R4

(see [6, 32] for example). Hence, (u, v) = (C1Uε,y, C2Uε,y) for some C1, C2 > 0.
Then L1/2(u, v) =

1
4S

2 yields that C2
1 +C2

2 = 1. Therefore, there exists θ ∈ (0, π/2)
such that C1 = sin θ and C2 = cos θ. This completes the proof. �

3.2. The general case λ1, λ2 ∈ (0, 1). Recall the definition (1.21) of ν1. We have
the following important energy estimate, and the idea of the proof comes from the
authors’ paper [12].

Lemma 3.1. For any ν ∈ (0, ν1), there holds

cν < min

{
1

4
S(λ1)

2 +
1

4
S(λ2)

2, mν

}
.

Proof. Define

(3.9) G(u, v) :=

( ∫
R4 u

4 dx 2ν
∫
R4 u

2v2 dx
2ν

∫
R4 u

2v2 dx
∫
R4 v

4 dx

)
.

When detG(u, v) > 0, the inverse matrix of G(u, v) is

(3.10) G−1(u, v) :=
1

detG(u, v)

( ∫
R4 v

4 dx −2ν
∫
R4 u

2v2 dx
−2ν

∫
R4 u

2v2 dx
∫
R4 u

4 dx

)
.

Assume ν ∈
(
0, ν1). Obviously, one has that 2ν < 1, and so detG(z11 , z

2
1) > 0.

Recall that ‖zi1‖2λi
= |zi1|44 = 4S(λi)

2, i = 1, 2; we see that (
√
t0z

1
1 ,
√
s0z

2
1) ∈ Nν for

some t0 > 0, s0 > 0 is equivalent to(
t0
s0

)
:= G−1(z11 , z

2
1)

(
|z11 |44
|z21 |44

)
=

1

detG(z11 , z
2
1)

(
|z21 |44

(
|z11 |44 − 2ν

∫
R4(z

1
1)

2(z21)
2
)

|z11 |44
(
|z21 |44 − 2ν

∫
R4(z

1
1)

2(z21)
2
) )

>

(
0
0

)
.(3.11)

Here and in the following,

(
a
b

)
>

(
0
0

)
means both a > 0 and b > 0. Mean-

while, (1.11) yields Sλi
= (1− λi)

3/4S, so we deduce from (1.21) that

2ν < min

{
1− λ1

1− λ2
,
1− λ2

1− λ1

}
≤ min

{
S(λ1)

S(λ2)
,
S(λ2)

S(λ1)

}
.

Then

2ν

∫
R4

(z11)
2(z21)

2 < min

{
S(λ1)

S(λ2)
,
S(λ2)

S(λ1)

} ∣∣z11∣∣24 ∣∣z21∣∣24 = min
{∣∣z11 ∣∣44 , ∣∣z21∣∣44} .
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So (3.11) holds and (
√
t0z

1
1 ,
√
s0z

2
1) ∈ Nν for (t0, s0) defined in (3.11). Then

cν ≤ Jν(
√
t0z

1
1 ,
√
s0z

2
1) =

t0
4
‖z11‖2λ1

+
s0
4
‖z21‖2λ2

=
t0
4

∫
R4

(z11)
4 +

s0
4

∫
R4

(z21)
4

<
t0
4

∫
R4

(
(z11)

4 + 2ν(z11)
2(z21)

2
)
+

s0
4

∫
R4

(
(z21)

4 + 2ν(z11)
2(z21)

2
)

=
1

4
‖z11‖2λ1

+
1

4
‖z21‖2λ2

=
1

4
S(λ1)

2 +
1

4
S(λ2)

2.

Hence cν < 1
4S(λ1)

2 + 1
4S(λ2)

2. It remains to prove cν < mν . Take y0 ∈ R4 such
that |y0| = 2. Let ψ ∈ C∞

0 (B(y0, 1),R) be a function with 0 ≤ ψ ≤ 1, ψ ≡ 1 for
x ∈ B(y0, 1/2). Recall Uε,y0

in (3.2) and (3.3); we define Uε := ψUε,y0
. Then by [8]

or [35, Lemma 1.46], we have the inequalities∫
R4

|∇Uε|2 = S2 +O(ε2),

∫
R4

|Uε|4 = S2 +O(ε4),∫
R4

|Uε|2
|x|2 dx ≥ 1

9

∫
B(y0,1)

|Uε|2 ≥ Cε2| ln ε|+O(ε2),

where C is a positive constant. Recalling that λ1, λ2 > 0, we have

Jν(
√
tUε,

√
sUε) =

1

2
t

∫
R4

(
|∇Uε|2 −

λ1

|x|2U
2
ε

)
+

1

2
s

∫
R4

(
|∇Uε|2 −

λ2

|x|2U
2
ε

)
− 1

4
(t2 + 4νts+ s2)

∫
R4

U4
ε

≤ 1

2
(t+ s)

(
S2 − Cε2| ln ε|+O(ε2)

)
− 1

4

(
t2 + 4νts+ s2

) (
S2 +O(ε4)

)
.(3.12)

Denote

Aε = S2 − Cε2| ln ε|+O(ε2), Bε = S2 +O(ε4);

then 0 < Aε < Bε and Aε < S2 for ε > 0 small enough. Consider

fε(t, s) :=
1

2
Aε(t+ s)− 1

4
Bε(t

2 + 4νts+ s2);

then it is easy to see that there exists tε, sε > 0 such that

fε(tε, sε) = max
t,s>0

fε(t, s).

By ∂
∂tfε(t, s)|(tε,sε) =

∂
∂sfε(t, s)|(tε,sε) = 0, we see that

tε = sε =
Aε

(1 + 2ν)Bε
.
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Then it follows from (3.6) and (3.12) that

max
t,s>0

Jν(
√
tUε,

√
sUε) ≤ max

t,s>0
fε(t, s) = fε(tε, sε)

=
1

2(1 + 2ν)

A2
ε

Bε
<

1

2(1 + 2ν)
Aε

<
S2

2(1 + 2ν)
= mν holds for ε small enough.(3.13)

Similarly as above, we have detG(Uε, Uε) > 0. Moreover, (
√
t̃εUε,

√
s̃εUε) ∈ Nν

for some t̃ε > 0, s̃ε > 0 is equivalent to(
t̃ε
s̃ε

)
=

|Uε|44
detG(Uε, Uε)

(
‖Uε‖2λ1

− 2ν‖Uε‖2λ2

‖Uε‖2λ2
− 2ν‖Uε‖2λ1

)
>

(
0
0

)
.(3.14)

On the other hand, by (1.6) we have

‖Uε‖2λ1
− 2ν‖Uε‖2λ2

=(1− 2ν)

∫
R4

|∇Uε|2 − (λ1 − 2νλ2)

∫
R4

U2
ε

|x|2

≥(1− 2ν)

∫
R4

U2
ε

|x|2 − (λ1 − 2νλ2)

∫
R4

U2
ε

|x|2

=
[
(1− λ1)− 2ν(1− λ2)

] ∫
R4

U2
ε

|x|2 > 0.

Similarly, ‖Uε‖2λ2
− 2ν‖Uε‖2λ1

> 0. Hence, (3.14) holds and (
√
t̃εUε,

√
s̃εUε) ∈ Nν

for (t̃ε, s̃ε) defined in (3.14). Then we see from (3.13) that

cν ≤ Jν

(√
t̃εUε,

√
s̃εUε

)
≤ max

t,s>0
Jν(

√
tUε,

√
sUε) < mν .

This completes the proof. �

Lemma 3.2. Assume that ν ∈ (0, ν1). Then there exist C2 > C1 > 0 such that for
any (u, v) ∈ Nν with Jν(u, v) ≤ 1

4S(λ1)
2 + 1

4S(λ2)
2, there holds

(3.15) C1 ≤
∫
R4

u4 dx,

∫
R4

v4 dx ≤ C2.

Proof. Take any (u, v) ∈ Nν with Jν(u, v) ≤ 1
4S(λ1)

2 + 1
4S(λ2)

2. By (1.17) and
Hölder’s inequality, one has

S(λ1)|u|24 ≤ ‖u‖2λ1
=

∫
R4

(u4 + 2νu2v2) ≤ |u|44 + 2ν|u|24|v|24,

S(λ2)|v|24 ≤ ‖v‖2λ2
=

∫
R4

(v4 + 2νu2v2) ≤ |v|44 + 2ν|u|24|v|24.

Therefore, there exists C2 > 0 such that
∫
R4 u

4,
∫
R4 v

4 ≤ C2. Moreover,

|u|24 + 2ν|v|24 ≥ S(λ1),(3.16)

2ν|u|24 + |v|24 ≥ S(λ2),(3.17)

S(λ1)|u|24 + S(λ2)|v|24 ≤ S(λ1)
2 + S(λ2)

2.(3.18)
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Recall that S(λi) = (1 − λi)
3/4S. Since ν ∈ (0, ν1) and ν1 is defined in (1.21), by

(3.16) and (3.18) we have

(3.19) |u|24 ≥
S(λ1)S(λ2)− 2ν

(
S(λ1)

2 + S(λ2)
2
)

S(λ2)− 2νS(λ1)
> 0,

and by (3.17) and (3.18) we have

|v|24 ≥
S(λ1)S(λ2)− 2ν

(
S(λ1)

2 + S(λ2)
2
)

S(λ1)− 2νS(λ2)
> 0.

This completes the proof. �
The following lemma is motivated by [33], and some ideas of the proof come from

[30].

Lemma 3.3. Assume that ν ∈ (0, ν1). Let (un, vn) ∈ Nν be a minimizing sequence
of cν , and (un, vn) ⇀ (0, 0) weakly in D. Then for any r > 0 and for every
ε ∈ (−r, 0) ∪ (0, r), there exists ρ ∈ (ε, 0) ∪ (0, ε) such that, up to a subsequence,

(3.20) either

∫
Br+ρ

(|∇un|2 + |∇vn|2) → 0 or

∫
RN\Br+ρ

(|∇un|2 + |∇vn|2) → 0.

Proof. Without loss of generality, we only consider the case ε ∈ (0, r) (the proof
for the case ε ∈ (−r, 0) is similar). Since (un, vn) ∈ Nν is a minimizing sequence of
cν , then (un, vn) are uniformly bounded in D. Moreover, by Lemmas 3.1 and 3.2
we may assume that (un, vn) satisfies (3.15) for all n ∈ N.

Step 1. We prove (3.20) by further assuming that J ′
ν(un, vn) → 0 as n → ∞.

In the following, some arguments are borrowed from [30] (see also [31, Lemma
III.3.3] or [33, Proposition 5.2]). Denote S as the unit sphere of R4. Since∫ r+ε

r

dρ

∫
ρS

(
|∇un|2 + |∇vn|2

)
=

∫
r≤|x|≤r+ε

(
|∇un|2 + |∇vn|2

)
is bounded, we can find ρ ∈ (0, ε) such that∫

(r+ρ)S

(
|∇un|2 + |∇vn|2

)
≤ 3

ε

∫
r≤|x|≤r+ε

(
|∇un|2 + |∇vn|2

)
holds for infinitely many n’s. Therefore, as H1((r + ρ)S) is compactly embedded
into H1/2((r + ρ)S), up to a subsequence we can assume that un → u, vn → v
strongly in H1/2((r+ ρ)S). On the other hand, by the continuity of the embedding
H1(Br+ρ) ↪→ H1/2((r + ρ)S) and by the weak convergence to (0, 0) of (un, vn), we

deduce that (u, v) = (0, 0), that is, un → 0 and vn → 0 strongly in H1/2((r+ ρ)S).
Let wi,n, i = 1, 2, be the solutions to the Dirichlet problems

(3.21)

⎧⎪⎨⎪⎩
Δw1,n = 0 in Br+ε \Br+ρ,

w1,n = 0 on (r + ε)S,

w1,n = un on (r + ρ)S,

⎧⎪⎨⎪⎩
Δw2,n = 0 in Br+ρ \Br−ε,

w2,n = 0 on (r − ε)S,

w2,n = un on (r + ρ)S,

and let σi,n, i = 1, 2 be the solutions to the Dirichlet problems

(3.22)

⎧⎪⎨⎪⎩
Δσ1,n = 0 in Br+ε \Br+ρ,

σ1,n = 0 on (r + ε)S,

σ1,n = vn on (r + ρ)S,

⎧⎪⎨⎪⎩
Δσ2,n = 0 in Br+ρ \Br−ε,

σ2,n = 0 on (r − ε)S,

σ2,n = vn on (r + ρ)S.
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By continuity of the inverse Laplace operator from H1/2(∂Ω) to H1(Ω), it follows
from the above discussion that w1,n→0, σ1,n→0 strongly in H1(Br+ε \Br+ρ) and
w2,n → 0, σ2,n → 0 strongly in H1(Br+ρ \Br−ε). Define

u1,n(x) =

⎧⎪⎨⎪⎩
un(x) if x ∈ Br+ρ,

w1,n if x ∈ Br+ε \Br+ρ,

0 elsewhere,

(3.23)

v1,n(x) =

⎧⎪⎨⎪⎩
vn(x) if x ∈ Br+ρ,

σ1,n if x ∈ Br+ε \Br+ρ,

0 elsewhere,

(3.24)

u2,n(x) =

⎧⎪⎨⎪⎩
0 if x ∈ Br−ε,

w2,n if x ∈ Br+ρ \Br−ε,

un(x) elsewhere,

(3.25)

v2,n(x) =

⎧⎪⎨⎪⎩
0 if x ∈ Br−ε,

σ2,n if x ∈ Br+ρ \Br−ε,

vn(x) elsewhere.

(3.26)

Then it is easy to see that

‖un‖2λ1
= ‖u1,n‖2λ1

+ ‖u2,n‖2λ1
+ o(1),(3.27)

‖vn‖2λ2
= ‖v1,n‖2λ2

+ ‖v2,n‖2λ2
+ o(1).(3.28)

Moreover, we can easily obtain

J ′
ν(u1,n, v1,n)(u1,n, 0) = J ′

ν(un, vn)(u1,n, 0) + o(1) = o(1),(3.29)

J ′
ν(u1,n, v1,n)(0, v1,n) = J ′

ν(un, vn)(0, v1,n) + o(1) = o(1),(3.30)

J ′
ν(u2,n, v2,n)(u2,n, 0) = J ′

ν(un, vn)(u2,n, 0) + o(1) = o(1),(3.31)

J ′
ν(u2,n, v2,n)(0, v2,n) = J ′

ν(un, vn)(0, v2,n) + o(1) = o(1).(3.32)

Then we claim that

(3.33) either lim
n→∞

(‖u1,n‖2 + ‖v1,n‖2) = 0 or lim
n→∞

(‖u2,n‖2 + ‖v2,n‖2) = 0.

In fact, if (3.33) does not hold, then up to a subsequence,

(3.34) both lim
n→∞

(‖u1,n‖2 + ‖v1,n‖2) > 0 and lim
n→∞

(‖u2,n‖2 + ‖v2,n‖2) > 0.

We have the following several cases.

Case 1. Up to a subsequence, both limn→∞ ‖u1,n‖2 > 0 and limn→∞ ‖v1,n‖2 > 0.
Since norms ‖ · ‖λi

, i = 1, 2, are equivalent to ‖ · ‖, and (3.29)-(3.30) yield

‖u1,n‖2λ1
= |u1,n|44 + 2ν

∫
R4

u2
1,nv

2
1,n + o(1),(3.35)

‖v1,n‖2λ2
= |v1,n|44 + 2ν

∫
R4

u2
1,nv

2
1,n + o(1),(3.36)

hence, both lim infn→∞ |u1,n|44 > 0 and lim infn→∞ |v1,n|44 > 0. Since 2ν < 2ν1 ≤ 1,
by Hölder’s inequality we have

lim inf
n→∞

[
|u1,n|44|v1,n|44 −

(
2ν

∫
R4

u2
1,nv

2
1,n

)2
]
> 0.



3622 ZHIJIE CHEN AND WENMING ZOU

Combining this with (3.35)-(3.36), it is easy to prove that there exist tn, sn > 0
such that (

√
tnu1,n,

√
snv1,n) ∈ Nν and (tn, sn) → (1, 1), and so we conclude from

(3.27)-(3.28) and (3.34) that

cν = lim
n→∞

Jν(un, vn) = lim
n→∞

1

4
(‖un‖2λ1

+ ‖vn‖2λ2
)

= lim
n→∞

1

4
(tn‖u1,n‖2λ1

+ sn‖v1,n‖2λ2
) + lim

n→∞

1

4
(‖u2,n‖2λ1

+ ‖v2,n‖2λ2
)

> lim
n→∞

1

4
(tn‖u1,n‖2λ1

+ sn‖v1,n‖2λ2
)

= lim
n→∞

Jν(
√
tnu1,n,

√
snv1,n) ≥ cν ,

a contradiction. So Case 1 is impossible.

Case 2. Up to a subsequence, lim
n→∞

‖u1,n‖2 = 0 and lim
n→∞

‖v1,n‖2 > 0.

Then (3.36) yields that

‖v1,n‖2λ2
= |v1,n|44 + o(1) ≤ S(λ2)

−2‖v1,n‖4λ2
+ o(1),

and so lim
n→∞

‖v1,n‖2λ2
≥ S(λ2)

2. By (3.15) we have

lim inf
n→∞

‖u2,n‖2 = lim inf
n→∞

‖un‖2 − lim
n→∞

‖u1,n‖2 > 0.

If up to a subsequence, limn→∞ ‖v2,n‖2 > 0, then we can get a contradiction just as
in Case 1. Therefore, limn→∞ ‖v2,n‖2 = 0. Then similarly as above, we can deduce
from (3.31) that limn→∞ ‖u2,n‖2λ1

≥ S(λ1)
2. Then

cν = lim
n→∞

1

4
(‖un‖2λ1

+ ‖vn‖2λ2
)

= lim
n→∞

1

4
(‖u2,n‖2λ1

+ ‖v1,n‖2λ2
) ≥ 1

4

(
S(λ1)

2 + S(λ2)
2
)
,

a contradiction with Lemma 3.1. So Case 2 is impossible.

Case 3. Up to a subsequence, limn→∞ ‖u1,n‖2 > 0 and limn→∞ ‖v1,n‖2 = 0.

By a similar argument as in Case 2, we get a contradiction. So Case 3 is impos-
sible.

Since none of Cases 1, 2 and 3 is true, we see that (3.34) is impossible, that is,
(3.33) holds. Recall the definition of (ui,n, vi,n); (3.20) follows directly from (3.33).
This completes the proof of Step 1.

Step 2. We prove (3.20) without assuming that J ′
ν(un, vn) → 0 as n → ∞.

By the Ekeland variational principle (see [31, Theorem 5.1] for example), there
exists a sequence {(ũn, ṽn)} ∈ Nν such that

Jν(ũn, ṽn) ≤ Jν(un, vn), ‖(un, vn)− (ũn, ṽn)‖ ≤ 1

n
,(3.37)

Jν(u, v) ≥ Jν(ũn, ṽn)−
1

n
‖(ũn, ṽn)− (u, v)‖, ∀(u, v) ∈ Nν .(3.38)

Here, ‖(u, v)‖ := (
∫
R4(|∇u|2+ |∇v|2) dx)1/2 is also a norm of D, which is equivalent

to ‖(u, v)‖D. Recall that (un, vn) ⇀ (0, 0) weakly in D; by (3.37) we also have
Jν(ũn, ṽn) → cν and (ũn, ṽn) ⇀ (0, 0) weakly in D. Moreover, by Lemma 3.1 we
may assume that (ũn, ṽn) satisfies (3.15) for all n ∈ N. Then by repeating the proof
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of [12, Theorem 1.3 (1)-(2)], we can prove that J ′
ν(ũn, ṽn) → 0 as n → ∞. Hence

Step 1 yields that (3.20) holds for (ũn, ṽn). Combining this with (3.37), we see that
(3.20) holds for (un, vn). This completes the proof. �

Proof of Theorem 1.2. Fix any ν ∈ (0, ν1). Take a sequence (un, vn) ∈ Nν such that
Jν(un, vn) → cν as n → ∞. Recall that E(u, v) = |∇u|2+ |∇v|2− λ1

|x|2 |u|2−
λ2

|x|2 |v|2;
there exists Rn > 0 such that∫

BRn

E(un, vn) =

∫
RN\BRn

E(un, vn) =
1

2
(‖un‖2λ1

+ ‖vn‖2λ2
).

Define

(ũn(x), ṽn(x)) :=
(
R

N−2
2

n un(Rnx), R
N−2

2
n vn(Rnx)

)
.

Then by a direct computation, we see that (ũn, ṽn) ∈ Nν and Jν(ũn, ṽn) → cν .
Moreover,

(3.39)

∫
B1

E(ũn, ṽn) =

∫
RN\B1

E(ũn, ṽn) =
1

2
(‖ũn‖2λ1

+ ‖ṽn‖2λ2
) → 2cν > 0.

By the Ekeland variational principle (see [31, Theorem 5.1] for example), there
exists a sequence {(un, vn)} ∈ Nν such that

Jν(un, vn) ≤ Jν(ũn, ṽn), ‖(un, vn)− (ũn, ṽn)‖ ≤ 1

n
,(3.40)

Jν(u, v) ≥ Jν(un, vn)−
1

n
‖(un, vn)− (u, v)‖, ∀(u, v) ∈ Nν .(3.41)

Similarly as in Step 2 in the proof of Lemma 3.3, we have that Jν(un, vn) → cν and
J ′
ν(un, vn) → 0 as n → ∞. Moreover, (3.39) and (3.40) yield that

lim
n→∞

∫
B1

E(un, vn) = lim
n→∞

∫
B1

E(ũn, ṽn) = 2cν ,(3.42)

lim
n→∞

∫
RN\B1

E(un, vn) = lim
n→∞

∫
RN\B1

E(ũn, ṽn) = 2cν .(3.43)

Note that (un, vn) are uniformly bounded in D. Then up to a subsequence, we
assume that (un, vn) ⇀ (u, v) weakly in D. Then J ′

ν(u, v) = 0.

Case 1. (u, v) ≡ (0, 0).
Then we can apply Lemma 3.3 twice with r = 1 and ε = ±1/4 respectively, and

there exist ρ+ ∈ (0, 1/4) and ρ− ∈ (−1/4, 0) such that the alternative (3.20) holds.
By (3.42)-(3.43) we can rule out all possibilities other than

(3.44)

∫
B1+ρ−

(|∇un|2 + |∇vn|2) → 0 and

∫
RN\B1+ρ+

(|∇un|2 + |∇vn|2) → 0.

Now let η ∈ C∞
0 (R4) such that 0 ≤ η ≤ 1, η(x) = 1 for |x| ∈ [3/4, 5/4] and η(x) = 0

for |x| �∈ [1/2, 3/2]. Recall that (un, vn) ⇀ (0, 0) weakly in D, so un, vn → 0 strongly
in L2

loc(R
4). Combining this with (3.44), we obtain that

‖(ηun)− un‖ → 0, ‖(ηvn)− vn‖ → 0, as n → ∞.
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By Hardy inequality (1.6), we have∫
R4

u2
n

|x|2 =

∫
R4

(1− η)2u2
n

|x|2 +

∫
R4

(2− η)ηu2
n

|x|2

≤ ‖(ηun)− un‖2 + 8

∫
1/2≤|x|≤3/2

u2
n = o(1).

Similarly,
∫
R4

v2
n

|x|2 = o(1). Therefore, we see from (un, vn) ∈ Nν that∫
R4

|∇un|2 =

∫
R4

u4
n + 2ν

∫
R4

u2
nv

2
n + o(1),∫

R4

|∇vn|2 =

∫
R4

v4n + 2ν

∫
R4

u2
nv

2
n + o(1).

From Lemma 3.2 we may assume that |un|44, |vn|44 ≥ C > 0, where C is independent
of n. Since 2ν < 2ν′ ≤ 1, then it is easy to prove that there exist tn, sn > 0 such
that (

√
tnun,

√
snvn) ∈ Mν and (tn, sn) → (1, 1) as n → ∞. Hence,

cν = lim
n→∞

Jν(un, vn) = lim
n→∞

1

4
(‖un‖2λ1

+ ‖vn‖2λ2
)

= lim
n→∞

1

4

(
tn

∫
R4

|∇un|2 + sn

∫
R4

|∇vn|2
)

= lim
n→∞

Lν(
√
tnun,

√
snvn) ≥ mν ,

a contradiction with Lemma 3.1. So Case 1 is impossible.

Case 2. Either u ≡ 0, v �≡ 0 or u �≡ 0, v ≡ 0.

Without loss of generality, we assume that u �≡ 0, v ≡ 0. Note that J ′
ν(u, v)(u, 0)

= 0 yields

‖u‖2λ1
= |u|44 ≤ S(λ1)

−2‖u‖4λ1
,

which implies ‖u‖2λ1
≥ S(λ1)

2.

Case 2.1. Up to a subsequence, limn→∞ ‖un − u‖ > 0.

Denote wn = un − u. Note that (un, vn) ∈ Nν . Then by the Brezis-Lieb Lemma
([7]) and Lemma 2.3 we conclude that

‖wn‖2λ1
=

∫
R4

w4
n + 2ν

∫
R4

w2
nv

2
n + o(1),

‖vn‖2λ2
=

∫
R4

v4n + 2ν

∫
R4

w2
nv

2
n + o(1).

Similarly as above, it is easy to prove that there exist tn, sn > 0 such that
(
√
tnwn,

√
snvn) ∈ Nν and (tn, sn) → (1, 1) as n → ∞. Hence,

cν = lim
n→∞

Jν(un, vn) = lim
n→∞

1

4
(‖un‖2λ1

+ ‖vn‖2λ2
)

=
1

4
‖u‖2λ1

+ lim
n→∞

1

4

(
tn‖wn‖2λ1

+ sn‖vn‖2λ2

)
> lim

n→∞
Jν(

√
tnwn,

√
snvn) ≥ cν ,

a contradiction. So Case 2.1 is impossible.

Case 2.2. un → u strongly in D1,2(RN ).
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Then u2
n → u2 strongly in L2(R4). Recall that vn ⇀ 0 in D1,2(R4), so v2n ⇀ 0

weakly in L2(R4), which easily implies∫
R4

u2
nv

2
n ≤

∫
R4

u2v2n +

∫
R4

|u2
n − u2|v2n = o(1).

Then we have

‖vn‖2λ2
= |vn|44 + o(1) ≤ S(λ2)

−2‖vn‖4λ2
+ o(1).

Since Lemma 3.2 yields limn→∞ ‖vn‖2λ2
> 0, then limn→∞ ‖vn‖2λ2

≥ S(λ2)
2, and

cν = lim
n→∞

Jν(un, vn) = lim
n→∞

1

4
(‖un‖2λ1

+ ‖vn‖2λ2
)

=
1

4
‖u‖2λ1

+ lim
n→∞

1

4
‖vn‖2λ2

≥ 1

4

(
S(λ1)

2 + S(λ2)
2
)
,

a contradiction with Lemma 3.1. So Case 2.2 is impossible, and so Case 2 is
impossible.

Since neither Case 1 nor Case 2 is true, we obtain that u �≡ 0 and v �≡ 0. Since
J ′
ν(u, v) = 0, then (u, v) ∈ Nν . Meanwhile, Fatou’s Lemma implies that

cν ≤ Jν(u, v) ≤ lim inf
n→∞

Jν(un, vn) = cν ,

so Jν(u, v) = cν . Then (|u|, |v|) ∈ Nν and Jν(|u|, |v|) = cν . Since 2ν < 1 and α =
β = 2, then by repeating the proof of Lemma 2.1, we can prove that J ′

ν(|u|, |v|) = 0.
By the maximum principle, |u|, |v| > 0 in R4 \ {0}. Therefore, (|u|, |v|) is a positive
ground state solution of (1.20).

To finish the proof, it suffices to prove cν → 1
4

(
S(λ1)

2 + S(λ2)
2
)
as ν → 0. From

the above argument, we may assume that (uν , vν) is a positive ground state solution
of (1.20) with cν = Jν(uν , vν) for any ν ∈ (0, ν1). Since cν < 1

4

(
S(λ1)

2 + S(λ2)
2
)
,

we see that (uν , vν) are uniformly bounded in D. Then

‖uν‖2λ1
= |uν |44 + 2ν

∫
R4

u2
νv

2
ν ≤ S(λ1)

−2‖u‖4λ1
+O(ν).

From (3.19) we see that lim infν→0 ‖uν‖2λ1
> 0, so lim infν→0 ‖uν‖2λ1

≥ S(λ1)
2.

Similarly, we can prove that lim infν→0 ‖vν‖2λ2
≥ S(λ2)

2, and so lim infν→0 cν ≥
1
4

(
S(λ1)

2 + S(λ2)
2
)
. That is, limν→0 cν = 1

4

(
S(λ1)

2 + S(λ2)
2
)
. This completes

the proof. �

4. Proof of Theorem 1.5: A variational perturbation approach

In this section, we give the proof of Theorem 1.5, and this result will be used in
the proof of Theorem 1.3. Assume that N ≥ 3, λ1, λ2 ∈ (0,ΛN ) and (1.5) hold.
Let ν > 0. To obtain positive solutions of (1.4), we consider the following modified
problem:

(4.1)

⎧⎪⎨⎪⎩
−Δu− λ1

|x|2 u− u2∗−1
+ = ναuα−1

+ vβ+, x ∈ RN ,

−Δv − λ2

|x|2 v − v2
∗−1

+ = νβuα
+v

β−1
+ , x ∈ RN ,

u(x), v(x) ∈ D1,2(RN ),

where u±(x) := max{±u(x), 0} and so does v±. The associated energy functional
of (4.1) is

(4.2) Jν(u, v) :=
1

2
‖u‖2λ1

+
1

2
‖v‖2λ2

− 1

2∗

∫
RN

(
u2∗

+ + v2
∗

+

)
− ν

∫
RN

uα
+v

β
+.
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Then it is standard to prove that J ∈ C1(D,R). Define

C∞
0,r(R

N ) := {u ∈ C∞
0 (RN ) : u is radially symmetric},

D1,2
r (RN ) := {u ∈ D1,2(RN ) : u is radially symmetric},

and Dr := D1,2
r (RN )×D1,2

r (RN ). Then Dr is a subspace of D with norm ‖ · ‖D. In
this section, we consider the functional Jν restricted to Dr. By Palais’s Symmetric
Criticality Principle, any critical points of Jν : Dr → R are radially symmetric
solutions of (4.1).

Without loss of generality, we assume that S(λ1) ≤ S(λ2). Then we see from
(1.12) that

(4.3) S(λ1)
N/4 = ‖z1μ‖λ1

≤ ‖z2μ‖λ2
= S(λ2)

N/4, ∀μ > 0.

Define

Pλi
(u) :=

⎧⎨⎩
|u|2

∗
2∗

‖u‖2
λi

, if u ∈ D1,2(RN ) \ {0},
0, if u = 0,

i = 1, 2.

By (1.17) it is easy to prove that Pλi
∈ C(D1,2(RN ), R). Note that Pλi

(u) = 1 is
equivalent to I ′λi

(u)u = 0. Then by (1.11)-(1.14) it is easy to check that

(4.4) Mi :=
1

N
S(λi)

N/2 = inf
u∈D1,2(RN )

Pλi
(u)=1

Iλi
(u), i = 1, 2.

By (1.12)-(1.14) we have

Iλi
(tzi1) =

t2

2
‖zi1‖2λi

− t2
∗

2∗
|zi1|2

∗

2∗ =

(
t2

2
− t2

∗

2∗

)
‖zi1‖2λi

, i = 1, 2.(4.5)

Note that

Iλi
(zi1) = max

t>0
Iλi

(tzi1) = Mi, i = 1, 2, M1 ≤ M2.(4.6)

It is easily seen that there exist 0 < t0 < 1 < t1 such that

(4.7) Iλi
(tzi1) ≤ M1/4 for t ∈ (0, t0] ∪ [t1,∞), i = 1, 2.

Define

γ̃i(t) := tzi1 for 0 ≤ t ≤ t1, i = 1, 2; γ̃(t, s) := (γ̃1(t), γ̃2(s)).

Then γ̃(t, s) ∈ Dr for all (t, s) and there exists a constant C > 0 such that

(4.8) max
(t,s)∈[0,t1]×[0,t1]

‖γ̃(t, s)‖D ≤ C.

Denote Q := [0, t1]× [0, t1] for convenience. For ν ≥ 0, we define

aν := inf
γ∈Γ

max
(t,s)∈Q

Jν(γ(t, s)), dν := max
(t,s)∈Q

Jν(γ̃(t, s)),

where

Γ :=
{
γ ∈ C(Q,Dr) : max

(t,s)∈Q
‖γ(t, s)‖D ≤ 2S(λ2)

N/4 + C,

γ(t, s) = γ̃(t, s) for (t, s) ∈ Q\(t0, t1)× (t0, t1)
}
.(4.9)

The definition of aν is different from the definitions of usual mountain-pass values
(cf. [5]). All paths in Γ are required to be uniformly bounded in D by 2S(λ2)

N/4+C,
which will play a crucial role in the proof of Lemma 4.1 below.
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Lemma 4.1. There hold dν < d0 for ν > 0 and limν→0+ aν = limν→0+ dν = a0 =
d0 = M1 +M2.

Proof. Note that zi1 > 0 in RN \ {0}; we have

d0 = max
(t,s)∈Q

J0(γ̃(t, s)) = max
t∈(0,t1)

Iλ1
(tz11) + max

s∈(0,t1)
Iλ2

(sz21).

Then by (4.5)-(4.6) we see that

(4.10) d0 = J0(γ̃(1, 1)) = M1 +M2, J0(γ̃(t, s)) < d0 for (t, s) ∈ Q \ {(1, 1)}.
Fix any ν > 0. Note that there exists (tν , sν) ∈ Q \ {(0, 0)} such that dν =

Jν(γ̃(tν , sν)). If (tν , sν) = (1, 1), then we see from (4.10) that

dν = Jν(γ̃(1, 1)) = J0(γ̃(1, 1))− ν

∫
RN

(z11)
α(z21)

β dx < d0;

if (tν , sν) �= (1, 1), then we deduce from (4.10) again that

dν = Jν(γ̃(tν , sν)) = J0(γ̃(tν , sν))− νtαν s
β
ν

∫
RN

(z11)
α(z21)

β dx < d0,

that is, dν < d0 for any ν > 0. Note that γ̃ ∈ Γ; we have aν ≤ dν , that is

(4.11) lim inf
ν→0+

aν ≤ lim inf
ν→0+

dν , lim sup
ν→0+

aν ≤ lim sup
ν→0+

dν ≤ d0 and a0 ≤ d0.

On the other hand, for any γ(t, s) = (γ1(t, s), γ2(t, s)) ∈ Γ, we define Υ(γ) :
[t0, t1]

2 → R2 by

Υ(γ)(t, s) :=
(
Pλ1

(γ1(t, s))− 1, Pλ2
(γ2(t, s))− 1

)
.

By the definitions of Pλi
and γ̃, it is easily seen that

Υ(γ̃)(t, s) =
(
t2

∗−2 − 1, s2
∗−2 − 1

)
.

Then deg(Υ(γ̃), [t0, t1]
2, (0, 0)) = 1. By (4.9) we see that for any (t, s) ∈ ∂([t0, t1]

2),
Υ(γ)(t, s) = Υ(γ̃)(t, s) �= (0, 0). Therefore, deg(Υ(γ), [t0, t1]

2, (0, 0)) is well defined
and

deg(Υ(γ), [t0, t1]
2, (0, 0)) = deg(Υ(γ̃), [t0, t1]

2, (0, 0)) = 1.

Then there exists (t2, s2) ∈ [t0, t1]
2 such that Υ(γ)(t2, s2) = (0, 0), that is,

Pλ1
(γ1(t2, s2)) = 1 and Pλ2

(γ2(t2, s2)) = 1. Combining these with (4.4), we have

max
(t,s)∈Q

J0(γ(t, s)) ≥ J0(γ(t2, s2)) ≥ J0(γ(t2, s2))

= Iλ1
(γ1(t2, s2)) + Iλ2

(γ2(t2, s2))

≥ M1 +M2 = d0.(4.12)

Therefore, a0 ≥ d0. By (4.11) one gets that a0 = d0.
Assume by contradiction that lim infν→0+ aν < d0. Then there exists ε > 0,

νn → 0+ and γn = (γn,1, γn,2) ∈ Γ such that

max
(t,s)∈Q

Jνn
(γn(t, s)) ≤ d0 − 2ε.

Recall that α + β = 2∗. By (4.9) and Hölder’s inequality, there exists n0 large
enough such that

max
(t,s)∈Q

νn

∣∣∣∣∫
RN

(γn,1(t, s)+)
α (γn,2(t, s)+)

β dx

∣∣∣∣ ≤ Cνn ≤ ε, ∀ n ≥ n0,



3628 ZHIJIE CHEN AND WENMING ZOU

and so

a0 ≤ max
(t,s)∈Q

J0(γn(t, s)) ≤ max
(t,s)∈Q

Jνn
(γn(t, s)) + ε ≤ d0 − ε, ∀ n ≥ n0,

a contradiction with a0 = d0. Therefore, lim infν→0+ aν ≥ d0. Combining this with
(4.11), we complete the proof. �

Recall (1.9); we define X := Z1 × Z2 ⊂ Dr and

Xδ := {(u, v) ∈ Dr : dist((u, v), X) ≤ δ}, J
d

ν := {(u, v) ∈ Dr : Jν(u, v) ≤ d};

δ := min

{
1

2
,

1

16
S(λ1)

N/4,
C
4

}
.(4.13)

Here dist((u, v), X) := inf{‖(u− ϕ, v − ψ)‖D : (ϕ, ψ) ∈ X}. Define∥∥∥J ′
ν(u, v)

∥∥∥ := sup
{
J
′
ν(u, v)(ψ, φ) : (ψ, φ) ∈ Dr, ‖(ψ, φ)‖D = 1

}
.

Lemma 4.2. Recall δ in (4.13). Then there exist 0 < σ < 1 and ν3 ∈ (0, 1) such

that ‖J ′
ν(u, v)‖ ≥ σ holds for any (u, v) ∈ J

dν

ν ∩ (Xδ\Xδ/2) and ν ∈ (0, ν3].

Proof. Assume by contradiction that there exist νn → 0+ and (un, vn) ∈ J
dνn

νn
∩

(Xδ\Xδ/2) such that ‖J ′
νn
(un, vn)‖ → 0. Then there exist μi,n > 0, i = 1, 2, n ∈ N,

such that ∥∥∥(un, vn)−
(
z1μ1,n

, z2μ2,n

)∥∥∥
D

≤ 2δ, ∀n ∈ N.

Hence (un, vn) are uniformly bounded in Dr, and up to a subsequence, we may
assume that (un, vn) ⇀ (u, v) weakly in Dr. However, since (z1μ, z

2
μ) ⇀ (0, 0)

weakly in Dr as μ → ∞, we know that X is not compact in Dr. So it seems very
difficult for us to show that u �≡ 0 and v �≡ 0. To overcome this difficulty, let us
define

ũn(x) := μ
N−2

2
1,n un(μ1,nx), ṽn(x) := μ

N−2
2

2,n vn(μ2,nx).

Note that ‖ · ‖λi
, i = 1, 2 are invariant with respect to the transformation u(·) 
→

μ−N−2
2 u( ·

μ ) for all μ > 0. Therefore,∥∥ũn − z11
∥∥
λ1

=
∥∥∥un − z1μ1,n

∥∥∥
λ1

≤ 2δ,
∥∥ṽn − z21

∥∥
λ2

=
∥∥∥vn − z2μ2,n

∥∥∥
λ2

≤ 2δ.

This means that (ũn, ṽn) are uniformly bounded in Dr. Up to a subsequence, we
may assume that (ũn, ṽn) ⇀ (ũ, ṽ) weakly in Dr ∩ L2∗(RN ) × L2∗(RN ). Then we
have ‖ũ − z11‖λ1

≤ lim infn→∞ ‖ũn − z11‖λ1
≤ 2δ. Combining this with (4.3) and

(4.13), we get that ũ �≡ 0. Similarly, ṽ �≡ 0.

Take any φ̃ ∈ C∞
0,r(R

N ) such that ‖φ̃‖λ1
= 1; we define

(4.14) φn(x) := μ
−N−2

2
1,n φ̃

(
x

μ1,n

)
.

Then ‖φn‖λ1
= ‖φ̃‖λ1

= 1. Since νn → 0, by Hölder’s inequality and the Sobolev
inequality, we easily obtain that

lim
n→∞

∣∣∣∣νnα ∫
RN

(un)
α−1
+ (vn)

β
+φn dx

∣∣∣∣ = 0.
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Therefore,

0 = lim
n→∞

J
′
νn
(un, vn)(φn, 0)

= lim
n→∞

∫
RN

∇un∇φn − λ1

|x|2 unφn − (un)
2∗−1
+ φn dx

= lim
n→∞

∫
RN

∇ũn∇φ̃− λ1

|x|2 ũnφ̃− (ũn)
2∗−1
+ φ̃ dx

=

∫
RN

∇ũ∇φ̃− λ1

|x|2 ũφ̃− ũ2∗−1
+ φ̃ dx holds for any φ̃ ∈ C∞

0,r(R
N ),

that is, −Δũ− λ1

|x|2 ũ = ũ2∗−1
+ and ũ ∈ D1,2

r (RN ). By testing this equation with ũ−

we see that ũ ≥ 0. By the maximum principle, one has that ũ > 0 in R
N \ {0},

that is, ũ is a positive solution of (1.8) with i = 1. Then by (1.8)-(1.9) we get that
ũ ∈ Z1. Similarly, we may prove that ṽ ∈ Z2, that is, (ũ, ṽ) ∈ X. Recall that
Jνn

(un, vn) ≤ dνn
and α+ β = 2∗. We deduce from Lemma 4.1 that

M1 +M2 ≥ lim
n→∞

(
Jνn

(un, vn)−
1

2∗
J
′
νn
(un, vn)(un, vn)

)
=

1

N
lim
n→∞

(
‖un‖2λ1

+ ‖vn‖2λ2

)
=

1

N
lim
n→∞

(
‖ũn‖2λ1

+ ‖ṽn‖2λ2

)
≥ 1

N
‖ũ‖2λ1

+
1

N
‖ṽ‖2λ2

= M1 +M2,

which implies that all inequalities above are identities, so Jνn
(un, vn) → M1 +M2

and (ũn, ṽn) → (ũ, ṽ) ∈ X strongly in Dr. Then

‖(ũn, ṽn)− (ũ, ṽ)‖D ≤ δ/4, for n large enough,

and so

‖(un, vn)− (un, vn)‖D ≤ δ/4, for n large enough,

where

(un(x), vn(x)) :=

(
μ
−N−2

2
1,n ũ

(
x

μ1,n

)
, μ

−N−2
2

2,n ṽ

(
x

μ2,n

))
∈ X.

This contradicts with (un, vn) �∈ Xδ/2 for any n. This completes the proof. �

Lemma 4.3. There exists ν4 ∈ (0, ν3] and ε > 0 such that for any ν ∈ (0, ν4],

Jν(γ̃(t, s)) ≥ aν − ε implies that γ̃(t, s) ∈ Xδ/2.

Proof. Assume by contradiction that there exist νn → 0, εn → 0 and (tn, sn) ∈ Q
such that

(4.15) Jνn
(γ̃(tn, sn)) ≥ aνn

− εn and γ̃(tn, sn) �∈ Xδ/2, ∀n ∈ N.

Passing to a subsequence, we may assume that (tn, sn) → (t̃, s̃) ∈ Q. Then by
Lemma 4.1 and letting n → ∞ in (4.15), we have

J0(γ̃(t̃, s̃)) ≥ lim
n→∞

aνn
= M1 +M2.

Combining this with (4.10), we obtain that (t̃, s̃) = (1, 1). Hence,

lim
n→∞

‖γ̃(tn, sn)− γ̃(1, 1)‖D = 0.

However, γ̃(1, 1) = (z11 , z
2
1) ∈ X, which is a contradiction with (4.15). �
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Let

(4.16) ε0 := min

{
ε

2
,
M1

4
,
1

8
δσ2

}
,

where δ, σ are seen in Lemma 4.2. By Lemma 4.1 there exists ν2 ∈ (0, ν4] such that

(4.17) |aν − dν | < ε0, |aν − (M1 +M2)| < ε0, ∀ ν ∈ (0, ν2].

Lemma 4.4. For any fixed ν ∈ (0, ν2], there exists {(un, vn)}∞n=1 ⊂ Xδ ∩ J
dν

ν such
that ∥∥∥J ′

ν(un, vn)
∥∥∥ → 0 as n → ∞.

Proof. Fix any ν ∈ (0, ν2]. Assume by contradiction that there exists 0 < l(ν) < 1

such that ‖J ′
ν(u, v)‖ ≥ l(ν) on Xδ∩Jdν

ν . Then there exists a pseudo-gradient vector

field Tν in Dr which is defined on a neighborhood Zν ⊂ Dr of Xδ ∩ J
dν

ν (cf. [31]),
such that for any (u, v) ∈ Zν , there holds

‖Tν(u, v)‖D ≤ 2min{1, ‖J ′
ν(u, v)‖},

J
′
ν(u, v)

(
Tν(u, v)

)
≥ min{1, ‖J ′

ν(u, v)‖}‖J
′
ν(u, v)‖.

Let ην be a Lipschiz continuous function on Dr such that 0 ≤ ην ≤ 1, ην ≡ 1 on

Xδ∩J
dν

ν and ην ≡ 0 on Dr\Zν . Let ξν be a Lipschiz continuous function on R such
that 0 ≤ ξν ≤ 1, ξν(l) ≡ 1 if |l − aν | ≤ ε

2 and ξν(l) ≡ 0 if |l − aν | ≥ ε. Let

eν(u, v) =

{
−ην(u, v)ξν(Jν(u, v))Tν(u, v) if (u, v) ∈ Zν ,

0 if (u, v) ∈ Dr\Zν .

Then there exists a global solution ψν : Dr × [0,+∞) → Dr to the following initial
value problem: {

d
dθψν(u, v, θ) = eν(ψν(u, v, θ)),

ψν(u, v, 0) = (u, v).

It is easy to see from Lemma 4.2 and (4.16)-(4.17) that ψν has the following prop-
erties:
(1) ψν(u, v, θ) = (u, v) if θ = 0 or (u, v) ∈ Dr\Zν or |Jν(u, v)− aν | ≥ ε;

(2)

∥∥∥∥ d

dθ
ψν(u, v, θ)

∥∥∥∥
D

≤ 2;

(3)
d

dθ
Jν(ψν(u, v, θ)) = J

′
ν(ψν(u, v, θ))

(
eν(ψν(u, v, θ))

)
≤ 0;

(4)
d

dθ
Jν(ψν(u, v, θ)) ≤ −l(ν)2 if ψν(u, v, θ) ∈ Xδ ∩

(
J
dν

ν \Jaν−ε/2

ν

)
;

(5)
d

dθ
Jν(ψν(u, v, θ)) ≤ −σ2 if ψν(u, v, θ) ∈ (Xδ\Xδ/2) ∩

(
J
dν

ν \Jaν−ε/2

ν

)
.

Step 1. For any (t, s) ∈ Q, we claim that there exists θt,s ∈ [0,+∞) such that

ψν(γ̃(t, s), θt,s) ∈ J
aν−ε0
ν , where ε0 is seen in (4.16).

Assume by contradiction that there exists (t, s) ∈ Q such that

Jν(ψν(γ̃(t, s), θ)) > aν − ε0, ∀ θ ≥ 0.

Note that ε0 < ε; we see from Lemma 4.3 that γ̃(t, s) ∈ Xδ/2. Note that Jν(γ̃(t, s))
≤ dν < aν + ε0; we see from the property (3) that

aν − ε0 < Jν(ψν(γ̃(t, s), θ)) ≤ dν < aν + ε0, ∀ θ ≥ 0.



A DOUBLY CRITICAL SCHRÖDINGER SYSTEM 3631

This implies ξν(Jν(ψν(γ̃(t, s), θ))) ≡ 1. If ψν(γ̃(t, s), θ) ∈ Xδ for all θ ≥ 0, then

ην(ψν(γ̃(t, s), θ)) ≡ 1, and ‖J ′
ν(ψν(γ̃(t, s), θ))‖ ≥ l(ν) for all θ > 0. Then we see

from property (4) that

Jν

(
ψν

(
γ̃(t, s),

ε

l(ν)2

))
≤ aν +

ε

2
−

∫ ε
l(ν)2

0

l(ν)2 dt ≤ aν − ε

2
,

a contradiction. Thus, there exists θt,s > 0 such that ψν(γ̃(t, s), θt,s) �∈ Xδ. Since

γ̃(t, s) ∈ Xδ/2, so there exists 0 < θ1t,s < θ2t,s ≤ θt,s such that ψν(γ̃(t, s), θ
1
t,s) ∈

∂Xδ/2, ψν(γ̃(t, s), θ
2
t,s) ∈ ∂Xδ and ψν(γ̃(t, s), θ) ∈ Xδ\Xδ/2 for all θ ∈ (θ1t,s, θ

2
t,s).

Then by Lemma 4.2 we have ‖J ′
ν(ψν(γ̃(t, s), θ))‖ ≥ σ for all θ ∈ (θ1t,s, θ

2
t,s). Then

using property (2) we have

δ/2 ≤
∥∥ψν(γ̃(t, s), θ

2
t,s)− ψν(γ̃(t, s), θ

1
t,s)

∥∥
D
≤ 2|θ2t,s − θ1t,s|,

that is, θ2t,s − θ1t,s ≥ δ/4. This implies from (4.16) and property (5) that

Jν

(
ψν(γ̃(t, s), θ

2
t,s)

)
≤ Jν(ψν(γ̃(t, s), θ

1
t,s)) +

∫ θ2
t,s

θ1
t,s

d

dθ
Jν(ψν(u, v, θ)) dθ

< aν + ε0 − σ2(θ2t,s − θ1t,s) ≤ aν + ε0 −
1

4
δσ2

≤ aν − ε0,

which is a contradiction.

By Step 1 we can define T (t, s) := inf{θ ≥ 0 : Jν(ψν(γ̃(t, s), θ)) ≤ aν − ε0} and
let γ(t, s) := ψν(γ̃(t, s), T (t, s)). Then Jν(γ(t, s)) ≤ aν − ε0 for all (t, s) ∈ Q.

Step 2. We shall prove that γ(t, s) ∈ Γ.
For any (t, s) ∈ Q\(t0, t1)× (t0, t1), by (4.6)-(4.7) and (4.16)-(4.17) we have

Jν(γ̃(t, s)) ≤ J0(γ̃(t, s)) = Iλ1
(γ̃1(t)) + Iλ2

(γ̃2(s))

≤ M1/4 +M2 ≤ M1 +M2 − 3ε0 < aν − ε0,

which implies that T (t, s) = 0, and so γ(t, s) = γ̃(t, s). From the definition of Γ
in (4.9), it suffices to prove that ‖γ(t, s)‖D ≤ 2S(λ2)

N/4 + C for all (t, s) ∈ Q and
T (t, s) is continuous with respect to (t, s).

For any (t, s) ∈ Q, if Jν(γ̃(t, s)) ≤ aν − ε0, we have T (t, s) = 0, and so γ(t, s) =
γ̃(t, s), and by (4.8) we see that ‖γ(t, s)‖D ≤ C < 2S(λ2)

N/4 + C.
If Jν(γ̃(t, s)) > aν − ε0, then γ̃(t, s) ∈ Xδ/2 and

aν − ε0 < Jν(ψν(γ̃(t, s), θ)) ≤ dν < aν + ε0, ∀ θ ∈ [0, T (t, s)).

This implies ξν(Jν(ψν(γ̃(t, s), θ))) ≡ 1 for θ ∈ [0, T (t, s)). If ψν(γ̃(t, s), T (t, s)) �∈
Xδ, then there exists 0 < θ1t,s < θ2t,s < T (t, s) as above. Then we can prove that

Jν(ψν(γ̃(t, s), θ
2
t,s)) ≤ aν − ε0 as above, which contradicts the definition of T (t, s).

Therefore, γ(t, s) = ψν(γ̃(t, s), T (t, s)) ∈ Xδ. Then there exists (u, v) ∈ X such
that ‖γ(t, s)− (u, v)‖D ≤ 2δ ≤ C. By (4.3) we have

‖γ(t, s)‖D ≤ ‖(u, v)‖D + C ≤ 2S(λ2)
N/4 + C.

To prove the continuity of T (t, s), we fix any (t̃, s̃) ∈ Q. Assume Jν(γ(t̃, s̃)) <
aν−ε0 first. Then T (t̃, s̃) = 0 from the definition of T (t, s). So Jν(γ̃(t̃, s̃)) < aν−ε0.
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By the continuity of γ̃, there exists τ > 0 such that for any (t, s) ∈ (t̃− τ, t̃+ τ )×
(s̃ − τ, s̃ + τ ) ∩ Q, there holds Jν(γ̃(t, s)) < aν − ε0, that is, T (t, s) = 0 for any
(t, s) ∈ (t̃ − τ, t̃ + τ ) × (s̃ − τ, s̃ + τ ) ∩ Q, and so T is continuous at (t̃, s̃). Now
we assume that Jν(γ(t̃, s̃)) = aν − ε0. Then from the previous proof we see that
γ(t̃, s̃) = ψν(γ̃(t̃, s̃), T (t̃, s̃)) ∈ Xδ, and so∥∥∥J ′

ν

(
ψν

(
γ̃(t̃, s̃), T (t̃, s̃)

))∥∥∥ ≥ l(ν) > 0.

Then for any ω > 0, we have Jν(ψν(γ̃(t̃, s̃), T (t̃, s̃)+ω)) < aν−ε0. By the continuity
of ψν and γ̃, there exists τ > 0 such that for any (t, s) ∈ (t̃−τ, t̃+τ )×(s̃−τ, s̃+τ )∩Q,
we have Jν(ψν(γ̃(t, s), T (t̃, s̃) + ω)) < aν − ε0, so T (t, s) ≤ T (t̃, s̃) + ω. It follows
that

0 ≤ lim sup
(t,s)→(t̃,s̃)

T (t, s) ≤ T (t̃, s̃).

If T (t̃, s̃) = 0, we have lim(t,s)→(t̃,s̃) T (t, s) = T (t̃, s̃) immediately. If T (t̃, s̃) > 0,

then for any 0 < ω < T (t̃, s̃) we similarly have Jν(ψν(γ̃(t̃, s̃), T (t̃, s̃)−ω))) > aν−ε0.
By the continuity of ψν and γ̃ again, we easily obtain that

lim inf
(t,s)→(t̃,s̃)

T (t, s) ≥ T (t̃, s̃).

Thus T is continuous at (t̃, s̃). This completes the proof of Step 2.

Now, we have proved that γ(t, s) ∈ Γ and max(t,s)∈Q Jν(γ(t, s)) ≤ aν−ε0, which
contradicts the definition of aν . This completes the proof. �
Proof of Theorem 1.5. Fix any ν ∈ (0, ν2]. By Lemma 4.4 there exists {(un, vn)}∞n=1

⊂ Xδ ∩ J
dν

ν such that ∥∥∥J ′
ν(un, vn)

∥∥∥ → 0 as n → ∞.

Note that there exist μi,n > 0, i = 1, 2, n ∈ N, such that

(4.18)
∥∥∥(un, vn)−

(
z1μ1,n

, z2μ2,n

)∥∥∥
D

≤ 2δ, ∀n ∈ N.

By (4.3), {(un, vn), n ≥ 1} are uniformly bounded in Dr. Up to a subsequence,
we may assume that (un, vn) ⇀ (u, v) weakly in Dr. As pointed out before, since
X is not compact in Dr, it seems very difficult to prove that u �≡ 0 and v �≡ 0. To
overcome this difficulty, let us define

ũn(x) := μ
N−2

2
1,n un(μ1,nx), ṽn(x) := μ

N−2
2

1,n vn(μ1,nx);

un(x) := μ
N−2

2
2,n un(μ2,nx), vn(x) := μ

N−2
2

2,n vn(μ2,nx).(4.19)

Then by a direct computation, we see that ‖J ′
ν(ũn, ṽn)‖ → 0 and ‖J ′

ν(un, vn)‖ → 0
as n → ∞. Moreover,

‖ũn − z11‖λ1
≤ 2δ, ‖vn − z21‖λ2

≤ 2δ.

Up to a subsequence, we may assume that (ũn, ṽn) ⇀ (ũ, ṽ) and (un, vn) ⇀ (u, v)

weakly in Dr∩L2∗(RN )×L2∗(RN ). Then J
′
ν(ũ, ṽ) = 0 and J

′
ν(u, v) = 0. Moreover,

as in the proof of Lemma 4.2, we get that ũ �≡ 0 and v �≡ 0.
Now we claim that either ṽ �≡ 0 or u �≡ 0.
Assume by contradiction that both ṽ ≡ 0 and u ≡ 0. Then ṽn ⇀ 0 weakly in

D1,2
r (RN ) ∩ L2∗(RN ). Hence it is easy to prove that (ṽn)

2∗−1
+ ⇀ 0 in L

2∗
2∗−1 (RN ).



A DOUBLY CRITICAL SCHRÖDINGER SYSTEM 3633

Take any φ̃ ∈ C∞
0,r(R

N ) such that ‖φ̃‖λ1
= 1, and φn is defined in (4.14). Then we

see from Hölder’s inequality and α+ β = 2∗ that

lim
n→∞

∣∣∣∣να ∫
RN

(un)
α−1
+ (vn)

β
+φn dx

∣∣∣∣ = lim
n→∞

∣∣∣∣να ∫
RN

(ũn)
α−1
+ (ṽn)

β
+φ̃ dx

∣∣∣∣
≤ lim

n→∞
C

(∫
RN

(ũn)
2∗−1
+ |φ̃| dx

) α−1
2∗−1

(∫
RN

(ṽn)
2∗−1
+ |φ̃| dx

) β
2∗−1

= 0.(4.20)

Combining this with J
′
ν(un, vn)(φn, 0) → 0, we may repeat the proof of Lemma 4.2

and then get that ũ ∈ Z1. Similarly, we can prove that v ∈ Z2. Then

dν ≥ lim
n→∞

(
Jν(un, vn)−

1

2∗
J
′
ν(un, vn)(un, vn)

)
=

1

N
lim
n→∞

(
‖un‖2λ1

+ ‖vn‖2λ2

)
=

1

N
lim
n→∞

(
‖ũn‖2λ1

+ ‖vn‖2λ2

)
≥ 1

N
‖ũ‖2λ1

+
1

N
‖v‖2λ2

= M1 +M2 = d0 > dν ,(4.21)

a contradiction. So either ṽ �≡ 0 or u �≡ 0. Without loss of generality, we may

assume that ṽ �≡ 0. Note that ũ �≡ 0 and J
′
ν(ũ, ṽ) = 0. Then by testing (4.1) with

ũ− and ṽ−, we see from Hardy’s inequality (1.6) that ũ ≥ 0 and ṽ ≥ 0. By the
maximum principle, one has that ũ > 0 and ṽ > 0 in RN \ {0}. Hence, (ũ, ṽ) is a
positive solution of (1.4), which is radially symmetric. Moreover,

dν ≥ lim
n→∞

(
Jν(un, vn)−

1

2∗
J
′
ν(un, vn)(un, vn)

)
=

1

N
lim
n→∞

(
‖un‖2λ1

+ ‖vn‖2λ2

)
=

1

N
lim
n→∞

(
‖ũn‖2λ1

+ ‖ṽn‖2λ2

)
≥ 1

N
‖ũ‖2λ1

+
1

N
‖ṽ‖2λ2

= Jν(ũ, ṽ),

that is, Jν(ũ, ṽ) ≤ dν < d0 = 1
N (S(λ1)

N/2 + S(λ2)
N/2). This completes the proof.

�

5. Proof of Theorem 1.3: The case N = 3

In this section, we give the proof of Theorem 1.3. Assume that N = 3, α+ β =
2∗ = 6, α ≥ 2, β ≥ 2, λ1, λ2 ∈ (0,Λ3) and ν > 0. Recall from (1.11) that S(λi) < S;
we take a ε0 ∈ (0, 1/2) such that

(5.1)

⎧⎨⎩max
{
S(λ1)

3
2 , S(λ2)

3
2

}

1−ε0
≤ S(λ1)

3
2 + S(λ2)

3
2 ≤ (2− 2ε0)S

3
2 ,

(1− 2ε0)S(λ2)
3
2 ≥ ε0S(λ1)

3
2 , (1− 2ε0)S(λ1)

3
2 ≥ ε0S(λ2)

3
2 .

Define

Kν := {(u, v) ∈ D : u �≡ 0, v �≡ 0, J ′
ν(u, v) = 0}

as the set of nontrivial critical points of Jν , and

(5.2) bν := inf
(u,v)∈Kν

Jν(u, v).

By Theorem 1.5 we see that for any ν ∈ (0, ν2], Kν �= ∅, bν is well defined and

bν <
1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
.
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Note that Kν ⊂ Nν , so bν ≥ cν > 0. Define

(5.3) C0 := max

{[
S(λ1)

3
2 + S(λ2)

3
2

]α
6

,
[
S(λ1)

3
2 + S(λ2)

3
2

]β
6

}
.

Then for any (u, v) ∈ Nν with Jν(u, v) <
1
3 (S(λ1)

3
2 + S(λ2)

3
2 ), since∫

R3

(
u6 + v6 + 6ν|u|α|v|β

)
= 3Jν(u, v) < S(λ1)

3
2 + S(λ2)

3
2 ,

we have

(5.4) |u|α6 ≤ C0, |v|β6 ≤ C0.
Then we see from Hölder’s inequality and (1.17) that

S(λ1)|u|26 ≤ ‖u‖2λ1
= |u|66 + να

∫
R3

|u|α|v|β ≤ |u|66 + ναC0|u|α6 ,

that is, we can obtain

(5.5)

{
S(λ1)|u|26 ≤ |u|66 + ναC0|u|α6 ,
S(λ2)|v|26 ≤ |v|66 + νβC0|v|β6 .

The following result was introduced in [1].

Lemma 5.1 (see [1, Lemma 3.3]). Let N ≥ 3, A,B > 0, and θ ≥ 2 be fixed. For
any ν > 0, let

Sν :=
{
σ > 0 : Aσ

2
2∗ ≤ σ + νBσ

θ
2∗
}
.

Then for any ε > 0, there exists ν1 > 0 depending only on ε, A,B, θ and N , such
that

inf Sν ≥ (1− ε)A
N
2 for all 0 < ν < ν1.

Recall that α, β ≥ 2 and 2∗ = 6. From Lemma 5.1, we have the following result
trivially.

Lemma 5.2. Recall ε0 in (5.1). Then there exists ν̃1 ∈ (0, ν2] such that for any
ν ∈ (0, ν̃1) there hold

S(λ1)σ
1
3 ≤ σ + ναC0σ

α
6 , σ > 0 ⇒ σ ≥ (1− ε0)S(λ1)

3
2 ,(5.6)

S(λ2)σ
1
3 ≤ σ + νβC0σ

β
6 , σ > 0 ⇒ σ ≥ (1− ε0)S(λ2)

3
2 ,(5.7)

Sσ
1
3 ≤ σ + ναC0σ

α
6 , σ > 0 ⇒ σ ≥ (1− ε0)S

3
2 ,(5.8)

Sσ
1
3 ≤ σ + νβC0σ

β
6 , σ > 0 ⇒ σ ≥ (1− ε0)S

3
2 .(5.9)

The following lemma is the counterpart of Lemma 3.3 for the case N = 3. The
first part of the proof is similar to that of Lemma 3.3, so we do not give the details,
but the latter part of the proof is quite different.

Lemma 5.3. Assume that ν ∈ (0, ν̃1). Let (un, vn) ∈ Kν be a minimizing sequence
of bν , and (un, vn) ⇀ (0, 0) weakly in D. Then for any r > 0 and for every
ε ∈ (−r, 0) ∪ (0, r), there exists ρ ∈ (ε, 0) ∪ (0, ε) such that, up to a subsequence,

(5.10) either

∫
Br+ρ

(|∇un|2 + |∇vn|2) → 0 or

∫
RN\Br+ρ

(|∇un|2 + |∇vn|2) → 0.
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Proof. Fix any ν ∈ (0, ν̃1). Without loss of generality, we only consider the case
ε ∈ (0, r) (the proof for the case ε ∈ (−r, 0) is similar). Since (un, vn) ∈ Kν is a

minimizing sequence of bν , we may assume that Jν(un, vn) <
1
3 (S(λ1)

3
2 + S(λ2)

3
2 ),

and so (un, vn) satisfy (5.4)-(5.5) for all n. Then by (5.6)-(5.7) of Lemma 5.2 we
have

(5.11) |un|66 ≥ (1− ε0)S(λ1)
3
2 , |vn|66 ≥ (1− ε0)S(λ2)

3
2 , ∀n ∈ N.

Note that (un, vn) are uniformly bounded in D and J ′
ν(un, vn) = 0. Then by

repeating the argument of Lemma 3.3 with trivial modifications and using the
same notation wi,n, σi,n, ui,n, vi,n with the same definitions as (3.21)-(3.26), there
exists ρ ∈ (0, ε) such that ui,n, vi,n, i = 1, 2, satisfy (3.27)-(3.32). Moreover, we can
prove that

|un|66 = |u1,n|66 + |u2,n|66 + o(1), |vn|66 = |v1,n|66 + |v2,n|66 + o(1).(5.12)

Now we claim that

(5.13) either lim
n→∞

(‖u1,n‖2 + ‖v1,n‖2) = 0 or lim
n→∞

(‖u2,n‖2 + ‖v2,n‖2) = 0.

In fact, if (5.13) does not hold, then up to a subsequence,

(5.14) both lim
n→∞

(‖u1,n‖2 + ‖v1,n‖2) > 0 and lim
n→∞

(‖u2,n‖2 + ‖v2,n‖2) > 0.

We have the following several cases.

Case 1. Up to a subsequence, both limn→∞ ‖u1,n‖2 > 0 and limn→∞ ‖v1,n‖2 > 0.

Recall that norms ‖ · ‖λi
, i = 1, 2, are equivalent to ‖ · ‖. Note that (3.29)-(3.30)

yield

‖u1,n‖2λ1
= |u1,n|66 + να

∫
R3

|u1,n|α|v1,n|β + o(1),(5.15)

‖v1,n‖2λ2
= |v1,n|66 + νβ

∫
R3

|u1,n|α|v1,n|β + o(1).(5.16)

Hence, both A1 := lim infn→∞ |u1,n|66 > 0 and B1 := lim infn→∞ |v1,n|66 > 0. Since
(un, vn) satisfy (5.4) for all n, by (5.12) and letting n → ∞ in (5.15)-(5.16), similarly
as in (5.5) we can prove that

(5.17) S(λ1)A
1
3
1 ≤ A1 + ναC0A

α
6
1 , S(λ2)B

1
3
1 ≤ B1 + νβC0B

β
6
1 .

Then by (5.6)-(5.7) of Lemma 5.2 we have

(5.18) A1 ≥ (1− ε0)S(λ1)
3
2 , B1 ≥ (1− ε0)S(λ2)

3
2 .

Case 1.1. Up to a subsequence, limn→∞ ‖u2,n‖2 > 0 and limn→∞ ‖v2,n‖2 > 0.

Then similarly as above, we can prove that
(5.19)

A2 := lim inf
n→∞

|u2,n|66 ≥ (1− ε0)S(λ1)
3
2 , B2 := lim inf

n→∞
|v2,n|66 ≥ (1− ε0)S(λ2)

3
2 .
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Combining this with (5.18), (5.1) and (5.12), we deduce that

bν = lim
n→∞

Jν(un, vn) = lim
n→∞

1

3

(
|un|66 + |vn|66 + 6ν

∫
R3

|un|α|vn|β
)

≥ lim
n→∞

1

3
(|un|66 + |vn|66) ≥

1

3
(A1 +B1 +A2 +B2)

≥ 2− 2ε0
3

(
S(λ1)

3
2 + S(λ2)

3
2

)
≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 1.1 is impossible.

Case 1.2. Up to a subsequence, limn→∞ ‖u2,n‖2 > 0 and limn→∞ ‖v2,n‖2 = 0.
Then

∫
R3 |u2,n|α|v2,n|β → 0 as n → ∞, so (3.31) yields

S(λ1)|u2,n|26 ≤ ‖u2,n‖2λ1
= |u2,n|66 + o(1),

and so A2 ≥ S(λ1)
3/2. Then we conclude from (5.18), (5.1) and (5.12) that

bν ≥ lim
n→∞

1

3
(|un|66 + |vn|66) ≥

1

3
(A1 + B1 +A2)

≥ 1− ε0
3

(
S(λ1)

3
2 + S(λ2)

3
2

)
+

1

3
S(λ1)

3
2

≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 1.2 is impossible.

Case 1.3. Up to a subsequence, limn→∞ ‖u2,n‖2 = 0 and limn→∞ ‖v2,n‖2 > 0.

Then (3.32) yields

S(λ2)|v2,n|26 ≤ ‖v2,n‖2λ2
= |v2,n|66 + o(1),

and so B2 ≥ S(λ2)
3/2. Then we conclude from (5.18), (5.1) and (5.12) that

bν ≥ lim
n→∞

1

3
(|un|66 + |vn|66) ≥

1

3
(A1 +B1 +B2)

≥ 1− ε0
3

(
S(λ1)

3
2 + S(λ2)

3
2

)
+

1

3
S(λ2)

3
2

≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 1.3 is impossible.
Since none of Cases 1.1-1.3 is true, Case 1 is impossible.

Case 2. Up to a subsequence, limn→∞ ‖u1,n‖2 = 0 and limn→∞ ‖v1,n‖2 > 0.

Then similarly as in Case 1.3, we have B1 ≥ S(λ2)
3/2. Moreover, we see from

(5.11) and (5.12) that

lim inf
n→∞

|u2,n|66 = lim inf
n→∞

|un|66 − lim
n→∞

|u1,n|66 > 0.

Case 2.1. Up to a subsequence, limn→∞ ‖u2,n‖2 > 0 and limn→∞ ‖v2,n‖2 > 0.
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Then similarly as above, we see that (5.19) holds, and so

bν ≥ lim
n→∞

1

3
(|un|66 + |vn|66) ≥

1

3
(B1 +A2 +B2)

≥ 1− ε0
3

(
S(λ1)

3
2 + S(λ2)

3
2

)
+

1

3
S(λ2)

3
2

≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 2.1 is impossible.

Case 2.2. Up to a subsequence, limn→∞ ‖u2,n‖2 > 0 and limn→∞ ‖v2,n‖2 = 0.

Then similarly as in Case 1.2, we have A2 ≥ S(λ1)
3/2, and so

bν ≥ lim
n→∞

1

3
(|un|66 + |vn|66) ≥

1

3
(B1 +A2)

≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 2.2 is impossible.
Since neither Case 2.1 nor Case 2.2 is true, Case 2 is impossible.

Case 3. Up to a subsequence, limn→∞ ‖u1,n‖2 > 0 and limn→∞ ‖v1,n‖2 = 0.

By a similar argument as in Case 2, we get a contradiction. So Case 3 is impos-
sible.

Since none of Cases 1, 2 and 3 are true, we see that (5.14) is impossible, that
is, (5.13) holds. Recall the definitions (3.23)-(3.26) of (ui,n, vi,n), (5.10) follows
directly from (5.13). This completes the proof. �
Proof of Theorem 1.3. Fix any ν ∈ (0, ν̃1). Take a sequence (un, vn) ∈ Kν such that
Jν(un, vn) → bν as n → ∞. Recall that E(u, v) = |∇u|2+ |∇v|2− λ1

|x|2 |u|2−
λ2

|x|2 |v|2
and there exists Rn > 0 such that∫

BRn

E(un, vn) =

∫
RN\BRn

E(un, vn) =
1

2
(‖un‖2λ1

+ ‖vn‖2λ2
).

Define

(un(x), vn(x)) :=
(
R

N−2
2

n un(Rnx), R
N−2

2
n vn(Rnx)

)
.

Then by a direct computation, we see that (un, vn) ∈ Kν and Jν(un, vn) → bν .
Moreover,

(5.20)

∫
B1

E(un, vn) =

∫
RN\B1

E(un, vn) =
1

2
(‖un‖2λ1

+ ‖vn‖2λ2
) → 3

2
bν > 0.

Besides, we may assume that Jν(un, vn) < 1
3 (S(λ1)

3
2 + S(λ2)

3
2 ), and so (un, vn)

satisfy (5.4)-(5.5) for all n. Then by (5.6)-(5.7) of Lemma 5.2 we have

(5.21) |un|66 ≥ (1− ε0)S(λ1)
3
2 , |vn|66 ≥ (1− ε0)S(λ2)

3
2 , ∀n ∈ N.

Note that (un, vn) are uniformly bounded in D. Then up to a subsequence, we
assume that (un, vn) ⇀ (u, v) weakly in D. Then J ′

ν(un, vn) = 0 implies J ′
ν(u, v) =

0.

Step 1. We show that both u �≡ 0 and v �≡ 0, that is, (u, v) ∈ Kν . Moreover,
Jν(u, v) = bν .

Case 1. (u, v) ≡ (0, 0).
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Then we can apply Lemma 5.3 twice with r = 1 and ε = ±1/4 respectively, and
there exist ρ+ ∈ (0, 1/4) and ρ− ∈ (−1/4, 0) such that the alternative (5.10) holds.
Then by repeating the argument of Case 1 in the proof of Theorem 1.2 with trivial

modifications, we get that
∫
R3

u2
n

|x|2 = o(1),
∫
R3

v2
n

|x|2 = o(1), and so

S|un|26 ≤
∫
R3

|∇un|2 =

∫
R3

u6
n + να

∫
R3

|un|α|vn|β + o(1),

S|vn|26 ≤
∫
R3

|∇vn|2 =

∫
R3

v6n + νβ

∫
R3

|un|α|vn|β + o(1).

Denote A = lim infn→∞ |un|66 and B = lim infn→∞ |vn|66; then (5.21) yields A > 0
and B > 0. Then by Hölder’s inequality it is easy to prove that

SA
1
3 ≤ A+ ναC0A

α
6 , SB

1
3 ≤ B + νβC0B

β
6 .

Then by (5.8)-(5.9) of Lemma 5.2 we have

A ≥ (1− ε0)S
3
2 , B ≥ (1− ε0)S

3
2 .

So we conclude from (5.1) that

bν ≥ lim
n→∞

1

3
(|un|66 + |vn|66) ≥

1

3
(A+B) ≥ 2− 2ε0

3
S

3
2

≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 1 is impossible.

Case 2. Either u ≡ 0, v �≡ 0 or u �≡ 0, v ≡ 0.

Without loss of generality, we assume that u �≡ 0, v≡0. We see from J ′
ν(u, v)(u, 0)

= 0 that

S(λ1)|u|26 ≤ ‖u‖2λ1
= |u|66,

which implies |u|66 ≥ S(λ1)
3/2.

Case 2.1. Up to a subsequence, limn→∞ ‖un − u‖ > 0.

Denote wn = un−u. Note that J ′
ν(un, vn) = 0. Then by the Brezis-Lieb Lemma

([7]) and Lemma 2.3 we conclude that

‖wn‖2λ1
=

∫
R3

w6
n + να

∫
R3

|wn|α|vn|β + o(1),

‖vn‖2λ2
=

∫
R3

v6n + νβ

∫
R3

|wn|β |vn|β + o(1).

Denote C = lim infn→∞ |wn|66; then C > 0. Then by Hölder’s inequality it is easy
to prove that

S(λ1)C
1
3 ≤ C + ναC0C

α
6 , S(λ2)B

1
3 ≤ B + νβC0B

β
6 .

Then by (5.6)-(5.7) of Lemma 5.2 we have

C ≥ (1− ε0)S(λ1)
3
2 , B ≥ (1− ε0)S(λ2)

3
2 .
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So we conclude from (5.1) that

bν ≥ lim
n→∞

1

3
(|un|66 + |vn|66) =

1

3
|u|66 + lim

n→∞

1

3
(|wn|66 + |vn|66)

≥ 1

3
S(λ1)

3
2 +

1

3
(B + C) ≥ 1

3
S(λ1)

3
2 +

1− ε0
3

(
S(λ1)

3
2 + S(λ2)

3
2

)
≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 2.1 is impossible.

Case 2.2. un → u strongly in D1,2(R3).

Then un → u strongly in L6(R3). Recall that vn ⇀ 0 in D1,2(R3); up to a
subsequence, un → u and vn → 0 almost everywhere in R3. So Lemma 2.3 yields∫

R3

|un|α|vn|β =

∫
R3

|un − u|α|vn|β + o(1) = o(1).

Then we have
S(λ2)|vn|26 ≤ ‖vn‖2λ2

= |vn|66 + o(1),

so B ≥ S(λ2)
3/2, and we conclude from (5.1) that

bν ≥ lim
n→∞

1

3
(|un|66 + |vn|66) ≥

1

3
(|u|66 +B) ≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So Case 2.2 is impossible, and thus Case 2 is impossible.
Since neither Case 1 nor Case 2 is true, we obtain that u �≡ 0 and v �≡ 0. Since

J ′
ν(u, v) = 0, thus (u, v) ∈ Kν . Then

bν ≤ Jν(u, v) =
1

3
‖(u, v)‖2D ≤ lim inf

n→∞

1

3
‖(un, vn)‖2D = lim inf

n→∞
Jν(un, vn) = bν ,

so Jν(u, v) = bν , and (un, vn) → (u, v) strongly in D. Then (5.21) implies that

(5.22) |u|66 ≥ (1− ε0)S(λ1)
3
2 , |v|66 ≥ (1− ε0)S(λ2)

3
2 .

Step 2. We show that neither u or v is sign-changing, so (|u|, |v|) is a positive
ground state solution of (1.4).

Assume by contradiction that u+ �≡ 0 and u− �≡ 0. By J ′
ν(u, v)(u±, 0) = 0 we

obtain

S(λ1)|u±|26 ≤ ‖u±‖2λ1
=

∫
R3

u6
± + να

∫
R3

|u±|α|v|β .

Then
S(λ1)|u±|26 ≤ |u±|66 + ναC0|u±|α6 .

By (5.6) of Lemma 5.2 we have

|u±|66 ≥ (1− ε0)S(λ1)
3
2 .

So we conclude from (5.1) and (5.22) that

bν ≥ 1

3
(|u|66 + |v|66) ≥

2− 2ε0
3

S(λ1)
3
2 +

1− ε0
3

S(λ2)
3
2

≥ 1

3

(
S(λ1)

3
2 + S(λ2)

3
2

)
> bν ,

a contradiction. So u is not sign-changing. Similarly, v is not sign-changing. That
is, (|u|, |v|) is a solution of Jν . By the maximum principle, we see that |u| > 0 and
|v| > 0 in R3 \ {0}. Since Jν(|u|, |v|) = bν , then (|u|, |v|) is a positive ground state
solution of (1.4).
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Step 3. We show that bν → 1
3

(
S(λ1)

3/2 + S(λ2)
3/2

)
as ν → 0.

From the above argument, we may assume that (uν , vν) is a positive ground
state solution of (1.4) with bν = Jν(uν , vν) for any ν ∈ (0, ν̃1). The rest of the
argument is similar to that in the proof of Theorem 1.2, and we omit the details.
This completes the proof. �

6. Proof of Theorem 1.4: The moving planes method

In this section, we will use the moving planes method to prove Theorem 1.4.
In the sequel, we assume that N = 3 or N = 4, α + β = 2∗, α ≥ 2, β ≥ 2 and
λ1, λ2 ∈ (0,ΛN ). Fix any ν > 0. Let (u, v) be any a positive solution of (1.4). For
λ < 0 we consider the reflection

x = (x1, x2, · · · , xN ) 
→ xλ = (2λ− x1, x2, · · · , xN ),

where x ∈ Σλ := {x ∈ RN : x1 < λ}. Define uλ(x) := u(xλ) and vλ(x) := v(xλ);
then

u(x) = uλ(x), v(x) = vλ(x), for x ∈ ∂Σλ = {x ∈ R
N : x1 = λ}.

Define wλ(x) := uλ(x)− u(x) and σλ(x) := vλ(x)− v(x) for x ∈ Σλ. Then

(6.1) wλ(x) = σλ(x) = 0, ∀x ∈ ∂Σλ.

Recall that (u, v) satisfies (1.4). Thus we have that

−Δwλ(x) =
λ1

|x|2w
λ(x) + aλ1 (x)w

λ(x) + aλ2 (x)σ
λ(x) + λ1

(
1

|xλ|2 − 1

|x|2

)
uλ(x)

≥ λ1

|x|2w
λ(x) + aλ1 (x)w

λ(x) + aλ2 (x)σ
λ(x)(6.2)

holds in Σλ \ {0λ}, where

aλ1 :=
(uλ)2

∗−1 − u2∗−1

uλ − u
+ ναvβ

(uλ)α−1 − uα−1

uλ − u
≥ 0,(6.3)

aλ2 := να(uλ)α−1 (v
λ)β − vβ

vλ − v
≥ 0.(6.4)

Similarly,

−Δσλ(x) ≥ λ2

|x|2σ
λ(x) + bλ1 (x)σ

λ(x) + bλ2 (x)w
λ(x)(6.5)

holds in Σλ \ {0λ}, where

bλ1 :=
(vλ)2

∗−1 − v2
∗−1

vλ − v
+ νβuα (v

λ)β−1 − vβ−1

vλ − v
≥ 0,(6.6)

bλ2 := νβ(vλ)β−1 (u
λ)α − uα

uλ − u
≥ 0.(6.7)

Define

Ωλ
1 :=

{
x ∈ Σλ : wλ(x) < 0

}
, Ωλ

2 :=
{
x ∈ Σλ : σλ(x) < 0

}
.
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Since u, v ∈ L2∗(RN ) and Ωλ
i ⊂ Σλ, there exists λ0 < 0 such that for any λ ≤ λ0,

we have ∥∥∥(2∗ − 1)u2∗−2 + να(α− 1)uα−2vβ
∥∥∥
LN/2(Ωλ

1 )
≤ 1

4

(
1− λ1

ΛN

)
S,(6.8) ∥∥∥(2∗ − 1)v2

∗−2 + νβ(β − 1)uαvβ−2
∥∥∥
LN/2(Ωλ

2 )
≤ 1

4

(
1− λ2

ΛN

)
S,(6.9)

(ναβ)2
∥∥uα−1vβ−1

∥∥2

LN/2(Ωλ
1∩Ωλ

2 )
≤ 1

16

(
1− λ1

ΛN

)(
1− λ2

ΛN

)
S2.(6.10)

Step 1. We claim that for any λ ≤ λ0, both wλ > 0 and σλ > 0 in Σλ \ {0λ}.
Fix any λ ≤ λ0. Define wλ

− := max{−wλ, 0} and σλ
− := max{−σλ, 0}; then

wλ
−, σ

λ
− ∈ D1,2(RN ). Testing (6.2) with wλ

− and using Hölder’s inequality and
Hardy’s inequality (1.6), we obtain∫

Ωλ
1

|∇wλ
−|2 ≤

∫
Ωλ

1

λ1

|x|2 |w
λ
−|2 +

∫
Ωλ

1

aλ1 |wλ
−|2 +

∫
Ωλ

1∩Ωλ
2

aλ2w
λ
−σ

λ
−

≤ λ1

ΛN

∫
Ωλ

1

|∇wλ
−|2 + ‖aλ1‖LN

2 (Ωλ
1 )
‖wλ

−‖2L2∗ (Ωλ
1 )

+ ‖aλ2‖LN
2 (Ωλ

1∩Ωλ
2 )
‖wλ

−‖L2∗ (Ωλ
1 )
‖σλ

−‖L2∗ (Ωλ
2 )
.

When θ ≥ 1, we see from the mean value theorem that

sθ − tθ

s− t
≤ θtθ−1, ∀ 0 < s < t.

Recall that uλ < u in Ωλ
1 and vλ < v in Ωλ

2 . Since α ≥ 2 and β ≥ 2, we see from
(6.3)-(6.4) and (6.6)-(6.7) that

aλ1 ≤ (2∗ − 1)u2∗−2 + να(α− 1)uα−2vβ , in Ωλ
1 ,

aλ2 , bλ2 ≤ ναβuα−1vβ−1, in Ωλ
1 ∩ Ωλ

2 ,(6.11)

bλ1 ≤ (2∗ − 1)v2
∗−2 + νβ(β − 1)uαvβ−2, in Ωλ

2 .

Then we see from (6.8) and (1.13) that

‖aλ1‖LN
2 (Ωλ

1 )
‖wλ

−‖2L2∗ (Ωλ
1 )

≤ 1

4

(
1− λ1

ΛN

)∫
Ωλ

1

|∇wλ
−|2.

From above we obtain

3

4

(
1− λ1

ΛN

)∫
Ωλ

1

|∇wλ
−|2 ≤ ‖aλ2‖LN

2 (Ωλ
1∩Ωλ

2 )
‖wλ

−‖L2∗ (Ωλ
1 )
‖σλ

−‖L2∗ (Ωλ
2 )
.(6.12)

Similarly, testing (6.5) with σλ
− we can prove that

3

4

(
1− λ2

ΛN

)∫
Ωλ

2

|∇σλ
−|2 ≤ ‖bλ2‖LN

2 (Ωλ
1∩Ωλ

2 )
‖wλ

−‖L2∗ (Ωλ
1 )
‖σλ

−‖L2∗ (Ωλ
2 )
.(6.13)

Let |Ω| denotes the Lebesgue measure of Ω in R
N . If

∣∣Ωλ
1 ∩ Ωλ

2

∣∣ > 0, then∫
Ωλ

1

|∇wλ
−|2 > 0,

∫
Ωλ

2

|∇σλ
−|2 > 0.(6.14)
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Combining this with (6.11)-(6.13), (1.13) and (6.10), we get

0 <
9

16

(
1− λ1

ΛN

)(
1− λ2

ΛN

)∫
Ωλ

1

|∇wλ
−|2

∫
Ωλ

2

|∇σλ
−|2

≤ ‖aλ2‖LN
2 (Ωλ

1∩Ωλ
2 )
‖bλ2‖LN

2 (Ωλ
1∩Ωλ

2 )
‖wλ

−‖2L2∗ (Ωλ
1 )
‖σλ

−‖2L2∗ (Ωλ
2 )

≤ 1

16

(
1− λ1

ΛN

)(
1− λ2

ΛN

)∫
Ωλ

1

|∇wλ
−|2

∫
Ωλ

2

|∇σλ
−|2,

a contradiction. Hence
∣∣Ωλ

1 ∩ Ωλ
2

∣∣ = 0, and so (6.12)-(6.13) yield∫
Ωλ

1

|∇wλ
−|2 ≤ 0,

∫
Ωλ

2

|∇σλ
−|2 ≤ 0.(6.15)

This implies that
∣∣Ωλ

1

∣∣ = 0 and
∣∣Ωλ

2

∣∣ = 0. That is, both wλ ≥ 0 and σλ ≥ 0 in

Σλ \ {0λ}. If wλ ≡ 0 in Σλ \ {0λ}, then we see from (6.2) that

−Δwλ(x) ≥ λ1

(
1

|xλ|2 − 1

|x|2

)
uλ(x) > 0 in Σλ \ {0λ},

a contradiction. So wλ �≡ 0 in Σλ \ {0λ}. Then by the maximum principle, we
conclude that wλ > 0 in Σλ \ {0λ}. Similarly, σλ > 0 in Σλ \ {0λ}.

Step 2. Define λ∗ = sup
{
λ < 0 : wλ > 0, σλ > 0 in Σλ \ {0λ}, ∀λ < λ

}
. Then we

claim that λ∗ = 0.
Assume by contradiction that λ∗ < 0. Clearly we have both wλ∗ ≥ 0 and σλ∗ ≥ 0

in Σλ∗ \ {0λ∗}. By a similar argument as in Step 1, in fact we have both wλ∗
> 0

and σλ∗
> 0 in Σλ∗ \ {0λ∗}. Take ε > 0 such that

ε <
1

2
min

{
1

4

(
1− λ1

ΛN

)
S,

1

4

(
1− λ2

ΛN

)
S,

1

16

(
1− λ1

ΛN

)(
1− λ2

ΛN

)
S2

}
.

Then there exists a small δ1 ∈ (0, |λ∗|) such that for any λ ∈ [λ∗, λ∗ + δ1), there
hold ∥∥∥(2∗ − 1)u2∗−2 + να(α− 1)uα−2vβ

∥∥∥
LN/2(Σλ\Σλ∗ )

≤ ε,(6.16) ∥∥∥(2∗ − 1)v2
∗−2 + νβ(β − 1)uαvβ−2

∥∥∥
LN/2(Σλ\Σλ∗ )

≤ ε,(6.17)

(ναβ)2
∥∥uα−1vβ−1

∥∥2

LN/2(Σλ\Σλ∗ )
≤ ε.(6.18)

Meanwhile, since wλ∗
> 0 and σλ∗

> 0 in Σλ∗ \ {0λ∗}, by convergence almost

everywhere and thereby in the measure sense of (wλ, vλ) → (wλ∗
, vλ

∗
) in Σλ∗

, we
have that

lim
λ→λ∗

∥∥∥(2∗ − 1)u2∗−2 + να(α− 1)uα−2vβ
∥∥∥
LN/2(Ωλ

1∩Σλ∗ )
= 0,

lim
λ→λ∗

∥∥∥(2∗ − 1)v2
∗−2 + νβ(β − 1)uαvβ−2

∥∥∥
LN/2(Ωλ

2∩Σλ∗ )
= 0,

lim
λ→λ∗

(ναβ)2
∥∥uα−1vβ−1

∥∥2

LN/2(Ωλ
1∩Ωλ

2∩Σλ∗ )
= 0.
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Then there exists δ2 ∈ (0, δ1) such that for any λ ∈ [λ∗, λ∗ + δ2), there hold∥∥∥(2∗ − 1)u2∗−2 + να(α− 1)uα−2vβ
∥∥∥
LN/2(Ωλ

1∩Σλ∗ )
≤ ε,∥∥∥(2∗ − 1)v2

∗−2 + νβ(β − 1)uαvβ−2
∥∥∥
LN/2(Ωλ

2∩Σλ∗ )
≤ ε,

(ναβ)2
∥∥uα−1vβ−1

∥∥2
LN/2(Ωλ

1∩Ωλ
2∩Σλ∗ )

≤ ε.

Recall that Ωλ
i ⊂ Σλ. Combining these with (6.16)-(6.18), we see that (6.8)-(6.10)

hold for any λ ∈ [λ∗, λ∗ + δ2). Then repeating the proof of Step 1, we conclude
that for any λ ∈ [λ∗, λ∗ + δ2), w

λ > 0 and σλ > 0 in Σλ \ {0λ}, which contradicts
the definition of λ∗. Therefore λ∗ = 0.

Step 3. We claim that both u and v are radially symmetric with respect to the
origin.

With the help of Steps 1 and 2, this argument is standard. Since λ∗ = 0, then
we can carry out the above procedure in the opposite direction, namely moving
the parallel planes in the negative x1 direction from positive infinity. Then they
must stop at the origin again, and so we get the symmetry of both u and v with
respect to 0 in the x1 direction by combining the two inequalities obtained in the
two opposite directions. Since the direction can be chosen arbitrarily, we conclude
that both u and v are radially symmetric with respect to the origin. This completes
the proof of Theorem 1.4. �

7. Uniqueness results for the special cases λ1 = λ2 and α = β = 2∗

2

When λ1 = λ2, some uniqueness results about ground state solutions of (1.27)
were obtained by the authors in [12, 13]. We remark that, by using the same ideas
as in [12,13], these results also hold for problem (1.4) if we assume N ≥ 4, λ1 = λ2

and α = β = 2∗

2 . First we consider the case N = 4; then we have the following
result, which improves Theorem 1.2 in case λ1 = λ2.

Theorem 7.1. Assume that N = 4, λ1 = λ2 ∈ (0, 1), α = β = 2 and ν > 0.

(1) If ν �= 1/2, then for any μ > 0, ((1+2ν)−1/2z1μ, (1+2ν)−1/2z1μ) is a ground
state solution of (1.4), with

(7.1) cν = Jν

(
(1 + 2ν)−1/2z1μ, (1 + 2ν)−1/2z1μ

)
=

1

2(1 + 2ν)
S(λ1)

2.

Moreover, the set {((1 + 2ν)−1/2z1μ, (1 + 2ν)−1/2z1μ) : μ > 0} contains all
positive ground state solutions of (1.4).

(2) If ν = 1/2, then for any μ > 0 and θ ∈ (0, π/2), (sin θ z1μ, cos θ z
1
μ) is

a ground state solution of (1.4) and c1/2 = 1
4S(λ1)

2. Moreover, the set

{(sin θ z1μ, cos θ z1μ) : μ > 0, θ ∈ (0, π/2)} contains all positive ground state
solutions of (1.4).

Proof. (1) This result can be obtained by repeating the proofs of [12, Theorem 1.1
and Theorem 1.2] with trivial modifications. We omit the details.

(2) This result can be obtained by repeating the proofs of Theorem 3.1-(2) with
trivial modifications. We omit the details. �
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Remark 7.1. As pointed out in the Introduction, by [33] we know that Zi contains
all positive solutions of (1.8). Here, for the case where N = 4, λ1 = λ2 ∈ (0, 1),
α = β = 2, ν > 0 and ν �= 1/2, we conjecture that the set {((1 + 2ν)−1/2z1μ,

(1 + 2ν)−1/2z1μ) : μ > 0} contains all positive solutions of (1.4).

Now we consider the case N ≥ 5. Denote p = 2∗

2 for simplicity. Consider

(7.2)

⎧⎪⎨⎪⎩
kp−1 + pνk

p
2−1l

p
2 = 1,

pνk
p
2 l

p
2−1 + lp−1 = 1,

k > 0, l > 0.

Let ν > 0. By a direct computation, it was proved in [13, Lemma 2.1] that there
exists (k0, l0), such that

(7.3) (k0, l0) satisfies (7.2) and k0 = min{k : (k, l) is a solution of (7.2)}.

Then we have the following uniqueness result.

Theorem 7.2. Assume that N ≥ 5, λ1 = λ2 ∈ (0,ΛN ) and α = β = p = 2∗

2 . If

ν ≥ 2
N , then for any μ > 0, (

√
k0z

1
μ,
√
l0z

1
μ) is a positive ground state solution of

(1.4). Moreover, the set {(
√
k0z

1
μ,
√
l0z

1
μ) : μ > 0} contains all positive ground state

solutions of (1.4).

Proof. This result can be obtained by repeating the proofs of [13, Theorem 1.1 and
Theorem 1.2] with trivial modifications. We omit the details. �

Acknowledgement

The authors wish to thank the anonymous referee very much for the careful
reading and valuable comments.

References

[1] Boumediene Abdellaoui, Veronica Felli, and Ireneo Peral, Some remarks on systems of elliptic
equations doubly critical in the whole RN , Calc. Var. Partial Differential Equations 34 (2009),
no. 1, 97–137, DOI 10.1007/s00526-008-0177-2. MR2448311 (2010d:35067)

[2] Boumediene Abdellaoui, Ireneo Peral, and Veronica Felli, Existence and multiplicity for per-
turbations of an equation involving a Hardy inequality and the critical Sobolev exponent
in the whole of RN , Adv. Differential Equations 9 (2004), no. 5-6, 481–508. MR2099969
(2006d:35062)

[3] N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys.
Rev. Lett. 82 (1999), 2661-2664.

[4] Antonio Ambrosetti and Eduardo Colorado, Standing waves of some coupled nonlin-
ear Schrödinger equations, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 67–82, DOI
10.1112/jlms/jdl020. MR2302730 (2008f:35369)

[5] Antonio Ambrosetti and Paul H. Rabinowitz,Dual variational methods in critical point theory
and applications, J. Functional Analysis 14 (1973), 349–381. MR0370183 (51 #6412)
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[7] Häım Brézis and Elliott Lieb, A relation between pointwise convergence of functions and
convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490, DOI
10.2307/2044999. MR699419 (84e:28003)
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