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SUBGROUPS OF p-DIVISIBLE GROUPS

AND CENTRALIZERS IN SYMMETRIC GROUPS

NATHANIEL STAPLETON

Abstract. We give a formula relating the transfer maps for the cohomology
theories En and Ct to the transchromatic generalized character maps of a
previous paper by the author. We then apply this to understand the effect
of the transchromatic generalized character maps on Strickland’s isomorphism
between the Morava E-theory of the symmetric group Σpk (modulo a transfer

ideal) and the global sections of the scheme that classifies subgroups of order
pk in the formal group associated to En. This provides an algebro-geometric
interpretation to the Ct-cohomology of the class of groups arising as central-
izers of finite sets of commuting elements in symmetric groups.

1. Introduction

There is a deep correspondence between the Morava E-theory of spaces and
the algebraic geometry of the formal group associated to En. This is apparent
in theorems such as Strickland’s work [10] that relates the E-theory of symmetric
groups (modulo a transfer ideal) to the scheme classifying finite subgroup schemes
of the formal group. It is also seen in the work of Behrens and Rezk [3] that provides
an interpretation of the E-theory of the Steinberg summands L(k)q in terms of the
modular isogeny complex of the formal group and in the work of Ando [2] relating
isogenies of the formal group to power operations in En.

The character map of Hopkins, Kuhn, and Ravenel [4] provides a tool for under-
standing the Morava E-theory of finite groups. Not only is this map computation-
ally useful, but it suggests a very close relationship between the chromatic filtration
and the inertia groupoid functor (they call this Fix(−)). This relationship has been
investigated by the author in [7] and [8] in which generalizations of the character
map were constructed using the algebraic geometry of p-divisible groups.

In this paper we compute the effect of the transchromatic generalized charac-
ters of [7] on the Morava E-theory of symmetric groups. In order to provide an
algebro-geometric description of the answer we must develop the relationship be-
tween transfers in En and transfers for the cohomology theory Ct constructed in
[7]. This is a generalization to higher heights of Theorem D in [4], which provides a
straightforward formula relating transfer maps and the generalized character map.

The computation indicates a close relationship between the cohomology of cen-
tralizers of tuples of commuting elements in symmetric groups and connected com-
ponents of the scheme that classifies subgroup schemes of a particular p-divisible
group. In particular, it provides algebro-geometric descriptions of the cohomology
of a large class of finite groups that were without interpretation before. Although
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the computations in this paper make use of the cohomology theory Ct and the
transchromatic generalized character maps of [7], we believe that they indicate
more general phenomena.

Transfers and the character maps. The first part of the paper is devoted
to understanding the relationship between the transfer maps for the cohomology
theories En and Ct and the transchromatic generalized character maps of [7].

We need some setup. Fix a prime p. Let GEn
be the formal group associated to

Morava En. We will view this as the p-divisible group

GEn
[p] −→ GEn

[p2] −→ . . .

over Spec(E0
n). Let 0 ≤ t < n and let K(t) be Morava K-theory of height t. In [7],

we construct the universal LK(t)E
0
n-algebra Ct equipped with an isomorphism

Ct ⊗GEn
∼= (Ct ⊗GLK(t)En

)⊕Qp/Z
n−t
p .

Let GCt
= Ct ⊗GLK(t)En

. Let X be a finite G-CW complex and let

hom(Zn−t
p , G)

be the set of continuous maps from Zn−t
p to G. This is a G-set by conjugation and

we will write

hom(Zn−t
p , G)/ ∼

for the quotient by the G-action.
The transchromatic generalized character map of [7] is a map of cohomology

theories

Φt
G : E∗

n(EG×G X) −→ C∗
t (EG×G FixGn−t(X)),

where

FixGn−t(X) =
∐

α∈hom(Zn−t
p ,G)

X imα

and

C∗
t (X) := Ct ⊗LK(t)E0

n
LK(t)E

∗
n(X).

Because of the equivalence

EG×G FixGn−t(X) �
∐

[α]∈hom(Zn−t
p ,G)/∼

ECG(imα)×CG(imα) X
imα,

the character map can be viewed as landing in the product of rings

Φt
G : E∗

n(EG×G X) −→
∏

[α]∈hom(Zn−t
p ,G)/∼

C∗
t (ECG(imα)×CG(imα) X

imα),

where CG(imα) is the centralizer in G of the image of α. We define

Φt
G[α] : E

∗
n(EG×G X) −→ C∗

t (ECG(imα)×CG(imα) X
imα)

to be Φt
G composed with projection onto the factor of [α].

For H ⊆ G and a cohomology theory E, there is a transfer map

E∗(EH ×H X)
TrE−→ E∗(EG×G X).
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In Theorem 2.18 below, we provide a relationship between transfer maps for the
cohomology theories En and Ct and the transchromatic generalized character maps:

Theorem. Let H ⊆ G and let X be a finite G-CW complex. Let Φt
G and Φt

H be
the transchromatic generalized character maps associated to the groups H and G.
Then for x ∈ E∗

n(EH ×H X) there is an equality

Φt
G[α](TrEn

(x)) =
∑

[gH]∈(G/H)imα/CG(imα)

TrCt
(Φt

H [g−1αg](x)).

When t = 0 this recovers Theorem D of [4]. The transfer on the right is along
the inclusion

gCH(g−1 imαg)g−1 ⊂ CG(imα).

An application to the cohomology of symmetric groups. In the second part
of the paper we apply Theorem 2.18 to Strickland’s isomorphism between the En-
cohomology of symmetric groups (modulo a transfer ideal) and the scheme that
classifies subgroups of the formal group GEn

. This produces an algebro-geometric
description of the Ct-cohomology of centralizers of tuples of commuting elements
in symmetric groups (modulo a transfer ideal).

Let Σ×p
pk−1 ⊆ Σpk be the obvious subgroup. Let Itr ⊆ E0

n(BΣpk) be the ideal

generated by the image of the transfer along Σ×p
pk−1 ⊆ Σpk . In [10], Strickland proves

that
Spec(E0

n(BΣpk)/Itr) ∼= Subk(GEn
),

where Subk(GEn
) is the scheme that classifies subgroup schemes of order pk in GEn

.
The transchromatic generalized character map and Theorem 2.18 provide an

isomorphism

(1) Ct ⊗E0
n
E0

n(BΣpk)/Itr ∼=
∏

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr ,

in which the ideals I
[α]
tr in the codomain are constructed using Theorem 2.18. In

Lemma 3.8 we prove that each of the factors in the codomain are connected and in
Lemma 3.10 we give an explicit condition under which a factor is a non-zero ring.

There are also isomorphisms

Ct ⊗ Subk(GEn
) ∼= Subk(Ct ⊗GEn

) ∼= Subk(GCt
⊕Qp/Z

n−t
p ).

Thus applying Spec(−) to the isomorphism (1) gives an isomorphism

(2)
∐

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr ) ∼= Subk(GCt

⊕Qp/Z
n−t
p ).

In Theorem 3.11 we prove the main theorem of the paper. It gives a purely
algebro-geometric description of this decomposition:

Theorem. The isomorphism (2) fits into a commutative triangle

∐

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr )

∼= ��

��

Subk(GCt
⊕Qp/Z

n−t
p )

�������
�����

�����
�����

����

Sub≤k(Qp/Z
n−t
p ),
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where the left map takes the component corresponding to [α] to the image of the
Pontryagin dual

α∗ : (imα)∗ −→ Qp/Z
n−t
p

and the right map is induced by the projection

GCt
⊕Qp/Z

n−t
p −→ Qp/Z

n−t
p .

This implies the following: Fix a map α : Zn−t
p −→ Σpk with the property that

the associated Zn−t
p -set is a disjoint union of isomorphic transitive Zn−t

p -sets, and let

L ⊆ Qp/Z
n−t
p be the image of the Pontryagin dual α∗ : imα −→ Qp/Z

n−t
p . Consider

the map induced on subgroups by the projection GCt
⊕Qp/Z

n−t
p −→ Qp/Z

n−t
p :

Subk(GCt
⊕Qp/Z

n−t
p ) −→ Sub≤k(Qp/Z

n−t
p ).

Let SubLk (GCt
⊕Qp/Z

n−t
p ) be the pullback

SubLk (GCt
⊕Qp/Z

n−t
p ) ��

��

Subk(GCt
⊕Qp/Z

n−t
p )

��

∗ L �� Sub≤k(Qp/Z
n−t
p ).

Then
Spec(C0

t (BC(imα))/I
[α]
tr ) ∼= SubLk (GCt

⊕Qp/Z
n−t
p ).

That is, the theorem above provides an algebro-geometric interpretation of

Spec(C0
t (BC(imα))/I

[α]
tr ).

It consists of the subgroups of order pk in GCt
⊕ Qp/Z

n−t
p that project onto L in

Qp/Z
n−t
p .

2. Transfer maps

We recall the formula provided in Theorem D of [4] and construct a generaliza-
tion. Following Adams’ advice at the end of Chapter 4 of [1], we avoid mentioning
the words “double cosets”.

2.1. Recollections. Fix a prime p and an integer 0 ≤ t < n. Let En be Morava
E-theory of height n with associated formal group GEn

. Let LK(t)En be the local-
ization of En with respect to height t Morava K-theory K(t). Also we will always
write Qp/Z

n−t
p for (Qp/Zp)

n−t. Recall from Section 3 of [7] that

C ′
t = colim

k
LK(t)E

0
n ⊗E0

n
E0

n(B(Z/pk)n−t)

and
Ct = S−1C ′

t,

where S is essentially the image of Qp/Z
n−t
p inside of GEn

(C ′
t). By Corollary 2.18

of [7] the ring Ct is the universal LK(t)E
0
n-algebra equipped with an isomorphism

Ct ⊗ (LK(t)E
0
n ⊗GEn

) ∼= (Ct ⊗GLK(t)En
)⊕Qp/Z

n−t
p .

Parting from the notation in [7], we will often write GCt
for Ct ⊗ GLK(t)En

.

Recall that for a finite G-space (a space equivalent to a finite G-CW complex) X,

FixGn−t(X) =
∐

α∈hom(Zn−t
p ,G)

X imα.
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The main construction of [7] is the transchromatic generalized character map

Φt
G : E∗

n(EG×G X) −→ Ct ⊗LK(t)E0
n
LK(t)E

∗
n(EG×G FixGn−t(X)).

It recovers the generalized character map of [4] when t = 0. We will denote the
codomain as

C∗
t (EG×G FixGn−t(X)).

Recall that the character map Φt
G is the composite of two maps. The first is induced

by a map of topological spaces

BΛk × EG×G FixGn−t(X)
T−→ EG×G X,

which is induced by a map of topological groupoids

Λk ×G× FixGn−t(X)

�� ��

Tmor �� G×X

�� ��

FixGn−t(X)
Tob �� X.

The map Tob is just the inclusion on each component. The map Tmor is defined by

(l, g, x ∈ X imα) �→ (gα(l), x).

More details can be found in Section 3.1 of [7] or Section 4.1 of [8].
In [4], Hopkins, Kuhn, and Ravenel provide a formula for the relationship be-

tween transfers for Morava En and their character map (the case t = 0 above).

Theorem 2.2 ([4], Theorem D). Let X be a finite G-space, H ⊆ G, x ∈
E0

n(EH ×H X), α : Zn−t
p −→ G, and

TrEn
: E∗

n(EH ×H X) −→ E∗
n(EG×G X)

the transfer map in En. Let Φ0
G be the Hopkins-Kuhn-Ravenel character map of

[4] (so t = 0) and Φ0
G(α) the character map followed by the projection onto the

α-factor. Then

Φ0
G(α)(Tr(x)) =

∑

gH∈(G/H)im α

Φ0
H(g−1αg)(x).

The purpose of this section is to extend their proof methods in order to generalize
their result to t > 0.

2.3. Two pullback squares. Fix a finite group G, a subgroup H, and an integer
k such that every continuous map Zn−t

p −→ G factors through Λk = (Z/pk)n−t.

Lemma 2.4. For α : Λk −→ G, let gH ∈ (G/H)imα ⊆ FixGn−t(G/H). Then
im g−1αg ⊆ H.

Proof. Let a ∈ imα. Then agH = gH implies that g−1agH = H. Now g−1ag fixes
H implies that g−1ag ∈ H. �

For α : Λk −→ G, let C(imα) be the centralizer of the image of α. When
multiple groups are in use we may write CH(imα) to mean the centralizer of imα
inside of H. Let X be a finite G-space. Recall that X imα is a CG(imα)-space.
There is an equivalence of spaces

EH ×H X � EG×G (G×H X),
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where G ×H X is the obvious coequalizer. Recall that there is a homeomorphism
of G-spaces

G×H X ∼= G/H ×X

induced by the map

(g, x) �→ (gH, gx).

Fix a map α : Λk −→ G. The above homeomorphism induces a homeomorphism of
C(imα)-spaces

(G×H X)imα ∼= (G/H ×X)imα ∼= (G/H)imα ×X imα.

There is also an equivalence of spaces

w :
∐

[α]∈hom(Zn−t
p ,G)/∼

EC(imα)×C(imα) X
imα � EG×G FixGn−t(X),

where the disjoint union is taken over conjugacy classes of maps. The description
on the left is given by fixing representatives of conjugacy classes. This equivalence
follows from Proposition 4.13 in [8]. Given a representative α ∈ [α], the map is
induced by the inclusion C(imα) ⊆ G.

Proposition 2.5. There is a pullback of spaces

BΛk × EH ×H FixHn−t(X)

��

T �� EH ×H X

��

BΛk × EG×G FixGn−t(G/H ×X)
T �� EG×G (G/H ×X).

Proof. Begin by viewing the spaces as the realizations of topological groupoids. The
right hand map is induced by x �→ (eH, x). The diagram of topological groupoids
is a pullback. It is trivial to see this on the level of objects. The bottom arrow on
morphisms is

(l, g, (gH, x) ∈ (G/H ×X)imα) �→ (gα(l), (gH, x)).

The image of this is only hit by (h, x) if imα ⊆ H and g ∈ H in which case it is
hit by (gα(l), x). This completes the proof as realization commutes with pullbacks
(see Chapter 11 of [6]). �

Corollary 2.6. There is a homotopy commutative diagram

BΛk ×
∐

[β]∈hom(Zn−t
p ,H)/∼

ECH (imβ)×CH (im β) X
im β

��

�� EH ×H X

��
BΛk ×

∐

[α]∈hom(Zn−t
p ,G)/∼

ECG(imα)×CG(imα) (G/H ×X)imα �� EG×G (G/H ×X).

Proof. This follows immediately from the previous proposition and the equivalence
w. �

Note that the right map is an equivalence. In the next section we will spend
a significant amount of space analyzing the left map. We will show that it is an
equivalence and give a formula for the map.
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Proposition 2.7. There is a pullback of spaces
∐

[α]∈hom(Zn−t
p ,G)/∼

E(Λk × C(imα))×Λk×C(imα) (G/H ×Ximα) ��

��

EG×G (G/H ×X)

��∐

[α]∈hom(Zn−t
p ,G)/∼

BΛk × EC(imα)×C(imα) X
imα

T◦(BΛk×w)
�� EG ×G X,

where the map on the right is induced by the projection and the map on the bottom
is the topological part of the character map.

Proof. Once again, viewing the spaces as the realization of topological groupoids
makes this easy to see. It is clearly a pullback on the level of spaces of objects
and spaces of morphisms. It is important to note that C(imα) acts diagonally on
G/H ×X imα and that Λk need not act trivially on the elements of G/H. This is
why BΛk does not split off as a factor in the pullback. �

Following the proof of Theorem D in [4], consider the decomposition of Λk ×
C(imα) spaces

G/H ×X imα ∼= ((G/H)imα ×X imα)
∐

((G/H)imα ×X imα)c,

where (−)c denotes the complement. This splits G/H ×X imα into the part fixed
by the action of Λk through α and the part that is not fixed.

Note that we can use this to decompose the pullback
∐

[α]∈hom(Zn−t
p ,G)/∼

E(Λk × C(imα))×Λk×C(imα) (G/H ×X imα)

as the disjoint union of

BΛk ×
∐

[α]∈hom(Zn−t
p ,G)/∼

EC(imα)×C(imα) (G/H ×X)imα

and
∐

[α]∈hom(Zn−t
p ,G)/∼

E(Λk × C(imα))×Λk×C(imα) (G/H imα ×X imα)c.

Also note that when the top map in Proposition 2.7 is restricted to

BΛk ×
∐

[α]∈hom(Zn−t
p ,G)/∼

EC(imα)×C(imα) (G/H ×X)imα,

then it is just T ◦ w for the G-space G/H ×X.

2.8. Some computations. For applications it is useful to be able to explicitly
compute the left vertical map of Corollary 2.6.

Let i : H ↪→ G be the inclusion. Let

hom(Zn−t
p , G)/ ∼

be the set of conjugacy classes of map from Zn−t
p to G under conjugation by G.

Consider the map

i∗ : hom(Zn−t
p , H)/ ∼ −→ hom(Zn−t

p , G)/ ∼
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induced by i. Then

i−1
∗ ([α]) = {[β] ∈ hom(Zn−t

p , H)/ ∼ |[i ◦ β] = [α] ∈ hom(Zn−t
p , G)/ ∼}.

Proposition 2.9. There is a bijection

(G/H)imα/C(imα) ∼= i−1
∗ ([α]).

Proof. Let gH ∈ (G/H)imα. Send gH to [g−1αg]. Since gH is fixed by imα,
Lemma 2.4 implies that g−1αg ⊆ H. Let kH ∈ (G/H)imα with kH �= gH. If
kH = cgH for c ∈ C(imα), then there exists h ∈ H such that

kh = cg

and

[h−1k−1αkh] = [k−1αk] = [g−1c−1αcg] = [g−1αg]

in hom(Zn−t
p , H)/ ∼. However, if kH �= cgH for some c ∈ C(imα), then

[k−1αk] �= [g−1αg] in hom(Zn−t
p , H)/ ∼

but

[g−1kk−1αkk−1g] = [g−1αg] ∈ hom(Zn−t
p , G)/ ∼ .

�

Fix an [α] ∈ hom(Zn−t
p , G)/ ∼. The homotopy equivalence w of Section 2.3

restricted to the component of [α] gives the homotopy equivalence

w[α] : EC(imα)×C(imα) (G/H)imα ×X imα �−→ EG×G

∐

γ∈[α]

(G/H)im γ ×X im γ .

We analyze the inverse equivalences.

Proposition 2.10. Let g1, . . . , gh be elements of G such that

{g1αg−1
1 , . . . , ghαg

−1
h } = [α].

Then g1, . . . , gh determine an inverse equivalence to w[α].

Proof. We write down the inverse equivalence in terms of the associated topological
groupoids. On objects we send

(gH, x) ∈ (G/H ×X)im giαg
−1
i �→ (g−1

i gH, g−1
i x) ∈ (G/H ×X)imα.

The map on morphisms is a bit more complicated. We construct it by using what
it needs to do on objects. Recall that k ∈ G acts on (G/H ×X)im γ by sending

k : (gH, x) �→ (kgH, kx) ∈ (G/H ×X)imkγk−1

.

We may assume that kgiα(kgi)
−1 = gjαg

−1
j where gj ∈ {g1, . . . , gh}. In order to

determine where the morphism (k, gH, x) ∈ G× (G/H ×X)im giαg
−1
i must map to

in C(imα)× (G/H ×X)imα consider the following diagram:

(gH, x)
k ��

g−1
i

��

(kgH, kx)

g−1
j

��

(g−1
i gH, g−1

i x) (g−1
j kgH, g−1

j kx).
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The composite of the horizontal and then right map is the target composed with
the map on objects. The left map is the source (projection) and then the map on
objects. We see from this diagram that we must map

(k, gH, x) ∈ G× (G/H ×X)im giαg
−1
i

�→ (g−1
j kgi, g

−1
i gH, g−1

i x) ∈ C(imα)× (G/H ×X)imα.

We check that g−1
j kgi ∈ C(imα): Let a ∈ imα; then

g−1
j kgia(g

−1
j kgi)

−1 = g−1
j kgiag

−1
i k−1gj = g−1

j gjag
−1
j gj = a.

It is not hard (but takes a lot of space) to show that this is in fact an inverse
equivalence. �

We can now provide a formula for the left map in Corollary 2.6:
∐

[β]∈hom(Zn−t
p ,H)/∼

ECH(imβ)×CH(imβ) X
imβ

��∐

[α]∈hom(Zn−t
p ,G)/∼

ECG(imα)×CG(imα) (G/H ×X)imα.

We do this by tracing through the diagram
∐

[β]∈hom(Zn−t
p ,H)/∼

ECH(imβ)×CH(imβ) X
imβ w ��

��

EH ×H FixHn−t(X)

��∐

[α]∈hom(Zn−t
p ,G)/∼

ECG(imα)×CG(imα) (G/H ×X)imα w �� EG×G FixGn−t(X)

using the inverse equivalence described in the previous proposition.
Fix an [α] ∈ hom(Zn−t

p , G)/ ∼ such that (G/H)imα �= ∅. Let g1, . . . , gh be
elements of G such that

{g1αg−1
1 , . . . , ghαg

−1
h } = [α]

as in the previous proposition. Let l be the cardinality i∗([α]). Without loss of
generality, let

βi := g−1
i αgi, where i ∈ 1, . . . , l,

be representatives for the elements of i∗([α]). Even more, to simplify the formulas,
let us take these representatives to be the chosen ones in the top left corner.

By using the topological groupoid model for these spaces, we compute the map
∐

{[β1],...,[βl]}
ECH(imβi)×CH (imβi)X

imβi −→ECG(imα)×CG(imα)(G/H)imα×X imα.

Let (c, x) ∈ CH(imβi)×X imβi ; then we have (on morphism sets)

(c, x) ∈ CH(imβi)×X im βi � �� (c, x) ∈ H ×X im βi

�

��

(gicg
−1
i , giH, gix) ∈ CG(imα)× (G/H ×X)imα (c, eH, x) ∈ G× (G/H ×X)imβi .

���



3742 NATHANIEL STAPLETON

We are using the fact that c ∈ CH(imβi) to compute the bottom arrow.
To show that the map is an equivalence we will show that it is essentially surjec-

tive and fully faithful. Essential surjectivity follows easily from Lemma 2.4. Thus it
suffices to show that the map induces an isomorphism on automorphism groups. Let

(gH, gx) ∈ (G/H ×X)imα be hit by x ∈ X im g−1αg under the map defined above.
Consider the stabilizers Stab(gH, gx) ⊆ CG(imα) and Stab(x) ⊆ CH(im g−1αg).
These map to each other by conjugation by g. This is clearly injective. We show
that conjugation by g−1 produces an isomorphism. Consider c ∈ Stab(gH, gx) ⊆
CG(imα). We have that

cgx = gx

and thus g−1cg stabilizes x. This is not enough though; we must show that g−1cg ∈
CH(im g−1αg). Clearly g−1cg centralizes im g−1αg and also

cgH = gH

implies that g−1cg ∈ H. We have proved the following:

Proposition 2.11. Fix an [α] ∈ hom(Zn−t
p , G)/ ∼ such that (G/H)imα �= ∅. Let

g1, . . . , gh be elements of G such that

{g1αg−1
1 , . . . , ghαg

−1
h } = [α].

This determines an equivalence
∐

[β]∈i−1
∗ [α]

ECH(imβ)×CH(im β) X
imβ � ECG(imα)×CG(imα) (G/H ×X)imα.

Remark 2.12. One of the main things to take away from this discussion is the
following: Consider (G/H)imα with the action by CG(imα). Let gH ∈ (G/H)imα;
then the stabilizer of gH is precisely gCH(g−1 imαg)g−1.

It is important to note that, even if imα ⊆ H and gH ∈ (G/H)imα, the inclusion

CH(im g−1αg) ⊆ g−1CH(imα)g

need not be an equality because g is not necessarily in H.

2.13. Properties of transfers. Taking our cue from Section 6.5 of [4] (who follow
[1], Chapter 4), we consider the following properties of the transfer map associated
to a finite covering of spaces W −→ Z for a cohomology theory E:

(1) the transfer associated to the identity map is the identity map;
(2) if W1

∐
W2 −→ Z is a disjoint union of finite coverings, then the transfer

map

E∗(W1)⊕ E∗(W2) −→ E∗(Z)

is the sum of the transfer maps associated to the coverings W1 −→ Z and
W2 −→ Z;

(3) the transfer E∗(W ) −→ E∗(Z) is a map of E∗(Z)-modules;
(4) if

W1
��

��

W

��

Z1
�� Z
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is a fiber square, then the diagram

E∗(W1)

Tr

��

E∗(W )��

Tr

��

E∗(Z1) E∗(Z)��

commutes.

We also need direct analogues of Lemma 6.12 and Corollary 6.13 of [4].

Proposition 2.14. If A ⊂ Λk is a proper subgroup, then the composite

E∗
n(BA)

Tr−→ E∗
n(BΛk) −→ C∗

t

is zero.

Proof. Recall that Λk = (Z/pk)n−t. The construction of C∗
t parallels the construc-

tion of C∗
0 = L(E∗

n) from [4]. Their proof goes through, but we reiterate it here.
Recall that there is a canonical map ([7], after the proof of Proposition 2.17)

ik : E∗
n(BΛk) −→ C∗

t

and a canonical map

A∗ φA−→ E∗
n(BA)

for any finite abelian group A. Let α be in the kernel of the Pontryagin dual of the
inclusion of A into Λk:

Λ∗
k −→ A∗.

By the construction of C∗
t , ikφΛ∗

k
(α) is a unit in C∗

t . However, the commutativity
of the diagram

Λ∗
k

��

��

E∗
n(BΛk)

��

A∗ �� E∗
n(BA)

implies that φΛ∗
k
(α) maps to zero in E∗

n(BA) under the restriction map. This means
the φΛ∗

k
(α) annihilates the image of the transfer map since it is a map of E∗

n(BΛk)-
modules by Property 3 above. Since ikφΛ∗

k
(α) is a unit, any element that multiplies

it to zero must be zero. �

Corollary 2.15. Suppose that Y is a trivial Λk-space, and that J is a finite Λk-set
with

JΛk = ∅.
Then the composite

E∗
n(EΛk ×Λk

(J × Y ))
Tr−→ E∗

n(BΛk × Y ) −→ C∗
t ⊗LK(t)E∗

n
LK(t)E

∗
n(Y )

is zero.

Proof. This follows immediately from the previous proposition and the proof of
Corollary 6.13 in [4]. �
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The following will be useful for later computations.

Proposition 2.16. Let t > 0. Assume that H ⊂ G is a subgroup and that p divides
the order of G/H. Let Iaug be the kernel of the map

C∗
t (BG) −→ C∗

t (Be),

where e is the trivial subgroup. The image of the transfer

C∗
t (BH)

Tr−→ C∗
t (BG)

is contained in the ideal (p) + Iaug.

Proof. The proof is an application of Properties 4 and 2 above. Consider the
pullback diagram of G-sets

G×G/H ��

��

G/H

��

G �� G/G.

The group G acts freely on the pullback so it is isomorphic to
∐

G/H

G. Applying

Property 4 we get the commutative diagram

∏
G/H

C∗
t

Tr

��

C∗
t (BH)��

Tr

��

C∗
t C∗

t (BG).��

The left arrow is just multiplication by |G/H| by Property 2. �

2.17. Transfers for transchromatic character maps. We use the properties
of transfer maps and the pullbacks and decompositions discussed in the previous
section to provide a formula relating transfer maps for En and Ct and the trans-
chromatic generalized character maps.

Before proving the theorem we establish one bit of notation. Because of the
equivalence

EG×G FixGn−t(X) �
∐

[α]∈hom(Zn−t
p ,G)/∼

EC(imα)×C(imα) X
imα,

the character map can be viewed as landing in the product of rings

Φt
G : E∗

n(EG×G X) −→
∏

[α]∈hom(Zn−t
p ,G)/∼

C∗
t (EC(imα)×C(imα) X

imα).

We define

Φt
G[α] : E

∗
n(EG×G X) −→ C∗

t (EC(imα)×C(imα) X
imα)

to be Φt
G composed with projection onto the factor of [α].
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Theorem 2.18. Let H ⊆ G and X be a finite G-space. Let Φt
G and Φt

H be the
transchromatic generalized character maps associated to the groups H and G. Then
for x ∈ E∗

n(EH ×H X) there is an equality

Φt
G[α](TrEn

(x)) =
∑

[gH]∈(G/H)imα/C(imα)

TrCt
(Φt

H [g−1αg](x)).

Proof. Fix an α : Zn−t
p −→ G. Our goal is to analyze Φt

G[α].
We begin by applying En to the pullback diagram from Proposition 2.7 special-

ized to [α]. We get the diagram

E∗
n(EG×G (G/H ×X)) ��

Tr

��

E∗
n(E(Λk × CG(imα))×Λk×CG(imα) (G/H ×X imα))

Tr

��

E∗
n(EG×G X) �� E∗

n(BΛk × ECG(imα)×CG(imα) X
imα).

Using the decomposition noted at the end of Subsection 2.3 and Corollary 2.15, on
the right hand side of the square above we can restrict our attention to

E∗
n(BΛk × ECG(imα)×CG(imα) (G/H)imα ×X imα)

��

E∗
n(BΛk × ECG(imα)×CG(imα) X

imα).

Now using the square from Proposition 2.5 we arrive at the commutative diagram

E∗
n(EH ×H X) ��

∼=
��

E∗
n(BΛk ×

∐

[β]∈i−1
∗ [α]

ECH(imβ)×CH(imβ) X
imβ)

∼=
��

E∗
n(EG×G (G/H ×X)) ��

Tr

��

E∗
n(BΛk × ECG(imα)×CG(imα) (G/H)imα ×X imα)

Tr
��

E∗
n(EG×G X) �� E∗

n(BΛk × ECG(imα)×CG(imα) X
imα).

The top right isomorphism follows from Proposition 2.11. All of the horizontal maps
are portions of the topological part of the transchromatic generalized character map.
Applying the algebraic part of the transchromatic generalized character map and
the fact that transfers commute with maps of cohomology theories (the transfer
map is just a map of spectra), we get

E∗
n(EH ×H X)

∏
Φt

H [β]
��

Tr

��

∏

[β]∈i−1
∗ [α]

C∗
t (ECH(imβ)×CH(imβ) X

imβ)

∑
Tr

��

E∗
n(EG×G X)

Φt
G[α]

�� C∗
t (ECG(imα)×CG(imα) X

imα).

By Proposition 2.9 the top right corner of this square can be rewritten as
∏

[gH]∈(G/H)imα/CG(imα)

C∗
t (ECH(im g−1αg)×CH(im g−1αg) X

im g−1αg).

�
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Corollary 2.19. Let α : Zn−t
p −→ G, H ⊆ G, and gH ∈ (G/H)imα. When X = ∗

the transfer map in the formula can be taken to be along the inclusion

gCH(g−1 imαg)g−1 ⊆ CG(imα).

Proof. This follows from the remark at the end of Subsection 2.3. �

Remark 2.20. This is a higher chromatic analogue of the formula for the character
of an induced representation. For H ⊆ G, u ∈ G, and χ a class function on H,

χ ↑GH (u) =
1

|H|
∑

g∈G, g−1ug∈H

χ(g−1ug)

=
∑

gH∈(G/H)u

χ(g−1ug)

=
∑

[gH]∈(G/H)u/C(u)

[CG(u) : gCH(g−1ug)g−1]χ(g−1ug).

3. Decomposing the subgroup scheme

We use the transfer maps constructed in the previous section to calculate how
the scheme

Subk(GEn
) = SpecE0

n(BΣpk)/Itr

decomposes under base change to Ct. We provide an algebro-geometric interpreta-
tion of the resulting decomposition.

3.1. Recollections. In Section 10 of [9], Strickland defines a formal scheme

Subk(GEn
),

which represents the functor

Subk(GEn
) : complete Noetherian local E0

n-algs −→ Set

that sends

R �→ {subgroup schemes of order pk of R⊗GEn
}.

The main algebro-geometric result that we need regarding Subk(GEn
) is Theorem

10.1 of [9].

Theorem 3.2 ([9], Theorem 10.1). For any continuous map E0
n −→ S,

S ⊗ Subk(GEn
) ∼= Subk(S ⊗GEn

).

The projection Subk(GEn
) −→ Spf(E0

n) is a finite free map of degree

d = number of subgroups of Qp/Z
n
p of order pk.

The scheme Subk(GEn
) is Gorenstein.

Note that Strickland’s results are more general because they apply to an arbitrary
formal group G. Here we have presented his theorem specialized to GEn

, the formal
group associated to Morava En. We will not use that the scheme is Gorenstein here.

Following Strickland, we call subgroups of Σpk of the form Σi ×Σj with i, j > 0

proper partition subgroups. Let Itr be the ideal of E0
n(BΣpk) generated by the

images of the transfers of the proper partition subgroups. In [10], Strickland proves
the main topological result regarding Subk(GEn

).
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Theorem 3.3 ([10], Proposition 9.1). There is an isomorphism

Spf(E0
n(BΣpk)/Itr) ∼= Subk(GEn

).

Lemma 8.11 of [10] implies that we need only consider the ideal generated by the

image of the transfer from Σ×p
pk−1 to Σpk (under the obvious inclusion). Proposition

5.2 of [9] gives an isomorphism

Subk(GEn
) = Subk(GEn

[pk]),

where GEn
[pk] is the pk-torsion of GEn

.
Let A be a finite abelian group. In Section 7 of [9], Strickland constructs a formal

scheme
Level(A,GEn

) : complete local Noetherian E0
n-algs −→ Set

that sends an E0
n-algebra R to the level A-structures of R ⊗ GEn

. We recall this
scheme because it will show up in the proof of Theorem 3.11.

Recall that there is a topological definition of GEn
[pk]:

Γ(GEn
[pk]) = E0

n(BZ/pk).

With a coordinate, by the Weierstrass preparation theorem, there are isomorphisms

Γ(GEn
[pk]) ∼= E0

n[[x]]/[p
k]GEn

(x) ∼= E0
n[x]/(f(x)),

where [pk]GEn
(x) is the pk-series of the formal group law and f(x) is a monic

polynomial of degree pkn.
Because GEn

[pk] is finite and free over SpfIn(E
0
n) we may consider it over

Spec(E0
n). Then it is a functor

GEn
[pk] : E0

n-algebras −→ Abelian Groups.

Both of the formal schemes Subk(GEn
) and Level(A,GEn

) can be viewed as
non-formal schemes as well without difficulty because they are finite and free over
Spf(E0

n). We get
Subk(GEn

) : E0
n-algebras −→ Set

sending an E0
n-algebra R to the collection of subgroup schemes of order pk in

R⊗GEn
[pk] (viewed as a non-formal scheme). By its definition the functor retains

the property that
R ⊗ Subk(GEn

) ∼= Subk(R⊗GEn
).

From now on we will write Subk(GEn
) for the scheme over Spec(E0

n).

3.4. Examples. The goal of this section is to apply Theorem 2.18 to E0
n(BΣpk) in

some very particular examples in order to understand the effect of base change to
Ct on Subk(GEn

).
A direct application of Theorem 2.18 provides a decomposition of Ct⊗Subk(GEn

)

as a disjoint union of smaller schemes. Consider Σ×p
pk−1 ⊆ Σpk . Theorem 2.18 gives

the commutative square of rings

E0
n(BΣ×p

pk−1) ��

TrEn

��

∏

[β]∈hom(Zn−t
p ,Σ×p

pk−1 )/∼
C0

t (BC(imβ))

��

E0
n(BΣpk) ��

∏

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

C0
t (BC(imα))
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with the property that, after base change to Ct, there are isomorphisms

Ct ⊗E0
n
E0

n(BΣ×p
pk−1)

∼= ��

��

∏

[β]∈hom(Zn−t
p ,Σ×p

pk−1 )/∼
C0

t (BC(imβ))

��

Ct ⊗E0
n
E0

n(BΣpk)
∼= ��

∏

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

C0
t (BC(imα)).

By taking the quotient by the ideal generated by the image of the transfer we get
the isomorphism

(3) Ct ⊗E0
n
En(BΣpk)/Itr ∼=

∏

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr ,

where
I
[α]
tr ⊆ C0

t (BC(imα)).

Theorem 2.18 allows us to compute I
[α]
tr . By Theorem 3.3 the left hand side of

isomorphism (3) is the global sections of

Ct ⊗ Subk(GEn
) ∼= Ct ⊗ Subk(GEn

[pk])

∼= Subk(Ct ⊗GEn
[pk])

∼= Subk(GCt
[pk]⊕ (Z/pk)n−t).

The right hand side of isomorphism (3) is a product of Ct-algebras indexed by

hom(Zn−t
p ,Σpk)/ ∼ .

Of course, some of the Ct-algebras may be zero after taking the quotient by the
images of the transfers.

We apply Theorem 2.18 in some particular examples in order to study the phe-
nomena described above.

Example 3.5. The purpose of this example is to use Theorem 2.18 to compute
the decomposition of Sub1(GEn

) after base change to Cn−1. Let G = Σp and
H = e = Σp

1. Then H is the subgroup of G that we use to define Itr. There are
precisely two conjugacy classes in

hom(Zp,Σp)

corresponding to the trivial map and the map picking out the cyclic subgroup of
order p. The centralizer of the image of the trivial map is Σp and the centralizer
of Z/p ⊆ Σp is just Z/p. Thus the transchromatic generalized character map is an
isomorphism

Cn−1 ⊗E0
n
E0

n(BΣp)
∼=−→ C0

n−1(BΣp)× C0
n−1(BZ/p).

Theorem 2.18 allows us to calculate the transfer

C0
n−1 −→ C0

n−1(BΣp)× C0
n−1(BZ/p).

The map to the first factor is a sum over Σp/Σp � ∗ and Corollary 2.19 gives the
transfer from e to Σp for the cohomology theory Cn−1. The map on the second
factor is a sum of transfers over

(G/H)imα/C(imα) = (Σp/e)
Z/p/Z/p = ∅.
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Thus the map to the second factor is just the zero map.

Let Sub1(GCn−1
) be Spec(C0

n−1(BΣp)/I
[e]
tr ), where I

[e]
tr is the ideal generated by

the image of the transfer from e ⊂ Σp. We conclude that

Cn−1 ⊗ Sub1(GEn
) ∼= Sub1(GCn−1

)
∐

GCn−1
[p].

When p = 2 it is easy to use a coordinate to calculate this map explicitly because
Σ2

∼= Z/2. The isomorphism comes from the decomposition of Cn−1 ⊗ Sub1(GEn
)

coming from the projection

GCn−1
⊕Q2/Z2 −→ Q2/Z2.

A subgroup of order 2 can project onto e ⊂ Q2/Z2 or Z/2 ⊂ Q2/Z2. If a subgroup
projects onto e, then it is a subgroup of order two in Sub1(GCn−1

). If the subgroup
projects onto Z/2, then every two torsion element r ∈ GCn−1

defines a new subgroup
of order two, the subgroup generated (r, 1).

For general p, the decomposition arises in the same way. The easiest way to see
this is by considering the surjection

Level(Z/p,GEn
) −→ Sub1(GEn

).

This is how we proceed in the proof of Theorem 3.11.

Before coming to the main theorem we work one more example.

Example 3.6. For this example let p = 2, and t = n − 1. Let G = Σ4 and
H = Σ2 × Σ2. Thus we are interested in understanding what topology has to say
about the decomposition of

Sub2(GEn
)

after base change to Cn−1.
There are precisely four conjugacy classes in

hom(Z2,Σ4)

corresponding to the cycle decompositions of 2-power order elements. It is easy to
check that

C(e) ∼= Σ4,

C((12)) ∼= Z/2× Z/2,

C((12)(34)) ∼= D8,

C((1234)) ∼= Z/4.

The transchromatic generalized character map is an isomorphism

Cn−1⊗E0
n
E0

n(BΣ4) ∼= C0
n−1(BΣ4)×C0

n−1(BZ/2×Z/2)×C0
n−1(BD8)×C0

n−1(BZ/4).

The transfer associated to Σ4 is just the transfer from Σ2 × Σ2. The centralizer
of (12) in H = Σ2 × Σ2 is H and this implies that the transfer along CH((12)) ⊆
CG((12)) is the identity map. The centralizer CΣ2×Σ2

((12)(34)) ⊆ Σ2 × Σ2 is the
whole group. Thus the transfer forD8 is the transfer along Σ2×Σ2 ⊂ CΣ4

((12)(34)).
The transfer associated to Z/4 is the zero map.

Thus the scheme decomposes into the parts

(4) Cn−1 ⊗ Sub2(GEn
) ∼= Sub2(GCn−1

)
∐

GCn−1
[4]

∐
X,

where X is the component (or components) corresponding to D8.
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Once again there is a natural decomposition of this sort from the algebraic ge-
ometry. The projection

GCn−1
⊕Q2/Z2 −→ Q2/Z2

induces a map

Sub2(GCn−1
⊕Q2/Z2) −→ Sub≤2(Q2/Z2).

The fibers of the points in the base consist of the subgroups that map to e, Z/2,
and Z/4 in Q2/Z2.

The first two components in the decomposition (4) seem to come from the sub-
groups that map onto e and Z/4 in Q2/Z2. Thus the third component must corre-
spond to the subgroups that map to Z/2 in Q2/Z2. Theorem 3.11 implies that this
is precisely the decomposition captured by the character map. That is, the scheme

Spec(C0
n−1(BD8)/I

[(12)(34)]
tr )

represents subgroup schemes of order four in GCn−1
⊕ Q2/Z2 that project onto

Z/2 ⊂ Q2/Z2.

3.7. The decomposition. Consider the projection

Ct ⊗GEn
∼= GCt

⊕Qp/Z
n−t
p −→ Qp/Z

n−t
p .

This induces a surjective map of schemes

Subk(GCt
⊕Qp/Z

n−t
p ) −→ Sub≤k(Qp/Z

n−t
p ).

In this section we prove that the decomposition of

Subk(GCt
⊕Qp/Z

n−t
p )

as the disjoint union of the fibers of this map is a maximal decomposition and that
the transchromatic generalized character map and Theorem 2.18 give precisely this
decomposition.

Lemma 3.8. For any finite group G the ring C0
t (BG) is connected.

Proof. Let (Ct)It be the localization of Ct at the prime ideal It. Let K be the
completion of (Ct)It at the ideal It. The ring K is a flat Ct-algebra because com-
pletions and localizations are flat, it is also complete local. Thus K can be used to
construct a new Borel-equivariant cohomology theory on finite G-spaces

X �→ K ⊗Ct
C0

t (EG×G X).

The proof that E0
n(BG) is complete local (eg. [5], Lemma 4.58 and Proposition

4.60) implies that K⊗Ct
C0

t (BG) is complete local with respect to the ideal It+Iaug,
where Iaug is defined as in Proposition 2.16. Now if C0

t (BG) ∼= R1×R2 for non-zero
rings R1 and R2, then there is a split short exact sequence of Ct-modules (because
R1 and R2 are necessarily Ct-algebras)

0 −→ R1 −→ R1 ×R2 −→ R2 −→ 0.

Tensoring up to K preserves this sequence. However, K ⊗Ct
C0

t (BG) is connected.
�

Corollary 3.9. Let H ⊆ G with |G/H| divisible by p. Let Itr ⊆ C0
t (BG) be the

ideal generated by the image of the transfer from H to G; then C0
t (BG)/Itr is

connected.
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Proof. If |G/H| is not divisible by p, then the transfer map is surjective. Note that
Itr ⊆ (p) + Iaug by Proposition 2.16. There is a map of cohomology theories

C0
t (EG×G X) −→ K ⊗Ct

C0
t (EG×G X),

where K is the Ct-algebra defined in the previous lemma. As transfer maps com-
muted with maps of cohomology theories we have

C0
t (BH)

Tr

��

�� K ⊗Ct
C0

t (BH)

Tr

��

C0
t (BG) �� K ⊗Ct

C0
t (BG).

This implies that

K ⊗Ct
(C0

t (BG)/Itr) ∼= (K ⊗Ct
C0

t (BG))/Itr,

where the ideal Itr on the left is the one defined using the left arrow and the ideal on
the right is defined using the right arrow. This ring is local (and thus connected).
The argument from the previous lemma now implies the claim. �

Recall that the transchromatic generalized character map and Theorem 2.18 give
an isomorphism

Ct ⊗E0
n
E0

n(BΣpk)/Itr ∼=
∏

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr

in which the ideal Itr on the left is the ideal generated by the image of the transfer

Σ×p
pk−1 ⊂ Σpk and the ideals called I

[α]
tr on the right are determined by Theorem

2.18.
The following is our main combinatorial result.

Lemma 3.10. The non-zero factors in
∏

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr

are in bijective correspondence with the elements of

Sub≤k(Qp/Z
n−t
p ).

Proof. This is a question about when the transfer map is surjective. It is true
that some of the ideals Itr in the statement of the lemma are generated by the
image of two or more transfer maps. However, since these ideals are contained in
(p) + Iaug ⊂ C0

t (BG) (unless the ideal is the whole ring), Itr is the whole ring if
and only if one of the transfer maps is surjective.

Let h = n − t. It is well known (see Section 3 of [10], for instance) that the
number of conjugacy classes of maps

Zh
p −→ Σpk

that do not lift (up to conjugacy) to

Σ×p
pk−1 ⊆ Σpk

is in bijective correspondence with isomorphism classes of transitive Zh
p -sets and

this is in bijective correspondence with

Subk(Qp/Z
h
p).
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It is clear that all maps with this property contribute factors to the product in
question: the transfer map is the zero map.

Now fix a map α : Zh
p −→ Σpk that does factor (up to conjugacy) through

Σ×p
pk−1

i

��

Zh
p

α ��

���
�

�
�

Σpk

and let γ1, . . . , γl represent elements of i−1
∗ ([α]).

Let m < k be the smallest integer such that a map α : Zh
p −→ Σpk factors up to

conjugacy through

Σ×pk−m

pm ⊆ Σpk .

Since γ1, . . . , γl all represent isomorphic Zh
p -sets (because they are all conjugate

in Σpk) the integer m is also the smallest integer such that, for each i, there is a
factorization

Σ×pk−m

pm

��

Zh
p

γi ��

���
�

�
�

�
Σ×p

pk−1

up to conjugacy in Σ×p
pk−1 .

Now assume that α does not factor through the diagonal map

Σpm
�−→ Σ×pk−m

pm .

We show that, in this case, the transfer from CΣ×p

pk−1
(imα) −→ CΣ

pk
(imα) is the

identity map.
Let X be the Zh

p -set associated to α. The factorization determines pk−m Zh
p -sets

of order pm: X1, . . . , Xpk−m such that

X ∼= X1

∐
. . .

∐
Xpk−m .

The fact that m is the smallest integer with this property implies that at least
one of the Zh

p -sets of order pm is transitive. Without loss of generality we may

assume that X1 is transitive and that X1, X2, . . . , Xj are isomorphic Zh
p -sets and

Xj+1, . . . , Xpk−m are all non-isomorphic to X1. Note that j may be equal to 1 and

that we know there are non-isomorphic Zh
p -sets because the map α does not factor

through the diagonal.
By Lemma 8.11 in [10] it suffices to show that the transfer from

CΣpjm×Σ
pk−jm

(imα) ⊂ CΣ
pk
(imα)

is the identity.
Now consider an element σ ∈ CΣ

pk
(imα), this determines an automorphism of

X. Since X1, . . . , Xj are transitive and not isomorphic to the other Zh
p -sets, σ can

not map any of X1, . . . , Xj to Xk with k > j. Thus σ must be the product of two
disjoint permutations. In other words σ ∈ Σpjm ×Σpk−jm and this implies that the
transfer map described above is induced by the identity map on groups.
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Next assume that α factors (up to conjugacy) through the Δ:

Σpm

�
��

Σ×pk−m

pm

��

Zh
p

α ��

���
�
�
�
�
�
�
�
�

Σpk .

This implies that each of the γi’s will factor through the diagonal (up to conjugacy

in Σ×p
pk−1). We also know that α does not factor through the inclusion Σ×p

pm−1 ⊂ Σpm .

We will conclude that the transfer map induced by the inclusion

CΣ×p

pk−1
(imα) −→ CΣ

pk
(imα)

is not the identity map.
The assumptions imply that the dotted arrow determines a transitive Zh

p -set

of order pm and that X is a disjoint union of pk−m copies of this set. Now any
permutation of these sets is in CΣ

pk
(imα) and many of these are elements of prime

power order that are not in Σ×p
pk−1 .

Now any map α : Zh
p −→ Σpk factors up to conjugacy through one of the

two cases discussed above. In the first case, when it does not factor through the

diagonal, it does not contribute a factor to the product in question (because I
[α]
tr =

C0
t (BC(imα))). In the second case, when it does factor through the diagonal, then

it does contribute a factor. In this case the number of maps α (up to conjugacy)
with a particularm are in bijective correspondence with the number of isomorphism
classes of Zh

p -sets of order pm. This is the cardinality of Subm(Qp/Z
h
p). Putting

these together for varying m gives the total number of non-trivial factors in the
product: the cardinality of

Sub≤k(Qp/Z
n−t
p ).

�

The isomorphism induced by the character map
∐

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr ) ∼= Subk(GCt

⊕Qp/Z
n−t
p )

along with the lemmas and examples above seem to imply that the character map
modulo transfers witnesses the decomposition of Subk(GCt

⊕Qp/Z
n−t
p ) as the fibers

of the map to Sub≤k(Qp/Z
n−t
p ). The first lemma implies that the scheme can be

decomposed no further. Now we show that this is true:

Theorem 3.11. The isomorphism fits into a commutative triangle

∐

[α]∈hom(Zn−t
p ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr )

∼= ��

��

Subk(GCt
⊕Qp/Z

n−t
p )

�������
�����

�����
�����

����

Sub≤k(Qp/Z
n−t
p ),
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where the left map takes the component corresponding to [α] to the image of

α∗ : (imα)∗ −→ Qp/Z
n−t
p

and the right map is induced by the projection

GCt
⊕Qp/Z

n−t
p −→ Qp/Z

n−t
p .

Proof. Note that the image of the Pontryagin dual in Qp/Z
n−t
p is invariant under

conjugation of the map α. The right vertical map is induced by projection onto the
Qp/Z

n−t
p factor.

Let A be an abelian group of order pk. There is a canonical isomorphism

hom(A∗,GEn
) ∼= Spec(E0

n(BA)).

Pulling this isomorphism back to the ring Ct and applying the transchromatric
generalized character map gives the isomorphism

hom(A∗,GCt
⊕Qp/Z

n−t
p ) ∼=

∐

hom(Zn−t
p ,A)

Spec(C0
t (BA)).

The definition of the character map implies that this fits into the following com-
mutative diagram:

hom(A∗,GCt
⊕Qp/Z

n−t
p )

∼= ��

��

∐

hom(Zn−t
p ,A)

Spec(C0
t (BA))

��

hom(A∗,Qp/Z
n−t
p )

(−)∗
��

��

hom(Zn−t
p , A)

		����
����

����
����

�

Sub≤k(Qp/Z
n−t
p ).

There is also the commutative diagram of schemes

Level(A∗,GEn
)

��

∼= �� Spec(E0
n(BA)/Itr)

��

hom(A∗,GEn
)

∼= �� Spec(E0
n(BA)).

Pulling the top arrow back to the ring Ct and then applying the character map
gives the commutative diagram

Level(A∗,GCt
⊕Qp/Z

n−t
p )

∼= ��

��

∐

α∈hom(Zn−t
p ,A)

Spec(C0
t (BA)/Iαtr)

		����
����

����
��

Sub≤k(Qp/Z
n−t
p ).

It is not important to the argument, but it should be noted that a level structure
for the p-divisible group GCt

⊕Qp/Z
n−t
p is a map A∗ −→ GCt

⊕Qp/Z
n−t
p such that

there exists a decomposition A∗ ∼= B ⊕ C in which B −→ GCt
⊕ Qp/Z

n−t
p gives a

level structure for GCt
and C −→ GCt

⊕ Qp/Z
n−t
p maps injectively to Qp/Z

n−t
p .

Thus when A∗ ∼= Z/pk, a level structure is either a level structure for GCt
or an
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injective map to Qp/Z
n−t
p . It is a reasonably easy consequence of Theorem 2.18

that this is what the top right corner of the diagram above represents.
In [9], Theorem 7.4, Strickland defines a map

Level(A∗,GEn
) −→ Subk(GEn

).

The map sends a level structure to its “image”, which is a subgroup scheme of GEn
.

When the target scheme is constant the “image” divisor of the level structure is
the genuine image of the map. Thus after pulling back to Ct we have the following
commutative diagram:

Level(A∗,GCt
⊕Qp/Z

n−t
p ) ��

��

Subk(GCt
⊕Qp/Z

n−t
p )

		����
����

����
����

�

Sub≤k(Qp/Z
n−t
p ).

In the proof of Proposition 9.1 of [10], Strickland proves the following result: Let Ā
be the set of transitive abelian subgroups of Σpk (note that each of these has order

pk). The following diagram commutes:

∐
A∈Ā

Level(A∗,GEn
)

∼= ��

��

∐
A∈Ā

Spec(E0
n(BA)/Itr)

��

Subk(GEn
)

∼= �� Spec(E0
n(BΣpk)/Itr),

where the right map is induced by the inclusion A ⊆ Σpk and the global sections
of each of the vertical maps are injective maps of rings. Note that this property is
preserved after pull-back to Ct because Ct is a flat E0

n-algebra.
We have shown that, after pulling back to Ct, the left hand map and the top map

both commute with the natural maps to Sub≤k(Qp/Z
n−t
p ). Because the right hand

map is induced (on each component) by an inclusion of groups, the subgroups of
Qp/Z

n−t
p defined by considering the image of the Pontryagin dual of the map from

Zn−t
p −→ imα ⊆ A or Zn−t

p −→ imα ⊆ A ⊆ Σpk are the same. This implies that

the right hand arrow also sits inside a commutative triangle to Sub≤k(Qp/Z
n−t
p ).

Finally, since the global sections of the vertical maps are injective we can pick an
element in the global sections of Sub≤k(Qp/Z

n−t
p ), map it into the global sections of

Subk(GCt
⊕Qp/Z

n−t
p ) and then map it around the square. The result follows. �

Fix a map α : Zn−t
p −→ Σpk that factors through Δ (up to conjugacy) as in the

proof of Lemma 3.10 and let L ⊆ Qp/Z
n−t
p be the image of the Pontryagin dual

α∗ : imα −→ Qp/Z
n−t
p . Let f : Subk(GCt

⊕ Qp/Z
n−t
p ) −→ Sub≤k(Qp/Z

n−t
p ) and

let SubLk (GCt
⊕Qp/Z

n−t
p ) be the pullback

SubLk (GCt
⊕Qp/Z

n−t
p ) ��

��

Subk(GCt
⊕Qp/Z

n−t
p )

f

��

∗ L �� Sub≤k(Qp/Z
n−t
p ).

Thus SubLk (GCt
⊕Qp/Z

n−t
p ) consists of the subgroups of GCt

⊕Qp/Z
n−t
p of order pk

that project onto L ⊂ Qp/Z
n−t
p . We have the following corollary of Theorem 3.11
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above that gives an algebro-geometric description of the Ct-cohomology of groups
that arise as centralizers of tuples of commuting elements in symmetric groups
(modulo a transfer ideal):

Corollary 3.12. For α : Zn−t
p −→ Σpk factoring (up to conjugacy) through Δ,

there is an isomorphism

Spec(C0
t (BC(imα))/I

[α]
tr ) ∼= SubLk (GCt

⊕Qp/Z
n−t
p ),

where the ideal I
[α]
tr is the ideal coming from the application of Theorem 2.18 to the

inclusion Σ×p
pk−1 ⊂ Σpk .

Proof. This follows immediately from the previous theorem. �

Remark 3.13. When t = n − 1 the groups that arise as centralizers of maps α :
Zp −→ Σpk that factor through Δ are groups of the form

Z/pi � Σpj ,

where i+ j = k.

Remark 3.14. When imα = e ⊂ Σpk , the fiber over e ∈ Sub≤k(Qp/Z
n−t
p ) is

Subk(GCt
).

Remark 3.15. When imα = Z/pk ⊂ Σpk , the image of the Pontryagin dual is a

subgroup of Qp/Z
n−t
p isomorphic to Z/pk. The fiber is GCt

[pk].

Before this, the two classes of finite groups with algebro-geometric interpretations
of their cohomology rings were cyclic groups and symmetric groups. The remarks
above imply that the fibers of the subgroups between e and Z/pk can be viewed as
interpolating between these two examples.
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