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MULTI-SCALING LIMITS FOR RELATIVISTIC DIFFUSION

EQUATIONS WITH RANDOM INITIAL DATA

GI-REN LIU AND NARN-RUEIH SHIEH

Abstract. Let u(t,x), t > 0, x ∈ R
n, be the spatial-temporal random field

arising from the solution of a relativistic diffusion equation with the spatial-
fractional parameter α ∈ (0, 2) and the mass parameter m > 0, subject to
a random initial condition u(0,x) which is characterized as a subordinated
Gaussian field. In this article, we study the large-scale and the small-scale
limits for the suitable space-time re-scalings of the solution field u(t,x). Both
the Gaussian and the non-Gaussian limit theorems are discussed. The small-
scale scaling involves not only scaling on u(t,x) but also re-scaling the initial
data; this is a new type result for the literature. Moreover, in the two scalings
the parameter α ∈ (0, 2) and the parameter m > 0 play distinct roles for the
scaling and the limiting procedures.

1. Introduction

The relativistic operator

m− (m
2
α −Δ)

α
2 ,

with α = 1 and m > 0, appeared in the 1970’s (to our knowledge) in an article
of Lieb [23] studying the stability theory of matters. Its connection with Lévy
processes is investigated by Carmona et al. in [8]. In Ryznar [29], the version for
general 0 < α < 2 is studied; see also Baeumer et al. [4], Kumara et al. [18],
and Chen et al. [9] for more recent studies. The operator should be understood
as a pseudo-differential operator, as that in [8] and [34]. The Fourier transform
of the heat kernel associated with the operator shows an interesting multi-scaling
property, as that observed in [30, 31].

The purpose of this article is to present this multi-scaling property from the
associated PDE. Namely, we consider the following Cauchy problem for the rela-
tivistic diffusion equation (RDE for brevity), subject to some random initial data,
and aim to discuss the multi-scaling limits for the spatial-temporal random field
arising from the solution of this random initial value problem:

∂

∂t
u(t,x) = (m− (m

2
α −Δ)

α
2 )u(t,x), u(0,x) = u0(x), t ≥ 0, x ∈ R

n.(1.1)
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RDEs (1.1) also appear to be an essential role in the theory of computer vision;
see a special volume edited by Kimmel et al. [16], in which PDE and scale-space
methods are the focus and RDEs are particularly employed.

We describe the structure and the goal of this article as follows. We consider the
random initial data u0 to be subordinated Gaussian random fields and study the
large-scale and the small-scale limits for the properly re-scaled solution field. We
prove that the two parameters α and m > 0 play distinct roles in the two scaling
behaviors. For the large-scale limit (Theorem 1 and Theorem 3), it is the mass
m > 0 that dominates the space-time scaling and also the limiting field, which
brings the m > 0 into its structure. While for the small-scale limit (Theorem 2 and
Theorem 4), it is the spatial index α that dominates both the scaling factor and
the limiting field, and it appears to be irrelevant for m if it is positive or zero.

In our discussions, the large-scale Theorem 1 and Theorem 3 are respectively
comparable to the Central Limit Theorem for local functionals of random fields
with weak dependence in [7] and to a certain non-Gaussian Central Limit Theorem
in [11, 33]. For the small-scale Theorem 2 and Theorem 4, they involve not only
the space-time scaling u(t,x), t > 0, x ∈ R

n, but also need to re-scale the initial
data; to our knowledge, these are new type results for the literature; see [24] for
the authors’ very recent study.

As for the methodology for proofs, for the Gaussian limits we employ the mo-
ments and the Feymann-type diagrams used notably in [7], and for the non-Gaussian
limits we employ the truncation of Hermite expansions used notably in [1, 2].

We remark that in the non-relativistic case, i.e. m = 0, the large-scale limits
for the random initial value problem with multiple Itô-Wiener integrals as input
have been discussed in Anh and Leonenko [1, 2]; subsequent works, together with
Burgers’ equation, in this direction by the authors and collaborators can be seen in
[3,5,14,20–22,28] and the references therein. However, the multi-scaling limits due
to the different roles of the mass and the fractional-index, the target of this article,
are not all in the cited papers. Moreover, in this article we are able to drop-off the
usually imposed isotropic assumption of the initial datum.

We should also mention that in an article discussing tempered stable Lévy pro-
cesses by Rosiński [27], the author proves rigorously, among others, the statement
that such a process in a short time looks like a stable process, while in a large
time scale it looks like a Brownian motion. This article has shown nicely how the
multi-scaling limits appear in the context of stochastic processes. (We are indebted
to the referee for indicating to us the article [27] and the relevant concepts.)

In Section 2, we present some preliminaries; we state our main results in Section
3, and all the proofs of our results are given in Section 4.

Finally, we mention that the study of the PDEs with random initial conditions
can be traced back to [15] and [26]. Besides the above-mentioned literature, there
also has been very significant progress on Burgers’ equation with different types of
random input; see the monograph of Woyczyński [36] and Chapter 6 of Bertoin [6].

2. Preliminaries

2.1. Green function for RDEs. As understood, we regard the spatial operator
in the RDE (1.1) as a pseudo-differential operator; see for example the book and the
paper by Wong [34,35]. The Green function, denoted by Gα,m(t,x), t > 0,x ∈ R

n,
for the Cauchy problem (1.1) is thus determined by the (spatial) Fourier transform
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Ĝα,m(t, λ), α ∈ (0, 2), m > 0, which is given by∫
Rn

ei〈λ,x〉Gα,m(t,x)dx = e−t{(m
2
α +|λ|2)

α
2 −m}, λ ∈ R

n.(2.1)

See Carmona et al. [8] for α = 1 and Ryznar [29] for general α ∈ (0, 2) ([29] also
considers the boundary problem). These papers also study Gα,m(t,x), m > 0, as the
transition probability density of a Lèvy process Xα,m(t) which is the subordination
of the Brownian motion by a certain subordinator. The explicit expression for the
Green function is known only in the case α = 1; see for example the recent works
[4, 18], which give explicit calculations to show that the subordinator is normal
inverse Gaussian.

The solution of (1.1) is given in the form

u(t,x;u0(·)) =
∫
Rn

Gα,m(t,x− y)u0(y)dy.(2.2)

In this work, our initial data is a second-order homogeneous random field on R
n,

and thus the solution of (1.1) should be understood as a mean-square solution,
resulting in a spatial-temporal random solution field u(t,x). See [28, Proposition 1]
for some discussions on the mean-square solutions of parabolic PDEs with mean-
square random initial data.

2.2. Subordinated Gaussian fields as initial data. Let (Ω,F ,P) be an under-
lying probability space such that all random elements appearing in this article are
measurable with respect to it.

We specify the initial data u0(x) be a subordinated Gaussian field, introduced
by Dobrushin [10], as follows; see also [1, 2] for more recent discussions.

Condition A. The initial data of (1.1) is assumed to be a random field on R
n

given by

u0(x) = h(ζ(x)), x ∈ R
n,(2.3)

where ζ(x) is a mean-square continuous and homogeneous Gaussian random field
with mean zero and variance 1, and its spectral measure F (dλ) has the (spectral)
density f(λ), λ ∈ R

n; moreover, h : R → R is a (non-random) function such that

Eh2(ζ(0)) =

∫
R

h2(r)p(r)dr < ∞; p(r) =
1√
2π

e−
r2

2 , r ∈ R.(2.4)

Under Condition A, by the Bochner-Khintchine theorem, we have the following
spectral representation for the covariance function of the Gaussian field ζ(x):

(2.5) R(x) = Cov(ζ(0), ζ(x)) =

∫
Rn

ei〈λ,x〉f(λ)dλ.

Moreover, by the Karhunen Theorem, ζ(x) has the representation

ζ(x) =

∫
Rn

ei〈λ,x〉
√
f(λ)W (dλ), x ∈ R

n,(2.6)

where W (dλ) is the standard complex-valued Gaussian white noise on the Fourier
domain R

n, that is, a centered orthogonal-scattered Gaussian random measure on
R

n such that W (Δ1) = W (−Δ1) and EW (Δ1)W (Δ2) = Leb(Δ1 ∩ Δ2) for any
Δ1,Δ2 ∈ B(Rn). See, for example, the book of Leonenko [19, Theorem 1.1.3] for
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the above facts. We need the following expansion of h(r) in the Hilbert space
L2(R, p(r)dr):

h(r) = C0 +
∞∑
l=1

Cl
Hl(r)√

l!
,(2.7)

where

Cl =

∫
R

h(r)
Hl(r)√

l!
p(r)dr(2.8)

and {Hl(r), l = 0, 1, 2, . . . } are the Hermite polynomials, that is,

Hl(r) = (−1)le
r2

2
dl

drl
e−

r2

2 , for l ∈ {0, 1, 2, . . . }.

Accordingly, the Hermite rank of the function h(·) is defined by

m := inf{l ≥ 1 : Cl �= 0}.
It is well-known that (see, for example, Major [25, Corollary 5.5 and p. 30])

E[Hl1(ζ(y))Hl2(ζ(z))] = δl1l2 l1!R
l1(y − z), y, z ∈ R

n(2.9)

(δσ1
σ2

is the Kronecker symbol), and

Hl(ζ(x)) =

∫ ′

Rn×l

ei〈x,λ1+···+λl〉
l∏

k=1

√
f(λk)W (dλk).(2.10)

In the above, (2.10) means the multiple Itô-Wiener integral representation, and the

integration
∫ ′

means that it excludes the diagonal hyperplanes zi = ∓zj , i, j =
1, . . . , l, i �= j.

We impose two different conditions on the singularity of the spectral density f(λ)
at 0 which yield, respectively, the Gaussian and the non-Gaussian scaling limits.

Condition B. The spectral density function f(λ) of the Gaussian random field
ζ(x) in Condition A can be written as

(2.11) f(λ) =
B(λ)

|λ|n−κ
for some κ >

n

m
,

where m is the Hermite rank of the function h, and the B(·) ∈ C(Rn) is of suitable
decay at infinity to ensure f ∈ L1(Rn).

Condition C. The spectral density function f(λ) of the Gaussian random field
ζ(x) in Condition A can be written as

f(λ) =
B(λ)

|λ|n−κ
, 0 < κ <

n

m
,(2.12)

where m is the Hermite rank of the function h, and the B(·) ∈ C(Rn) is of suitable
decay at infinity to ensure f ∈ L1(Rn), and moreover B(0) > 0.

Note that in the two conditions, we do not assume that the B(·) is radial in
·, so that the field u0(x) is not necessary to be isotropic. We also mention that
Condition B means that the density f either is regular at 0 or has a singularity
for which the order is less than n(1− 1/m), while Condition C means that f has a
singularity at 0 for which the order is higher than n(1− 1/m).
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By (2.5) and the convolutions, we have, for each l ≥ 1,

(2.13) Rl(x) =

∫
Rn

ei〈λ,x〉f∗l(λ)dλ, l ∈ N,

where f∗l(λ) is the l-fold convolution of f defined recursively as f∗1 = f and

f∗l(λ) =

∫
Rn

f(λ− η)f∗(l−1)(η)dη, l ≥ 2.

The following analytic lemma asserts the behavior of f∗l, l ∈ N; for completeness,
we give its proof in Appendix A.

Lemma 1. Suppose that the spectral density function f has the form

f(λ) =
B(λ)

|λ|n−κ
, κ > 0,

for some non-negative bounded and continuous function B(λ) so that f ∈ L1(Rn).
Then for any k ≥ 2 there exists a bounded function Bk ∈ C(Rn\{0}) such that the
k-fold convolution f∗k of f can be written as

(2.14) f∗k(λ) =

⎧⎪⎨
⎪⎩

Bk(λ)|λ|kκ−n, for kκ < n,

Bk(λ)ln(2 +
1
|λ| ), for kκ = n,

Bk(λ) ∈ C(Rn), for kκ > n.

Moreover, for any k1 > k2 > n/κ the inequality sup
λ∈Rn

Bk1
(λ) ≤ sup

λ∈Rn

Bk2
(λ) holds.

To understand the difference of Conditions B and C, in view of Lemma 1, Con-
dition B implies that the k-fold convolution f∗k, k ≥ m, has no singularity at the
origin λ = 0, which in turn asserts that the spectral density of the random initial
data u0 has no singularity at λ = 0, while Condition C asserts that the initial
data u0 has a spectral density which is singularity at λ = 0. The situation can
be described as, respectively, the long-range and the short-range dependence of the
initial field u0, a central notion in vast applications; one may refer to the special
volume by Doukhan, Oppenheim, and Taqqu [12].

3. Main results

The significant difference between Condition B and Condition C, as remarked
at the end of the last section, is employed to obtain the Gaussian and respectively
the non-Gaussian scaling limits. We will present them in two subsections.

In the context henceforth, the notation ⇒ denotes the convergence of random
variables (respectively, random families) in the sense of distribution (respectively,
finite-dimensional distributions).

3.1. Gaussian limits with initial data in (A, B). As mentioned in Section
1, we will present the large-scale and the small-scale limit theorems. We remark
that our Theorems 1 and 2 in this subsection are comparable to the Central Limit
Theorem for local functionals of random fields with weak dependence in Breuer and
Major [7]. The novel feature is that the mass m > 0 and the fractional-index α play
different roles in the two-scales.
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Theorem 1. Let u(t,x;u0(·)), t > 0, x ∈ R
n, be the mean-square solution of (1.1)

with m > 0 and let the initial data u0(x) = h(ζ(x)) satisfy Conditions A and B
with the Hermite rank m ≥ 1. Then when T → ∞,

T
n
4

{
u(Tt,

√
Tx;u0(·))− C0

}
⇒ U(t,x),

where U(t,x), t > 0, x ∈ R
n, is a Gaussian field with the following spectral repre-

sentation:

(3.1) U(t,x) =

∫
Rn

ei〈λ,x〉σme−tα
2 m

1− 2
α |λ|2W (dλ), σm =

( ∞∑
r=m

f∗r(0)C2
r

) 1
2

,

where W (dλ) is a complex-valued standard Gaussian noise measure on R
n (cf.

(2.6)).

For the small-scale limit, we need to re-scale the initial data too; thus the notation
u0(ε

− 1
α−χ·) imposed on u0 means that the variable of u0 is under the indicated

dilation factor ε−
1
α−χ.

Theorem 2. Let u(t,x;u0(·)), t > 0, x ∈ R
n, be the mean-square solution of (1.1)

with m > 0 and let the initial data u0(x) = h(ζ(x)) satisfy Conditions A and B
with the Hermite rank m ≥ 1. For any χ > 0, when ε → 0,

(3.2) ε−
nχ
2

{
u(εt, ε

1
αx;u0(ε

− 1
α−χ·))− C0

}
⇒ V (t,x),

where V (t,x), t > 0, x ∈ R
n, is a Gaussian field with the following spectral repre-

sentation:

(3.3) V (t,x) =

∫
Rn

ei〈λ,x〉σme−t|λ|αW (dλ), σm =
( ∞∑
r=m

f∗r(0)C2
r

) 1
2

,

where W (dλ) is a complex-valued standard Gaussian noise measure on R
n.

Remark. The typical case for Theorem 2 is α = 1, χ = 1/2. In this critical case, the
scaling order for Theorems 1 and 2 is the same, namely n/4. However, the spatial
scaling is square-root in Theorem 1, while it is linear in Theorem 2. Moreover, the
integral kernel for the limiting field in the two theorems is Gauss vs. Poisson. The
latter situation can be comparable with an analytic discussion in Wong [34].

3.2. Non-Gaussian limits with initial data in (A,C). As in the above subsec-
tion, we have the large-scale and the small-scale limits; however the high singularity
order in Condition C asserts that our limiting fields are now non-Gaussian. The
non-Gaussian limits are of the convolution type, which can be seen in the pioneer-
ing papers of Taqqu [33] and Dobrushin and Major [11], and more recently in Anh
and Leonenko [1, 2].

Theorem 3. Let u(t,x;u0(·)), t > 0, x ∈ R
n, be the mean-square solution of

(1.1) whose initial data {u0(x) = h(ζ(x)), x ∈ R
n} satisfy Conditions A and C

with κ ∈ (0, n
m ) and 1 < m, where m is the Hermite rank of the non-random

function h on R, which has the Hermite coefficients Cj , j = 0, 1, . . . . Then when
T → ∞,

T
mκ
4

{
u(Tt,

√
Tx;h(ζ(·)))− C0

}
⇒ Um(t,x),(3.4)
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where Um(t,x) is represented by the following multiple Wiener integrals:

Um(t,x)=B
m
2 (0)

Cm√
m!

∫ ′

Rn×m

ei〈x,λ1+···+λm〉 exp(−tα2m
1− 2

α |λ1 + · · ·+ λm|2)
(|λ1| · · · |λm|)n−κ

2

m∏
l=1

W (dλl),

(3.5)

where
∫ ′
Rn×m · · · denotes an m-fold Wiener integral with respect to the complex

Gaussian white noise W (·) on R
n.

Theorem 4. Let u(t,x;u0(·)) be the mean-square solution to (1.1) whose initial
data {u0(x) = h(ζ(x)), x ∈ R

n} satisfy Conditions A and C with κ ∈ (0, n
m )

and 1 < m, where m is the Hermite rank of the function h. Then, for any fixed
parameter χ > 0, when ε → 0,

(3.6) ε−
mκχ

2

{
u(εt, ε

1
αx;h(ζ((ε−

1
α−χ)·)))− C0

}
⇒ Vm(t,x),

where Vm(t,x) is represented by the multiple Wiener integrals

Vm(t,x)=B
m
2 (0)

Cm√
m!

∫ ′

Rn×m

ei〈x,λ1+···+λm〉 exp(−t|λ1 + · · ·+ λm|α)
(|λ1| · · · |λm|)n−κ

2

m∏
l=1

W (dλl).(3.7)

Remark. In [2] the authors considered a hybrid differential operator in the spatial
variable (the Riesz-Bessel operator) as follows:

−(−Δ)α/2(I −Δ)γ/2, α ∈ (0, 2), γ ≥ 0.

However, in their main Theorem 2.3, a large-scale limit in our context, only the
Riesz parameter α plays the role and the Bessel parameter γ is invisible. This
intriguing situation is now justified by the RFD (1.1), in which we could say that it

is “physically correct” to consider the relativistic operator (m− (m
2
α −Δ)

α
2 ) rather

than the Bessel operator in the form presented in [2].

4. Proofs of theorems

The following two-scale property of the relativistic Green function Gα,m is the
key to our results; when one deals with the Laplacian or the fractional Laplacian
operator, it is instead only the mono-scaling. We describe this two-scale property
in terms of Fourier transforms:

(4.1) Ĝα,m(Tt, T
− 1

2λ) = exp
{
Tt(m−(m

2
α +T−1|λ|2)α

2 )
}
→ exp

{
−t

α

2
m

1− 2
α |λ|2

}
,

as T → ∞; (4.1) is a consequence of Taylor’s expansion,

m− (m
2
α + T−1|λ|2)α

2 = m−
(
m+

α

2
(m

2
α )

α
2 −1T−1|λ|2 + α

4
(
α

2
− 1)c

α
2 −2

T T−2|λ|4
)

= − α

2
(m

2
α )

α
2 −1T−1|λ|2 + α

4
(1− α

2
)c

α
2 −2

T T−2|λ|4

for some cT ∈ (m
2
α ,m

2
α + T−1|λ|2). In contrast to the large-scale (4.1), we have

the following small-scale, as ε → 0:

(4.2) Ĝα,m(εt, ε
− 1

α λ) = eεtme−εt(m
2
α +ε−

2
α |λ|2)

α
2 → e−t|λ|α .

We observe that (4.2) indeed holds no matter whether m is > 0 or = 0.
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Proofs of Theorems 1 and 2. We apply the Hermite expansion (2.7) to u(t, x). For
the large-scale, we set

XT (t,x) = T
n
4 u(Tt,

√
Tx;u0(·))− C0

= T
n
4

∞∑
k=m

Ck√
k!

∫
Rn

Gα,m(Tt,
√
Tx− y)Hk(ζ(y))dy,

and for the small-scale, we set

Yε(t,x) :=ε−
nχ
2 u(εt, ε

1
αx;u0(ε

− 1
α−χ·))− C0

=ε−
nχ
2

∞∑
l=m

Cl√
l!

∫
Rn

Gα,m(εt, ε
1
αx− y)Hl(ζ(ε

− 1
α−χy))dy.

Below, we proceed only with the proof of Theorem 2, the small-scale limit, and
see how the re-scaling of the initial data is needed to obtain the desired limit. The
proof of Theorem 1 is parallel and does not require the re-scaling of the initial data.
Since the proof in the following does not require the m to be strictly positive, our
Theorem 2 also provides a small-scale version of the large-scale, i.e. the usual, limit
result in [2]. The methodology of the proof can be traced back to [7].

For any M ∈ N and any set of real numbers {a1, a2, · · · , aM}, denote

ξε :=

M∑
j=1

ajYε(tj ,xj),(4.3)

where {t1, · · · , tM} ⊂ R+ and {x1, · · · ,xM} ⊂ R
n are arbitrary. In order to apply

the Method of Moments to prove the statement of Theorem 2, we need to verify
the following:

lim
ε→0

Eξpε =

⎧⎨
⎩

0, p = 2ν + 1,

(p− 1)!!
{
E

[( M∑
j=1

ajV (tj ,xj)
)2]}ν

, p = 2ν,(4.4)

where V (t,x) is defined in (3.3). We remark that the high (i.e. p > 2) moments
are needed, since ξε is not Gaussian, though the desired limit is Gaussian. Firstly,
we split ξε into two parts:

(4.5) ξε = ξε,≤N + ξε,>N ,

where (henceforth, we will suppress the indices α and m for Gα,m and Ĝα,m)

ξε,>N =

M∑
j=1

ajε
−nχ

2

∞∑
l=N+1

Cl√
l!

∫
Rn

G(εtj , ε
1
αxj − y)Hl(ζ(ε

− 1
α−χy))dy,(4.6)
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and we prove that E[ξ2ε,>N ] → 0, whenever N is chosen large enough. Observe that

for any N ≥ m− 1, by (2.9),

E(ξε,>N )2 = E

[( M∑
j=1

ajε
−nχ

2

∞∑
l=N+1

Cl√
l!

∫
Rn

G(εtj , ε
1
αxj − y)Hl(ζ(ε

− 1
α−χy))dy

)2]
(4.7)

=

M∑
j1,j2=1

aj1aj2ε
−nχ

∞∑
l=N+1

C2
l

∫
R2n

G(εtj1 , ε
1
αxj1 − y1)G(εtj2 , ε

1
αxj2 − y2)

× Rl(ε−
1
α−χ(y1 − y2)))

=
M∑

j1,j2=1

aj1aj2ε
−nχ

∞∑
l=N+1

C2
l

∫
Rn

G(ε(tj1 + tj2), ε
1
α (xj1 − xj2)− z)Rl(ε−

1
α−χz)dz,

where the last equality is followed by a change of variables, the symmetry prop-
erty G(t, z) = G(t,−z) of the transition probability density function G, and its
semigroup property∫

Rn

G(εtj1 , ε
1
αxj1 − (z− z′))G(εtj2 , ε

1
αxj2 − z′)dz′

= G(ε(tj1 + tj2), ε
1
α (xj1 − xj2)− z).

Continuing to (4.7), by the spectral representation (2.13) for the k-th power of the
covariance function R(·), we see that (4.7) is equal to

M∑
j1,j2=1

aj1aj2ε
−nχ

∞∑
l=N+1

C2
l

∫
Rn

G(ε(tj1 + tj2), ε
1
α (xj1 − xj2)− z)

(4.8)

×
∫
Rn

ei〈ε
− 1

α
−χz,λ〉f∗l(λ)dλdz

=

M∑
j1,j2=1

aj1aj2ε
−nχ

∞∑
l=N+1

C2
l

∫
Rn

eiε
−χ〈λ,xj1

−xj2
〉Ĝ(ε(tj1 + tj2), ε

− 1
α−χλ)f∗l(λ)dλ

=
M∑

j1,j2=1

aj1aj2

∞∑
l=N+1

C2
l

∫
Rn

ei〈λ,xj1
−xj2

〉

× exp{ε(tj1 + tj2)[m− (m
2
α + |ε− 1

αλ|2)α
2 ]}f∗l(εχλ)dλ

→
M∑

j1,j2=1

aj1aj2

∞∑
l=N+1

C2
l f

∗l(0)

∫
Rn

ei〈λ,xj1
−xj2

〉exp{−(tj1 + tj2)|λ|α}dλ < ∞

when ε → 0, where f∗l(·), l ≥ m, are continuous and uniformly bounded on R
n

since Condition B and Lemma 1 imply:
(4.9)

f∗l(λ)=

∫
Rn

f∗m(λ− η)f∗(l−m)(η)dη ≤‖Bm‖∞
∫
Rn

f∗(l−m)(η)dη =‖Bm‖∞ ∀l > m.
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From (4.8), for any δ > 0 there exists N0 ∈ N, ε0 > 0 such that

E(ξε,>N )2 < δ, for any N ≥ N0, ε < ε0,(4.10)

which implies that we need to prove a truncated version of (4.4) as follows:

lim
ε→0

Eξpε,≤N0
=

⎧⎨
⎩

0, p = 2ν + 1,

(p− 1)!!
{
E

[( M∑
j=1

ajVm,N0
(tj ,xj)

)2]}ν

, p = 2ν,(4.11)

where

Vm,N0
(t,x) =

∫
Rn

ei〈λ,x〉σm,N0
e−t|λ|αW (dλ) with σm,N0

= (

N0∑
r=m

f∗r(0)C2
r )

1
2 .

(4.12)

By (4.5) for the definition of ξε,≤N0
(= ξε − ξε,>N0

) and our rescaling of the initial
data, we have

E(ξε,≤N0
)p =ε−

pnχ
2

M∑
j1,··· ,jp=1

N0∑
l1,··· ,lp=m

[ p∏
i=1

aji
Cli√
li!

]

×
∫
Rnp

{ p∏
i=1

G(εtji , ε
1
αxji − yi)

}[
E

p∏
i=1

Hli(ζ(ε
− 1

α−χyi))
]
dy1 · · · dyp

=ε−
pnχ
2

M∑
j1,··· ,jp=1

N0∑
l1,··· ,lp=m

[ p∏
i=1

aji
Cli√
li!

]
(4.13)

×
∫
Rnp

{ p∏
i=1

ε
n
αG(εtji , ε

1
αxji − ε

1
αyi)

}[
E

p∏
i=1

Hli(ζ(ε
−χyi))

]
dy1 · · · dyp.

To analyze E(ξε,≤N0
)p, p = 2ν (the odd p = 2ν + 1 is unnecessary, since all the

involved random variables are centered), we employ the diagram method (see [7] or
[13, p. 72]). A graph Γ with l1 + · · ·+ lp vertices is called a (complete) diagram of
order (l1, · · · , lp) if:

(a) the set of vertices V of the graph Γ is of the form V =
p⋃

j=1

Wj , where

Wj = {(j, l) : 1 ≤ l ≤ lj} is the j-th level of the graph Γ, 1 ≤ j ≤ p;
(b) each vertex is of degree 1; that is, each vertex is just an endpoint of an edge;
(c) if ((j1, l1), (j2, l2)) ∈ Γ, then j1 �= j2; that is, the edges of the graph Γ may

connect only different levels.
Let T = T(l1, · · · , lp) be a set of (complete) diagrams of Γ of order (l1, · · · , lp).

Denote by E(Γ) the set of edges of the graph Γ ∈ T. For the edge e = ((j1, l
′
1),

(j2, l
′
2)) ∈ E(Γ), j1 < j2, 1 ≤ l′1 ≤ l1, 1 ≤ l′2 ≤ l2, we set d1(e) = j1, d2(e) = j2,

to denote the location of the edge e in Γ. We call a diagram Γ regular if its levels
can be split into pairs in such a manner that no edge connects the levels belonging
to different pairs. Denote by T∗ = T∗(l1, · · · , lp) the set of all regular diagrams
in T. Therefore, if Γ ∈ T∗ is a regular diagram, then it can be divided into p/2
sub-diagrams (denoted by Γ1, · · · ,Γp/2), which cannot be separated again; in this
case, we naturally define d1(Γi) ≡ d1(e) and d2(Γi) ≡ d2(e) for any e ∈ E(Γi), i =
1, . . . , ν = p/2. We denote by �E(Γ) (resp. �E(Γj)) the number of edges belonging
to the specific diagram Γ (resp. the sub-diagram Γj).
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Based on the notation above let

Dp = {(J, L) : J = (j1, · · · , jp), 1 ≤ ji ≤ M,

L = (l1, · · · , lp),m ≤ li ≤ N0, i = 1, · · · , p},
we see that (4.13) can be rewritten as

E(ξε,≤N0
)p =

∑
(J,L)∈Dp

K(J, L)
∑
Γ∈T∗

FΓ(J, L, ε) +
∑

(J,L)∈Dp

K(J, L)
∑

Γ∈T\T∗

FΓ(J, L, ε),

(4.14)

where

K(J, L) =

p∏
i=1

aji
Cli√
li!

,(4.15)

FΓ(J, L, ε) = ε−
pnχ
2

∫
Rnp

{ p∏
i=1

ε
n
αG(εtji , ε

1
α (xji − yi))

}

×
[ ∏
e∈E(Γ)

R(ε−χ(yd1(e) − yd2(e)))
]
dy1 · · · dyp.

Next, we want to verify two things:⎧⎪⎪⎨
⎪⎪⎩
(1) lim

ε→0

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T∗
FΓ(J, L, ε)=(p− 1)!!

{
E

[( M∑
j=1

ajVm,N0
(tj ,xj)

)2]}p/2

,

(2) lim
ε→0

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T\T∗
FΓ(J, L, ε) = 0.

Proof of (1). As argued above, for each Γ ∈ T∗, the case p = 2ν, ν ∈ N, has a
unique decomposition into sub-diagrams Γ = (Γ1, · · · ,Γν), for which each one can-
not be further decomposed. Accordingly, we can rewrite FΓ(J, L, ε) as the following
ν = p/2 products:

FΓ(J, L, ε)

(4.16)

= ε−
pnχ
2

ν∏
i=1

∫
R2n

ε
n
αG(εtd1(Γi), ε

1
α (xd1(Γi) − y))ε

n
αG(εtd2(Γi), ε

1
α (xd2(Γi) − y′))

×R
E(Γi)(ε−χ(y − y′))

= ε−
pnχ
2

ν∏
i=1

∫
Rn

ε
n
αG(ε(td1(Γi) + td2(Γi)), ε

1
α (xd1(Γi) − xd2(Γi) − z))R
E(Γi)(ε−χz)dz.

We note that

R
E(Γi)(ε−χz) = εnχ
∫
Rn

ei〈z,λ〉f∗
E(Γi)(εχλ)dλ, i = 1, · · · , ν,(4.17)

and �E(Γi) > n/κ (since κ > n/m in Condition B). By the Fourier transform of G,∫
Rn

ei〈z,λ〉ε
n
αG(ε(td1(Γi) + td2(Γi)), ε

1
α (xd1(Γi) − xd2(Γi) − z))dz

=ei〈λ,xd1(Γi)
−xd2(Γi)

〉exp{ε(td1(Γi) + td2(Γi))[m− (m
2
α + |ε− 1

αλ|2)α
2 ]},(4.18)
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and applying the small-scale of G illustrated in (4.2), we have

lim
ε→0

FΓ(J, L, ε)=

ν∏
i=1

f∗
E(Γi)(0)

∫
ei〈λ,xd1(Γi)

−xd2(Γi)
〉exp

{
− (td1(Γi) + td2(Γi))|λ|α

}
dλ.

(4.19)

Meanwhile, if the L = {l1, · · · , l2ν} in the defining equation (4.15) of K(J, L)
corresponds to a regular diagram Γ in T(l1, · · · , l2ν), then

(4.20) K(J, L) =

ν∏
i=1

ad1(Γi)ad2(Γi)

C2

E(Γi)

�E(Γi)!
.

Therefore, by (4.19) and (4.20),

lim
ε→0

∑
(J,L)∈D2ν

K(J, L)
∑
Γ∈T∗

FΓ(J, L, ε)(4.21)

=
∑

(J,L)∈D2ν

∑
Γ∈T∗

[ ν∏
i=1

ad1(Γi)ad2(Γi)

∫
ei〈λ,xd1(Γi)

−xd2(Γi)
〉

× exp
{
− (td1(Γi) + td2(Γi))|λ|α

}
dλ

][ ν∏
i=1

f∗
E(Γi)(0)
C2


E(Γi)

�E(Γi)!

]
.

We note that all components in the first bracket in (4.21) are independent of the
index set L and the summation

∑
Γ∈T∗

depends only on
∑
L

; therefore

lim
ε→0

∑
(J,L)∈D2ν

K(J, L)
∑
Γ∈T∗

FΓ(J, L, ε)

(4.22)

=
∑
L

∑
Γ∈T∗

∑
J

[ ν∏
i=1

ad1(Γi)ad2(Γi)

∫
ei〈λ,xd1(Γi)

−xd2(Γi)
〉exp

{
−(td1(Γi)+td2(Γi))|λ|α

}
dλ

]

×
[ ν∏
i=1

f∗
E(Γi)(0)
C2


E(Γi)

�E(Γi)!

]

=
[ M∑
j,j′=1

ajaj′

∫
e
i〈λ,xj−x

j
′ 〉exp

{
− (tj + tj′ )|λ|α

}
dλ

]ν

×
∑
L

∑
Γ∈T∗

[ ν∏
i=1

f∗
E(Γi)(0)
C2


E(Γi)

�E(Γi)!

]
.

To handle the summation in the above, we note that
ν∏

i=1

f∗
E(Γi)(0)
C2

�E(Γi)


E(Γi)!
only

depends on {�E(Γi), i = 1, · · · , ν}, not on the structures of sub-diagrams Γi, i =
1, · · · , ν; thus we may rewrite the above summation based on the following obser-
vation. Let s be the number of different integers r1, . . . , rs in {l1, · · · , l2ν} with
m ≤ r1 < . . . < rs ≤ N0. A regular diagram requires 1 ≤ s ≤ ν, which also
implies that the set {l1, · · · , l2ν} can be split into s subsets Q1, . . . , Qs and all ele-
ments within Qi have the common value ri, i = 1, . . . , s. For the number of pairs
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within each subset Qi, we denote it by qi, which satisfies qi ≥ 1, i = 1, . . . , s, and
q1 + · · ·+ qs = ν. Thus, the above summation is∑

1≤s≤ν

(s!)
∑

m≤r1<···<rs=N0

∑
q1+···+qs=ν

(2ν)!

(2q1)! · · · (2qs)!
[· · · ].

However, for any (s; r1, . . . , rs; q1, . . . , qs) in the above sum, there correspond
(2q1)!···(2qs)!
2νq1!···qs! (r1!)

q1 · · · (rs!)qs different regular diagrams. Therefore,

∑
L

∑
Γ∈T∗

[ ν∏
i=1

f∗
E(Γi)(0)
C2


E(Γi)

�E(Γi)!

](4.23)

=
∑

1≤s≤ν

(s!)
∑

m≤r1<···<rs=N0

∑
q1+···+qs=ν

(2ν)!

2νq1! · · · qs!
(r1!)

q1 · · · (rs!)qs
[ s∏
i=1

(
f∗ri(0)

C2
ri

ri!

)qi]

= (2ν − 1)!!
∑

1≤s≤ν

(s!)
∑

m≤r1<···<rs=N0

∑
q1+···+qs=ν

ν!

q1! · · · qs!
[ s∏
i=1

(
f∗ri(0)C2

ri

)qi]

= (2ν − 1)!!
[ N0∑
r=m

f∗r(0)C2
r

]ν
.

Substituting (4.23) into (4.22) and recalling σm,N0
= (

N0∑
r=m

f∗r(0)C2
r )

1
2 , we get

lim
ε→0

∑
(J,L)∈D2ν

K(J, L)
∑
Γ∈T∗

FΓ(J, L, ε)

(4.24)

= (2ν − 1)!!
[ M∑
j,j′=1

ajaj′

∫
Rn

ei〈λ,xj−xj′ 〉exp
{
− (tj + tj′ )|λ|α

}
dλ

]ν[ N0∑
r=m

f∗r(0)C2
r

]ν

= (2ν − 1)!!
[
E

( M∑
j=1

aj

∫
Rn

ei〈λ,xj〉σm,N0
e−tj |λ|αW (dλ)

)2]ν
.

�

Proof of (2). lim
ε→0

∑
(J,L)∈Dp

K(J, L)
∑

Γ∈T\T∗
FΓ(J, L, ε) = 0.

By (4.11), the number of elements in the summation of
∑

(J,L)∈Dp

is finite; thus it

suffices to show that lim
ε→0

FΓ(J, L, ε) = 0, i.e.

ε−
pnχ
2

∫
Rnp

{ p∏
i=1

ε
n
αG(εtji , ε

1
α (xji − yi))

}[ ∏
e∈E(Γ)

R(ε−χ(yd1(e) − yd2(e)))
]
dy1 · · · dyp → 0

(4.25)

for each Γ∈T(l1, · · · , lp)\T∗. Without loss of generality, we may just prove (4.25)
for tji =1 and xji =0, i = 1, . . . , p, and also just consider the case l1≤ l2≤· · ·≤ lp.
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Let

Aj,j′ :=
{
e ∈ E(Γ) | d1(e) = j, d2(e) = j′

}
, B(i) :=

⋃
j′>i

Ai,j′ , 1 ≤ i, j < j′ ≤ p.

We observe that the number �B(i) of B(i) must be ≤ li, and a non-regular diagram
Γ must contain a non-empty B(i) with �B(i) < li; moreover, it has ([7, (2.20)])

(4.26)

p∑
i=1

�B(i)

li
≥ p

2
.

FΓ(J, L, ε)

(4.27)

= ε−
pnχ
2

∫
Rnp

{ p∏
i=1

ε
n
αG(ε, ε

1
αyi)

}[ ∏
i;B(i) 
=∅

∏
e∈B(i)

R(ε−χ(yi − yd2(e)))
]
dy1 · · · dyp

≤ ε−
pnχ
2

∫
Rnp

{ p∏
i=1

ε
n
αG(ε, ε

1
αyi)

}

×
[ ∏
i;B(i) 
=∅

∑
e∈B(i)

1

�B(i)
R
B(i)(ε−χ(yi − yd2(e)))

]
dy1 · · · dyp

≤ cε−
pnχ
2

∫
Rnp

{ p∏
i=1

ε
n
αG(ε, ε

1
αyi)

}

×
[ ∏
i;B(i) 
=∅

∑
j;Ai,j 
=∅

1

�B(i)
R
B(i)(ε−χ(yi − yj))

]
dy1 · · · dyp,

where c =
∏

i;B(i) 
=∅

∑
j;Ai,j 
=∅

�Ai,j/�B(i).

For any i ∈ {1, . . . , p− 1} with B(i) �= ∅, let j(i) be any term in {j′
;Ai,j′ �= ∅}.

To prove (4.27) → 0, by the spectral representation, it suffices to show that

ε−
pnχ
2

∫
Rnp

{ p∏
i=1

ε
n
αG(ε, ε

1
αyi)

}
(4.28)

×
[ ∏
i;B(i) 
=∅

∫
ei〈yi−yj(i),λi,j(i)〉f∗
B(i)(εχλi,j(i))ε

nχdλi,j(i)

]
dy1 · · ·dyp

converges to zero when ε → 0.
Applying Lemma 1 to k = �B(i), the number of B(i), we see that

f∗
B(i)(λ) ≤
{

o(1) if �B(i) = li,

o(|λ|n(
�B(i)

li
−1)

) if 1 < �B(i) < li,
when |λ| → 0.(4.29)

For example, using the first case in (2.14) of Lemma 1, we can write (4.29) as
follows:

(4.30) f∗
B(i)(λ) = C
B(i)(λ)|λ|
B(i) n
li
−n

, C
B(i)(λ) = B
B(i)(λ)|λ|
B(i)(κ− n
li
)
,

where lim
|λ|→0

C
B(i)(λ) = 0 because κ > n/m ≥ n/li.
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Thus,

(4.31) (4.28) ≤ ε−
pnχ
2 o(ε

χn(
∑ �B(i)

li
)
)Qε,

where

Qε =

∫
Rnp

{ p∏
i=1

ε
n
αG(ε, ε

1
αyi)

}

×
[ ∏
i;B(i) 
=∅

∫
ei〈yi−yj(i),λi,j(i)〉|λi,j(i)|n(

�B(i)
li

−1)
dλi,j(i)

]
dy1 · · · dyp,

which is bounded in 0 < ε � 1, because, firstly, for each λi,j(i), by (4.2) the
following is bounded in 0 < ε � 1:

∫
Rnp

{ p∏
i=1

ε
n
αG(ε, ε

1
αyi)

}{ ∏
i;B(i) 
=∅

ei〈yi−yj(i),λi,j(i)〉
}
dy1 · · · dyp,(4.32)

and moreover ∏
i;B(i) 
=∅

|λi,j(i)|n(
�B(i)

li
−1)

is integrable with respect to
∏

i;B(i) 
=∅
dλi,j(i) near the origin. Finally, the convergence

of (4.31) to zero is followed by the inequality cited above, i.e.
p∑

i=1


B(i)
li

≥ p
2 . �

Proof of Theorem 3. By the solution form (2.2) and
∫
Rn Gα,m(t,x)dx = 1,

T
mκ
4

{
u(Tt,

√
Tx;h(ζ(·)))− C0

}
=T

mκ
4

{∫
Rn

Gα,m(Tt,
√
Tx− y)

[
C0 +

∞∑
k=m

Ck
Hk(ζ(y))√

k!

]
dy − C0

}

=
∞∑

k=m

T
mκ
4

Ck√
k!

∫
Rn

Gα,m(Tt,
√
Tx− y)Hk(ζ(y))dy =:

∞∑
k=m

uk,T (t,x).(4.33)

By the Slutsky argument (see, for example, [19, p. 6]), Theorem 3 will be proved if
we can show that

(4.34)

⎧⎨
⎩

(i) um,T (t,x) ⇒ Um(t,x),

(ii)
∞∑

k=m+1

uk,T (t,x) → 0 in probability, as T → ∞.

Proof of (i). Replacing the component Hm(ζ(y)) in the expression of um,T (t,x)

with its Itô-Wiener expansion (2.10) and using the Fourier transform Ĝα,m(t, λ) of
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Gα,m(t,x) in (2.1), we have

um,T (t,x)

(4.35)

= T
mκ
4

Cm√
m!

∫
Rn

Gα,m(Tt,
√
Tx− y)

{∫ ′

Rn×m

ei〈y,λ1+···+λm〉
m∏

σ=1

√
f(λσ)W (dλσ)

}
dy

= T
mκ
4

Cm√
m!

∫ ′

Rn×m

ei〈
√
Tx,λ1+···+λm〉Ĝα,m(Tt, λ1 + · · ·+ λm)

m∏
σ=1

√
f(λσ)W (dλσ).

By the definition of
∫ ′
Rn×m in (2.10) and the self-similarity property W (T− 1

2 dλ)
d
=

T−n
4 W (dλ), um,T has the same finite-dimensional distributions (

d
=) as ũm,T , where

ũm,T (t,x) =
Cm√
m!

T
m(κ−n)

4

∫ ′

Rn×m

ei〈x,λ1+···+λm〉Ĝα,m(Tt, T
− 1

2 (λ1 + · · ·+ λm))

×
m∏

σ=1

√
f(T− 1

2λσ)W (dλσ).(4.36)

From the isometry property of the multiple Wiener integrals and the integral rep-
resentation of the limiting field Um(t,x) in (3.5),

E|ũm,T (t,x)− Um(t,x)|2

=C2
m

∫
Rnm

∣∣∣T m(κ−n)
4 Ĝα,m(Tt, T

− 1
2 (λ1 + · · ·+ λm))

m∏
σ=1

√
f(T− 1

2λσ)

−B(0)
m
2
exp(−tα2m

1− 2
α |λ1 + · · ·+ λm|2)

(|λ1| · · · |λm|)n−κ
2

∣∣∣2 m∏
σ=1

dλσ.(4.37)

Condition C and (4.1) allow us to apply the dominated convergence theorem to
show that (4.37) will converge to zero when T → ∞. We note that the convergence
in (4.1) can be shown to be monotone decreasing when T ↑ ∞ for each t > 0 and
λ ∈ R

n.
Thus, we get

(4.38) lim
T→∞

E|ũm,T (t,x)− Um(t,x)|2 = 0,

and claim (i) is concluded by um,T
d
= ũm,T and the Cramer-Wold theorem.



MULTI-SCALING LIMITS FOR RELATIVISTIC DIFFUSION EQUATIONS 3439

Proof of (ii). By the orthogonal property (2.9), the semigroup property of
Gα,m(t,x), and (2.13),

E
[
(

∞∑
k=m+1

uk,T (t,x))
2
]

(4.39)

= T
mκ
2

∞∑
k=m+1

C2
k

∫
Rn

∫
Rn

Gα,m(Tt,
√
Tx− y)Gα,m(Tt,

√
Tx− y′)Rk(y − y′)dy dy′

= T
mκ
2

∞∑
k=m+1

C2
k

∫
Rn

Gα,m(2Tt, z)R
k(z)dz

= T
mκ
2

∞∑
k=m+1

C2
k

∫
Rn

Ĝα,m(2Tt, λ)f
∗k(λ)dλ (by (2.13))

= T
mκ−n

2

( k∗∑
k=m+1

+
∞∑

k=k∗+1

)
C2

k

∫
Rn

Ĝα,m(2Tt, T
− 1

2λ)f∗k(T− 1
2λ)dλ =: (I) + (II),

where k∗ = max{k ∈ N| k ≥ m+ 1, kκ ≤ n}.

For the case k∗κ < n, by Lemma 1 and (4.1),

lim
T→∞

(I) = lim
T→∞

T
mκ−n

2

k∗∑
k=m+1

C2
k

∫
Rn

Ĝα,m(2Tt, T
− 1

2λ)Bk(T
− 1

2λ)|T− 1
2λ|kκ−ndλ

≤ lim
T→∞

k∗∑
k=m+1

T
mκ−kκ

2 C2
k ‖Bk‖∞

∫
Rn

e−tα
2 m

1− 2
α |λ|2 |λ|kκ−ndλ

≤ lim
T→∞

T−κ
2

k∗∑
k=m+1

C2
k ‖Bk‖∞

∫
Rn

e−tα
2 m

1− 2
α |λ|2 |λ|kκ−ndλ = 0.

For the case k∗κ = n, we still have lim
T→∞

(I) = 0 because

lim
T→∞

T
mκ−n

2 C2
k∗

∫
Rn

Ĝα,m(2Tt, T
− 1

2λ)Bk∗(T− 1
2λ)ln(2 + T

1
2 |λ|−1)dλ = 0.

On the other hand, by the assumption mκ < n in Condition C and Lemma 1, for
any k > k∗ + 1 we have ‖f∗k‖∞≤‖f∗(k∗+1)‖∞, so

lim
T→∞

(II) ≤ lim
T→∞

T
mκ−n

2

∞∑
k=k∗+1

C2
k ‖f∗(k∗+1)‖∞

∫
Rn

Ĝα,m(2Tt, T
− 1

2λ)dλ = 0.

Hence lim
T→∞

E
[
(

∞∑
k=m+1

uk,T (t,x))
2
]
= 0, and the claim (ii) is proved by the Markov

inequality. �

Proof of Theorem 4. The following proof is a hybrid of the proofs of Theorems 2
and 3; we give a full presentation mainly to see how the re-scaling of the initial data
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proceeds. By the Hermite expansion and the solution form (2.2) we can rewrite

uε(t,x) =

∞∑
k=m

ε−
χmκ

2
Ck√
k!

∫
Rn

Gα,m(εt,y)Hk(ζ(ε
− 1

α−χ(ε
1
αx− y)))dy =:

∞∑
k=m

Iεk(t,x).

(4.40)

By the Slutsky argument again, we show that

(4.41)

⎧⎨
⎩

(i) Iεm(t,x) ⇒ Vm(t,x),

(ii)
∞∑

k=m+1

Iεk(t,x) → 0 in probability, as ε → 0.

Proof of (i). By substituting the Itô-Wiener expansion (2.10) for the random field
Hm(ζ(·)) into Iεm(t,x) and exchanging the order of integration:

Iεm(t,x)

(4.42)

=
Cm√
m!

ε−
χmκ

2

∫
Rn

Gα,m(εt,y)Hm(ζ(ε−
1
α−χ(ε

1
αx− y)))dy

=
Cm√
m!

ε−
χmκ

2

∫
Rn

Gα,m(εt,y)

∫ ′

Rn×m

ei〈ε
− 1

α
−χ(ε

1
α x−y),λ1+···+λm〉

m∏
σ=1

√
f(λσ)W (dλσ)dy

=
Cm√
m!

ε−
χmκ

2

∫ ′

Rn×m

ei〈ε
−χx,λ1+···+λm〉Ĝα,m(εt, ε

− 1
α−χ(λ1 + · · ·+ λm))

×
m∏

σ=1

√
f(λσ)W (dλσ)dy

d
=

Cm√
m!

ε
χm(n−κ)

2

∫ ′

Rn×m

ei〈x,λ
′
1+···+λ′

m〉Ĝα,m(εt, ε
− 1

α (λ′
1 + · · ·+ λ′

m))

×
m∏

σ=1

√
f(εχλ′

σ)W (dλ
′

σ)

=: Ĩεm(t,x),

where we have used the self-similarity property W (εχdλ)
d
= ε

nχ
2 W (dλ) in the last

equality.
Now, applying the isometry property of the multiple Wiener integrals to the

difference of Ĩεm(t,x) and the random field Vm(t,x) in (3.7), we have

E|Ĩεm(t,x)− Vm(t,x)|2

= C2
m

∫
Rnm

∣∣εχm(n−κ)
2 Ĝα,m(εt, ε

− 1
α (λ1 + · · ·+ λm))

m∏
σ=1

√
f(εχλσ)

−B(0)
m
2 e−t|λ1+···+λm|α(|λ1| · · · |λm|)

κ−n
2

∣∣2 m∏
σ=1

dλσ → 0(4.43)

when ε → 0, by Condition C and (4.2).
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By the Markov inequality, (4.43) implies Ĩεm(t,x) → Vm(t,x) in probability.

However, because Iεm(t,x)
d
= Ĩεm(t,x), the claim (i) is concluded by the Cramer-

Wold argument.

Proof of (ii). From (4.40), by the orthogonal property (2.9) and the semigroup
property of Gα,m(t,x),

E

( ∞∑
k=m+1

Iεk(t,x)
)2

=

∞∑
k=m+1

E(Iεk(t,x))
2

=
∞∑

k=m+1

ε−χmκC2
k

∫
Rn

∫
Rn

Gα,m(εt,y)Gα,m(εt,y
′)Rk(ε−

1
α−χ(y − y′))dydy′

=
∞∑

k=m+1

ε−χmκC2
ρ

∫
Rn

Gα,m(2εt, z)R
k(ε−

1
α−χz)dz

=

∞∑
k=m+1

ε−χmκC2
k

∫
Rn

Ĝα,m(2εt, ε
− 1

α−χλ)f∗k(λ)dλ

=
( k∗∑
k=m+1

+

∞∑
k=k∗+1

)
εχ(n−mκ)C2

k

∫
Rn

Ĝα,m(2εt, ε
− 1

αλ)f∗k(εχλ)dλ =: (I) + (II),

where k∗ = max{k ∈ N| k ≥ m+ 1, kκ ≤ n}.

For the case k∗κ < n, by Lemma 1,

lim
ε→0

(I) =lim
ε→0

k∗∑
k=m+1

εχ(n−mκ)C2
k

∫
Rn

Ĝα,m(2εt, ε
− 1

αλ)Bk(ε
χλ)|εχλ|kκ−ndλ

≤ lim
ε→0

k∗∑
k=m+1

εχκ(k−m)C2
k ‖Bk‖∞

∫
Rn

e−2t|λ|α |λ|kκ−ndλ = 0.

For the case k∗κ = n, we still have lim
ε→0

(I) = 0 because

lim
ε→0

εχ(n−mκ)C2
k∗

∫
Rn

Ĝα,m(2εt, ε
− 1

αλ)Bk∗(εχλ)ln(2 + |εχλ|−1)dλ = 0.

On the other hand, by the assumption κ < n/m in Condition C and Lemma 1, for
any k > k∗ + 1 we have ‖f∗k‖∞≤‖f∗(k∗+1)‖∞, so

lim
ε→0

(II) ≤ lim
ε→0

∞∑
k=k∗+1

εχ(n−mκ)C2
k ‖f∗(k∗+1)‖∞

∫
Rn

e−2t|λ|αdλ = 0.

Hence lim
ε→0

E
[
(

∞∑
k=m+1

Iεk(t,x))
2
]
= 0, and the claim (ii) is proved by the Markov

inequality. �

Appendix: Proof of Lemma 1

The idea of the following proofs comes from [32, p. 115, Theorem 3] and [17,
p. 160, Theorem 8.8]. We only consider their results for the density functions on
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the whole space. Suppose that two spectral density functions f1 and f2 are in the
form

(A.1) 0 ≤ fj(λ) =
Kj(λ)

|λ|n−κj
, κj > 0, j = 1, 2,

where K1(λ) and K2(λ) are non-negative functions belonging to C(Rn\{0}).
Let g(λ) =

∫
Rn f1(λ − η)f2(η)dη, λ ∈ R

n. To prove Lemma 1, we show that g
can be written as

g(λ) =

⎧⎪⎨
⎪⎩

B(λ)|λ|κ1+κ2−n, for κ1 + κ2 < n,

B(λ)ln(2 + 1
|λ| ), for κ1 + κ2 = n,

B(λ) ∈ C(Rn), for κ1 + κ2 > n,

for some bounded function B(λ) ∈ C(Rn\{0}).

Case 1 (κ1 + κ2 < n). For any λ0 �= 0, we divide R
n into four parts: R

n =
D1 ∪D2 ∪D3 ∪D4, where

D1 =
{
η ∈ R

n| |η − λ0| < |λ0|/2
}
,

D2 =
{
η ∈ R

n| |η| < |λ0|/2
}
,

D3 =
{
η ∈ (D1 ∪D2)

c| |η − λ0| < |η|
}
,

D4 =
{
η ∈ (D1 ∪D2)

c| |η − λ0| > |η|
}
.

Therefore,

g(λ0) =

4∑
j=1

∫
Dj

f1(λ0 − η)f2(η)dη =: I1 + I2 + I3 + I4,

I1(λ0) ≤
(
sup

η′∈D1

f2(η
′)
) ∫

Dj

f1(λ0 − η)dη

≤
(
sup
η∈D1

K2(η)
)
(
|λ0|
2

)κ2−n
(
sup
η∈D2

K1(η)
)
cn

∫ |λ0|
2

0

rκ1−1dr = C|λ0|κ1+κ2−n,

where cn is the surface area of the unit sphere on R
n and C is a constant independent

of λ0. Similarly, I2(λ0) ≤ C|λ0|κ1+κ2−n.

By the fact that I3 ∈ C(Rn\{0}) ∩ L1(Rn), we know that sup
|λ0|≥1

I3(λ0) < ∞. So

we suffice to study the behavior of I3(·) on the domain {λ0| |λ0| < 1}.
By the requirement (A.1), lim

|η|→∞
Kj(η)|η|κj = 0; that is, for any ε > 0, there

exists a constant M = M(ε) > 0 such that

Kj(η) ≤ ε|η|−κj for all |η| > M.(A.2)

Because |η − λ0| < |η| for η ∈ D3,

I3(λ0) ≤
(∫

D3∩{|η−λ0|>M+1}
+

∫
D3∩{|η−λ0|<M+1}

)K1(λ0 − η)K2(η)

|λ0 − η|2n−κ1−κ2
dη

=: I3,1(λ0) + I3,2(λ0).
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By using (A.2) and |η − λ0| < |η| again,

(A.3)

I3,1(λ0) ≤ ε

∫
D3∩{|η−λ0|>M+1}

K1(λ0 − η)|η|−κ2

|λ0 − η|2n−κ1−κ2
dη

≤ ε

∫
{|η−λ0|>M+1}

K1(λ0 − η)

|λ0 − η|2n−κ1
dη

≤ ε(M + 1)−n

∫
Rn

K1(η)

|η|n−κ1
dη = ε(M + 1)−n,

I3,2(λ0) ≤ ‖K1‖∞‖K2‖∞ cn

∫ M+1

λ0
2

rn−1

r2n−κ1−κ2
dη(A.4)

<
‖K1‖∞‖K2‖∞ cn
n− κ1 − κ2

(
|λ0|
2

)κ1+κ2−n.

Combining (A.3) and (A.4), we get I3(λ) = B(λ)|λ|κ1+κ2−n for some bounded
function B. This observation still holds for I4. Therefore, the proof for the case
κ1 + κ2 < n is finished. �

Case 2 (κ1 + κ2 = n, κ1, κ2 > 0). Let λ̂0 = λ0/|λ0|,

g(λ0) =

∫
Rn

K1(λ0 − η)K2(η)

|λ0 − η|n−κ1 |η|n−κ2
dη

=
( ∫

{|η|<2}
+

∫
|η|>2

)K1(|λ0|(λ̂0 − η))K2(|λ0|η)
|λ̂0 − η|n−κ1 |η|n−κ2

dη

=: J1(λ0) + J2(λ0),

(A.5) J1(λ0) ≤
∫
{|η|<2}

‖K1‖∞‖K2‖∞ dη

|λ̂0 − η|n−κ1 |η|n−κ2

=

∫
{|η|<2}

‖K1‖∞‖K2‖∞ dη

|x̂− η|n−κ1 |η|n−κ2
< ∞,

where the last equality holds for any unit vector x̂. Moreover, we also have that

J2(λ0) =
( ∫
{2<|η|<2(2+ 1

|λ0| )}

+

∫
{|η|>2(2+ 1

|λ0| )}

)K1(|λ0|(λ̂0 − η))K2(|λ0|η)
|λ̂0 − η|n−κ1 |η|n−κ2

dη

=: J2,1(λ0) + J2,2(λ0).

Because |λ̂0 − η| ≥ |η| − 1,

J2,1(λ0) ≤
∫

{2<|η|<2(2+ 1
|λ0| )}

‖K1‖∞‖K2‖∞ dη

(|η| − 1)n−κ1 |η2|n−κ2
= cn

∫ 2(2+ 1
|λ0| )

2

‖K1‖∞‖K2‖∞ dr

(r − 1)n−κ1r1−κ2

(A.6)

= cn ‖K1‖∞‖K2‖∞
∫ 2(2+ 1

|λ0| )

2

dr

(1− 1
r )

n−κ1r
≤ 2n−κ1cn ‖K1‖∞‖K2‖∞ ln(2 +

1

|λ0|
).
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Changing from variable η to τ
|λ0| and using the inequality |λ0 − τ | ≥ |τ | − |λ0| ≥

2(1 + 2|λ0|)− |λ0| ≥ 2 for |τ | > 2(1 + |λ0|),

J2,2(λ0) =

∫
{|τ |>2(1+2|λ0|)}

K1(λ0 − τ )K2(η)

|λ0 − τ |n−κ1 |τ |n−κ2
dτ

≤ ‖K1‖∞
2n−κ1

∫
{|τ |>2(1+2|λ0|)}

K2(τ )

|τ |n−κ2
dη ≤ ‖K1‖∞

2n−κ1
.

The last estimation, together with (A.5) and (A.6), implies that there exist bounded

and positive functions B̃(λ) and C(λ) such that g(λ) = B̃(λ)ln(2 + 1
|λ| ) + C(λ) =

B(λ)ln(2 + 1
|λ| ), where B(λ) = B̃(λ) + C(λ)

ln(2+|λ|−1) is also a bounded function.

Case 3 (κ1 + κ2 > n, κ1, κ2 > 0). Because κ1 + κ2 > n implies that there exist
p, p′ ∈ (1,∞) such that p(n−κ1), p

′(n−κ2) < n and 1
p +

1
p′ = 1. For any λ ∈ R

n,

by Hölder’s inequality, g(λ) ≤‖f1‖p‖f2‖p′ . Meanwhile, it also implies the continuity
of g as follows:

|g(λ)− g(λ0)| = |
∫
Rn

(
f1(λ− η)− f1(λ0 − η)

)
f2(η)dη|

≤ ‖f1(λ− ·)− f1(λ0 − ·)‖p‖f2‖p′→ 0

when λ → λ0 for any λ0 ∈ R
n.

Finally, by taking successive convolutions and using the result of Case 1, for any
k1 > k2 > n/κ, f∗k1(λ) and f∗k2(λ) are bounded functions, which implies

f∗k1(λ)=

∫
Rn

f∗k2(λ− η)f∗(k1−k2)(η)dη ≤‖f∗k2‖∞
∫
Rn

f∗(k1−k2)(η)dη =‖f∗k2‖∞ .
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