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MATRIX FACTORIZATIONS IN HIGHER CODIMENSION

JESSE BURKE AND MARK E. WALKER

Abstract. We observe that there is an equivalence between the singularity
category of an affine complete intersection and the homotopy category of ma-
trix factorizations over a related scheme. This relies in part on a theorem of
Orlov. Using this equivalence, we give a geometric construction of the ring of
cohomology operators, and a generalization of the theory of support varieties,
which we call stable support sets. We settle a question of Avramov about
which stable support sets can arise for a given complete intersection ring. We
also use the equivalence to construct a projective resolution of a module over
a complete intersection ring from a matrix factorization, generalizing the well-
known result in the hypersurface case.
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1. Introduction

Given an element f in a commutative local ring Q, a matrix factorization of f is
a pair of n×n matrices (A,B) such that AB = f · In = BA. This construction was
introduced by Eisenbud to study modules over the factor ring R = Q/(f). Indeed,
in the case Q is regular local and f �= 0, he showed [15, Theorem 6.1] that for any
finitely generated R-module M , the minimal free resolution of the d-th syzygy of
M , where d is the Krull dimension of Q, is of the form

· · · → Rn B⊗QR−−−−→ Rn A⊗QR−−−−→ Rn B⊗QR−−−−→ Rn → 0,

for some matrix factorization (A,B). Thus, matrix factorizations describe the cat-
egory of finitely generated R-modules, “up to finite projective dimension”. This
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was further clarified by Buchweitz in [11] where he noted that there is an equiv-
alence of categories between the homotopy category of matrix factorizations and
the quotient of the bounded derived category of finitely generated R-modules by
perfect complexes:

(1.1) [MF (Q, f)]
∼=−→ Db(R)/Perf(R) =: Dsg(R).

This functor sends a matrix factorization (A,B) to cokerA, regarded as an object of
Dsg(R). Here, the homotopy category of matrix factorizations is defined analogously
to the homotopy category of complexes of modules. Also, a complex is perfect if
it is isomorphic in Db(R) to a bounded complex of finitely generated projective
R-modules. We call Dsg(R) the singularity category of R, following [25].

In the equivalence (1.1), the right-hand side is well defined for any ring R.

Question 1. What should the left-hand side of (1.1) be when R is a complete
intersection — i.e., when R = Q/(f1, . . . , fc) for a regular ring Q and a Q-regular
sequence f1, . . . , fc?

For a complete intersection R = Q/(f1, . . . , fc) we refer to c as the codimension
of R (technically c is the codimension of the presentation Q/(f1, . . . , fc) — but
we fix a presentation throughout); complete intersections of codimension 1 are
called hypersurfaces. In this paper we propose an answer for higher codimension
complete intersections and investigate the consequences. To state it we introduce
some notation. If X is a scheme, L a line bundle on X, and W a regular global
section of L, then a matrix factorization of the triple (X,L,W ) consists of a pair
of locally free coherent sheaves E1, E0 on X and maps

E1
e1−→ E0

e0−→ E1 ⊗ L
such that e0 ◦ e1 and (e1 ⊗ 1L) ◦ e0 are both multiplication by W . The homotopy
category of matrix factorizations, written [MF (X,L,W )], has these matrix factor-
izations as objects. To define the morphisms in this category one starts out as in
the affine case, but some adjustment is needed to deal with the higher cohomology
of the locally free sheaves involved. In Section 2 we recall the full definition of
morphisms and give details on the following:

Theorem 1. Let Q be a regular ring of finite Krull dimension, f1, . . . , fc a Q-
regular sequence, and R = Q/(f1, . . . , fc). Let X = Pc−1

Q = Proj(Q[T1, . . . , Tc]),

W =
∑

i fiTi ∈ Γ(X,OX(1)), and define

Y = Proj(Q[T1, . . . , Tc]/(W )) ↪→ X

to be the zero subscheme of W . There are equivalences of triangulated categories

[MF (Pc−1
Q ,O(1),W )]

coker

∼= �� Dsg(Y )
Φ

∼= �� Dsg(R).

The first equivalence of this theorem has been proven in various contexts by
various authors in [24, 28, 29]. The version we use here is from our previous paper
[13]. The second equivalence is essentially due to Orlov [26, Theorem 2.1]. In
Appendix A we provide a slight generalization of loc. cit. removing the assumption
that Q is equicharacteristic and, more significantly, that Q is regular. (When Q is
not regular, Dsg is replaced by the “relative singularity category”.) This allows us
to state many results in the paper in a “relative” form in which Q is not necessarily
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regular but rather that the modules involved have finite projective dimension over
Q.

The composition of the equivalences in Theorem 1, which we write

Ψ = Φ ◦ coker : [MF (Pc−1
Q ,O(1),W )]

∼=−→ Dsg(R),

provides an answer to Question 1. We note here that matrix factorizations of
W were (perhaps first) used in the proof of [4, 3.2] and their relation to MCM
R-modules is currently being studied in work of Buchweitz, Pham, and Roberts;
see [12]. Also related is the work of Isik [20]. In this paper we show that the
above equivalence and non-affine matrix factorizations provide a new and useful
perspective on many aspects of homological algebra over complete intersection rings.
These results are naturally stated in terms of the stable Ext-modules of finitely
generated R-modules M,N , defined as

Êxt
n

R(M,N) := HomDsg(R)(M [−n], N), n ∈ Z.

These modules are also known as the stable cohomology, or the Tate cohomology, of
M and N . When R is Gorenstein it is a well-known result of Buchweitz that they
may be computed using a complete resolution of M ; see [11] and also Appendix

B. The term “stable” reflects the facts that Êxt
n

R(M,N) is zero if M or N has
finite projective dimension and that there are natural isomorphisms ExtnR(M,N) ∼=
Êxt

n

R(M,N) for n � 0.
When R is a hypersurface it follows from (1.1) that there are natural isomor-

phisms

Êxt
n

R(M,N) ∼= Êxt
n+2

R (M,N)

for all n ∈ Z. For complete intersections of higher codimension the stable Ext-
modules are not necessarily two-periodic in this sense. They are, however, given as
the sheaf cohomology modules of certain sheaves on Y that do satisfy a “twisted”
periodicity, as we now explain. For finitely generated R-modules M and N , let
M = β∗π

∗(M) and N = β∗π
∗(N), where π : Pc−1

R → Spec(R) is the canonical

projection and β : Pc−1
R ↪→ Y is the evident closed immersion. (Here, we identify

M and N with coherent sheaves on Spec(R) as usual.) We show in Section 3 (see
Corollary 3.9 and Proposition 3.11) that for n � 0 there are natural isomorphisms

(1.2)
Êxt

n

R(M,N) ∼= Γ(Y, ExtnOY
(M,N )),

ExtnOY
(M,N )(1) ∼= Extn+2

OY
(M,N ),

where ExtnOX
(M,N ) denotes the coherent sheaf satisfying

ExtnOX
(M,N )x ∼= ExtnOX,x

(Mx,Nx).

Combining these, there is an integer m ≥ 0 and isomorphisms

(1.3)
Êxt

m+2k

R (M,N) ∼= Γ(Y, ExtmOY
(M,N )(k)) for all k ≥ 0,

Êxt
m+2k+1

R (M,N) ∼= Γ(Y, Extm+1
OY

(M,N )(k)) for all k ≥ 0.

In other words, the even (respectively, odd) Ext-modules of M and N are given (in
high enough degrees) by the graded components of the graded Q[T1, . . . , Tc]-module
associated to the coherent OY -sheaf ExtmOY

(M,N ) (respectively, Extm+1
OY

(M,N )).
If c = 1, then Y = SpecR and L is the trivial bundle, recovering the two-periodicity
for hypersurfaces.
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The isomorphisms (1.3) show that in high degrees there are natural maps of
degree two on the stable Ext-modules, given by multiplication by the variables
T1, . . . , Tc. On the other hand, it is well known that

Ext∗R(M,N) =
⊕
n≥0

ExtnR(M,N)

is a graded module over the polynomial ring R[χ1, . . . , χc] (which is graded by
setting |χi| = 2), where the action of the χi’s is induced by the Eisenbud operators
[15].

Theorem 3.2 shows that these two families of operators coincide under the iso-

morphisms Êxt
n

R(M,N) ∼= ExtnR(M,N), for n � 0:

Theorem 2. Let M and N be finitely generated R-modules. For n � 0 and
i = 1, . . . , c there is an equality:

χi = Ti : Êxt
n

R(M,N) → Êxt
n+2

R (M,N).

The statement of this theorem and its consequences occupy Section 3. The
(surprisingly delicate) proof makes up Section 4.

As outlined above, the equivalence (1.1) was first proved using the fact that the
minimal free resolution of a module over a local hypersurface is eventually given
by a matrix factorization. In Section 5 we go in the opposite direction and use the
equivalence Ψ to show:

Theorem 3. Let M be a finitely generated R-module and E = (E1 → E0 → E1(1))
a matrix factorization of (Pc−1

Q ,O(1),W ) such that

Ψ(E) ∼= M ∈ Dsg(R).

There is an integer n, that depends on E, such that the n-th syzygy of M has a free
resolution constructed from the sheaf cohomology of twists of E1 and E0.

See Theorem 5.2 for a precise description of this resolution. In Section 6 we show
how to construct a matrix factorization EM such that Ψ(EM ) ∼= M , using a finite
resolution of M over Q and a system of higher homotopies, as in [15, §7]. Using
this explicit construction we also show that one may describe Dsg(R) using graded
matrix factorizations of W over the ring Q[T1, . . . , Tc].

When R is local, Avramov and Buchweitz in [4] use the action of R[χ1, . . . , χc]
on Ext∗R(M,N) to define the notion of a support variety. Given finitely generated
R-modules M and N , their support variety is a closed subset of Ac

k, which we write
as

V f
Q(M,N)AB ⊆ Ac

k = Spec k[χ1, . . . , χc],

where k is the residue field of R.
For R = Q/(f) a (not necessarily local) complete intersection, we define the

stable support set of a pair of R-modules M and N to be

V f
Q(M,N) := supp ˜Ext∗R(M,N) ⊆ Pc−1

R .

After establishing various formal properties of matrix factorizations in Section 7
which we will use, in Section 8 we show the properties of stable support sets listed
in the theorem below. These generalize the properties of support varieties proven
in [4]; see also [9, 5.1].
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Theorem 4. For finitely generated R-modules M , N , M ′, and N ′, we have:

(1) V f
Q(M,N)AB is the cone of the closed fiber of V f

Q(M,N) when R is local;

(2) V f
Q(M,N) = ∅ if and only if ExtnR(M,N) = 0 for all n � 0;

(3) V f
Q(M,N) ∩ V f

Q(M
′, N ′) = V f

Q(M,N ′) ∩ V f
Q(M

′, N); and

(4) V f
Q(M,N) = V f

Q(M,M) ∩ V f
Q(N,N) = V f

Q(N,M).

Moreover, it follows almost immediately from the definition that

V f
Q(M,N) = V f

Q(Ω
n
R(M), N) = V f

Q(M,Ωn
R(N))

for any n ∈ Z, where Ωn
R(M) is an n-th syzygy of M . (If n < 0, then Ωn

R(M) is

defined if and only if there is a long exact sequence 0 → M → P0
∂−→ · · · ∂−→ P−n

with Pi projective. In this case Ωn
R(M) = P−n/∂(P−n+1).)

One can check that stable support sets are contained in the singular locus of Y ,
which is a subset of Pc−1

R ; see Lemma 8.2. Thus the following result shows that

every “conceivable” subset of Pc−1
R is the stable support set of an R-module. This

answers in the affirmative a question suggested to us by Avramov, and it generalizes
[10] and [5]; see also [32, 7.11].

Theorem 5. For every closed subset C of the singular locus of

Y = Proj (Q[T1, . . . , Tc]/(W )) ,

there exists an R-module M with C = V f
Q(M,M).

This theorem is proved in Section 8. Also in that section we show how notions
of support for modules and complexes over complete intersections defined in [8,32]
relate to stable support.

The paper also contains two appendices: Appendix A gives the generalization
of Orlov’s Theorem described above and Appendix B shows that if a module M
has a complete resolution in the sense of [34], then this resolution may be used
to compute the stable Ext-modules as defined above. This is well known in the
Gorenstein case (see [11]), but we could not find the result in the literature in the
generality that we need here.

As alluded to above, we have endeavored to state and prove the results in this
paper in a more general setting than discussed in this introduction. In particular,
we do not typically assume Q is a regular ring, but instead assume that M (and
occasionally N) has finite projective dimension over Q. This leads to somewhat
more complicated statements than those listed in this introduction. To counteract
this, we have also sought to include explicitly the “simple case” in which Q is
regular, so that the reader who is only interested in this case can find the results
in a more pleasing and easy-to-understand format.

2. Matrix factorizations of locally free sheaves

and Orlov’s Theorem

In this section, we summarize relevant results from our previous paper [13] on
matrix factorizations of locally free sheaves and then show how a theorem of Orlov
[26] relates these to affine complete intersections.
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2.1. Matrix factorizations of locally free sheaves. Throughout X will denote
a Noetherian separated scheme and L a line bundle onX. To simplify notation, even
if L is not very ample, for a quasi-coherent sheaf G (or a complex of such) on X and
integer n, we will write G(n) for G ⊗OX

L⊗n, where L⊗−n := HomOX
(L⊗n,OX)

for n ≥ 1. (Here, and elsewhere, Hom denotes the sheaf-Hom.) In particular,
O(1) = L. Similarly, if f is a morphism of (complexes of) quasi-coherent sheaves,
then f(1) = f ⊗ idL.

Definition 2.1. Let W be a global section of L. A matrix factorization E =

(E1
e1−→ E0

e0−→ E1(1)) of the triple (X,L,W ) consists of a pair of locally free co-
herent sheaves E1, E0 on X and morphisms e1 : E1 → E0 and e0 : E0 → E1(1) such
that e0 ◦ e1 and e1(1) ◦ e0 are multiplication by W . A strict morphism of matrix
factorizations from (E1 → E0 → E1(1)) to (F1 → F0 → F1(1)) is a pair of maps
E0 → F0, E1 → F1 causing the evident squares to commute. Matrix factorizations
and strict morphisms of such form a category which we write MF (X,L,W ) or just
MF for short.

The previous definition first appeared in [28]. The category MF (X,L,W ) is
made into an exact category in the sense of Quillen [30] by declaring a sequence of
strict maps to be exact if it is so in both degrees.

Definition 2.2. A twisted periodic complex of locally free coherent sheaves for
(X,L) is a chain complex C of locally free coherent sheaves on X together with a

specified isomorphism α : C[2]
∼=−→ C(1), where we use the convention that C[2]i =

Ci+2. The category TPC(X,L) has twisted periodic complexes as objects, and a
morphism is a chain map that commutes with the isomorphisms in the evident
sense. There is an equivalence

TPC(X,L) ∼= MF (X,L, 0)

given by sending (C, α) to C−1 d−→ C0 α−1◦ d−−−−→ C−1(1).

The motivating example of a twisted periodic complex is the following:

Definition 2.3. Let E = (E1
e1−→ E0

e0−→ E1(1)) and F = (F1
f1−→ F0

f0−→ F1(1))
be matrix factorizations of (X,L,W ). We define the mapping complex of E and F,
written HomMF(E,F), to be the following twisted periodic complex of locally free
sheaves:

. . .
∂0(−1)−−−−→

Hom(E0,F1)
⊕

Hom(E1,F0(−1))

∂−1

−−−→
Hom(E0,F0)

⊕
Hom(E1,F1)

∂0

−→

( Hom(E0,F1)
⊕

Hom(E1,F0(−1))

)
(1)

∂−1(1)−−−−→ . . .

Here Hom(E0,F0)⊕Hom(E1,F1) lies in degree 0, and the differentials are given
by

∂−1 =

[
(f1)∗ −e∗0
−e∗1 (f0)∗

]
and ∂0 =

[
(f0)∗ e∗0
e∗1 (f1)∗

]
,

using the canonical isomorphisms

Hom(Ei,Fj(1)) ∼= Hom(Ei,Fj)(1) ∼= Hom(Ei(−1),Fj)

and ⎛⎝ Hom(E0,F1)
⊕

Hom(E1,F0(−1))

⎞⎠ (1) ∼=
Hom(E0,F1(1))

⊕
Hom(E1,F0).
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One checks that ∂0 ◦ ∂−1 and ∂−1(1) ◦ ∂0 are both zero, and hence HomMF(E,F)
is in fact a twisted periodic complex.

Note that there is an isomorphism

HomMF(E,F) ∼= Z0(Γ(X,HomMF(E,F))),

where Γ(X,HomMF(E,F)) is the complex of abelian groups obtained by applying
the global sections functor degree-wise to HomMF(E,F), and Z0 denotes the cycles
in degree zero.

Following [24, 28] we define the homotopy category associated to MF (X,L,W ),
written [MF (X,L,W )] or just [MF ], as follows. First, one defines the “naive
homotopy category”, written [MF ]naive, to have Hom-sets

Hom[MF ]naive(E,F) = H0 (Γ (X,HomMF(E,F))) .

Thus “homotopic” morphisms in MF are identified. The category [MF ]naive is
triangulated with shift functor and triangles as given in e.g. [13, 2.5]. An object E
of [MF ]naive is locally contractible if for each x ∈ X the evident localization at x,
written Ex, is isomorphic to zero in

[MF (SpecOX,x,Lx,Wx)]naive.

The set of such objects forms a thick subcategory. The homotopy category [MF ]
is the Verdier quotient

[MF (X,L,W )] =
[MF (X,L,W )]naive

locally contractible objects
.

We developed in [13] a more explicit description of the Hom-sets of [MF ] when
X is projective over a Noetherian ring. Recall that a scheme X is projective over
a ring Q if there is a closed embedding j : X ↪→ Pm

Q for some m ≥ 0. In this case,

we say that OX(1) := j∗OPm
Q
(1) is the corresponding very ample line bundle on X.

To describe the construction, we first make a fixed choice of a finite affine open
cover U = {U1, . . . , Um} of X, and for any quasi-coherent sheaf F on X, let Γ(U ,F)
denote the usual Cech construction. Since X is separated, the cohomology of the
complex Γ(U ,F) gives the sheaf cohomology of F . We define Γ(U ,HomMF(E,F))
to be the total complex associated to the bicomplex

0 →
⊕
i

Γ(Ui,HomMF(E,F)) →
⊕
i<j

Γ(Ui ∩ Ui,HomMF(E,F)) → · · · ,

given by applying the Cech construction degree-wise. If G is another matrix fac-
torization, there is an evident morphism of chain complexes

(2.4) Γ(U ,HomMF(E,F))⊗ Γ(U ,HomMF(F,G)) → Γ(U ,HomMF(E,G))

which is associative and unital.
We set

Hq(X,HomMF(E,F)) = Hq(Γ(U ,HomMF(E,F)))

and define the category [MF (X,L,W )]H to have the same objects as MF (X,L,W )
with morphisms

Hom[MF ]H(E,F) := H0(X,HomMF(E,F)).

The composition maps in this category are the maps in homology induced by (2.4).
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There is a functor [MF ]naive → [MF ]H that is the identity on objects. The maps
on morphisms are given by the canonical maps

H0 (Γ (X,HomMF(E,F))) → H0(X,HomMF(E,F)).

This functor induces a functor [MF ] → [MF ]H by [13, 3.6].

Theorem 2.5 ([13, Theorem 4.2]). Let X be a scheme that is projective over a
Noetherian ring Q and L = OX(1) be the corresponding very ample line bundle on
X. For any global section W of L, the functor

[MF (X,L,W )] → [MF (X,L,W )]H

is an equivalence.

The category [MF (X,L,W )]H is similar to and inspired by Shipman’s category
of matrix factorizations defined in [31]. In the rest of the paper X will always be
assumed projective over an affine scheme and we write [MF ] for [MF ]H.

2.2. Singularity category. The singularity category of a scheme Z is the Verdier
quotient

Dsg(Z) := Db(Z)/Perf(Z),

where Db(Z) is the bounded derived category of coherent sheaves on Z and Perf(Z)
is the full subcategory consisting of perfect complexes — i.e., those complexes that
are locally quasi-isomorphic to bounded complexes of free modules of finite rank.
This construction was introduced by Buchweitz [11] in the case when Z is affine
and rediscovered by Orlov [25].

We need the following generalization:

Definition 2.6. Let i : Z ↪→ X be a closed immersion of finite flat dimension.
An object F in Db(Z) is relatively perfect on Z if i∗F is perfect on X. We write
RPerf(Z ↪→ X) for the full subcategory of Db(Z) whose objects are relatively perfect
on X.

Since i has finite flat dimension, Perf(Z) is a thick subcategory of
RPerf(Z ↪→ X). We define the relative singularity category of i to be the Verdier
quotient

Drel
sg (Z ↪→ X) :=

RPerf(Z ↪→ X)

Perf(Z)
.

The canonical functor
Drel

sg (Z ↪→ X) → Dsg(Z)

is fully faithful and we thus identify Drel
sg (Z ↪→ X) with a full subcategory of Dsg(Z).

(A different definition of “relative singularity category” is given by Positselski in
[29]. There is a fully faithful functor from the version given here to Positselski’s
version, but in general the two need not coincide; see [13, 6.9].)

If X=SpecQ is affine, so that Z=SpecR where R=Q/I, we write Drel
sg (Q�R)

for Drel
sg (SpecR ↪→ SpecQ). In this case, a finitely generated R-module M is in

Drel
sg (Q � R) if and only if it has finite projective dimension as a Q-module.
Recall that L is a line bundle on X and W is a global section of L. We now set

Z ↪→ X to be the zero subscheme of W (i.e., the subscheme with ideal sheaf given
as the image of the map W ∗ : L∗ → OX).

For an object E = (E1
e1−→ E0

e0−→ E1(1)) of MF (X,L,W ), we define the cokernel
of E, written coker(E), to be coker(e1). Multiplication by W on coker(e1) is zero,
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and so we regard cokerE as a coherent sheaf on Z. When W is a regular, i.e. the

map OX
W−→ L is injective, there is a finite resolution of i∗ coker(E) on X by locally

free sheaves:
0 → E1

e1−→ E0 → i∗ coker(E) → 0,

and hence i∗ coker(E) is perfect on X. Thus the image of coker(E) in Dsg(Z) is
in Drel

sg (Z ↪→ X). This assignment is clearly natural and by [28, 3.12] there is an
induced triangulated functor

coker : [MF (X,L,W )] → Drel
sg (Z ↪→ X),

E �→ coker(E).

The following was first proved by Polishchuk and Vaintrob in the case when X
is regular, see [28, 3.14], and there are analogues in [22, 24, 29]. The version below
is [13, 6.3].

Theorem 2.7. Let X be a scheme that is projective over a Noetherian ring of finite
Krull dimension, L = OX(1) be the corresponding very ample line bundle, and W
be a regular global section of L. Define i : Z ↪→ X to be the zero subscheme of W .
Then the triangulated functor

coker : [MF (X,L,W )] → Drel
sg (Z ↪→ X)

is an equivalence. In particular, if X is regular, there is an equivalence of triangu-
lated categories

coker : [MF (X,L,W )]
∼=−→Dsg(Z).

Corollary 2.8. Let X, Z and i be as in Theorem 2.7. If M is any object of
Drel

sg (Z ↪→ X), then there is a coherent sheaf F on Z and an isomorphism M ∼= F
in the category Drel

sg (Z ↪→ X). In fact, F may be chosen so that i∗(F) admits a
resolution of length one by locally free coherent sheaves on X.

Proof. Let E be the image of M under some inverse of coker. Then M ∼= cokerE,
and cokerE is a coherent sheaf that admits a resolution of length one by locally
free coherent sheaves. �

2.3. Orlov’s Theorem. We now fix Q to be a commutative Noetherian ring of
finite Krull dimension, f = (f1, . . . , fc) a Q-regular sequence, and R = Q/(f). Set

Pc−1
Q = Proj (Q[T1, . . . , Tc]) and Pc−1

R = Proj (R[T1, . . . , Tc]) ,

where each Ti has degree 1. Define W = f1T1 + . . .+ fcTc ∈ Γ(Pc−1
Q ,O

P
c−1
Q

(1)) and

Y = Proj (Q[T1, . . . , Tc]/W ) ↪→ Pc−1
Q .

The natural surjection Q � R induces an inclusion δ : Pc−1
R ↪→ Pc−1

Q . This is
locally a complete intersection of codimension c − 1 and factors through the map
γ : Y ↪→ Pc−1

Q . We have a commutative diagram of schemes

(2.9) Pc−1
R

δ

��
β ��

π

��

Y
γ �� Pc−1

Q

��
SpecR �� SpecQ
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where the vertical arrows are the canonical proper maps and each horizontal arrow
is locally a complete intersection and thus has finite flat dimension. Since β is a
finite map, there is a right adjoint to β∗, see [18, III.6], which we write as β� :
Db(Y ) → Db(Pc−1

R ).
The following was proved by Orlov in [26, Theorem 2.1] under the added as-

sumption that Q is regular and equicharacteristic, i.e. contains a field. A proof of
the version below may be found in the appendix; see Theorem A.4.

Theorem 2.10. The functor Rπ∗β
� : Db(Y ) → Db(R) induces an equivalence of

triangulated categories

Φ : Drel
sg (Y ⊂ Pc−1

Q )
∼=−→Drel

sg (Q � R).

In particular, if Q is regular, we have an equivalence

Φ : Dsg(Y ) ∼= Dsg(R).

Proof. In the notation of Theorem A.4, let S = SpecQ, let E be a free Q-module
of rank c, and let s = (f1, . . . , fc) ∈ Γ(S, E) = Qc. �

As an immediate consequence of Theorems 2.7 and 2.10 we have:

Corollary 2.11. There is an equivalence of triangulated categories

Ψ = Φ ◦ coker : [MF (Pc−1
Q ,O(1),W )]

∼=−→Drel
sg (Q � R)

such that
Ψ(E) = Rπ∗β

� cokerE ∈ Dsg(R).

In particular, if Q is regular, we have an equivalence of triangulated categories

Ψ:[MF (Pc−1
Q ,O(1),W )]

∼=−→Dsg(R).

The inverse equivalence Drel
sg (Q � R) → Drel

sg (Y ⊂ Pc−1
Q ) is induced by the functor

Rβ∗ ◦ Lπ∗ ∼= β∗ ◦ π∗, but the inverse of coker : [MF ]
∼=−→Drel

sg (Y ⊂ Pc−1
Q ) requires

making choices, and hence so does an inverse equivalence to Ψ. We fix one such
inverse equivalence Ψ−1 : Drel

sg (Q � R) → [MF ], and for M ∈ Drel
sg (Q � R) we

write EM ∈ [MF ] for Ψ−1(M). Recall that specifying the inverse Ψ−1 amounts to
picking, for each object M of Drel

sg (Q � R), a matrix factorization EM together with

an isomorphism Ψ(EM )
∼=−→M in Drel

sg (Q � R). In Section 6 we give one explicit
way of constructing EM using a system of higher homotopies on a Q-free resolution
of M .

Definition 2.12. Let A be any commutative Noetherian ring and let M and N
be complexes of A-modules with bounded finitely generated homology. For q ∈ Z,
the q-th stable Ext-module of M and N is

Êxt
q

A(M,N) := HomDsg(A)(M,N [q]).

The definition above first appeared in [11] where the ring A was assumed to be
Gorenstein. We show in Appendix B that, as in [11], the stable Ext-modules may
be computed using a complete resolution of M when such a resolution exists.

Note that for all q ∈ Z there is a natural map

(2.13) ExtqA(M,N) → Êxt
q

A(M,N),

induced by the triangulated functor Db(A) → Dsg(A).
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The next result follows immediately from Corollary 2.11 and the definition of
morphisms in [MF ].

Corollary 2.14. Let M and N be objects of Drel
sg (Q � R). For all q ∈ Z there is

an isomorphism, natural in M and N,

Êxt
q

R(M,N) ∼= Hq(Pc−1
Q ,HomMF(EM ,EN )).

In particular, if Q is regular, such an isomorphism holds for all finitely generated
R-modules.

Fix an object E = (E1
e1−→ E0

e0−→ E1(1)) of MF (Pc−1
Q ,O(1),W ). We write γ∗E

for the following complex of locally free coherent sheaves on Y :
(2.15)

· · · → γ∗E0(−1)
γ∗e0(−1)−−−−−−→ γ∗E1

γ∗e1−−−→ γ∗E0
γ∗e0−−−→ γ∗E1(1)

γ∗e1(1)−−−−−→ γ∗E0(1) → · · · ,

where γ : Y ↪→ Pc−1
Q is the natural inclusion. This is a complex since multiplication

by W is the zero map on Y .
The following result is an analogue of Corollary 2.14 which relaxes the assump-

tion that N is perfect over Q.

Proposition 2.16. Let M be an object in Drel
sg (Q � R) and let N be any object

in Dsg(R). Set N to be the image of β∗π
∗N in Dsg(Y ). For all q ∈ Z there are

isomorphisms that are natural in both arguments:

Êxt
q

R(M,N) ∼= HomDsg(R)(Ψ(EM ), N [q])

∼= HomDsg(Y )(cokerEM ,N [q])(2.17)

∼= Hq (Y,HomOY
(γ∗EM ,N )) .

Proof. By definition Ψ(EM ) = Rπ∗β
� coker(EM ) ∼= M in Dsg(R). This gives the

first isomorphism in (2.17).
The functor β∗π

∗ induces an equivalence Drel
sg (Q � R) → Drel

sg (Y ↪→ X). This is

an inverse to Rπ∗β
�, so the natural map β∗π

∗Rπ∗β
� coker(EM ) → coker(EM ) is an

isomorphism in Dsg(Y ). This gives

HomDsg(R)(Ψ(EM )[−q], N) = HomDsg(R)(Rπ∗β
� coker(EM )[−q], N)

∼= HomDsg(Y )(β∗π
∗Rπ∗β

� coker(EM )[−q],N )

∼= HomDsg(Y )(coker(EM )[−q],N ),

which is the second isomorphism in (2.17). The third isomorphism is due to [13,
5.10]. �

3. Eisenbud operators

We remain under the assumptions of §2.3. For each matrix factorization E and
any i = 1, . . . , c, multiplication by Ti ∈ Γ(Pc−1

Q ,O
P
c−1
Q

(1)) defines a map

TE

i : E → E[2]
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given by

(3.1) E1
Ti

��

�� E0
Ti

��

�� E1(1)

Ti

��
E1(1) �� E0(1) �� E1(2).

These maps determine natural transformations

Ti : id[MF ] → (−)[2][MF ] for i = 1, . . . , c

from the identity functor on [MF ] to the functor which sends E to E[2].
On the other hand, there is a family of natural transformations t′i : idDb(R) →

(−)[2]Db(R), for i = 1, . . . , c, given by the Eisenbud operators [15]; the construction
of these maps is recalled in §4.1 below. These descend to natural transformations

ti : idDsg(R) → (−)[2]Dsg(R) for i = 1, . . . , c.

One expects that these two natural transformations coincide via the equivalence

Ψ : [MF ]
∼=−→Drel

sg (Q � R)

of Corollary 2.11, and this is precisely the content of the following theorem.

Theorem 3.2. For each object E of [MF ] there is a commutative diagram in
Dsg(R),

Ψ(E)

t
Ψ(E)
i ���

��
��

��
��

Ψ(T E

i )�� Ψ(E[2])

∼=
��

Ψ(E)[2]

where the vertical map is the canonical isomorphism associated to the triangulated
functor Ψ.

Our proof of this theorem requires the development of additional machinery, and
is contained in Section 4. In this section we explore several consequences of the
theorem. The first is the following:

Corollary 3.3. Let M and N be objects of Drel
sg (Q � R). The diagram

H0(Pc−1
Q ,HomMF(EM [−q],EN ))

∼= ��

Ti

��

Êxt
q

R(M,N)

̂Ext
q

R(ti,N)

��

H0(Pc−1
Q ,HomMF(EM [−q − 2],EN ))

∼= �� Êxt
q+2

R (M,N)

commutes for i = 1, . . . , c, where the horizontal isomorphisms are given by Corol-
lary 2.14, the left vertical map is H0(Pc−1

Q , Ti), where Ti is multiplication by Ti ∈
Γ(Pc−1

Q ,O(1)) on the complex of coherent sheaves HomMF(EM [−q],EN ), composed
with the natural isomorphism

HomMF(EM [−q],EN )(1) ∼= HomMF(EM [−q],EN )[2] ∼= HomMF(EM [−q − 2],EN ),

and ti is the i-th Eisenbud operator.
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Proof. Let Ti : E[−q − 2] → E[−q] be the map defined in (3.1). Consider the
diagram

Hom[MF ](EM [−q], EN )
= �� H0(Pc−1

Q
,HomMF(EM [−q], EN ))

∼= ��

H
q(P

c−1
Q

,HomMF(Ti,EN ))

��

HomDsg(R)(M [−q], N)

HomDsg(R)(ti,N)

��
Hom[MF ](EM [−q − 2], EN )

= �� H0(Pc−1
Q

,HomMF(EM [−q − 2], EN ))
∼= �� HomDsg(R)(M [−q − 2], N)

where the horizontal maps are induced by the functor Ψ. The diagram commutes
by Theorem 3.2. One checks that the middle vertical map above is equal to the left
vertical map in the statement of the corollary. �

We wish to extend the previous result by dropping the assumption that N is
perfect over Q. This is best stated using a “stable Ext sheaf” introduced below.
With an eye toward future applications, we work at a level of greater generality
than needed presently.

3.1. Stable Ext sheaf. Let X be a scheme that is projective over a Noetherian
ring A of finite Krull dimension, L = O(1) the associated very ample line bundle,
and W a regular global section of L. Let γ : Z ↪→ X be the embedding of the zero
subscheme of W . Under these assumptions, by Theorem 2.7 there is an equivalence

coker : [MF (X,L,W )]
∼=−→ Drel

sg (Z ↪→ X).

We fix an inverse equivalence of coker, and for M in Drel
sg (Z ↪→ X) we let EM denote

the image of M under this inverse.

Definition 3.4. Let X,L,W, and Z be as above. For M in Drel
sg (Z ↪→ X), N a

bounded complex of coherent sheaves on Z, and an integer q ∈ Z, define

Êxt
q

OZ
(M,N ) = HqHomOZ

(γ∗EM,N ),

where γ∗EM is the complex of locally free coherent sheaves on Z defined in (2.15).

Remark 3.5. If N is also in Drel
sg (Z ↪→ X), then by [13, 5.2.3] there is an isomor-

phism γ∗HomOZ
(γ∗EM,N ) ∼= HomMF(EM ,EN ). Thus for each q ∈ Z there is an

isomorphism

γ∗Êxt
q

OZ
(M,N ) ∼= Hq HomMF(EM ,EN ).

Remark 3.6. When Z = SpecA is affine, the definition above agrees with the previ-
ous definition of stable Ext given in Definition 2.12 by Example B.5 and Lemma B.6.

Lemma 3.7. The rule (M,N ) �→ HomOZ
(γ∗EM,N ) defines a functor from

Drel
sg (Z ↪→ X)op × Db(Z) to D(cohZ), the unbounded derived category of cohZ.

In particular, Êxt
q

OZ
(−,−) is a functor from Drel

sg (Z ↪→ X)op × Db(Z) to cohZ.

Proof. Recall D(cohZ) may be defined as the category of complexes of coherent
sheaves, C(cohZ), with quasi-isomorphisms inverted. Then Db(Z) is the full sub-
category of D(cohZ) with objects those complexes with bounded cohomology. For
any fixed matrix factorization E, we have a functor from Cb(Z) to C(cohZ) given
by

N �→ HomOZ
(γ∗EM ,N ).

Since each component of γ∗EM is locally free and N is bounded, this functor
preserves quasi-isomorphisms and hence induces a functor from Db(Z) to D(Z).
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Since the construction is natural for strict morphisms of matrix factorizations, we
obtain a functor from MF (X,L,W )op × Db(Z) to D(cohZ).

If E → F is locally a homotopy equivalence, then so are γ∗E → γ∗F and

HomOZ
(γ∗EM ,N ) → HomOZ

(γ∗EM ,N ),

and hence the latter is a quasi-isomorphism. It follows that we get an induced
functor

[MF (X,L,W )]op × Db(Z) → D(cohZ).

Precomposing with the chosen inverse of coker gives the result. �

Proposition 3.8. Let X,L,W, and Z be as above. Also, let M be an object of
Drel

sg (Z ↪→ X) and N be an object of Db(Z). For all y ∈ Z and q ∈ Z there are
isomorphisms

Êxt
q

OZ
(M,N ) ∼= Êxt

q+2

OZ
(M,N )(−1) and

Êxt
q

OZ
(M,N )y ∼= Êxt

q

OZ,y
(My,Ny),

that are natural in M and N . For all q, there is a map

HomDsg(Z)(M[−q],N ) ∼= Hq(Z,HomOZ
(γ∗EM,N )) → Γ(Z, Êxt

q

OZ
(M,N )),

that is natural in M and N . This map is an isomorphism when q � 0.

Proof. The first isomorphism is due to the fact that HomOZ
(γ∗EM,N ) is a twisted

periodic complex; see Definition 2.2.
For the second isomorphism, we are in the context of Example B.5 which shows

that there is a complete resolution T → P → My with T = γ∗(EM)y. It follows

from Lemma B.6 that T can be used to compute ÊxtOZ,y
(My,Ny) and we have

Êxt
q

OZ,y
(My,Ny) ∼= Hq

(
HomOZ,y

(γ∗(EM)y,Ny)
)

∼= Hq (HomOZ
(γ∗(EM),N ))y

= Êxt
q

OZ
(M,N )y.

The last map in the statement of the proposition is an edge map in the spectral
sequence

Ep,q
2 = Hp(Z, Êxt

q

OZ
(M,N )) =⇒ Hp+q(Z,HomOZ

(γ∗EM ,N )).

By the first isomorphism and the fact that L is very ample, we obtain

Hp(Z, Êxt
q

OZ
(M,N )) = 0

if p > 0 and q � 0 by Serre’s Vanishing Theorem, and hence the map is an
isomorphism for q � 0. �

The following is the sought-after generalization of Corollary 3.3, which drops the
requirement that N be perfect over Q. We return to the context and notation of
§2.3.

Corollary 3.9. Let M be an object of Drel
sg (Q � R) and let N be an object of Dsg(R).

Let M and N be the images of β∗π
∗M and β∗π

∗N , respectively, in Dsg(Y ). For
all q ∈ Z there is a natural map

(3.10) Êxt
q

R(M,N) → Γ(Y, Êxt
q

OY
(M,N ))
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that makes the following diagram commute:

Êxt
q

R(M,N)

̂Ext
q

R(ti,N)

��

�� Γ(Y, Êxt
q

OY
(M,N ))

Γ(Y,Ti)

��
Êxt

q+2

R (M,N) �� Γ(Y, Êxt
q+2

OY
(M,N ))

∼= �� Γ(Y, Êxt
q

OY
(M,N )(1)).

Here Ti is multiplication by Ti ∈ Γ(Y,OY (1)) on the coherent sheaf Êxt
q

OY
(M,N ),

the isomorphism on the lower-right is from Proposition 3.8, and ti is the i-th Eisen-
bud operator. Moreover, for q � 0, the horizontal maps in this diagram are iso-
morphisms.

Proof. By Proposition 2.16 we have the following string of isomorphisms:

HomDsg(R)(M [−q], N)
∼=−→ HomDsg(R)(Ψ(EM )[−q], N)

∼=−→ Hq(Y,HomOY
(γ∗EM ,N )).

By Theorem 3.2 and the naturality of the maps in Proposition 2.16 the following
diagram is commutative:

HomDsg(R)(M [−q], N)

HomDsg(R)(ti,N)

��

∼=
�� HomDsg(R)(Ψ(EM )[−q], N)

HomDsg(R)(Ψ(TE
i ),N)

��

∼= �� Hq(Y,HomOY
(γ∗

EM ,N ))

H
q(Y,HomOY

(γ∗TE
i ,N))

��
HomDsg(R)(M [−q − 2], N) ∼=

�� HomDsg(R)(Ψ(EM [−2])[−q], N) ∼=
�� Hq(Y,HomOY

(γ∗
EM [−2],N )).

Now by Proposition 3.8 we have a natural map

Hq (Y,HomOY
(γ∗EM ,N )) → Γ

(
Y, Êxt

q

OY
(coker(EM ),N )

)
,

noting that Ecoker(EM )
∼= EM . This gives a commutative diagram

Hq (Y,HomOY
(γ∗EM ,N ))

∼= ��

H
q(Y,HomOY

(γ∗T E

i ,N ))

��

Γ
(
Y, Êxt

q

OY
(coker(EM ),N )

)
Γ(Y,̂Extq(coker(T E

i ),N ))

��

Hq (Y,HomOY
(γ∗EM [−2],N )) ∼=

�� Γ
(
Y, Êxt

q

OY
(coker(EM )[−2],N )

)
.

One checks that the following diagram commutes:

Γ
(
Y, Êxt

q

OY
(coker(EM ),N )

)
=

��

Γ(Y,̂Extq(coker(T E

i ),N ))

��

Γ
(
Y, Êxt

q

OY
(coker(EM ),N )

)
Γ(Y,Ti)

��

Γ
(
Y, Êxt

q

OY
(coker(EM )[−2],N )

)
∼=

�� Γ
(
Y, Êxt

q

OY
(coker(EM ),N ) (1)

)
where the isomorphism

Γ
(
Y, Êxt

q

OY
(coker(EM )[−2],N )

) ∼=−→ Γ
(
Y, Êxt

q

OY
(coker(EM ),N ) (1)

)
is from Lemma 3.8 and Ti is multiplication by Ti ∈ Γ(Y,O(1)) on the coherent

sheaf Êxt
q

OY
(coker(EM ),N ).
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Finally, we claim that there is a natural isomorphism M ∼= coker(EM ) in
Drel

sg (Y ⊆ Pc−1
Q ). Indeed, since Ψ(EM ) := Rπ∗β

� coker(EM ) ∼= M in Drel
sg (Q � R),

we have that

Rβ∗Lπ
∗Rπ∗β

� coker(EM ) ∼= Rβ∗Lπ
∗M = M ∈ Drel

sg (Y ↪→ Pc−1
Q ).

Since Rβ∗Lπ
∗ induces an equivalence Drel

sg (Q � R) → Drel
sg (Y ↪→ Pc−1

Q ) that is

inverse to Rπ∗β
�, the natural map Rβ∗Lπ

∗Rπ∗β
� coker(EM ) → coker(EM ) is an

isomorphism in Drel
sg (Y ↪→ Pc−1

Q ). Thus there exists a functorial isomorphism

M := Rβ∗Lπ
∗M

∼=−→ coker(EM ).

By the claim, there is a natural isomorphism Êxt
q

OY
(coker(EM ),N )∼= Êxt

q

OY
(M,N ).

Piecing together the commutative squares and the isomorphism M ∼= cokerEM

gives the commutative diagram in the statement of the corollary.
That the horizontal morphisms are isomorphisms for q � 0 follows from Propo-

sition 3.8. �

We return again to the more general context that X is a Noetherian scheme that
is projective over an affine scheme, L is the corresponding very ample line bundle,
W is a regular global section of L, and γ : Z ↪→ X is the zero subscheme of W .
Recall that ExtqOZ

(M,N ) denotes the quasi-coherent sheaf satisfying

ExtqOZ
(M,N )z ∼= ExtqOZ,z

(Mz,Nz)

for all z ∈ Z.

Proposition 3.11. For each q ∈ Z, there is a natural transformation

ηq : ExtqOZ
(−,−) → Êxt

q

OZ
(can(−),−),

of functors from RPerf(Z ↪→ X)op × Db(Z) to cohZ, where

can : RPerf(Z ↪→ X) → RPerf(Z ↪→ X)/Perf Z = Drel
sg (Z ↪→ X)

is the localization functor. For all y ∈ Z, the induced map on stalks

ExtqOZ,y
(My,Ny) ∼= ExtqOZ

(M,N )y → Êxt
q

OZ
(M,N )y ∼= Êxt

q

OZ,y
(My,Ny)

is the map (2.13). Moreover, for fixed M ∈ RPerf(Z ↪→ X) and N ∈ Db(Z), there
exists q0 ≥ 0 such that ηq is an isomorphism for all q ≥ q0.

Remark 3.12. Corollary 3.9 and Proposition 3.11 establish (1.2) and (1.3) from the
introduction.

In the case of an affine scheme, say Z = SpecA and M = M̃ for an A-module

M , one may compute Êxt
∗
A(M,−) using a complete resolution T → P → M by

Lemma B.6. In this case the map T → P induces the natural transformation

Ext∗A(M,−) → Êxt
∗
A(M,−).

In the more general case, γ∗EM represents, in some sense, the T in a complete
resolution of M in Drel

sg (Z ↪→ X). However there is not necessarily a locally free
resolution P of M and a comparison map γ∗EM → P. Thus to define the natural
transformation in Proposition 3.11 requires more work than in the affine case. Our
approach is to construct a global version of the Eisenbud operators.
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We begin by proving that given a complex M = (· · · → Mj+1 → Mj → · · · ) of
coherent sheaves on Z that is bounded to the right (i.e., Mj = 0 for j � 0), there
exists a sequence of maps of locally free coherent sheaves on X,

E = · · · → Ej+1
dj+1−−−→ Ej

dj−→ Ej−1 → · · · ,
and maps gj : Ej → γ∗Mj of coherent sheaves on X, for all j, such that the
following conditions hold: (1) Ej = 0 for j � 0, (2) the square

(3.13) Ej ��

��

Ej−1

��
γ∗Mj

�� γ∗Mj−1

commutes for all j, (3) the sequence γ∗(E) is a complex, and (4) the map γ∗(E) →
M of complexes given by the adjoints of the gj ’s is a quasi-isomorphism. Note that
E itself need not be complex.

It suffices to construct such sheaves and maps of sheaves so that (1) – (3) and
the following condition hold: (4’) the canonical map from γ∗Ej to the pullback of

(3.14) γ∗Ej−1

��
Mj

�� Mj−1

is surjective for all j. Indeed, an easy diagram chase shows that, so long as γ∗E is
a complex, condition (4’) implies that γ∗E → M is a quasi-isomorphism.

We give a recursive construction of Ej , dj and gj . Since Mj = 0 for j � 0,
there is no problem starting the construction. Suppose Ej , dj , and gj have been
constructed for all j ≤ n so that (3.13) commutes, the composition of γ∗Ej →
γ∗Ej−1 → γ∗Ej−2 is the zero map, and the map from γ∗Ej to the pullback of
(3.14) is surjective, for all j ≤ n. Observe also that these conditions ensure that
γ∗Ej � Mj is surjective for all j ≤ n, since Mj = 0 for j � 0.

Now define Fn+1 to be the coherent sheaf fitting into the pullback square

Fn+1
��

����

γ∗En

����
Mn+1

�� Mn.

Then we can construct a locally free coherent sheaf En+1 and maps so that

En+1

dn+1 ��

����

En

canonical
����

γ∗Fn+1
�� γ∗γ∗En

commutes and the left vertical map is surjective, by choosing En+1 to be a locally
free coherent sheaf mapping onto the pullback of the other three components of
this square. Define gn+1 as the composition En+1 � γ∗Fn+1 → γ∗Mn+1. One
may readily verify that the above conditions are now satisfied for all j ≤ n + 1,
completing the recursive construction.
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Tensoring the exact sequence 0 → L−1 → OX → γ∗OZ → 0 with any locally
free coherent sheaf G on X gives an exact sequence

0 → G ⊗ L−1 → G → γ∗γ
∗G → 0.

It follows that for every j, the composite map

Ej → Ej−2

factors through a uniquely determined map

t̃j : Ej → Ej−2 ⊗ L−1.

Let tj = γ∗(t̃j). By localizing and using the results of [15, Section 1], we see that
the collection tj determines a map of chain complexes

t : γ∗(E) → γ∗(E ⊗ L−1)[−2].

Lemma 3.15. For a complex M on Z with bounded coherent cohomology, choose
E and define t : γ∗(E) → γ∗(E ⊗ L−1)[−2] as above. Then t induces a natural
transformation of functors from cohZ to cohZ,

χq
(X,L,W ) : Ext

q
OZ

(M,−)(1) → Extq+2
OZ

(M,−).

Moreover, this map is natural in M and it is the unique map such that, for all
y ∈ Z, the induced map on stalks at y,

ExtqOZ,y
(My,Ny)⊗ (I/I2)∗ → Extq+2

OZy
(M,N ),

is the Eisenbud operator arising from the surjection OX,y � OZ,y with kernel I. In
particular, it is independent of the choice of E·.

Remark 3.16. We have the exact sequence 0 → L−1 → OX → γ∗OZ → 0, and
hence the stalk of L−1 at y is identified with I and the stalk of γ∗L−1 is identified
with I/I2.

Now, I/I2 is a free OZ,y-module of rank 1, and picking a generator f of the
principal ideal I determines a basis of I/I2 and hence yields the more customary
form of the Eisenbud operator for a hypersurface:

ExtqOZ,y
(My,Ny) → Extq+2

OZy
(My,Ny).

But, this map depends on the choice of f — any other generator of I has the form
uf for a unit u of OX,x, and the operator obtained from the choice of uf is given
by u times the operator arising from f .

Proof. Observe that the uniqueness assertion, once established, will give that the
maps χq

(X,L,W ) do not depend on the choice of E and hence they determine a

natural transformation. We use the locally free resolution γ∗E of M to compute
Ext∗OZ

(M,N ). The chain map t : γ∗(E) → γ∗(E ⊗ L−1) induces

χq
(X,L,W ) : Ext

q
OZ

(M,N )(1) → Extq+2
OZ

(M,N )

for every q ≥ 0. It follows from the construction that, locally, this agrees with the
map constructed by Eisenbud. The naturality and uniqueness assertions may also
be verified locally and thus follow from [15, Section 1]. �
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Proof of Proposition 3.11. Recall that by definition

Êxt
r

OZ
(M,N ) = HrHom(γ∗EM,N )

where EM denotes the image of M under the fixed inverse of the functor coker. For
r ≥ 1, there is a natural isomorphism HrHom(γ∗EM,N ) ∼= ExtrOZ

(cokerEM,N )
since γ∗EM is a locally free resolution of cokerEM by [13, 5.2.1]. There is an

isomorphism coker(EM)
∼=−→ M in Drel

sg (Z ⊂ X) that is natural in M. Such an
isomorphism is an equivalence class of diagrams

(3.17) M ← G → coker(EM)

in RPerf(Z ↪→ X) such that the cones of both morphisms lie in Perf(Z).
For P ∈ Perf(Z) and any N , we have ExtqOZ

(P,N ) = 0 for q � 0. It follows
that, given N , there is an integer r0 such that both arrows in

ExtrOZ
(M,N )

∼=−→ ExtrOZ
(G,N )

∼=←− ExtrOZ
(coker(EM),N )

are isomorphisms for r ≥ r0. This determines a family of isomorphisms

ηr : ExtrOZ
(M,N )

∼=−→ Êxt
r

OZ
(M,N ), r ≥ r0.

The induced map on the stalk at any point y is given by the usual map from
ordinary to stable Ext-modules by Lemma B.6 and Proposition 3.8. This proves,
in particular, that for r ≥ r0, ηr is natural in both arguments and that it is
independent of choices.

Finally, to complete the proof of the proposition, we extend the definition of ηr
to all r by using Lemma 3.15, defining ηr to be the composition of

ExtrOZ
(M,N )

χ◦N

−−−→ Extr+2N
OZ

(M,N )(−N)

ηr+2N−−−−→ Êxt
r+2N

OZ
(M,N )(−N)

∼=−→ Êxt
r

OZ
(M,N )

for N � 0, where the isomorphism on the right is from Proposition 3.8. To see
that the definition of ηr is independent of the choice of N � 0 and that the
resulting map is natural, it suffices to localize at an arbitrary point. Locally, these

properties are seen by combining Lemma 3.15, the fact that Êxt
r

OZ
(M,N )

∼=−→
Êxt

r+2N

OZ
(M,N )(−N) is, locally, given by the Eisenbud operator, and the fact that

the canonical map from Ext to Êxt commutes with the Eisenbud operator. The
latter property is seen to hold by using a complete resolution to compute the stable
Ext modules. �

3.2. Some additional corollaries. Again we return to the context and notation
of §2.3. For complexes of R-modules M and N with bounded and finitely generated
cohomology, we define the graded R[T1, . . . , Tc] modules:

ExtevR (M,N) =
⊕
n≥0

Ext2nR (M,N)

ExtoddR (M,N) =
⊕
n≥0

Ext2n+1
R (M,N),

where Ext2nR (M,N) and Ext2n+1
R (M,N) lie in degree n and the Ti’s act as

ExtnR(ti, N) for ti the i-th Eisenbud operator on M .



3342 JESSE BURKE AND MARK E. WALKER

When M has finite projective dimension over Q, Gulliksen proved in [17] that

ExtevR (M,N) and ExtoddR (M,N) are finitely generated graded modules over the ring
R[T1, . . . , Tc]. They therefore determine coherent sheaves on Pc−1

R , which we write

as ˜ExtevR (M,N) and ˜ExtoddR (M,N). Note that while Gulliksen did not use Eisenbud
operators, it was shown in [7] that the action used by Gulliksen coincides, up to
a sign, with the Eisenbud operators, and moreover Gulliksen’s result, which was
originally stated only for modules, was extended to complexes of R-modules with
bounded and finitely generated cohomology.

Corollary 3.18. Let M and N be complexes of R-modules with bounded and finitely
generated cohomology and assume that M is perfect over Q. Set M = β∗π

∗M and
N = β∗π

∗N , where β : Pc−1
R ↪→ Y is the canonical inclusion and π : Pc−1

R → SpecR
is the canonical proper map. For q � 0, there are isomorphisms of coherent sheaves
on Y :

Ext2qOY
(M,N )(−q) ∼= β∗ ˜ExtevR (M,N),

Ext2q+1
OY

(M,N )(−q) ∼= β∗
˜ExtoddR (M,N).

Proof. For n � 0, we have natural isomorphisms ExtnR(M,N) ∼= Êxt
n

R(M,N) that
commute with the Eisenbud operators. It thus follows from Corollary 3.9 and
Proposition 3.11 that, for q � 0, we have isomorphisms⊕
n≥q

Ext2nR (M,N) ∼=
⊕
n≥q

H0(Y, Ext2nOY
(M,N )) ∼=

⊕
n≥q

H0(Y, Ext2qOY
(M,N )(n− q))

of graded R[T1, . . . , Tc]-modules. The coherent sheaf on Y associated to the first

of these is β∗ ˜ExtevR (M,N), and the coherent sheaf associated to the last of these is

Ext2qOY
(M,N )(−q).

The proof for the odd degree case is identical. �
Remark 3.19. The results above recover Gulliksen’s theorem on the finiteness
of Ext∗R(M,N) over R[T1, . . . , Tc]. Indeed, since ExtqOY

(M,N ) is coherent, so

is γ∗ExtqOY
(M,N ), where γ : Y ↪→ Pc−1

Q is the canonical inclusion. Thus the

Q[T1, . . . , Tc]-module ⊕
n≥0

H0(Pc−1
Q , γ∗ExtdOY

(M,N )(n))

is finitely generated. Hence so is (ExtevR (M,N))≥q for q � 0, by Corollary 3.9 and
Proposition 3.11. Adding on the finitely generated R-module (ExtevR (M,N))<q,
we see that ExtevR (M,N) is finitely generated over Q[T1, . . . , Tc]. Finally, since
ExtevR (M,N) is annihilated by f1, . . . , fc, it is finitely generated over R[T1, . . . , Tc].

Corollary 3.20. Let M and N be complexes of R-modules with bounded and finitely
generated cohomology and assume that M is perfect over Q. Let M = β∗π

∗M and

N = β∗π
∗N . For all n ∈ Z, the support of the OY -module Êxt

n

OY
(M,N ) is

contained in Pc−1
R , and we have equalities

supp Êxt
0

OY
(M,N ) = supp ˜ExtevR (M,N),

supp Êxt
1

OY
(M,N ) = supp ˜ExtoddR (M,N)

of closed subsets of Pc−1
R .
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Proof. For n � 0 we have that Êxt
n

OY
(M,N ) ∼= ExtnOY

(M,N ) by Proposition 3.11.

For q � 0, by Corollary 3.18 we have that Ext2qOY
(M,N )(−q) ∼= β∗ ˜ExtevR (M,N)

and Ext2q+1
OY

(M,N )(−q) ∼= β∗
˜ExtoddR (M,N). Finally, by Proposition 3.8,

Êxt
2q

OY
(M,N )(−q) ∼= Êxt

0

OY
(M,N ), and similarly for the odd case. �

We close with a definition.

Definition 3.21. Let M and N be complexes of R-modules with bounded and
finitely generated cohomology and assume that M is perfect over Q. The stable
support set of (M,N) is the closed subset V f

Q(M,N) of Pc−1
R defined as

V f
Q(M,N) := supp ˜ExtevR (M,N) ∪ supp ˜ExtoddR (M,N).

The stable support set of M is defined to be V f
Q(M) := V f

Q(M,M).

In Section 8 we study this support further and clarify its relation to the notions
of support for R-modules defined previously in [4, 8, 32].

Remark 3.22. By Corollary 3.20, there is an equality

V f
Q(M,N) = supp Êxt

0

OY
(M,N ) ∪ supp Êxt

1

OY
(M,N ).

If N is also perfect over Q, then there is an equality

V f
Q(M,N) = suppH2i HomMF(EM ,EN ) ∪ suppH2i+1 HomMF(EM ,EN )

for any i ∈ Z. This follows from Remark 3.5 and the definition of HomMF(EM ,EN )
as a twisted periodic complex which shows that

Hi+2 HomMF(EM ,EN ) ∼= (Hi HomMF(EM ,EN ))(1)

for all i ∈ Z.

Remark 3.23. In fact, there is a containment

supp Êxt
0

OY
(M,M) ⊇ supp Êxt

1

OY
(M,M).

Indeed, for a local hypersurface ring T , and a finite T -module M , it follows from

[4, 4.2] that M has finite projective dimension if and only if Êxt
0

T (M,M) = 0,

which implies that Êxt
1

T (M,M) = 0.

4. Proof of Theorem 3.2

In this section we prove Theorem 3.2. The first step is to associate to a matrix
factorization E an explicit complex of finitely generated projective R-modules that
represents Ψ(E) in Dsg(R), where Ψ is the equivalence of Corollary 2.11. We remain
in the context and under the assumptions of §2.3.

For any scheme X, we write C(X) for the category of arbitrary complexes of
quasi-coherent sheaves and Cb(X) for the full subcategory consisting of complexes
with bounded and coherent cohomology. If X = SpecR, we write C(R) and Cb(R).

Definition 4.1. Set δ� to be the additive functor from MF (Pc−1
Q ,O(1),W ) to

Cb(Pc−1
R ) that sends an object E = (E1 → E0 → E1(1)) to

δ�E := (· · · → δ∗E0(−2) → δ∗E1(−1) → δ∗E0(−1) → 0) ,
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where δ∗E0(−1) is located in cohomological degree c− 1. The action on morphisms
is the obvious one. Recall that δ : Pc−1

R ↪→ Pc−1
Q is the canonical inclusion.

Remark 4.2. The complex δ�E is exact everywhere except on the right (i.e., except
in degree c − 1). Indeed by [13, 5.2.1], γ∗E is an exact complex of locally free
sheaves, where γ : Y ↪→ Pc−1

Q is the canonical inclusion and γ∗E is defined in

(2.15). The sheaf M = H0(γ∗E≤0) = coker ∂0
γ∗E has an obvious right resolution by

locally free sheaves. Thus since β has finite flat dimension, where β : Pc−1
R ↪→ Y is

the canonical inclusion, Lβ∗M ∼= β∗M, i.e. Lβ∗M has cohomology only in a single
degree. Since γ∗E≤0 is a locally free resolution of M, this translates to the fact
that β∗γ∗E≤0 ∼= δ∗E≤0 only has cohomology in a single degree. The claim follows
immediately.

Recall that β : Pc−1
R ↪→ Y is the canonical inclusion, and that β� is the right

adjoint to Rβ∗. By [18, III.1.5, III.7.3], the functor β� sends a complex F to
Lβ∗(F)(−1)[−c+ 1]. By [13, 5.2.1]

· · · → γ∗E1(−1) → γ∗E0(−1) → 0

is a locally free resolution of coker(E)(−1). Thus there is a functorial isomorphism
in Db(Pc−1

R ):

Lβ∗(coker(E)(−1))[−c+ 1] ∼= δ�E,

since γ ◦ β = δ. We thus have a functorial isomorphism

(4.3) δ�E
∼=−→ β� cokerE

in the category Db(Pc−1
R ).

Let U = (U1, . . . , Uc) denote the standard affine cover of Pc−1
R and let P be a

complex of quasi-coherent sheaves on Pc−1
R . As in Section 2, Γ(U ,P) is the total

complex associated to the bicomplex given by applying the Cech construction with
respect to the cover U degree-wise to P. We view this as a functor Γ(U ,−) :
Cb(Pc−1

R ) → Cb(R). There is a natural isomorphism

(4.4) Γ(U ,P)
∼=−→ Rπ∗P ∈ Db(R).

Combining (4.3) and (4.4) we see that for E a matrix factorization, we have a
natural isomorphism:

Rπ∗β
�(coker(E)) ∼= Γ(U , δ�E).

Since Rπ∗β
�(coker(−)) induces the equivalence Ψ : [MF ] → Drel

sg (Q � R) of Corol-
lary 2.11, we have proven the following:

Proposition 4.5. The functor Γ(U , δ�−) induces a functor [MF (Pc−1
Q ,O(1),W )]→

Drel
sg (Q � R), which we also write as Γ(U , δ�−), and there is an isomorphism of

functors

Ψ(−)
∼=−→ Γ(U , δ�−) : [MF (Pc−1

Q ,O(1),W )] → Drel
sg (Q � R),

where Ψ is the equivalence of Corollary 2.11. In particular, Γ(U , δ�−) is a triangu-
lated functor.

As the sheaves in the complex Γ(U , δ�E) are not coherent, we look for a complex
of coherent sheaves that represents it in Drel

sg (Q � R).
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Definition 4.6. Define F : Cb(Pc−1
R ) → C(R) to be the functor given by applying

Hc−1(Pc−1
R ,−)[−c+ 1]

degree-wise. In particular,

F (δ�E) :=
(
· · · → Hc−1(Pc−1

R , δ∗E0(−2)) → Hc−1(Pc−1
R , δ∗E1(−1))

→ Hc−1(Pc−1
R , δ∗E0(−1)) → 0

)
,

with Hc−1(Pc−1
R , E0(−1)) located in cohomological degree 2c− 2.

If E is any coherent sheaf on Pc−1
R , there is a natural map of complexes

(4.7) Γ(U , E) → Hc−1(Γ(U , E))[−c+ 1]

since (Γ(U , E))i = 0 for i > c − 1. Since Hi(Γ(U , E)) ∼= Hi(Pc−1
R , E), the map (4.7)

is a quasi-isomorphism if and only if Hi(Pc−1
R , E) = 0 for all i �= c − 1. Applying

(4.7) degree-wise to a chain complex P yields a map of bicomplexes, and taking the
total complex gives a map ηP : Γ(U ,P) → F (P). It is natural in P and so gives a
natural transformation

(4.8) η : Γ(U ,−) → F (−).

From this construction we see that if Hi(Pc−1
R ,Pj) = 0 for all i �= c − 1 and all j,

then ηP is a quasi-isomorphism. Also note that for all P there is a commutative
diagram

(4.9) Γ(U ,P[1])

∼=
��

ηP[1] �� F (P[1])

∼=
��

Γ(U ,P)[1]
ηP [1]

�� F (P)[1]

where [1] is the shift functor on the respective categories of complexes.
For a complex P, recall that P≤m is the brutal truncation in cohomological

degree m. There are natural maps P → P≤m and P≤m → P≤n for m ≥ n.

Definition 4.10. An integer m is sufficiently small for an object E = (E1 → E0 →
E1(1)) of MF (Pc−1

Q ,O(1),W ) if every coherent sheaf E appearing in the complex

δ�(E)≤m = (· · · → δ∗E1(−1) → δ∗E0(−1) → 0)≤m satisfies

(1) Hi(Pc−1
R , E) = 0 for all i �= c− 1 and

(2) Hc−1(Pc−1
R , E) is a projective R-module.

The name of this condition is justified by:

Lemma 4.11. Let E be an object of MF (Pc−1
Q ,O(1),W ). There is an integer m0,

which depends on E, such that all m ≤ m0 are sufficiently small for E. Moreover,
if m is sufficiently small for E, then F

(
(δ�E)≤m

)
is a right bounded complex of

finitely generated projective R-modules and the map

η : Γ
(
U , (δ�E)≤m

) ∼−→F
(
(δ�E)≤m

)
is a quasi-isomorphism.
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Proof. Consider the complex δ�E. By construction, if for some i the sheaf (δ�E)i is
non-zero, then

(4.12) (δ�E)i−2 ∼= (δ�E)i(−1).

Let (−)∨ denote Hom
P
c−1
R

(−,O
P
c−1
R

). It follows from Serre’s Vanishing Theorem

and the isomorphism (4.12) that for m � 0, every coherent sheaf E in δ�E≤m

satisfies

Hi(Pc−1
R , E(−c)∨) = 0 for all i �= 0.

By [16, 7.9.10], H0(Pc−1
R , E(−c)∨) is thus a finitely generated projective R-module

for each such E . By a corollary to Serre-Grothendieck Duality, see [18, III.5.2], we
get

HomR(H
i(Pc−1

R , E(−c)∨), R) ∼= Extc−1−i
O

P
c−1
R

(E(−c)∨,O(−c))

∼= Extc−1−i
O

P
c−1
R

(OX , E)

∼= Hc−1−i(Pc−1
R , E)

for all E in δ�E≤m and all i. The first two assertions follow.
The last part was noted below the definition of η. �

Proposition 4.13. For every object E of MF (Pc−1
Q ,O(1),W ) and integer m that

is sufficiently small for E, there is an isomorphism

ζm
E

: Γ(U , δ�E)
∼=−→F

(
(δ�E)≤m

)
in Dsg(R)

such that the following naturality condition holds: given a strict map g : E → F and
an integer n ≤ m that is sufficiently small for F, the diagram

Γ(U , δ�E)

Ψ(g)

��

∼=
ζm
E

�� F
(
(δ�E)≤m

)
F((δ�g)≤m)
��

F
(
(δ�F)≤m

)
canonical

��
Γ(U , δ�F)

∼=
ζn
F

�� F
(
(δ�F)≤n

)
commutes in Dsg(R).

Proof. Given such a pair (E,m), define ζm
E

to be the map in Dsg(R) represented by
the composition of

(4.14) Γ(U , δ�E) η−→F (δ�E) → F
(
(δ�E)≤m

)
,

where F (δ�E) → F
(
(δ�E)≤m

)
is induced by the canonical map δ�E → (δ�E)≤m.

The naturality of η shows that the diagram

(4.15) Γ(U , δ�E)

��

η
�� F (δ�E)

��
Γ
(
U , (δ�E)≤m

)
η

�� F
(
(δ�E)≤m

)
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commutes, where the vertical maps are induced by δ�E → δ�E≤m. Thus to show
that (4.14) is an isomorphism it is enough to show that the left vertical map and
the lower horizontal map in (4.15) are isomorphisms.

The lower horizontal map of (4.15) is an isomorphism in Dsg(R) by Lemma
4.11. The cone of δ�(E) → δ�(E)≤m is a bounded complex of locally free coherent
sheaves, i.e. is a perfect complex, and Rπ∗ = Γ(U ,−) maps perfect complexes
to perfect complexes by [1, III.4.8.1]. Thus the left vertical map of (4.15) is an
isomorphism in Dsg(R).

The naturality assertion is evident from the construction. �

Remark 4.16. By (4.9) and the construction of ζ above, we see that there is a
commutative diagram

(4.17) Γ
(
U , δ�(E[2])

) ∼= ��

∼=
��

F
(
(δ�E[2])≤m

)
∼=
��

Γ(U , δ�E)[2]
∼= �� F

(
(δ�E)≤m

)
[2].

4.1. Recollection of Eisenbud operators. We recall from [15, §1] the con-
struction of the Eisenbud operators for the commutative ring R = Q/(f), where
f = (f1, . . . , fc) is a Q-regular sequence. Note that the ring Q need not be regular
for this construction.

Let F be a complex of projective R-modules such that there exists a sequence
of maps of projective Q-modules

F̃ = · · · → F̃ p−1 ∂̃p−1

−−−→ F̃ p ∂̃p

−→ F̃ p+1 → · · ·
with F ∼= F̃ ⊗Q R. The sequence of maps F̃ is not required to be a chain complex.

Since F̃ ⊗Q R ∼= F , for each i = 1, . . . , c and all n, there exist (non-unique) maps

t̃ni : F̃n → F̃n+2 such that

(4.18) ∂̃n+1∂̃n =

c∑
i=1

t̃ni fi.

Set tni = t̃ni ⊗Q R : Fn → Fn+2. Then the following properties hold [15, Section 1]:

(1) for each i, the maps tni assemble to give morphisms of chain complexes,
ti : F → F [2];

(2) the chain map ti is independent of the choice of F̃ and the t̃ni ’s, up to
homotopy;

(3) the ti’s commute, up to homotopy;
(4) the ti’s are natural, up to homotopy, in the argument F .

It is assumed in [15] that F is a complex of free R-modules, in which case a lifting F̃
always exists: viewing the differentials of F as matrices, simply lift each element in
each matrix to an element of Q. However, if F is only assumed to be a complex of
projective modules for which such a lifting exists, then the proofs in [15] go through
unchanged.

For any object M in Db(R) we may choose a complex of projective R-modules F ,

an isomorphism α : F
∼=−→M ∈ Db(R), and a lifting F̃ of F as above. For example,

one could take F to be a bounded above complex of free modules that maps via a
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quasi-isomorphism to M . Define tMi : M → M [2] in Db(R) to be the composition
of

M
α−1

−→F
ti−→F [2]

α[2]−→M [2],

where the map ti is induced from a choice of maps t̃ni satisfying (4.18).
The facts listed above imply that tMi does not depend on the choice of F or ti,

that tMi ◦ tMj = tMj ◦ tMi for all i, j and, if g : M → N is a morphism in Db(R), then

M
tMi ��

g

��

M [2]

g[2]

��
N

tNi �� N [2]

commutes. In other words, the collection of maps tMi form a family of pairwise
commuting natural transformations from the identity functor to the functor (−)[2].
We call these the Eisenbud operators on Db(R) given by (Q, f).

It is clear that tMi descends along the canonical functor Db(R) → Dsg(R) to
give natural transformations on Dsg(R), and we will also write these induced trans-
formations as tMi . Moreover, these induced transformations, in turn, restrict to
give natural transformations of endo-functors on the full, triangulated subcategory
Drel

sg (Q � R) of Dsg(R).

Proof of Theorem 3.2. Let E be an object of [MF (Pc−1
Q ,O(1),W )]. Let m be an

integer which is sufficiently small for E[2]; by definition it will also be sufficiently
small for E. By Lemma 4.11 and Proposition 4.13, ζm : Γ(U , δ�E) → F

(
(δ�E)≤m

)
is an isomorphism in Dsg(R) and F

(
(δ�E)≤m

)
is a complex of finitely generated

projective R-modules. Using the isomorphism of functors Ψ(−)
∼=−→ Γ(U , δ�−) of

Proposition 4.5, we have a commutative diagram:

Ψ(E)
∼= ��

Ψ(Ti)

��

Γ(U , δ�E)
∼= ��

Γ(U,Ti)

��

F
(
(δ�E)≤m

)
F (δ�(Ti)

≤m)

��
Ψ(E[2])

∼= ��

∼=
��

Γ
(
U , δ�(E[2])

) ∼= ��

∼=
��

F
(
(δ�E[2])≤m

)
∼=
��

Ψ(E)[2]
∼= �� Γ(U , δ�E)[2]

∼= �� F
(
(δ�E)≤m

)
[2]

Indeed, the top left square commutes since it is given by a natural transforma-
tion applied to the map Ti. The top right square commutes by Proposition 4.13.

The lower left square commutes since Ψ(−)
∼=−→ Γ(U , δ�−) is an isomorphism of

triangulated functors, and the lower right square commutes by (4.17).
Since F

(
(δ�E)≤m

)
is a complex of projective R-modules, we may calculate Eisen-

bud operators using it. Let us call the right-hand vertical map in the above diagram
βi : F

(
(δ�E)≤m

)
→ F

(
(δ�E)≤m

)
[2]. To prove Theorem 3.2 it is enough to find a

lifting of F
(
(δ�E)≤m

)
to a complex of projective Q-modules and degree −2 endo-

morphisms t̃i of the lifting such that (4.18) holds, and such that t̃i ⊗Q R ∼= βi.



MATRIX FACTORIZATIONS IN HIGHER CODIMENSION 3349

To lift F
(
(δ�E)≤m

)
to a sequence of projective Q-modules consider the sequence

of maps of Q-modules defined in analogy with Definition 4.6:

F̃ (E) :=
(
· · · → Hc−1(Pc−1

Q , E0(−2)) → Hc−1(Pc−1
Q , E1(−1))

→ Hc−1(Pc−1
Q , E0(−1)) → 0

)
,

with Hc−1(Pc−1
Q , E0(−q)) located in cohomological degree 2c − 2. Just as for

F
(
(δ�E)≤m

)
, if m � 0, each coherent sheaf in F̃ (E)≤m is a finitely generated

projective Q-module (but this is not a chain complex). We claim there is an iso-
morphism of chain complexes

F̃ (E)≤m ⊗Q R ∼= F
(
(δ�E)≤m

)
for all m � 0. Indeed, if E is any coherent sheaf on Pc−1

Q , then by [18, II.5.12] we

have the isomorphism Rπ∗Lδ
∗E ∼= R⊗L

Q Rp∗E in Db(R), where p : Pc−1
Q → SpecQ

is the canonical map. Moreover, if E is locally free and Hi(Pc−1
Q , E) = 0 for all

i �= c− 1, then this gives an isomorphism of R-modules

Hc−1(Pc−1
R , δ∗E) ∼= Hc−1(Pc−1

Q , E)⊗Q R,

and the claim follows.
Thus F̃ (E)≤m is a lifting; to see it is the lifting we sought, note that βi is given

in each degree by

Hc−1(Pc−1
R , Ej(k))

Hc−1(Pc−1
R ,Ti)−−−−−−−−−→ Hc−1(Pc−1

R , Ej(k + 1)).

The composition of two successive maps in F̃ (E)≤m is the map on sheaf cohomology
induced by multiplication by

∑c
i=1 Tifi. Thus, letting t̃i = Hc−1(Pc−1

Q , Ti) we see

that βi = t̃i ⊗Q R and the theorem follows. �

5. Projective resolutions

We continue to work in the context and under the assumptions of §2.3, with the
added assumption that Q is Gorenstein, i.e. Q has finite injective dimension over
itself. Let M be a finitely generated R-module that has finite projective dimension
over Q. In this section we construct a projective resolution over R of a high syzygy
of M using the equivalence Ψ of Corollary 2.11 and the explicit representative of
Ψ(E) given in Section 4.

Recall that a coherent sheaf F on Pc−1
R is m-regular for an integer m if

Hi(Pc−1
R ,F(m− i)) = 0 for all i > 0.

The regularity of F is the smallest m such that F is m-regular; see e.g. [23, Lecture
14] and [30, Section 8]. By Serre’s Vanishing Theorem, every coherent sheaf on
Pc−1
R has finite regularity.

Definition 5.1. For a matrix factorization E = (E1 → E0 → E1(1)), we set

α(E) = max{regularity (δ∗E0)∨ − 1, regularity (δ∗E1)∨ − 1},

where δ : Pc−1
R → Pc−1

Q is the canonical inclusion, and (−)∨ = Hom(−,O).
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Theorem 5.2. Let R = Q/(f1, . . . , fc), where Q is a Gorenstein ring of finite Krull
dimension and f1, . . . , fc is a Q-regular sequence. Let M be a finitely generated R-
module that has finite projective dimension over Q and let E = (E1 → E0 → E1(1))
be an object of MF (Pc−1

Q ,O(1),W ) such that Ψ(E) ∼= M , where Ψ is the equivalence
of Corollary 2.11. Set

nE = 2α(E) + e− 1,

where e is the is the Krull dimension of Q. The complex

F (δ�E)≤−nE = · · · → Hc−1(Pc−1
R , δ∗E1(m)) → Hc−1(Pc−1

R , δ∗E0(m))

→ Hc−1(Pc−1
R , δ∗E1(m+ 1)) → · · ·

is a projective resolution of an nE-th syzygy of M , where δ�E is defined in Defini-
tion 4.1 and F (−) is defined in Definition 4.6.

Remark 5.3. On this resolution one may choose the Eisenbud operators

ti : H
c−1(Pc−1

R , δ∗Ei(n)) → Hc−1(Pc−1
R , δ∗Ei(n+ 1))

to be multiplication by Ti ∈ Γ(Pc−1
Q ,O

P
c−1
Q

(1)). In particular, these operators com-

mute.

We need several preliminary results for the proof of Theorem 5.2.

Lemma 5.4. The integer −2α(E)− c + 1 is sufficiently small for the matrix fac-
torization E, in the sense of Definition 4.10.

Proof. By [30, 8.1.3], if a sheaf F on Pc−1
R is k-regular, then it is also (k+1)-regular.

Thus the sheaves (δ∗E0)∨ and (δ∗E1)∨ are k-regular for all k > α(E). In particular,

Hi(Pc−1
R , (δ∗E0)∨(k)) = 0 = Hi(Pc−1

R , (δ∗E1)∨(k)) for all i > 0 and all k ≥ α(E).

As in the proof of Lemma 4.11, this implies that for j = 0, 1 and all k ≥ α(E):

(1) the R-module H0(Pc−1
R , (δ∗Ej)∨(k)) is projective;

(2) there is an isomorphism

HomR(H
0(Pc−1

R , (δ∗Ej)∨(k)), R) ∼= Hc−1(Pc−1
R , (δ∗Ej)(−k − c)),

and so in particular Hc−1(Pc−1
R , (δ∗Ej)(−k − c)) is projective;

(3) Hi(Pc−1
R , (δ∗Ej)(−k − c)) = 0 for all i < c− 1.

Now consider the complex

δ�E := (· · · → δ∗E0(−2) → δ∗E1(−1) → δ∗E0(−1) → 0)

where δ∗E0(−n) is in cohomological degree c− 2n+ 1. We have

(δ�E)≤−2α(E)−c+1 := (· · · → δ∗E0(−(α(E) + 1)− c)

→ δ∗E1(−α(E)− c) → δ∗E0(−α(E)− c) → 0),

and by the above each sheaf appearing in this complex satisfies the two conditions
of Definition 4.10. �

Proposition 5.5. The cohomology of the complex F (δ�E)≤−2α(E) is concentrated
in degrees −2α(E)− c+ 1 ≤ i ≤ −2α(E).



MATRIX FACTORIZATIONS IN HIGHER CODIMENSION 3351

Proof. From the definition of F we have that F (δ�E)≤−2α(E)=F
(
(δ�E)≤−2α(E)−c+1

)
.

Set n = −2α(E)− c+ 1. By Lemma 5.4, n is sufficiently small for E, and thus by
Lemma 4.11 there is an isomorphism in Db(R):

F
(
(δ�E)≤n

) ∼= Γ
(
U , (δ�E)≤n

)
.

By Remark 4.2 the complex of sheaves δ�E≤n only has cohomology in degree n.
Setting N = Hn(δ�E≤n) gives an isomorphism in Db(Y ):

δ�E≤n ∼= N [−n].

Since the functor Γ(U ,−) represents Rπ∗, we have the following isomorphisms in
Db(R):

Γ
(
U , δ�(E)≤n

) ∼= Rπ∗
(
δ�(E)≤n

) ∼= Rπ∗(N [−n]) ∼= Rπ∗(N )[−n].

Since Rπ∗ has cohomological dimension c−1, we see that Rπ∗(N ) has cohomology
in degrees at most 0 ≤ i ≤ c− 1. Combining the above gives that

F (δ�E)≤−2α(E) = F
(
δ�(E)≤n

)
∼= Γ

(
U , δ�(E)≤n

)
∼= Rπ∗(N )[−n]

has cohomology in degrees at most n ≤ i ≤ n+ c− 1. �
Proof of Theorem 5.2. Let M be a finitely generated R-module with finite projec-
tive dimension over Q, and let E a matrix factorization such that Ψ(E) ∼= M ∈
Dsg(R). Since −2α(E)− c+ 1 is sufficiently small for E by Lemma 5.4, there is, by
Propositions 4.5 and 4.13, an isomorphism in Dsg(R),

Ψ(E)
∼=−→ F

(
δ�(E)≤−2α(E)−c+1

)
= F (δ�E)≤−2α(E).

Thus we have that
M ∼= F (δ�E)≤−2α(E) ∈ Dsg(R).

By Proposition 5.5, the complex F (δ�E)≤−2α(E)−c+1 only has cohomology in degree
−2α(E) − c + 1. Moreover, since F (δ�E) is a complex of projective modules, the
cone of the canonical map

(5.6) F (δ�E)≤−2α(E) → F (δ�E)≤−2α(E)−c+1

is perfect, and hence (5.6) is an isomorphism in Dsg(R). Finally, since R is Cohen-

Macaulay, we may truncate F (δ�E)≤−2α(E)−c+1 to the left d = dimR more steps
so that the module

N = H−2α(E)−c−d+1(F (δ�E)≤−2α(E)−c−d+1)

is maximal Cohen-Macaulay (MCM). Note also that c + d, where c is the length
of the regular sequence defining R, is exactly the Krull dimension of Q, which we
called e. Thus −2α(E)− c− d+ 1 = −nE, which was defined above.

We now have an isomorphism

M ∼= N [−nE] ∈ Dsg(R).

Let P = · · · → P−m ∂−m
P−−−→ Pm+1 → · · · → P−1 ∂−1

P−−→ P 0 be a projective resolution
of M over R. By induction on n one checks that there are isomorphisms for all
m ≥ 0:

M ∼= (coker ∂−m
P )[m− 1] ∈ Dsg(R).
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Setting M ′ = coker ∂−nE−1
P , which is MCM since nE ≥ d, we have that

M ′ ∼= N ∈ Dsg(R).

By [11, 4.4.1] this implies that M ′ ∼= N in the stable category of MCM modules,
i.e. there exist projective R-modules Q1, Q2 and an isomorphism of R-modules

M ′ ⊕Q1
∼= N ⊕Q2.

This allows us to glue the acyclic complexes

· · · → F (δ�E)−nE−1 → F (δ�E)−nE → N → 0,

0 → M ′ → P−nE+1 → P−nE+2 → · · · → P−1 → P 0 → M → 0

to give a projective resolution of M . �

6. A description of Ψ−1
on objects

We work in the context and under the assumptions of §2.3. Let M be a finitely
generated R-module that has finite projective dimension over Q. Our goal in this
section is to give an explicit method of constructing a matrix factorization EM such
that Ψ(EM ) ∼= M holds in Dsg(R), where Ψ is the equivalence of Corollary 2.11.
We achieve this using the data of a projective resolution of M over Q and a system
of “higher homotopies” on this resolution, as introduced by Eisenbud in [15].

6.1. Standard resolutions. Let G = 0 → Gn → · · · → G0 → 0 be a resolution of
M by finitely generated projective Q-modules.

For an element J = (a1, . . . , ac) ∈ Nc, we set |J | =
∑c

1 ai. We write the element
(0, . . . , 1, . . . , 0), where the 1 is in the i-th position, as i. By [15, 7.1] there exists a
family of endomorphisms of G

σ = {σJ | J ∈ Nc},
where σJ ∈ σ has degree 2|J | − 1 (i.e. the components are σJ

j : Gj → Gj+2|J|−1)
that satisfy the following equations:

σ0 = ∂G,

σ0σi + σiσ0 = fi1G,∑
J′+J′′=J

σJ′
σJ′′

= 0 for all J ∈ Nc with |J | ≥ 2.

Such a family σ is called a system of higher homotopies.

Remark 6.1. The result above is stated for complexes of free modules in [15], but
the proof works under the weaker assumption that the modules are projective.

Example 6.2. Let K = K〈e1, . . . , ec | ∂(ei) = fi〉 be the Koszul complex resolving
R over Q. Then K has the structure of a differential graded (DG)-algebra with
multiplication given by the alternating product. For an R-module M with finite
projective dimension over Q, we may find a finite projective resolution G of M
over Q such that G is a DG-module over K (and such that the Q-module structure
coincides with the restriction along the canonical map Q → K). See [3, Section 2]
for an explicit construction of such a G. Setting σ0 = ∂G, σi to be multiplication by
ei for i = 1, . . . , c, and σJ = 0 whenever |J | ≥ 2 gives a system of higher homotopies
on G. While such a system of higher homotopies is simpler than the general type,
not every Q-projective resolution of M has the structure of a DG-module over K;
see [2].
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Define D =
⊕

j≤0D
j =

⊕
j≤0 HomR(R[χ1, . . . , χc]−j , R) to be the graded dual

of the polynomial ring R[χ1, . . . , χc], where the χi’s are indeterminants of degree 2.
We regard D as a graded R[χ1, . . . , χc]-module in the obvious way. (In fact D is a
divided power algebra, but we ignore the multiplication rule and regard it only as
a graded R[χ1, . . . , χc]-module.) Consider the graded R-module

G⊗R D,

where G is the projective Q-resolution of M above, and G = G ⊗Q R. Note that

Gi⊗RD
2j lies in cohomological degree 2j−i. Let σ be a system of higher homotopies

on G, and define ∂ =
∑

J∈Nc σJ ⊗χJ , where χJ = χa1
1 . . . χac

c for J = (a1, . . . , ac) ∈
Nc, a degree −1 endomorphism of G ⊗R D. When R is local, [15, Theorem 7.2]
shows that this complex is an R-free resolution of M . By localizing, we see that,
in general, G⊗R D is a projective R-resolution of M . This is a standard resolution
of M which we write as G{σ}.

6.2. Construction of a matrix factorization. Recall that S is the graded Q-
algebra S := Q[T1, . . . , Tc], with |Ti| = 1, and W = f1T1 + · · ·+ fcTc ∈ S. Let S(j)
denote the graded free S-module with S(j)i = Si+j , and for a graded S-module E
we set E(j) = E ⊗S S(j).

Definition 6.3. A graded matrix factorization of W is a pair of graded free S-
modules E1, E0 and maps

E1
g1−→ E0

g0(1)−−−→ E1(1)

such that g0 ◦ g1 and g1(1) ◦ g0 are multiplication by W .

Note that to any graded matrix factorization of W we may apply (̃−) to obtain
an object of [MF (Pc−1

Q ,O(1),W )].
Given a finitely generated R-module M with finite projective dimension over

Q, pick a finite projective resolution G of M as a Q-module, and a system of
higher homotopies σ = {σJ}. We define the finitely generated graded projective
S-modules E1 and E0 as follows:

E1 :=
⊕
j≥0

G2j+1 ⊗Q S(j) and E0 :=
⊕
j≥0

G2j ⊗Q S(j).

For J ∈ Nc, consider the maps

G2j+1 ⊗ S(j)
σJ⊗TJ

−−−−−→ G2j+2|J| ⊗ S(j + |J |),

G2j ⊗ S(j)
σJ⊗TJ

−−−−−→ G2j+2|J|−1 ⊗ S(j + |J |).
We use these to define homogeneous maps g1 : E1 → E0 and g0 : E0 → E1(1),

component-wise, as

(g1)j =
∑
J∈Nc

σJ ⊗ T J : G2j+1 ⊗Q S(j) →
⊕
i

G2i ⊗Q S(i) = E0,

(g0)j =
∑
J∈Nc

σJ ⊗ T J : G2j ⊗Q S(j) →
⊕
i

G2i−1 ⊗Q S(i) = E1(1).
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Using the defining properties of the system of higher homotopies, one checks:

Lemma 6.4. There are equalities:

g0 ◦ g1 =

c∑
i=1

fi ⊗ Ti = 1E1
⊗W,

g1(1) ◦ g0 =
c∑

i=1

fi ⊗ Ti = 1E0
⊗W.

This shows that E = E(M,G,σ) := (E1
g1−→ E0

g0−→ E1(1)) is a graded matrix
factorization of W .

Definition 6.5. For G and σ as above, we set E = E(M,G,σ) to be the object

˜E(M,G,σ) of [MF (Pc−1
Q ,O(1),W )]. Explicitly, E = (E1

e1−→ E0
e0−→ E(1)) with

E1 = Ẽ1 =
⊕
j≥0

G2j+1 ⊗Q O
P
c−1
Q

(j) E0 = Ẽ0 =
⊕
j≥0

G2j ⊗Q O
P
c−1
Q

(j),

e1 = g̃1 : E1 → E0 e0 = g̃0 : E0 → E1(1).

Proposition 6.6. Let M be a finitely generated R-module that has finite projective
dimension over Q. Let G be a finite projective Q-resolution of M , σ a system of
higher homotopies on G, and E = E(M,G,σ) the matrix factorization constructed
above. Then the complex F (δ�E), where δ�E is defined in Definition 4.1 and F is
defined in Definition 4.6, is exactly the standard resolution G{σ} constructed from
G and σ. In particular, there is an isomorphism in Dsg(R),

Ψ(E) ∼= M,

where Ψ : [MF (Pc−1
Q ,O(1),W )] → Dsg(R) is the functor of Corollary 2.11.

Proof. First note that δ∗(Gk ⊗Q O
P
c−1
Q

(j)) ∼= Gk ⊗R O
P
c−1
R

(j), where δ : Pc−1
R ↪→

Pc−1
Q is the canonical inclusion. Thus, we have that

δ�(E) = · · · →
⊕
j

G2j+4 ⊗R O(j) →
⊕
j

G2j+3 ⊗R O(j)→
⊕
j

G2j+2 ⊗R O(j) → 0,

where the last term is in cohomological degree c − 1. Applying the functor F we
have

F (δ�(E)) = · · · → Hc−1(Pc−1
R ,

⊕
j

G2j+4⊗RO(j)) → Hc−1(Pc−1
R ,

⊕
j

G2j+3⊗RO(j))

→ Hc−1(Pc−1
R ,

⊕
j

G2j+2 ⊗R O(j)) → 0,

where the last term is located in cohomological degree 2c− 2. In general, we have
that F (δ�(E))2i =

⊕
j G2j+2(c−i) ⊗ O(j). Now, by [19, Thm. III.5.1], for all j,

there is a natural isomorphism

Hc−1(Pc−1
R ,O

P
c−1
R

(j)) ∼= HomR(R[T1, . . . , Tc]
−j−c, R)

∼= HomR(R[χ1, . . . , χc]
−2j−2c, R) = D2j+2c.
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Since each Gi is a projective R-module, this gives that

F (δ�(E)) ∼= · · · →
⊕
j

G2j+4 ⊗R D2j+2c →
⊕
j

G2j+3 ⊗R D2j+2c

→
⊕
j

G2j+2 ⊗R D2j+2c → 0,

where the last term is in cohomological degree 2c − 2. However, Dj = 0 unless
j ≤ 0 and Gi = 0 unless i ≥ 0, and thus the first non-zero terms of this complex
are

· · · → (G2 ⊗D0)⊕ (G0 ⊗D2) → G1 ⊗D0 → G0 ⊗D0 → 0,

where G0 ⊗ D0 is in degree 0. As a graded R-module this is exactly G ⊗D, and
one may readily verify that the differentials are the same.

Thus F (δ�(E)) is a free resolution of M and so is isomorphic to M in Db(R).
Let m be an integer which is sufficiently small for E. Then by Proposition 4.13
we have that F (δ�(E))≤m−c+1 = F (δ�(E)≤m) ∼= Ψ(E) ∈ Dsg(R). Since F (δ�(E)) is
projective in each degree, the canonical map

F (δ�(E)) → F (δ�(E))≤m−c+1

is an isomorphism in Dsg(R). Thus M ∼= Ψ(E) ∈ Dsg(R). �

7. Properties of matrix factorizations

In this section we state and prove basic isomorphisms using matrix factorizations
and discuss the support of a matrix factorization. These properties will translate
directly to the properties of stable support sets described in Theorem 4 of the
Introduction.

In this section, as there is nothing gained in working over Pc−1
Q , we work in the

generality that X is a Noetherian separated scheme and L is a line bundle on X. As
a matter of convenience, we write F(1) for F ⊗OX

L even though L is not assumed
to be very ample.

Definition 7.1. Suppose W and V are global sections of L and let E = (E1
e1−→

E0
e0−→ E1(1)) and F = (F1

f1−→ F0
f0−→ F1(1)) be objects of MF (X,L,W ) and

MF (X,L, V ), respectively.

(1) Their tensor product is the object E⊗MF F of MF (X,L,W + V ) given by⎛⎝ E0 ⊗F1

⊕
E1 ⊗F0

∂E⊗F

1−−−→
E0 ⊗F0

⊕
(E1 ⊗F1)(1)

∂E⊗F

0−−−→

⎛⎝ E0 ⊗F1

⊕
E1 ⊗F0

⎞⎠ (1)

⎞⎠ .

The differentials are given by the formulas

∂E⊗F

1 =

[
1⊗ f1 e1 ⊗ 1
e0 ⊗ 1 −1⊗ f0

]
and ∂E⊗F

0 =

[
1⊗ f0 (e1 ⊗ 1)(1)
e0 ⊗ 1 (−1⊗ f1)(1)

]
using the canonical isomorphisms⎛⎝ E0 ⊗F1

⊕
E1 ⊗F0

⎞⎠ (1) ∼=
(E0 ⊗F1)(1)

⊕
(E1 ⊗F0)(1)

and Ei(1)⊗Fj
∼= (Ei ⊗Fj)(1) ∼= Ei ⊗Fj(1).



3356 JESSE BURKE AND MARK E. WALKER

(2) Their Hom-object is the object HomMF(E,F) of MF (X,L, V − W ) given
by

Hom(E0,F1)
⊕

Hom(E1,F0(−1))

∂−1

−−−→
Hom(E0,F0)

⊕
Hom(E1,F1)

∂0

−→

( Hom(E0,F1)
⊕

Hom(E1,F0(−1))

)
(1)

with the differentials defined using the same formulas as in Definition 2.3,
which represents the special case W = V .

Remark 7.2. We will eventually assume X is regular. If X is not regular, these
definitions should be viewed as “non-derived”.

Remark 7.3. If W +V = 0, we may interpret E⊗MF F as an object of TPC(X,L),
i.e. a twisted periodic complex. See Definition 2.2 for the definition. If W = V = 0,
we obtain a tensor operator for the category TPC(X,L).

Proposition 7.4. Let W,V, and U be global sections of L, and E, F, and G be
objects of MF (X,L,W ), MF (X,L, V ), and MF (X,L, U), respectively. There are
isomorphisms:

(1) E⊗MF F ∼= F⊗MF E in MF (X,L,W + V ),
(2) (E⊗MF F)⊗MF G ∼= E⊗MF (F⊗MF G) in MF (X,L,W + V + U), and
(3) HomMF(E⊗MF F,G) ∼= HomMF(E,HomMF(F,G)) in

MF (X,L, U − V −W ).

Proof. The isomorphisms of underlying locally free sheaves are the natural ones in
each degree, taking care to observe the usual sign convention. For example, the
map E ⊗MF F → F ⊗MF E sends a section a ⊗ b of Ei ⊗ Fj to (−1)ijb ⊗ a. A
straightforward, but tedious, check shows that these isomorphisms commute with
the differentials of the matrix factorizations. �

Definition 7.5. The dual of an object E = (E1
e1−→ E0

e0−→ E1(1)) in MF (X,L,W )
is the object of MF (X,L,−W ) given by

E∨ = E1(1)∨
−e∨0−−−→ E∨

0

e∨1−→ E1(1)∨(1),
where (−)∨ denotes the functor HomOX

(−,OX) and we use the canonical isomor-
phisms E1(1)∨(1) ∼= E∨

1 (−1)(1) ∼= E∨
1 .

Remark 7.6. Equivalently, E∨ is HomMF(E,OX), where OX denotes the matrix
factorization (0 → OX → 0) belonging to MF (X,L, 0). We also note that there is
a natural isomorphism (E∨)∨ ∼= E.

Proposition 7.7. Let E and F be objects of MF (X,L,W ) and MF (X,L, V ),
respectively. There is a natural isomorphism in MF (X,L, V −W ),

E∨ ⊗MF F
∼=−→HomMF(E,F).

Proof. Recall that for locally free coherent sheaves E and F , there is a canonical

isomorphism E∨ ⊗F
∼=−→Hom(E ,F) given on sections by δ⊗ f �→ (e �→ δ(e) · f). In

homological degree 1, the isomorphism we seek is the direct sum of these canonical
ones: [

can 0
0 can

]
:

E∨
0 ⊗F1

⊕
E∨
1 ⊗F0(−1)

∼=−→
Hom(E0,F1)

⊕
Hom(E1,F0(−1)).
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In degree 0, it is [
can 0
0 −can

]
:

E∨
0 ⊗F0

⊕
E1(1)∨ ⊗F1(1)

∼=−→
Hom(E0,F0)

⊕
Hom(E1,F1),

where we have also used the canonical isomorphism

Hom(E1(1),F1(1)) ∼= Hom(E1,F1).

We omit the straightforward verification that the differentials commute with these
isomorphisms. �
Remark 7.8. In the case W = V , the proposition gives an isomorphism of twisted
periodic complexes.

Proposition 7.9. For matrix factorizations E and F in MF (X,L,W ) and
MF (X,L, V ), respectively, there are natural isomorphisms

(1) (E⊗MF F)∨ ∼= E∨ ⊗MF F∨ in MF (X,L,−W − V ) and
(2) HomMF(E,F)

∨ ∼= HomMF(F,E) in MF (X,L,W − V ).

Proof. Part (1) follows from Hom-tensor adjointness and Proposition 7.7.
For (2), we have the isomorphisms

HomMF(E,F)
∨ ∼= (E∨ ⊗MF F)∨ ∼= (E∨)∨ ⊗MF F∨

∼= E⊗MF F∨ ∼= F∨ ⊗MF E ∼= HomMF(F,E)

by Proposition 7.7, part (1) of this proposition, Remark 7.6, and Propositions 7.4(2)
and 7.7, respectively. �
Proposition 7.10. Let W1, . . . ,W4 be global sections of L and let Ei be an object
of MF (X,L,Wi), for i = 1, . . . , 4. There is an isomorphism

HomMF(E1,E2)⊗MF HomMF(E3,E4) ∼= HomMF(E1,E4)⊗MF HomMF(E2,E3)

in MF (X,L,W2 −W1 +W4 −W3).

Proof. This follows immediately from Propositions 7.4 and 7.7. �
Definition 7.11. The support of a complex P of quasi-coherent sheaves on a
scheme X is

suppP = {x ∈ X | Px is not exact} =
⋃
i∈Z

suppHi(P).

For an object P of TPC(X,L) = MF (X,L, 0), i.e., a twisted periodic complex, we
have that

suppP = suppH0(P) ∪ suppH1(P)

since Hi+2 ∼= Hi(1). In particular, the support of a twisted periodic complex is a
closed subset of X.

Recall that if L = OX is the trivial line bundle, then TPC(X,OX) is the category
of Z/2-graded complexes of locally free coherent sheaves on X.

Lemma 7.12. Assume X is a regular Noetherian separated scheme and L is a
line bundle on X. For a point x ∈ X, let k(x) denote its residue field and let
ix : Spec k(x) → X be the canonical map. Given P ∈ TPC(X,L), a point x ∈ X
belongs to supp(P) if and only if the Z/2-graded complex of k(x)-vector spaces i∗x(P)
is not exact.
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Proof. We can reduce immediately to the assertion that for a regular local ring
(S,m, k) and a (possibly unbounded) complex P of finitely generated free S-modules,
P is exact if and only if k ⊗S P is exact.

Let x1, . . . , xn ∈ S be a regular system of parameters. The long exact sequence
in cohomology associated to the short exact sequence

0 → P xn−→P → P/xnP → 0

of complexes and Nakayama’s Lemma give that P is exact if and only if P/xnP is
exact. The result follows by induction on n. �

Remark 7.13. The assumption that X is regular is essential for Lemma 7.12.

Proposition 7.14. Assume X is a regular Noetherian separated scheme and L is
a line bundle on X. For objects P and Q of TPC(X,L), we have

supp(P ⊗MF Q) = suppP ∩ suppQ.

Proof. For any x ∈ X we have

i∗x(P ⊗MF ) Q) ∼= i∗x(P)⊗Z/2
k(x) i

∗
x(Q),

where ⊗Z/2
k(x) denotes the tensor product for Z/2-graded complexes of k(x)-vector

spaces (i.e., for the category TPC(Spec k(x),O)). For any Z/2-graded complex of
k(x)-vector spaces V , we have V ∼= H0(V ) ⊕ H1(V )[1]. It follows that for a pair
V,W of such complexes, we have

V ⊗TPC W ∼=
(
H0(V )⊗k H0(W )

)
⊕

(
H1(V )⊗k H1(W )

)
⊕
(
H0(V )⊗k H1(W )[1]

)
⊕

(
H1(V )⊗k H0(W )[1]

)
.

In particular, V ⊗TPC W is exact if and only if V or W is exact. The result follows
from Lemma 7.12. �

Proposition 7.15. Assume X is a regular Noetherian separated scheme and L is
a line bundle on X. For an object P of TPC(X,L), there is an equality

supp(P) = supp(P∗).

Proof. We have the isomorphism

i∗x(P∗) ∼= (i∗x(P))
∗

of Z/2-graded complexes of k(x)-vector spaces. For any such complex V , we have
V ∼= H0(V )⊕H1(V )[1] and V ∗ ∼= H0(V )∗⊕H1(V )∗[1]. Thus V is exact if and only
if V ∗ is exact, using Lemma 7.12. �

8. Stable support

In this section, returning to the context and assumptions of §2.3, we study the
properties of stable support defined in Definition 3.21. In particular, we prove
Theorems 4 and 5 from the Introduction.

Recall that the stable support set of a pair (M,N) of complexes of R-modules
with bounded and finitely generated cohomology and M perfect over Q is defined
to be

V f
Q(M,N) = supp ˜ExtevR (M,N) ∪ supp ˜ExtoddR (M,N) ⊆ Pc−1

R .
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If M and N are both perfect over Q, then it follows from Remark 3.5 that the
stable support of (M,N) may be computed as the support of a twisted-periodic
complex:

V f
Q(M,N) = suppHomMF(EM ,EN ).

In the following Q is assumed to be regular so that we may use Propositions 7.14
and 7.15.

Theorem 8.1. Let Q be a regular Noetherian ring of finite Krull dimension and
let R = Q/(f1, · · · , fc) for a Q-regular sequence f1, . . . , fc. For complexes of R-
modules M , N , M ′, and N ′ with bounded finitely generated cohomology, we have

(1) V f
Q(M,N) = ∅ if and only if ExtnR(M,N) = 0 for all n � 0,

(2) V f
Q(M,N) ∩ V f

Q(M
′, N ′) = V f

Q(M,N ′) ∩ V f
Q(M

′, N), and

(3) V f
Q(M,N) = V f

Q(M,M) ∩ V f
Q(N,N) = V f

Q(N,M).

Proof. The first assertion follows from the definition, using that for a finitely gen-

erated graded R[T1, . . . , Tc]-module E, the associated coherent sheaf Ẽ vanishes if

and only if En = 0 for all n � 0 if and only if supp Ẽ = ∅.
Since Q is regular every Q-module has finite projective dimension. In particular,

V f
Q(M,N) = suppHomMF(EM ,EN ) and we may use the results of the previous

section. The second assertion follows from Propositions 7.10 and 7.14. Using the
second assertion we have that V f

Q(M,M)∩V f
Q(N,N) = V f

Q(M,N)∩V f
Q(N,M). By

Propositions 7.9, 7.14, and 7.15 there is an equality V f
Q(M,N) = V f

Q(N,M). �

Although Theorem 8.1 assumes Q is regular, we do not make this assumption in
the rest of this section.

The singular locus of a Noetherian scheme Z is

Sing(Z) = {z ∈ Z | OZ,x is not a regular local ring}.

Recall that γ : Y ↪→ Pc−1
Q denotes the zero subscheme of W =

∑
i fiTi ∈ O

P
c−1
Q

(1).

By [32, 10.2] there is a containment Sing(Y ) ⊆ Pc−1
R .

Lemma 8.2. For every pair (M,N) of complexes of R-modules with bounded and
finitely generated cohomology and M perfect over Q, there is a containment

V f
Q(M,N) ⊆ Sing(Y ).

Proof. By Corollary 3.20 and Definition 3.21, we have that

V f
Q(M,N) = supp Êxt

0

OY
(M,N ) ∪ supp Êxt

1

OY
(M,N ),

where M = β∗π
∗M and N = β∗π

∗N in the notation of §2.3. For any point y ∈ Y ,
we have

Êxt
i

OY
(M,N )y ∼= Êxt

i

OY,y
(My,Ny) = HomDsg(OY,y)(My,Ny[−i]),

where the first isomorphism is by Proposition 3.8 and the second is by Definition

2.12. If y /∈ Sing(Y ), then Dsg(OY,y) = 0, and hence Êxt
i

OY
(M,N )y = 0. �
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8.1. Relation to other notions of support. In [4] Avramov and Buchweitz
defined a notion of support under the additional assumption that Q is local. In that
case, where for simplicity we assume the residue field k of Q is algebraically closed,
the AB-support variety of M and N , which we write V f

Q(M,N)AB, is the union

of the supports in Ac
k of the graded k[T1, . . . , Tc]-modules ExtevR (M,N) ⊗R k and

ExtoddR (M,N)⊗R k. It follows immediately from the definitions that V f
Q(M,N)AB

is the cone of the closed subset

V f
Q(M,N)×SpecR Spec k ⊆ Pc−1

k .

In particular, we deduce from Theorem 8.1 that the analogous formulas for
V f
Q(M,N)AB hold. These were first established in [4].
Benson, Iyengar, Krause defined a support for all objects in the infinite comple-

tion K(InjR) of Db(R) in [8]. Here K(InjR) is the homotopy category of injectives;
see [21] for further details. For M an object in Db(R), the support in the sense of
[8], which we write as V f

Q(M)BIK, may be computed as

V f
Q(M)BIK = suppR[T1,...,Tc] Ext

ev
R (M,M) ∪ suppR[T1,...,Tc] Ext

odd
R (M,M) ⊆ Ac

R.

Thus V f
Q(M,M) is equal to the image of V f

Q(M)BIK under the canonical map Ac
R \

{0} → Pc−1
R .

Finally, in [32], for a Noetherian separated scheme Y with hypersurface singulari-
ties, Stevenson defined a support for all objects in the infinite completion Kac(InjY )
of Dsg(Y ); here Kac(InjY ) is the homotopy category of acyclic complexes of injec-

tive quasi-coherent sheaves on Y . In case Y ↪→ Pc−1
Q is the zero subscheme of

W ∈ O(1), where we assume that Q is regular, then the support of a coherent sheaf
M on Y , which we write as V f

Q(M)St, is

V f
Q(M)St = {x ∈ Sing Y |Mx �= 0 and pdOY,x

Mx = ∞} ⊆ Sing Y.

Indeed, by [33, 8.9], support may be computed affine locally, and then the proof of
[32, 5.12] shows that the support of compact objects on affine hypersurfaces takes
the form above. By [32, 10.2] there is a containment Sing Y ⊆ Pc−1

R .

Proposition 8.3. Let M be an object of Db(R). There is an equality

V f
Q(M,M) = V f

Q(M)St,

where M = β∗π
∗M .

Proof. By Corollary 3.20 and Remark 3.23 we have that

V f
Q(M,M) = supp Êxt

0

OY
(M,M).

The equality of support sets now follows from the isomorphism Êxt
0

OY
(M,M)x ∼=

Êxt
0

OY,x
(Mx,Mx), and [4, 4.2] which shows Mx has finite projective dimension if

and only if Êxt
0

OY,x
(Mx,Mx) = 0. �

8.2. Realization. The following theorem answers a question posed to us by
Avramov.

Theorem 8.4. Let Q be a Noetherian ring of finite Krull dimension and let R =
Q/(f1, · · · , fc) for a Q-regular sequence f1, . . . , fc. For every closed subset C of Y
that is contained in Sing(Y ) and satisfies C ∩Sing(Pc−1

Q ) = ∅, there is an R-module
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M such that M has finite projective dimension over Q and satisfies V f
Q(M,M) = C.

In particular, if Q is regular, then the result holds for every C ⊂ Sing(Y ) and, in
this situation, M may be chosen to be an MCM R-module.

Remark 8.5. This recovers a theorem of Bergh [10] and Avramov-Iyengar [5]. When
Q is regular, Theorem 8.4 follows from [32, 7.11] using the relation, as sketched
above, of support defined in loc. cit. to stable support.

Proof. Let C be a closed subset of Sing(Y ) such that C ∩ Sing(Pc−1
Q ) = ∅. Regard

OC as a coherent sheaf on Y where C is given the reduced subscheme structure.
The coherent sheaf γ∗OC is perfect on Pc−1

Q , since for any point x in Sing(Pc−1
Q ),

we have that (γ∗OC)x = 0, and for any point x not in Sing(Pc−1
Q ), every finitely

generated O
P
c−1
Q ,x-module has finite projective dimension.

Thus OC belongs to Drel
sg (Y ↪→ Pc−1

Q ) and so determines an object

M ∈ Drel
sg (Q � R)

via the equivalences Φ : Drel
sg (Q � R) ∼= Drel

sg (Y ↪→ Pc−1
Q ) of Theorem 2.10. More-

over, every object of Drel
sg (Q � R) is isomorphic to an R-module by Corollary 2.8,

and so we may assume M is an R-module. When Q is regular, every object of
Drel

sg (Q � R) = Dsg(R) is isomorphic to an MCM R-module, and so we may assume
M is an MCM R-module in this case.

Let M = β∗π
∗M , in the notation of §2.3. We have an isomorphism OC

∼= M in
Drel

sg (Y ↪→ Pc−1
Q ) since β∗π

∗ induces an inverse equivalence of Φ. Thus we have that
EM ∼= EOC

, and hence that

(8.6) HomMF(EM,EM) ∼= HomMF(EOC
,EOC

).

We wish to show that V f
Q(M,M) = C. By Remarks 3.23 and 3.5, and (8.6), it is

enough to show that

supp Êxt
0

OY
(OC ,OC) = C.

The containment supp Êxt
0

OY
(OC ,OC) ⊆ C is clear. To prove the opposite con-

tainment, let y ∈ C be the generic point of an irreducible component of the reduced

subscheme associated to C, and observe that, since supp Êxt
0

OY
(OC ,OC) is a closed

subset of Pc−1
Q , it suffices to prove y ∈ supp Êxt

0

OY
(OC ,OC). Since C is reduced

and y is minimal, we have OC,y = A/m, where (A,m) is the local ring of Y at y.
Thus

Êxt
0

OY
(OC ,OC)y ∼= Êxt

0

A(A/m, A/m).

We also have that A = B/(f), for some local ring B with f a non-zero divi-
sor, and pdB M < ∞. Since y ∈ C ⊂ Sing(Y ), A is not regular, and hence

Êxt
0

A(A/m, A/m) �= 0. �

Appendix A. Orlov’s Theorem

In this appendix we establish a generalization of a theorem of Orlov [26, Theorem
2.1]. This generalization does not require the schemes in question to be defined
over a ground field and drops a smoothness assumption. Our proof follows loc. cit.
closely; most parts of that proof work in the more general setup.

Let S be a Noetherian separated scheme of finite Krull dimension that has enough
locally free sheaves (i.e., every coherent sheaf on S is the quotient of a locally free
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coherent sheaf). Let E be a vector bundle of rank r on S and let U ∈ Γ(S, E) be a
regular section. Let j : S′ ↪→ S be the zero subscheme determined by U .

Let q : X = P(E) → S be the projective bundle corresponding to E and write
OX(1) for the associated line bundle on X. Let W ∈ Γ(X,OX(1)) be the section
induced by U and let u : Y ↪→ X be the zero subscheme of W . Also consider the
locally free sheaf j∗E on S′, which is isomorphic to the normal bundle NS′/S of the
inclusion of S′ into S. Let p : Z = P(j∗E) → S′ be the corresponding projective
bundle and OZ(1) the canonical line bundle.

The canonical map Z → X factors through Y → X via a map i : Z → Y . There
is a short exact sequence of coherent sheaves on Z,

(A.1) 0 → NZ/Y → p∗j∗E → OZ(1) → 0,

where NZ/Y is the normal bundle of Z in Y and p∗j∗E → OZ(1) is the canonical
map.

These constructions are summarized in the following diagram:

Z = P(j∗E) i ��

p

��

Y
u �� X = P(E)

q

��
S′ j �� S

Since p is flat, Lp∗ = p∗ preserves boundedness of complexes. Since i is a closed
immersion, Ri∗ = i∗ preserves coherence and boundedness. It follows that i∗p

∗

induces a functor

ΦZ = i∗p
∗ : Db(S′) → Db(Y ).

Here, as in the body of the paper, we write Db(Y ) for the bounded derived category
of quasi-coherent sheaves on Y with coherent cohomology.

We recall the definitions of relatively perfect complexes and the relative singu-
larity category from Definition 2.6.

Definition A.2. Let i : Y ↪→ X be a closed immersion of subschemes of finite flat
dimension. An object F in Db(Y ) is a relatively perfect complex for i if i∗F is a
perfect complex on X. We write RPerf(Y ↪→ X) for the full subcategory of Db(Y )
whose objects are the relatively perfect complexes for i.

The category RPerf(Y ↪→ X) is a thick subcategory of Db(Y ) and there is an
inclusion Perf Y ⊆ RPerf(Y ↪→ X). Moreover, the induced functor

RPerf(Y ↪→ X)/Perf Y → Db(Y )/Perf Y = Dsg(Y )

is fully faithful. We thus identify RPerf(Y ↪→ X)/Perf Y with the corresponding
full subcategory of Dsg(Y ).

Definition A.3. The relative singularity category of Y in X is

Drel
sg (Y ⊆ X) := RPerf(Y ↪→ X)/Perf Y.

Theorem A.4. Using the notation above, the functor ΦZ induces a functor

Φ̄Z : Drel
sg (S

′ ⊆ S) → Drel
sg (Y ⊆ X)

that is an equivalence of triangulated categories.
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Remark A.5. In [26, Theorem 2.1] S is assumed to be a regular scheme over a field.
In this case X is also regular, and hence there are equivalences Drel

sg (S
′ ⊆ S) ∼=

Dsg(S
′) and Drel

sg (Y ⊆ X) ∼= Dsg(Y ).

Proof. The functor ΦZ has a right adjoint, written Φ∗
Z , which is given by Rp∗i

�.

Here i� is the right adjoint to Ri∗ and is given by Li∗(−) ⊗ ωZ/Y , where ωZ/Y =

∧r−1NZ/Y [−r + 1]; see [18, III.7.3]. The proof of Proposition 2.2 in [26] goes
through verbatim to show that the natural map id → Φ∗

ZΦZ is an isomorphism and
thus that ΦZ is fully faithful.

Now observe that if F is an object of RPerf(S′ ↪→ S), then ΦZ(F) is an object
of RPerf(Y ↪→ X). Indeed, the diagram

Z
k ��

p

��

X

q

��
S′ j �� S

where k = u ◦ i, is a Cartesian square and q is flat. Since j∗F is perfect on S, we
get that q∗j∗F ∼= k∗p

∗F ∼= u∗ΦZ is perfect on X.
Also using that p∗ and i∗ take perfect complexes to perfect complexes, we obtain

an induced functor
Φ̄Z : Drel

sg (S
′ ⊆ S) → Drel

sg (Y ⊆ X),

and this functor is fully faithful by [26, 1.1].
We now show that if G is in RPerf(Y ↪→ X), then Φ∗

Z(G) is in RPerf(S′ ↪→ S).
We have

j∗Φ
∗
Z(G) = j∗Rp∗i

�G ∼= Rq∗u∗i∗(Li
∗G ⊗ ωZ/Y ) ∼= Rq∗u∗(G ⊗ i∗ωZ/Y ),

where the last isomorphism uses the projection formula. Using the isomorphism
u∗u∗G ∼= G and the projection formula again, we obtain

u∗(G ⊗ i∗ωZ/Y ) ∼= u∗(u
∗u∗G ⊗ i∗ωZ/Y ) ∼= u∗G ⊗ u∗i∗ωZ/Y .

Since ωZ/Y is locally free on Z and i and u have finite flat dimension, u∗i∗ωZ/Y is
perfect. Since we are assuming u∗G is perfect, this shows that u∗(G ⊗ i∗ωZ/Y ) is
also perfect. It now follows from [1, III.4.8.1] that j∗Φ

∗
Z(G) ∼= Rq∗u∗(G ⊗ i∗ωZ/Y )

is perfect.
Since Φ∗

Z sends objects of RPerf(Y ↪→ X) to objects of RPerf(S′ ↪→ S), we
obtain an induced functor

Φ̄∗
Z : Drel

sg (Y ⊆ X) → Drel
sg (S

′ ⊆ S)

that is right adjoint to Φ̄Z .
By Lemma A.6 below, Φ̄∗

Z has trivial kernel, and the rest of the proof is a
formality. We have a pair of adjoint functors

Drel
sg (S

′ ⊆ S)

Φ̄Z

��
Drel

sg (Y ⊆ X)

Φ̄Z∗

��

such that one is fully faithful and the kernel of the other is zero, and so the pair
must be mutually inverse equivalences; see, for example the proof of Theorem 2.1
in [26]. �
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Lemma A.6. For G ∈ Drel
sg (Y ⊆ X), if Φ̄Z∗(G) ∼= 0, then G ∼= 0.

Proof. We need to prove that if G ∈ RPerf(Y ↪→ X) is such that Φ∗
Z(G) is perfect

on S′, then G is perfect on Y . By [13, 6.6] we may assume that G is the coherent
sheaf on Y given by the cokernel of an object of MF (X,O(1),W ); see Section 2
for the definition. In particular, this implies, by [13, 5.2.1], that G has an infinite
right resolution by locally free coherent sheaves on Y . It follows from this that
Li∗G ∼= i∗G and hence Φ∗

Z(G) ∼= Rp∗(i
∗G ⊗ ωZ/Y ).

Using the short exact sequence (A.1) and [18, p. 139] we have that ωZ/Y
∼=

Λrp∗j∗E ⊗ OZ(−1). The projection formula gives

Rp∗(i
∗G ⊗ ωZ/Y ) ∼= Rp∗(i

∗G(−1))⊗ Λrj∗E ,
and hence Rp∗(i

∗G(−1)) is perfect on S′, since Λrj∗E is a line bundle. By
the definition of MF (X,O(1),W ) and the equivalence [MF (X,O(1),W )] ∼=
Drel

sg (S
′ ⊆ S) of Theorem 2.7, one sees that G(n) ∼= G[2n] in Drel

sg (S
′ ⊆ S) for

all n ∈ Z. Thus Rp∗(i
∗G(n)) is perfect for all n ∈ Z. It now follows from Lemma

A.7 below that i∗G is perfect on Z.
Note that for any x ∈ Y , Gx has an infinite right resolution by free OY,x-modules.

Thus we may assume that we are in the following situation: let A be a commutative
local ring, f1, . . . , fc an A-regular sequence, set B = A/(f1), C = B/(f2, . . . , fc),
and let M be a finitely generated B module with an infinite free right resolution
such that M ⊗B C has finite projective dimension over C. To finish the proof it is
enough to show that under these conditions M must be free. By [15, Lemma 0.1],
the B-regular sequence (f2, . . . , fc) is also M -regular. Thus by [35, 4.3.12] we have
pdB M = pdC(M ⊗B C). Finally, since C has finite projective dimension over B,
one checks that the infinite free right resolution of M remains exact upon tensoring
by C, and so M ⊗B C also has an infinite right free resolution. Thus M ⊗B C is
free, and hence so is M because they have the same projective dimension. �

Lemma A.7 ([26, Lemma 2.6]). An object G ∈ Db(Z) is perfect if and only if
Rp∗(G(n)) is perfect over S′ for all n ∈ Z.

Since we are not working over a field, the argument given in loc. cit. does not
apply.

Proof. If G is perfect, then so is G(n) for all n, and by [1, III.4.8.1] so is Rp∗(G(n)).
To show the converse we may work locally and assume S′ is affine, so that p

has the form p : Z = Pr
R → SpecR. Since G is perfect if and only if some syzygy

in a locally free resolution of G is, we may assume that G is a coherent sheaf.
Moreover, since G is perfect if and only if G(n) is perfect for some n, we may
assume that Hi(Z,G(n)) = 0 for all i > 0 and n ≥ 0 by Serre’s Vanishing Theorem.
In particular, this implies that G is regular and that Rp∗G ∼= p∗G. (See Section 5
where the definition is of regularity is recalled.)

Since G is regular, [30, 8.1.11] shows that there is a resolution of G of the form

(A.8) 0 → OX(−r + 1)⊗R Tr−1 → · · · → OX ⊗R T0 → G → 0,

where Ti are R-modules defined as follows. We set T0 to be p∗G, which is perfect
by assumption, and define Z1 to be the kernel of the map OX(−1) ⊗R T0 → G.
Note that p∗(Z1(n)) is perfect for all n. Inductively, set Ti = p∗(Zi−1(i)) and Zi to
be the kernel of the canonical map OX(−i)⊗S Ti → Zi−1. By [30, p. 132] Zi−1(i)
is regular. Using this, it follows from the definition and induction that each Ti is
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perfect over R. Thus each term in the resolution (A.8) of G is perfect over Z and
so G must be as well. �

Appendix B. Stable Ext-modules and complete resolutions

Here we show that if M is a complex with bounded finitely generated cohomology
over a commutative Noetherian ring A, and M has a complete resolution in the

sense of [34], then one may compute Êxt
n

A(M,−) := HomDsg(A)(Σ
−nM,−) using

the complete resolution. This is well known in the case A is Gorenstein by [11],
and is no doubt known in the generality presented here to the experts. However,
we could not find the result in the literature in the generality that we need.

Definition B.1. Let M be a complex of A-modules with bounded and finitely
generated cohomology. A complete resolution of M is a diagram

T
γ−→ P

δ−→ M,

where T is an acyclic complex of projective A-modules such that HomA(T,A) is
also acyclic, δ is a projective resolution (i.e. a quasi-isomorphism such that P is
a complex of projective A-modules with P i = 0 for i � 0), and γi (the degree i
component of γ) is an isomorphism for i � 0.

Remark B.2. The previous definition was made in [34] for arbitrary complexes; see
also [6].

Example B.3. Let R = Q/(f1, . . . , fc) be as in §2.3, and let M be a finitely gener-
ated R-module with finite projective dimension over Q, i.e. M is in
Drel

sg (Q � R). By [14, 1.2.10, 2.2.8] M has finite G-dimension over R, and by
[34, 2.4.1. 3.6] this implies that M has a complete resolution in the sense above.

Lemma B.4. Let M and N be complexes of A-modules with bounded finitely gener-
ated cohomology and f : M → N a morphism of chain complexes such that cone f is

perfect. If T
γ−→ P

δ−→ N is a complete resolution of N , then there exists a complete

resolution T
γ′

−→ P ′ δ′−→ M of M and a diagram

T
γ′

��

=

��

P ′ δ′ ��

��

M

f

��
T

γ �� P
δ �� N

that commutes up to homotopy.

Proof. Consider the triangle

M
f−→ N → cone f → M [1]

in K(A), the homotopy category of chain complexes of A-modules. Let δ′′ : F
�−→

cone f be a quasi-isomorphism from a bounded complex of finitely generated pro-
jective A-modules, which exists since cone f was assumed perfect. Let g : P → F

be a lifting over δ′′ of the composition P
δ−→ N → cone f . We can complete this to
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a map of triangles:

cone g[−1]

δ′

��

�� P
g ��

δ �
��

F ��

�δ′′

��

cone g

��
M

f �� N �� cone f �� M [1]

Set P ′ := cone g[−1]. By construction P ′ is a complex of projective A-modules with
(P ′)i = 0 for i � 0 and (P ′)i = P i for i � 0. Moreover, δ′ is a quasi-isomorphism
since δ and δ′′ are. Thus δ′ is a projective resolution of M .

Since HomA(T,A) is acyclic, and since F is a bounded complex of finitely gener-
ated projective A-modules, it follows that HomA(T, F ) is acyclic, i.e. there are no
maps from T to F in K(A). Thus the map γ : T → P lifts, up to homotopy, to a
map γ′ : T → P ′. This is the complete resolution we seek. �

Example B.5. Let B be a local Noetherian commutative ring and f ∈ B a non-
zero divisor. Set A = B/(f). By [24, Theorem 1] (see also Theorem 2.7 above)
there is a fully faithful functor

coker : [MF (SpecB,OB , f)] ↪→ Dsg(A).

LetM be a complex of A-modules with bounded and finitely generated cohomology,

and assume that E = (Bn φ−→ Bn ψ−→ Bn) is a matrix factorization of f such that
cokerE ∼= M ∈ Dsg(A). Set

T := · · · → An φ⊗BA−−−−→ An ψ⊗BA−−−−→ An → · · · .
It is clear that T → T≤0 → cokerE is a complete resolution. By Lemma B.4 there
exists some projective resolution P → M which fits into a complete resolution
T → P → M .

When A is Gorenstein the following is contained in [11, 6.1.2].

Lemma B.6. Let A be a commutative Noetherian ring and let M be an A-complex

with bounded finitely generated cohomology and a complete resolution T
γ−→ P → M.

Let N be any A-complex with bounded finitely generated cohomology. There is an
isomorphism, natural in N ,

ηqM : Hq HomA(T,N)
∼=−→ Êxt

q

A(M,N).

Moreover, there is a commutative diagram

Hq HomA(P,N)
Hq HomA(γ,−)

��

∼=
��

Hq HomA(T,N)

∼= ηq

��

ExtqA(M,N) �� Êxt
q

A(M,N)

where the lower horizontal map is (2.13).

Proof. First note that we may assume that q = 0. We view the bounded derived
category of A-modules as the homotopy category of complexes of finitely generated
projective modules with bounded cohomology. Thus we replace M by P and we
may assume that N is a complex of finitely generated projective A-modules. Fix
an integer k such that P i = 0 = N i for i ≥ k.
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There is a natural map T → T≤k, and the map γ : T → P factors as

T
γ

���
��

��
��

�

��
T≤k ε �� P

Note also that the cone of ε is perfect. In the remainder of this proof, we use � to

denote a morphism whose cone is perfect. For example, we have ε : T≤k �−→ P .
The natural map T → T≤k induces an isomorphism

HomA(T
≤k, N)

∼=−→ HomA(T,N).

Given an element f in Z0 HomA(T
≤k, N), we send it to the element of

HomDsg(A)(P,N) represented by P
ε←− T≤k f−→ N . If f is null-homotopic, then

this diagram represents the zero morphism. Thus we have a well-defined map

η0M : H0 HomA(T,N) ∼= H0 HomA(T
≤k, N) → HomDsg(A)(P,N) = Êxt

0

A(M,N).

This map is independent of the choice of k and thus is functorial in N .
We now show that the map fits into the commutative diagram above. Given an

element h ∈ H0 HomA(P,N) ∼= Ext0A(P,N), its image in HomDsg(A)(P,N) is repre-

sented by P
=←− P

h−→ N . In the other direction, it is sent to h◦γ in H0 HomA(T,N).

By definition η0 sends this to P
ε←− T≤k h◦ε−−→ N . The diagram

P

=

		��
��
��
��

h



�
��

��
��

�

P N

T≤k

ε

����������

ε

��

h◦ε



��������

shows that the diagram commutes.
We now show that η0 is an isomorphism. Suppose that η(f) = 0. Then there

exists a complex of projective modules X and a diagram

T≤k

ε

�
		��
��
��
�� f

���
��

��
��

�

P N

X

�
����������

�

��

g∼0

����������

in the homotopy category. Clearly T → T≤k = T≤k is a complete resolution. By
the previous lemma, there exists a complete resolution T → X ′ → X making the
following diagram commute:

T �� T≤k = �� T≤k

f

���
��

��
��

�

T

=

��

�� X ′ ��

��

X

�

��

g∼0
�� N
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In other words we have a commutative diagram

T ��

∼0 ���
��

��
��

� T≤k

f

��
N

This shows that f is null-homotopic, and so η is injective.

Now let P
�←− X → N be any morphism from P to N in Dsg(A). By the previous

lemma there exists a complete resolution T → X ′ → X and a commutative diagram

T ��

=

��

X ′ ��

��

X

�
��

T �� P =
�� P

From this, one sees that there exists an integer l and a commutative diagram

X

���
��

��
��

�
�

		��
��
��
��

P N

T≤l

��

�

����������



��������

which shows that P
�←− X → N is in the image of η. �
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