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LOCAL AND GLOBAL REGULARITY

OF WEAK SOLUTIONS OF ELLIPTIC EQUATIONS

WITH SUPERQUADRATIC HAMILTONIAN

ANDREA DALL’AGLIO AND ALESSIO PORRETTA

Abstract. In this paper, we study the regularity of weak solutions and sub-
solutions of second order elliptic equations having a gradient-dependent term

with superquadratic growth. We show that, under appropriate integrabil-
ity conditions on the data, all weak subsolutions in a bounded and regular
open set Ω are Hölder-continuous up to the boundary of Ω. Some local and
global summability results are also presented. The main feature of this kind
of problem is that the gradient term, not the principal part of the operator, is
responsible for the regularity.

1. Introduction and main results

Recently, several papers have investigated the regularity of solutions of second or-
der (possibly degenerate) equations containing first order terms with superquadratic
growth in the gradient. Firstly, motivated by stochastic control problems, in [8] the
authors considered fully nonlinear equations whose simplest example is the viscous
Hamilton–Jacobi equation

(1.1) −tr
(
A(x)D2u

)
+ λu+ |Du|p = f(x) , x ∈ Ω,

in an open bounded set Ω ⊂ R
N , N ≥ 2, where A is a continuous nonnegative N×N

symmetric matrix, f(x) is continuous and λ ≥ 0. The main result proved in [8]
states that, when p > 2, any bounded upper semi-continuous viscosity subsolution of
(1.1) is Hölder continuous in Ω (under some regularity of ∂Ω) of exponent α = p−2

p−1 ,

with estimates depending only on the L∞–norm of A(x) and f(x).
This result shows two striking effects of the superquadratic growth of the Hamil-

tonian; one is that the Hölder regularity holds for merely subsolutions, which is
unusual for second order problems. Another one is that the regularity, and the
corresponding estimate, carry over up to the boundary, which explains why the
Dirichlet problem can be overdetermined for this kind of operator. This is a major
difference with the case that first order terms have the so–called natural growth,
meaning that they grow at most quadratically with respect to the gradient (for this
case see [3], [10] and the references therein). Otherwise, some peculiarities of the
superquadratic case had been pointed out in the pioneering works [13], [11], at least
concerning properties of solutions.
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The regularity result of [8], mentioned before, was revisited in [2], where an
interpretation was given in terms of state-constraint problems together with sev-
eral possible applications. At the same time, the regularity of solutions for the
corresponding evolution equations was investigated in [5], [4] and next in [7], [6],
where Hölder regularity and estimates of (viscosity) solutions were proved for sev-
eral types of second order, possibly degenerate, time-dependent operators (both
local and nonlocal) with the common feature of a superquadratic coercive gradient
dependent lower order term.

The goal of our paper is to prove similar estimates and regularity results for
stationary distributional solutions of second order, possibly degenerate, operators
in divergence form. Since all previous works have concerned the framework of vis-
cosity solutions, our results complement those cited above and show, once more,
the generality of the Hölder regularity induced by the superquadratic term. Let
us stress that distributional solutions in this context are not unique (see the dis-
cussion in Remark 3.2), therefore the regularity proved in this class has a stronger
flavour. Indeed, we show that similar results to those proved in [8] hold even in the
weak context of distributional solutions, for the divergence form structure, and if
f belongs to a (larger) class of Lebesgue spaces. In order to be more precise, here
is our main result.

Theorem 1.1. Let Ω be an open bounded and connected subset of RN having
Lipschitz boundary and satisfying the uniform interior sphere condition. Assume
a(x, s, ξ) is a Carathéodory function satisfying, for some β > 0,

(1.2) |a(x, s, ξ)| ≤ β(1 + |ξ|) ∀(s, ξ) ∈ R× R
N , a.e. x ∈ Ω.

Let p > 2, λ ≥ 0 and let f belong to Lq(Ω) for some q > N
p . Let u be a function in

W 1,p
loc (Ω) such that λu− ∈ Lq(Ω), which satisfies, in the sense of distributions, the

inequality

(1.3) λu+ |∇u|p ≤ div(a(x, u,∇u)) + f(x) in Ω.

Then u is Hölder continuous in Ω (i.e., up to the boundary) and satisfies

|u(x)− u(y)| ≤ K |x− y|α , ∀x, y ∈ Ω ,

where α = min(1 − N
p q , 1 − 1

p−1 ) and K depends on p, q, N , β, Ω, ‖f‖Lq(Ω) and

‖λu−‖q.

Theorem 1.1 is the natural extension of the main result proved in [8, Thm 1.1].
We recover all the features mentioned before: the operator can be degenerate or
not, since the estimate only depends on the L∞-bound of the field a, moreover, the
estimate holds up to ∂Ω and, in particular, it is a universal estimate for positive
solutions. Note also that the Hölder exponent α decreases according to q if f ∈
Lq(Ω) with q < N(p−1)

p , embedding the p−2
p−1 -Hölder regularity previously known

into a more general scale. Let us mention that the possibility to obtain Hölder
estimates with unbounded data f had not been considered in the previous works
except for the recent paper [6] for the solutions of evolution problems.

The proof of our result is completely different from the one given in [8], obviously
due to the different framework of distributional solutions rather than viscosity solu-
tions. This gives an independent interest to our proof; indeed, the integral approach
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induced by the distributional formulation suggests a different, yet natural, interpre-
tation of the Hölder regularity as an immediate consequence of a local Morrey–type
inequality.

Theorem 1.1 is not the only result that we prove. Indeed, we will further prove
several local and global different estimates, including the case where f ∈ Lq

loc(Ω)

with q < N
p . In order to better clarify the local and global ingredients, the two

aspects should be first considered separately, which is the way we have planned
our presentation. However, it is important to stress that, for positive solutions,
the local bounds extend to global ones without any information on the boundary
values. In this respect, to mention a significant consequence of our estimates, we
complement Theorem 1.1 with the following.

Theorem 1.2. Let Ω satisfy the same assumptions as in Theorem 1.1. Assume
(1.2), let p > 2, λ > 0 and let f belong to Lq(Ω) for some q > N

p . Let u ∈ W 1,p
loc (Ω)

be a subsolution of (1.3) in the sense of distributions. Assume in addition that one
of the two following conditions holds:

(i) a(x, s, ξ) · ξ ≥ 0 for every (s, ξ) ∈ R× R
N , a.e. x ∈ Ω.

(ii) u ≥ 0 in Ω.
Then u+ ∈ L∞(Ω) and

‖u+‖L∞(Ω) ≤ M

where M = M(β, q, p,N, λ−1,Ω, ‖f‖Lq(Ω)).

The global bound on u+ given by the previous result extends a similar one proved
in [11] in the case of the Laplace operator, in connection with the corresponding
state constraint problem (see also [2]). On the other hand, the negative part of
solutions can be estimated globally only if one controls the boundary data; we
restrict ourselves to consider zero boundary data in that case. Such global estimates
for the Dirichlet problem are the object of Section 5.

Let us note that, in order to keep the exposition simple, we have restricted our
attention to the case where the second order operator has linear growth (that is,
inequality (1.2) holds). However, all the results contained in this article could be
extended with little effort to the case where the operator has growth m − 1, with
m > 1, that is, inequality (1.2) is replaced by

|a(x, s, ξ)| ≤ β(1 + |ξ|m−1) ∀(s, ξ) ∈ R× R
N , a.e. x ∈ Ω,

provided the exponent p in the gradient term satisfies p > m. For instance, one
could consider the following differential inequality involving the m-laplacian:

(1.4) λu+ |∇u|p ≤ div(|∇u|m−2∇u) + f(x) in Ω,

with p > m.
Indeed, the idea that lies behind the proofs is that, from the point of view of

regularity, if p > m, the second order operator can be “neglected”, so the differential
inequality (1.4) behaves like its first order counterpart,

λu+ |∇u|p ≤ f(x) ,

for which regularity follows as a straightforward consequence of Sobolev’s inequal-
ities.



3020 A. DALL’AGLIO AND A. PORRETTA

2. Notation

Let Ω be a bounded open set in R
N , N ≥ 1. We will consider a differential

inequality of the form

(2.1) −div(a(x, u,∇u)) + λu+ |∇u|p ≤ f(x) in Ω ,

where a(x, s, ξ) : Ω× R× R
N is a Carathéodory function (i.e., measurable in the

first variable and continuous in the last two variables) such that

(2.2) |a(x, s, ξ)| ≤ β (1 + |ξ|) , β > 0 ,

for every (s, ξ) ∈ R×R
N , for a.e. x ∈ Ω. We also assume in (2.1) that p > 2, λ ≥ 0

(although in the last section we will also consider the case λ < 0), and f(x) is a
measurable function belonging to Lq

loc(Ω), for some q ≥ 1.

Definition 2.1. We will say that u ∈ W 1,p
loc (Ω) is a subsolution of (2.1) in the sense

of distributions if

(2.3)

∫
Ω

a(x, u,∇u) · ∇ϕdx+ λ

∫
Ω

uϕ dx+

∫
Ω

|∇u|pϕdx ≤
∫
Ω

f ϕ dx

for every ϕ ∈ C∞
0 (Ω), ϕ ≥ 0.

We define, for k > 0, the truncation function at levels ±k, that is,

Tk(s) = max{min{s, k},−k} .

We will also denote by u+, u− the positive and negative parts of u, i.e.,

u+ = max{u, 0} , u− = max{−u, 0} .

If q ∈ (1,∞), we will denote by q′ its Hölder’s conjugate exponent, that is, q′ = q
q−1 .

If q ∈ [1, N), we will denote by q∗ its Sobolev conjugate exponent, that is, q∗ = qN
N−q .

3. Local and global Hölder continuity

The basic starting point of our analysis is the following estimate.

Lemma 3.1. Assume (2.2), let p > 2, λ ≥ 0, and let f belong to Lq
loc(Ω) for some

q ≥ 1. Let u ∈ W 1,p
loc (Ω) be a subsolution of (2.1) in the sense of distributions, such

that λu− ∈ Lq
loc(Ω). Then, for every pair of concentric balls Bρ ⊂ BR ⊂ Ω, we

have

(3.1)

∫
Bρ

|∇u|p dx+ λ

∫
Bρ

u+ dx ≤ K
RN

(R− ρ)γ

where γ = max
{

N
q , p

′
}

and K is a constant which depends on β, p, q,N , diam(Ω),

‖f + λu−‖Lq(BR).

Proof. Let C denote a generic constant, possibly depending on β, N , p, q. Let
η ∈ C1 be a cut-off function such that 0 ≤ η ≤ 1, η ≡ 1 on Bρ, η ≡ 0 outside BR,

and |∇η| ≤ C
R−ρ . Multiplying (2.1) by η2 and integrating by parts we have∫

Ω

|∇u|p η2 dx+ λ

∫
Ω

u η2 dx ≤
∫
Ω

f η2 dx− 2

∫
Ω

a(x, u,∇u)∇η η dx
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which yields, using (2.2),
(3.2)∫

Ω

|∇u|p η2 dx+ λ

∫
Ω

u+ η2 dx ≤
∫
Ω

(f + λu−) η2 dx+ 2β

∫
Ω

(1 + |∇u|)η |∇η| dx .

Then the properties of η and Young’s inequality imply

2β

∫
Ω

(1 + |∇u|)η |∇η| dx

≤ 1

2

∫
Ω

|∇u|p η2 dx+ C

∫
Ω

η|∇η| dx + C

∫
Ω

η
p−2
p−1 |∇η|p′

dx

≤ 1

2

∫
Ω

|∇u|p η2 dx+ C
RN

R − ρ
+ C

RN

(R− ρ)p′

≤ 1

2

∫
Ω

|∇u|p η2 dx+ C [diam(Ω)p
′−1 + 1]

RN

(R− ρ)p′ .

On the other hand, by Hölder’s inequality,∫
Ω

(f + λu−) η2 dx ≤ ‖f + λu−‖Lq(BR) |BR|1−
1
q ≤ C ‖f + λu−‖Lq(BR) R

N−N
q .

Therefore, (3.2) implies∫
Bρ

|∇u|p dx+ λ

∫
Bρ

u+ dx ≤ C ‖f + λu−‖Lq(BR) R
N−N

q

+ C [diam(Ω)p
′−1 + 1]

RN

(R− ρ)p′ .

In particular, we deduce (3.1). �

The main consequence of estimate (3.1) is the local Hölder continuity of u. In
the proof below, we also give a (uniform) estimate for the Hölder seminorm on any
ball B ⊂ Ω.

Theorem 3.1. Assume (2.2), let p > 2, λ ≥ 0, and let f belong to Lq(Ω) for some

q > N
p . Let u ∈ W 1,p

loc (Ω) be such that λu− ∈ Lq(Ω) and such that the inequality

(2.1) holds in the sense of distributions.
Then u is locally Hölder continuous and satisfies, for every ball B ⊂ Ω,

|u(x)− u(y)| ≤ K |x− y|α , ∀x, y ∈ B ,

where α = min(1− N
p q , 1 −

1
p−1 ) and K depends only on p, q, N , β, diam(Ω) and

‖f + λu−‖Lq(Ω).

Proof.

Step 1. Let x0 ∈ Ω and Br(x0) be a ball such that B2r(x0) ⊂ Ω. It follows from
Lemma 3.1 that ∫

Br

|∇u|p dx ≤ K rN−γ ,

where γ = max(Nq , p
′) and K depends on p, q, N , β, diam(Ω) and ‖f +λu−‖Lq(Ω).

Since we have ∫
Br

|∇u| dx ≤
(∫

Br

|∇u|p dx
) 1

p

|Br(x0)|1−
1
p
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we deduce that u satisfies, for some different constant still denoted by K,

(3.3)

∫
Br

|∇u| dx ≤ K rN− γ
p .

In particular, if BR is any ball such that B2R ⊂ Ω, the same property will be true
for any other ball Br contained in BR, so that (3.3) will hold for every Br ⊂ BR. By
Theorem 7.19 in [9] we conclude that u is Hölder continuous in BR with exponent
α = 1− γ

p = min(1− N
q p , 1−

1
p−1 ) and

(3.4) |u(x)− u(y)| ≤ K |x− y|α

for every x , y ∈ BR. In particular, we have obtained that (3.4) holds for any couple
of points x, y which belong to some ball BR such that B2R ⊂ Ω.

Step 2. Now let B = BR(x0) be any ball such that B ⊂ Ω. We are going to
prove that (3.4) holds for every x, y ∈ B with a (possibly different) constant K
independent on B.

Consider first the case when x and y lie on the same ray, say x = x0 + s σ0

and y = x0 + t σ0 for some σ0 such that |σ0| = 1 and some real numbers s, t
with, say, s > t. Take the sequence of points zn = x − s−t

2n σ0, so that z0 = y
and zn → x. It is not difficult to realize that we can apply (3.4) to any couple
of points zn, zn−1; indeed, for every ε > 0, these two points belong to the ball

B |zn−zn−1|
2 +ε

(
zn+zn−1

2

)
which has center the mid-point zn+zn−1

2 and radius equal

to |zn−zn−1|
2 + ε = s−t

2n+1 + ε, and the same ball of twice a radius is still contained in
B for ε small enough. Therefore we have

|u(zn)− u(zn−1)| ≤ K |zn − zn−1|α ∀n ≥ 1 ,

hence, recalling that |zn − zn−1| = |s−t|
2n = |x−y|

2n we get

|u(zn)− u(y)| ≤
n∑

k=1

|u(zk)− u(zk−1)| ≤ K |x− y|α
n∑

k=1

1

2kα
,

which implies, when n → ∞ (we use here the continuity of u, which is a consequence
of Step 1)

|u(x)− u(y)| ≤ K

1− 2−α
|x− y|α .

Now take any x, y ∈ B. We denote by d(x), d(y) the distance of the two points
to the boundary of the ball, and by R the radius. In view of (3.4), it is enough to
discuss the case when d(x), d(y) < R

2 .

Moreover, observe that, if max{d(x), d(y)} > 3
2 |x − y|, we can also apply (3.4)

to x, y. Indeed, we have x, y ∈ B |x−y|
2

(x+y
2 ) and in this case the ball with double

radius, which is B|x−y|(
x+y
2 ), must be contained in B (since max(d(x), d(y)) ≤

d(x+y
2 ) + |x−y|

2 ).

We are left with the case that max(d(x), d(y)) ≤ 3
2 |x − y|; then consider two

points x̄, ȳ such that x̄ = x− d ν(x) and ȳ = y − dν(y) with d = min(R2 ,
3
2 |x− y|)

and ν(x) = x−x0

|x−x0| . We first claim that (3.4) applies to x̄, ȳ: indeed, we have

d(x̄) = d(x) + d , d(ȳ) = d(y) + d , |x̄− ȳ| ≤ |x− y| .



ELLIPTIC EQUATIONS WITH SUPERQUADRATIC HAMILTONIAN 3023

Now, if d = 3
2 |x− y|, this means that

max(d(x̄), d(ȳ)) >
3

2
|x− y| ≥ 3

2
|x̄− ȳ|

and we are in the preceding case, while if d = R
2 this means that both x̄ and ȳ

belong to BR
2
and again (3.4) can be applied. Therefore in any case we can use

(3.4) to get

|u(x̄)− u(ȳ)| ≤ K |x̄− ȳ|α ≤ K |x− y|α .

On the other hand, for points which are on the same rays we have

|u(x̄)− u(x)| ≤ K

1− 2−α
|x− x̄|α ≤ K

1− 2−α
(
3

2
)α |x− y|α ,

and so

|u(ȳ)− u(y)| ≤ K

1− 2−α
(
3

2
)α |x− y|α .

Therefore we conclude

|u(x)− u(y)| ≤ 2K

1− 2−α
(
3

2
)α |x− y|α +K |x− y|α = K̃|x− y|α

for K̃ = ( 2
1−2−α ( 32 )

α + 1)K. �

Proof of Theorem 1.1. The proof follows from Theorem 3.1 applying Lemma 2.6 in
[8]. �

Remark 3.1. The estimate (3.1) holds true under the weaker assumption that f +

λu− ∈ L1,Nq (Ω), i.e. the Morrey space of functions g such that∫
Br

|g| ≤ C rN(1− 1
q ) for every ball Br ⊂ Ω.

As a consequence, the conclusion of Theorem 3.1 and Theorem 1.1 hold true in this
more general case. Notice that every g ∈ Lq(Ω) clearly satisfies the above estimate
after Hölder’s inequality.

Remark 3.2. The result of Theorem 1.1 is optimal as far as the Hölder regularity
of u is concerned. Similarly as in [8], one can observe such optimality through the
simplest example, namely taking a(x, s, ξ) = ξ and u(x) = |x|α.

If we fix q such that N
p < q < N

p′ , and α = 1− N
pq , then u satisfies (2.1) for some

f belonging to the Morrey space L1,Nq (Ω), showing that the Hölder class (of order
1− N

pq ) cannot be improved. With a slight variation the same can be done with f

in a Lebesgue space, taking e.g. u(x) = |x|α| ln |x||γ for some γ suitably chosen; in
this case u satisfies (2.1) with f ∈ Lq(Ω), showing again that the exponent of the
Hölder regularity cannot be improved.

When q ≥ N
p′ , the subsolutions will belong to Cα(Ω) with α = p−2

p−1 . In this

case an example of the optimality of Theorem 1.1 can be obtained even with f ≡ 0.

Indeed, one can take u(x) = c0(|x|
p−2
p−1 −1) which, for a suitable choice of c0, satisfies

(in the distributional sense)

(3.5)

{
−Δu+ |∇u|p = 0 in Ω,

u ∈ W 1,p
0 (Ω),

where Ω = B1(0).
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It is worth noticing, in this example, that u is a distributional solution of the
equation, and not only a subsolution. On one hand, the regularity is therefore
optimal even in the class of distributional solutions. On the other hand, observe that
the uniqueness fails even for bounded, Hölder continuous distributional solutions.
On the contrary, the above function u(x) is not a viscosity solution of (3.5) (it
does not satisfy the condition of a supersolution at the point x = 0). This is
consistent with the uniqueness of viscosity solutions (see [2]). It is interesting to
observe that uniqueness really depends here on the formulation (viscosity rather
than distributional) within the same class of Hölder continuous functions.

Remark 3.3. It is easy to check that, in Theorems 1.1 and 3.1, a datum in divergence
form can be added, without any substantial change in the proof. More precisely, if
we assume that the vector valued function a satisfies, instead of (1.2), the weaker
condition

(3.6) |a(x, s, ξ)| ≤ g(x) + β|ξ| ,

where β > 0 and

(3.7) g(x) ∈ Lσ(Ω),with σ >
N

p− 1
,

then the statements of Theorems 1.1 and 3.1 remain the same, with

α = 1−max
( N

p q
,
N + σ

p σ
,

1

p− 1

)
.

4. Local regularity in Lebesgue spaces

In this section, we turn our attention to estimating the local norm of u rather
than its oscillation. Of course this makes sense only in the case λ > 0 (if λ = 0,
(2.1) may be invariant by adding a constant to u). We start with the case where
the datum f belongs to Lq

loc(Ω), with q below the critical value N
p .

Theorem 4.1. Assume (2.2), let 2 < p < N , λ > 0 and let f belong to Lq
loc(Ω) for

some q < N
p . Let u ∈ W 1,p

loc (Ω) be a subsolution of (2.1) in the sense of distributions.

Then u+ ∈ Ls
loc(Ω) with s = Npq

N−pq . Moreover, for every pair of concentric balls

Bρ ⊂ BR ⊂ Ω, we have

(4.1) ‖u+‖Ls(Bρ) ≤ K

where K depends on β, p, q,N, λ−1, ρ, R, ‖f‖Lq(BR), ‖u+‖L1(BR) and, if 1 ≤ q <
N(p−1)

N(p−2)+p , it depends on ‖|∇u+|‖Lp(BR) as well.

Proof. Let C denote a generic constant, possibly depending on β, N , p, q. Let
us take a cut–off function η ∈ C∞

c (BR) such that 0 ≤ η ≤ 1, η = 1 on Bρ,

|∇η| ≤ C
R−ρ . We start by assuming that q ≥ N(p−1)

N(p−2)+p . For γ, α > 0 (to be chosen

below, depending only on p, q,N), we take ϕ = Tk(u
+)γpηαp as the test function
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in (2.3). Notice that the test function vanishes on the set where u ≤ 0. We obtain

(4.2)

∫
Ω

|∇u|p Tk(u
+)γpηαp dx+ λ

∫
Ω

u+ Tk(u
+)γpηαp dx

≤ C

∫
Ω

(1 + |∇u|) |∇u+|Tk(u
+)γp−1ηαp dx

+C

∫
Ω

(1 + |∇u|) |∇η|Tk(u
+)γpηαp−1 dx

+

∫
Ω

|f |Tk(u
+)γpηαp dx ,

where the constant C depends on p, q,N . Using Young’s inequality, for every ε > 0
(which will be chosen conveniently small later), we can write

∫
Ω

(1 + |∇u|) |∇u+|Tk(u
+)γp−1ηαp dx ≤ ε

∫
Ω

|∇u|p Tk(u
+)γpηαp dx

+ Cε

∫
Ω

Tk(u
+)γp−p′

ηαp dx+ Cε

∫
Ω

Tk(u
+)γp−

p
p−2 ηαp dx .

We will check later that γ satisfies γ ≥ 1
p−2 provided q ≥ N(p−1)

N(p−2)+p . Then, since

0 ≤ γp− p
p−2 < γp− p′ < γp+ 1, we use Young’s inequality once more, to obtain

(4.3)

∫
Ω

(1 + |∇u|) |∇u+|Tk(u
+)γp−1ηαp dx ≤ ε

∫
Ω

|∇u|p Tk(u
+)γpηαp dx

+ε

∫
Ω

Tk(u
+)γp+1ηαp dx+ Cε|BR| .

Similarly, we estimate

∫
Ω

(1 + |∇u|) |∇η|Tk(u
+)γpηαp−1 dx

≤ ε

∫
Ω

Tk(u
+)γp+1ηαp dx+ Cε

∫
Ω

|∇η|γp+1ηαp−(γp+1) dx

+ ε

∫
Ω

|∇u|p Tk(u
+)γpηαp dx+ Cε

∫
Ω

|∇η|p′
Tk(u

+)γpηαp−p′
dx

and using again, in the last integral, Young’s inequality with exponent γp+ 1, we
get

(4.4)

∫
Ω

(1 + |∇u|) |∇η|Tk(u
+)γpηαp−1 dx

≤ ε

∫
Ω

Tk(u
+)γp+1ηαp dx+ ε

∫
Ω

|∇u|p Tk(u
+)γpηαp dx

+Cε

∫
Ω

|∇η|γp+1ηαp−(γp+1) dx+ Cε

∫
Ω

|∇η|p′(γp+1)ηαp−p′(γp+1)dx .
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If we choose ε small and α sufficiently large, so that αp ≥ p′(γp + 1) > (γp + 1),
using (4.3) and (4.4) we deduce from (4.2):

(4.5)

1

2

∫
Ω

|∇u|p Tk(u
+)γpηαp dx+

λ

2

∫
Ω

u+ Tk(u
+)γpηαp dx

≤ C(ρ,R, λ−1) +

∫
Ω

|f |Tk(u
+)γpηαp dx

where C(ρ,R, λ−1) depends now on ρ, R and λ−1 as well. We now use Sobolev’s
inequality, which yields

(4.6)

(∫
Ω

|Tk(u
+)γ+1ηα|p∗

dx

) p
p∗

≤ C

∫
Ω

|∇(Tk(u
+)γ+1ηα)|p dx

≤ C

∫
Ω

|∇u|pTk(u
+)γpηαp dx+ C

∫
Ω

Tk(u
+)(γ+1)p|∇η|p η(α−1)p dx.

By interpolation, since 1 < (γ + 1)p < (γ + 1)p∗, we get∫
Ω

Tk(u
+)(γ+1)p|∇η|p η(α−1)p dx

≤
(∫

Ω

Tk(u
+)(γ+1)p∗

ηαp
∗
dx

)θ (∫
Ω

Tk(u
+)|∇η|

p
1−θ η

(α−1)p−αp∗θ
1−θ dx

)1−θ

where (γ + 1)p = θ(γ + 1)p∗ + 1− θ, i.e.

θ =
(γ + 1)p− 1

(γ + 1)p∗ − 1
.

Note that θ < p
p∗ , in particular, (α−1)p−αp∗θ > 0 provided α is sufficiently large.

We deduce that, using Young’s inequality,∫
Ω

Tk(u
+)(γ+1)p|∇η|p η(α−1)p dx

≤ ε

(∫
Ω

Tk(u
+)(γ+1)p∗

ηαp
∗
dx

) p
p∗

+ Cε(ρ,R, ‖u+‖L1(BR))

and therefore (4.6) implies, for a suitable choice of ε,

(∫
Ω

|Tk(u
+)γ+1ηα|p∗

dx

) p
p∗

≤ C

∫
Ω

|∇u|pTk(u
+)γpηαp dx+ C(ρ,R, ‖u+‖L1(BR)) .

Then, we obtain from (4.5)

(∫
Ω

|Tk(u
+)γ+1ηα|p∗

dx

) p
p∗

+ λ

∫
Ω

u+ Tk(u
+)γpηαp dx

≤ C(ρ,R, λ−1, ‖u+‖L1(BR)) +

∫
Ω

|f |Tk(u
+)γpηαp dx
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which yields, using Hölder’s inequality in the right-hand side,

(∫
Ω

|Tk(u
+)γ+1ηα|p∗

dx

) p
p∗

+ λ

∫
Ω

u+ Tk(u
+)γpηαp dx

≤ C(ρ,R, λ−1, ‖u+‖L1(BR)) + ‖f‖Lq(BR)

(∫
Ω

Tk(u
+)γpq

′
ηαpq

′
dx

) 1
q′

.

Now we choose γ so that (γ + 1)p∗ = γpq′, i.e.

γ =
N(q − 1)

N − pq
.

Note that γ > 0 ⇐⇒ q′p > p∗ ⇐⇒ q < N
p , and that the condition γ ≥ 1

p−2 is

equivalent to q ≥ N(p−1)
N(p−2)+p . We also have αpq′ > αp∗, hence

(∫
Ω

Tk(u
+)γpq

′
ηαpq

′
dx

) 1
q′

≤
(∫

Ω

|Tk(u
+)γ+1ηα|p∗

dx

) 1
q′

and since 1
q′ <

p
p∗ and s = Npq

N−pq = (γ + 1)p∗, letting k → ∞ we conclude with the

estimate

‖u+‖Ls(Bρ) ≤ K ,

where K = K
(
β, p, q,N, ρ,R, λ−1, ‖f‖Lq(BR), ‖u+‖L1(BR)

)
.

In order to deal with the whole range of values of q, including q < N(p−1)
N(p−2)+p , we

slightly modify the above argument. We now take ϕ = [(1 + Tk(u
+))γp − 1]ηαp as

the test function in (2.3), and we get
(4.7)∫

Ω

|∇u|p [(1 + Tk(u
+))γp − 1] ηαp dx+ λ

∫
Ω

u+ [(1 + Tk(u
+))γp − 1] ηαp dx

≤ C

∫
Ω

(1 + |∇u|) |∇u+| (1 + Tk(u
+))γp−1ηαp dx

+C

∫
Ω

(1 + |∇u|) |∇η| (1 + Tk(u
+))γpηαp−1 dx

+

∫
Ω

|f | (1 + Tk(u
+))γpηαp dx .

We now estimate the first term in the right-hand side as

∫
Ω

(1 + |∇u|) |∇u+|(1 + Tk(u
+))γp−1ηαp dx ≤ ε

∫
Ω

|∇u|p (1 + Tk(u
+))γpηαp dx

+ Cε

∫
Ω

(1 + Tk(u
+))γp−p′

ηαp dx+ Cε

∫
Ω

(1 + Tk(u
+))γp−

p
p−2 ηαp dx

≤ ε

∫
Ω

|∇u|p (1 + Tk(u
+))γpηαp dx+ Cε

∫
Ω

(1 + Tk(u
+))γpηαp dx ,
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obtaining then, after Young’s inequality,
(4.8)∫

Ω

(1 + |∇u|) |∇u+|(1 + Tk(u
+))γp−1ηαp dx ≤ ε

∫
Ω

|∇u|p (1 + Tk(u
+))γpηαp dx

+ε

∫
Ω

Tk(u
+)γp+1ηαp dx+ Cε|BR| .

The second term in the right-hand side of (4.7) is dealt with in a similar way as in
the previous case. Then we obtain the inequality

1

2

∫
Ω

|∇u|p (1 + Tk(u
+))γpηαp dx+

λ

2

∫
Ω

u+ (1 + Tk(u
+))γpηαp dx

≤ C(ρ,R, λ−1) +

∫
Ω

|f | (1 + Tk(u
+))γpηαp dx

+

∫
Ω

|∇u+|p ηαp dx+ λ

∫
Ω

u+ηαp dx .

Henceforth, we proceed as before, using Sobolev’s inequality in the left-hand side
and Hölder’s inequality in the term with f . With the choice (γ+1)p∗ = γpq′ made
before, we obtain therefore(∫

Ω

|Tk(u
+)γ+1ηα|p∗

dx

) p
p∗

+ λ

∫
Ω

uTk(u
+)γpηαp dx

≤ C(ρ,R, λ−1, ‖u+‖L1(BR)) + ‖f‖Lq(BR)

(∫
Ω

Tk(u
+)(γ+1)p∗

ηαp
∗
dx

) 1
q′

+ ‖f‖L1(BR) +

∫
Ω

|∇u+|p ηαp dx+ λ

∫
Ω

u+ηαp dx .

Letting k go to infinity, we conclude with the estimate

‖u+‖Ls(Bρ) ≤ K ,

where K = K
(
β, p, q,N, ρ,R, λ−1, ‖f‖Lq(BR), ‖u+‖L1(BR), ‖|∇u+|‖Lp(BR)

)
. �

Remark 4.1. We can always estimate the L1-norm of u+ in terms of the L1-norm
of |∇u+|p. Indeed, taking ϕ = T1(u

+)η2 as the test function, and using (2.2), we
have ∫

Ω

|∇u|p T1(u
+)η2 dx+ λ

∫
Ω

u+T1(u
+) η2 dx ≤

∫
Ω

|f |T1(u
+)η2 dx

+β

∫
Ω

(1 + |∇u|)|∇T1(u
+)|η2 dx+ 2β

∫
Ω

(1 + |∇u|)T1(u
+)|∇η| η dx

which yields, by Young’s inequality,

1

2

∫
Ω

|∇u|p T1(u
+)η2 dx+ λ

∫
Ω

u+T1(u
+) η2 dx ≤

∫
Ω

|f | η2 dx

+C

∫
Ω

|∇u+|pη2 dx+ C

∫
Ω

|∇η|p′
dx+ C .

Then we deduce

‖u+‖L1(Bρ) ≤ C(β, p,N, λ−1, ρ, R, ‖|∇u+|‖Lp(BR)) .
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In particular, since the choice of balls is arbitrary, we deduce that estimate (4.1)
holds true, for every q < N

p , with a constant only depending on ‖|∇u+|‖Lp(BR)

(beyond the usual parameters and constants).

Remark 4.2. If p ≥ N , a similar result can be obtained with s being any value such
that s > 1. Indeed, in this case we use Sobolev embedding of W 1,p

0 (Ω) into Lr(Ω)
which holds for every r > 1. By proceeding as in the above proof (replacing p∗ with
a generic r > 1) we obtain the estimate for every possible s > 1 with a constant K
depending on s as well.

Remark 4.3. One can also treat the case where a datum in divergence form is
present. More precisely, if we assume that the vector valued function a(x, s, ξ)
satisfies (3.6), with

g(x) ∈ Lσ
loc(Ω) , σ =

Nq

N − q
,

then it is easy to check that Theorem 4.1 continues to hold true, with the bound
K depending also on ‖g‖Lσ(BR).

We now prove an estimate of the local L∞-norm of u.

Theorem 4.2. Assume (2.2), let p > 2, λ > 0, and let f belong to Lq
loc(Ω) for some

q > N
p . Let u ∈ W 1,p

loc (Ω) be a subsolution of (2.1) in the sense of distributions.

Then we have u+ ∈ L∞
loc(Ω) and, for every pair of concentric balls Bρ ⊂ BR ⊂ Ω,

we have

(4.9) ‖u+‖L∞(Br) ≤ K

where K = K
(
β, p, q,N, λ−1, ρ, R, ‖f‖Lq(BR), ‖u+‖L1(BR)

)
.

Proof. First of all, observe that, by the previous result, u belongs to Ls
loc(Ω) for

all s < ∞, and that an estimate like (4.1) holds in terms of the L1-norm of u+ in
a slightly larger ball. Moreover, by the usual inclusions between Lebesgue spaces,
one can always suppose that

(4.10)
N

p
< q ≤ N

p′
.

Let us take ϕ = v
p

p−2

h,k ηpα as the test function in (2.3), where

vh,k = Th−k(Gk(u
+))

with Gk(s) = s − Tk(s), h > k > 0, α > 0 to be fixed later. As before, we denote
by η a cut–off function, η ∈ C∞

c (BR), 0 ≤ η ≤ 1, η = 1 on Bρ, |∇η| ≤ C (R− ρ)−1.
In the following we set

A(k,R) = {x ∈ BR : u(x) > k} .
Since vh,k = 0 in Ω \A(k,R) we get

(4.11)

∫
A(k,R)

|∇u|p v
p

p−2

h,k ηαp dx+ λ

∫
A(k,R)

u v
p

p−2

h,k ηαp dx

≤ C

∫
A(k,R)

(1 + |∇u|) |∇u+|v
2

p−2

h,k ηαp dx

+C

∫
A(k,R)

(1 + |∇u|) |∇η|v
p

p−2

h,k ηαp−1 dx+

∫
A(k,R)

|f | v
p

p−2

h,k ηαp dx.
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Let us estimate the two terms in the second line above. By Young’s inequality, for
every ε > 0, we have∫

A(k,R)

(1 + |∇u|) |∇u+|v
2

p−2

h,k ηαp dx

≤ ε

∫
A(k,R)

|∇u|pv
p

p−2

h,k ηαp dx+ Cε

∫
A(k,R)

v
p

(p−2)(p−1)

h,k ηαp dx+ Cε

∫
A(k,R)

ηαp dx .

Since vh,k ≤ u+ and p
(p−2)(p−1) < 1+ p

p−2 , using Young’s inequality once more, one

obtains∫
A(k,R)

(1 + |∇u|) |∇u+|v
2

p−2

h,k ηαp dx

≤ ε

∫
A(k,R)

|∇u|pv
p

p−2

h,k ηαp dx+ ε

∫
A(k,R)

u v
p

(p−2)

h,k ηαp dx+ Cε

∫
A(k,R)

ηαp dx .

Similarly, we estimate∫
A(k,R)

(1 + |∇u|) |∇η|v
p

p−2

h,k ηαp−1 dx

≤ ε

∫
A(k,R)

v
p

p−2+1

h,k ηαp dx+ Cε

∫
A(k,R)

|∇η|1+
p

p−2 ηαp−1− p
p−2 dx

+ ε

∫
A(k,R)

|∇u|pv
p

p−2

h,k ηαp dx+ Cε

∫
A(k,R)

|∇η|p′
v

p
p−2

h,k ηαp−p′
dx .

Using Young’s inequality again in the last term with exponent p
p−2 + 1 and using

vh,k ≤ u+ we obtain

∫
A(k,R)

(1 + |∇u|) |∇η|v
p

p−2

h,k ηαp−1 dx

≤ ε

∫
A(k,R)

u v
p

(p−2)

h,k ηαp dx+ Cε

∫
A(k,R)

|∇η|1+
p

p−2 ηαp−1− p
p−2 dx

+ ε

∫
A(k,R)

|∇u|pv
p

p−2

h,k ηαp dx+ Cε

∫
A(k,R)

|∇η|p
′( p

p−2+1)ηαp−p′( p
p−2+1) dx .

Choosing ε suitably, we deduce from the above inequalities and (4.11)

(4.12)

∫
A(k,R)

|∇u|p v
p

p−2

h,k ηαp dx+ λ

∫
A(k,R)

u v
p

p−2

h,k ηαp dx

≤ C

∫
A(k,R)

ηαp dx+ C

∫
A(k,R)

|∇η|
2(p−1)
p−2 ηαp−

2(p−1)
p−2 dx

+C

∫
A(k,R)

|∇η|
2p

p−2 ηαp−
2p

p−2 dx+

∫
A(k,R)

|f | v
p

p−2

h,k ηαp dx .
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Sobolev’s inequality implies

[∫
Ω

(
v

p−1
p−2

h,k ηα
)p∗

dx

] p
p∗

≤ C

∫
Ω

∣∣∣∇(
v

p−1
p−2

h,k ηα
)∣∣∣pdx

= C

∫
A(k,R)

|∇u|p v
p

p−2

h,k ηαp dx+ C

∫
A(k,R)

v
p(p−1)
p−2

h,k ηαp−p|∇η|p dx

(here we suppose p < N , otherwise one can replace p∗ with a conveniently high
exponent), thus we can deduce from (4.12)

(4.13)

[∫
Ω

(
v

p−1
p−2

h,k ηα
)p∗

dx

] p
p∗

≤ C

∫
A(k,R)

ηαp dx

+C

∫
A(k,R)

|∇η|
2(p−1)
p−2 ηαp−

2(p−1)
p−2 dx

+C

∫
A(k,R)

|∇η|
2p

p−2 ηαp−
2p

p−2 dx+

∫
A(k,R)

|f | v
p

p−2

h,k ηαp dx

+

∫
A(k,R)

v
p(p−1)
p−2

h,k ηαp−p|∇η|p dx.

Observing that 1
q + p′

p∗ < 1, and using Hölder’s inequality with exponents

(q, p
∗

p′ ,
1

1
q′ −

p′
p∗

) we have

∫
A(k,R)

|f | v
p

p−2

h,k ηαp dx

≤ ‖f‖Lq(BR)

(∫
Ω

v
p−1
p−2 p

∗

h,k ηαp
∗
dx

) p′
p∗

(∫
A(k,R)

η
α(p−p′) q′p∗

p∗−q′p′ dx

) 1
q′ −

p′
p∗

which implies, after Young’s inequality with exponent p− 1,

∫
A(k,R)

|f | v
p

p−2

h,k ηαp dx ≤ ε

(∫
Ω

v
p−1
p−2p

∗

h,k ηαp
∗
dx

) p
p∗

+ Cε ‖f‖
p−1
p−2

Lq(BR)

(∫
A(k,R)

η
α(p−p′) q′p∗

p∗−q′p′ dx

)( 1
q′ −

p′
p∗ ) p−1

p−2

.

Similarly, we estimate, for every s > 1,

∫
A(k,R)

v
p(p−1)
p−2

h,k ηαp−p|∇η|p dx

≤
(∫

A(k,R)

v
p s(p−1)

p−2

h,k dx

) 1
s
(∫

A(k,R)

η(αp−p)s′ |∇η|ps′ dx
) 1

s′

.
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We deduce then from (4.13) that

1

2

[∫
Ω

(
v

p−1
p−2

h,k ηα
)p∗

dx

] p
p∗

≤ C

∫
A(k,R)

ηαp dx

+ C

∫
A(k,R)

|∇η|
2(p−1)
p−2 ηαp−

2(p−1)
p−2 dx+ C

∫
A(k,R)

|∇η|
2p

p−2 ηαp−
2p

p−2 dx

+ ‖f‖
p−1
p−2

Lq(BR)

(∫
A(k,R)

η
α(p−p′) q′p∗

p∗−q′p′ dx

)( 1
q′ −

p′
p∗ ) p−1

p−2

+ ‖vh,k‖
p(p−1)
p−2

L
sp(p−1)

p−2 (BR)

(∫
A(k,R)

η(αp−p)s′ |∇η|ps′ dx
) 1

s′

.

We take α > max(1, 2
p−2 ), and in the right–hand side we use that η ≤ 1 and

|∇η| ≤ c
R−ρ , and since vh,k ≤ u+ we obtain

[∫
Ω

(
v

p−1
p−2

h,k ηα
)p∗

dx

] p
p∗

≤ C |A(k,R)|
(
1 +

1

(R− ρ)
2(p−1)
p−2

+
1

(R− ρ)
2p

p−2

)

+ ‖f‖
p−1
p−2

Lq(BR) |A(k,R)|(
1
q′ −

p′
p∗ ) p−1

p−2 + ‖u+‖
p(p−1)
p−2

L
ps(p−1)

p−2 (BR)

1

(R− ρ)p
|A(k,R)| 1

s′ .

Since |A(k,R)| is bounded and R− ρ ≤ R, we take μ = max(p, 2p
p−2 ) and we choose

suitably the value of s > 1 in order to deduce (here is where we use the assumption
q < N/p′) [∫

Ω

(
v

p−1
p−2

h,k ηα
)p∗

dx

] p
p∗

≤ K
|A(k,R)|(

1
q′ −

p′
p∗ ) p−1

p−2

(R− ρ)μ

where K depends on R, ‖f‖
p−1
p−2

Lq(BR), ‖u+‖
p(p−1)
p−2

L
ps(p−1)

p−2 (BR)

.

Recall that η = 1 on Bρ, hence we have, for any h > k,

∫
Ω

(
v

p−1
p−2

h,k ηα
)p∗

dx ≥
∫
A(k,ρ)

v
p∗ p−1

p−2

h,k dx

≥
∫
A(h,ρ)

v
p∗ p−1

p−2

h,k dx ≥ (h− k)p
∗ p−1

p−2 |A(h, ρ)|

and therefore we conclude

|A(h, ρ)| ≤ K
p∗
p

|A(k,R)|
p∗
p ( 1

q′ −
p′
p∗ ) p−1

p−2

(h− k)p
∗ p−1

p−2 (R− ρ)μ
p∗
p

.

One can check that

p∗

p
(
1

q′
− p′

p∗
)
p− 1

p− 2
> 1 ⇐⇒ q >

N

p
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and we conclude applying the following lemma (see Lemma 5.1 in [15]):

Lemma 4.1. Let ϕ(h, ρ) : [0,+∞) × [0, R) be a function which is nonincreasing
with respect to h and nondecreasing with respect to ρ. Moreover, suppose that there
exist K0 > 0, τ > 1, and C, σ, δ > 0 such that

ϕ(h, ρ) ≤ C ϕ(k,R)τ

(h− k)σ(R− ρ)δ
, ∀h > k > K0 , ∀ρ ∈ (0, R] .

Then for every s ∈ (0, 1), there exists d > 0 such that

ϕ(K0 + d, sR) = 0,

where

dσ = 2
τ(σ+δ)
τ−1 C ′ ϕ(K0, 1)

τ−1

sδ
.

Remark 4.4. If q > N
2 , then similar local estimates are obtained in [12], even if for

solutions rather than subsolutions. Note that N
p < N

2 , so that the previous estimate

is stronger and really exploits the superquadratic dependence of the nonlinearity.

Remark 4.5. Again we observe that the result of Theorem 4.2 is still true if a(x, s, ξ)
verifies condition (3.6) with g ∈ Lσ

loc(Ω), σ > N
p−1 .

Gathering together the above estimates with Lemma 3.1, we deduce universal
estimates for positive subsolutions.

Corollary 4.1. Assume (2.2), let 2 < p, λ > 0 and let f belong to Lq
loc(Ω) for

some q ≥ 1. Let u ∈ W 1,p
loc (Ω) be a subsolution of (2.1) in the sense of distributions.

Then, for every pair of concentric balls Bρ ⊂ BR ⊂ Ω, we have:

(4.14)
if q < N

p , ‖u+‖Ls(Bρ) ≤ K with s = Npq
N−pq ,

if q > N
p , ‖u+‖L∞(Bρ) ≤ K,

where K depends on β, q, p,N, λ−1, ρ, R, ‖f‖Lq(BR) and on ‖λu−‖L1(BR).
In particular, assume that u ≥ 0; then (4.14) holds with a constant K indepen-

dent of u and, moreover, if q > N
p and f ∈ Lq(Ω), we have

‖u‖L∞(Ω) ≤ M

where M = M(β, q, p,N, λ−1,Ω, ‖f‖Lq(Ω)).

Proof. The form of estimates (4.14) follows from Theorem 4.1 and Theorem 4.2
because of Lemma 3.1, which allows us to estimate u+ and |∇u|p in L1 in terms of
u−.

The last statement is a consequence of Theorem 1.1. Indeed, a global bound on
the oscillation of u and a local L∞ bound, given by (4.14), imply the desired global
estimate. �

Similarly, the estimates are universal in the case of degenerate ellipticity.

Corollary 4.2. Assume (2.2), let 2 < p, λ > 0 and let f belong to Lq
loc(Ω) for

some q ≥ 1. Let u ∈ W 1,p
loc (Ω) be a subsolution of (2.1) in the sense of distributions.

Assume in addition that

(4.15) a(x, s, ξ) · ξ ≥ 0 ∀(s, ξ) ∈ R× R
N , a.e. x ∈ Ω.
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Then estimates (4.14) hold true with a constant K depending on β, q, p, N , λ−1,
ρ,R and ‖f‖Lq(BR).

In addition, if f ∈ Lq(Ω) with q > N
p , then u+ ∈ L∞(Ω) and

‖u+‖L∞(Ω) ≤ M

where M = M(β, q, p,N, λ−1,Ω, ‖f‖Lq(Ω)).

Proof. Choosing Tε(u
+)η as the test function, where η is a nonnegative cut-off

function, we get

λ

∫
Ω

uTε(u
+)η dx+

∫
Ω

|∇u|pTε(u
+)η dx ≤

∫
Ω

f Tε(u
+)η dx

−
∫
Ω

a(x, u,∇u)∇Tε(u
+)η dx−

∫
Ω

a(x, u,∇u)∇ηTε(u
+) dx .

Using (4.15) we can drop a term in the right-hand side, hence

λ

∫
Ω

uTε(u
+)η dx+

∫
Ω

|∇u|pTε(u
+)η dx

≤
∫
Ω

f Tε(u
+)η dx−

∫
Ω

a(x, u,∇u)∇ηTε(u
+) dx.

Dividing by ε and letting ε → 0 we deduce that

λ

∫
Ω

u+η dx+

∫
Ω

|∇u+|pη dx ≤
∫
Ω

|f | η dx−
∫
Ω

a(x, u+,∇u+)∇η dx

where we used also that a(x, s, 0) = 0 as a consequence of (4.15). The above
inequality means that u+ is a subsolution with right-hand side |f |. Then we apply
Corollary 4.1 to conclude. �

Remark 4.6. It is possible to give a more precise form of the dependence on the
parameter λ of the estimates in this section, by taking care of the scaling of the
equation with respect to λ (namely, applying the above arguments to the function
v = λu). In particular, one can replace estimate (4.1) with

min(λ, 1)‖u+‖Ls(Bρ) ≤ K

and, respectively, estimate (4.9) with

min(λ, 1)‖u+‖L∞(Bρ) ≤ K

where K does not depend on λ. The same holds for the estimates in Corollary 4.1
and Corollary 4.2.

Remark 4.7. If (4.15) holds true and there exist γ, L > 0 such that

H(x, u,∇u)sign(u) ≥ γ |∇u|p for |u| > L,

and if

λu− div(a(x, u,∇u)) +H(x, u,∇u) = f in Ω,

then we get similar estimates for both u+ and u−, proceeding as in Corollary
4.2. In particular, if f ∈ Lq(Ω) with q > N

p , we deduce a global universal bound

‖u‖L∞(Ω) ≤ M (independent from the boundary behaviour of u).
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5. Global regularity for the Dirichlet problem

We turn here to the Dirichlet problem, that is, we assume that the subsolution u
belongs to the space W 1,p

0 (Ω). In this case, we find global summability or regularity,
depending on the summability of the datum f . We stress the fact that, in the next
two results, λ can be any real number.

5.1. Global Ls-regularity.

Theorem 5.1. Assume (2.2), let 2 < p < N , λ ∈ R and let f belong to Lq(Ω) for
some q such that

(5.1) 1 ≤ q <
N

p
.

Let u ∈ W 1,p
0 (Ω) be a subsolution of (2.1) in the sense of distributions. Then

u ∈ Ls(Ω), with s =
Npq

N − pq
,

and

(5.2) ‖u‖
Ls(Ω)

≤ C ,

where the bound C depends on β, p,N, q, λ, |Ω|, ‖f‖
Lq(Ω)

in the case where N(p−1)
N(p−2)+p

≤ q < N
p , while it also depends on the Lp-norm of |∇u| in the case where 1 ≤ q <

N(p−1)
N(p−2)+p .

Proof. It is easy to see that (2.3) must be true for every ϕ ∈ L∞(Ω) ∩H1
0 (Ω). Let

us start by assuming that

(5.3)
N(p− 1)

N(p− 2) + p
≤ q <

N

p
.

Take ϕ = |Tk(u)|
Np(q−1)
N−pq and use (2.2) to obtain

(5.4)

∫
Ω

|∇u|p |Tk(u)|
Np(q−1)
N−pq dx ≤ C

∫
Ω

|∇Tk(u)|2 |Tk(u)|
Np(q−1)
N−pq −1 dx

+ C

∫
Ω

|∇Tku| |Tk(u)|
Np(q−1)
N−pq −1 dx

+ |λ|
∫
Ω

|u| |Tk(u)|
Np(q−1)
N−pq dx+

∫
Ω

|f | |Tk(u)|
Np(q−1)
N−pq dx .

Here the constants C depend on the data of the problem but not on k (and may
change from line to line). We now proceed to estimate the integrals in (5.4). If we
set

Φk(t) =

∫ |t|

0

(Tk(s))
N(q−1)
N−pq ds ,

then, using Sobolev’s inequality, one obtains

(5.5)

∫
Ω

|∇u|p |Tk(u)|
Np(q−1)
N−pq dx =

∫
Ω

∣∣∇Φk(u)
∣∣p dx

≥ C

[ ∫
Ω

Φk(u)
p∗

dx

]N−p
N

≥ C

[ ∫
Ω

|Tk(u)|s dx
]N−p

N

.
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On the other hand, by Young’s and Hölder’s inequalities, we can write

(5.6)

∫
Ω

|∇Tk(u)|2 |Tk(u)|
Np(q−1)
N−pq −1 dx

≤ ε

∫
Ω

|∇u|p |Tk(u)|
Np(q−1)
N−pq dx+ Cε

∫
Ω

|Tk(u)|
Np(q−1)
N−pq − p

p−2 dx

≤ ε

∫
Ω

|∇u|p |Tk(u)|
Np(q−1)
N−pq dx+ Cε

[ ∫
Ω

|Tk(u)|s dx
] q−1

q − N−pq
Nq(p−2)

for arbitrary ε > 0 (note that the lower bound on q in (5.3) ensures that Np(q−1)
N−pq −

p
p−2 ≥ 0). Similarly∫

Ω

|∇Tk(u)| |Tk(u)|
Np(q−1)
N−pq −1 dx

≤ ε

∫
Ω

|∇u|p |Tk(u)|
Np(q−1)
N−pq dx+ Cε

∫
Ω

|Tk(u)|
Np(q−1)
N−pq − p

p−1 dx

≤ ε

∫
Ω

|∇u|p |Tk(u)|
Np(q−1)
N−pq dx+ Cε

[ ∫
Ω

|Tk(u)|s dx
] q−1

q − N−pq
Nq(p−1)

.

(5.7)

Moreover, by Hölder’s inequality,∫
Ω

|u| |Tk(u)|
Np(q−1)
N−pq dx ≤ C

[ ∫
Ω

(
|u| |Tk(u)|

Np(q−1)
N−pq

) s

1+
Np(q−1)
N−pq

](1+Np(q−1)
N−pq ) 1

s

.

Now, one can easily check that(
|u| |Tk(u)|

Np(q−1)
N−pq

) s

1+
Np(q−1)
N−pq ≤ C Φk(u)

p∗
,

therefore,

(5.8)

∫
Ω

|u| |Tk(u)|
Np(q−1)
N−pq dx ≤ C

[ ∫
Ω

Φk(u)
p∗
](1+Np(q−1)

N−pq ) 1
s

.

Finally

(5.9)

∫
Ω

|f | |Tk(u)|
Np(q−1)
N−pq dx ≤ ‖f‖

Lq(Ω)

[ ∫
Ω

|Tk(u)|s dx
] 1

q′

.

Therefore, putting all the inequalities (5.4)–(5.9) together, we obtain

(5.10)

X ≤ c10

(
X( q−1

q − N−pq
Nq(p−2) )

N
N−p +X( q−1

q − N−pq
Nq(p−1) )

N
N−p

+X
N−pq+Np(q−1)

pq(N−p) +X
N(q−1)
(N−p)q

)
,

where c10 depends on β,N, p, q, λ, |Ω|, ‖f‖
Lq(Ω)

, and we have set

X =

∫
Ω

|∇u|p |Tk(u)|
Np(q−1)
N−pq dx .

Since q < N/p, it is easy to check that all the four exponents in the right-hand side of
(5.10) are smaller than 1. This gives an estimate on X, therefore, on

∫
Ω
|Tk(u)|s dx.

The result follows by letting k go to infinity.
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In the case where

1 ≤ q <
N(p− 1)

N(p− 2) + p

the above proof does not work. However, using(
1 + |Tk(u)|

)Np(q−1)
N−pq − 1

as the test function, with the same type of calculations as in the proof of Theorem
4.1, it is easy to prove the same result, the only difference being that in this case
the bound C in (5.2) also depends on the Lp-norm of |∇u|. �
5.2. Global boundedness. We now need the following lemma (see [14]):

Lemma 5.1. Let φ be a nonnegative, nonincreasing function defined on the half
line [k0,∞). Suppose that there exist positive constants A, γ, δ, with δ > 1, such
that

φ(h) ≤ A

(h− k)γ
φ(k)δ

for every h > k ≥ k0. Then φ(k) = 0 for every k ≥ k1, where

k1 = k0 +A1/γ2δ/(δ−1)φ(k0)
(δ−1)/γ .

Theorem 5.2. Assume (2.2), let p > 2, λ ∈ R, and let f belong to Lq(Ω) for some

q > N
p . Let u ∈ W 1,p

0 (Ω) be a subsolution of (2.1) in the sense of distributions.

Then u ∈ L∞(Ω), and

(5.11) ‖u‖
L∞(Ω)

≤ C(β, p,N, q, λ, ‖f‖
Lq(Ω)

, |Ω|) .

Proof. By using the usual inclusions between Lebesgue spaces, one can always
suppose that

(5.12)
N

p
< q ≤ N

p′
.

Moreover, by Theorem 5.1, u ∈ Ls(Ω) for every s > 1 (with norm depending on
the data of the problem). Therefore, we can put the term λu in the equation with
the datum f , and we can ignore it. It is easy to see that (2.3) is true for every

ϕ ∈ L∞(Ω) ∩H1
0 (Ω). We take ϕ =

(
Gk,h(u)

) p
p−2 in (2.3), where h > k > 0

Gh,k(s) = Th−k(|s| − k)+ .

Then we obtain∫
Ak

|∇u|p
(
Gk,h(u)

) p
p−2 dx

≤ β
p

p− 2

∫
Ak

(
|∇u|2 + |∇u|

) (
Gk,h(u)

) 2
p−2 dx+

∫
Ak

|f |
(
Gk,h(u)

) p
p−2 dx ,

where we have set
Ak = {x ∈ Ω : |u(x)| > k} .

Then, using Young’ inequality, we obtain∫
Ak

|∇u|p
(
Gk,h(u)

) p
p−2 dx

≤ 1

2

∫
Ak

|∇u|p
(
Gk,h(u)

) p
p−2 dx+ c1|Ak|+

∫
Ak

(|f |+ c1)
(
Gk,h(u)

) p
p−2 dx ,
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where c1 = c1(β, p). Therefore, if we set f̃ = |f |+ c1, we obtain∫
Ak

|∇u|p
(
Gk,h(u)

) p
p−2 dx ≤ C |Ak|+ 2

∫
Ak

f̃
(
Gk,h(u)

) p
p−2 dx .

On the other hand, by Sobolev’s inequality,∫
Ak

|∇u|p
(
Gk,h(u)

) p
p−2 dx = C

∫
Ak

∣∣∇(
Gk,h(u)

) p−1
p−2

∣∣p dx
≥ C

[ ∫
Ak

(
Gk,h(u)

) (p−1)p∗
p−2 dx

] p
p∗

,

while

∫
Ak

f̃
(
Gk,h(u)

) p
p−2 dx ≤ ‖f̃‖

Lq(Ω)

[ ∫
Ak

(
Gk,h(u)

) (p−1)p∗
p−2 dx

] p′
p∗

|Ak|1−
1
q−

p′
p∗

≤ ε

[ ∫
Ak

(
Gk,h(u)

) (p−1)p∗
p−2 dx

] p
p∗

+ Cε ‖f̃‖
p−1
p−2

Lq(Ω)
|Ak|(

1
q′ −

p′
p∗ ) p−1

p−2 .

Therefore, we have found that[ ∫
Ak

(
Gk,h(u)

) (p−1)p∗
p−2 dx

] p
p∗

≤ C
(
|Ak|+ |Ak|(

1
q′ −

p′
p∗ ) p−1

p−2

)
≤ C |Ak|r ,

where

r = (
1

q′
− p′

p∗
)
p− 1

p− 2
,

while C depends on β, p, N , ‖f‖
Lq(Ω)

and |Ω|. In the last inequality we have used

that 1 ≥ r, which follows from the assumption (5.12). Since Gk,h(u) = h − k on
Ah, one obtains

(h− k)
(p−1)p
p−2 |Ah|

p
p∗ ≤ C |Ak|r ,

that is,

|Ah| ≤
C

p∗
p

(h− k)
(p−1)p∗

p−2

|Ak|
p∗r
p .

It is easy to check that p∗r
p > 1, therefore, we can apply Lemma 5.1 to φ(k) = |Ak|.

Note that, by the results of the previous section, u is estimated in Lσ(Ω) for every
σ < ∞, therefore, for a fixed k0 > 0 |Ak0

| can be estimated in terms of the data. �

Remark 5.1. Note that this result is false if p ≤ 2. Indeed, one may find unbounded
distributional solutions even when f ≡ 0. See [1] for the case p = 2, or [10] for the
subquadratic case and a discussion of the bootstrap property for weak solutions.

We also refer to Remark 3.2 for a simple example showing the optimality of
Hölder regularity for distributional solutions and, at the same time, that this regu-
larity is not enough to yield uniqueness of distributional solutions of the Dirichlet
problem.



ELLIPTIC EQUATIONS WITH SUPERQUADRATIC HAMILTONIAN 3039

References

[1] Boumediene Abdellaoui, Andrea Dall’Aglio, and Ireneo Peral, Some remarks on elliptic prob-
lems with critical growth in the gradient, J. Differential Equations 222 (2006), no. 1, 21–62,
DOI 10.1016/j.jde.2005.02.009. MR2200746 (2006k:35070)

[2] Guy Barles, A short proof of the C0,α-regularity of viscosity subsolutions for superquadratic
viscous Hamilton-Jacobi equations and applications, Nonlinear Anal. 73 (2010), no. 1, 31–47,
DOI 10.1016/j.na.2010.02.009. MR2645829 (2011f:35047)

[3] L. Boccardo, F. Murat, and J.-P. Puel, L∞ estimate for some nonlinear elliptic partial differ-
ential equations and application to an existence result (English, with French summary), SIAM
J. Math. Anal. 23 (1992), no. 2, 326–333, DOI 10.1137/0523016. MR1147866 (93d:35049)

[4] Piermarco Cannarsa and Pierre Cardaliaguet, Hölder estimates in space-time for viscosity
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[7] Pierre Cardaliaguet and Catherine Rainer, Hölder regularity for viscosity solutions of fully
nonlinear, local or nonlocal, Hamilton-Jacobi equations with superquadratic growth in the
gradient, SIAM J. Control Optim. 49 (2011), no. 2, 555–573, DOI 10.1137/100784400.
MR2784700 (2012d:49053)

[8] I. Capuzzo Dolcetta, F. Leoni, and A. Porretta, Hölder estimates for degenerate elliptic
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