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DECAY ESTIMATES FOR ONE-DIMENSIONAL WAVE
EQUATIONS WITH INVERSE POWER POTENTIALS

O. COSTIN AND M. HUANG

ABSTRACT. We study the one-dimensional wave equation with an inverse power
potential that equals const.z=™ for large |z|, where m is any positive integer
greater than or equal to 3. We show that the solution decays pointwise like
t~™ for large t, which is consistent with existing mathematical and physical
literature under slightly different assumptions.

Our results can be generalized to potentials consisting of a finite sum of
inverse powers, the largest of which being const.z™%, where a > 2 is a real
number, as well as potentials of the form const.z =™ +O(z~™=%1) with §; > 3.

1. INTRODUCTION

There is an extensive literature - both mathematical and physical - on the decay
estimates for wave equations and Schrodinger equations with a potential, starting
with Strichartz’s work for V' =0 [I3[I4]. The case V # 0, important in physics, is
the subject of many recent papers where a variety of modern analytical tools and
different assumptions on V' are used (see [IL[7HI0] and also [12] for a survey).

In the physical community the corresponding problem goes by the name of tails,
and the precise description of these tails is an important issue in scattering theory.
Based on nonrigorous and numerical methods, physicists predicted that the solu-
tions to wave equations on the line with potentials decaying like ||~ as |z| — oo
will decay in time like ¢t~%; see for example [34]. Mathematically, a recent study
by R. Donninger and W. Schlag ([7]) showed that for potentials V' (z) decaying like
|z|~* where 2 < o < 4 with no bound state or zero energy resonance, the solution
1) to the one-dimensional wave equation

" Pp(a,t)  OP(a,t)
ot? Ox?

is bounded by ¢t~ for large t. They also obtained a similar estimate for the more

important Regge-Wheeler potential, though it is not known whether the estimate

is sharp (see [10]).

The purpose of this paper is to give sharp estimates for the decay of ¢ where
V(z) = const.x™™ for large |z| (the constants are allowed to be different for positive
and negative x), where m € N and m > 3. The result is consistent with [7] and
confirms the predictions by physicists.

Our method is based on the inverse Laplace transform of the equation in ¢, a
technique first used to study the time decay of Schrodinger equations (see e.g. [Bl[6]),
and it can be applied to potentials consisting of a finite sum of inverse powers, the
largest of which being const.x ™%, where o > 2 is a real number, as well as potentials

+ V(z)y(z,t) =0
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of the form const.z™™ + O(z~™7%!) with §; > 3 (see Section [[]). The advantage
of our approach is that it gives sharp estimates based on explicit calculations. A

further refinement of this approach is expected to lead to a proof of Price’s Law on
Schwarzschild black holes (see e.g. [10]).

2. SETTING AND MAIN RESULTS
We analyze the wave equation (I]) under the following assumptions:

Assumption 1. (i) The potential V' is such that the one-dimensional Schrédinger
operator A := —% + V(z) has no bound states and no zero energy resonances.
(1) V is m + 2 times differentiable.

(i1i) As © — +oo we have V(x) = const.ya™™

, where m € N and m > 3.
The solution to ([) (cf. [7]) can be written as

(0 = con(t/ Ao + ) 1) 1= 0(0,0), ) = 200,
where 11 € L*(R).
Our main results are

Theorem 1. Under Assumption [l we have

s1n(t\/Z) _ o —m —m
TR (@) = @) ) R ),

cos(tV/A)o(x) = fo(x)(t) ™" + (£) "™ Ro(x, 1),
where
[1{2) 7275 (@) lloo < 12} 95 (2)lh, 4 = 0,1,
1) ™" 2R (2, £)lloo < (2™ P (2) 1,
[[{z) ™" P Ro (@, )] |0 < [[{@)™ oo (@)1 + [[{a)™ Py (@)1
Here (z) := (1+2%)'/2, and for j = 1,2 the infinity norms of Rj(z,t), j = 1,2, are

in both x and t, and lim;_,o, R;(x,t) = 0. Moreover, 7;(x) are nonzero for generic
initial data (cf. Remark [6l).

In Section [ we discuss generalizations where V' is a sum of inverse powers, and
an extension of results of the type in [I2]. The special case m = 2 will also be
briefly discussed in Note [l below.

The basic strategy we use is to take the Laplace transform in ¢ of ([Il) and study
the solutions of the transformed equation. Laplace transformability is shown in
Proposition [[4] in the Appendix; its existence does not require Assumption [ (i);
the result of Theorem [I] is however contingent on it.

3. DISCUSSION OF METHODS AND MAIN STEPS OF PROOF

We use integral transforms to regularize the problem. First we take the Laplace
transform (£) in ¢t of equation (Il), which transforms () into an ODE (see (2)
below) in the dual variable e. The position of the singularities of the solution
of @) indicates possible exponential behavior and oscillations, while the type of
singularity is related to the type of power law decay. As a very simple illustration
where the duality between decay in ¢ and singularities in € is manifest, consider the
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FIGURE 1. Deformation of the inverse Laplace contour for the
main singular terms; the leftmost contour allows for obtaining
sharp estimates using Watson’s lemma. (The point —% is not
special-it is chosen for convenience.)

function f(t) =t Pe~* with 0 < 8 < 1 and where « can have a nonzero imaginary
part. The Laplace transform of f is

L(f) = F =T(1 - B)(e + )™,

The asymptotics in ¢ follow from Watson’s lemma, after deforming the contour
as in Figure 1, where we took for definiteness ¢ = 0. In the actual problem, the
only singularity contributing to the asymptotics is indeed € = 0, which is a branch
point. The type of the singularity follows from the small ¢ asymptotic behavior of
the associated homogenous equation ([3). The asymptotic analysis in e of the full
problem is complicated by the fact that when € tends to 0 and = goes to oo, there is
a competition between V(z) and €2, and as a result, this is effectively a singularly
perturbed problem. To regularize it, we apply another transform to (8], an inverse
Laplace transform in . The resulting equation is the ODE (&) with only regular
singular points. Global analysis of () involves long but conceptually relatively
simple calculations, which are carried out in Section[dl The singularity structure of
the Laplace transform of the solution ¢ of (2] is obtained in Section Bl where the
main results are the expansions ([@6) and (I09), which are valid for all ¢ € H\{0}

m—1
and € R. These expansions contain the crucial leading terms 7’3(%)%

and 7“4(95)(1;82% that yield the desired time decay, which is shown in Section
The terms in the inverse Laplace transform formula (II5) are estimated differently:
the contribution of the leading term is found by contour deformation (see Figure
1), the remainder R(z,¢) is simply estimated by integration by parts, while the last
term is estimated using (I16)).
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4. REGULARITY PROPERTIES OF THE LAPLACE TRANSFORMED EQUATION
By taking the t-Laplace transform of ({l) we obtain the ODE

(2) V' (2,8) = (V(2) + %) (2, €) + 1 (2) + etbo(2),

where

dee) = [ e ar

The analysis relies on properties of the exponentially decaying solutions of the
homogeneous equation

(3) y'(z) = (V(z) + ) y(a).
For z > 0 and € > 0 the exponentially decaying solution has the behavior
(4) y(@) = yy () = e 7" (1 + s(x; ),

where s(z;¢) is an o(1) power series in 1/z, as © — oo.
Similarly, the the exponentially decaying solution for < 0 and € > 0 satisfies

g (@)= (1 +5_(z5¢)) = e==(1 + o(1).
The solution of the Laplace transformed equation (2] can be written as

O(x,e) =Gy + etho);
5 T x
B Gy L (y<x> [ vy, [ y(uw(u)du),

o0 — 00

where W =y 4y’ — ¢/ y_ is the Wronskian.

Note 1. For V(z) = a/2™ and m = 1,2 the equation can be solved in terms of
special functions.

For V(x) = a/x?, the solution that decays like e 5%, as x — oo is given in terms
of the modified Bessel function K as

yt = /2ex/nKy(ex); o =+/a+1/4
For small € and fixed z, y© has the form
(6) C1(2)e' T Ay (e) + Co(z)e' ™ Ag(e)
with Ay, Ao analytic.

For m > 3, the exponentially decaying functions have asymptotic expansions in
integer powers of € and €lne. By symmetry it is sufficient to study the case x > 0.
The function s satisfies

(7) s" —2es’ —V(z)s=V(x).

It is easy to see that an o(1) solution of () exists and is unique.

The remainder of this section is dedicated to detailed calculations to obtain the
regularity properties of y(z;¢) in {); in particular, near the branch point ¢ = 0.
In Section [L.1] we take the inverse Laplace transform of (), study the transformed
function §, and obtain the expansions in CorollaryBl In Section 2] we calculate the
small € behavior of s(x;¢) (expansion [#2)) in Lemma [F). In Section 3] we obtain
the small € behavior of y(z;¢). Finally in Section 4] we obtain the regularity
properties of y for large e.
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4.1. The inverse Laplace transform of s(z;¢) in x. We first assume V is m+2
times differentiable and

By rescaling x and € one can make vy o = %1.

To analyze the behavior of s(z;¢e) for small € and = > x,, it is convenient to
study its inverse Laplace transform, this time in x, to regularize the behavior at
turning points. Inverse Laplace transformability does not need to be proved at this
stage, since at the end we show that the Laplace transform of the solution to the
dual equation solves (). We let

8(q) = H(q)/lg(q + 2¢)]
be the formal inverse Laplace transform of s (z — ¢ with Rez > z ), and obtain

U1 m—1 m ’Ulli (q)
8 H(g) = — —
®) (@) (m — 1)!q q(q + 2¢)
where PF(q) = [ F(u)du. With the change of variable ¢ = 7, H(q) = F(7), we

obtain
viem-irm-t L om—2pm v F(T) .
(m—1)! (T +2)
The singularity structure of s(x;¢) (cf. ([{)) for small € depends on the behavior of
F(7) for large 7 in the complex plane. Let

H:={z:Rez>0}; Hy:={2€C:argz e (—n/4,5m/4),z # 0}.

In the following we show that F'(7) has an asymptotic expansion in powers of &,
771 and 72~™In 7 for small £ and large 7.

(9) F(r) =

Lemma 1. (i) The function § has a Laplace transform in q, F' is analytic in T for
ReT > —2 and entire in € and has the convergent expansion

(10) F(r) ="' Fpa(r)+ Y e F(7)
jzm
where j, = (m—2)(G—m+1)+m—1, F,_1(1) = v17™ 1 /(m — 1)!, while for
j = m we have
) j—m+1 1
(11) Fj(r)=71m Z M M2D (In(r ) W (17 Wi(2) analytic for |2| < 7

Furthermore, F} is analytic in H; and

|7_|jm
12 Fi| < = or T € Hj.
(12 B S T 1

(i) For |T| > 3 we havd]

(13) Fy(r) = E(7) + 79" Gy (),
2 2—k

FJ[O = r/m < Z O, 07-—71 + Z Z a’k(m 2)+n, kT k(m—2)—n(1n7_)k> ,

k=1n=0

In fact we only need to keep the first few terms of ([[I)) and estimate the remainder.
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where a}{,]c =0ifj<m+k—1o0rl>m, and the following estimates hold: for
some ¢1 > 0 (independent of all indices above)

(14)
. Cn _ Clj
ol € e sup (1) 76 ()] < —
WS (G —2m + 2722 ey ’ (G — 2m + D)) 72
Proof. We analyze the case vy = 1; if v1 = —1, the arguments are very similar. We

look for solutions to (@) which are O(e™~17r™~1) for small 7. Consider the space B
of functions of the form f(7) = 7"1G(7), where G is analytic for, say, || < 7o for
arbitrarily large 79 > 0 with the norm || f|| = sup{|G(7)|: |7| < 70;7 > —a > —2}.
We see that this is a Banach space, and equation (@) is contractive in B. The
solution of (@) is unique, and it is analytic for small 7. As a differential equation
@) reads
emT2F

15 Fm — —

(15) (1 +2)
The argument above, or Frobenius theory, shows that (3] also has a unique solution

which is of the form ﬁam’%m’l (1+0(1)) for small 7. The solution is obviously

analytic for Re7 > —2, since the only singularities of equation (@) are 7 = 0 and
7= —2, and it is entire in € for ReT > —2, since the equation depends analytically
on €.

By standard ODE asymptotic results [I5] we see that any solution of () is
uniformly bounded in C by

m

(16) Ce)lr| " ema k]

l/m‘T|172/m

for some C(g) > 0. This ensures the necessary (sub)exponential bounds for taking
the Laplace transform in e.
We now look for solutions of ([[3)) in the form

P em—1rm—1 ij
(17) = W + Z & Js

jzm
and we show that the expansion ([T is convergent.

The functions F} satisfy the recurrence

Ej , 1
=P s 1 = m — 1)
(18) Fip1=P T +2) jzm-—-1; Foq(r)=1 /(m—1)

For now, we take 7 in H;. It can be checked by induction that the F}’s are analytic
in H; and at zero, and since |7/ | < |77 ~1(7 4 2)| in H; and

jm +m—2 _ _m_
| P rim=2| = |7;‘] " < ( .(]m m+1)! ) z |T|(j+1)m,
T Gm — 14k NG+ Dm —m+1)!

([I2) follows by induction. The last inequality above comes from the fact that

m—1 m=2 m—3 m
(19) <H(J’m—1+k>> > (ju — 1) > (H(jm—m+2+k)> .

k=0 k=0



DECAY ESTIMATES FOR 1-DIMENSIONAL WAVE EQUATIONS 3711

It follows that the series ([]) converges uniformly on any compact set in Hj.

Moreover, we see that the function series
m 1
20 H(q) = eim Fi(q/e)
(20) @ =Gy T > (q/e)
j=m

also converges uniformly in any compact set in H;. Existence of the Laplace trans-
form of (H 4(512) y follows from the bound ([Ig) for F.

We write (@) as

(21) T(r+2F T =Fj, j>m—2 Fu=0.

Note that F,_; is explicit (see (I8)). Let Lg = 7(7 + 2)g(™)(7). Equation (1))
implies
(22) LImmP2E =0, j>m.

Note 2. The indicial polynomial of [22)) at infinity is

(23) H H —n'—n), j=m,

with the convention that a product is one if the index set is empty, and, by Frobenius
theory, [23) implies (). Equation (23] follows from

(24) LTA :TA*er?[/\()\_1)..-(/\—m_|_1)_|_0(7-*1)]_

(i) The existence of an asymptotic expansion of the form (I3]) follows from (ITI).
It remains to estimate the coefficients and the remainder (which we do recursively),
for which we can assume j,, > 2m — 2, since for j,, < 2m — 2 the result follows
directly from (ITI).

We have

(25) L(t"In'(t)) = t" *In' ¢(1 + 2t71) <n(n —1) e (n—m+1)+ Y Pl(lnt)_l>,
1=1
where P, are polynomials of degree at most m — 1 in n and m in [. Substituting
(@0 in (2I) using the notation in ([I3]) and taking am = ((Jm —2m+ 2) )_ﬁAg}l,
we get the following recurrence for 0 < ! < 3 with (m 2)l<n<m-1
, 1 ,
(26) AE‘Z}Z — C A[j + Z C[/ Uin IAE{/],Z’ - 0,
Jn l
where J,, ; consists of indices earlier than n,l: J,; = {(n,l') : ' > I} U{(n — 1,1') :
0<V <2} In (@8 we have 0 < CY} < 1, and for some ¢; > 0 and all n,n’,1,1', j
we have |Cy[f;]’l,m7l\ < ¢4. Solving for AE,]Z in the order n =0,1,...,m — 1 and for a
fixed n in the order I = 2,1, 0, the first inequality in (I4]) follows inductively on j.

Note 3. Let R; = 7/»~™~1@G,. Then, R, satisfies the recurrence
(27) (1 +2)R"™ = R;_y + 7972 (InT),

where p; is a quadratic polynomial with coefficients bounded by
C2

[((j = )m — 2m + 2)] 772

for some j—independent cs.
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Equation (27) simply follows by writing Fj;(1) = F. ][0} + R;(7), calculating the
finite sum LFJ[O] explicitly using ([24]) and (28, and estimating the coefficients of p;
using the first inequality in (I4]).

Proof of the last inequality in [Id). Since jm, = (j — 1);m + m — 2, we have by [27)
T Dm=m= (G54 (7) +p1(1ﬂT))‘

T4+2
< PrUTIm T2 (7G5 (1) + p(In ).

Also, by direct integration we have

Rj| = [P™
(28) | J| |7>

(29) / 47 Int dt < ca(n+ 1)~ ([l 7| £ 1), 1=0,1,2, n >0,
0

for some c3. The rest follows from (28]) and (29) by induction on j, noting that (cf.

also ([I9))

(30)

1 - (((J—l)m—2m+1)!>wi'"2
PG =D —m—1+k) (Jm —2m +1)!
|
Since §(q) = H(q)/[q(q + 2¢)] and H(q) = F(q/e), the expansions for F' in
Lemma [I] allow us to obtain the corresponding expansions for H and 3:

Lemma 2. (i) For|q| > 3|€\E we have the expansion

m—1
H(q) = q" "Hoolg) + D €™ Hyo(q)
k=1
(31) 2 2—n
+ YN etk yy L (g) I (g/e) + €M R(g/e, q),
n=1 k=0

where H; j(q) (5 < 2) are analytic in q with sub-exponential growth for large g,
Hoo = 0 if m > 3, and [0t R(u,v)/0u*dv!| < (|Inu| 4 1)3|u|~* for Reu > 0,
q/e € Hy, |v| < const., and 0 < kE+1<m+1.

(ii) For |q| < 3le| and Re(q/e) > 0, H(q) is analytic in q, entire in €, and
[H(q)| < lal™ "

Proof. (i) Recall that ¢ = e7, H(q) = F(1), and a%]c =0if j < m+k—1 by Lemma

I We thus substitute 7 = ¢/¢ in (I3) and obtain [BI]) by collecting coefficients of
powers of € and In(g/e). We define

qm 1H00() _1 +Zq3ma
jzm
el AN Z a[J] (1<k<m—1),
jzm
T M (E aE{}m,M,nqjm*““’”*2)*’“) (1<n<2,0<k<2-n),
jzm+n—1

R(g/e,q)= Y ¢ "Gj(q/e).

Jm=2m

23 can be replaced by any constant bigger than 2.
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Convergence of the three series is ensured by ([4]). Note that the Hy, ,, are analytic
in g for all choices of k and n above. Since Fj(7) is analytic in H; (see Lemma [I]),
by ([[) and Cauchy’s formula we have

(|ln7|+1)3

7n

6y < I
GIS ((Jm —2m + 1)) 7=

for 7 € H. Noting that for a > 0 we have (j!)* > const./T'(aj + 1), () implies

oo

|T‘jm |T‘J |CtT| .
Z((Jm_2m+2 mz<z <Zp w0 Se’lml, va > 0.

Thus sub-exponential growth of HZ . follows In fact it is elementary to show that

the last sum is bounded by e®™s* "% The rest of (i) follows from (I0) using (I2)
and (I3)) to estimate the terms.
(ii) This follows from (I0) and ([I2). O

Corollary 3. (i) For |q| > 3|e| we have
(32)

oy H(a)

)= q(q + 2¢)
_ & n(m— €m72ﬂ'1’n 1(6) 7 n mR(q/EaQ)
_gg‘ ( 2) <q+—2fj+H27n+1(q,€)> In (Q/€)+€ m,

where Hy ; are entire, Hs j(q,e) are entire in e, analytic in ¢ and have sub-

- . —_9ym=2
exponential growth for large q, Ha 1(g,€) = O(e™™3), Hy1(0) = %, Hi3=0
m
if m > 3, and R is the same as in Lemma 2l
(ii) For |q| < 3|e| and Re (¢/e) = 0 we have
H m=2f
(33) sg) = AW IE) | ooy g,

q(q + 2¢) q+ 2¢

where H; are analytic in q and entire in €.

Proof. Note that for a function f analytic in ¢ and entire in € we have

flase)  f(=2¢)  flqg) — f(—2¢) f () -
(34 q+2¢ - q+2e * q+2e = q12€+f2(q76)7

where f5 is analytic in ¢ and entire in . Now using (3I)), we take

m—1
af(g:6) = ¢ " Hoola) + Y, F¢*™ > " Hyo(q)

k=1
in (34) and define e?=R (=201, | = f; (k= 1,2). For k,n = 1,2 we take
2—n
af(g:e) =Y e¢" T Hiw(g)
k=0

in (34) and define e@-*+m(m=2pp . — fr (k,n = 1,2). The sub-exponential
growth of Hj ; follows immediately from the sub-exponential growth of Hs ;(q).
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(_2)m72

I(m)
proof of Lemma
Similarly, to obtain ([B3]) we use (34) for f(¢) = H(q) and apply Lemmal (ii). O

In addition, fll)l(O) = Hyo(0) = —% m—1(—2) = by Lemma [I] and the

4.2. Asymptotic expansion of s(z;e) for small . For small ¢, the function
s(x;e) (cf. (@) has an asymptotic expansion in powers of ¢ and €™ 2Ine. To
obtain the time decay of v, only a few terms of this expansion are needed, and they
are obtained in Lemma [ below.

Lemma 4. (i) Let 6 > 0 be arbitrarily small but fized. We have forx > x4, e € H

and |e| < 1/x

(35)  s(z;e) = hi(z)e™ ?Ine + ho(x)e™ tne + hy(x)e*™ *(Ine)? + Q(x;¢),

where the smooth functions h; satisfy
(_2)m—2 (_Q)m—lx

36 h ~—————h ~—

686 ()~ () ~

where ag is a constant and for m > 3 one can take hs(x) = 0. Furthermore,

ok Q(x;¢) 9*Q(z;¢)
37 m—2—k ) ]i} m+6 -2
(37) ogsggq Oek Ok

The asymptotic formula [B3) is twice differentiable in x, i.e. B0) holds with Q
replaced by Q' or 22Q".

,ha(z) ~ ag as © — oo,

T < o0; sup

m<k<m+1

< 00

Proof. We write

38) (/ ’ /3 / > qf;dq

The first and last terms are estimated easily: the last integral is manifestly analytic
in € and decays exponentially in z, so 1) is obvious. By Corollary Bl the first

integral is equal to
3
H
amfz/ ( 1(6) + Hy(er, 5)) e T dr.
0

T+2
Thus it is analytic in € and satisfies the estimates in 1) by direct differentiation
in €, noting that [e™~2| < 227 ™.
To estimate the middle integral in (BY)) we use (32) to write

1 H —qx
q((qq)TzE)dq = Sl(«r, 6) + SQ(I,E) + 83(1376)7
where
3 1 k—1_—qx
) f In(g/e))" e 1
_ k(m 2)H ( d
(39) Si(z,¢e) ;e 1k (€) /3 > 7,

(40) Zek(m 2)/ ln(q/s))kﬁ27k+1(q,z—:)e*q“’dq,

1 pn —qx
R(q/¢,q)e d

1) Ss(me) =e” 3. g+ 2e)
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Now the fact that the middle integral in (B8] has an expansion of the form (35)
follows from the lemma below:

Lemma 5. The terms Si(x,€) and So(x,€) have expansions of the form [B3l), and
S3(x,€) satisfies the estimates in (B1). More precisely we have
(42)

Sk(z;e) = hy 1 (x)e™ 2 Ine + hgo(2)e™ ne + hy 3(2)e?™ *(Ine)? + Ry o(w;€)

for k=1,2, where hy ; have the large x asymptotics

h171 ~ —%(1 + 0(1)); h172 o _ (_Z)M_;‘Eif)_‘_ 0(96))

h271 = 0(1), h212 = O(].), hg)g = 0(1),
where ag s a constant and Ry, o satisfy the estimates in (B1).

; hig~ao+o(l),

Proof. We first show the result for S; using ([89). Since H 1,5 are analytic in €, we
only need to analyze the integrals

In'(q/e)e 7" / In'(q/e)e” " / In'(7)e=c7
(43) /35 q+2e e 1 q+2e ? 3 T+ 2 g
where 0 < [ < 2. The first integral on the right hand side is a polynomial in Ine

times a function analytic in € with exponential decay in x, and the last one is equal
to

e < 4ln'r
l -1 —2\ —eTw —eTT
(44) /(3 In T(T — 27 )6 € dr =+ /(3 me € dr.

To analyze the first term in ([@4]) we need the following elementary result:

Lemma 6. Assumel >0, © > x4 and |ex| < 1. For n > 0 we have

l
> —ETT M 1 n;l
(45) /3 e (h’l ’7') dr = (51:)—"4‘1 go C‘(I i) lnq(sx) + Ra,n(iﬂ, 5),
where cf{“” are constants with Cgo - = —1, and R, ,, satisfies
OF Ry () &
In addition, for n < —1 we have
o I+1
(47) / e ™" (In7)ldr = —imn Zc "0 In(ex) 4+ Ry (x,€),
3 q=0

where cgflgo) =-1, 6572;0) =1, and R, ,, satisfies [EQ).

The proof of this lemma is given in the Appendix.
Expansion of the first term in (@) follows directly from Lemmal[@l The last term
in ([#4) satisfies

k 00 l
d_/ 4In" T e dr| <

(48) dek T2(1+2)

o0
zF / 3R ! e gy
3

", 0<k<1,
~ 22 e 4 It (ex)]), 2<k<m+1,
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where the second integral in (@8] is estimated using Lemma 6l Thus

o) 1
€(l+1)(m—2)+k/ 4ln’ 7 €T g7
3 7'2(7' + 2)

satisfies [B7) for all &k > 0 and I > 0 by direct differentiation.
Thus combining (43) and @) using Lemma [6] we see that

1 l —_ o0 —
(49) 5(z+1)(m—2)/ In(g/e)e qxdng(l+1)(m—2) 1nl€/ e dg
3 1

< q+2e q+2e
—1 I+1
+ Z (—2)717”6(”1)(7”72)717”:1:717" Z c((]";l) In?(ex) + Roo(x,€),
n=—2 q=0

where Ry o satisfies ([B1).
Letting [ = 0,1,2 in (49)) we have

1 —qz

(50) 5m72ﬁ1,k(5)/ P 26dq = ha1(2)e™ 2 Ine + hyo(2)e™ ne + Ry (x,€),
3e

where hq 1(z) = =1+ 0(1) and hg2(z) = —22(1 + o(1)) for large =,
(51)

1 _

. 1 ax .

szm_‘le,k(e)/ qu:cé L) g2m—41,2 ethy1(2)e®™ *Ine+ Roo(x,e),
3e q+ 2e

where hy 1(x) = O(1) for large z, and

1 2 —

6 F In“(q/e)e %

52 36, (e / —
(52) L

where Ry, (0 < i < 3) satisfies 87)). Thus #2) follows from E0), (GBIl), and (B2]).
~ -9 m—2
Note that Hy 1(0) = L by Corollary Bl
’ I'(m)
To show ([{2)) for Sy we write In(g/e) =Ing —Ine in (@0). By Corollary Bl
1

Hy (g, €)e™%dg
2e

dq = R073 (l’, 5)7

Is entire in € with its k-th derivative in ¢ bounded by con~st.xk_1. Thus the term
containing Hy ; satisfies (37 and the terms containing IneH» o and In? eHj 3 satisfy
H2).

The term with In qﬁ 2,2 is analyzed using integration by parts:

1 1
(53) em? / IngHs 2(q,€)e”dg = €™ *Hs 5(q,€)e” %" (qlng — q)
3

£ 3e

[t O(H ,e)e I
—e™ 2/ (glng—q) ( 22(; ) 4,
3 q

154
where the last term satisfies [B7)) by direct calculation and counting powers of .

The term containing In ¢Hs 3(g, €) can be similarly analyzed using integration by
parts, which gives

1
g2m—4 lna/ InqHs 3(q,€)e”%dg = —*™ *IneHs 3(1,e)e™" + Ry(x, ),
3

€
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where R, satisfies [B7). The term containing (In ¢)2Hz 3(q, €) satisfies (1) by direct
calculation and counting powers of e.

Finally we show that Ss(z, ) satisfies the estimate ([B1). Denoting 3(i7j)1~%(u, v) =
" R(u,v)/(0u)*(dv)?, we have by Lemma

k 1 p —qzx
% 6/ R(q/e, q)e dq
€ 3e  qlq+2e)

ok /e R(T, eT)e ET"

54 T
(59 ock J; T r(r+2) 7
/1/5 8(071-)1{2(7,ET)Ti_lxje_ade N Z 3(2‘,0)}}(1/571)6_9;
N T+2 e g2i+J
i+j=k i+j=k—1

< (el +1)* [ e Flem + > et a|

i+j=k
for 0<k<m+1. Thus
n k 1 p —qz
‘3 53(;”,5) <y gmflfja_k 6/ R(q/e,q)e” 1 dq
Oe Pt Oe 3e  q(q+2¢)
S|(|nel + 1)*e™m). O
Finally s’ and s” are similarly analyzed, finishing the proof of Lemma [l O

4.3. Detailed behavior of the exponentially decaying functions y.. Since
1& solves (), its singularity structure depends on the singularity structure of the
two solutions of the associated homogeneous equation (Bl), which are of the form
y+(z) = eT°%(1 + s (x)) where sy (x) = o(1) for x — Foo. By symmetry it is
sufficient to study y. (x), where s, is exactly the function s in Lemma [4l
Proposition [7l below shows that y, (x) has an expansion involving the special

functions
-1 2 1-m/2
(1)1(217) = (m - 2)1/(’”_2)F (—_2> \/Ejﬁ (27_2) 5
) —1/(m—2) 9 1-m/2
Dy(x) = (m ) VIK _1_ (xi),
r (L) m=2
m—2

where I,, and K,, denote the modified Bessel functions of the first and second kind
respectively.

Proposition 7. For arbitrarily small § > 0, x > x4 and |¢| < 1/z we have

(55) Y4 (z5¢) = r(e) <<I>1(x) + By(z)e™ 'ne + fa(z, s)),
where
(56) r(e) = (1 +a1e™ ?Ine + ape® *(In 5)2) ,

where ag1 are constants, B1(x) is a linear combination of @1 o(x) with By(x) ~

const.x, fu(z,e) < |ex|, and
(57)

kO fa(zi€)

k£ .
k717m+§x777l718 fa(l‘,€) <
Oek

Ock

sup
1<k<m—1

T < o00;  sup

m<k<m+1

£
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Furthermore, the expansion ([B3) is differentiable in x; i.e., (B0) holds with fa(x; €)
replaced by xf! (x;¢).

Proof. Tt follows from Lemma[ that y, = e~*(1+ s) has the following expansion:
yi(x5€) = ho(x) + hy(2)e + ho(x)e™ ?Ine + hs(x)e™ *Ine

58 -
(58) + hy(x)e?™ *(Ine)? + H(z;e),

W;here ho ~ 1, hg ~ a1, hy ~ ag for large =, and fI(w;e) satisfies (B7) with
|H(x;¢)| < |e22?]. Plugging this expansion back into (@) (recall that the asymp-
totics (B]) is differentiable by Lemma H]) we have

0= (hg(x) - ximfm(x)) + (h’{@) _ ximhl(x)) c

(59) )
+ (h'Q’(;v) - —hg(.’l])) €™ Zlne+....

xm
Standard asymptotic arguments for ¢ — 0 show that all the coefficients above must
be zero, and thus h; satisfies the equation

(60) f(@) =" f ().

The solutions to (60) are exactly ®;1 2. Note that ®1(z) =1
x(1 + o(1)) for large z. Therefore ho(x) = ®1(x), hao(z) = a
ao®1(x) since hg ~ 1, ha ~ a1, and hy ~ ay.

Thus dividing (B8)) by (G6) we obtain (B3 for some B;y. Substituting (G5) into
@) and examining the coefficients of €™ 11lne we see that B; satisfies (60) and is
thus a linear combination of ®; 5. The large = behavior of B; follows from (3] and
[B6). Differentiability of (B3] follows from the last paragraph of Lemma [l O

+0(1) and Ps(x) =
1P1(z), and hy(x) =

Note 4. (i) A similar conclusion is true for y_.
(if) Without loss of generality we can assume 7(g) # 0, since otherwise we can
modify the definition of r(¢) by adding ¢ to it.

4.4. Estimating the exponentially decaying functions y. for large . To
prove the main results we use Proposition[fland the properties of the inverse Laplace
transform of y4 (z;¢) (see Section [l). These properties depend on the behavior of
y+ and sy together with its ¢ derivatives in H for large e. Let D = (z,00) x H.
First we prove the following lemma.

Lemma 8. Assume |[V®) ()| <a=™F forx >z, and 0 < k < 2, and s(z;¢) =
sy(x;e) solves (M) with s(x;e) = o(1) for & — oco. Then for any fized x1 € R the
function s(x;-) is analytic in H and continuous in H for x > x1. Moreover, we
have

61)  Is(z;e)l < (lel(z) +1)7Ha) ™™ |8 (z5e)] < (lelfa) + 1) ) 7"
uniformly in D, and for |e| = 1/(z) we have

J"s(x;¢€) s’ (z;¢)
e Oen

A similar conclusion is true for s_; i.e., [©1) and [©2) hold for both sy and s_.

Sle V@)™ 0<n<m A+ 1.

©) |

< Je s ‘
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Proof. We write () in integral form:

x t x t
(63) s(z) = / / e EW=DY () dt dt + / / e~ 2=y () s(t)dt dt
=Ti(x;V)+ Ls.

It is straightforward to check that |13 (z; V)| < #2~™, and by integration by parts,

1 x t ,
©)  MEV)I< g / (V(t) —/ e=2elt _t)V’(t’)dt’) dt’ < ||t
Thus
(65) Ty (2; V)| S min(a®~™, e 72! ™™) < (lex| + 1) 2™

uniformly in z > x, and ¢ € H. We analyze (63)) in the Banach space B of functions
f: D — C such that f(x,-) is analytic in H, continuous in H, with the norm
(66) sl = sup |s(z,e)| < oo.
(z,e)€D
We see that T7 € B and

T t
(67) 1L < ‘/ / V(t/)dt’dt‘ < const.z?™™.

o] o0
Thus if 2 is sufficiently large, then (G3)) is contractive in B and has a unique solution
for © > xg. Then, the first estimate in (GII) is obtained by taking xg sufficiently
large and writing
(68) s, )| < |(1 - )77y

We see by direct differentiation of the rhs of (63 that

(69) s'(zye) = / e XDy (hdt + / e~ W=Dy () s(t))dt.

o0 o0
This implies
s/ (@30)| S &',

and by integration by parts and the first estimate in (GI),

1 z /

(70) s'(z,e) + — (V(w) - / e 2 _I)V’(t')dt’ﬂ < e ta2m),
2e oo

Thus

(1) (0)] S min(le| "', 2™ < ((ex] + ) Aet

Rewriting (69) as

0 0
s'(w;e) = / e 2V (t + x)dt + / e 2V (t + x)s(t + x)dt,

o0 o0

we have by integration by parts

1 0 0
~5 (V’(x) - / e =V (t 4 x)dt) —|—/ e NV (t+ x)s(t + z)) dt,
which implies

(72) 8" (@52)| S Jel ',

s"(z;¢) =
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For the e derivatives, the proof is by induction on n. The equation for u = %s(x, €)

: d
is
(73) ' —2eu’ — V(z)u =25 ().
By (@3) we have
(74) uw(z) =Ti(x;28") + Lu
(see ([B3). Using (1) and (72) we obtain
(75)  |Th(x;28")| < B ’/ ( _2E(t/_t)s”(t’)dt’> dt‘ < le| 22t

Thus (€7) and (7)) imply
u(z, e)| < le| 22t

|u'(x,€)| _ ‘2/ 672€(t/*x)5/(t/)dt/ +/ eize(t,*I)V(t,)u(t/)dt/

oo

S el

Taking k e—derivatives of (T3) and letting uy(z,¢) = 0%s(z,¢)/0e* we have
(76) uy — 2eu), — V(z)uy = 2ku)_q,
which gives by induction

Juk (2, )| < [(1 = L) T (s 2k y)| S [el ™ F =,

Ju (2, €)] < lel 71 Ml T

Finally, for z1 < x < x( existence and analyticity of the solution follow from

standard analytic dependence on parameters. Thus (1)) and ([62) only need to be

verified for large e since the « dependence is irrelevant. Note that by (@) we have
1 xT

(77) @) = o / (e=2=2) _ YV (6)(1 + s(t))dt,

3 oo

which is contractive for large ¢ implying |s(xz)| < 1/|e]. The result for s’ then

follows from (69). Similarly, using (76 we see that

(78) ug(z) = é /: (e722=0) _ 1) (2ku),_, (t) + V (t)ur(t))dt,

(79)

(o) = £ (2 0) 4 Vunla) = [ Dkl 10+ Vw0 ).

which gives (62) by induction. O
Proposition [1 and Lemma [ apply to the cases |¢] < 1/(z) and |e| > 1/(x)

respectively, but it is more convenient to have an expansion for |¢| < 1. This is
established in the following.

Corollary 9. For +(z —xz+) > 0 and |e| < 1, the exponentially decaying solution
Y+ satisfies

By (z)e™ 'Ine

(80) y£(z) = re(e)e™ <<I>f(x) T

+ ij(x;a)) ,
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where r1(g) are of the form (BB), the modified Bessel functions ®F(z) ~ 1 and
By () ~ const.x for x — oo, and (50) holds with R;—{(:c;e) replacing fq. Also

Bhyt(z)e™ tlne
14 ¢e(x)

B)  yh(a) = re()e™ (@’ﬁ(x) n " rif(x;e)) ,

where (&) holds with <x)r}i(x) replacing f,.

Proof. Without loss of generality we show the result for y,. By Proposition [7] we
see that (80) holds for || < 1/, since multiplying by e** and 1/(1+¢(x)) does not
change the structure of (BH). For 1/x < |e| < 1, we only need to show that (&1 is
valid with f, replaced by Ry(x;e). By ([62)) we have for 1/z < |e| <1

0"s4(z;¢)

(82) Oen

<" o< n<m+ 1.

~

Now (74 (£)) "1 (1 + s (2;€)) satisfies the estimates for f, in (57) by 82) (cf. Note

B (z)e™ !lne

. Si —2 v
[). Since T+ @)

satisfies (B7)). Differentiability of (80) follows from Lemma [ and Lemma 8] O

obviously satisfies the estimates in (B7)), we see that Ry

5. SINGULARITY PROPERTIES OF ¢ FOR x € R

Corollary [@ gives the needed properties of y4 for +(z —z5) > 0. Now we extend
the results to all z € R.

5.1. Exponentially decaying functions y. on the real line. Assume V(z) =
vie~™ for ¢ > x4 and V() = voz™™ for < z_. We now show the following,.

Proposition 10. The exponentially decaying functions y+ are analytic in € € H
for all x € R. Moreover, for |e| < 1 they satisfy

rE(z)e™ e

(83) ye(@) = re(e)e™ <Tg[ @)+ = + e(x)

+ R (x; s)) ,

where |ri(z)] < (x) and |r(z)] < (x)2 for all x € R, and for +x > x4, ri(z)
and riE () are explicit modified Bessel functions with |rE (z)| < 1, [rf ()] < () (cf.
Corollary @). Furthermore RE (x;0) = 0, and for arbitrarily small § > 0 we have
(s1)

OFRF (x: e OFRE (x; e
N P L e L i P
o<k<m—1 Oe m<k<m+1 Oe
+(z—z5)20 +(z—z3)20
"R (w;e OFRE (- &
sup <x>fk71 O(k ) ) 51; sup |E|k7m+§<l,>fmfl O(k ) ) 51.
o<k<m—1 Oe m<k<m+1 Oe
+(z—z3)<0 +(z—z3)<0

In addition, B3) is differentiable in x; i.e., &) holds with Rg(x;e) replaced
with (x) REE (x; ).
For |e| > 1 we have

(85) y+(256) = €T (1 + 51 (25¢)),
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where st (x;¢) satisfies (62) for £(x —z+) > 0 and

0"sy(x;¢€) o"s!y (z;€)
(86) ’ Oen Oem
for £(z —z) < 0.

S lel =)™ <lel @)™ 0< n<mA+1,

Proof. We only analyze y, since y_ is similar. For x > =, the behavior of y, for
small ¢ is given in Corollary @ and the behavior for large € is given in Lemma [8

First assume |¢| < 1. In the middle region z_ < z < x4 there exist two
linearly independent solutions analytic in e (by analytic dependence on parameters
of ODE), and the z bounds are obvious. Clearly y, is a linear combination of these
two solutions, and thus the analytic structure of y, is preserved (cf. Corollary [).
For < x_, by (GI) we can assume z_ is large enough such that y_(x_) # 0. By
standard ODE results y; satisfies

N [ yr(mse) c1
(87) Y+ (w56) = y—(7;¢) (erTE) - Wi(e) /z_ mdt> ,

where W(e) = y4y" — v/, y— is the Wronskian.
One can verify by direct calculation that y solves @) for z < z_ and is differen-
tiable at z_. By Corollary @l and the reasoning above we see that for x_ < z < =y,

Bs(z)em 11
(88) y+ux>=r@wfm<¢am+~4iﬁi——ff
where @ and By are smooth, and where (57) holds with R; replacing fa.

Note 5. Assume |¢| < 1. Since the Wronskian W is independent of x, by direct
calculation using (B8]) and (B0) at x_ for |¢| < 1, we have

(89) W(e) = ry(e)r—(e)(q1e™ ' Ine + g2(e)),
. qu2(€) .
where g1 is a constant, and by Corollary [0 we have that ek is bounded for
k7m+5qu2(€) .
0 <k <m-—1 and that ¢ —klsboundedform§k<m+1and

5
arbitrarily small § > 0. In the absence of zero-energy resonance, y; and y_ are
linearly independent for small €, and thus ¢2(0) = W(0) # 0.
Assume |g| > 1. By direct calculation using (83)) at x_ for |¢| > 1, denoting

(90) g3(e) = Wi(e) — 2¢
dk qs3 (6)

dek

By ([BT) we have

f%#%@=ﬂ@<@@%F

is bounded for 0 <k < m + 1.

we have that

Bz(z)e™ 'lne

e + :vfb(:v;s)) ;

~ + €T_ T ~
where @4 (z) = 7 (z) <$1_Ex ; - W(O)/ ﬁdt) satisfies |®1(z)| < (x), B3
1 - - 1

is a smooth function with |Bs| < ()2 and (57) holds with f, replaced by f, by

~
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(BT), which can be checked using the fact that for any bounded function f we have

625:1: / efzgttkf(t)dt

S |$‘k:+1.

Thus (83) is valid for z < z_.

Assume |e| > 1. In the middle region z_ < & < x4 the result (85 follows from
Lemma 8

For < z_, we denote fi =1+ s4, and by (81) and Lemma [8 we have

(91) f+(@ie) = e yp(w;e) = f-(;) (1 + s3(w;€)),
where
L3 2e(x—x_ ! 625( =)
slese) = L4 L)~ 2 ) .. 2 )dt
_ (l‘ ’6) ( ) 25(1: o)
(92) - ( 7,6) / f2
T el s_(te)(s-(te) +2)
—1-25/1_ Pt dt.

Using (62) in Lemma [8 we see that the first term in (O2)) satisfies the estimates in
([BE). By integration by parts we obtain
(93)

PG (o) (G " (1Y
©E) | g™ T e (fQ(x;e)_fQ(x;E)Jr/m_e (f?(m)) dt)

and

(94) 2 / s (Be)(s (5e)+2) )5 (1 se)(s (v36) +2)

. f2(t;e) B [ (x_se)
s (me)(s=(z;) +2) ‘ p2e(@—1) s_(t;e)(s_(t;e) +2)
f2(ze) +/m ( f2(t;e) ) .

Thus using the estimates in Lemma[8 as well as ([@2]) we see that the first estimate
in (B8) holds with s, replaced by ss.

To show (B6]) for s, note that by ([@I) we have si(z;¢) = s_(x;¢) + s3(x;¢) —
EEE] S fel M), we

s_(x;€)s3(x;e). Since s_ satisfies (62) and s3 satisfies ‘ <
see that the first estimate in (8] holds for s..

To estimate ', note that by (87) and (@)

(95) ' (w;e) = (s (z;8) + 26 + 2es_(w;¢)) (1 + s3(w;€)) —
= 2¢(s_(z;€) + s3(w;€) — sy (w36)) + O(e™1) = 2es5_(x;8)s3(w;6) + O(e™ ).

Thus the second inequality of (8] holds.
The proof for s_ is similar by symmetry. |
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5.2. Analysis of 1. Recall that the solution of @) is given in ([B). Note that
W(e) # 0 for e € H by the assumption of no bound state and no zero energy
resonance.

To obtain the estimates for %d’l and cos(tv/A)1g in Theorem [0 we need

the e-expansions of G(11) and G(eypy):
Proposition 11. For ¢ € H\{0} we have

em llne

(96) G(i) = T3($)W + Go(v1(2)) + R(z; €),
where
(97) () 23 (2) ]| S ()21 ()11,

08 Gol) = g ( |- [ e€<”>w<u>du),

k
(99) \|<x>’k’2%R(%6)llm S A+ D7) P @)h (0<k<m—1),

[

oo B@ Ol S ([l + [e) 7212y 20 (@)1

for arbitrary § > 0.

Proof. The fact that G(v1) is analytic in € € H follows easily from Proposition [I0l
We first consider the case |¢| < 1. By (83) we have

(100)
v-@) [ i@ [y @@= @@ Y Gl
o0 e k,j=1,2
where
Giaee) = G (i) [ Gl (wse)n (u)
(101) “ e
- e_”G;r(x;a)/ "Gy, (u; €)1 (u)du,
+ ri(x)em tne + + + L

G (z;e) = =———————, and G5 (x;¢) = r5 () + Ry (z;¢). By Proposition [0l

1+ ¢e(z)
clearly (84) holds with G instead of RE. We denote for (j,k) = (0,1) or (1,0)

Ginte) = (1 @) [ rt@rtodu—rf @) [ rwntan)

— 00

By direct calculation for 0 < k < m — 1,

(102)

ak ~ m—1 A m—1—i—34 1+ 241

g (Gaalee) = et meGoa@) )| £ 0 M o)
ANy

S (@) ) e (2) |1
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(103)
885_:,; <é2,1(xa g) —e™! 1115@0,1@)) ’ S Z \EImflfif‘;(x)HjH<x>2+lwl(x)||1

i+j+l=m
i<m

S lel (@) (@) g () |1,
and it can be similarly shown that for 0 < k < m,
o [ . o .
o (Gratee) = emHmeGua) )| £ (14 ) @40 0 ()]

Also, for0 <k <m

(@)1 ()
1+ [ef{z)

DY el 27 ([ e] + 1))+

Wi 1FEW

o -
(104) ’@GlJ(l‘,(f)

1

< @) @) (@),

S D (™ D @) (@) e ()] -
i+j+l=k

Using (I02)-([I05) as well as ([89) we have

(106) G(r) = (e (e) ZI:}[’;(Z)M Cinlz.e) = r3(z)e™ e + R(z,e),

where 73(z) = (Go1(z) + G1(2))/W(0) satisfies (@7) and (@) holds with R re-
placing R. ([I06) and (@6]) give

(107) R(z,e) — R(x,¢) = r3(z)e™ 'Ine (1 —

o -
(105) ‘@GQQ(I,(?)

1
o) )

Now by direct calculation ([@9) holds with the right side of (I07) replacing R, using

/ " (2P ()| < () () e ()

+oo
for the estimates involving Go(¢). Thus (@6) is valid for |e| < 1.

For |e| > 1, we analyze the numerator of (@) by noting that (recall that fy =
1+ sy)

(108) f-(use) /

o0 o0

' e =0T £ (us ) (u)du = /x e~y (w)du

x

bo(e) [ e I e udut [T (e )

o0 oo

and sy satisfies (80). The same type of expansion works for the integral from —oo

to 2. Thus by (E]) we have
G(vr) = 2eGo (Y1) +VI(/1(;)— €)R3(x;¢)

for some Rj3 satisfying estimates of the type in ([@9). Note that W (e) satisfies (@0).
m—1 1
Obviously ([@9) holds with r3(z) c ne replacing R. Thus (@6) is valid for

(14 e(x))m+?
le] > 1 as well. O
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Similarly we have

Proposition 12. For ¢ € H\{0} we have

B emlne  yo(x)e €
ey e TR T e T e

G (W) + Rawse),

Go(o(x))

where
(110) () " ?ra(@)]|oo S 11(2) %00 ()11,
%0 (2)]|oo S [19o(2)]l1,
Gi(¢) = 2(116) (/: efs(“’m)w(u)du—i— /; es(““’)w(u)du) ,
(111)
k
H<w>_k_2%34(w;f)llw S (L D)2 ) 2o (@) |+ (1) 2 eh () h)
(0 <k <m),
8m+1

1) ™" o g Bal@se)lloe < (el” + ) (@)™ o (@)l + (1) ™ P ()] 1)

Proof. The proof is essentially the same as that of Proposition [Il In the case
le] < 1, we simply use (I00)-(T05) with ¢ replaced by eig for 0 < k < m + 1,
which gives the counterpart of (I06]) as

(112) G(ey) = ra(z)e™ Ine + Ry(x,e),

where 74 satisfies (II0) and Ry satisfies the same estimates as Ry (see (II1))). The
rest follows in the same way as (I07). Note that we have the obvious inequality

Yo ()] S [1¢6 (@)l

For |e| > 1 we use integration by parts to get

x

(113) ee™ /z Y4 (u)tho(u)du = 56“/ e DU (1 4 s (us€))to(u)du

o0 oo

S s o) + e [ e gl +do(u) du

o /Oo o™= (s (us €)po (u) + s (us ) (W5 (u) + o (u))) du.

Similarly

(114) —ge =" /_xoo yi(u)qpo(u)du = —Hil(l + S,(CL';E))iﬁo(lU)

p 5 een / " e (W) (1) — o(w)) du

e
+a+1 o



DECAY ESTIMATES FOR 1-DIMENSIONAL WAVE EQUATIONS 3727

Since sy satisty (86l), by (&), (II3) and ([I14)) we have

2etpo(z) n 2¢Go(vo(2)) + G1 (g (x)) n eR3(w;e)

9evo) = —rnwe W (e) W (e)

for some Rj satisfying estimates of the type ([II). The rest follows from (@0). O

6. TIME DECAY OF ¥

Proof of Theorem [1l. We focus on the case %wl since the proof for cos(tv/A) g
is analogous.
We have by using the decomposition (@8] that

(115)  ¥(x,t) = L7 (x, €)

1 [ e™ llne

“5i [ (T

—o01

+ R(x; 5)) de + L7 Go (1 (2)),

where the inverse Laplace transform £~! can be represented using the Bromwich
emllne

W and }%7 and we have

integral formula for the terms r3(x)

Lemma 13. We have the estimate

(116) [L71Go(r(2))] S () /()™ [ {a)™ b () 1.
Proof. By direct calculation
Go(1(x)) =L (% /:w e~ T (u)du — %/mit e tmutTy, (u)du) .

The estimate (II6) follows from integration by parts. For instance we have

/tw ( u2 + 1)m+1 P1(u)du

+x

T —t+u—=x
(117) / e T (u)du = ¢
¢

+x ( u? + 1)m+1 t+x

[ () ()™ e

where the first term on the right side can be estimated using the elementary in-
equality

. xT m—+1
(V(t+xz)2 4+ 1)m+L < ((2)/ (1)

and the last term can be estimated by noting that

(118)
x e—t+u—;ﬂ )l /ﬂﬁ e—t+u—;ﬂ ‘ /$+t/2 e—t+u—w
— ) du|< —————du| < ————du
/t—i-m <( u? + 1)m+i t+e (Vu2 + 1)m+1 © (Vu2 + 1)m+1
x+t ettu—z JE— 1 < (( >/< >)m+1
+ / ————du S e "+ sup S ((z)/(t .
a+t/2 (Vu? +1)m+l t/2<o<t (V/(x +v)2 + 1)m+1

O
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The leading term on the right hand side of (II3]) can be estimated by contour
deformation. Since there is a branch cut along R™, the original integration path
from —ioo to ‘0o can be deformed into the path consisting of the vertical line from
—1/2 — oo to —1/2, the horizonal line from —1/2 to 0 on the lower side of the
branch cut, the horizonal line from 0 to —1/2 on the upper side of the branch cut,
and the vertical line from —1/2 to —1/2 + ico. Therefore, by Watson’s lemma we
have for large ¢

(119)
Y g™ llne
il el S
el R o sy

—-1/2 rafz)em—1
- /0 “lre i(eg»—mﬂ dz + O(e™")rs(x)

= (=)™ (m — Dlrs(z)t™™ (1 + Ot~ ) (@) + O(e™?)rs(z),

Note that the left side of ([[I9) is obviously bounded by const.|rs(«)| uniformly for
all ¢ > 0 and r3 satisfies (@7). Finally, by integration by parts and ([@9]) we have for

t>0
—/ e'R(z;e)de| <t™™ ‘/ est$d£
27 i —ooi Oe
Since R(z;e) and 9" R(wie) satisfy (@9), we have for ¢ > 0
&—m
(120) (@) ™" 2L Rz €)oo S ()7 I (2) P ()1

Furthermore, it follows from the Riemann-Lebesgue lemma that
; mp—1 L) —
(121) tl_l)r(r)l()t L7 R(x;e) = 0.

We define 71 (z) = (=1)™"(m — 1)lr3(z) and

Ru(z,t) = ()L <g0(¢1(x)) + R(xse)+ m@)%) ().

The result for %1&1 in Theorem [ then follows from (T3] using (1), ([I19),

20), and ([IZI); for cos(tv/A)yg the estimates follow from Proposition 2 in a
similar way. O

6.1. Genericity of decay rate.

Remark 6. In view of the definition of r3 (below (I0G)) it is clear that r3 is nonzero
for generic initial condition 17, meaning the time decay ¢t~ is generic.

7. MORE GENERAL POTENTIALS

7.1. Sums of inverse powers. Assume V(x) = const.x’o‘li(l + >y afzfﬁf)
for large +2 where af > 2 and 8 > 0.
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Without loss of generality we study large . Now (@) has the form

(122) F(7) = const.( 1+ Zbk (eT) Bk

+ const e 2 /OT(T — )™ T Y bl — ) ) s Flw)

k=1

It can be shown that for large 7

F(r)

= const.(s¢)“1+_3(1 + Z bk(€7')6k+)
k=1

n oo 1

k=0 l=1 m=0

where By = 0 and the In terms are only present for o) € N.
The counterpart of (B5]) is now the expansion

s(; 22 () +eci (@)t +eot 21naz (Cr(z)+eC(x))e® + ...,
k=0

where terms with higher orders of In are omitted and the In terms are only present
for af € N.
This implies the counterpart of the expansion (80),

yi(:€) = r(e)e (D1 (x)e® L + Da(2)e® ~Ine + R(z;e)),

k )
%g]:’g) are bounded by €2~ for 0 < k < (ozﬂ and some § > 0, and

3
Dy = 0 except for a1 € N.
Arguments similar to those showing Proposition [I1] lead to the same type of
expansion for 1, which then implies that

sin(tv/A)
VA
cos(tV/A) g ~ Foz)t— L,

The detailed estimates for the higher order remainder as in Theorem [ can be
obtained in similar ways.

where

Y ~ ()t

7.2. Inverse power with higher order correction. Here we discuss the general
m analog of potentials of the type in [12]. Assume V(z) = Vo(x) + Vi(z) and
Vo(x) = ¢p/x™ for |z| > x4, V1 is piecewise continuous, |V1(k)(x)| < (x)~mkd
where 0 < kK < m+ 2 and §; > 3. One can show that for x > x4 and |e| < 1/z, 41
has the expansion

(124) g1 (2;€) = r(e) (Bo(x) + Bi(z)e™ e + fd(x,s)>,

where By, solves f"(x) = V(z)f(x) with By ~ &, =: By, By ~ B for large = and
fa(x,e) satisfies ().
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Indeed, by (55) and standard ODE analysis one can find By (z) with By (x)
V(2)By(), |Br(z) — Br(x)l < (@)* " "(Bi(x)) and [Bj(x) — Bi(v)]
() (B (2)).

By (B3l we have

(125)

fr(z;e) =r(e) (@1(:3)—1—B1(x)5m1 Ine+fe(x, E)> =:r(e) (¢(x; £ B)+fc(x,s)>,
where f. satisfies (57)) and

il (x,e) = 2efl(x,e) — Vo(2) fe(z, &) = 2e¢(z;6; BY).

Similarly we write f1 (z;¢) = 7(e) ((;5(33; £;B) + fo(x,¢) + g1 (x, 5)), which implies

that g1 (z,e) = e %% g1 (z, €) satisfies the equation
9 (z,¢) = g1, ) = Vo(a)gu(x,e) = e i (x,€) + Vi(x)u (2, €),

where ¢y () = 2ep(x;6; B — B') +eVi(2) fo(z,€) and f. = f./e. Equivalently we
have the integral equation
(126) g1(x) = Gle™1(x;6)) + G(Vi(w)g1(x)).

Using Proposition [0 we see that |¢q (x;¢)| < |e|(x) =™ 7% for all x > 2, and thus
([IZB) is contractive under the norm ||(x)™2+% g, (2)||s0, and by taking derivatives

of ([I26) we have

A

g1 (z;¢)
Ock

% g1 (w;¢)
Ock

< g2-m—otk 0<k<m-1)

<lemF 020 (m <k <m+1)

since

x
e”/ e kg (te)dt| < 1

[ee)

if k—m — 061 < —2. Thus if §; > 3, then the counterpart of Proposition [7] holds.
The rest of the proof is similar.
8. APPENDIX

For completeness, in this section we provide a short self-contained proof justifying
the use of the Laplace transform.

Proposition 14. Assume the initial conditions f(x) = u(z,0) and g(z) = u(z,0)

are in LY(R) and V € L=(R). Then, if v > \/§HV||§o we have sup,q eV |u(t, )|
< 00, and thus u(t,x) is Laplace transformable in t for Ret > v.

Proof. We use the Duhamel principle to write ([I]) in the form
flx=t)+ flx+1)

(127) w= Au; Au:=

2
+1 /O; xe(y — 2)g(y)dy + % /0 /Z u(y, $)V(y)xi—s(y — x))dyds,
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where X, is the characteristic function of the interval [—a, a]. Consider the Banach
space

(128) B={ue CR)l|jul, = sup e lu(t, )b < o0} (v > V2|V]Z).
teR

Applying Fubini to integrate first in z, we see that || [~ x:(y—2)g(y)dyll1 < 2¢t|\g]lx
and (since by definition |lu(-, s)||1 < |Jull.€”®)
(129) supe V(y)xt—s(y — z)dyds

>0 1

t
< yuvnmnunysuge-” | 2= s)eds <2Viw 2l
t> 0

Using ([I29)) we see that A : B — B is contractive. Also, assuming f,g and V are
smooth, the solution is seen to be smooth too: since u € L', Duhamel’s formula
shows that it is continuous; then, as usual, using continuity we derive differentia-
bility, and, inductively, we see that u is smooth. |

Proof of Lemma [6l. This is by straightforward calculation. For n > 0 we get
(130)

/ e T (InT) ldr = (/ /) TETELY( lnT)d
3
1

3
(ex)n+ / e “u"(lnu— ln(ex))ldu—/o T (In ) dr

1 3
= Zc(” i) (In(ex)) / e ™" (In7)ldr,
0

€x Jrl

where the last term is R, , and (Z0) is immediate, and

. > —1)al!
(nsl) —ug,n(] l—qd ) (
C (& (7 nu U\ ————.
a (/0 (Inw) (I —q!q!

In particular, c(o -

Now (7)) for n = —1 follows from integration by parts:

(131)
/OO e ™ (InT)dr = L e 37 (In 3)+t + T /00 e ™ (In7)dr
3 I+1 I+1 ’

where the first term satisfies [@6]) and the last integral in (I3I) was evaluated in

(@30).

For n < —1 we have by integration by parts:

(132) / e T (In1)ldr = — e 373" (In 3)!
3

l
n+1

n+1

/ e T (In T)l_ldT + / e_ng"H(ln T)ldT,
n+1

and ([{7) follows by induction on [ and n using (I32) and integration by parts. O
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