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Lp-BLASCHKE VALUATIONS

JIN LI, SHUFENG YUAN, AND GANGSONG LENG

Abstract. In this article, a classification of continuous, linearly intertwining,
symmetric Lp-Blaschke (p > 1) valuations is established as an extension of
Haberl’s work on Blaschke valuations. More precisely, we show that for dimen-
sions n ≥ 3, the only continuous, linearly intertwining, normalized symmetric
Lp-Blaschke valuation is the normalized Lp-curvature image operator, while
for dimension n = 2, a rotated normalized Lp-curvature image operator is the
only additional one. One of the advantages of our approach is that we deal
with normalized symmetric Lp-Blaschke valuations, which makes it possible to
handle the case p = n. The cases where p �= n are also discussed by studying
the relations between symmetric Lp-Blaschke valuations and normalized ones.

1. Introduction

A valuation is a function Z : Q → 〈G,+〉 defined on a class of subsets of Rn with
values in an Abelian semigroup 〈G,+〉 which satisfies

Z(K ∪ L) + Z(K ∩ L) = ZK + ZL,(1.1)

whenever K,L,K ∪ L,K ∩ L ∈ Q. In recent years, important new results on the
classification of valuations on the space of convex bodies have been obtained. The
starting point for a systematic investigation of general valuations was Hadwiger’s
[11] fundamental characterization of the linear combinations of intrinsic volumes as
the continuous valuations that are rigid motion invariant (see [1–3, 22] for recent
important variants). Its beautiful applications in integral geometry and geometric
probability are described in Hadwiger’s book [10] and Klain and Rota’s recent book
[12].

Excellent surveys on the history of valuations from Dehn’s solution of Hilbert’s
third problem up to approximately 1990 are in McMullen and Schneider [32] or
McMullen [31].

First results on convex body valued valuations were obtained by Schneider [39]
in the 1970s, where the addition of convex bodies in (1.1) is the Minkowski sum. In
recent years, the investigations of convex and star body valued valuations gained
momentum through a series of articles by Ludwig [18–21] (see also [4–8, 34, 35, 41,
43, 44]). A very recent development in this area explores the connections between
these valuations and the theory of isoperimetric inequalities (see, e.g., [9, 36, 42]).
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Assuming compatibility with the general linear group, Ludwig [20] obtained a
complete classification of Lp-Minkowski valuations, i.e., valuations where the addi-
tion in (1.1) is the Lp-Minkowski sum. Her results establish simple characterizations
of fundamental operators like the projection or centroid body operator. Haberl [6]
established a classification of all continuous symmetric Blaschke valuations, where
addition in (1.1) is the Blaschke sum “#”, compatible with the general linear group.
For n ≥ 3, the only two examples of such valuations are a scalar multiple of the
curvature image operator and the Blaschke symmetrical ZK = K#(−K). For
n = 2, Blaschke sum coincides with Minkowski sum; a classification is provided by
Ludwig’s results [20].

In this paper, we extend Haberl’s [6] results in the context of the Lp-Brunn-
Minkowski theory when p > 1 for n ≥ 2. To treat the case that p = n when n is
not even at the same time as the case for general p > 1, we deal with normalized
symmetric Lp-Blaschke valuations (that is, the addition in (1.1) is the normalized
Lp-Blaschke sum). For n ≥ 3, the only example (up to a dilation) of a con-
tinuous, linearly intertwining, normalized symmetric Lp-Blaschke valuation is the
normalized Lp-curvature image operator. For n = 2, the rotation of the normalized
Lp-curvature image operator by an angle π/2 is the only additional example. As
by-products, by the relationship between symmetric Lp-Blaschke valuations and the
corresponding normalized case, we also classify continuous, linearly intertwining,
symmetric Lp-Blaschke valuations for p 	= n.

Since the classification of Lp-Blaschke valuations is based on Ludwig’s results
[20], some other classifications of Minkowski valuations should be remarked upon
here. Schneider and Schuster [41] and Schuster [43] classified some rotation covari-
ant Minkowski valuations. Schuster and Wannerer [44] classified GL(n) contravari-
ant Minkowski valuations without any restrictions on their domain. Very recently,
Haberl [7] showed that the homogeneity assumptions of p = 1 in Ludwig [20] are
not necessary, and Parapatits [34,35] showed that the homogeneity assumptions of
p > 1 in Ludwig [20] are also not necessary. But the homogeneity assumptions are
still needed in this paper.

In order to state the main result, we collect some notation. Let Kn be the space
of convex bodies, i.e., nonempty, compact, convex subsets of R

n, endowed with
Hausdorff metric. We denote by Kn

o the set of n-dimensional convex bodies which

contain the origin, and by Kn

o the set of convex bodies which contain the origin.
The set of n-dimensional origin-symmetric convex bodies is denoted by Kn

c .
We will always assume that p ∈ R and p > 1 in this paper, unless noted otherwise.
In [26], Lutwak introduced the notion of the Lp-surface area measure Sp(K, ·)

and posed the even Lp-Minkowski problem: given an even Borel measure μ on
the unit sphere Sn−1, does there exist an n-dimensional convex body K such that
μ = Sp(K, ·)? An affirmative answer was given, if p 	= n and if μ is not concentrated
on any great subsphere. For p 	= n, using the uniqueness of the even Lp-Minkowski
problem on Kn

c , the Lp-Blaschke sum K#pL ∈ Kn
c of K,L ∈ Kn

c was defined by
Sp(K#pL, ·) = Sp(K, ·) + Sp(L, ·). Thus Kn

c endowed with the Lp-Blaschke sum is
an Abelian semigroup which we denote by 〈Kn

c ,#p〉.
The volume-normalized even Lp-Minkowski problem, for which the case p = n

can be handled as well, was introduced and solved by Lutwak, Yang, and Zhang
[30]. If μ is an even Borel measure on the unit sphere Sn−1, then there exists a
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unique n-dimensional origin-symmetric convex body K̃ such that

Sp(K̃, ·)
V (K̃)

= μ(1.2)

if and only if μ is not concentrated on any great subsphere, where V (K̃) is the

volume of K̃.
The volume-normalized even Lp-Minkowski problem also suggests the following

composition of bodies in Kn
c . For K,L ∈ Kn

c , we define the normalized Lp-Blaschke

sum K#̃pL ∈ Kn
c by

Sp(K#̃pL, ·)
V (K#̃pL)

=
Sp(K, ·)
V (K)

+
Sp(L, ·)
V (L)

.

Obviously the existence and uniqueness of K#̃pL are guaranteed by relation (1.2).
Also Kn

c endowed with the normalized Lp-Blaschke sum is an Abelian semigroup

which we denote by 〈Kn
c , #̃p〉.

We call a valuation Z : Kn
o → 〈Kn

c ,#p〉 a symmetric Lp-Blaschke valuation, and

a valuation Z : Kn
o → 〈Kn

c , #̃p〉 a normalized symmetric Lp-Blaschke valuation.
A convex body K, which contains the origin in its interior, is said to have an

Lp-curvature function fp(K, ·) : Sn−1 → R if Sp(K, ·) is absolutely continuous with
respect to spherical Lebesgue measure σ, and

dSp(K, ·)
dσ(·) = fp(K, ·)

almost everywhere with respect to σ.
For p ≥ 1 and p 	= n, the symmetric Lp-curvature image Λp

cK of K ∈ Kn
o is

defined as the unique body in Kn
c such that

fp(Λ
p
cK, ·) = 1

2
ρ(K, ·)n+p +

1

2
ρ(−K, ·)n+p,

where ρK(·) = ρ(K, ·) : Sn−1 → R is the radial function of K, i.e., ρ(K,u) =
max{λ > 0 : λu ∈ K}. When p = 1, this is the classical curvature image operator,
a central notion in the affine geometry of convex bodies; see e.g., [15,16,23–25,27].
When p > 1, it should be noticed that the definition of the Lp-curvature image
operator here differs from the definition of Lutwak [28].

For p ≥ 1, the normalized symmetric Lp-curvature image Λ̃p
cK of K ∈ Kn

o is
defined as the unique body in Kn

c such that

fp(Λ̃
p
cK, ·)

V (Λ̃p
cK)

= (
1

2
ρ(K, ·)n+p +

1

2
ρ(−K, ·)n+p).

Remark. By the uniqueness of the even Lp-Minkowski problem and the volume-
normalized even Lp-Minkowski problem, if p ≥ 1 and p 	= n, it follows that

V (Λ̃p
cK)1/(p−n)Λ̃p

cK = Λp
cK.

An operator Z : Q → 〈P(Rn),+〉, where P(Rn) denotes the power set of Rn, is
called SL(n) covariant if

Z(φK) = φZK



3164 JIN LI, SHUFENG YUAN, AND GANGSONG LENG

for every K ∈ Q and φ ∈ SL(n). It is called SL(n) contravariant if

Z(φK) = φ−tZK

for every K ∈ Q and φ ∈ SL(n). Here, φ−t denotes the inverse of the transpose of
φ. We call Z homogeneous of degree q ∈ R if

Z(λK) = λqZK

for every K ∈ Q and λ > 0, and we call Z homogeneous if it is homogeneous of
some degree q ∈ R. If Z is homogeneous and SL(n) covariant or contravariant,
then we call it linearly intertwining.

Our main results are the following two theorems.

Theorem 1.1. Let n ≥ 2. For p > 1 and p not an even integer, the operator

Z : Kn
o → 〈Kn

c , #̃p〉 is a continuous, homogeneous, SL(n) contravariant valuation
if and only if there exists a constant c > 0 such that

ZK = cΛ̃p
cK

for every K ∈ Kn
o .

Theorem 1.2. Let n ≥ 3. For p > 1 and p not an even integer, there are no contin-
uous, homogeneous, SL(n) covariant normalized symmetric Lp-Blaschke valuations
on Kn

o .

For p > 1 and p not an even integer, the operator Z : K2
o → 〈K2

c , #̃p〉 is a
continuous, homogeneous, SL(2) covariant valuation if and only if there exists a
constant c > 0 such that

ZK = cψπ/2Λ̃
p
cK

for every K ∈ K2
o. Here ψπ/2 is the rotation by an angle π/2.

Theorems 1.1 and 1.2 establish a classification of continuous, linearly intertwin-
ing, normalized symmetric Lp-Blaschke valuations on Kn

o when p > 1 and p is not
an even integer. For p = 1, Haberl [6] obtained a complete classification of continu-
ous, linearly intertwining symmetric Blaschke valuations and we can easily get the
corresponding results in the normalized case by reversing the process of Theorem
5.3 and Theorem 5.4. Therefore we state the results here only for p > 1.

In Section 2, some preliminaries are given. The aim of Section 3 is to derive
the characterizing properties (stated in Theorem 1.1) of the normalized symmetric

Lp-curvature image operator Λ̃p
c . In Section 4, Lemma 4.1 - Lemma 4.5 generate

a homogeneous, SL(n) covariant Lp-Minkowski valuation on Kn

o by a continuous,
homogeneous, SL(n) contravariant normalized symmetric Lp-Blaschke valuation
on Kn

o . Using properties of the support set of the Lp-projection bodies established
in Lemma 4.6 and characterization theorems of Lp-Minkowski valuations [20], we
classify continuous, homogeneous, SL(n) contravariant normalized symmetric Lp-
Blaschke valuations. In a similar way, we also classify continuous, homogeneous,
SL(n) covariant normalized symmetric Lp-Blaschke valuations. In Section 5, from
the relationship between normalized symmetric Lp-Blaschke valuations and sym-
metric Lp-Blaschke valuations (Lemma 5.1 and Lemma 5.2), we also classify con-
tinuous, linearly intertwining, symmetric Lp-Blaschke valuations on Kn

o for p 	= n
(see Theorem 5.3 and Theorem 5.4).
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2. Preliminaries

We work in Euclidean n-space R
n with n ≥ 2. Let {ei}, i = 1, · · · , n, be the

standard basis of Rn. The usual scalar product of two vectors x and y ∈ R
n shall be

denoted by x ·y. For u ∈ Sn−1, u− = {x ∈ R
n : x ·u ≤ 0}, u+ = {x ∈ R

n : x ·u ≥ 0}
and u⊥ = {x ∈ R

n : x · u = 0}. The convex hull of a set A ⊂ R
n will be

denoted by [A]. To shorten the notation we write [A,±x1, · · · ,±xm] instead of
[A∪{x1,−x1, · · · , xm,−xm}] for A ⊂ R

n, m ∈ N, and x1, · · · , xm ∈ R
n. In R

2, we
write ψπ/2 for the rotation by an angle π/2.

The Hausdorff distance of two convex bodies K,L is defined as d(K,L) =
max

u∈Sn−1
|hK(u) − hL(u)|, where hK : Rn → R is the support function of K ∈ Kn,

i.e., hK(x) = max{x · y : y ∈ K}. Sometimes we also write hK(·) as h(K, ·). If
f : Rn → R is a sublinear function (i.e., f(λx) = λf(x) for every λ ≥ 0 and x ∈ R

n;
f(x+y) ≤ f(x)+f(y) for every x, y ∈ R

n), then there exists a unique convex body
K such that f = hK .

Let S(K, ·) be the classical surface area measure of a convex body K. If K
contains the origin in its interior, the Borel measure Sp(K, ·) = hK(·)1−pS(K, ·) on
Sn−1 is the Lp-surface area measure of K.

For K,L ∈ Kn and α, β ≥ 0 (not both 0), the Minkowski linear combination

αK + βL is defined by αK + βL = {αx + βy : x ∈ K, y ∈ L}. For K,L ∈ Kn

o

and α, β ≥ 0, the Lp-Minkowski linear combination α ·K +p β · L (not both 0) is
defined by h(α ·K +p β · L, u)p = αh(K,u)p + βh(L, u)p for every u ∈ Sn−1. Note
that “·” rather than “·p” is written for Lp-Minkowski scalar multiplication. This
should create no confusion. Also note that the relationship between Lp-Minkowski

and Minkowski scalar multiplication is α ·K = α1/pK.
For p ≥ 1, the Lp-mixed volume Vp(K,L) of the convex bodies K,L containing

the origin in their interiors was defined in [26] by

n

p
Vp(K,L) = lim

ε→0+

V (K +p ε · L)− V (K)

ε
,

where the existence of this limit was demonstrated in [26]. Obviously, for each K,
Vp(K,K) = V (K). It was also shown in [26] that the Lp-mixed volume Vp has the
following integral representation:

Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u).

For p ≥ 1, the Lp-cosine transform of a finite, signed Borel measure μ on Sn−1

is defined by

Cpμ(x) =

∫
Sn−1

|x · v|pdμ(v), x ∈ R
n.

Similarly, the Lp-cosine transform of a Borel measurable function f on Sn−1 is
defined by

(Cpf)(x) =

∫
Sn−1

|x · v|pf(v)dσ(v), x ∈ R
n,

where σ is the spherical Lebesgue measure. An important property of this integral
transform is the following injectivity behavior. If p is not an even integer and μ is
a signed finite even Borel measure, then∫

Sn−1

|u · v|pdμ(v) = 0 for all u ∈ Sn−1 ⇒ μ = 0(2.1)
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(see, e.g., Koldobsky [13, 14], Lonke [17], Neyman [33], and Rubin [37, 38]).
For p ≥ 1, the Lp-projection body, ΠpK, of a convex body K containing the

origin in its interior is the origin-symmetric convex body whose support function is
defined by

h(ΠpK,u)p =

∫
Sn−1

|u · v|pdSp(K, v)

for every u ∈ Sn−1. The notion of the Lp-projection body (with a different nor-
malization) was introduced by Lutwak, Yang, and Zhang [29].

It is proved in [29] that

ΠpφK = | detφ|1/pφ−tΠpK

for every φ ∈ GL(n). Then we immediately get

CpSp(φK, ·)(x) = | detφ|CpSp(K, ·)(φ−1x)(2.2)

and

Cp
Sp(φK, ·)
V (φK)

(x) = Cp
Sp(K, ·)
V (K)

(φ−1x).(2.3)

The notion of the Lp-centroid body was introduced by Lutwak, Yang, and Zhang
[29]: For each compact star-shaped (about the origin) K in R

n and for p ≥ 1, the
Lp-centroid body ΓpK is defined by

h(ΓpK,u) = (
1

cn,pV (K)

∫
K

|x · u|pdx)1/p(2.4)

for every u ∈ Sn−1, where the constant cn,p is chosen so that ΓpB = B. For p = 2,
the Γ2-centroid body is the Legendre ellipsoid of classical mechanics. It is easy to
see that

ΓpφK = φΓpK(2.5)

for every φ ∈ GL(n). We also can rewrite relation (2.4) for the Lp-cosine transform:

h(ΓpK,u)p =
1

(n+ p)cn,pV (K)
(Cpρ

n+p
K )(u)

=
1

(n+ p)cn,pV (K)
(Cp(

1

2
ρn+p
K +

1

2
ρn+p
−K ))(u).(2.6)

3. Normalized symmetric Lp-curvature images

In this section, we will show that the normalized symmetric Lp-curvature im-

age operator Λ̃p
c is a continuous, homogeneous, SL(n) contravariant normalized

symmetric Lp-Blaschke valuation.
We remark that a valuation Z : Q → 〈P(Rn),+〉 is SL(n) covariant and homo-

geneous of degree q if and only if it satisfies

Z(φK) = (detφ)
q−1
n φZK(3.1)

for every K ∈ Q and φ ∈ GL(n) with positive determinant. Similarly, a valuation
Z is SL(n) contravariant and homogeneous of degree q if and only if it satisfies

Z(φK) = (detφ)
q+1
n φ−tZK(3.2)

for every K ∈ Q and φ ∈ GL(n) with positive determinant.
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To prove that Λ̃p
c is a continuous valuation, we will first show the following

lemma.

Lemma 3.1. If Ki,K ∈ Kn
c , i = 1, 2, · · · , such that

Sp(Ki,·)
V (Ki)

→ Sp(K,·)
V (K) weakly,

then Ki → K.

Proof. First, we want to show that {Ki} has a subsequence, {Kij}, converging to
an origin-symmetric convex body containing the origin in its interior (the proof is
similar to [30, Theorem 2]).

Define fK(u) by

fK(u)p =
1

n

∫
Sn−1

|u · v|p dSp(K, v)

V (K)
.

Thus fK(u) is a support function of some convex body. Since
Sp(K,·)
V (K) is not concen-

trated on any great subsphere, fK(u) > 0 for every u ∈ Sn−1. By the continuity
of fK(u) on the compact set Sn−1, there exist two constants a, b > 0, such that
1
2a ≥ fK(u) ≥ 2b for every u ∈ Sn−1. Since

Sp(Ki,·)
V (Ki)

→ Sp(K,·)
V (K) weakly, we get

fKi
(u) → fK(u). The convergence is uniform in u ∈ Sn−1 by [40, Theorem 1.8.12].

Hence a ≥ fKi
≥ b for sufficiently large i uniformly.

In order to show that Ki is uniformly bounded, define real numbers Mi and
vectors ui ∈ Sn−1 by

Mi = max
u∈Sn−1

h(Ki, u) = h(Ki, ui).

Now, Mi[−ui, ui] ⊂ Ki. Hence Mi|ui · v| ≤ h(Ki, v) for every v ∈ Sn−1. Thus,

Mp
i b

p ≤ Mp
i

1

n

∫
Sn−1

|ui · v|p
dSp(Ki, v)

V (Ki)

≤ 1

n

∫
Sn−1

h(Ki, v)
p dSp(Ki, v)

V (Ki)
=

Vp(Ki,Ki)

V (Ki)
= 1

for sufficiently large i. Hence Ki is uniformly bounded. By the Blaschke selection
theorem, there exists a subsequence {Kij} converging to a convex body, say K ′.
Since Kij are origin-symmetric, K ′ is origin-symmetric. Define real numbers mi

and vectors u′
i ∈ Sn−1 by

mi = min
u∈Sn−1

h(Ki, u) = h(Ki, u
′
i).

The property a ≥ fKi
for sufficiently large i uniformly, together with Jensen’s

inequality, shows that

a ≥ (
1

n

∫
Sn−1

|u′
i · v|p

dSp(Ki, v)

V (Ki)
)

1
p = (

1

n

∫
Sn−1

(
|u′

i · v|
h(Ki, v)

)p
h(Ki, v)dS(Ki, v)

V (Ki)
)

1
p

≥ 1

n

∫
Sn−1

|u′
i · v|

h(Ki, v)

h(Ki, v)dS(Ki, v)

V (Ki)
=

2V (Ki|(u′
i)

⊥)

nV (Ki)
.

Since Ki is contained in the right cylinder Ki|(u′
i)

⊥ ×mi[−u′
i, u

′
i], we have

2miV (Ki|(u′
i)

⊥) ≥ V (Ki). Thus,

a ≥ 2V (Ki|(u′
i)

⊥)

nV (Ki)
≥ 1

nmi
,
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which shows mi ≥ 1
na for sufficiently large i. Hence

1

na
B ⊆ K ′,

where B is the unit ball in R
n. Thus, K ′ contains the origin in its interior. The

first step is complete.
Next, we argue the assertion by contradiction. Assume Ki � K; then there ex-

ists a subsequence, {Kij}, such that d(Kij ,K) ≥ ε for a suitable ε > 0. Since {Kij}
also satisfies the condition of this lemma, from the conclusion above, there exists a
subsequence of {Kij}, say {Kijk

}, converging to an origin-symmetric convex body,

say K ′, containing the origin in its interior. Thus,
Sp(Kijk

,·)
V (Kijk

) → Sp(K
′,·)

V (K′) weakly.

By the uniqueness of weak convergence and the normalized even Lp-Minkowski
problem, we get Kijk

→ K ′ = K, which is a contradiction. �

Theorem 3.2. The normalized symmetric Lp-curvature image operator Λ̃p
c : Kn

o →
〈Kn

c , #̃p〉 is a continuous, SL(n) contravariant valuation which is homogeneous of

degree −n
p −1. Moreover, ψπ/2Λ̃

p
c : K2

o → 〈K2
c , #̃p〉 is a continuous, SL(2) covariant

valuation which is homogeneous of degree − 2
p − 1.

Proof. To prove that Λ̃p
c is a normalized symmetric Lp-Blaschke valuation, we just

need to show

Sp(Λ̃
p
c(K ∪ L), ·)

V (Λ̃p
c(K ∪ L))

+
Sp(Λ̃

p
c(K ∩ L), ·)

V (Λ̃p
c(K ∩ L))

=
Sp(Λ̃

p
cK, ·)

V (Λ̃p
cK)

+
Sp(Λ̃

p
cL, ·)

V (Λ̃p
cL)

(3.3)

for every K,L,K ∪ L,K ∩ L ∈ Kn
o . Since

ρ(K ∪ L, ·)n+p + ρ(K ∩ L, ·)n+p = ρ(K, ·)n+p + ρ(L, ·)n+p,

ρ(−(K ∪ L), ·)n+p + ρ(−(K ∩ L), ·)n+p = ρ(−K, ·)n+p + ρ(−L, ·)n+p

for every K,L,K ∪ L,K ∩ L ∈ Kn
o , it follows from the definition of Λ̃p

c , that the
relation (3.3) is true. Hence the valuation property is established.

To prove homogeneity and SL(n) contravariance of Λ̃p
c , by relation (3.2), we

need to show

Λ̃p
cφK = (detφ)−1/pφ−tΛ̃p

cK(3.4)

for every φ ∈ GL(n) with positive determinant. Indeed, the definition of Λ̃p
c , the

relations (2.5) and (2.6), together with (2.3), imply that

Cp
Sp(Λ̃

p
cφK, ·)

V (Λ̃p
cφK)

(u) = (Cp(
1

2
ρn+p
φK +

1

2
ρn+p
−φK))(u)

= (n+ p)cn,pV (φK)h(ΓpφK, u)p

= | detφ|(n+ p)cn,pV (K)h(ΓpK,φtu)p

= | detφ|Cp
Sp(Λ̃

p
cK, ·)

V (Λ̃p
cK)

(φtu)

= Cp
Sp(| detφ|−1/pφ−tΛ̃p

cK, ·)
V (| detφ|−1/pφ−tΛ̃p

cK)
(u).
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The injectivity property (2.1) and the uniqueness of the volume-normalized even
Lp-Minkowski problem now imply relation (3.4).

If Ki → K, then ρ(Ki, ·) → ρ(K, ·) almost everywhere with respect to spherical
Lebesgue measure (see [6, Lemma 1]). Hence

(
1

2
ρ(Ki, ·)n+p +

1

2
ρ(−Ki, ·)n+p) → (

1

2
ρ(K, ·)n+p +

1

2
ρ(−K, ·)n+p)

almost everywhere. Since ( 12ρ(Ki, ·)n+p + 1
2ρ(−Ki, ·)n+p) are uniformly bounded,

Sp(˜Λ
p
cKi,·)

V (˜Λp
cKi)

→ Sp(˜Λ
p
cK,·)

V (˜Λp
cK)

weakly. Hence, by Lemma 3.1, we get Λ̃p
cKi → Λ̃p

cK. Thus,

Λ̃p
cK is a continuous valuation.
If φ ∈ SL(2), we have ψπ/2φ

−tψ−π/2 = φ. Then we get

ψπ/2Λ̃
p
cφK = ψπ/2φ

−tΛ̃p
cK = ψπ/2φ

−tψ−π/2ψπ/2Λ̃
p
cK = φψπ/2Λ̃

p
cK

for every K ∈ Kn
o . Since the operator ψπ/2 is continuous, we obtain that ψπ/2Λ̃

p
c is

continuous. Moreover, it is easy to verify that ψπ/2Λ̃
p
c is a normalized symmetric

Lp-Blaschke valuation which is homogeneous of degree − 2
p − 1. Hence, ψπ/2Λ̃

p
c is a

continuous, SL(2) covariant normalized symmetric Lp-Blaschke valuation which is
homogeneous of degree − 2

p − 1. �

4. Normalized Lp-Blaschke valuations

In this section, for the contravariant and covariant case, respectively, we establish
our classification results for continuous, linearly intertwining, normalized symmetric
Lp-Blaschke valuations.

We remark first the fact that the SL(n) covariance (or contravariance) and ho-

mogeneity of a valuation Z : Kn

o → 〈P(Rn),+〉 are completely determined by the
restriction of Z to n-dimensional convex bodies if the Abelian semigroup 〈P(Rn),+〉
has the cancellation property. (Actually this property is generalized from Lemma
4 and Lemma 9 of Haberl [6], and the proof of this property is almost the same as
Haberl’s.)

Lemma 4.1. If Z : Kn

o → 〈P(Rn),+〉 is a valuation which is SL(n) covariant
(or contravariant) and homogeneous of degree q on n-dimensional convex bodies,
and 〈P(Rn),+〉 has the cancellation property, then Z is SL(n) covariant (or con-

travariant respectively) and homogeneous of degree q on Kn

o .

Proof. In the covariant case, we have to show that

ZφK = (detφ)
q−1
n φZK(4.1)

for every K ∈ Kn

o and φ ∈ GL(n) with positive determinant. Let dimK = n − k,
where 0 ≤ k ≤ n. We prove our assertion by induction on k. Indeed, (4.1) is true
for k = 0 by assumption. Assume that (4.1) holds for (n − k)-dimensional convex
bodies and dimK = n− (k+1). Choose u /∈ lin K, where lin K denotes the linear
hull of K. Clearly [K,u], [K,−u], [K,u,−u], φ[K,u], φ[K,−u], φ[K,u,−u] are of
dimension n− k, and

[K,u] ∪ [K,−u] = [K,u,−u], [K,u] ∩ [K,−u] = K,

φ[K,u] ∪ φ[K,−u] = φ[K,u,−u], φ[K,u] ∩ φ[K,−u] = φK.
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Since Z is a valuation,

ZφK + Zφ[K,u,−u] = Zφ[K,u] + Zφ[K,−u].

With the induction assumption, we get

ZφK + (detφ)
q−1
n φZ[K,u,−u] = (detφ)

q−1
n φZ[K,u] + (detφ)

q−1
n φZ[K,−u].

So,

(detφ)−
q−1
n φ−1ZφK + Z[K,u,−u] = Z[K,u] + Z[K,−u].

By the cancellation property of 〈P(Rn),+〉, combined with the relation

ZK + Z[K,u,−u] = Z[K,u] + Z[K,−u],

we have

(detφ)−
q−1
n φ−1ZφK = ZK.(4.2)

This immediately proves that (4.1) holds for bodies of dimension n− k − 1.
The contravariant case is proved similarly to the covariant case. �

Since Kn
o endowed with Lp-Minkowski sum is an Abelian semigroup which has

the cancellation property, we immediately get the following.

Lemma 4.2. If Z : Kn

o → 〈Kn
o ,+p〉 is a Lp-Minkowski valuation which is SL(n)

covariant (or contravariant) and homogeneous of degree q on n-dimensional convex
bodies, then Z is SL(n) covariant (or contravariant respectively) and homogeneous

of degree q on Kn

o .

4.1. The contravariant case. First, we reduce the possible degrees of homogene-
ity of continuous, SL(n) contravariant normalized symmetric Lp-Blaschke valua-
tions.

Lemma 4.3. If Z : Kn
o → 〈Kn

c , #̃p〉 is a continuous, SL(n) contravariant valuation
which is homogeneous of degree q, then q ≤ −1.

Proof. Suppose K ∈ Kn
o is an arbitrary convex body and that K ∩ e+n and K ∩ e−n

are n-dimensional. For every positive s we have

[K ∩ e+n ,±sen] ∪ [K ∩ e−n ,±sen] = [K,±sen],

[K ∩ e+n ,±sen] ∩ [K ∩ e−n ,±sen] = [K ∩ e⊥n ,±sen].

Since Z is a normalized symmetric Lp-Blaschke valuation, we have

Cp
Sp(Z[K ∩ e⊥n ,±sen], ·)
V (Z[K ∩ e⊥n ,±sen])

(e1)

=Cp
Sp(Z[K ∩ e+n ,±sen], ·)
V (Z[K ∩ e+n ,±sen])

(e1) + Cp
Sp(Z[K ∩ e−n ,±sen], ·)
V (Z[K ∩ e−n ,±sen])

(e1)

− Cp
Sp(Z[K,±sen], ·)
V (Z[K,±sen])

(e1).(4.3)

Define a linear map φ by

φei = ei, i = 1, · · · , n− 1, φen = sen.
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From the SL(n) contravariance and homogeneity of Z as well as relations (3.2) and
(2.3), we get

Cp
Sp(Z[K ∩ e⊥n ,±sen], ·)
V (Z[K ∩ e⊥n ,±sen])

(e1) = Cp
Sp(s

q+1
n φ−tZ[K ∩ e⊥n ,±en], ·)

V (s
q+1
n φ−tZ[K ∩ e⊥n ,±en])

(e1)

= s
−(q+1)p

n Cp
Sp(Z[K ∩ e⊥n ,±en], ·)
V (Z[K ∩ e⊥n ,±en])

(φte1).

Since |e1 · u| > 0 for all u ∈ Sn−1 \ e⊥1 , and the Lp-surface area measure of n-
dimensional bodies is not concentrated on any great sphere, we conclude that

Cp
Sp(Z[K ∩ e⊥n ,±en], ·)
V (Z[K ∩ e⊥n ,±en])

(φte1)

=
1

V (Z[K ∩ e⊥n ,±en])

∫
Sn−1

|e1 · u|pdSp(Z[K ∩ e⊥n ,±en], u) > 0.

Moreover, we have

lim
s→0+

[K ∩ e+n ,±sen] = K ∩ e+n ,

lim
s→0+

[K ∩ e−n ,±sen] = K ∩ e−n ,

lim
s→0+

[K,±sen] = K.

Hence the continuity of Z and volume, together with the weak continuity of Lp-
surface area measures, imply that the right side of (4.3) converges to a finite number

as s → 0+. This implies −(q+1)p
n ≥ 0, so q ≤ −1. �

In the next two lemmas, we will show how to generate a homogeneous, SL(n)

covariant Lp-Minkowski valuation on Kn

o by a continuous, SL(n) contravariant
normalized symmetric Lp-Blaschke valuation which is homogeneous of degree q on
Kn

o , where q ≤ −1.

Lemma 4.4. Let Z : Kn
o → 〈Kn

c , #̃p〉 be a continuous, SL(n) contravariant valua-

tion which is homogeneous of degree q = −1. Define the map Z1 : Kn

o → 〈Kn

o ,+p〉
by

h(Z1K,x)p =

{
Cp

Sp(ZK,·)
V (ZK) (x), dimK = n,

Cp
Sp(Z[K,±bk+1,··· ,±bn],·)
V (Z[K,±bk+1,··· ,±bn])

(πKx), dimK = k < n,

for every x ∈ R
n, where the bk+1, · · · , bn are an orthonormal basis of the orthogonal

complement of lin K and πK is the orthogonal projection onto lin K. Then Z1 is
an SL(n) covariant Lp-Minkowski valuation which is homogeneous of degree 1.

Proof. In order to show that Z1 is well defined, suppose that dimK = k < n and
bk+1, · · · , bn as well as ck+1, · · · , cn are two different orthonormal bases of (lin K)⊥.
Fix an orthonormal basis b1, · · · , bk of lin K. Denote by θ a proper rotation with
θbi = bi, i = 1, · · · , k, and θbi ∈ {±ci}, i = k + 1, · · · , n. Then the contravariance
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of Z and relation (2.3) induce that

Cp
Sp(Z[K,±ck+1, · · · ,±cn], ·)
V (Z[K,±ck+1, · · · ,±cn])

(πKx) = Cp
Sp(Zθ[K,±bk+1, · · · ,±bn], ·)
V (Zθ[K,±bk+1, · · · ,±bn])

(πKx)

= Cp
Sp(θZ[K,±bk+1, · · · ,±bn], ·)
V (θZ[K,±bk+1, · · · ,±bn])

(πKx)

= Cp
Sp(Z[K,±bk+1, · · · ,±bn], ·)
V (Z[K,±bk+1, · · · ,±bn])

(θ−1πKx)

= Cp
Sp(Z[K,±bk+1, · · · ,±bn], ·)
V (Z[K,±bk+1, · · · ,±bn])

(πKx).

Thus, Z1 is well defined.
Next, we show that Z1 is an Lp-Minkowski valuation. Suppose that K,L ∈ Kn

o

such that K ∪L ∈ Kn

o and let k be an integer not larger than n. If dim(K∪L) = k,
then one of the following four cases is valid:
(1k) dimK = k, dimL = k, dimK ∩ L = k, 0 ≤ k ≤ n,
(2k) dimK = k, dimL = k, dimK ∩ L = k − 1, 1 ≤ k ≤ n,
(3k) dimK = k, dimL = k − 1, 1 ≤ k ≤ n,
(4k) dimK = k − 1, dimL = k, 1 ≤ k ≤ n.
The valuation property trivially holds true for the cases (3k) and (4k), since we
have L ⊂ K and K ⊂ L respectively in these situations. Therefore it suffices to
prove

hp

Z1(K∪L)
+ hp

Z1(K∩L)
= hp

Z1K
+ hp

Z1L

for the cases (1k), 0 ≤ k ≤ n, and (2k), 1 ≤ k ≤ n.
Let us start with the easy case (1n). The valuation property of Z implies

Sp(Z(K ∪ L), ·)
V (Z(K ∪ L))

+
Sp(Z(K ∩ L), ·)
V (Z(K ∩ L))

=
Sp(ZK, ·)
V (ZK)

+
Sp(ZL, ·)
V (ZL)

,

and thus

Cp
Sp(Z(K ∪ L), ·)
V (Z(K ∪ L))

+ Cp
Sp(Z(K ∩ L), ·)
V (Z(K ∩ L))

= Cp
Sp(ZK, ·)
V (ZK)

+ Cp
Sp(ZL, ·)
V (ZL)

.

Hence the definition of Z1 immediately proves the assertion. Next we deal with the
case (1k), 0 ≤ k < n. Note that

[K,±bk+1, · · · ,±bn] ∪ [L,±bk+1, · · · ,±bn] = [K ∪ L,±bk+1, · · · ,±bn],

[K,±bk+1, · · · ,±bn] ∩ [L,±bk+1, · · · ,±bn] = [K ∩ L,±bk+1, · · · ,±bn].

Since lin K = lin L = lin (K ∪L) = lin (K ∩L), we have πKx = πLx = π(K∪L)x =
π(K∩L)x. With the valuation property of case (1n) proved above, we get

Cp
Sp(Z[K ∪ L,±bk+1, · · · ,±bn], ·)
V (Z[K ∪ L,±bk+1, · · · ,±bn])

(x) + Cp
Sp(Z[K ∩ L,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ L,±bk+1, · · · ,±bn])

(x)

= Cp
Sp(Z[K,±bk+1, · · · ,±bn], ·)
V (Z[K,±bk+1, · · · ,±bn])

(x) + Cp
Sp(Z[L,±bk+1, · · · ,±bn], ·)
V (Z[L,±bk+1, · · · ,±bn])

(x)

for every x ∈ R
n. Changing x to πKx, we get the positive assertion of the case

(1k).
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Now we consider the case (2k), 1 ≤ k ≤ n. It is enough to show

hp

Z1K
+ hp

Z1(K∩u⊥)
= hp

Z1(K∩u+)
+ hp

Z1(K∩u−)
(4.4)

for dimK = k and a unit vector u ∈ lin K such that K ∩ u+,K ∩ u− are both
k-dimensional. Notice that if k = n, then πKx = x. So we will prove the case (2k)
without distinguishing between k = n and k < n. Let b1, · · · , bn be an orthonormal
basis of Rn such that lin K = lin {b1, · · · , bk}, and u = bk. With the valuation
property of case (1k) proved above, we have

Cp
Sp(Z[K,±sbk,±bk+1, · · · ,±bn], ·)
V (Z[K,±sbk,±bk+1, · · · ,±bn])

(πKx)

+ Cp
Sp(Z[K ∩ b⊥k ,±sbk,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ b⊥k ,±sbk,±bk+1, · · · ,±bn])

(πKx)

= Cp
Sp(Z[K ∩ b+k ,±sbk,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ b+k ,±sbk,±bk+1, · · · ,±bn])

(πKx)

+ Cp
Sp(Z[K ∩ b−k ,±sbk,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ b−k ,±sbk,±bk+1, · · · ,±bn])

(πKx)(4.5)

for sufficiently small s > 0. Define a linear map φ by

φbk = sbk, φbi = bi, i = 1, · · · , k − 1, k + 1, · · · , n.

Note that detφ is independent of the choice of orthonormal basis of Rn, so detφ = s.
The contravariance of Z and relations (3.2) as well as (2.3) give

Cp
Sp(Z[K ∩ b⊥k ,±sbk,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ b⊥k ,±sbk,±bk+1, · · · ,±bn])

(πKx)

=Cp
Sp(Zφ[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn], ·)
V (Zφ[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn])

(πKx)

=Cp
Sp(s

q+1
n φ−tZ[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn], ·)

V (s
q+1
n φ−tZ[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn])

(πKx)

=s
−(q+1)p

n Cp
Sp(Z[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn])

(φtπKx).(4.6)

Note that lim
s→0+

φtπKx = πK∩b⊥k
x. Since q = −1,

lim
s→0+

Cp
Sp(Z[K ∩ b⊥k ,±sbk,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ b⊥k ,±sbk,±bk+1, · · · ,±bn])

(πKx)

= Cp
Sp(Z[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn], ·)
V (Z[K ∩ b⊥k ,±bk,±bk+1, · · · ,±bn])

(πK∩b⊥k
x).

So if s tends to zero in (4.5), then we immediately obtain (4.4). Hence we have
proved that Z1 is an Lp-Minkowski valuation. Moreover, it is easy to calculate that

Z1 is an SL(n) covariant Lp-Minkowski valuation which is homogeneous of degree 1

on n-dimensional convex bodies. Lemma 4.2 implies that Z1 is an SL(n) covariant

Lp-Minkowski valuation which is homogeneous of degree 1 on Kn

o . �
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Lemma 4.5. Let Z : Kn
o → 〈Kn

c , #̃p〉 be a continuous, SL(n) contravariant valua-

tion which is homogeneous of degree q < −1. Define the map Z2 : Kn

o → 〈Kn

o ,+p〉
by

h(Z2K,x)p =

{
Cp

Sp(ZK,·)
V (ZK) (x), dimK = n,

0, dimK = k < n,

for every x ∈ R
n. Then Z2 is an SL(n) covariant Lp-Minkowski valuation which

is homogeneous of degree r = −q.

Proof. We use the notation of Lemma 4.4. Since the case (1n) is the same as in
Lemma 4.4, and the cases (1k), 0 ≤ k < n, (2k), 1 ≤ k < n, are trivially true, we
just need to consider the case (2n).

Hence we need to show

hp

Z2K
+ hp

Z2(K∩u⊥)
= hp

Z2(K∩u+)
+ hp

Z2(K∩u−)
(4.7)

for dimK = n and a unit vector u ∈ R
n such that K ∩ u+,K ∩ u− are both

n-dimensional. Let b1, · · · , bn be an orthonormal basis of Rn such that u = bn.
Comparing with the proof of Lemma 4.4, we just need to show the relation (4.6)
of the case k = n tends to zero for q < −1 when s tends to zero. Actually, the
relation (4.6) of the case k = n is

Cp
Sp(Z[K ∩ b⊥n ,±sbn], ·)
V (Z[K ∩ b⊥n ,±sbn])

(x) = s
−(q+1)p

n Cp
Sp(Z[K ∩ b⊥n ,±bn], ·)
V (Z[K ∩ b⊥n ,±bn])

(φtx),

where φ is a linear map defined by φbn = sbn, φbi = bi, i = 1, · · · , n − 1. Since
q < −1,

lim
s→0+

Cp
Sp(Z[K ∩ b⊥n ,±sbn], ·)
V (Z[K ∩ b⊥n ,±sbn])

(x) = 0.

Hence Z2 is an Lp-Minkowski valuation. Moreover, it is easy to calculate that

Z2 is an SL(n) covariant Lp-Minkowski valuation which is homogeneous of degree
r = −q. �

For p > 1, the following lemma shows that every support set of an Lp-projection
body consists of precisely one point. It will help to rule out the existence of con-
tinuous, normalized symmetric Lp-Blaschke valuations which are homogeneous of
degree −1 (see Theorem 4.8 and Theorem 4.13 for more details). A similar result
for p = 1 can be found in Schneider [40, Lemma 3.5.5].

For K ∈ Kn, e ∈ Sn−1, write Ke := {x ∈ K|x · e = h(K, e)}.

Lemma 4.6. For p > 1, if the support function of the convex body K ∈ Kn is given
by

h(K,u) = (

∫
Sn−1

|u · v|pdμ(v))1/p

for u ∈ Sn−1, with an even signed measure μ, then, for e ∈ Sn−1,

h(Ke, u) = ve · u

for u ∈ Sn−1, where ve = 2(
∫
Sn−1 |e · v|pdμ(v))

1
p−1

∫
e+
(e · v)p−1vdμ(v).
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Proof. The assertion of the lemma is true for u = ±e, since h(Ke,±e) = ±h(K, e).
Hence we may assume that u and e are linearly independent. Note that h(Ke, u) =

lim
s→0+

h(K,e+su)−h(K,e)
s (see Schneider [40, Theorem 1.7.2]). Put

As := {v ∈ Sn−1|e · v > 0, (e+ su) · v > 0},
Bs := {v ∈ Sn−1|e · v ≤ 0, (e+ su) · v > 0},
Cs := {v ∈ Sn−1|e · v > 0, (e+ su) · v ≤ 0}.

We obtain

h(Ke, u) = lim
s→0+

h(K, e+ su)− h(K, e)

s

=
1

p
(

∫
Sn−1

|e · v|pdμ(v)) 1
p−1 lim

s→0+

1

s
(

∫
Sn−1

|(e+ su) · v|pdμ(v)−
∫
Sn−1

|e · v|pdμ(v))

and

lim
s→0+

1

s
(

∫
Sn−1

|(e+ su) · v|pdμ(v)−
∫
Sn−1

|e · v|pdμ(v))

= 2 lim
s→0+

1

s
(

∫
As∪Bs

((e+ su) · v)pdμ(v)−
∫
As∪Cs

(e · v)pdμ(v))

= 2p lim
s→0+

∫
As∪Bs

(e · v)p−1(u · v)dμ(v)

+ lim
s→0+

∫
As∪Bs

p(p− 1)(e · v)p−2(u · v)2s+ o(s)dμ(v)

+ 2 lim
s→0+

1

s

∫
Bs

(e · v)pdμ(v)− 2 lim
s→0+

1

s

∫
Cs

(e · v)pdμ(v).

Let

μ+(E) = sup{μ(A)|A ⊂ E and A is a Borel set of Sn−1},
μ−(E) = − inf{μ(A)|A ⊂ E and A is a Borel set of Sn−1},

μ′(E) = μ+(E) + μ−(E)

for every Borel set E of Sn−1. We get∣∣ ∫
As∪Bs

p(p− 1)(e · v)p−2(u · v)2s+ o(s)dμ(v)
∣∣

≤
∫
Sn−1

∣∣p(p− 1)(e · v)p−2(u · v)2s+ o(s)
∣∣dμ′(v)

s→0+−−−−→ 0.

For v ∈ Bs, we have |e · v| ≤ cs with a constant c independent of s. Writing

B′
s := {v ∈ Sn−1|e · v < 0, (e+ su) · v > 0},

we obtain ∣∣1
s

∫
Bs

(e · v)pdμ(v)
∣∣ = ∣∣1

s

∫
B′

s

(e · v)pdμ(v)
∣∣ ≤ cpsp−1μ(B′

s).

Since (in the set-theoretic sense) lim
s→0+

B′
s = ∅, we have lim

s→0+
μ′(B′

s) = 0. With

p > 1, we get

lim
s→0+

1

s

∫
Bs

(e · v)pdμ(v) = 0.
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From lim
s→0+

Cs = ∅, we similarly find

lim
s→0+

1

s

∫
Cs

(e · v)pdμ(v) = 0.

Further, if lim
s→0+

As = e+\e⊥, lim
s→0+

Bs = {v ∈ Sn−1|e · v = 0, u · v > 0}, and p > 1,

we get

lim
s→0+

∫
As∪Bs

(e · v)p−1(u · v)dμ(v) =
∫
e+
(e · v)p−1(u · v)dμ(v).

Finally, we get

h(Ke, u) = 2(

∫
Sn−1

|e · v|pdμ(v)) 1
p−1

∫
e+
(e · v)p−1(u · v)dμ(v)

=
(
2(

∫
Sn−1

|e · v|pdμ(v)) 1
p−1

∫
e+
(e · v)p−1vdμ(v)

)
· u,

which completes the proof of the lemma. �

To classify continuous, homogeneous, SL(n) contravariant normalized symmetric
Lp-Blaschke valuations, we need the following results from Ludwig [20].

For −1 ≤ τ ≤ 1, define Mτ
p : Kn

o → Kn

o by

hp(Mτ
pK, v) =

∫
K

(|v · x|+ τ (v · x))pdx

for v ∈ R
n. In particular, M0

pK is a dilate of the Lp-centroid body, if V (K) > 0.
A polytope is the convex hull of finitely many points in R

n. Let Pn
o be the set

of n-dimensional polytopes which contain the origin and Pn

o the set of polytopes
which contain the origin. Let ξo(P ) denote the set of edges of a polytope P which
contain the origin.

Lemma 4.7 ([20]). Let Z : Pn

o → 〈Kn

o ,+p〉, n ≥ 3, be an Lp-Minkowski valuation,
p > 1, which is SL(n) covariant and homogeneous of degree r. If r = n/p+1, then
there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = aMτ
p P

for every P ∈ Pn

o . If r = 1, then there are constants a, b ≥ 0 such that

ZP = aP +p b(−P )

for every P ∈ Pn

o . In all other cases, ZP = {o} for every P ∈ Pn

o .

Let Z : P2

o → 〈K2

o,+p〉 be an Lp-Minkowski valuation, p > 1, which is SL(2)
covariant and homogeneous of degree r. If r = 2/p + 1, then there are constants
a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = aMτ
p P

for every P ∈ P2

o. If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with
a0 + ai, b0 + bi ≥ 0, i = 1, 2, such that

ZP = a0P +p b0(−P ) +p

∑p
(aiEi +p bi(−Ei))
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for every P ∈ P2

o, where
∑p

denotes the Lp-Minkowski sum, and the sum is taken
over Ei ∈ ξo(P ). If r = 2/p − 1, then there are constants a ≥ 0 and −1 ≤ τ ≤ 1
such that

ZP = aψπ/2Π̂
τ
pP

for every P ∈ P2

o. Here Π̂τ
pP is defined by the relation (4.16). In all other cases,

ZP = {o} for every P ∈ P2

o.

Now we can classify continuous, homogeneous, SL(n) contravariant normalized
symmetric Lp-Blaschke valuations.

Theorem 4.8. Let n ≥ 2, p > 1 and p not an even integer. If Z : Kn
o → 〈Kn

c , #̃p〉
is a continuous, homogeneous, SL(n) contravariant valuation, then there exists a
constant c > 0 such that

ZK = cΛ̃p
cK

for every K ∈ Kn
o .

Proof. Let q be the degree of homogeneity of Z. Lemma 4.3 shows that q ≤ −1.
If q = −1, then Z1, introduced in Lemma 4.4, is an SL(n) covariant Lp-

Minkowski valuation which is homogeneous of degree 1. If n ≥ 3, from Lemma
4.7, we derive that there are constants a, b ≥ 0 such that

Z1P = aP +p b(−P )

for every P ∈ Pn

o . If n = 2, from Lemma 4.7, we derive that there are constants
a0, b0 ≥ 0 and ai, bi ∈ R with a0 + ai, b0 + bi ≥ 0, i = 1, 2, such that

Z1P = a0P +p b0(−P ) +p

∑p
(aiEi +p bi(−Ei))

for every P ∈ Pn

o , where the sum is taken over Ei ∈ ξo(P ). For P0 = [±e1, · · · ,±en],
we have

ΠpZP0

V (ZP0)1/p
= cP0,

for a suitable c ≥ 0 when n ≥ 2. The assumption that Z does not contain {o} in its
range gives c > 0. For p > 1, every support set of an Lp-projection body consists
of precisely one point (Lemma 4.6). However, P0 has the support set [e1, · · · , en]
which does not consist of precisely one point. This is a contradiction.

If q = −n/p− 1, then Z2, introduced in Lemma 4.5, is an SL(n) covariant Lp-
Minkowski valuation which is homogeneous of degree n/p + 1. For n ≥ 2, from
Lemma 4.7, we infer the existence of constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

Z2P = aMτ
p P

for every P ∈ Pn

o . The assumption that Z does not contain {o} in its range gives

a > 0. Since Z2P is origin-symmetric, we deduce that τ = 0. Thus,
ΠpZP

V (ZP )1/p
=

aM0
pP for every P ∈ Pn

o . Since the operators
ΠpZ

V 1/p and Γp are continuous on Kn
o ,

and Pn
o is dense in Kn

o , we obtain

ΠpZK

V (ZK)1/p
= aM0

pK
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for every K ∈ Kn
o . By rewriting this in terms of the Lp-cosine transforms (via

relation (2.6) and (cn,pV (K))
1
pΓpK = M0

pK), we get

Cp
Sp(ZK, ·)
V (ZK)

= bCp(ρK(·)n+p) = bCp(
1

2
ρK(·)n+p +

1

2
ρ−K(·)n+p)

for a suitable constant b > 0. Since Sp(ZK, ·) is an even measure, the injectivity
property (2.1) and the definition of the normalized symmetric Lp-curvature image
operator finally shows

ZK = cΛ̃p
cK(4.8)

for a suitable constant c > 0.
If q = −2/p + 1 and n = 2, then Z2, introduced in Lemma 4.5, is an SL(n)

covariant Lp-Minkowski valuation which is homogeneous of degree 2/p − 1. By
Lemma 4.7, there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

Z2P = aΠ̂τ
pP

for every P ∈ Pn

o . Π̂τ
p is not continuous on Pn

o , while
ΠpZ

V 1/p is continuous on Pn
o .

Thus, this is a contradiction.
In all other cases, Z2, introduced in Lemma 4.5, is an SL(n) covariant Lp-

Minkowski valuation which is homogeneous of degree r, where r 	= 1, r 	= n/p + 1
for n ≥ 2, and r 	= 2/p − 1 as an addition for n = 2. By Lemma 4.7, Z2P = {o}
for every P ∈ Pn

o . So

hZ2P
(x)p = Cp

Sp(ZP, ·)
V (ZP )

(x) = 0(4.9)

for every P ∈ Pn
o . Sp(ZP, ·) is an even measure since ZP is an origin-symmetric

convex body. Thus, by relation (2.1), we have Sp(ZP, ·) = 0. This is a contradiction.
�

Hence Theorem 3.2 and Theorem 4.8 directly imply Theorem 1.1.

4.2. The covariant case. The following Lemma 4.9, Lemma 4.10, and Lemma
4.11 are the counterparts of Lemma 4.3, Lemma 4.4, and Lemma 4.5, respectively.

Lemma 4.9. If Z : Kn
o → 〈Kn

c , #̃p〉 is a continuous, SL(n) covariant valuation
which is homogeneous of degree q, then q ≤ −n+ 1.

Proof. Suppose K ∈ Kn
o and s > 0. As in the proof of Lemma 4.3, we get that

Cp
Sp(Z[K ∩ e⊥n ,±sen], ·)
V (Z[K ∩ e⊥n ,±sen])

(en)

= Cp
Sp(Z[K ∩ e+n ,±sen], ·)
V (Z[K ∩ e+n ,±sen])

(en) + Cp
Sp(Z[K ∩ e−n ,±sen], ·)
V (Z[K ∩ e−n ,±sen])

(en)

− Cp
Sp(Z[K,±sen], ·)
V (Z[K,±sen])

(en),(4.10)

and thus Cp
Sp(Z[K∩e⊥n ,±sen],·)
V (Z[K∩e⊥n ,±sen])

(en) must converge to a finite number as s → 0+.

(The difference between relation (4.3) and relation (4.10) is that the independent
variable of the Lp-cosine transform is changed from e1 to en.) Define the linear
map φ as before by

φei = ei, i = 1, · · · , n− 1, φen = sen.



Lp-BLASCHKE VALUATIONS 3179

From the SL(n) covariance and homogeneity of Z as well as relations (3.1) and
(2.3), we get

Cp
Sp(Z[K ∩ e⊥n ,±sen], ·)
V (Z[K ∩ e⊥n ,±sen])

(en) = Cp
Sp(s

q−1
n φZ[K ∩ e⊥n ,±en], ·)

V (s
q−1
n φZ[K ∩ e⊥n ,±en])

(en)

= s
−(q−1)p

n Cp
Sp(Z[K ∩ e⊥n ,±en], ·)
V (Z[K ∩ e⊥n ,±en])

(φ−1en).

Since |en · u| > 0 for all u ∈ Sn−1 \ e⊥n and the Lp-surface area measure of n-
dimensional bodies is not concentrated on any great sphere, we conclude that

spCp
Sp(Z[K ∩ e⊥n ,±en], ·)
V (Z[K ∩ e⊥n ,±en])

(φ−1en)

=
1

V (Z[K ∩ e⊥n ,±en])

∫
Sn−1

|en · u|pdSp(Z[K ∩ e⊥n ,±en], u) > 0.

Thus, −(q−1)p
n − p ≥ 0, so q ≤ −n+ 1. �

Lemma 4.10. Let Z : Kn
o → 〈Kn

c , #̃p〉 be a continuous, SL(n) covariant valuation

which is homogeneous of degree q = −n+ 1. Define the map Z1 : Kn

o → 〈Kn
o ,+p〉

by

h(Z1K,x)p =

⎧⎪⎨⎪⎩
Cp

Sp(ZK,·)
V (ZK) (x), dimK = n,

Cp
Sp(Z[K,±v],·)
V (Z[K,±v]) ((x · v)v), dimK = n− 1,

0, dimK ≤ n− 2,

for every x ∈ R
n, where v is a unit vector perpendicular to lin K. Then Z1 is a

SL(n) contravariant Lp-Minkowski valuation which is homogeneous of degree n−1.

Proof. Obviously, the definition of Z1 is independent of the choice of v, so it is well
defined. Next, we show that Z1 is an Lp-Minkowski valuation. We still use the
notation of the proof of Lemma 4.4. The case (1n) is the same as and the case
(1n−1) is similar to (change πKx to (x · v)v) the corresponding parts in the proof
of Lemma 4.4. The cases (1k), 0 ≤ k ≤ n− 2, and (2k), 1 ≤ k ≤ n− 2, are trivial.

Now we consider the case (2n). It is enough to show

hp

Z1K
+ hp

Z1(K∩u⊥)
= hp

Z1(K∩u+)
+ hp

Z1(K∩u−)
(4.11)

for dimK = n and a unit vector u ∈ lin K such that K ∩ u+,K ∩ u− are both
n-dimensional. Let b1, · · · , bn be an orthonormal basis of Rn such that u = bn.
With the valuation property of case (1n), we have

Cp
Sp(Z[K,±sbn], ·)
V (Z[K,±sbn])

(x) + Cp
Sp(Z[K ∩ b⊥n ,±sbn], ·)
V (Z[K ∩ b⊥n ,±sbn])

(x)

= Cp
Sp(Z[K ∩ b+n ,±sbn], ·)
V (Z[K ∩ b+n ,±sbn])

(x) + Cp
Sp(Z[K ∩ b−n ,±sbn], ·)
V (Z[K ∩ b−n ,±sbn])

(x)(4.12)

for sufficiently small s > 0. Define a linear map φ by

φbn = sbn, φbi = bi, i = 1, · · · , n− 1.
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The covariance of Z and relations (3.1) as well as (2.3) give

Cp
Sp(Z[K ∩ b⊥n ,±sbn], ·)
V (Z[K ∩ b⊥n ,±sbn])

(x) = s
−(q−1)p

n Cp
Sp(Z[K ∩ b⊥n ,±bn], ·)
V (Z[K ∩ b⊥n ,±bn])

(φ−1x)

= s
−(q−1)p

n −pCp
Sp(Z[K ∩ b⊥n ,±bn], ·)
V (Z[K ∩ b⊥n ,±bn])

(sφ−1x).(4.13)

Note that lim
s→0+

sφ−1x = (x · bn)bn. Since q = −n+ 1,

lim
s→0+

Cp
Sp(Z[K ∩ b⊥n ,±sbn], ·)
V (Z[K ∩ b⊥n ,±sbn])

(x) = Cp
Sp(Z[K ∩ b⊥n ,±bn], ·)
V (Z[K ∩ b⊥n ,±bn])

((x · bn)bn).

So if s tends to zero in (4.12), then we immediately obtain (4.11).
The case (2n−1) is similar to the case (2n). We will show the relation (4.11) is

still true for dimK = n− 1 and a unit vector u ∈ lin K such that K ∩ u+,K ∩ u−

are both (n − 1)-dimensional. Let b1, · · · , bn be an orthonormal basis of Rn such
that lin K = lin {b1, · · · , bn−1} and u = bn−1. Thus, choose v = bn. With the
valuation property of case (1n−1), we have

Cp
Sp(Z[K,±sbn−1,±bn], ·)
V (Z[K,±sbn−1,±bn])

((x · bn)bn)

+ Cp
Sp(Z[K ∩ b⊥n−1,±sbn−1,±bn], ·)
V (Z[K ∩ b⊥n−1,±sbn−1,±bn])

((x · bn)bn)

=Cp

Sp(Z[K ∩ b+n−1,±sbn−1,±bn], ·)
V (Z[K ∩ b+n−1,±sbn−1,±bn])

((x · bn)bn)

+ Cp

Sp(Z[K ∩ b−n−1,±sbn−1,±bn], ·)
V (Z[K ∩ b−n−1,±sbn−1,±bn])

((x · bn)bn)(4.14)

for sufficiently small s > 0. Define a linear map φ by

φbn−1 = sbn−1, φbi = bi, i 	= n− 1.

The covariance of Z and relations (3.1) as well as (2.3) give

Sp(Z[K ∩ b⊥n−1,±sbn−1,±bn], ·)
V (Z[K ∩ b⊥n−1,±sbn−1,±bn])

((x · bn)bn)

= s
−(q−1)p

n Cp
Sp(Z[K ∩ b⊥n ,±bn], ·)
V (Z[K ∩ b⊥n ,±bn])

(φ−1(x · bn)bn).

Note that lim
s→0+

φ−1(x · bn)bn = (x · bn)bn. Since q = −n+ 1,

lim
s→0+

Cp
Sp(Z[K ∩ b⊥n−1,±sbn−1,±bn], ·)
V (Z[K ∩ b⊥n−1,±sbn−1,±bn])

((x · bn)bn) = 0.

So if s tends to zero in (4.14), then we immediately obtain (4.11). Hence we have
proved that Z1 is an Lp-Minkowski valuation.

Moreover, it is easy to calculate that Z1 is an SL(n) contravariant Lp-Minkowski
valuation which is homogeneous of degree n − 1 on n-dimensional convex bodies.
Lemma 4.2 implies that Z1 is an SL(n) contravariant Lp-Minkowski valuation which
is homogeneous of degree n− 1. �
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Lemma 4.11. Let Z : Kn
o → 〈Kn

c , #̃p〉 be a continuous, SL(n) covariant valuation

which is homogeneous of degree q < −n+ 1. Define the map Z2 : Kn

o → 〈Kn
o ,+p〉

by

h(Z2K,x)p =

{
Cp

Sp(ZK,·)
V (ZK) (x), dimK = n,

0, dimK = k < n,

for every x ∈ R
n. Then Z2 is an SL(n) contravariant Lp-Minkowski valuation

which is homogeneous of degree r = −q.

Proof. To prove that Z2 is an Lp-Minkowski valuation, as in the proof of Lemma
4.5, we just need to show

lim
s→0+

Cp
Sp(Z[K ∩ b⊥n ,±sbn], ·)
V (Z[K ∩ b⊥n ,±sbn])

(x) = 0.(4.15)

Actually, since q < −n+1, by the relation (4.13), we immediately get the conclusion.
Moreover, it is easy to calculate that Z2 is an SL(n) covariant Lp-Minkowski

valuation which is homogeneous of degree r = −q. �

As in the contravariant case, we also need the following results from [20] to
classify SL(n) covariant normalized symmetric Lp-Blaschke valuations.

For −1 ≤ τ ≤ 1, define Πτ
p on the set of all convex bodies containing the origin

in their interiors by

h(Πτ
pK, v)p =

∫
Sn−1

(|v · u|+ τ (v · u))pdSp(K,u)

for v ∈ R
n. In particular, Π0

pK is the Lp-projection body of K. To extend the

operator Πτ
p to polytopes that contain the origin in their boundaries, for P ∈ Pn

o ,

the set of polytopes which contain the origin, define Π̂τ
pP by

h(Π̂τ
pP, v)

p =

∫
Sn−1\ωo(P )

(|v · u|+ τ (v · u))pdSp(P, u),(4.16)

where ωo(P ) is the set of outer unit normal vectors to facets of P that contain the
origin.

Lemma 4.12 ([20]). Let Z : Pn

o → 〈Kn
o ,+p〉 be an Lp-Minkowski valuation, p >

1, n ≥ 3, which is SL(n) contravariant and homogeneous of degree r. If r = n/p−1,
then there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = aΠ̂τ
pP

for every P ∈ Pn

o . In all other cases, ZP = {o} for every P ∈ Pn

o .

Let Z : P2

o → 〈K2
o,+p〉 be an Lp-Minkowski valuation, p > 1, which is SL(2)

contravariant and homogeneous of degree r. If r = 2/p+1, then there are constants
a ≥ 0 and −1 ≤ τ ≤ 1 such that

ZP = aψπ/2M
τ
p P

for every P ∈ P2

o. If r = 1, then there are constants a0, b0 ≥ 0 and ai, bi ∈ R with
a0 + ai, b0 + bi ≥ 0, i = 1, 2, such that

ZP = ψπ/2(a0P +p b0(−P ) +p

∑p
(aiEi +p bi(−Ei)))
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for every P ∈ P2

o, where
∑p

denotes the Lp-Minkowski sum which is taken over
Ei ∈ ξo(P ). If r = 2/p − 1, then there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such
that

ZP = aΠ̂τ
pP

for every P ∈ P2

o. In all other cases, ZP = {o} for every P ∈ P2

o.

Now we classify continuous, homogeneous, SL(n) covariant normalized symmet-
ric Lp-Blaschke valuations.

Theorem 4.13. Let n ≥ 3, p > 1 and p not an even integer. Then there exist
no continuous, homogeneous, SL(n) covariant normalized symmetric Lp-Blaschke
valuations on Kn

o .

Let p > 1 and p not an even integer. If Z : K2
o → 〈K2

c , #̃p〉 is a continuous,
homogeneous, SL(2) covariant valuation, then there exists a constant c > 0 such
that

ZK = cψπ/2Λ̃
p
cK

for every K ∈ K2
o.

Proof. Assume that Z : Kn
o → 〈Kn

c , #̃p〉 is a continuous, SL(n) covariant valuation
which is homogeneous of degree q. Lemma 4.9 shows that q ≤ −n+ 1.

We first consider the cases n ≥ 3. If q < −n+1, then Z2, introduced in Lemma
4.11, is an SL(n) contravariant Lp-Minkowski valuation which is homogeneous of

degree r > n − 1. By Lemma 4.12, we have Z2P = {o} for every P ∈ Pn

o . If
q = −n+1, Z1, introduced in Lemma 4.10, is an SL(n) contravariant Lp-Minkowski

valuation which is homogeneous of degree n − 1. By Lemma 4.12, Z1P = {o} for

every P ∈ Pn

o .
Combined with the injectivity relation of the Lp-cosine transform (2.1), all cases

q ≤ −n+ 1 imply that

Sp(ZP, ·)
V (ZP )

= 0

for every P ∈ Pn

o . This is a contradiction to the existence of continuous, homoge-
neous, SL(n) covariant normalized symmetric Lp-Blaschke valuations on Kn

o .

Next we consider the case n = 2. If q < −1, q 	= −2/p− 1, then Z2, introduced
in Lemma 4.11, is an SL(2) contravariant Lp-Minkowski valuation which is homo-

geneous of degree r > 1, r 	= 2/p + 1. By Lemma 4.12, we have Z2P = {o} for

every P ∈ P2

o. Combined with the injectivity relation of the Lp-cosine transform

(2.1), we get
Sp(ZP,·)
V (ZP ) = 0. This is a contradiction.

If q = −2/p− 1, then Z2, introduced in Lemma 4.11, is an SL(2) contravariant
Lp-Minkowski valuation which is homogeneous of degree 2/p+ 1. By Lemma 4.12,
there are constants a ≥ 0 and −1 ≤ τ ≤ 1 such that

Z2P = aψπ/2M
τ
p P

for every P ∈ P2

o. Thus, ψ−π/2Z2P = aMτ
p P for every P ∈ P2

o . The assumption

that Z does not contain {o} in its range gives a > 0. Since Z2P is origin-symmetric,

we get τ = 0. Thus, ψ−π/2(
ΠpZP

V (ZP )1/p
) = aM0

pP for every P ∈ P2
o . Since the
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operators ψ−π/2,
ΠpZ

V 1/p and Γp are continuous on K2
o, and P2

o is dense in K2
o, we

obtain

ψ−π/2(
ΠpZK

V (ZK)1/p
) = aM0

pK

for every K ∈ K2
o. By rewriting this in terms of the Lp-cosine transforms (via

relation (2.6) and (cn,pV (K))
1
pΓpK = M0

pK), we get

Cp
Sp(ZK, ·)
V (ZK)

(ψπ/2x) = bCp(
1

2
ρK(·)n+p +

1

2
ρ−K(·)n+p)(x)

for a suitable constant b > 0. Since

Cp

Sp(ψ−π/2ZK, ·)
V (ψ−π/2ZK)

(x) = Cp
Sp(ZK, ·)
V (ZK)

(ψπ/2x)

(by relation (2.3)), the injectivity property (2.1) and the definition of the normalized
symmetric Lp-curvature image operator finally show

ψ−π/2ZK = cΛ̃p
cK

for a suitable constant c > 0. Hence

ZK = cψπ/2Λ̃
p
cK

for every K ∈ K2
o

If q=−1, Z1, introduced in Lemma 4.10, is an SL(2) contravariant Lp-Minkowski
valuation which is homogeneous of degree 1. By Lemma 4.12, there are constants
a0, b0 ≥ 0 and ai, bi ∈ R with a0 + ai, b0 + bi ≥ 0, i = 1, 2, such that

Z1P = ψπ/2(a0P +p b0(−P ) +p

∑p
(aiEi +p bi(−Ei)))

for every P ∈ P2

o, where
∑p

denotes the Lp-Minkowski sum, and the sum is taken
over Ei ∈ ξo(P ). For P0 = [±e1,±e2], we have

ΠpZP0

V (ZP0)1/p
= cψπ/2P0

for a suitable c ≥ 0. The assumption that Z does not contain {o} in its range gives
c > 0. For p > 1, every support set of an Lp-projection body consists of precisely
one point (Lemma 4.6). However, ψπ/2P0 has a support set [e1, e2] which does not
consist of precisely one point. This is a contradiction. �

Theorem 3.2 and Theorem 4.13 now directly imply Theorem 1.2.

5. Lp-Blaschke valuations

We first give the relationship between normalized symmetric Lp-Blaschke valu-
ations and symmetric Lp-Blaschke valuations.

Lemma 5.1. If Z : Q → 〈Kn
c ,#p〉 is a symmetric Lp-Blaschke valuation, then

Z̃ : Q → 〈Kn
c , #̃p〉, defined by

Sp(Z̃K, ·)
V (Z̃K)

= Sp(ZK)(5.1)

for every K ∈ Q, is a normalized symmetric Lp-Blaschke valuation. Moreover, Z̃

is continuous if Z is continuous, Z̃ is SL(n) covariant (or contravariant) if Z is
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SL(n) covariant (or contravariant respectively), and Z̃ is homogeneous of degree
q(p− n)/p if Z is homogeneous of degree q.

Proof. Since Z is a symmetric Lp-Blaschke valuation,

Sp(Z(K ∪ L), ·) + Sp(Z(K ∩ L), ·) = Sp(ZK, ·) + Sp(ZL, ·),

whenever K,L,K ∪ L,K ∩ L ∈ Q. By the definition of Z̃ and the normalized

Lp-Blaschke sum, Z̃ is a normalized symmetric Lp-Blaschke valuation.

We can prove continuity of Z̃ in a similar way to showing continuity of the
normalized symmetric Lp-curvature image. But because of the existence of ZK,
we can prove it in an easier way (without using Lemma 3.1).

By the uniqueness of the volume-normalized even Lp-Minkowski problem, we
can rewrite relation (5.1) as

Z̃K = V (ZK)−1/pZK(5.2)

for every K ∈ Kn. Since V (ZK) > 0, if ZKi → ZK,

Z̃Ki = V (ZKi)
−1/pZKi → V (ZK)−1/pZK = Z̃K.

Thus, if Z is continuous, then Z̃ is continuous.
If Z(λK) = λqZK, for every λ > 0, then

Z̃(λK) = V (ZλK)−1/pZλK = λq(p−n)/pV (ZK)−1/pZK = λq(p−n)/pZ̃K.

Thus, if Z is homogeneous of degree q, Z̃ is homogeneous of degree q(p− n)/p.

The proof of covariance or contravariance of Z̃ is similar to the proof of homo-
geneity. �

Lemma 5.1 introduces a map from the space of symmetric Lp-Blaschke valuations
to the space of normalized symmetric Lp-Blaschke valuations, and the continuity,
homogeneity, or SL(n) covariance (or contravariance) of symmetric Lp-Blaschke
valuations are inherited by the corresponding normalized cases. For p 	= n, the
relation (5.1) can also be rewritten as

V (Z̃K)1/(p−n)Z̃K = ZK(5.3)

for every K ∈ Q. Then we get the following lemma in a similar way. Hence the
map is a bijection and these properties are also transferred by the inverse map.

Lemma 5.2. If Z̃ : Q → 〈Kn
c , #̃p〉 is a normalized symmetric Lp-Blaschke valua-

tion, p 	= n, then Z : Q → 〈Kn
c ,#p〉, defined by

ZK = V (Z̃K)1/(p−n)Z̃K(5.4)

for every K ∈ Q, is a symmetric Lp-Blaschke valuation. Moreover, Z is continuous

if Z̃ is continuous, Z is SL(n) covariant (or contravariant) if Z̃ is SL(n) covariant

(or contravariant respectively), and Z is homogeneous of degree qp/(p− n) if Z̃ is
homogeneous of degree q.

Lemma 5.1 and Lemma 5.2 together with Theorem 1.1 (or Theorem 3.2 as well
as Theorem 4.8) provide a classification of continuous, homogeneous SL(n) con-
travariant symmetric Lp-Blaschke valuations on Kn

o .
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Theorem 5.3. For n ≥ 2, p > 1, p 	= n and p not an even integer, a map
Z : Kn

o → 〈Kn
c ,#p〉 is a continuous, homogeneous, SL(n) contravariant symmetric

Lp-Blaschke valuation if and only if there exists a constant c > 0 such that

ZK = cΛp
cK

for every K ∈ Kn
o .

Proof. Since Z is a continuous, homogeneous SL(n) contravariant symmetric Lp-

Blaschke valuation, Z̃ defined in Lemma 5.1 is a continuous, homogeneous SL(n)
contravariant normalized symmetric Lp-Blaschke valuation. Theorem 4.8 implies
that there exists a constant c > 0 such that

Z̃K = cΛ̃p
cK

for every K ∈ Kn
o . Note that Λp

cK = V (Λ̃p
cK)1/(p−n)Λ̃p

cK. By relation (5.3),

ZK = V (Z̃K)1/(p−n)Z̃K = V (cΛ̃p
cK)1/(p−n)cΛ̃p

cK = cp/(p−n)Λp
cK(5.5)

for every K ∈ Kn
o .

On the other hand, Theorem 3.2 implies that Λ̃p
cK is a continuous, homogeneous

SL(n) contravariant normalized symmetric Lp-Blaschke valuation. Then, Λp
cK is

a continuous, homogeneous, SL(n) contravariant symmetric Lp-Blaschke valuation
by Lemma 5.2. �

Lemma 5.1 and Lemma 5.2 together with Theorem 1.2 (or Theorem 3.2 as well
as Theorem 4.13) imply the following theorem.

Theorem 5.4. Let n ≥ 3, p > 1 and p not an even integer. Then there exist no
continuous, homogeneous, SL(n) covariant symmetric Lp-Blaschke valuations on
Kn

o .
Let p > 1 and p not an even integer. If Z : K2

o → 〈K2
c ,#p〉 is a continuous,

homogeneous, SL(2) covariant symmetric Lp-Blaschke valuation, then there exists
a constant c > 0 such that

ZK = cψπ/2Λ
p
cK

for every K ∈ K2
o.

Proof. For n ≥ 3, we argue by contradiction. Assume that Z is a continuous,

homogeneous, SL(n) covariant symmetric Lp-Blaschke valuation and Z̃ defined in
Lemma 5.1 is a continuous, homogeneous, SL(n) covariant normalized symmetric
Lp-Blaschke valuation. But Theorem 4.13 implies that there are no continuous,
homogeneous, SL(n) covariant normalized symmetric Lp-Blaschke valuations on
Kn

o . This is a contradiction.
For n = 2, the proof is almost the same as in Theorem 5.3. �
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cations, Birkhäuser, Basel, 1983, pp. 170–247. MR731112 (85e:52001)

[33] Abraham Neyman, Representation of Lp-norms and isometric embedding in Lp-spaces, Israel
J. Math. 48 (1984), no. 2-3, 129–138, DOI 10.1007/BF02761158. MR770695 (86g:46033)

[34] Lukas Parapatits, SL(n)-contravariant Lp-Minkowski valuations, Trans. Amer. Math. Soc.
366 (2014), no. 3, 1195–1211, DOI 10.1090/S0002-9947-2013-05750-9. MR3145728

[35] Lukas Parapatits, SL(n)-covariant Lp-Minkowski valuations, J. Lond. Math. Soc. (2) 89
(2014), no. 2, 397–414, DOI 10.1112/jlms/jdt068. MR3188625

[36] Lukas Parapatits and Franz E. Schuster, The Steiner formula for Minkowski valuations, Adv.
Math. 230 (2012), no. 3, 978–994, DOI 10.1016/j.aim.2012.03.024. MR2921168

[37] Boris Rubin, Inversion of fractional integrals related to the spherical Radon transform,
J. Funct. Anal. 157 (1998), no. 2, 470–487, DOI 10.1006/jfan.1998.3268. MR1638340
(2000a:42019)

[38] Boris Rubin, Intersection bodies and generalized cosine transforms, Adv. Math. 218 (2008),
no. 3, 696–727, DOI 10.1016/j.aim.2008.01.011. MR2414319 (2009m:44010)

[39] Rolf Schneider, Equivariant endomorphisms of the space of convex bodies, Trans. Amer. Math.

Soc. 194 (1974), 53–78. MR0353147 (50 #5633)
[40] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics

and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR1216521
(94d:52007)

[41] Rolf Schneider and Franz E. Schuster, Rotation equivariant Minkowski valuations, Int. Math.
Res. Not., posted on 2006, Art. ID 72894, 20, DOI 10.1155/IMRN/2006/72894. MR2272092
(2008b:52009)

[42] Franz E. Schuster, Valuations and Busemann-Petty type problems, Adv. Math. 219 (2008),
no. 1, 344–368, DOI 10.1016/j.aim.2008.05.001. MR2435426 (2009f:52018)

[43] Franz E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010),
no. 1, 1–30, DOI 10.1215/00127094-2010-033. MR2668553 (2011g:52026)

[44] Franz E. Schuster and Thomas Wannerer, GL(n) contravariant Minkowski valuations, Trans.
Amer. Math. Soc. 364 (2012), no. 2, 815–826, DOI 10.1090/S0002-9947-2011-05364-X.
MR2846354

Department of Mathematics, Shanghai University, Shanghai 200444, People’s Repub-

lic of China

E-mail address: lijin2955@gmail.com

Department of Mathematics, Shanghai University, Shanghai 200444, People’s Repub-

lic of China

E-mail address: yuanshufeng2003@163.com

Department of Mathematics, Shanghai University, Shanghai 200444, People’s Repub-

lic of China

E-mail address: gleng@staff.shu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=1231704
http://www.ams.org/mathscinet-getitem?mr=1231704
http://www.ams.org/mathscinet-getitem?mr=1242979
http://www.ams.org/mathscinet-getitem?mr=1242979
http://www.ams.org/mathscinet-getitem?mr=1378681
http://www.ams.org/mathscinet-getitem?mr=1378681
http://www.ams.org/mathscinet-getitem?mr=1863023
http://www.ams.org/mathscinet-getitem?mr=1863023
http://www.ams.org/mathscinet-getitem?mr=2067123
http://www.ams.org/mathscinet-getitem?mr=2067123
http://www.ams.org/mathscinet-getitem?mr=1243000
http://www.ams.org/mathscinet-getitem?mr=1243000
http://www.ams.org/mathscinet-getitem?mr=731112
http://www.ams.org/mathscinet-getitem?mr=731112
http://www.ams.org/mathscinet-getitem?mr=770695
http://www.ams.org/mathscinet-getitem?mr=770695
http://www.ams.org/mathscinet-getitem?mr=3145728
http://www.ams.org/mathscinet-getitem?mr=3188625
http://www.ams.org/mathscinet-getitem?mr=2921168
http://www.ams.org/mathscinet-getitem?mr=1638340
http://www.ams.org/mathscinet-getitem?mr=1638340
http://www.ams.org/mathscinet-getitem?mr=2414319
http://www.ams.org/mathscinet-getitem?mr=2414319
http://www.ams.org/mathscinet-getitem?mr=0353147
http://www.ams.org/mathscinet-getitem?mr=0353147
http://www.ams.org/mathscinet-getitem?mr=1216521
http://www.ams.org/mathscinet-getitem?mr=1216521
http://www.ams.org/mathscinet-getitem?mr=2272092
http://www.ams.org/mathscinet-getitem?mr=2272092
http://www.ams.org/mathscinet-getitem?mr=2435426
http://www.ams.org/mathscinet-getitem?mr=2435426
http://www.ams.org/mathscinet-getitem?mr=2668553
http://www.ams.org/mathscinet-getitem?mr=2668553
http://www.ams.org/mathscinet-getitem?mr=2846354

	1. Introduction
	2. Preliminaries
	3. Normalized symmetric 𝐿_{𝑝}-curvature images
	4. Normalized 𝐿_{𝑝}-Blaschke valuations
	4.1. The contravariant case
	4.2. The covariant case

	5. 𝐿_{𝑝}-Blaschke valuations
	Acknowledgement
	References

