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ON REGULAR G-GRADINGS

ELI ALJADEFF AND OFIR DAVID

Abstract. Let A be an associative algebra over an algebraically closed field
F of characteristic zero and let G be a finite abelian group. Regev and Seeman
introduced the notion of a regular G-grading on A, namely a grading A =
⊕

g∈G Ag that satisfies the following two conditions: (1) for every integer

n ≥ 1 and every n-tuple (g1, g2, . . . , gn) ∈ Gn, there are elements, ai ∈ Agi ,
i = 1, . . . , n, such that

∏n
1 ai �= 0; (2) for every g, h ∈ G and for every

ag ∈ Ag , bh ∈ Ah, we have agbh = θg,hbhag for some nonzero scalar θg,h.
Then later, Bahturin and Regev conjectured that if the grading on A is regular

and minimal, then the order of the group G is an invariant of the algebra. In
this article we prove the conjecture by showing that ord(G) coincides with an
invariant of A which appears in PI theory, namely exp(A) (the exponent of
A). Moreover, we extend the whole theory to (finite) nonabelian groups and
show that the above result holds also in that case.

1. Introduction and statement of the main results

Group gradings on associative algebras (as well as on Lie and Jordan algebras)
have been an active area of research in the last 15 years or so. In this article we will
consider group gradings on associative algebras over an algebraically closed field F

of characteristic zero. The fact that a given algebra admits additional structures,
namely graded by a group G, provides additional information which may be used in
the study of the algebra itself , e.g. in the study of group rings, twisted group rings
and crossed product algebras in Brauer theory (indeed “gradings” on central simple
algebras is an indispensable tool in Brauer theory, as it provides the isomorphism of
Br(k) with the second cohomology group H2(Gk, k̄

×). Here k is any field, Gk is the
absolute Galois group of k and k̄× denotes the group of units of the separable closure
of k). In addition, and more relevant to the purpose of this article, G-gradings play
an important role in the theory of polynomial identities. Indeed, if A is a PI-algebra
which is G-graded, then one may consider the T -ideal of G-graded identities (see
subsection 2.1), denoted by IdG(A), and it turns out in general that it is easier to
describe G-graded identities than the ordinary ones for the simple reason that the
former ones are required to vanish on G-graded evaluations rather than on arbitrary
evaluations. Nevertheless, two algebras A and B which are G-graded PI-equivalent
are PI-equivalent as well, that is, IdG(A) = IdG(B) ⇒ Id(A) = Id(B).

Recall that a G-grading on an algebra A is a vector space decomposition

A ∼=
⊕
g∈G

Ag
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such that AgAh ⊆ Agh for every g, h ∈ G.
A particular type of G-gradings which is of interest was introduced by Regev

and Seeman in [12], namely regular G-gradings where G is a finite abelian group.
Let us recall the definition.

Definition 1 (Regular grading). Let A be an associative algebra over a field F and
let G be a finite abelian group. Suppose A is G-graded. We say that the G-grading
on A is regular if there is a commutation function θ : G×G → F

× such that

(1) For every integer n ≥ 1 and every n-tuple (g1, g2, . . . , gn) ∈ Gn, there are
elements ai ∈ Agi , i = 1, . . . , n, such that

∏n
1 ai �= 0.

(2) For every g, h ∈ G and for every ag ∈ Ag, bh ∈ Ah, we have agbh = θg,hbhag.

Remark 2. One of our main tasks in this article is to extend the definition above to
groups which are not necessarily abelian and prove the main results in that general
context. For clarity we will continue with the exposition of the abelian case, and
towards the end of the introduction we will discuss extensions to the nonabelian
setting. It seems to us that the extension to the nonabelian case is rather natural
in view of the abelian case. In those cases below where the statement in the general
case is identical to the abelian case, we will make a note indicating it. As for the
proofs (Sections 2 and 3), in case the result holds for arbitrary groups, we present
the general setting only, possibly with some remarks concerning the abelian case.

In the first section of this article we present examples of regular G-gradings on
finite and infinite dimensional algebras. We also explain how one can compose
algebras with regular gradings. One of the most important examples of a regular
grading on an algebra is the well known Z/2Z-grading on the infinite dimensional
Grassmann algebra E.

Example 3. Let E be the Grassmann algebra, defined as the free algebra
F 〈ei | i ∈ N〉 with noncommuting variables, modulo the relations e2i = 0 and eiej =
−ejei for i �= j. We set E0 to be the span of the monomials with even number of
variables, and E1 the span of monomials with odd number of variables. It is easy to
see that E = E0⊕E1, and this is actually a regular Z/2Z-grading with commutation
function τ0,0 = τ0,1 = τ1,0 = 1 and τ1,1 = −1.

Remark 4. It is sometimes more convenient to use the multiplicative group C2 =
{±1} for the grading on the Grassmann algebra. Hence we also write E = E1⊕E−1.

The Grassmann algebra with its Z/2Z-grading has remarkable properties which
are fundamental in the theory of PI-algebras. Indeed, ifB = B0⊕B1 is a Z/2Z-graded
algebra, we let E⊗̂B be the Grassmann Z/2Z-envelope of B. Recall that the algebra
E⊗̂B is Z/2Z-graded as well and its grading is determined by (E⊗̂B)0 = E0 ⊗ B0

and
(
E⊗̂A

)
1
= E1 ⊗B1.

A key property of the “envelope operation” is the following equality of Z/2Z-
graded T -ideals of identities (and hence also of the corresponding ungraded T -ideals
of identities):

(1.1) IdZ/2Z(E⊗̂(E⊗̂B)) = IdZ/2Z(B).

We refer to the “envelope operation” as being involutive. It is well known that
applying this operation, one can extend the solution of the Specht problem and
proof of “representability” from affine to nonaffine PI-algebras (see [9], [2]).
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Interestingly, the property satisfied by the Grassmann algebra we just mentioned
follows from the fact that the Z/2Z-grading on E is regular, and indeed in Theorem 6
we show that a similar property holds for arbitrary regular graded algebras. In order
to state the result precisely we introduce the notion of G-envelope of two algebras
A and B where G is a finite abelian group.

Definition 5 (G-envelope). Let A,B be two G-graded algebras. We denote by
A⊗̂B the G-graded algebra defined by

(
A⊗̂B

)
g
= Ag ⊗Bg.

The following result generalizes (1.1). The proof is presented in Section 2.

Theorem 6. Let A be a regularly G-graded algebra with commutation function θ,
and let B,C be two G-graded algebras.

(1) If θ ≡ 1, then IdG(A⊗̂B) = IdG(B).

(2) Let Ã = ⊗̂|G|−1
A be the envelope of |G|− 1 copies of A; then Ã is regularly

G-graded and IdG(Ã⊗̂(A⊗̂B)) = IdG(B).
(3) IdG(B) = IdG(C) if and only if IdG(A⊗̂B) = IdG(A⊗̂C).

Our main goal in this article is to investigate the general structure of (minimal)
regular gradings on associative algebras over an algebraically closed field of char-
acteristic zero and in particular to give a positive answer to Conjecture 2.5 posed
by Bahturin and Regev in [4].

It is easy to see that a given algebra A may admit regular gradings with non-
isomorphic groups and even with groups of distinct orders. Therefore, in order to
put some restrictions on the possible regular gradings on an algebra A, Bahturin
and Regev introduced the notion of regular gradings which are minimal. A regular
G-grading on an algebra A with commutation function θ is said to be minimal if
for any e �= g ∈ G there is g′ ∈ G such that θ(g, g′) �= 1.

Given a regular G-grading on an algebra A with commutation function θ, one
may construct a minimal regular grading with a homomorphic image Ḡ of G. To
see this, let

H = {h ∈ G | θ(h, g) = 1 : for all g ∈ G}.
One checks easily that θ is a skew symmetric bicharacter and hence H is a subgroup
of G. Consequently, the commutation function θ on G induces a commutation
function θ̃ on Ḡ = G/H. Moreover, the induced regular Ḡ-grading on A is minimal.

In this article we consider the problem of uniqueness of a minimal regular G-
grading on an algebra A (assuming it exists). It is not difficult to show that an
algebra A may admit nonisomorphic minimal regular G-gradings. Furthermore,
an algebra A may admit minimal regular gradings with nonisomorphic abelian
groups. However, it follows from our results (as conjectured by Bahturin and Regev)
that the order of the group is uniquely determined. In fact, the order of any
group which provides a minimal regular grading on an algebra A coincides with a
numerical invariant of A which arises in PI-theory, namely the PI-exponent of the
algebra A (denoted by exp(A)). In order to state the result precisely we need some
terminology, which we recall now.

Given a regular G-grading on an F-algebra A we consider the corresponding
commutation matrix MA defined by

(
MA

)
g,h

= θ(g, h), g, h ∈ G (see [4]). The

commutation matrix encodes properties of θ. For instance, a regular grading is
minimal if and only if there is only one row of ones in MA (resp. with columns).
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Next we recall the definition of exp(A). For any positive integer n we consider
the n!-dimensional F-space Pn, spanned by all monomials of degree n on n different
variables {x1, . . . , xn}, and let

cn(A) = dimF (Pn/(Pn ∩ Id(A))).

This is the n-th coefficient of the codimension sequence of the algebra A. It was
shown by Giambruno and Zaicev (see [5], [6]) that the limit

lim
n→∞

cn(A)1/n

exists and is a nonnegative integer. The limit is denoted by exp(A).
We can now state the main result of the paper in case the gradings on A are

given by abelian groups.

Theorem 7. Let A be an algebra over an algebraic closed field F of characteristic
zero and suppose it admits minimal regular gradings by finite abelian groups G and
H.

Then

(1) |G| = |H| and this invariant is equal to exp(A). In particular the algebra
A is PI.

(2) The commutation matrices MA
G and MA

H are conjugate. In particular
tr(MA

G ) = tr(MA
H) and det(MA

G ) = det(MA
H).

(3) In fact, det(MA
G ) = ± |G||G|/2

.

Remark 8. Some of the results stated in Theorem 7 were conjectured in [4]. Specif-
ically, as mentioned above, Bahturin and Regev conjectured that the order of a
group which provides a minimal regular grading on an algebra A is uniquely de-
termined. Moreover, they conjectured that if MA

G and MA
H are the commutation

matrices of two minimal regular gradings on A with groups G and H respectively,
then det(MA

G ) = det(MA
H) �= 0.

1.1. Not necessarily abelian groups. Suppose now that G is an arbitrary finite
group and let A be a G-graded algebra. As above, A is an associative algebra
over an algebraically closed field F of characteristic zero. We denote by Ag the
corresponding g ∈ G-homogeneous component.

Definition 9. We say that the G-grading on A is regular if the following two
conditions hold.

(1) (commutation) For any n-tuple (g1, . . . , gn) ∈ Gn and for any permutation
σ ∈ Sym(n) such that the products g1 · · · gn and gσ(1) · · · gσ(n) yield the

same element of G, there is a nonzero scalar θ((g1,...,gn),σ) ∈ F× such that
for any n-tuple (a1, . . . , an) ∈ An with ai ∈ Agi , the following equality
holds:

a1 · · · an = θ((g1,...,gn),σ)aσ(1) · · · aσ(n).
(2) (regularity) For any n-tuple (g1, . . . , gn) ∈ Gn, there exists an n-tuple

(a1, . . . , an) ∈ An with ai ∈ Agi such that a1 · · · an �= 0.

Remark 10. In the special case where the elements g, g′ ∈ G commute we write
θg,g′ instead of θ((g,g′),(12)). In particular we will often use the notation θg,g. Note
that if G is abelian, then θ((g1,...,gn),σ) is determined by θgi,gj , 1 ≤ i, j ≤ n.
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Typical examples of regularly graded algebras (G arbitrary) are the well known
group algebras FG, and more generally, any twisted group algebra F

αG where α is
a 2-cocycle on G with values in F

×. Indeed, this follows easily from the fact that
each homogeneous component is 1-dimensional and every nonzero homogeneous
element is invertible (for a definition of twisted group algebra, see the paragraph
after Lemma 31).

Additional examples can be obtained as follows.

(1) If A is a regularly G-graded algebra, then E ⊗ A has a natural regular
Z/2Z ×G-grading where E is the infinite dimensional Grassmann algebra.

(2) Let A be a regularly G-graded algebra and suppose the group G contains
a subgroup H of index 2. Then we may view A as a Z/2Z ∼= G/H-graded
algebra and we let A = A0 ⊕ A1 be the corresponding decomposition.
Let E(A) = (E0 ⊗ A0) ⊕ (E1 ⊗A1) be the Grassmann envelope of A and
consider the following G-grading on it. For any g ∈ H, we put E(A)g =
E0 ⊗ Ag, whereas if g �∈ H we put E(A)g = E1 ⊗ Ag. We claim the
grading is regular. Indeed, let (g1, . . . , gn) ∈ Gn and let σ ∈ Sym(n)
be a permutation such that g1 · · · gn = gσ(1) · · · gσ(n). Then for elements
z1, . . . , zn where zi ∈ E(A)gi , we have

z1 · · · zn = τ ((g1H, . . . , gnH), σ)θ((g1, . . . , gn), σ)zσ(1) · · · zσ(n)
where τ is the commutation function of the infinite Grassmann algebra. For
future reference we denote the commutation function which corresponds to
the regular G-grading on E(A) by τθ.

Following the discussion in the abelian case we define now nondegenerate grad-
ings for arbitrary finite groups as the counterpart of minimal gradings. Let A be
an associative algebra and suppose it has a regular G-grading with commutation
function θ. We say that the grading is nondegenerate if for every g �= e in G, there
is an element g′ ∈ CG(g) (the centralizer of g in G) such that θ(g,g′ ) �= 1.

Remark 11. It turns out (see Lemma 37) that g �→ θg,g is a homomorphism from
G to {±1} and therefore its kernel H = {g ∈ G : θg,g = 1} is a subgroup of G
(of index ≤ 2). In case H = G, there is a cohomology class [α] ∈ H2(G,F×)
such that F

αG has commutation function θ. Then, the nondegeneracy of the G-
grading on A corresponds to α being a nondegenerate 2-cocycle. Groups G which
admit nondegenerate 2-cocycles are called “central type”. It is a rather difficult
problem to classify central type groups. It is known, using the classification of
finite simple groups(!), that any central type group must be solvable. It seems
to be an interesting problem to classify finite groups which admit nondegenerate
commutation functions (modulo the classification of central type groups).

Our main results in the general case are extensions of the results appearing in
Theorem 7.

Theorem 12. Theorem 7(1) holds for arbitrary nondegenerate regular gradings
(i.e. G is not necessarily abelian).

Remark 13. In case G is abelian, the commutation function θ is a skew symmetric
bicharacter (see Definition 24). In this case, it is a well known theorem of Scheunert
[13] that θ arises from a 2-cocycle (as mentioned in the previous remark). The no-
tion of a bicharacter was considerably generalized to cocommutative Hopf algebras
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(and hence in particular to group algebras) (see [3]). Furthermore, whenever the
bicharacter is skew symmetric, the theorem of Scheunert can be extended to that
case. However, it should be noted that already for group algebras FG where G is a
nonabelian group, the linear extension of β(g, h) = f(g, h)/f(h, g) for a 2-cocycle
f : G×G → F

× is not in general a skew symmetric bicharacter on FG.
Our results should be viewed or interpreted so as to overcome this problem by

considering commutation functions which satisfy certain natural necessary condi-
tions in case they arise from 2-cocycles on G. Then Lemma 32 provides a gener-
alization of Scheunert’s theorem to that context: namely every such commutation
function on G indeed arises from a 2-cocycle on G.

1.1.1. Commutation matrix. As for the commutation matrix and its characteristic
values, we need to fix some notation. Suppose A has a regular G-grading and let
θA be the corresponding commutation function. Suppose first that θAg,g = 1 for
every g ∈ G. In that case we know that the commutation function corresponds to
an element [α] ∈ H2(G,F×). With this data we consider the corresponding twisted
group algebra B = F

αG which is regularly G-graded with commutation function
θA. It is well known that the algebra F

αG is spanned over F by a set of invertible
homogeneous elements {Ug}g∈G that satisfy UgUh = α(g, h)Ugh for every g, h ∈ G.

Let us construct the corresponding commutation matrix. For every pair (g, h) ∈
G2 we consider the element UgUhU

−1
g U−1

h ∈ F
αG. The matrix MA

G is determined

by (MA
G )(g,h) = UgUhU

−1
g U−1

h for every g, h ∈ G, and we note that this element
does not depend on the choice of the basis {Ug : g ∈ G}.

Next we consider the general case. Let ψ : G → F
× be the map determined by

ψ(g) = θg,g. The function ψ will be shown to be a homomorphism with its image
contained in {±1}, and we set H = ker(ψ) = {g ∈ G : θg,g = 1}. Applying the
construction above we may define a G-grading on E(A) where the Z/2Z-grading on
A is defined by A = AH ⊕AG\H . The commutation function τ ·θA of E(A) satisfies

(τθA)g,g = 1 for every g ∈ G. As in the previous case the function τθA corresponds
to a cohomology class [α] ∈ H2(G,F×) where α is a representing 2-cocycle. We let
B = F

αG be the corresponding twisted group algebra with commutation function
θB = τθA, and for every g, h ∈ G we consider the element UgUhU

−1
g U−1

h ∈ F
αG.

The commutation matrix is defined by

(MG)g,h = τ(ψ(g),ψ(h))UgUhU
−1
g U−1

h .

We will usually write τg,h instead of τψ(g),ψ(h). Note that if ψ ≡ 1, then H = G

and τ |G≡ 1, so we have that θB = θA as in the first case.

Theorem 14. Let A be an associative algebra over an algebraically closed field of
characteristic zero. Suppose A admits a nondegenerate regular G-grading and let
θ be the corresponding commutation function. Let MG be the commutation matrix
constructed above. Then M2

G = |G| · Id.

As a consequence we extend Theorem 7(2),(3) for arbitrary nondegenerate reg-
ular gradings (see subsection 3.1, Corollary 47). In case θg,g = 1 for every g ∈ G,

we have that the elements UgUhU
−1
g U−1

h ∈ F
αG ∼= Mr(F) and so the commutation

matrix may be viewed as a matrix in Mr3(F). In that case we obtain the following
corollary.

Corollary 15. det(MG) = ±r(r
3), where |G| = r2.
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2. Preliminaries, examples and some basic results

In the first part of this section we recall some general facts and terminology
on G-graded PI-theory which will be used in the proofs of the main results (we
refer the reader to [2] for a detailed account on this topic). In the second part of
this section we present some additional examples of regular gradings on finite and
infinite dimensional algebras. Finally, we present properties of regular gradings and
prove Theorem 6.

2.1. Graded polynomial identities. Let W be a G-graded PI-algebra over F

and I = IdG(W ) be the ideal of G-graded identities of W . These are polynomials
in F〈XG〉, the free G-graded algebra over F generated by XG, that vanish upon any
admissible evaluation on W . Here XG =

⋃
g∈G Xg and Xg is a set of countably

many variables of degree g. An evaluation is admissible if the variables from Xg

are replaced only by elements of Wg. It is known that I is a G-graded T -ideal, i.e.
closed under G-graded endomorphisms of F〈XG〉.

We recall from [2] that the T -ideal I = IdG(W ) is generated by multilinear
polynomials and so it does not change when passing to F̄, the algebraic closure of
F, in the sense that the ideal of identities of WF̄ over F̄ is the span (over F̄) of the
T -ideal of identities of W over F.

2.2. Additional examples of regular gradings. We present here some more
examples (in addition to the ones presented in the introduction). The following
example corresponds to the grading determined by the symbol algebra (1, 1)n.

Example 16. Let Mn(F) be the matrix algebra over the field F, and let G =
Z/nZ × Z/nZ. For ζ a primitive n-th root of 1 we define

X = diag(1, ζ, . . . , ζn−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 ζ 0
...

0 ζ2
. . .

...
. . .

. . . 0
0 · · · 0 ζn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Y = En,1 +
n−1∑
1

Ei,i+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 0 1
1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that ζXY = Y X. Furthermore, the set
{
XiY j | 0 ≤ i, j ≤ n− 1

}
is a basis

of Mn(F), and so we can define a G-grading on Mn(F) by (Mn(F))(i,j) = FXiY j .
Let us check that the G-grading is regular. For any two basis elements we have
that

(Xi1Y j1)(Xi2Y j2) = ζi2j1Xi1Xi2Y j1Y j2 = ζi2j1Xi2Xi1Y j2Y j1

= ζi2j1−i1j2
(
Xi2Y j2

) (
Xi1Y j1

)
⇒ θ(i1,j1)(i2,j2) = ζi2j1−i1j2 ,
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and hence the second condition in the definition of a regular grading is satisfied.
The first condition in the definition follows at once from the fact that the elements
X and Y are invertible. Finally we note that since ζ is a primitive n-th root of
unity, the regular grading is in fact minimal.

Example 17. For any n ∈ N and c ∈ F
×, we can define a regular Z/nZ-grading on

A = F[x]/〈xn−c〉 by setting Ak = F · xk. Clearly, the commutation function here is
given by θh,g = 1 for all g, h ∈ Z/nZ.

Example 18. For any algebra A we have the trivial G = {e}-grading by set-
ting Ae = A. In this case the grading is regular if and only if A is abelian and
nonnilpotent.

Example 19. We present an algebra with a nondegenerate regularG-grading where
G is isomorphic to the dihedral group of order 8.

Consider the presentation 〈x, y : x4 = y2 = e, yxy−1 = x3〉 of the group G. It is
well known that there is a (unique) nonsplit extension

αG : 1 �� {±1} �� Q16
π �� G �� 1

where Q16 =
〈
u, v : u8 = v4 = e, , u4 = v2, vuv−1 = u3

〉
is isomorphic to the

quaternion group of order 16. The map π is determined by π(u) = x and π(v) = y.
Note that the extension is nonsplit on any nontrivial subgroup of G; that is, if
{e} �= H ≤ G, then the restricted extension

αH : 1 �� {±1} �� π−1(H)
π �� H �� 1

is nonsplit. Consider the twisted group algebra F
αGG where the values of the

cocycle are viewed in F
×. Clearly, FαGG is G/K = C2-graded where K is the Klein

4-group K = {e, x2, y, x2y}, and so we can consider the corresponding Grassmann
envelope E(FαGG). We show that E(FαGG) is regularly G-graded and moreover
that the grading is nondegenerate. Clearly the natural G-grading on the twisted
group algebra FαGG is regular, and hence the corresponding G-grading on E(FαGG)
is also regular. Let θ be the corresponding commutation function. To see that
the G-grading on E(FαGG) is nondegenerate, note that since the cocycle αH is
nontrivial on every subgroup H �= {e} of G, the group π−1(K) is isomorphic to
the quaternion group of order 8, and hence the twisted group subalgebra F

αKK of
F
αGG is isomorphic to M2(F). This shows that the nondegeneracy condition (see

Definition 21) is satisfied by any nontrivial element of K. For elements g in G \K
we have that θg,g = −1 and we are done. We will return to this example at the end
of the paper.

2.2.1. The commutation function θ and the commutation matrix. We now turn to
study some properties of the commutation function θ. We start with some notation.

Let G be a group and ḡ = (g1, . . . , gn) ∈ Gn.

• Denote by Sym(ḡ) the set
{
σ ∈ Sym(n) | g1 · · · gn = gσ(1) · · · gσ(n)

}
.

• For any σ ∈ Sym(n) we write ḡσ = (gσ(1), . . . , gσ(n)).

The conditions in the following lemma correspond to the properties of T-ideal:
namely (1) closed to multiplication, (2) closed to substitution and (3) closed to
addition.
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Lemma 20. Let G be a group and A a regularly G-graded algebra with commutation
function θ. Then θ satisfies the following conditions.

(1) Let ḡ = (g1, . . . , gn) ∈ Gn, 1 ≤ i ≤ j ≤ n and σ ∈ Sym(ḡ) such that
σ(k) = k for all k < i or k > j. Denote by σ̃ ∈ Sym(j − i + 1) the
restriction of σ to {i, i+ 1, . . . , j}; then θ(ḡ,σ) = θ((gi,gi+1,...,gj),σ̃).

(2) Let h̄=(h1, . . . , hk)∈Gk. Let ḡi = (gi,1, . . . , gi,ni
) ∈ Gni such that

∏ni

j=1 gi,j

= hi and set ḡ = (ḡ1, . . . , ḡk) ∈ G
∑k

1 ni . For each σ ∈ Sym(h̄) let
σ̃ ∈ Sym(n1 + · · · + nk) be the permutation that moves the blocks of size
n1, . . . , nk according to the permutation σ. Then θ(h̄,σ) = θ(ḡ,σ̃).

(3) For every g1, . . . , gn∈G and σ, τ ∈Sym(n) such that g1 · · · gn=gσ(1) · · · gσ(n)
= gστ(1) · · · gστ(n) we have

θ((g1,...,gn),σ)θ((gσ(1),...,gσ(n)),τ) = θ(g1,...,gn,στ).

Proof. (1) This is an immediate consequence of the associativity of the product
in A.

(2) The result follows from the fact that Agi,1 · · ·Agi,ni
⊆ Agi,1···gi,ni

= Ahi
.

(3) Let A =
⊕

g∈G Ag and choose some ai ∈ Agi such that
∏

ai �= 0. Then

a1 · · · an = θ((g1,...,gn),σ)aσ(1) · · · aσ(n)
= θ((g1,...,gn),σ)θ((gσ(1),...,gσ(n)),τ)aστ(1) · · · aστ(n),

a1 · · · an = θ(g1,...,gn,στ)aστ(1) · · · aστ(n).

Finally, since a1 · · · an �= 0, we have θ((g1,...,gn),σ)θ((gσ(1),...,gσ(n)),τ) =

θ(g1,...,gn,στ) as desired. �

Next, we define G-commutation functions. We remind the reader that if g, h ∈ G
commute, we denote by θg,h the scalar θ((g,h),(1,2)).

Definition 21. Let θ be a function from the pairs ḡ = (g1, . . . , gn) ∈ Gn, σ ∈
Sym(ḡ) with values in F

×. We say that θ is a G-commutation function if it sat-
isfies conditions (1), (2), (3) from the last lemma. The function θ is said to be
nondegenerate if for any e �= g ∈ G there is some h ∈ CG(g) such that θg,h �= 1.

In Lemma 37 below we show that each G-commutation function is in fact the
commutation function of some regularly G-graded algebra. By the definition, we
get that a regular grading is nondegenerate if and only if the commutation function
is nondegenerate.

Lemma 22. Let θ be a G-commutation function. Then the following hold.

(1) For every ḡ ∈ Gn we have θ(ḡ,id)θ(ḡ,id) = θ(ḡ,id) and so θ(ḡ,id) = 1.

(2) For every commuting pair g, h ∈ G, we have θg,h = θ−1
h,g.

(3) For any fixed g ∈ G, the functions h �→ θg,h and h �→ θh,g are characters
on CG(g).

Proof. (1) Part (1) follows from part (3) of the last lemma, where σ = τ =
id ∈ Sym(n).

Let σ = (1, 2) ∈ Sym(2).

(2) If g, h commute, then θg,hθh,g = θ((g,h),σ)θ((h,g),σ) = θ((g,h),σ2) = θ((g,h),id)
= 1.
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(3) By the conditions in Lemma 20 we get that if g ∈ G and h1, h2 ∈ CG(g),
then

θg,h1h2
= θ((g,h1h2),σ) = θ((g,h1,h2),(1,3,2))

= θ((g,h1,h2),(1,2))θ((h1,g,h2),(2,3)) = θg,h1
θg,h2

.

Similarly we have that θh1h2,g = θh1,gθh2,g. �

Remark 23. Notice in particular that θe,g = θg,e = 1 for all g ∈ G. Using conditions
(1) and (2) in Lemma 20 we see that if σ ∈ Sym(n) is a permutation which moves
rigidly in ḡ = (g1, . . . , gn) ∈ Gn, a block (gi, gi+1, . . . , gj) with gi · gi+1 · · · gj = e,
then θ(ḡ,σ) = 1.

If G is abelian, then the commutation function θ(ḡ,σ) is defined by its values on
pairs θg,h. In that case we get that CG(g) = G for all g ∈ G and the conditions
in Lemma 20 follow from those in the last lemma. We recall the definition of such
functions.

Definition 24 (Bicharacter). Let η : G × G → F
× be a map where G is a group

and F
× is the group of units of the field F. We say that the map η is a bicharacter

of G if for any g0, h0 ∈ G the maps h �→ η(g0, h) and g �→ η(g, h0) are characters
(i.e group homomorphisms G → F

×). A bicharacter of G is called skew-symmetric
if η(g, h) = η(h, g)−1 for any h, g ∈ G. A bicharacter is said to be nondegenerate if
for any e �= g ∈ G there is an element h ∈ G such that θ(g, h) �= 1.

Remark 25. In general, if θ is a commutation function on a finite group G, then for
any commuting elements g, h ∈ G we have ord( θ(g, h) ) | gcd( ord(g), ord(h) ), so
θ(g, h) is contained in the group of roots of unity of order |G| in F

×. In fact, as it
will be shown below, this holds for any θ(ḡ,σ). Also, we have that θ(g, g) = θ(g, g)−1

so θ(g, g) ∈ {±1} for every g ∈ G.

We present now two lemmas which summarize properties of the commutation
function and the “G-envelope operation”. The proof of the first lemma follows
directly from the definitions and is left to the reader.

Lemma 26. Suppose that A,B are G,H-regularly graded algebras with commuta-
tion functions θ and η respectively. Then the following hold.

(1) A⊗B is a regularly G×H-graded algebra with (A⊗B)(g,h) = Ag⊗Bh and
(θ ⊗ η)((g1,h1),...,(gn,hn),σ)

= θ((g1,...,gn),σ)θ((h1,...,hn),σ) for all σ ∈ Sym(ḡ) ∩
Sym(h̄).

(2) If G = H and θ = η, then the algebra A ⊕ B is regularly G-graded where
(A⊕B)g = Ag⊕Bg. Furthermore, the corresponding commutation function
is θ. In particular

⊕n
1 A is regularly G-graded for any n ∈ N.

(3) If N ≤ G is a subgroup, then AN =
⊕

g∈N Ag is a regularly N-graded

algebra with commutation function θ |N , the restriction to tuples in N .
(4) If G = H, then A⊗̂B is a regularly G-graded algebra with commutation

function (θ⊗̂η)(ḡ,σ) = θ(ḡ,σ)η(ḡ,σ).

If the groups G,H are abelian, then the commutation matrix which corresponds to
the cases considered in the lemma are calculated as follows: (1) MA⊗B = MA⊗MB,

(2) MA⊕B = MA, (3) MAN is the restriction of MA to the group N , and (4) MA⊗̂B

is the Schur product (entry wise multiplication) of MA and MB.
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In the nonabelian case we have a similar connection between the commutation
matrices, though the rings over which the matrices are defined may differ. More
details are presented in the end of subsection 3.1.

Suppose A is regularly G-graded and let θ be the corresponding commutation
function. Given a multilinear polynomial

f(xg1,1, . . . , xgn,n) =
∑

σ∈Sym(ḡ)

λσ

∏
xgσ(i),σ(i),

we denote by fθ the polynomial

fθ(xg1,1, . . . , xgn,n) =
∑

σ∈Sym(ḡ)

λσθ(ḡ, σ)
−1
∏
i

xgσ(i),σ(i).

Lemma 27. Let A be a regularly G-graded algebra with commutation function θ and
let B be any G-graded algebra. Let f(xg1,1, . . . , xgn,n) =

∑
σ∈Sym(ḡ) λσ

∏
xgσ(i),σ(i).

Then fθ ∈ IdG(B) if and only if f ∈ IdG(A⊗̂B).

Proof. By multilinearity of f we only check that f vanishes on a spanning set. For
any ai ∈ Agi and bi ∈ Bgi we get that

f(a1 ⊗ b1, . . . , an ⊗ bn) =
∑

σ∈Sym(ḡ)

λσ

∏
(aσ(i) ⊗ bσ(i))

=
∑

σ∈Sym(ḡ)

λσ

∏
i

aσ(i) ⊗
∏
i

bσ(i)

=
∏
i

ai ⊗
∑

σ∈Sym(ḡ)

λσθ(ḡ, σ)
−1
∏
i

bσ(i)

=
∏

ai ⊗ fθ(b1, . . . , bn).

If fθ ∈ IdG(B), then the last term is zero so f ∈ IdG(A⊗̂B). On the other hand,
if f ∈ IdG(A⊗̂B), then the first term is always zero. Since the grading on A is
regular, we can find ai such that

∏
ai �= 0, so

∏
ai ⊗ fθ(b1, . . . , bn) = 0 if and only

if fθ(b1, . . . , bn) = 0 and we get that f ∈ IdG(B). �

Before we proceed with the proof of Theorem 6 we recall that for any G-graded
algebra over a field of characteristic zero F, the T -ideal of G-graded identities
is generated by multilinear polynomials which are strongly homogeneous, namely
polynomials of the form

f(xg1,1, . . . , xgn,n) =
∑

σ∈Sym(ḡ)

λσ

∏
xgσ(i),σ(i).

Proof of Theorem 6. (1) This is immediate since fθ = f when θ ≡ 1.

(2) Ã⊗̂A is the product of |G| copies of A. This is a regularly G-graded algebra
with commutation function θ|G| ≡ 1. We now use the associativity of
the envelope operation and part (1) to conclude that IdG(Ã⊗̂(A⊗̂B)) =
IdG(B).

(3) This follows immediately from the previous lemma. �
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3. Main theorem

Our main objective in this section is to prove Theorem 7. The first step is to
translate the definition of “regular grading” into the language of graded polynomial
identities.

Lemma 28. Let A be an algebra over F, G a finite group and A =
⊕

g∈G Ag a
G-grading on A. Then the grading is regular if and only if the following conditions
hold.

(1) There are no monomials with distinct indeterminates in IdG(A).
(2) There is a function θ from pairs (ḡ, σ), where ḡ ∈ Gn and σ ∈ Sym(ḡ),

such that xg1,1 · · ·xgn,n − θ(ḡ,σ)xgσ(1),σ(1) · · ·xgσ(n),σ(n) ∈ IdG(A) (binomial

identity).

Proof. The proof is clear. Indeed, condition (1) (resp. (2)) of the lemma is equiva-
lent to the first (resp. second) condition in the definition of a regular grading. �

As mentioned above, the conditions in Lemma 20 correspond to the properties of
the T-ideal IdG(A), where (1), (2), (3) correspond to closure under multiplication,
closure under endomorphisms and closure under addition respectively. Here is the
precise statement.

Proposition 29. Let θ be a commutation function on a finite group G. Let F 〈XG〉
be the graded free algebra over F on the set XG, where XG = {xg,i : g ∈ G, i ∈ N}
is a set of noncommuting variables. For ḡ ∈ Gn, σ ∈ Sym(ḡ) and ī ∈ N

n we write
s(ḡ, σ, ī) = xg1,i1 · · ·xgn,in − θ(ḡ, σ)xgσ(1),iσ(1)

· · ·xgσ(n),iσ(n)
. Finally, we let I be the

F-subspace spanned by

S = {s(ḡ, σ, ī) | ḡ = (g1, . . . , gn) ∈ Gn, σ ∈ Sym(ḡ), i1, . . . , in ∈ N} .

Then the following hold.

(1) The vector space I is a T -ideal.
(2) The G-grading on F〈XG〉/I is regular with commutation function θ.

In particular, any G-commutation function is a commutation function of some
regular algebra.

Proof. The proof is based on translating the conditions of Lemma 20 into the
language of T -ideals. We give here only an outline of the proof and leave the
details to the reader.

(1) By definition I is closed under addition. To see I is closed under the
multiplication of arbitrary polynomials, it is sufficient to show that it is
closed under multiplication by xg,j for any g ∈ G and j ∈ N, which is
exactly condition (1) in Lemma 20.

Next we show the ideal I is closed under endomorphisms. Notice that if
s ∈ S is multilinear and ϕ ∈ End(F 〈XG〉), one can decompose ϕ = ϕ1 ◦ϕ2

such that ϕ2 sends each xgj ,ij to a sum of multilinear monomials, all disjoint
from each other, and ϕ1 sends each xg,j to some xg′,j′ . It now follows from
condition (2) in Lemma 20 that ϕ2(s) =

∑
sl for some sl ∈ S multilinear

and that ϕ1(S) ⊆ S. This completes the proof.
(2) The algebra F〈XG〉/I has a natural G-grading, and by its definition it satisfies

condition (2) in the definition of a regular grading. Therefore, we only need
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to show that it has no monomial identities with distinct indeterminates.
Condition (3) in Lemma 20 translates into the equation

s(ḡ, σ, ī) + θ(ḡ, σ)s(ḡσ, τ, īσ) = s(ḡ, στ, ī), īσ = (iσ(1), . . . , iσ(n))

for any ḡ ∈ Gn, ī ∈ N
n, σ ∈ Sym(ḡ) and τ ∈ Sym(ḡσ). For each ḡ =

(g1, . . . , gn) ∈ Gn and ī ∈ N
n, we define

S(ḡ, ī) = {s(ḡσ, τ, īσ) | σ ∈ Sym(ḡ), τ ∈ Sym(ḡα)}
V (ḡ, ī) = span {S(ḡ, ī)} = span {s(ḡ, σ, ī) | e �= σ ∈ Sym(ḡ)} .
It is easy to see that if I contains a monomial xg1,i1 · · ·xgn,in with distinct
indeterminates, then it must be in V = V ((g1, . . . , gn), (i1, . . . , in)). The
term

∏
xgσ(j),iσ(j)

for e �= σ ∈ Sym(ḡ) appears only in s(ḡ, σ, ī), so we see
that V does not contain monomials and we are done.

�
Definition 30. Let θ be a G-commutation function. The algebra F〈XG〉/I defined
in the previous proposition is called the θ-relatively free algebra.

Let A be a G-graded algebra. Let π : G → Ḡ be a surjective homomorphism and
let A =

⊕
ḡ∈ḠAḡ be the induced grading on A by Ḡ (that is, Aḡ =

⊕
π(g)=ḡAg).

Clearly, for a multilinear polynomial f we have f(xḡ1,1, . . . , xḡn,n) ∈ IdḠ(A) if and
only if f(xg1,1, . . . , xgn,n) ∈ IdG(A) for every gi ∈ G with π(gi) = ḡi and so, in
the particular case where π : G → {e}, we obtain the aforementioned fact that
algebras which are G-graded PI-equivalent, are also PI-equivalent. This simple but
important fact will enable us to replace the algebra A by a more tractable G-graded
algebra B (satisfying the same G-graded identities as A) from which it will be easier
to deduce the invariance of the order of the group which provides a nondegenerate
regular grading on A.

For the rest of this section, unless stated otherwise, we assume that F is alge-
braically closed and char(F) = 0.

Lemma 31. Let A,B be two regularly G-graded algebras with commutation func-
tions θA and θB respectively. If θA = θB, then IdG(A) = IdG(B). In particular,
Id(A) = Id(B).

Proof. Clearly, it is sufficient to consider multilinear polynomials. Let ḡ =
(g1, . . . , gn) ∈ Gn. Applying binomial G-graded identities of A (see Lemma 28),
a polynomial f(xg1,1, . . . , xgn,n) =

∑
σ∈Sym(ḡ) λσ

∏
i xgσ(i),σ(i) is a G-graded iden-

tity of A if and only if f ′(xg1,1, . . . , xgn,n) =
(∑

σ∈Sym(ḡ) λσθ
−1
(ḡ,σ)

)∏
i xgi,i is a

G-graded identity as well. But since there are no monomials with distinct variables
in IdG(A), f ′ ∈ IdG(A) if and only if

∑
σ∈Sym(ḡ)λσθ

−1
(ḡ,σ) = 0. Thus, the statement

f(xg1,1, . . . , xgn,n) ∈ IdG(A)

is equivalent to a condition on the commutation function θA and the result follows.
�

As mentioned above, we wish to replace any regularly G-graded algebra A with
commutation function θA by a better understood regularly G-graded algebra B
with commutation function θB = θA.

We first deal with the case where θg,g = 1 for all g ∈ G (we remind the reader
that in general θg,g = ±1 for all g ∈ G). Here the algebra B will be isomorphic
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to a suitable twisted group algebra B = F
αG, where α is a 2-cocycle on G with

values in F
×. Recall that B = F

αG is isomorphic to the group algebra FG as an
F-vector space and if {Ug : g ∈ G} is an F-basis of FαG, then the multiplication is
defined by the rule UgUh = α(g, h)Ugh for every g, h ∈ G. It is well known that up
to a G-graded isomorphism, the twisted group algebra F

αG depends only on the
cohomology class of ᾱ ∈ H2(G,F×) and not on the representative α. In order to
construct the 2-cocycle α = αθ, we show that the commutation function θ = θA
(with θg,g = 1, for all g ∈ G) determines uniquely an element in Hom(M(G),F×),
where M(G) denotes the Schur multiplier of the group G. Then applying the
Universal Coefficient Theorem, we obtain an element in H2(G,F×) which by abuse
of notation we denote again by θ.

Here is the precise statement and its proof.

Lemma 32. Let θ be a G-commutation function such that θg,g = 1 for all g ∈ G.
Then there is a 2-cocycle α ∈ Z2(G,F×) such that the commutation function of
B = F

αG is θ.

Proof. The next construction follows the one in [1, Prop. 1].
Recall that from the Universal Coefficient Theorem we get that for any group G

we have an exact sequence

1 �� Ext1(Gab,F
×) �� H2(G,F×)

π �� Hom(M(G),F×) �� 1 ,

where M(G) is the Schur multiplier of G. Note that since F is assumed to be
algebraically closed, we have that Ext1(Gab,F

×) = 0, and hence in that case,
the map π is an isomorphism. Thus, our task is to find a suitable element in
Hom(M(G),F×) and then show that its inverse image in H2(G,F×) satisfies the
required property.

To start with, we fix a presentation of M(G) via the Hopf formula: Let F be
the free group F = 〈yg | g ∈ G〉 and define ϕ : F → G by ϕ(yg) = g. Setting
R = ker(ϕ) we have the exact sequence

1 �� R �� F
ϕ �� G �� 1 .

The Schur multiplier is then isomorphic to R∩[F,F ]/[F,R].
Next we show how an element α ∈ Z2(G,F×) determines a map π([α]) on

R∩[F,F ]/[F,R]. Let ḡ=(g1, . . . , gn)∈Gn and σ∈Sym(ḡ). Then yg1 · · ·ygny−1
gσ(n)

· · · y−1
gσ(1)

∈ R ∩ [F, F ], and hence by the Hopf formula it determines an element in M(G).
On the other hand, from [1] we know that any element in M(G) has a presentation
yg1 · · · ygny−1

gσ(n)
· · · y−1

gσ(1)
[F,R] for some ḡ ∈ Gn and σ ∈ Sym(ḡ), and moreover the

map

π ([α]) (yg1 · · · ygny−1
gσ(n)

· · · y−1
gσ(1)

[R,F ]) =
α(g1, . . . , gn)

α(gσ(1), . . . , gσ(n))

is a well defined homomorphism.
Our next step is to show that ψ(yg1 · · · ygny−1

gσ(n)
· · · y−1

gσ(1)
[R,F ]) = θ(ḡ, σ) is a

well defined homomorphism. This will complete the proof of the lemma.
Let A = F〈XG〉/I be the θ-relatively free algebra defined in Proposition 29. Then

A is regularly G-graded with commutation function θ. If we can find elements
ag ∈ Ag, g ∈ G, which are invertible, then we can define a group homomorphism

ψ̃ : F → A× induced by the map yg �→ ag. Notice that the image of any commutator
in [R,F ] is mapped to 1 (because R is mapped to Ae which is in the center) while
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yg1 · · · ygny−1
gσ(n)

· · · y−1
gσ(1)

is mapped to θ(ḡ, σ)1. The induced map ϕ : M(G) → F
×

is the required map. In general A might not have such invertible elements, so we
need to construct new elements.

Let S =
{
xg,1xg−1,2

}
g∈G

⊆ F 〈XG〉. Note that it is sufficient to show that the

elements in S represent nonzero divisors in A since in that case, the localized algebra
A′ = AS−1 will still be regularly G-graded with commutation function θ, and in
addition each xg,1 will be invertible (notice that xg−1,2xg,1 = θ(g−1, g)xg,1xg−1,2

and θ(g−1, g) = θ(g, g)−1 = 1, so xg,1 is right and left invertible).
Suppose that there is some 0 �= f ∈ A such that xg,1xg−1,2 ·f ≡ 0. We can assume

that f is homogeneous (i.e. its monomials have the same G-homogeneous degree),
and by standard methods (since the field is infinite) we can assume that every
variable xh,i appears with the same total degree in each monomial of xg,1xg−1,2 · f
and therefore this is true also in f . Finally, using the binomial identities we can
assume that f is a monomial. Now, by assumption xg,1xg−1,2 · f cannot be a
monomial with different variables, so we need to show there is no general monomial
identities (i.e. with possibly repeated variables).

Let a1xg,ia2xg,ia3 · · · anxg,ian+1 ∈ IdG(A) be a monomial identity where xg,i

does not appear in the monomials ai. Using linearization we get that the polynomial

f =
∑
σ∈Sn

a1zg,σ(1)a2zg,σ(2)a3 · · · anzg,σ(n)an+1

is an identity as well. We claim that the monomials in f are equal modulo identities
of A. In order to see this suppose that a, b, c are monomials and denote by h the
degree of a. Let g be some element in G. Then(

y(hg)−1axg,1

)
bxg,2c ≡ b

(
y(hg)−1axg,1

)
xg,2c

≡ b
(
y(hg)−1axg,2

)
xg,1c ≡

(
y(hg)−1axg,2

)
bxg,1c

where the middle equation is true since θg,g = 1, and the first and third equali-
ties are true because monomials of degree e are in the center. We therefore have
axg,1bxg,2c ≡ axg,2bxg,1c. Applying this equivalence we have that∑

σ∈Sn

a1yg,σ(1)a2yg,σ(2)a3 · · · anyg,σ(n)an+1 ≡ n!a1yg,1a2yg,2a3 · · · anyg,nan+1.

Finally, we see that if we repeat this process for every pair g ∈ G, i ∈ N such that
xg,i has total degree greater than 1 in our monomial identity, we obtain a monomial
identity with distinct variables, a contradiction. �

Suppose that A has a nondegenerate regular grading with commutation function
θ such that θ(g, g) = 1 for all g ∈ G. Let B = F

αG as constructed in the last lemma.
Clearly, the twisted group algebra B is regularly G-graded and the commutation
function is θ. Invoking Lemma 31 we have the following corollary.

Corollary 33. IdG(B) = IdG(A). Consequently Id(B) = Id(A). In particular
exp(B) = exp(A).

Our goal is to extract the cardinality of G from Id(B).
By Maschke’s theorem, we know that any twisted group algebra B = F

αG is a
direct sum of matrix algebras. We wish to show that the commutation function θ is
nondegenerate if and only if B is simple or equivalently dim(Z(B)) = 1. It is easily
seen that the center Z(B) is spanned by elements of the form

∑
σ∈GλσUσgσ−1 where
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g ∈ G and λσ ∈ F. We call a conjugacy class that contributes a nonzero central
element a ray class. The determination of the ray classes and their corresponding
central elements is well known (for example see [10], Section 2). The next lemma
gives the condition for a conjugacy classes to be a ray class, and Lemma 38 will
generalize this idea to the Z/2Z-simple case.

Lemma 34. Let g ∈ G and choose some set of left coset representatives {ti}k1
of CG(g) in G. For any 2-cocycle α ∈ Z2(G,F×) the following conditions are
equivalent:

(1) For every h ∈ CG(g) we have UgUh = UhUg in F
αG.

(2) The element a =
∑k

i=1UtiUgU
−1
ti is central in F

αG.

In addition, if there are λi ∈ F, i = 1, . . . , k, not all zero, such that b =∑k
i=1λiUtiUgU

−1
ti is central in F

αG, then λi = λ1 for all i. In particular we get

that a = 1
λ1
b is central in F

αG.

Proof. Suppose first that (1) holds. Let w ∈ G. Then for every i ∈ {1, . . . , k},
there are τ (i) ∈ {1, . . . , k}, hi ∈ CG(g) and ci ∈ F

× such that UwUti = ciUtτ(i)
Uhi

.

Note that τ = τw is a permutation of {1, . . . , k}. Then we have that

UwaU
−1
w =

∑
(UwUti)Ug (UwUti)

−1 =
∑(

ciUtτ(i)
Uhi

)
Ug

(
ciUtτ(i)

Uhi

)−1

=
∑

Utτ(i)

(
Uhi

UgU
−1
hi

)
U−1
tτ(i)

=
∑

Utτ(i)
UgU

−1
tτ(i)

= a,

and so Uwa = aUw. Since the set {Uw : w ∈ G} spans FαG, we get that a is central.
On the other hand, if a is central and h ∈ CG(g), then there is some c ∈ F

×

such that UhUgU
−1
h = cUg. Assume that t1 ∈ CG(g), so there is c′ ∈ F

× such that

Ut1UgU
−1
t1 = c′Ug. Thus we have

a =

k∑
i=1

UtiUgU
−1
ti = c′Ug +

k∑
i=2

UtiUgU
−1
ti ,

a = UhaU
−1
h = c′UhUgU

−1
h +

k∑
i=2

(UhUti)Ug (UhUti)
−1

= c · c′Ug +
k∑

i=2

UhtiUgU
−1
hti

,

so we must have that c = 1 and we get that (2) ⇒ (1).
Assume that b =

∑
λiUtiUgU

−1
ti is central for some λi ∈ F not all zero. For any

j ∈ {1, . . . , k} we get that

b = U−1
tj bUtj = λjUg +

∑
i �=j

λi

(
U−1
tj Uti

)
Ug

(
U−1
ti Utj

)
,

so we must have λj = λ1. In particular λ1 �= 0, so b = λ1a. �
By the last lemma, each ray class contributes only one central element up to a

scalar multiplication, which we call a ray element. In addition, ray elements from
different ray classes are linearly independent. Thus we get that dim(Z(B)) is the
number of ray classes.

Lemma 35. Let B = F
αG, where G is a finite group of order n. Then B is simple

if and only if α is nondegenerate. Furthermore, in that case we have B ∼= M√
n(F).
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Proof. As we remarked before the last lemma, B is simple if and only if dim(Z(B))
= 1. Since Z(B) is spanned by ray elements, then B is simple if and only if there
is only one ray class (which is {e}). By the previous lemma this holds if and only
if the cocycle α is nondegenerate.

Finally, we note that if B is simple, then B ∼= Mk(F) and k2 = dim(B) = |G| =
n. �

We can now complete the proof of Theorem 7 in case the commutation function
satisfies θg,g = 1 for every g ∈ G. Indeed, in [11] Regev showed that exp(Mk(F)) =
dim (Mk(F)) = k2, and since the exponent of an algebra depends only on its ideal
of identities, we have from Lemma 31 that if A has a regular G-grading such that
θg,g = 1 for all g ∈ G, then |G| is an invariant of A (as an algebra and independent
of the grading).

Corollary 36. Let A be an algebra over an algebraically closed field F of character-
istic zero. If G is a finite group such that A has a nondegenerate regular G-grading
with θg,g = 1 for all g ∈ G, then |G| = exp(A).

Wemove on to the general case where θg,g can be−1. LetH={g ∈ G | θg,g = 1}.
We are to show that H is a subgroup of G of index 1 or 2. Then, if the index is
1, we are in the previous case where θg,g = 1 for all g ∈ G, whereas in the second
case, we will find a twisted group algebra for the group G such that its Grassmann
envelope will be PI-equivalent to A.

Let E = E1 ⊕E−1 be the infinite dimensional Grassmann algebra over the field
F, where E1 and E−1 are the even and odd components of E. As noted above, this
grading on E is a regular C2-grading with commutation function τ : C2×C2 → F

×

determined by τ (1, 1) = τ (1,−1) = τ (−1, 1) = 1 and τ (−1,−1) = −1.

Lemma 37. Let θ be a G-commutation function. Then there is a 2-cocycle α ∈
Z2(G,F×) and a subgroup H ≤ G such that for B = F

αG, B1 =
⊕

h∈HBh, B−1 =⊕
g/∈HBg, the Grassmann envelope B̃ = (B1 ⊗ E1) ⊕ (B−1 ⊗ E−1) is a regularly

G-graded algebra with commutation function θ.

Proof. Let ψ : G → {±1} be the map ψ(g) = θg,g. We claim that ψ is a ho-
momorphism. To see this, let A be the θ-relatively free algebra (see Proposi-
tion 29). For h, g ∈ G, let θgh,gh be the (unique) scalar such that xg,1yh,1xg,2yh,2 =
θgh,ghxg,2yh,2xg,1yh,1 in A (we use yh,∗ instead of xh,∗ for clarity). From Remark 23
we see that monomials of total degree e are central, and hence we have(

wg−1xg,1

)
yh,1xg,2 (yh,2zh−1) = yh,1 (yh,2zh−1)

(
wg−1xg,1

)
xg,2

= θh,hθg,g (yh,2yh,1) zh−1wg−1 (xg,2xg,1)

= θh,hθg,gyh,2 (yh,1zh−1)
(
wg−1xg,2

)
xg,1

= θh,hθg,g
(
wg−1xg,2

)
yh,2xg,1 (yh,1zh−1) ,

wg−1 (xg,1yh,1) (xg,2yh,2) zh−1 = θgh,ghwg−1 (xg,2yh,2) (xg,1yh,1) zh−1 .

It follows that θgh,gh = θg,gθh,h, and hence letting H = ker(ψ) we have either
H = G or [G : H] = 2. The case where H = G is the case considered above, so
we can assume that H �= G. In this case, roughly speaking, we apply first the
Grassmann envelope operation to “turn the −1’s (in the image of θg,g) into +1’s”,
then use the previous case to find some B = F

αG, and finally apply the Grassmann
envelope operation once again in order to return to the original identities.
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To start with, we consider the group G̃ = {(g, ψ(g)) | g ∈ G} ≤ G × Z/2Z which
is clearly isomorphic to G. Then we define on G a new commutation function η by
η((g1,...,gn),σ) = θ((g1,...,gn),σ)τ((ψ(g1),...,ψ(gn)),σ) where τ is the commutation function
of the Grassmann algebra. The function η satisfies ηg,g = θg,gτψ(g),ψ(g) = 1 by
the definition of ψ. We may apply now the case considered above (that is, when
θg,g = 1, for all g ∈ G) and obtain a suitable twisted group algebra B = F

αG,
α ∈ Z2(G,F×), with commutation function η. We now apply the Grassmann

envelope operation once again. Let B̃ be the G̃ graded algebra B̃ = (B ⊗ E)G̃ =
(BH ⊗ E0)⊕ (BG\H ⊗ E1), which is the Grassmann envelope of B = BH ⊕BG\H .

Then B̃ is a regularly G̃ ∼= G-graded algebra (since it is a subalgebra of the regularly

G×C2-graded algebra B ⊗E). We claim the commutation function η̃ of B̃ equals
θ. Indeed,

η̃((g1,...,gn),σ) = η((g1,...,gn),σ)τ((ψ(g1),...,ψ(gn)),σ) = θ((g1,...,gn),σ),

and so B̃ is the required envelope. �

Let us pause for a moment and summarize what we have so far. By the previous
lemma we have constructed an algebra B̃ which has a regular G-grading whose
commutation function coincides with a given commutation function θ, and hence,
if θ is the commutation function of a regularly G-graded algebra A, we have in fact
constructed a regularly G-graded algebra B̃ with the same commutation function.
It follows from Lemma 31 that IdG(A) = IdG(B̃), Id(A) = Id(B̃) and hence

exp(A) = exp(B̃). The main point for constructing the algebra B̃ is that in case

the grading is nondegenerate, it enables us to show that ord(G) = exp(B̃). For this

we need to further analyze the algebra B̃ (constructed in Lemma 37).

Note that the algebras B and B̃ in Lemma 37 satisfy θg1,g2 = τψ(g1),ψ(g2)θ̃g1,g2 .

In particular if h ∈ H and g ∈ CG(h), then θg,h = θ̃g,h. Since the grading on B̃ is
nondegenerate, then for every h ∈ H there is some g ∈ CG(h) with θh,g �= 1, and
from what we just said, this is also true for B.

Lemma 38. Let G be a finite group and H a subgroup of index 2. Let B = F
αG

be a twisted group algebra such that for every e �= h ∈ H there is some g ∈ CG(h)
such that UhUg �= UgUh. Then the induced Z2

∼= G/H grading on B is Z2-simple.

Proof. Suppose first that the twisted group algebra FβH, where β = α |H , is simple.
Let 0 �= I be a Z2-graded ideal of B and denote I0 = I ∩ BH and I1 = I ∩ BG\H ,

so I = I0 ⊕ I1. Observe that since I0 is an ideal of FβH, it is either 0 or FβH. On
the other hand, taking any Ug where g /∈ H, we have Ug · I0 ⊆ I1, and since Ug is
invertible in F

αG we have equality. It follows that I0 = F
βG, for otherwise I = 0.

We now have

dim(I) = dim(I0) + dim(I1) = 2 dim(I0) = 2 |H| = |G| = dim(B),

so we see that I = B. This proves that B is Z2-simple in that case.
If B is simple, then it must also be Z2-simple, so assume that neither B nor FβH

are simple or equivalently both α and β are degenerate 2-cocycles. This means that
there is h0 ∈ H such that Uh0

Uh = UhUh0
for all h ∈ CH(h0), and similarly there is

g0 ∈ G such that UgUg0 = Ug0Ug for all g ∈ CG(g0). Note that by the assumption
on B we must have g0 /∈ H. Let {ti} , {si} be left coset representatives of CH(h0)
and CG(g0) respectively. By Lemma 34 we have a =

∑
UtiUh0

U−1
ti ∈ Z(FβH) and
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b =
∑

UsiUg0U
−1
si ∈ Z(FαG). If si /∈ H then sig0 ∈ H is a representative of the

same left coset of CG(g0) as si, so we may assume that si ∈ H for all i.
By the assumption on B, there is some g1 ∈ CG(h0) such that Ug1Uh0

U−1
g1 = cUh0

with c �= 1, and in particular g1 /∈ H by the choice of h0. It is easily seen that{
g1tig

−1
1

}
is again a set of left coset representatives of CH(h0) in H (H is normal

in G and g1 ∈ CG(h0)). We now have that

Ug1aU
−1
g1 =

∑
Ug1tig

−1
1

cUh0
U−1
g1tig1 = ca.

Let h ∈ H be such that hg1 = g0. Then

ab = ba =
∑

UsiUg0aU
−1
si = α(h, g1)

−1
∑

UsiUhUg1aU
−1
si

= α(h, g1)
−1ca

∑
UsiUhUg1U

−1
si = ca

∑
UsiUg0U

−1
si = cab,

and we get a contradiction. Thus, we must have that either FαG or FβH are simple.
In both cases the algebra F

αG is Z2
∼= G/H-simple and the lemma is proved. �

Lemma 39. Let G be a finite group and H a subgroup of index 2. Let B = F
αG

and let B̃ = (E1 ⊗BH) ⊕
(
E−1 ⊗BG\H

)
be the Grassmann envelope of B. We

denote by θ and θ̃ the commutation functions of B and B̃ respectively. If the
regular G-grading on B̃ is nondegenerate, then B is a Z2-simple algebra.

Proof. By nondegeneracy of the grading, we have for any e �= h ∈ H an element
g ∈ CG(h) such that θg,h �= 1 in B̃. But the Grassmann envelope operation does
not change this property, so it holds for the G-graded algebra B. Now use the
previous lemma. �

The fact that the algebra B = F
αG is finite dimensional over F (F is algebraically

closed of characteristic zero) and Z2-simple almost determines the structure of B.

Corollary 40. The algebra B = F
αG in the last lemma is Z2-isomorphic to one

of the following algebras.

(1) B = Mn(F) with the grading B1 = B and B−1 = 0.
(2) B = Mn(F) with the grading

B1 = M1
(n,m) =

{(
D1 0
0 D2

)
| D1 ∈ F

m×m D2 ∈ F
(n−m)×(n−m)

}
,

B−1 = M−1
(n,m) =

{(
0 D1

D2 0

)
| D1 ∈ F

m×(n−m) D2 ∈ F
(n−m)×m

}
.

(3) B = Mn(F[t]/t2=1) with the grading B1 = Mn(F) and B−1 = t ·Mn(F).

Proof. This is well known. See for instance Lemma 6 in [8]. �

In our case, the algebra B satisfies an additional condition, namely dim(B1) =
dim(B2) = |H|, so if B is of the second type above we must have n = 2m.

We can now complete the proof of part 1 of Theorem 7.

Corollary 41. Let A be an algebra over an algebraically closed field F of charac-
teristic 0. For every finite group G, if A has a nondegenerate regularly G-graded
structure, then |G| = exp(A).
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Proof. We know that there is a simple Z2-graded algebra B = F
αG (where B is

one of the three types mentioned in the corollary above) such that the algebra

B̃ = E(B) satisfies IdG(B̃) = IdG(A). In [7] Giambruno and Zaicev computed the
exponent of the Grassmann envelope of any Z2-simple algebras and showed that
exp(B̃) = exp(E(B)) = dim(B) = |G|. Because IdG(B̃) = IdG(A) we get that

exp(A) = exp(B̃) = |G|. �
We close this section with some additional corollaries of Lemmas 37 and 39.
Let us denote the Grassmann envelope of the algebra B in Corollary 40 (types

(2) and (3) respectively) as follows:

M2m,m(E) =
[
E1 ⊗M1

(2m,m)(F)
]
⊕
[
E−1 ⊗M−1

(2m,m)(F)
]
,

Mn(E) = [E1 ⊗Mn(F)]⊕ [E−1 ⊗ t ·Mn(F)] ; t2 = 1.

Corollary 42. Suppose that A has a nondegenerate regular G-grading for some
finite group G. Then one of the following holds.

(1) Id(A) = Id(Mn(F)) for some n ∈ N and then exp(A) = n2.
(2) Id(A) = Id(M2m,m(E)) for some m ∈ N and then exp(A) = (2m)2.
(3) Id(A) = Id(Mn(E)) for some n ∈ N and then exp(A) = 2n2.

It is well known that the families considered in the corollary above are mutually
exclusive. Furthermore, different integers n or m yield algebras which are PI-
nonequivalent. Indeed, algebras within the same type are PI-nonequivalent as their
exponent is different. Next, any algebra of type 1 satisfies a Capelli polynomial,
whereas any algebra of type 2 or 3 does not. Finally, the exponent of any algebra
of type 2 is an exact square, whereas this is not the case for any algebra of type 3.
Thus if we let U = {Mn(F) : n ∈ N} ∪ {M2m,m(E) : m ∈ N} ∪ {Mn(E) : n ∈ N} we
have

Corollary 43. Suppose that A has a nondegenerate regular G-grading for some
finite group G. Then there is a unique algebra C ∈ U such that A and C are
PI-equivalent.

From the results above we can now derive easily a consequence on the commu-
tation matrix MA for a regularly G-graded algebra A with commutation function
θ.

The complete proof of Theorem 7 (parts 2 and 3) is presented in the next section.
From the definition of the commutation matrix (see subsection 1.1.1) we see that

MA
g,g = θg,gUe. Recall that for nondegenerate regularly G-graded algebras of type

1 we have θg,g = 1 for all g ∈ G, whereas for type 2 and 3 half of the entries on
the diagonal of MA are Ue and half are −Ue. This clearly implies the following
corollary.

Corollary 44. Let A be an F algebra with a nondegenerate regular G grading and
commutation matrix MA. Then tr(MA) is an invariant of A and either tr(MA) = 0
or tr(MA) = exp(A)Ue = |G|Ue.

3.1. The commutation matrix. It is easy to exhibit algebras with nonisomorphic
nondegenerate regular G-gradings for some group G as well as examples of algebras
with minimal regular gradings with nonisomorphic groups. For instance the algebra
M4(F) admits (precisely) two nonisomorphic minimal gradings with the group Z/4Z×
Z/4Z = 〈g, h〉. These gradings are determined by bicharacters θ1 and θ2, where
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θ1(g, h) = ζ4 and θ2(g, h) = ζ34 . Here ζ4 denotes a primitive 4-th root of unity.
On the other hand, the algebra M2(F) admits a (unique) nondegenerate grading
with the Klein 4-group, and hence the algebra M4(F) ∼= M2(F) ⊗M2(F) admits a

nondegenerate regular grading with the group (Z/2Z)4.
We therefore see that in general the entries of commutation matrices which

correspond to different nondegenerate regular gradings on an algebra A may be
distinct. However, the last corollary shows that the trace of the commutation
matrices remains invariant.

Our goal in this section is to extend Corollary 44 and show that any two such
matrices corresponding to nondegenerate gradings are conjugate (Theorem 7).

We will follow the notation from subsection 1.1.1. In particular we have B =
F
αG, H = ker (g �→ θg,g = ψ(g)) (a subgroup of G of index ≤ 2) and A is PI-

equivalent to the Grassmann envelope of B with respect to the Z/2Z-grading B =
BH ⊕BG\H .

Before we consider nondegenerate gradings, let us analyze briefly the degenerate
case. If G is abelian, the commutation matrix is given by MA

g,h = θ(g, h)Ue. Hence,

since the grading is not minimal, there exists g �= e such that θ(g, h) = θ(h, g) = 1
for all h ∈ G and so MA is not invertible. The next proposition shows that this is
true in the nonabelian case as well.

Proposition 45. Let A be a regularly G-graded algebra with a degenerate grading.
Then MA is not invertible.

Proof. Let B = F
αG be the twisted group algebra which corresponds to the G-

graded algebra A and denote by θB and θA the corresponding commutation func-
tions. We note that for commuting elements g1, g2 ∈ G we have θBg1,g2 = −θAg1,g2 if

θAg1,g1 = θAg2,g2 = −1 and θBg1,g2 = θAg1,g2 otherwise.
Since the field F is algebraically closed of characteristic zero, B is a direct product

of matrix algebras over F. Fix a representation ρ : B → Mn(F). The grading on
A is degenerate, so there is some e �= h ∈ G such that θAh,g = 1 for all g ∈ CG(h)

and in particular θAh,h = 1. We thus have θBh,g = 1 for all g ∈ CG(h). As a

consequence, applying Lemma 34, the element z =
∑

UtiUhU
−1
ti , where {ti} are

left coset representatives of CG(h), is central in B. Note that since H is normal,
we get that z is in F

αH.
Let v ∈

∏
g∈GB (a vector of size ord(G) with entries in B) where vg = λgUg for

some λg ∈ F, and consider

(
MAv

)
g
=
∑
ω∈G

MA
g,ωvω =

∑
ω∈G

τg,ωUgUωU
−1
g U−1

ω λωUω = Ug

[∑
ω∈G

τg,ωλωUω

]
U−1
g .

Clearly, we may choose the λh’s such that
∑

h∈G τg,hλhUh = λ1Ue + λ2z for all

g ∈ G. This element is central, so we have
(
MAv

)
g
= λ1Ue + λ2z. But the

center of Mn(F) is F · I, so there is some c ∈ F such that ρ(z) = c · I and hence
ρ(
(
MAv

)
g
) = (λ1 + cλ2) · I. We see that if we choose λ1, λ2 not both zero such

that λ1 + cλ2 = 0, we have that ρ(MAv) = 0 for some v �= 0. Moreover, we note
that the nonzero entries of v are invertible in B.

Let ρi be the distinct representations of B and let ei ∈ B be such that ρi(ej) =
δi,j · I. For each i let vi be a vector corresponding to ρi as constructed above and
let v =

∑
viei ∈

∏
g∈GB. Then ρi(vg) = ρi(

∑
vigej) = ρi(v

i
g). Furthermore, taking
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g ∈ G such that vig �= 0, we know that vig is invertible and so ρi(v
i
g) �= 0. This

implies that v �= 0. On the other hand, we get for each i,

ρi(M
Av) =

∑
j

ρi(M
Avj)ρi(ej) = ρi(M

Avi) = 0

and so MAv = 0. We conclude that MA is not invertible from the left, and similar
computations show that it is not invertible from the right. �

Now we consider the case where the grading is nondegenerate.

Proposition 46. Let A be a nondegenerate regularly G-graded algebra; then MA ·
MA = |G| Id · Ue.

Proof. Recall that for any fixed g ∈ G, the function θA(·,g) : CG(g) → F
× is a

character, and since the grading is nondegenerate, this character is nontrivial for
g �= e.

For fixed a, c ∈ G, setN = CG(a
−1c) and choose a set of left coset representatives

{ti}[G:N ]
i=1 ⊂ G of N in G. Then

M2
a,c =

∑
b∈G

Ma,bMb,c =
∑
b∈G

τa,bτb,cUaUbU
−1
a U−1

b UbUcU
−1
b U−1

c

=
∑
b∈G

τac−1,bUaUb

(
U−1
a Uc

)
U−1
b U−1

c

=
∑
i

UaUtiτac−1,ti

[∑
h∈N

τac−1,hUh

(
U−1
a Uc

)
U−1
h

]
U−1
ti U−1

c

=
∑
i

UaUtiτac−1,ti

[∑
h∈N

τac−1,hθ
B
h,a−1c

] (
U−1
a Uc

)
U−1
ti U−1

c .

Notice that since ψ : G → {±1}, we have τac−1,h = τh,ca−1 = τh,a−1c, where
τg,h = τψ(g),ψ(h) is the commutation function of the Grassmann algebra with the

Z2-grading. In addition, the character θA(·, a−1c) : N → F
× is trivial if and only if

a = c, and so we get that∑
h∈N

τac−1,hθ
B
h,a−1c =

∑
h∈N

τh,a−1cθ
B
h,a−1c =

∑
h∈N

θAh,a−1c =

{
0, a �= c,

|N | , a = c,

⇒M2 = |G| Id · Ue.

This completes the proof of the proposition. �

In the next discussion we use the notation of abelian groups, namely MA ∈
M|G|(F) with MA

g,h = θ(g, h). This can be generalized to the nonabelian (i.e. not

necessarily abelian) in the following way. We may view B = F
αG as a direct sum

of matrices, and then also M|G|(F
αG) is isomorphic to a direct sum of matrices.

Alternatively, we may factor through a representation ρ : B → Mt(F) of B and
then extend it to ρ : M|G|(F

αG) → M|G|t(F). In any case, the matrix MA can be
viewed as a matrix in Mk(F) for some k large enough.

It follows from the last proposition that the commutation matrix MA satisfies
the polynomial p(x) = x2 − n = (x −

√
n)(x +

√
n) where n = |G| �= 0. Hence,

the corresponding minimal polynomial is either (x−√
n),(x+

√
n) or p(x). In each
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case the minimal polynomial has only simple roots and hence the matrix MA is
diagonalizable.

Let α+ and α− denote the multiplicities of the eigenvalues
√
n and −

√
n respec-

tively. Then we have α+ + α− = n and α+ − α− = tr(MA)√
n

.

In our case, MA has only 1’s on the diagonal (the first type of regular algebras),
or half 1’s and half −1’s (the second and third type of regular algebras). Moreover,
by Corollary 44 we know that this depends only on the algebra A and not on the
grading.

Thus, for algebras of the first type (in Corollary 42) we have that n = exp(A) =
|G| is a square and tr(MA) = n. In that case, the equalities above take the form

α+ + α− = n = m2,

α+ − α− =
tr(MA)√

n
=

n√
n
= m,

and hence

α+ =

(
m+ 1

2

)
, α− =

(
m

2

)
.

For algebras of the second or third type (in Corollary 42) we have n = exp(A),
which is either 2m2 or (2m)2 for some m, and tr(MA) = 0. Then, here, the
corresponding equalities are

α+ + α− = n,

α+ − α− = 0,

and hence
α+ = α− =

n

2
.

Corollary 47. Suppose the algebra A admits nondegenerate regular gradings with
groups G and H and let MA

G and MA
H be the corresponding commutation matrices.

Then the following hold.

(1) The matrices MA
G and MA

H are conjugate.
(2) The characteristic and minimal polynomial of MA

G (in fact we may write
“of MA”) are in Z [x].

Proof. (1) By the proposition above we have
(
MA

G

)2
=
(
MA

H

)2
= exp(A)I and

the trace is an invariant of A. Furthermore, the matrices MA
G and MA

H are
both diagonalizable and have the same eigenvalues (with multiplicities). In
particular, MA

G and MA
H are conjugate.

(2) If n = exp(A), then the eigenvalues of MA are ±
√
n. In particular, if n

is a square, then the minimal and characteristic polynomials of MA are in
Z [x].

In case n = 2m2 we have α+ = α− = n
2 = m2, and so the characteristic

polynomial is

m2∏
1

(x−m
√
2)

m2∏
1

(x+m
√
2) =

m2∏
1

[
(x−m

√
2)
(
x+m

√
2
)]

=
m2∏
1

(
x2 − 2m2

)
=
(
x2 − n

)m2

∈ Z [x] ,

and the minimal polynomial is (x−√
n)(x+

√
n) = x2 − n. �
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Finally, an easy computation of the free coefficient of the characteristic polyno-

mial in each one of the cases considered above yields that det(MA
G ) = ± |G||G|/2

.
This proves part 3 of Theorem 7, and hence the entire theorem is now proved.

As promised, we now compute the commutation matrix for the G-regular alge-
bras constructed in Lemma 26, where G is an arbitrary finite group.

In case (2), the algebras A,B and A⊕B have the same commutation function θ.
Thus, the cocycles corresponding to A,B,A⊕B are isomorphic (up to a cobound-
ary), and therefore the corresponding twisted group algebras of A,B and A ⊕ B
are isomorphic. With this identification of twisted group algebras we get that the
commutation matrices of A,B and A⊕B are the same.

In case (3) we consider AN =
⊕

g∈N Ag for some subgroup N of G. Let αN

be the restriction of α to N × N . Then αN is the cocycle corresponding to the
algebra AN and there is a natural graded embedding F

αNN ↪→ F
αG. Let M ′ be

the restriction of MA to the coordinates in N ×N . Then the entries of M ′ are in
F
αNN , and this submatrix is actually MAN .
In cases (1) and (4) we have algebras A,B with commutation functions θA, θB

and cocycles α, β which are defined on groups G and H respectively. In case the
groups G and H are abelian, the matrix MA⊗B is just MA ⊗MB. For the general
case, let α⊗ β ∈ Z2 (G×H,F×) be the cocycle defined by

(α⊗ β)((g1, h1), (g2, h2)) = α(g1, g2)β(h1, h2).

Clearly, α⊗β represents the regular algebra A⊗B (with commutation function θA⊗
θB). Furthermore, since FαG⊗F

βH ∼= F
α⊗β(G×H), we can extend this product to

a “matrix tensor product”. In other words, if ϕ : FαG⊗F
βH → F

α⊗β(G×H) is an

isomorphism, then MA⊗B is determined by MA⊗B
(g1,h1),(g2,h2)

= ϕ(MA
g1,g2 ⊗MB

h1,h2
).

In case (4), a similar computation shows that there is an isomorphism ψ : FαG⊗̂
F
βG → F

α·βG and then MA⊗̂B (which is defined over F
αβG) is determined by

MA⊗̂B
g,h = ψ(MA

g,h ⊗ MB
g,h). Finally, we note that there is a natural embedding

G ∼= G̃ = {(g, g) | g ∈ G} ≤ G × G. Hence we may view A⊗̂B as (A⊗B)G̃, and

with this identification MA⊗̂B is the restriction of MA⊗B to G̃.

3.2. Nondegenerate skew-symmetric bicharacters. If the group G is abelian,
then any G-commutation function θ is defined by the skew-symmetric bicharacter
θ(g, h) = θg,h for every g, h ∈ G (the commutation of two elements).

Our goal in this section is to present a classification of the the pairs (G,φ) where
G is a (finite) abelian group and φ is a nondegenerate skew-symmetric bicharacter
defined on G. In fact, this classification is known and can be found in [14]. Never-
theless, for the reader’s convenience and completeness of the article, we recall the
main results here.

Definition 48. Let θ1, θ2 be two bicharacters on G1, G2 respectively. We say that
θ1, θ2 are isomorphic and write θ1 ∼= θ2 if there is an isomorphism ϕ : G1 → G2

such that θ1(g, h) = θ2(ϕ(g), ϕ(h)).

Definition 49. Let θ : G×G → F
× be a skew-symmetric bicharacter. We say that

θ is reducible if there are groups {e} �= Hi and bicharacters θi on Hi, for i = 1, 2,
such that G ∼= H1 ×H2 and θ ∼= θ1 ⊗ θ2.
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In what follows, we present three types of regularly graded algebras. It turns
out that the bicharacters which correspond to some special cases of these gradings
are irreducible and generate all possible skew-symmetric bicharacters.

Example 50. The standard Z/2Z-grading on the Grassmann algebra (Example 3).

Example 51. The Z/nZ × Z/nZ-grading on Mn(F) defined in Example 16.

Example 52. Let ζ be a primitive root of unity of order 2n, and define

Xζ =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 ζ2 0 0
... 0 ζ4

. . .
...

0
. . .

. . . 0
0 0 · · · 0 ζ2n−2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0

0 0 1
. . . 0

...
. . .

. . .
...

1 0
0 0 1
1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Mn(F),

U =

(
Xζ 0
0 ζXζ

)
, V =

(
0 I
Y 0

)
∈ M2n(F).

Then

UV =

(
Xζ 0
0 ζXζ

)(
0 I
Y 0

)
=

(
0 Xζ

ζXζY 0

)
,

V U =

(
0 I
Y 0

)(
Xζ 0
0 ζXζ

)
=

(
0 ζXζ

Y Xζ 0

)
=

(
0 ζXζ

ζ2XζY 0

)
= ζUV.

Define a Z2n ×Z2n-grading on M2n,n(E) by M2n,n(E)(k,l) = UkV l ⊗E(−1)l , where
E = E1 ⊕ E−1 is the usual grading on the Grassmann algebra. This induces a
minimal regular grading on M2n,n(E) with commutation function θ determined by

θ [(1, 0), (1, 0)] = 1 θ [(1, 0), (0, 1)] = ζ−1 θ [(0, 1), (0, 1)] = −1.

We consider the bicharacters which correspond to (some special cases of) the
gradings just described.

(1) ({±1} , τ ): where τ (1, 1) = τ (1,−1) = τ (−1, 1) = 1, τ (−1,−1) = −1.
(2) (Zpm × Zpm , ηpm): where a = (1, 0), b = (0, 1) and ηpm(a, a) = ηpm(b, b) =

1, ηpm(a, b) = ζ for some primitive pm root of unity ζ.
(3) (Z2m × Z2m , ε2m): where a = (1, 0), b = (0, 1) and ε2m(a, a) = 1, ε2m(b, b)

= −1, ε2m(a, b) = ζ for some primitive 2m root of unity ζ.

Definition 53. A bicharacter is called basic if it is isomorphic to one of bicharacters
(1)-(3).
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Remark 54. Let a and b be the elements which appear in the definition of the
second or third basic bicharacter (of order pm and with primitive root of unity ζ).
Note that for any prime to p integer k, we have G = 〈ka〉 × 〈b〉, θ(ka, ka) = 1
and θ(ka, b) = ζk, so for different choices of primitive pm-roots of unity we get
isomorphic bicharacters. In particular, for each group G, if θ1, θ2 are two basic
bicharacters of the same type on G, then they are isomorphic.

The next 3 results were proved in [14] (see Lemma 6, Lemma 7 and Theorem 1).

Lemma 55. The basic characters τ, ηpm , ε2n , where m,n ≥ 1, are nonisomorphic.
Furthermore, the set of nondegenerate irreducible bicharacters on nontrivial groups
coincides with the set {τ, ηpm , ε2n : m ≥ 1, n ≥ 2} (that is, the set of basic bichar-
acters except ε2).

We can now write each nondegenerate skew-symmetric bicharacter θ as a product
of basic bicharacters. In general, this presentation is not unique. Nevertheless, using
the isomorphisms below, there exists a canonical presentation for any θ.

(1) ε2n ⊗ ε2m ∼= ε2n ⊗ η2m for all 1 ≤ n ≤ m ∈ N.
(2) ε2n ⊗ τ ∼= η2n ⊗ τ for all n ∈ N.
(3) τ ⊗ τ ∼= ε2.

Theorem 56. Let G be a finite abelian p-group and θ a nondegenerate skew-
symmetric bicharacter on G. Then there is a unique canonical presentation G =∏n

1 Gi , θ ∼=
⊗

θ |Gi
, such that for each i, the bicharacter (Gi, θ |Gi

) is a basic
bicharacter, where at most one basic bicharacter is of type 1 or type 3.

Note, in particular, that the three types of bicharacters in the last theorem
correspond to the three types of algebras in Corollary 40. We can now determine
the abelian groups G which admit a nondegenerate regular grading or equivalently
a nondegenerate skew-symmetric bicharacter. To this end, let θ be a nondegenerate
skew-symmetric bicharacter on an abelian group G. If the canonical decomposition
of θ has no factor isomorphic to τ , then the group G is isomorphic to N ×N (i.e.
central type, abelian). On the other hand, if one of the components in the canonical
decomposition is isomorphic to τ , then we have G = H × Z/2Z, where

(1) H is a group of central type determined by H = {h ∈ G | θ(h, h) = 1}.
(2) θ |Z/2Z∼= τ .

In the general case, if H is of central type, then clearly H×Z/2Z admits a nondegen-
erate commutation function. However, the following example shows that one may
have nondegenerate commutation functions on groups which are not of this kind.
For instance, in Example 19, we considered the 2-cocycle α ∈ Z2(D8,F

×) induced
by the extension

1 �� {±1} �� Q16
�� D8

�� 1 ,

where we view the group {±1} as a subgroup of F×. One can check easily that
the (natural) D8-grading on the Grassmann envelope A = E⊗̂F

αD8 is regular and
nondegenerate.
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