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STABILITY OF DIRICHLET HEAT KERNEL ESTIMATES

FOR NON-LOCAL OPERATORS

UNDER FEYNMAN-KAC PERTURBATION

ZHEN-QING CHEN, PANKI KIM, AND RENMING SONG

Abstract. In this paper we show that Dirichlet heat kernel estimates for a

class of (not necessarily symmetric) Markov processes are stable under non-
local Feynman-Kac perturbations. This class of processes includes, among
others, (reflected) symmetric stable-like processes in closed d-sets in R

d, killed
symmetric stable processes, censored stable processes in C1,1 open sets, as
well as stable processes with drifts in bounded C1,1 open sets. These two-
sided estimates are explicit involving distance functions to the boundary.

1. Introduction

Suppose that X is a Hunt process on a state space E with transition semigroup
{Pt : t ≥ 0}. A Feynman-Kac transform of X is given by

Ttf(x) = Ex [exp(Ct)f(Xt)] ,

where Ct is an additive functional of X. When Ct is a continuous additive func-
tional of X, the transform above is called a local Feynman-Kac transform. When X
is discontinuous and Ct is a discontinuous additive functional of X, the transform
above is called a non-local Feynman-Kac transform. Feynman-Kac transforms play
an important role in the probabilistic as well as analytic aspect of potential theory,
and also in mathematical physics; see, for instance, [12–15, 26, 27] and the refer-
ences therein. Most of the literature on Feynman-Kac semigroups are about local
Feynman-Kac semigroups. We refer the reader to [15,27] for nice accounts on local
Feynman-Kac semigroups of Brownian motion. Non-local Feynman-Kac transforms
are also very important in various applications. For example, it is shown in [13]
that the killed relativistic α-stable process in any bounded C1,1 open set D can be
obtained from the killed symmetric α-stable process in D via non-local Feynman-
Kac transforms. (See [19, 20] for some extension to more general open sets and
more general processes.)
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An important question related to Feynman-Kac transforms is the stability of var-
ious properties. This type of question has received intensive study in recent years.
For instance, it is shown in [1, 27] that under a certain Kato class condition, the
integral kernel (also called the heat kernel) of a local Feynman-Kac semigroup of
Brownian motion admits two-sided Gaussian bound estimates. In [22], sharp two-
sided estimates on the densities of (local) Feynman-Kac semigroups of killed Brown-
ian motions in C1,1 domains were established. Non-local Feynman-Kac semigroups
for symmetric stable processes and their associated quadratic forms were studied
in [28,29]. By combining some ideas from [32] with results from [11], it was proved
in [30] that, under a certain Kato class condition, the heat kernel of the non-local
Feynman-Kac semigroup of a symmetric stable-like process X on R

d is comparable
to that of X. The symmetry condition on F (x, y) plays an essential role in the
argument of [30]. The non-symmetric pure jump case for stable-like processes is
dealt with in [31]. For recent development in the study of non-local Feynman-Kac
transforms for general symmetric Markov processes, we refer the reader to [4, 5]
and the references therein. We also mention that the stability of Martin boundary
under non-local Feynman-Kac perturbation is addressed in [6].

Recently, sharp two-sided Dirichlet heat kernel estimates have been obtained
for several classes of discontinuous processes (or non-local operators), including
symmetric stable processes [7], censored stable processes [8], relativistic stable pro-
cesses [9], and stable processes with drifts [10]. The main purpose of this paper is to
study the stability of Dirichlet heat kernel estimates under the following non-local
Feynman-Kac transform:

Ttf(x) = Ex

[
exp
(
At +

∑
s≤t

F (Xs−, Xs)
)
f(Xt)

]
,

where A is a continuous additive functional of X having finite variations on each
compact time interval and F (x, y) is a measurable function that vanishes along the
diagonal. The approach of this paper is quite robust so that it applies to a class of
not necessarily symmetric Markov processes that includes all of the four families of
processes mentioned above in bounded C1,1 open sets.

To the best of the authors’ knowledge, Dirichlet heat kernel estimates for (either
local or non-local) Feynman-Kac semigroups of discontinuous processes are studied
here for the first time. The main challenge in studying Dirichlet heat kernel esti-
mates of Feynman-Kac semigroups is to get the exact boundary decay rate of the
heat kernels. While our main interest is in the Dirichlet heat kernel estimates for
Feynman-Kac semigroups, our theorem also covers the whole space case as well as
“reflected” stable-like processes on subsets of Rd. In particular, our result recovers
and extends the main results of [30, 31] where D = R

d. Even in the whole space
case, our approach is different from those in [30, 31].

1.1. Setup and main result. In this paper we always assume that α ∈ (0, 2),
d ≥ 1, D is a Borel set in R

d. For x ∈ D, δD(x) denotes the Euclidean distance
between x and Dc. We use “:=” to denote a definition, which is read as “is defined
to be”. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. The Euclidean
distance between x and y is denoted as |x− y|.
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For γ ≥ 0, we define

(1.1) q(t, x, y) := t−d/α ∧ t

|x− y|d+α
, t > 0, x, y ∈ R

d,

ψγ(t, x) :=

(
1 ∧ δD(x)

t1/α

)γ

, t > 0, x ∈ D,

and

(1.2) qγ(t, x, y) := ψγ(t, x)ψγ(t, y)q(t, x, y), t > 0, x, y ∈ D.

Throughout this paper, X is a Hunt process on D with transition semigroup {Pt :
t ≥ 0} that admits a jointly continuous transition density pD(t, x, y) with respect
to the Lebesgue measure, and there exist C0 ≥ 1 and γ ∈ [0, α ∧ d) such that

(1.3) C−1
0 qγ(t, x, y) ≤ pD(t, x, y) ≤ C0qγ(t, x, y)

for all (t, x, y) ∈ (0, 1] × D × D. It is easy to see that under this assumption,
X is a Feller process satisfying the strong Feller property. Note that q(t, x, y) is
comparable to the transition density of symmetric α-stable processes in R

d. So by
increasing the value of C0 if necessary, we have

(1.4) C−1
0 ≤

∫
Rd

q(t, x, y)dy ≤ C0 for all (t, x) ∈ (0,∞)× R
d.

Thus

(1.5)

∫
D

pD(t, x, y)dy ≤ C2
0ψγ(t, x) for all (t, x) ∈ (0, 1]×D.

We remark that the process X may be non-symmetric. We assume that X has
a Lévy system (N, t), where N = N(x, dy) is a kernel given by

N(x, dy) =
c(x, y)

|x− y|d+α
dy,

with c(x, y) a measurable function that is bounded between two positive constants
on D × D. That is, for any x ∈ D, any stopping time T (with respect to the
filtration of X) and any non-negative measurable function f on [0,∞) × D × D
with f(s, y, y) = 0 for all y ∈ D and s ≥ 0 that is extended to be zero off D ×D,

(1.6) Ex

⎡⎣∑
s≤T

f(s,Xs−, Xs)

⎤⎦ = Ex

[∫ T

0

(∫
D

f(s,Xs, y)
c(Xs, y)

|Xs − y|d+α
dy

)
ds

]
.

By increasing the value of C0 if necessary, we may and do assume that

(1.7) 1/C0 ≤ c(x, y) ≤ C0 for x, y ∈ D.

Recall that an open set D in R
d (when d ≥ 2) is said to be a C1,1 open

set if there exist a localization radius r0 > 0 and a constant Λ0 > 0 such that
for every z ∈ ∂D, there exist a C1,1-function φ = φz : R

d−1 → R satisfying
φ(0) = 0, ∇φ(0) = (0, . . . , 0), ‖∇φ‖∞ ≤ Λ0, |∇φ(x) − ∇φ(w)| ≤ Λ0|x − w|,
and an orthonormal coordinate system y = (y1, · · · , yd−1, yd) := (ỹ, yd) such that
B(z, r0)∩D = B(z, r0)∩ {y : yd > φ(ỹ)}. We call the pair (r0,Λ0) the characteris-
tics of the C1,1 open set D. By a C1,1 open set in R we mean an open set which can
be expressed as the union of disjoint intervals so that the minimum of the lengths
of all these intervals is positive and the minimum of the distances between these
intervals is positive.
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It follows from [7, 8, 10, 11] that the following are true:

(i) the (reflected) symmetric stable-like process in any closed d-subset D in R
d

(see Subsection 4.1 for the definition of d-set) satisfies the conditions (1.3)
and (1.6) with γ = 0 and c(x, y) a symmetric measurable function that is
bounded between two positive constants;

(ii) the killed symmetric α-stable process in any C1,1 open set D satisfies the
conditions (1.3) and (1.6) with γ = α/2 and c(x, y) ≡ c;

(iii) when d ≥ 2 and α ∈ (1, 2), the killed symmetric α-stable process with drift
in any bounded C1,1 open set D satisfies the conditions (1.3) and (1.6) with
γ = α/2 and c(x, y) ≡ c; and

(iv) when α ∈ (1, 2), the censored α-stable process in any C1,1 open set D
satisfies the conditions (1.3) and (1.6) with γ = α− 1 and c(x, y) ≡ c.

By a locally finite signed measure μ we mean in this paper the difference of two
non-negative σ-finite measures μ1 and μ2 in D. We point out that μ = μ1−μ2 may
not be a signed measure in D in the usual sense as both μ1(D) and μ2(D) may
be infinite. However, there is an increasing sequence of subsets {Fk, k ≥ 1} whose
union is D so that μ1(Fk) + μ2(Fk) < ∞ for every k ≥ 1. So when restricted to
each Fk, μ is a finite signed measure. Consequently, the positive and negative parts
of μ are well defined on each Fk and hence on D, which will be denoted as μ+ and
μ−, respectively. We use |μ| = μ+ +μ− to denote the total variation measure of μ.

For a locally finite signed measure μ on D and t > 0, we define

Nα,γ
μ (t) = sup

x∈D

∫ t

0

∫
D

ψγ(s, y)q(s, x, y)|μ|(dy)ds.

Definition 1.1. A locally finite signed measure μ on D is said to be in the Kato
class Kα,γ if limt↓0 N

α,γ
μ (t) = 0.

Note that if Nα,γ
μ (t) < ∞ for some t > 0, then |μ| is a Radon measure on D. We

say that a measurable function g belongs to the Kato class Kα,γ if g(x)dx ∈ Kα,γ

and we denote Nα,γ
g(x)dx by Nα,γ

g . It is well-known that any μ ∈ Kα,γ is a smooth

measure in the sense of [17]. Moreover, using the fact thatX has a transition density
under each Px, one can show that the continuous additive functional Aμ

t of X with
Revuz measure μ ∈ Kα,γ can be defined without exceptional set; see [18, pp. 236–
237] for details. Concrete conditions for μ ∈ Kα,γ are given in Proposition 4.1.

For any measurable function F on D ×D vanishing on the diagonal, we define

Nα,γ
F (t) := sup

y∈D

∫ t

0

∫
D×D

ψγ(s, z) q(s, y, z)
(
1 +

|z − w| ∧ t1/α

|y − z|
)γ

× |F (z, w)|+ |F (w, z)|
|z − w|d+α

dwdzds.

Definition 1.2. Suppose that F is a measurable function on D ×D vanishing on
the diagonal. We say that F belongs to the Kato class Jα,γ if F is bounded and
limt↓0 N

α,γ
F (t) = 0.

Observe that

Nα,γ
F (t) ≥

∫ t

0

∫
D

ψγ(s, z) q(s, y, z)

(∫
D

|F (z, w)|+ |F (w, z)|
|z − w|d+α

dw

)
dzds.
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So if F (x, y) belongs to F ∈ Jα,γ , then∫
D

|F (x, y)|+ |F (y, x)|
|x− y|d+α

dy < ∞ for a.e. x ∈ D

and, as a function of x, it belongs to Kα,γ .
On the other hand, according to Proposition 4.2, a sufficient condition for F ∈

Jα,γ is |F |(z, w) ≤ A(|z − w|β ∧ 1) for some A > 0 and β > α. This sufficient
condition is enough in our applications.

It is easy to check that if F and G belong to Jα,γ and c is a constant, then the
functions cF, eF − 1, F +G and FG all belong to Jα,γ . Throughout this paper, we
will use the following notation: For any given measurable function F on D ×D,

(1.8) F1(x, y) := eF (x,y) − 1.

For any locally finite signed measure μ on D and any measurable function F on
D ×D vanishing on the diagonal, we define

Nα,γ
μ,F (t) := Nα,γ

μ (t) +Nα,γ
F (t).

When μ ∈ Kα,γ and F is a measurable function with F1 ∈ Jα,γ , we put

Aμ,F
t = Aμ

t +
∑

0<s≤t

F (Xs−, Xs).

Recall that for any non-negative Borel function f on D, Ptf(x) = Ex [f(Xt)]. For
any non-negative Borel function f on D, we define

Tμ,F
t f(x) = Ex

[
exp(Aμ,F

t )f(Xt)
]
, t ≥ 0, x ∈ D.

Then (Tμ,F
t : t ≥ 0) is called the Feynman-Kac semigroup of X corresponding to μ

and F . It follows from [12, Remark 1] that, informally, the semigroup (Tμ,F
t : t ≥ 0)

has L2-infinitesimal generator

Af(x) = (L+ μ)f(x) +

∫
D

(
eF (x,y) − 1

) c(x, y)

|x− y|d+α
f(y)dy,

where L is the L2-infinitesimal generator of X.
The main purpose of this paper is to establish the following result. Recall that

γ ≥ 0 and C0 ≥ 1 are the constants in (1.3) and (1.7). For any bounded measurable
function F on D ×D, we use ‖F‖∞ to denote ‖F‖L∞(D×D).

Theorem 1.3. Let d ≥ 1, α ∈ (0, 2) and γ ∈ [0, α ∧ d). Suppose X is a Hunt
process in a Borel set D ⊂ R

d with a jointly continuous transition density pD(t, x, y)
satisfying (1.3), (1.6) and (1.7). If μ is a locally finite signed measure in Kα,γ and
F is a measurable function so that F1 ∈ Jα,γ , then the non-local Feynman-Kac

semigroup (Tμ,F
t : t ≥ 0) has a continuous density qD(t, x, y), and there exists a

constant C = C(d, α, γ, C0, N
α,γ
μ,F1

, ‖F1‖∞) > 0 such that for all (t, x, y) ∈ (0,∞)×
D ×D,

qD(t, x, y) ≤ eCtqγ(t, x, y).

If μ ∈ Kα,γ and F ∈ Jα,γ , then there exists C̃ = C̃(d, α, γ, C0, N
α,γ
μ,F , ‖F‖∞, T ) ≥ 1

for every T > 0 such that for all (t, x, y) ∈ (0, T ]×D ×D,

C̃−1qγ(t, x, y) ≤ qD(t, x, y) ≤ C̃qγ(t, x, y).
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Here and in the sequel, the dependence of the constant C (with or without
subscripts) on Nα,γ

μ,F1
and ‖F1‖∞ means that the value of the constant C (with or

without subscripts) depends only on the rate at which Nα,γ
μ,F1

(t) goes to zero as

t → 0 and on a specific upper bound for ‖F1‖∞, so does the dependence of the
constant on Nα,γ

μ,F and ‖F‖∞. When D = R
d and γ = 0, Theorem 1.3 in particular

recovers and extends the main results of [30, 31].

1.2. Approach. In this subsection, we outline the main ideas and the approach of
this paper. Assuming the technical results in the next two sections, the contents of
this subsection are rigorous.

We first recall the definition of the Stieltjes exponential. If Kt is a right contin-
uous function with left limits on R+ with K0 = 1 and ΔKt := Kt −Kt− > −1 for
every t > 0, and if Kt is of finite variation on each compact time interval, then the
Stieltjes exponential Exp(K)t of Kt is the unique solution Zt of

Zt = 1 +

∫
(0,t]

Zs−dKs, t > 0.

By [24, IV 19] (or [26, (A4.17)]),

(1.9) Exp(K)t = eK
c
t

∏
0<s≤t

(1 + ΔKs),

where Kc
t denotes the continuous part of Kt. Clearly exp(Kt) ≥ Exp(K)t with the

equality holds if and only if Kt is continuous. The reason Exp(K)t is called the
Stieltjes exponential of Kt is that, by [16, p. 184], Exp(K)t can be expressed as
the following infinite sum of Lebesgue-Stieltjes integrals (recall that Kt is of finite
variation on each compact time interval):

(1.10) Exp(K)t = 1 +

∞∑
n=1

∫
[0,t]

dKsn

∫
[0,sn)

dKsn−1
· · ·
∫
[0,s2)

dKs1 .

The advantage of using the Stieltjes exponential Exp(K)t over the usual exponential
exp(Kt) is the identity (1.10), which allows one to apply the Markov property of
X.

Recall from (1.8) that F1(x, y) = eF (x,y) − 1. In view of (1.9), we can express

exp(Aμ,F
t ) in terms of the Stieltjes exponential:

exp(Aμ,F
t ) = Exp

(
Aμ +

∑
s≤·

F1(Xs−, Xs)
)
t

for t ≥ 0.

Applying (1.10) with Kt := Aμ
t +
∑

s≤t F1(Xs−, Xs) and using the Markov property
of X, we have for any bounded measurable function f ≥ 0 on D,

Tμ,F
t f(x) = Ex

[
exp(Aμ,F

t )f(Xt)
]
= Ex

⎡⎣f(Xt) Exp
(
Aμ +

∑
s≤·

F1(Xs−, Xs)
)
t

⎤⎦
(1.11)

= Ptf(x) + Ex

[
f(Xt)

∞∑
n=1

∫
[0,t]

dKsn

∫
[0,sn)

dKsn−1
· · ·
∫
[0,s2)

dKs1

]
.

Using our integral 3P inequalities (Lemma 2.4 and Theorem 2.7 below), we will
show in the proof of Theorem 3.4 that for any μ ∈ Kα,γ and any measurable
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function F with F1 ∈ Jα,γ , we can change the order of the expectation and the
infinite sum on the right hand side of (1.11). Hence using the Markov property of
X at sn, we have for every t>0 and bounded measurable function f≥0 on D that

Tμ,F
t f(x) = Ptf(x) +

∞∑
n=1

Ex

[
f(Xt)

∫
[0,t]

dKsn

∫
[0,sn)

dKsn−1
· · ·
∫
[0,s2)

dKs1

](1.12)

= Ptf(x) +

∞∑
n=1

Ex

[∫
[0,t]

Pt−snf(Xsn)dKsn

∫
[0,sn)

dKsn−1
· · ·
∫
[0,s2)

dKs1

]
.

Let h1(s) = 1 and hn−1(s) =
∫
[0,s)

dKsn−2
· · ·
∫
[0,s2)

dKs1 for n ≥ 3. When n ≥ 2,

using the Markov property of X we have

Ex

[∫
[0,t]

Pt−snf(Xsn)dKsn

∫
[0,sn)

dKsn−1
· · ·
∫
[0,s2)

dKs1

]
(1.13)

=Ex

[∫
[0,t]

(∫
[0,sn)

Pt−snf(Xsn)hn−1(sn−1)dKsn−1

)
dKsn

]

=Ex

[∫
[0,t)

(∫
(sn−1,t]

Pt−snf(Xsn)dKsn

)
hn−1(sn−1)dKsn−1

]

=Ex

[∫
[0,t)

Ex

[∫
(sn−1,t]

Pt−snf(Xsn)dKsn |Fsn−1

]
hn−1(sn−1)dKsn−1

]

=Ex

[∫
[0,t)

EXsn−1

[∫
(0,t−sn−1]

Pt−sn−1−rf(Xr)dKr

]
hn−1(sn−1)dKsn−1

]

=Ex

[∫
[0,t)

EXsn−1

[∫
(0,t−sn−1]

Pt−sn−1−rf(Xr)dKr

]

×
∫
[0,sn−1)

dKsn−2
· · ·
∫
[0,s2)

dKs1dKsn−1

]
.

Furthermore by (1.6), for any bounded measurable function g ≥ 0 on [0,∞)×D×D,

Ex

[∫
(0,s]

g(s− r,Xr)dKr

]
(1.14)

= Ex

⎡⎣∫
(0,s]

g(s− r,Xr)dA
μ
r +

∑
r≤s

g(s− r,Xr)F1(Xr−, Xr)

⎤⎦
=

∫ s

0

∫
D

pD(r, x, y)g(s− r, y)μ(dy)dr

+ Ex

[∫ s

0

(∫
D

F1(Xr, y)g(s− r, y)
c(Xr, y)

|Xr − y|d+α
dy

)
dr

]
=

∫ s

0

∫
D

pD(r, x, y)g(s− r, y)μ(dy)dr

+

∫ s

0

∫
D

pD(r, x, z)

(∫
D

F1(z, y)g(s− r, y)
c(z, y)

|y − z|d+α
dy

)
dzdr.
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Equations (1.11)–(1.14) motivate us to define p0(t, x, y) := pD(t, x, y) and, for k≥1,

pk(t, x, y) =

∫ t

0

(∫
D

pD(s, x, z)pk−1(t− s, z, y)μ(dz)

)
ds

(1.15)

+

∫ t

0

(∫
D×D

pD(s, x, z)
c(z, w)F1(z, w)

|z − w|d+α
pk−1(t− s, w, y)dzdw

)
ds.

One then concludes from (1.12) and (1.13) (see the proof of Theorem 3.4) that

Tμ,F
t f(x) =

∫
D

qD(t, x, y)f(y)dy, (t, x) ∈ (0,∞)×D,

where

(1.16) qD(t, x, y) :=
∞∑
k=0

pk(t, x, y), (t, x, y) ∈ (0,∞)×D ×D.

Moreover (see (3.10)), there exist constants t1 > 0, c > 0 and 0 < λ < 1 such that

(1.17) |pk(t, x, y)| ≤ (λk+ckλk−1)pD(t, x, y) on (0, t1]×D×D for every k ≥ 1.

From this we deduce that for every t ∈ (0, t1],

(1.18) qD(t, x, y) =

∞∑
k=0

pk(t, x, y) ≤
(

1

1− λ
+

c

(1− λ)2

)
pD(t, x, y).

For the lower bound estimate under the assumption F ∈ Jα,γ , we use (1.17) for
k = 1 and deduce that

qD(t, x, y) ≥ 2−2(λ+c)pD(t, x, y).

(See Theorem 3.5 and its proof below.) This and (1.18) establish Theorem 1.3 for
t ≤ t1. The general case of t ≤ T follows from an application of the Chapman-
Kolmogorov equation.

The keys to establish the estimate (1.17) are two integral forms of the 3P in-
equality given in Lemma 2.4 and Theorem 2.7 below. For a killed Brownian motion
in a smooth domain, the following form of 3P inequality is known (see [23, Lemma
3.1]): for any 0 < c < a ∧ (b − a), there exists N = N(a, b, c) > 0 such that for
every 0 < s < t and x, y, z ∈ D,

(1.19)
pWb (s, x, z)pWa (t− s, z, y)

pWa (t, x, y)
≤ N

δD(z)

δD(x)
pWc (s, x, z) +N

δD(z)

δD(y)
pWc (t− s, z, y),

where pWc (t, x, y) := ψ1(t, x)ψ1(t, y)t
−d/2e−c|x−y|2/t. Recall that when D is a

bounded C1,1 domain in R
d, the transition density pD(t, x, y) of the killed Brownian

motion in D has the following two-sided estimates:

(1.20) c1p
W
c2 (t, x, y) ≤ pD(t, x, y) ≤ c3p

W
c4 (t, x, y) for t ∈ (0, 1] and x, y ∈ D.

For symmetric α-stable processes in R
d, its transition density p(t, x, y) is compa-

rable to q(t, x, y); that is, c1q(t, x, y) ≤ p(t, x, y) ≤ c2q(t, x, y) for all t > 0 and
x, y ∈ R

d. One has the following form of 3P inequality (see [3] and (2.11) below):

q(s, x, z)q(t− s, z, y)

q(t, x, y)
≤ c (q(s, x, z) + q(t− s, z, y))(1.21)

for every 0 < s < t and x, y, z ∈ R
d. The above two inequalities (1.19) and

(1.21) are called 3P inequalities because they involve three probability transition
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density functions (q(s, x, z), q(t− s, z, y) and q(t, x, y) for (1.21)) or their estimates
(pD(s, x, z), pD(t − s, z, y) and pD(t, x, y) in the case of (1.19) in view of (1.20)).
They are coined as analogs to the 3G inequality for Green functions in the literature;
see [15]. Observe that by the elementary inequalities

1

2
(a ∧ b)(a+ b) ≤ (a ∧ b)(a ∨ b) = ab ≤ (a ∧ b)(a+ b), a, b ≥ 0,

(1.21) is equivalent to

q(s, x, z) ∧ q(t− s, z, y) ≤ cq(t, x, y) for every 0 < s < t and x, y, z ∈ R
d.

The above inequality is called a 3P inequality in [3]. The 3P type inequalities
(1.19) and (1.21) played essential roles in establishing the heat kernel estimates
in [3, 21, 23]. However, for processes we are dealing with in this paper, the above
two types of 3P inequalities are no longer true in general (see Remark 2.3 below).
Nevertheless, we will show in Lemma 2.4 that an integral version of the 3P inequality
holds. Moreover we need an estimate on pD(t−s, x, z)pD(s, w, y)/pD(t, x, y), where
z �= w. The desired inequalities are established in Theorem 2.7 below. We call these
inequalities integral 3P inequalities because the left hand sides of these inequalities
contain integrals of 3 qγ ’s in the form qγ(t− s, x, z)qγ(s, w, y)/qγ(t, x, y).

Assumption (1.3) plays a crucial role in this paper. It is worthwhile to study
stability of Dirichlet heat kernel estimates without this condition.

The rest of the paper is organized as follows. In Section 2, we prove some key
inequalities, including two forms of the integral 3P inequality. The main estimates
(1.17) and Theorem 1.3 will be established in Section 3. In the last section, we give
some applications of our main results.

In this paper, we will use capital letters C̃, C, C0, C1, C2, . . . to denote constants
in the statements of results, and their values will be fixed. The lowercase letters
c1, c2, . . . will denote generic constants used in proofs, whose exact values are not
important and can change from one appearance to another. The labeling of the
lowercase constants starts anew in each proof. For two positive functions f and g,
we use the notation f � g, which means that there are two positive constants c1
and c2 whose values depend only on d, α and γ so that c1g ≤ f ≤ c2g.

2. Integral 3P inequalities

In this section we will establish some key inequalities which will be essential in
proving Theorem 1.3. The main results of this section are Lemma 2.2, Theorem
2.5, Lemma 2.6 and Theorem 2.7. Throughout this section, D is a Borel set in R

d.
We start with two lemmas that will be used several times in this section.

Lemma 2.1. For any s, t > 0 and (y, z) ∈ D ×D, we have

(2.1) 1 ∧ δD(z)

t1/α
=

δD(y)

t1/α

(
δD(z) ∧ t1/α

δD(y)

)
and

(2.2)

(
1 ∧ δD(y)

s1/α

)(
1 ∧ δD(z)

t1/α

)
≤ 2

(
1 +

|y − z|
s1/α + δD(y)

)(
1 ∧ δD(y)

t1/α

)
.
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Proof. The identity (2.1) is clear, so we only need to prove (2.2). Since δD(z) ≤
|y − z|+ δD(y), we see that

1 ∧ δD(z)

t1/α
≤ 1 ∧

((
|y − z|+ δD(y)

δD(y)

)
δD(y)

t1/α

)
≤
(
1 +

|y − z|
δD(y)

)(
1 ∧ δD(y)

t1/α

)
.

Thus, applying the elementary inequality

(2.3)
a

a+ b
≤ 1 ∧ a

b
≤ 2a

a+ b
, a, b > 0,

we get(
1 ∧ δD(y)

s1/α

)(
1 ∧ δD(z)

t1/α

)
≤

(
1 ∧ δD(y)

s1/α

)(
1 +

|y − z|
δD(y)

)(
1 ∧ δD(y)

t1/α

)
≤ 2

(
1 +

|y − z|
s1/α + δD(y)

)(
1 ∧ δD(y)

t1/α

)
.

�

Using (1.1) and (2.3), we get that

(2.4)
t

(t1/α + |x− y|)d+α
≤ q(t, x, y) ≤ 2d+α t

(t1/α + |x− y|)d+α
.

Lemma 2.2. For any γ ∈ [0, 2α), there exists a constant C1 := C1(d, α, γ) ≥ 1
such that for all (t, y, z) ∈ (0,∞)×D ×D,

(2.5) ψγ(t, z)

∫ t/2

0

qγ(s, z, y)ds ≤ C1ψγ(t, y)

∫ t/2

0

ψγ(s, z)q(s, z, y)ds.

Proof. The inequality holds trivially when γ = 0 with C1 = 1, so for the rest of
the proof we assume γ ∈ (0, 2α). The inequality (2.5) is obvious if δD(y) ≥ t1/α

or δD(z) ≤ 2δD(y). So we will assume δD(y) < t1/α ∧ (δD(z)/2) throughout this
proof. Note that in this case,

(2.6) |z − y| ≥ δD(z)− δD(y) ≥ δD(z)

2
≥ δD(y).

Let

I = ψγ(t, z)

∫ t/2

(t/2)∧|z−y|α
qγ(s, z, y)ds, II = ψγ(t, z)

∫ (t/2)∧|z−y|α

0

qγ(s, z, y)ds.

By (2.2), we have

I ≤ 22γψγ(t, y)

∫ t/2

(t/2)∧|z−y|α
ψγ(s, z)q(s, z, y)ds,(2.7)
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while by (2.1),

II ≤
(
δD(y)

t1/α

)γ (
δD(z) ∧ t1/α

δD(y)

)γ ∫ (t/2)∧|z−y|α

0

ψγ(s, y)q(s, z, y)ds.(2.8)

In view of (2.4) and (2.6),

∫ (t/2)∧|z−y|α

0

ψγ(s, y)q(s, z, y)ds

(2.9)

�
∫ (t/2)∧δD(y)α

0

s

|z − y|d+α
ds+

∫ (t/2)∧|z−y|α

(t/2)∧δD(y)α

(
δD(y)

s1/α

)γ
s

|z − y|d+α
ds

� 1

|z − y|d+α

(
((t/2) ∧ δD(y)α)2 + δD(y)γ

×
(
((t/2) ∧ |z − y|α)2−γ/α − ((t/2) ∧ δD(y)α)2−γ/α

))
� 1

|z − y|d+α

(
((t/2) ∧ δD(y)α)

2

+ (δD(y) ∧ (t/2)1/α)γ
(
((t/2) ∧ |z − y|α)2−γ/α − ((t/2) ∧ δD(y)α)

2−γ/α
))

� (δD(y) ∧ (t/2)1/α)γ ((t/2) ∧ |z − y|α)2−γ/α

|z − y|d+α

� δD(y)γ ((t/2) ∧ |z − y|α)2−γ/α

|z − y|d+α
.

On the other hand, considering the right hand side of (2.5) and using (2.6) we have

∫ (t/2)∧|z−y|α

0

ψγ(s, z)q(s, z, y)ds

(2.10)

�
∫ (t/2)∧(δD(z)/2)α

0

s

|z − y|d+α
ds+

∫ (t/2)∧|z−y|α

(t/2)∧(δD(z)/2)α

(
δD(z)

s1/α

)γ
s

|z − y|d+α
ds

� 1

|z − y|d+α

((
t

2
∧
(
δD(z)

2

)α)2

+ δD(z)γ

((
t

2
∧ |z − y|α

)2−γ/α

−
(
t

2
∧
(
δD(z)

2

)α)2−γ/α
))

≥ 1

|z − y|d+α

((
t

2
∧
(
δD(z)

2

)α)2

+

(
δD(z)

2
∧
(
t

2

)1/α
)γ

×
((

t

2
∧ |z − y|α

)2−γ/α

−
(
t

2
∧
(
δD(z)

2

)α)2−γ/α
))

� (δD(z) ∧ t1/α)γ ((t/2) ∧ |z − y|α)2−γ/α

|z − y|d+α
.
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One then deduces from (2.8)–(2.10) and the assumption δD(y) ≤ t1/α that

II ≤ c1ψγ(t, y)(δD(z) ∧ t1/α)γ
((t/2) ∧ |z − y|α)2−γ/α

|z − y|d+α

≤ c2

∫ (t/2)∧|z−y|α

0

ψγ(s, z)q(s, z, y)ds.

This combined with (2.7) establishes the inequality (2.5). �

We now give a proof of (1.21) (see also [3]). It follows from (2.3) and (2.4) that
for every 0 < s < t and x, y, z ∈ R

d,

q(s, x, z)q(t− s, z, y)

q(t, x, y)

(2.11)

≤ 4d+α s(t− s)

t

(
t1/α + |x− y|

(s1/α + |x− z|)((t− s)1/α + |y − z|)

)d+α

≤ 4d+α(s ∧ (t− s))

(
(s+ (t− s))1/α + |x− z|+ |y − z|
(s1/α + |x− z|)((t− s)1/α + |y − z|)

)d+α

≤ 2(d+α)(3+1/α)(s ∧ (t− s))

(
1

(s1/α + |x− z|)d+α
+

1

((t− s)1/α + |y − z|)d+α

)
≤ 2(d+α)(3+1/α) (q(s, x, z) + q(t− s, z, y)) .

Remark 2.3. It follows from (2.3) and (2.4) that for every t
4 < s < 3t

4 and x, y, z ∈
R

d with 2|x− y| ≥ |x− z|+ |y − z|,

q(s, x, z)q(t− s, z, y)

q(t, x, y)
≥ 2−d−α s(t− s)

t

(
t1/α + |x− y|

(s1/α + |x− z|)((t− s)1/α + |y − z|)

)d+α

(2.12)

≥ 2−d−α s(t− s)

t

(
(s+ (t− s))1/α + (|x− z|+ |y − z|)/2
(s1/α + |x− z|)((t− s)1/α + |y − z|)

)d+α

� (s ∧ (t− s))

(
1

(s1/α + |x− z|)d+α
+

1

((t− s)1/α + |y − z|)d+α

)
� q(s, x, z) + q(t− s, z, y).

Thus using (2.3), (2.11) and (2.12) we have that for every t
4 < s < 3t

4 and x, y, z ∈ D
with 2|x− y| ≥ |x− z|+ |y − z|,

qγ(t, x, y)(qγ(s, x, z) + qγ(t− s, z, y))

qγ(t− s, x, z)qγ(s, z, y)

≤ c1

(
δD(x)(δD(z) + t1/α)

δD(z)(δD(x) + t1/α)

)γ

+

(
δD(y)(δD(z) + t1/α)

δD(z)(δD(y) + t1/α)

)γ

,

which goes to zero if δD(y) = δD(x) → 0 with 2|x − y| ≥ |x − z| + |y − z|. This
shows that the inequality

qγ(t− s, x, z)qγ(s, z, y)

qγ(t, x, y)
≤ c (qγ(s, x, z) + qγ(t− s, z, y))

for every 0 < s < t and x, y, z ∈ D cannot be true, even for balls. �
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We record here a simple inequality which we will use several times in this paper.
For β ∈ (0, 1) and a > 0,

(2.13)

∫ t

0

(
1 ∧ a

sβ

)
ds ≤ t

1− β

(
1 ∧ a

tβ

)
.

We are now ready to prove one form of the integral 3P inequality. Note that the
right hand side of the integral 3P inequality below has the term q(s, x, z)+q(s, z, y)
rather than q(t− s, x, z) + q(s, z, y).

Lemma 2.4 (Integral 3P inequality). For every γ ∈ [0, α), there exists C2 :=
C2(d, α, γ) > 0 such that for all (t, x, y, z) ∈ (0,∞)×D ×D ×D,∫ t

0

qγ(t− s, x, z)qγ(s, z, y)

qγ(t, x, y)
ds ≤ C2

∫ t

0

ψγ(s, z)(q(s, x, z) + q(s, z, y))ds.

Proof. When γ = 0, the desired inequality follows from (2.11) with C2 =
2(d+α)(3+1/α). So for the rest of the proof, we assume γ ∈ (0, α). Let

J(t, x, y, z) :=

∫ t

0

qγ(t− s, x, z)qγ(s, z, y)ds.

Since

J(t, x, y, z) ≤ c1qγ(t, x, z)

∫ t/2

0

qγ(s, z, y)ds+ c1qγ(t, z, y)

∫ t

t/2

qγ(t− s, x, z)ds,

we have by Lemma 2.2 that

J(t, x, y, z) ≤ c2ψγ(t, x)ψγ(t, y)

∫ t/2

0

ψγ(s, z)q(t− s, x, z)q(s, z, y)ds

+c2ψγ(t, x)ψγ(t, y)

∫ t

t/2

ψγ(t− s, z)q(t− s, x, z)q(s, z, y)ds.

It then follows from (2.11) that

J(t, x, y, z) ≤ c3qγ(t, x, y)

∫ t/2

0

ψγ(s, z)(q(t− s, x, z) + q(s, z, y))ds

+c3qγ(t, x, y)

∫ t

t/2

ψγ(t− s, z)(q(t− s, x, z) + q(s, z, y))ds

≤ c4qγ(t, x, y)

∫ t

0

ψγ(s, z)(q(s, z, y) + q(s, x, z))ds.

Here in the last inequality, we used the fact that∫ t/2

0

ψγ(s, z)q(t− s, x, z)ds ≤ c5

∫ t

t/2

ψγ(s, z)q(s, x, z)ds

and ∫ t

t/2

ψγ(t− s, z)q(s, z, y)ds ≤ c5

∫ t

t/2

ψγ(s, z)q(s, z, y)ds.

The above two inequalities follow easily from the fact that q(s, x, y) � q(t, x, y) for
s ∈ [t/2, t] and∫ t/2

0

ψγ(s, z)ds ≤
α

α− γ
(t/2)ψγ(t/2, z) ≤ c6

∫ t

t/2

ψγ(s, z)ds,
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where we have used (2.13) for the first inequality. This completes the proof of the
lemma. �

The above integral 3P inequality immediately implies the following theorem,
which will be used later.

Theorem 2.5. For every γ ∈ [0, α), there exists a constant C3 = C3(d, α, γ) > 0
such that for any measure μ on D and any (t, x, y) ∈ (0,∞)×D ×D,∫ t

0

∫
D

qγ(t− s, x, z)qγ(s, z, y)μ(dz)ds

≤ C3 qγ(t, x, y) sup
u∈D

∫ t

0

∫
D

ψγ(s, z)q(s, u, z)μ(dz)ds.

The results of the remainder of this section are geared towards dealing with the
discontinuous part of Aμ,F .

Lemma 2.6. For every γ ∈ [0, 2α), there exists a constant C4 := C4(d, α, γ) ≥ 1
such that for all (t, y, z, w) ∈ (0,∞)×D ×D ×D,

ψγ(t, z)

∫ t/2

0

qγ(s, w, y)ds(2.14)

≤C4ψγ(t, y)

(
1 +

|y − z| ∧ |z − w| ∧ t1/α

|y − w|

)γ ∫ t/2

0

ψγ(s, w)q(s, w, y)ds.

Proof. The desired inequality holds trivially for γ = 0 with C4 = 1, so for the rest
of the proof we assume γ ∈ (0, 2α). The inequality (2.14) is obvious if δD(y) ≥ t1/α

or δD(z) ≤ 2δD(y), so we will assume δD(y) < t1/α ∧ (δD(z)/2) in the remainder of
this proof. Note that in this case

(2.15) |y − z| ≥ δD(z)− δD(y) ≥ δD(z)

2
≥ δD(y).

By (2.1), (2.3) and our assumption δD(y) < t1/α, we have that(
1 ∧ δD(z)

t1/α

)(
1 ∧ δD(y)

s1/α

)
≤ 2

δD(y)

t1/α

(
δD(z) ∧ t1/α

s1/α + δD(y)

)
(2.16)

= 2

(
1 ∧ δD(y)

t1/α

)(
δD(z) ∧ t1/α

s1/α + δD(y)

)
.

When s ≥ |y − w|α, by (2.15),

δD(z) ∧ t1/α

s1/α + δD(y)
≤ 2

|y − z| ∧ t1/α

|y − w| ≤ 2

(
1 +

|y − z| ∧ |z − w| ∧ t1/α

|y − w|

)
,

where the last inequality is due to the fact that |y−z| ≤ |y−w|+(|y−z|∧ |z−w|).
This together with (2.16) implies that

ψγ(t, z)

∫ t/2

(t/2)∧|y−w|α
qγ(s, w, y)ds

(2.17)

≤4γψγ(t, y)

(
1 +

|y − z| ∧ |z − w| ∧ t1/α

|y − w|

)γ ∫ t/2

(t/2)∧|y−w|α
ψγ(s, w)q(s, w, y)ds.
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On the other hand, by (2.15),∫ (t/2)∧|y−w|α

0

(
δD(z) ∧ t1/α

s1/α + δD(y)

)γ

ψγ(s, w)q(s, w, y)ds(2.18)

≤ 2γ
∫ (t/2)∧|y−w|α

0

(
|y − z| ∧ t1/α

s1/α

)γ

ψγ(s, w)
s

|y − w|d+α
ds

= c1

(
|y − z| ∧ t1/α

)γ
|y − w|d+α

∫ (t/2)∧|y−w|α

0

s1−γ/αψγ(s, w)ds.

We claim that

∫ (t/2)∧|y−w|α

0

s1−γ/αψγ(s, w)ds �
(
t

2
∧ |y − w|α

)−γ/α ∫ (t/2)∧|y−w|α

0

sψγ(s, w)ds.

(2.19)

The case δD(w) > (t/2)1/α is clear. If δD(w) ≤ |y − w| ∧ (t/2)1/α,∫ (t/2)∧|y−w|α

0

s1−γ/αψγ(s, w)ds

=

∫ δD(w)α

0

s1−γ/αds+ δD(w)γ
∫ (t/2)∧|y−w|α

δD(w)α
s1−2γ/αds

� δD(w)2α−γ + δD(w)γ

((
t

2
∧ |y − w|α

)2−2γ/α

− δD(w)2(α−γ)

)

� δD(w)γ
(
t

2
∧ |y − w|α

)2−2γ/α

=

(
t

2
∧ |y − w|α

)−γ/α

(δD(w))
γ

(
t

2
∧ |y − w|α

)2−γ/α

�
(
t

2
∧ |y − w|α

)−γ/α ∫ (t/2)∧|y−w|α

0

sψγ(s, w)ds.

The remaining case |y−w| < δD(w) ≤ (t/2)1/α is simpler and is left to the reader.
Thus we have proved the claim (2.19). Now by (2.18) and (2.19),∫ (t/2)∧|y−w|α

0

(
δD(z) ∧ t1/α

s1/α + δD(y)

)γ

ψγ(s, w)q(s, w, y)ds

≤ c2

(
|y − z| ∧ t1/α

|y − w| ∧ t1/α

)γ ∫ (t/2)∧|y−w|α

0

ψγ(s, w)
s

|y − w|d+α
ds

≤ c2

(
1 +

|y − z| ∧ t1/α

|y − w|

)γ ∫ (t/2)∧|y−w|α

0

ψγ(s, w)q(s, w, y)ds

≤ 2c2

(
1 +

|y − z| ∧ |z − w| ∧ t1/α

|y − w|

)γ ∫ (t/2)∧|y−w|α

0

ψγ(s, w)q(s, w, y)ds.

Here again the last inequality is due to the fact that |y−z| ≤ |y−w|+(|y−z|∧|z−w|).
This together with (2.16) and (2.17) establishes the inequality (2.14). �
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In the remainder of this section, we use the following notation: For any (x, y) ∈
D ×D,

Vx,y := {(z, w) ∈ D ×D : |x− y| ≥ 4(|y − w| ∧ |x− z|)},
Ux,y := (D ×D) \ Vx,y.

Recall that for any bounded measurable function F on D × D we use ‖F‖∞ to
denote ‖F‖L∞(D×D).

Now we are ready to prove the following generalized integral 3P inequality.

Theorem 2.7 (Generalized integral 3P inequality). For every γ ∈ [0, α∧ d), there
exists a constant C5 := C5(α, γ, d) > 0 such that for any non-negative bounded
function F (x, y) on D ×D, the following are true for (t, x, y) ∈ (0,∞)×D ×D.
(a) If |x− y| ≤ t1/α, then∫ t

0

∫
D×D

qγ(t− s, x, z)qγ(s, w, y)

qγ(t, x, y)

F (z, w)

|z − w|d+α
dzdwds

≤ C5

∫ t

0

∫
D×D

ψγ(s, z)q(s, x, z)

(
1 +

|z − w| ∧ t1/α

|x− z|

)γ
F (z, w)

|z − w|d+α
dzdwds

+C5

∫ t

0

∫
D×D

ψγ(s, w)q(s, y, w)

(
1 +

|z − w| ∧ t1/α

|y − w|

)γ
F (z, w)

|z − w|d+α
dzdwds.

(b) If |x− y| > t1/α, then∫ t

0

∫
Ux,y

qγ(t− s, x, z)qγ(s, w, y)

qγ(t, x, y)

F (z, w)

|z − w|d+α
dzdwds

≤ C5

∫ t

0

∫
Ux,y

ψγ(s, z)q(s, x, z)

(
1 +

|z − w| ∧ t1/α

|x− z|

)γ
F (z, w)

|z − w|d+α
dzdwds

+C5

∫ t

0

∫
Ux,y

ψγ(s, w)q(s, y, w)

(
1 +

|z − w| ∧ t1/α

|y − w|

)γ
F (z, w)

|z − w|d+α
dzdwds.

(c) If |x− y| > t1/α, then∫ t

0

∫
Vx,y

qγ(t− s, x, z)qγ(s, w, y)

qγ(t, x, y)

F (z, w)

|z − w|d+α
dzdwds ≤ C5‖F‖∞.

Proof. By Lemma 2.6, we get that∫ t

0

∫
D×D

qγ(t− s, x, z)qγ(s, w, y)

ψγ(t, x)ψγ(t, y)

F (z, w)

|z − w|d+α
dzdwds(2.20)

≤c1

∫
D×D

∫ t/2

0

ψγ(s, w)q(s, w, y)q(t− s, x, z)

×
(
1 +

|z − w| ∧ t1/α

|y − w|

)γ

ds
F (z, w)

|z − w|d+α
dzdw

+ c1

∫
D×D

∫ t

t/2

ψγ(t− s, z)q(s, w, y)q(t− s, x, z)

×
(
1 +

|z − w| ∧ t1/α

|x− z|

)γ

ds
F (z, w)

|z − w|d+α
dzdw.
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If |x − y| ≤ t1/α and s ∈ (0, t/2], we have q(t − s, x, z) ≤ 2d/αq(t, x, y); and if
|x− y| ≤ t1/α and s ∈ (t/2, t], we have q(s, w, y) ≤ 2d/αq(t, x, y). Thus (a) follows
immediately from (2.20).

In the remainder of this proof, we fix (t, x, y) ∈ (0,∞)×D×D with |x−y| > t1/α.
Let

U1 := {(z, w) ∈ D ×D : |y − w| > 4−1|x− y|, |y − w| ≥ |x− z|},
U2 := {(z, w) ∈ D ×D : |x− z| > 4−1|x− y|}.

Since q(t−s, x, z) ≤ 4d+αq(t, x, y) for (s, z, w) ∈ (0, t)×U2, by Lemma 2.6, we have

∫ t/2

0

∫
U2

qγ(t− s, x, z)qγ(s, w, y)

ψγ(t, x)ψγ(t, y)

F (z, w)

|z − w|d+α
dzdwds

(2.21)

≤c2

∫
U2

∫ t/2

0

ψγ(s, w)q(s, w, y)q(t−s, x, z)

(
1+

|z−w| ∧ t1/α

|y − w|

)γ

ds
F (z, w)

|z − w|d+α
dzdw

≤c3q(t, x, y)

∫
U2

∫ t/2

0

ψγ(s, w)q(s, w, y)

(
1 +

|z−w| ∧ t1/α

|y − w|

)γ

ds
F (z, w)

|z − w|d+α
dzdw

and, similarly,∫ t

t/2

∫
U1

qγ(t− s, x, z)qγ(s, w, y)

ψγ(t, x)ψγ(t, y)

F (z, w)

|z − w|d+α
dzdwds(2.22)

≤ c4

∫
U1

∫ t

t/2

ψγ(t− s, z)q(s, w, y)q(t− s, x, z)

×
(
1 +

|z − w| ∧ t1/α

|x− z|

)γ

ds
F (z, w)

|z − w|d+α
dzdw

≤ c5q(t, x, y)

∫
U1

∫ t

t/2

ψγ(t− s, z)q(t− s, x, z)

×
(
1 +

|z − w| ∧ t1/α

|x− z|

)γ

ds
F (z, w)

|z − w|d+α
dzdw.

On the other hand, we observe that, since q(s, w, y) ≤ 4d+αq(t, x, y) for (s, z, w) ∈
(0, t/2]× U1,∫ t/2

0

∫
U1

qγ(t− s, x, z)qγ(s, w, y)
F (z, w)

|z − w|d+α
dzdwds

≤c6ψγ(t, x)ψγ(t, z)q(t, x, y)

∫
U1

q(t, x, z)

∫ t/2

0

ψγ(s, w)ψγ(s, y)ds
F (z, w)

|z − w|d+α
dzdw.

Now, applying the inequality (using (2.13))

∫ t/2

0

ψγ(s, w)ψγ(s, y)ds ≤
∫ t/2

0

ψγ(s, y)ds ≤
α

α− γ
2γ/α−1tψγ(t, y),
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we get ∫ t/2

0

∫
U1

qγ(t− s, x, z)qγ(s, w, y)
F (z, w)

|z − w|d+α
dzdwds(2.23)

≤c7qγ(t, x, y)

∫
U1

q(t, x, z)tψγ(t, z)
F (z, w)

|z − w|d+α
dzdw

≤c8qγ(t, x, y)

∫
U1

∫ t/2

0

q(t− s, x, z)ψγ(t− s, z)
F (z, w)

|z − w|d+α
dsdzdw.

Similarly, ∫ t

t/2

∫
U2

qγ(t− s, x, z)qγ(s, w, y)
F (z, w)

|z − w|d+α
dzdwds(2.24)

≤c9qγ(t, x, y)

∫
U2

∫ t

t/2

ψγ(s, w)q(s, w, y)
F (z, w)

|z − w|d+α
dsdzdw.

Since Ux,y = U1 ∪ U2, from (2.21)–(2.24), we know that (b) is true.
Note that for (z, w) ∈ Vx,y, we have |z−w| ≥ |x−y|−(|x−z|+|y−w|) ≥ 2−1|x−y|.

Thus, by Lemma 2.6 and (1.4), it is easy to see that∫ t

0

∫
Vx,y

qγ(t− s, x, z)qγ(s, w, y)

ψγ(t, x)ψγ(t, y)

F (z, w)

q(t, x, y)|z − w|d+α
dzdwds

≤c10‖F‖∞t−1

∫
Vx,y

∫ t/2

0

q(s, w, y)q(t− s, x, z)

(
1 +

t1/α

|y − w|

)γ

dsdzdw

+ c10‖F‖∞t−1

∫
Vx,y

∫ t

t/2

q(s, w, y)q(t− s, x, z)

(
1 +

t1/α

|x− z|

)γ

dsdzdw

≤c11‖F‖∞t−1

∫ t

0

(∫
D

q(s, w, y)

(
1 +

t1/α

|y − w|

)γ

dw

+

∫
D

q(s, x, z)

(
1 +

t1/α

|x− z|

)γ

dz

)
ds.

Since, using γ ∈ (0, α ∧ d),∫ t

0

(∫
D

q(s, w, y)

(
1 +

t1/α

|y − w|

)γ

dw +

∫
D

q(s, x, z)

(
1 +

t1/α

|x− z|

)γ

dz

)
ds

≤ 2d+α+1

∫ t

0

∫
Rd

s

(s1/α + |w|)d+α

(
t1/α

|w|

)γ

dwds

= c12

(∫ ∞

0

ud−1−γdu

(1 + u)d+α

)
tγ/α

∫ t

0

s−γ/αds ≤ c13t,

(c) follows immediately. �

3. Heat kernel estimates

In this section we give the proof of our main result, Theorem 1.3. Throughout
this section, we fix γ ∈ [0, α∧ d). Recall the definition of pk(t, x, y) given by (1.15).
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Using (1.3), (1.7), Theorems 2.5 and 2.7, we can choose a constant

(3.1) M = M(α, γ, d, C0) >
α

α− γ
22γ/α+d+α+1C4

0 (C1 ∨ C4)

such that for any μ in Kα,γ , any measurable function F with F1 = eF − 1 ∈ Jα,γ

and any (t, x, y) ∈ (0, 1]×D ×D,

∫ t

0

∫
D

qγ(t− s, x, z)qγ(s, z, y)|μ|(dz)ds ≤ M pD(t, x, y)Nα,γ
μ (t),(3.2) ∫ t

0

∫
D×D

qγ(t− s, x, z)qγ(s, w, y)
c(z, w)|F1|(z, w)

|z − w|d+α
dzdwds(3.3)

≤ M pD(t, x, y)(Nα,γ
F1

(t) + ‖F1‖∞1{|x−y|>t1/α})

and
(3.4)∫ t

0

∫
Ux,y

qγ(t− s, x, z)qγ(s, w, y)
c(z, w)|F1|(z, w)

|z − w|d+α
dzdwds ≤ M pD(t, x, y)Nα,γ

F1
(t).

In the remainder of this section, we fix a locally finite signed measure μ ∈ Kα,γ ,
a measurable function F with F1 = eF − 1 ∈ Jα,γ and the constant M > 0 in (3.1).

Lemma 3.1. For every k ≥ 0 and (t, x) ∈ (0, 1]×D,

∫
D

|pk(t, x, y)|dy ≤ C2
0M

k ψγ(t, x)
(
Nα,γ

μ,F1
(t)
)k

.(3.5)

Proof. We use induction on k ≥ 0. By (1.5), (3.5) is clear when k = 0. Suppose
(3.5) is true for k − 1 ≥ 0. Then by (1.15) we have

∫
D

pk(t, x, y)dy =

∫ t/2

0

(∫
D

p0(t− s, x, z)
(∫

D

pk−1(s, z, y)dy
)
μ(dz)

)
ds

+

∫ t/2

0

(∫
D

∫
D

p0(t− s, x, z)
c(z, w)F1(z, w)

|z − w|d+α

(∫
D

pk−1(s, w, y)dy
)
dzdw

)
ds

+

∫ t

t/2

(∫
D

p0(t− s, x, z)
(∫

D

pk−1(s, z, y)dy
)
μ(dz)

)
ds

+

∫ t

t/2

(∫
D

∫
D

p0(t− s, x, z)
c(z, w)F1(z, w)

|z − w|d+α

(∫
D

pk−1(s, w, y)dy
)
dzdw

)
ds.
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Thus using (1.3) and our induction hypothesis, we have∫
D

|pk(t, x, y)|dy

≤2γ/αC3
0M

k−1
(
Nα,γ

μ,F1
(t)
)k−1

(
ψγ(t, x)

∫ t/2

0

(∫
D

ψγ(t− s, z)q(t− s, x, z)|μ|(dz)
)
ds

+ C0ψγ(t, x)

∫ t/2

0

(∫
D

∫
D

ψγ(t− s, z)q(t− s, x, z)
|F1|(z, w)
|z − w|d+α

dzdw

)
ds

+

∫
D

ψγ(t, z)

∫ t

t/2

qγ(t− s, x, z)ds|μ|(dz)

+ C0

∫
D

∫
D

ψγ(t, w)

∫ t

t/2

qγ(t− s, x, z)ds
|F1|(z, w)
|z − w|d+α

dzdw

)
.

Applying (3.1), Lemmas 2.2 and 2.6, the above is no larger than

4−1C0M
k
(
Nα,γ

μ,F1
(t)
)k−1

(
ψγ(t, x)

∫ t/2

0

(∫
D

ψγ(t− s, z)q(t− s, x, z)|μ|(dz)
)
ds

+ C0ψγ(t, x)

∫ t/2

0

(∫
D

∫
D

ψγ(t− s, z)q(t− s, x, z)
|F1|(z, w)
|z − w|d+α

dzdw

)
ds

+

∫
D

ψγ(t, x)

∫ t

t/2

ψγ(t− s, z)q(t− s, x, z)ds|μ|(dz)

+ C0

∫
D

∫
D

ψγ(t, x)

(
1 +

|x− w| ∧ |z − w| ∧ t1/α

|x− z|

)γ

×
∫ t

t/2

ψγ(t− s, z)q(t− s, x, z)
|F1|(z, w)
|z − w|d+α

dzdw

)
≤C2

0M
k ψγ(t, x)(N

α,γ
μ,F1

(t))k.

�

Lemma 3.2. For every k ≥ 0 and (t, x, y) ∈ (0, 1]×D ×D,∫ t

0

∫
D

pD(t− s, x, z)dz

∫
D

|pk(s, w, y)|dwds

≤ t
α

α− γ
22γ/α C4

0 M
k ψγ(t, x)ψγ(t, y)

(
Nα,γ

μ,F1
(t)
)k
.

Proof. By (1.3) and Lemma 3.1,∫ t

0

∫
D

pD(t− s, x, z)dz

∫
D

|pk(s, w, y)|dwds

=

∫ t/2

0

∫
D

pD(t− s, x, z)dz

∫
D

|pk(s, w, y)|dwds

+

∫ t

t/2

∫
D

pD(t− s, x, z)dz

∫
D

|pk(s, w, y)|dwds
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≤C0

∫ t/2

0

∫
D

ψγ(t− s, x)q(t− s, x, z)dz

∫
D

|pk(s, w, y)|dwds

+ C0

∫ t

t/2

∫
D

ψγ(t− s, x)q(t− s, x, z)dz

∫
D

|pk(s, w, y)|dwds

≤C3
0M

k

∫ t/2

0

∫
D

ψγ(t− s, x)q(t− s, x, z)dz ψγ(s, y)
(
Nμ,F1

(s)
)k
ds

+ C3
0M

k

∫ t

t/2

∫
D

ψγ(t− s, x)q(t− s, x, z)dz ψγ(s, y)
(
Nμ,F1

(s)
)k
ds

≤2γ/αC3
0M

k
(
Nα,γ

μ,F1
(t)
)k
ψγ(t, x)

(∫ t/2

0

ψγ(s, y)ds

)∫
D

q(t− s, x, z)dz

+ 2γ/αC3
0M

k
(
Nα,γ

μ,F1
(t)
)k
ψγ(t, y)

∫
D

(∫ t

t/2

ψγ(t− s, x)ds

)
q(t− s, x, z)dz.

Using (2.13) on both
∫ t/2

0
ψγ(s, y)ds and

∫ t

t/2
ψγ(t− s, x)ds we get that∫ t

0

∫
D

pD(t− s, x, z)dz

∫
D

pk(s, w, y)dwds

≤ α

α− γ
22γ/αC3

0M
k
(
Nα,γ

μ,F1
(t)
)k
ψγ(t, x)ψγ(t, y)

∫
D

q(t− s, x, z)dz.

Applying (1.4), we have proved the lemma. �

Lemma 3.3. For k ≥ 0 and (t, x, y) ∈ (0, 1]×D ×D we have
(3.6)

|pk(t, x, y)| ≤ p0(t, x, y)
((

C2
0MNα,γ

μ,F1
(t)
)k

+ k‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−1

)
.

Proof. We use induction on k ≥ 0. The k = 0 case is obvious. Suppose that (3.6)
is true for k − 1 ≥ 0. Recall that

Vx,y = {(z, w) ∈ D ×D : |x− y| ≥ 4(|y − w| ∨ |x− z|)}, Ux,y = (D ×D) \ Vx,y.

Applying (1.15), (1.3), (3.2) and (3.4), we have by our induction hypothesis,

|pk(t, x, y)| ≤
∫ t

0

(∫
D

p0(t− s, x, z)|pk−1(s, z, y)||μ|(dz)
)
ds

+

∫ t

0

(∫
Ux,y

p0(t− s, x, z)
c(z, w)|F1(z, w)|

|z − w|d+α
|pk−1(s, w, y)|dzdw

)
ds

+

∫ t

0

(∫
Vx,y

p0(t− s, x, z)
c(z, w)|F1(z, w)|

|z − w|d+α
|pk−1(s, w, y)|dzdw

)
ds

≤
((

C2
0MNα,γ

μ,F1
(t)
)k−1

+ (k − 1)‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−2

)
×
∫ t

0

(∫
D

p0(t− s, x, z)p0(s, z, y)|μ|(dz)
)
ds

+
((

C2
0MNα,γ

μ,F1
(t)
)k−1

+ (k − 1)‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−2

)
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×
∫ t

0

(∫
Ux,y

p0(t− s, x, z)
c(z, w)|F1|(z, w)

|z − w|d+α
p0(s, w, y)dzdw

)
ds

+

∫ t

0

(∫
Vx,y

p0(t− s, x, z)
c(z, w)|F1|(z, w)

|z − w|d+α
|pk−1(s, w, y)|dzdw

)
ds

≤ p0(t, x, y)
((

C2
0MNα,γ

μ,F1
(t)
)k−1

+ (k − 1)‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−2

)
C2

0MNα,γ
μ,F1

(t)

+ C0
2d+α‖F1‖∞
|x− y|d+α

∫ t

0

(∫
D×D

p0(t− s, x, z)|pk−1(s, w, y)|dzdw
)
ds.

Applying Lemma 3.2 and using (3.1), we get that if |x− y|α ≥ t,

C0
2d+α‖F1‖∞
|x− y|d+α

∫ t

0

(∫
D×D

p0(t− s, x, z)|pk−1(s, w, y)|dzdw
)
ds

≤ ψγ(t, x)ψγ(t, y)
t

|x− y|d+α
‖F1‖∞C5

0

α

α− γ
2d+α+γ/αMk−1

(
Nα,γ

μ,F1
(t)
)k−1

≤ p0(t, x, y)‖F1‖∞C6
0

α

α− γ
2d+α+γ/αMk−1

(
Nα,γ

μ,F1
(t)
)k−1

≤ p0(t, x, y)‖F1‖∞C2
0M

k
(
Nα,γ

μ,F1
(t)
)k−1

≤ p0(t, x, y)‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−1

.

Thus (3.6) is true for k when |x− y|α ≥ t.
If |x − y|α ≤ t, using (1.3), (1.15), (3.2) and (3.3), we have by our induction

hypothesis,

|pk(t, x, y)| ≤
∫ t

0

(∫
D

p0(t− s, x, z)|pk−1(s, z, y)||μ|(dz)
)
ds

+

∫ t

0

(∫
D×D

p0(t− s, x, z)
c(z, w)|F1(z, w)|

|z − w|d+α
|pk−1(s, w, y)|dzdw

)
ds

≤
((

C2
0MNα,γ

μ,F1
(t)
)k−1

+ (k − 1)‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−2

)
×
∫ t

0

(∫
D

p0(t− s, x, z)p0(s, z, y)|μ|(dz)
)
ds

+
((

C2
0MNα,γ

μ,F1
(t)
)k−1

+ (k − 1)‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−2

)
×
∫ t

0

(∫
D×D

p0(t− s, x, z)
c(z, w)|F1|(z, w)

|z − w|d+α
p0(s, w, y)dzdw

)
ds

≤ p0(t, x, y)
((

C2
0MNα,γ

μ,F1
(t)
)k−1

+ (k − 1)‖F1‖∞C2
0M
(
C2

0MNα,γ
μ,F1

(t)
)k−2

)
C2

0MNα,γ
μ,F1

(t).

The proof is now complete. �
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Theorem 3.4. The series
∑∞

k=0 p
k(t, x, y) converges absolutely to a jointly contin-

uous function qD(t, x, y) on (0,∞)×D×D. Moreover, qD(t, x, y) is the transition

density of the Feynman-Kac semigroup (Tμ,F
t ; t ≥ 0), and there exists a positive

constant C6 := C6(d, α, γ, C0,M, ‖F1‖∞, T ) such that

(3.7) qD(t, x, y) ≤ eC6tqγ(t, x, y)

for every (t, x, y) ∈ (0,∞)×D ×D.

Proof. Let p̃k(t, x, y) be defined as in (1.15) with |μ| and |F1| in place of μ and F1.
Clearly

(3.8) |pk(t, x, y)| ≤ p̃k(t, x, y) for every k ≥ 0.

Set q̃D(t, x, y) =
∑∞

k=0 p̃
k(t, x, y). One has from (1.11)-(1.14) with |μ| and |F1| in

place of μ and F1, where each term is non-negative, and Fubini’s theorem that for
every bounded f ≥ 0 on D,

(3.9) Ex

⎡⎣f(Xt) Exp
(
A|μ| +

∑
s≤·

|F1|(Xs−, Xs)
)
t

⎤⎦ =

∫
D

q̃D(t, x, y)f(y)dy.

Since F1 ∈ Jα,γ , there is t1 := t1(d, α, γ, C0,M,Nα,γ
μ,F1

, ‖F1‖∞) ∈ (0, 1) so that

Nα,γ
μ,F1

(t1) ≤
(
3C2

0M
)−1 ∧

(
9(C2

0M)2‖F1‖∞
)−1

.

It follows from Lemma 3.3 that for every (t, x, y) ∈ (0, t1]×D ×D,

q̃D(t, x, y) = p0(t, x, y) +
∞∑
k=1

p̃k(t, x, y)

(3.10)

≤ p0(t, x, y) + p0(t, x, y)

( ∞∑
k=1

(C2
0MNα,γ

μ,F1
(t))k

+ ‖F1‖∞C2
0M

∞∑
k=1

k (C2
0MNα,γ

μ,F1
(t))k−1

)
≤ pD(t, x, y) + pD(t, x, y)

(
1

2
+

9

4
‖F1‖∞C2

0M

)
≤ c1qγ(t, x, y)

and q̃D(t, x, y) is jointly continuous on (0, t1]×D ×D. Here

c1 = C0

(
3

2
+

9

4
‖F1‖∞C2

0M

)
,

which depends only on d, α, γ, C0, M and ‖F1‖∞.
Denote the left hand side of (3.9) by Ttf . Using the semigroup property of Tt,

we see that

q̃D(t, x, y) =

∫
D

q̃D(t/2, x, z)q̃D(t/2, z, y)dz, for all (t, x, y) ∈ [0, 2t1]×D ×D,

is jointly continuous on [0, 2t1] × D × D. Thus inductively we conclude that
q̃D(t, x, y) is continuous in (t, x, y) ∈ (0,∞)×D ×D. Moreover, by the two-sided
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estimates of the rotationally symmetric stable process in R
d, we have∫

Rd

q(t/2, x, z)q(t/2, z, y)dz ≤ c2q(t, x, y) for all (t, x, y) ∈ [0,∞)× R
d × R

d.

Thus, by the upper bound of qD on [0, t1]×D×D we have for (t, x, y) ∈ (t1, 2t1]×
D ×D,

q̃D(t, x, y) ≤ c21

∫
D

qγ(t/2, x, z)qγ(t/2, z, y)dz

≤ c21ψγ(t, x)ψγ(t, y)

∫
Rd

q(t/2, x, z)q(t/2, z, y)dz ≤ c21c2qγ(t, x, y).

Iterating the above argument one can deduce that there is a constant c3 =
c3(d, α, γ, C0,M, ‖F1‖∞) ≥ 0 so that

q̃D(t, x, y) ≤ ec3tqγ(t, x, y) for every t > 0 and x, y ∈ D.

The conclusion of the theorem now follows from the fact that the total variational
process of Aμ

t +
∑

s≤t F1(Xs−, Xs) is A
|μ|
t +

∑
s≤t |F1|(Xs−, Xs), (3.8), (1.11)–(1.14)

and Fubini’s theorem. �

For the lower bound estimate, we need to assume that F is a function in Jα,γ .

Theorem 3.5. Suppose that μ ∈ Kα,γ and F is a function in Jα,γ . Then for every
T > 0 there exists a positive constant C7 := C7(α, γ, C0,M,Nα,γ

μ,F , ‖F‖∞, T ) ≥ 1
such that

(3.11) C−1
7 qγ(t, x, y) ≤ qD(t, x, y) ≤ C7qγ(t, x, y)

for every (t, x, y) ∈ (0, T ]×D ×D.

Proof. Since F is a bounded function in Jα,γ , so is F1 with |F1(x, y)| ≤
e‖F‖∞ |F |(x, y) and Nα,γ

F1
≤ e‖F‖∞Nα,γ

F . Thus the upper bound estimate in (3.11)
follows directly from Theorem 3.4. To establish the lower bound, we define for
(t, x, y) ∈ (0,∞)×D ×D,

p̂1(t, x, y) =

∫ t

0

(∫
D

p0(t− s, x, z)p0(s, z, y)|μ|(dz)
)
ds

+

∫ t

0

(∫
D

∫
D

p0(t− s, x, z)
c(z, w)|F |(z, w)

|z − w|d+α
p0(s, w, y)dzdw

)
ds.

Then for any bounded Borel function f on D and any (t, x) ∈ (0,∞)×D, we have

Ex

[
A

|μ|,|F |
t f(Xt)

]
=

∫
D

p̂1(t, x, y)f(y)dy.

Applying Lemma 3.3 with |μ| and |F | in place of μ and F1, we have, for all (t, x, y) ∈
(0, 1]×D ×D,

p̂1(t, x, y) ≤ (C2
0MNα,γ

μ,F (1) + C2
0M‖F‖∞)p0(t, x, y) ≤ (k/2)p0(t, x, y),

where k ≥ 2 is an integer so that k ≥ 2(C2
0MNα,γ

μ,F (1) + C2
0M‖F‖∞). Hence we

have for all (t, x, y) ∈ (0, 1]×D ×D,

(3.12) p0(t, x, y)− 1

k
p̂1(t, x, y) ≥ 1

2
p0(t, x, y).
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Using the elementary fact that

1−A
|μ|,|F |
t /k ≤ exp

(
−A

|μ|,|F |
t /k

)
≤ exp

(
Aμ,F

t /k
)
,

we get that for any B(x, r) ⊂ D and any (t, y) ∈ (0, 1]×D,

1

|B(x, r)|Ey

[(
1−A

|μ|,|F |
t /k

)
1B(x,r)(Xt)

]
≤ 1

|B(x, r)|Ey

[
exp(Aμ,F

t /k)1B(x,r)(Xt)
]
.

Thus, by (3.12) and Hölder’s inequality, we have

1

2

1

|B(x, r)|Ey

[
1B(x,r)(Xt)

]
≤ 1

|B(x, r)|Ey

[
exp(Aμ,F

t /k)1B(x,r)(Xt)
]

≤
(

1

|B(x, r)|Ey

[
exp(Aμ,F

t )1B(x,r)(Xt)
])1/k(

1

|B(x, r)|Ey

[
1B(x,r)(Xt)

])1−1/k

.

Therefore,

1

2k
1

|B(x, r)|Ey

[
1B(x,r)(Xt)

]
≤ 1

|B(x, r)|Ey

[
exp(Aμ,F

t )1B(x,r)(Xt)
]
.

We conclude by sending r ↓ 0 such that for every (t, x, y) ∈ (0, 1]×D ×D,

qD(t, x, y) ≥ 2−kp0(t, x, y).

By the semigroup property of qD(t, x, y), for every (t, x, y) ∈ (0, n]×D ×D,

qD(t, x, y) =

∫
D

· · ·
∫
D

qD(t/n, x, z1) · · · qD(t/n, zn−1, y)dz1 · · · dzn−1

≥ 2−nk

∫
D

· · ·
∫
D

pD(t/n, x, z1) · · · pD(t/n, zn−1, y)dz1 · · · dzn−1.

Since for each fixed n ≥ 1,

pD(t/n, z, w) � qγ(t/n, z, w) � qγ(t/n
2, z, w)

� pD(t/n2, z, w), (t, z, w) ∈ (0, n]×D ×D,

by (1.3), from the semigroup property of pD(t, x, y), we have for each (t, x, y) ∈
(0, n]×D ×D,

qD(t, x, y) ≥ c1

∫
D

· · ·
∫
D

pD(t/n2, x, z1) · · · pD(t/n2, zn−1, y)dz1 · · · dzn−1

= c1pD(t/n, x, y) ≥ c2qγ(t/n, x, y) ≥ c3qγ(t, x, y).

This proves the theorem. �

Combining the two theorems above, we immediately get the main result of this
paper, Theorem 1.3.

4. Applications

In this section, we will apply our main result to (reflected) symmetric stable-
like processes, killed symmetric α-stable processes, censored α-stable processes and
stable processes with drifts. We first record the following two facts.
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Suppose that d ≥ 2 and α ∈ (0, 2). A locally finite signed measure μ on R
d is

said to be in Kato class Kd,α if

lim
r→0

sup
x∈Rd

∫
B(x,r)

1

|x− y|d−α
|μ|(dy) = 0.

A measurable function g on R
d is said to be in Kd,α if g(x)dx ∈ Kd,α.

Proposition 4.1. Suppose that d ≥ 2 and α ∈ (0, 2).

(i) Let D be an arbitrary Borel subset of Rd. μ ∈ Kα,0 if and only if 1Dμ ∈
Kd,α. Hence for every μ ∈ Kd,α, μ|D ∈ Kα,γ for every γ ≥ 0. In particular,
L∞(D; dx) ⊂ Kα,γ and Lp(D; dx) ⊂ Kα,γ for every p > d/α and γ ≥ 0.

(ii) Suppose that D is a bounded Lipschitz open set in R
d and γ ∈ (0, α). Let

g be a measurable function defined on D. If there exist constants c > 0,
β ∈ (0, γ+(α−γ)/d) and a compact subset K of D such that 1K(x)g(x) ∈
Kd,α and

|g(x)| ≤ cδD(x)−β for x ∈ D \K,

then g ∈ Kα,γ .

Proof. (i) By the proof of [33, Theorem 2], we have that μ ∈ Kd,α if and only if

lim
t→0

sup
x∈Rd

∫ t

0

∫
Rd

q(s, x, y)μ(dy)ds = 0.

This implies that μ ∈ Kα,0 if and only if 1Dμ ∈ Kd,α. In particular we have for
every μ ∈ Kd,α, μ|D ∈ Kα,γ for every γ ≥ 0. Clearly L∞(D; dx) ⊂ Kd,α. Using
Hölder’s inequality, one concludes that Lp(Rd; dx) ⊂ Kd,α for every p > d/α.

(ii) Let g be a measurable function defined on D such that there exist constants
c1 > 0, β ∈ (0, γ+(α−γ)/d) and a compact subsetK ofD so that 1K(x)g(x) ∈ Kd,α

and |g(x)| ≤ c1δD(x)−β for x ∈ D \ K. In view of (i), it suffices to show that
1D\Kg ∈ Kα,γ . Note that

sup
x∈D

∫ t

0

∫
D\K

ψγ(s, y)q(s, x, y)|g(y)|dyds

≤ c1 sup
x∈D

∫ t

0

∫
D\K

ψγ(s, y)δD(y)−βq(s, x, y)dyds

≤ c1 sup
x∈D

∫
D\K

(∫ δD(y)α∧t

0

(
s−d/α ∧ s

|x− y|d+α

)
ds

)
δD(y)−βdy

+ c1 sup
x∈D

∫
D\K

(∫ t

δD(y)α∧t

s−γ/α

(
s−d/α ∧ s

|x− y|d+α

)
ds

)
δD(y)γ−βdy

=: I + II.

(4.1)
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Here

I ≤ c1 sup
x∈D

(∫
D

∫ δD(y)α∧|x−y|α∧t

0

s

|x− y|d+α
ds δD(y)−βdy(4.2)

+

∫
D

∫ δD(y)α∧t

δD(y)α∧|x−y|α∧t

s−d/αds δD(y)−βdy

)

≤ c2 sup
x∈D

∫
D

(
(δD(y)α ∧ |x− y|α ∧ t)2δD(y)−β

|x− y|d+α

+ 1{|x−y|<δD(y)∧t1/α}
δD(y)−β

|x− y|d−α

)
≤ c2 sup

x∈D

∫
D

(
(|x− y| ∧ t1/α)2α−β

|x− y|d + 1{|x−y|<δD(y)∧t1/α}
1

|x− y|d−α+β

)
dy

≤ 2c2t
(α−β)/(2α) sup

x∈D

∫
D

1

|x− y|d−(α−β)/2
dy = c3 t

(α−β)/(2α),

while

II ≤ c1 sup
x∈D

∫
D

(∫ t

δD(y)α∧t

1{s<|x−y|α}
s1−γ/α

|x− y|d+α
ds

)
δD(y)γ−βdy(4.3)

+ c1 sup
x∈D

∫
D

(∫ t

δD(y)α∧t

1{s≥|x−y|α} s
−(d+γ)/αds

)
δD(y)γ−βdy

≤ c4 sup
x∈D

∫
D

(
|x− y| ∧ t1/α

)2α−γ

|x− y|d+α
1{δD(y)<|x−y|∧t1/α} δD(y)γ−βdy

+ c4 sup
x∈D

∫
D

|x− y|α−d−γ1{|x−y|≤t1/α}δD(y)γ−βdy

≤ c4t
δ/α sup

x∈D

∫
D

1

|x− y|d−α+εδD(y)β−γ
dy,

where δ := (α − γ − d(β − γ))/2 > 0 and ε := (α + γ − d(β − γ))/2 > 0. Note
that ε + δ = α − d(β − γ) and ε − δ = γ. Let p = d/(d − α + ε + δ/2) and
q = d/(α− (ε+ δ/2)) so that 1/p+ 1/q = 1. Since D is a bounded Lipschitz open
set, p(d− α+ ε) < d and q(β − γ) < 1, we have by Young’s inequality:

sup
x∈D

∫
D

1

|x− y|d−α+εδD(y)β−γ
dy

≤ sup
x∈D

∫
D

(
1

p

1

|x− y|p(d−α+ε)
+

1

q

1

δD(y)q(β−γ)

)
dy < ∞.

This together with (4.1) –(4.3) implies that limt→0 N
α,γ
g1D\K

(t) = 0; that is, g1D\K ∈
Kα,γ . This completes the proof of the proposition. �

Proposition 4.2. Suppose γ ∈ [0, α∧ d) and |F |(z, w) ≤ A(|z−w|β ∧ 1) for some
A > 0 and β > α. Then there exists C8 = C8(β, d, α, γ) > 0 such that for every
arbitrary Borel subset D of Rd,

(4.4) Nα,γ
F (t) ≤ C8 At.

This in particular implies that F ∈ Jα,γ.
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Proof. By (2.4), we have that∫ t

0

∫
Rd×Rd

q(s, y, w)

(
1 +

|z − w| ∧ t1/α

|y − w|

)γ |F |(z, w) + |F |(w, z)
|z − w|d+α

dzdwds

≤2A

(∫
Rd

(|z|β ∧ 1)|z|−d−αdz

)∫ t

0

∫
Rd

q(s, y, w)

(
1 +

t1/α

|y − w|

)γ

dwds

≤c1A

(∫
B(0,1)

dz

|z|d+α−β
+

∫
B(0,1)c

dz

|z|d+α

)

×
∫ t

0

(
1 +

∫
D

stγ/α

(s1/α + |y − w|)d+α|y − w|γ

)
dwds

≤c2A

∫ t

0

(
1 + tγ/αs

∫ ∞

0

rd−1

rγ(s1/α + r)d+α
dr

)
ds

≤c2At+ c3A

(∫ ∞

0

ud−1−γ

(1 + u)d+α
du

)
tγ/α

∫ t

0

s−γ/αds ≤ c4At

where the assumption γ ∈ [0, α ∧ d) is used in the last inequality. This establishes
(4.4). �

4.1. Stable-like processes on closed d-sets. A Borel subset D in R
d with d ≥ 1

is said to be a d-set if there exist constants r0 > 0, C2 > C1 > 0 so that

(4.5) C1 rd ≤ |B(x, r) ∩D| ≤ C2 rd for all x ∈ D and 0 < r ≤ r0,

where for a Borel set A ⊂ R
d, we use |A| to denote its Lebesgue measure. The

notion of a d-set arises both in the theory of function spaces and in fractal geometry.
It is known that if D is a d-set, then so is its Euclidean closure D. Every uniformly
Lipschitz open set in R

d is a d-set, so is its Euclidean closure. It is easy to check
that the classical von Koch snowflake domain in R

2 is an open 2-set. A d-set can
have very rough boundary since every d-set with a subset of zero Lebesgue measure
removed is still a d-set.

Suppose that D is a closed d-set in R
d and c(x, y) is a symmetric function on

D ×D that is bounded between two strictly positive constants C4 > C3 > 0, that
is,

(4.6) C3 ≤ c(x, y) ≤ C4 for a.e. x, y ∈ D.

For α ∈ (0, 2), we define

F =

{
u ∈ L2(D; dx) :

∫
D×D

(u(x)− u(y))2

|x− y|d+α
dx dy < ∞

}
(4.7)

E(u, v) = 1

2

∫
D×D

(u(x)− u(y))(v(x)− v(y))
c(x, y)

|x− y|d+α
dx dy, u, v ∈ F .(4.8)

It is easy to check that (E ,F) is a regular Dirichlet form on L2(D, dx) and therefore
there is an associated symmetric Hunt process X on D starting from every point in
D except for an exceptional set that has zero capacity. The process X is called a
symmetric α-stable-like process on D in [11]. When c(x, y) is a constant function,
X is the reflected α-stable process that appeared in [2]. Note that when D = R

d

and c(x, y) is a constant function, then X is nothing but a symmetric α-stable
process on R

d.
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It follows as a special case from [11, Theorem 1.1] that the symmetric stable-
like process X on a closed d-set in R

d has a Hölder continuous transition density
function p(t, x, y) with respect to the Lebesgue measure on D that satisfies the
estimate (1.3) with γ = 0 and the comparison constant C0 depending only on d, α,
r0 and the constants Ck, k = 1, · · · , 4, in (4.5) and (4.6). In particular, this implies
that the process X can be refined so it can start from every point in D. Thus as a
special case of Theorem 1.3, we have the following.

Theorem 4.3. Suppose that X is a symmetric α-stable-like process on a closed
d-set D in R

d. Assume μ ∈ Kα,0 and F ∈ Jα,0. Let q be the density of the
Feynman-Kac semigroup of X corresponding to Aμ,F . For any T > 0, there exists
a constant C9 ≥ 1 such that for all (t, x, y) ∈ (0, T ]×D ×D,

C−1
9 q(t, x, y) ≤ q(t, x, y) ≤ C9q(t, x, y).

Remark 4.4. Let n ≥ 1 be an integer and d ∈ (0, n]. In general, a Borel subset D in
R

n is said to be a d-set if there exist a measure μ and constants r0 > 0, C2 > C1 > 0
so that

(4.9) C1 rd ≤ μ(B(x, r) ∩D) ≤ C2 rd for all x ∈ D and 0 < r ≤ r0.

It is established in [11] that for every α ∈ (0, 2), a symmetric α-stable-like process
X can always be constructed on any closed d-set D in R

n via the Dirichlet form
(E ,F) on L2(D;μ) defined by (4.7)–(4.8) but with the d-measure μ(dx) in place
of the Lebesgue measure dx there. Moreover by [11, Theorem 1.1], the process X
has a jointly Hölder continuous transition density function p(t, x, y) with respect
to the d-measure μ on D that satisfies the estimate (1.3) with γ = 0. The proof of
Theorem 1.3 also works for such process X; in other words, Theorem 4.3 continues
to hold for such kinds of symmetric stable-like processes. �

4.2. Killed symmetric α-stable processes. A symmetric α-stable process X in
R

d is a Lévy process whose characteristic function is given by E0 [exp(iξ ·Xt)] =
e−t|ξ|α . It is well-known that the process X has a Lévy intensity function J(x, y) =
A(d,−α)|x− y|−(d+α), where

(4.10) A(d,−α) = α2−1+αΓ(
d+ α

2
)π−d/2(Γ(1− α

2
))−1.

Here Γ is the Gamma function defined by Γ(λ) :=
∫∞
0

tλ−1e−tdt for every λ > 0.

Let XD be the killed symmetric α-stable process XD in a C1,1 open set D. It
follows from [7] that XD satisfies the assumption of Section 1 with γ = α/2. Thus
as a special case of Theorem 1.3, we have the following.

Theorem 4.5. Suppose that X is a killed symmetric α-stable process in a C1,1

open set D. Assume μ ∈ Kα,α/2 and F ∈ Jα,α/2. Let qD be the density of the

Feynman-Kac semigroup of X corresponding to Aμ,F . For any T > 0, there exists
a constant C10 ≥ 1 such that for all (t, x, y) ∈ (0, T ]×D ×D,

C−1
10 qα/2(t, x, y) ≤ qD(t, x, y) ≤ C10qα/2(t, x, y).
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Let Xm be a relativistic α-stable process in R
d with mass m > 0; i.e., Xm is a

Lévy process in R
d with

E0 [exp(iξ ·Xm
t )] = exp

(
t
(
m− (|ξ|2 +m2/α)α/2

))
.

Xm has a Lévy intensity function Jm(x, y) = A(d,−α)ϕ(m1/α|x − y|)|x − y|−d−α

where

(4.11) ϕ(r) := 2−(d+α) Γ

(
d+ α

2

)−1 ∫ ∞

0

s
d+α
2 −1e−

s
4−

r2

s ds,

which is decreasing and is a smooth function of r2 satisfying ϕ(0) = 1 and

(4.12) ϕ(r) � e−r(1 + r(d+α−1)/2) on [0,∞)

(see [13, pp. 276-277] for details).
Let Xm,D be a killed relativistic α-stable process in a bounded C1,1 open set.

Define

Km
t := exp

⎛⎝ ∑
0<s≤t

ln(ϕ(m1/α|XD
s −XD

s−|)) +m (t ∧ τD)

⎞⎠ .

Since
∫
Rd J(x, y) − Jm(x, y)dy = m for all x ∈ R

d (see [25]), it follows from [13,

p. 279] that Xm,D can be obtained from the killed symmetric α-stable process XD

in D through the non-local Feynman-Kac transform Km
t . That is, Ex

[
f(Xm,D

t )
]
:=

Ex

[
Km

t f(XD
t )
]
. By (4.11), for any M > 0, there exists a constant c = c(d, α,M,

diam(D)) > 0 such that for all m ∈ (0,M ], | ln(ϕ(m1/α|x− y|))| ≤ c(|x− y|2 ∧ 1),
and so, by Proposition 4.2, Fm(x, y) := ln(ϕ(m1/α|x− y|)) ∈ Jα,α/2. The constant

function m is in Kα,α/2, and so N
α,α/2
m,Fm

(t) goes to zero as t goes to zero uniformly

on m ∈ (0,M ]. Thus, as an application of Theorem 1.3, we arrive at the following
result, which is the bounded open set case of a more general result recently obtained
in [9] by a different method.

Theorem 4.6. Suppose that D is a bounded C1,1 open set in R
d. For any m > 0,

let pmD be the transition density of the killed relativistic α-stable process with weight
m in D. For any M > 0 and T > 0, there exists a constant C11 ≥ 1 such that for
all m ∈ (0,M ] and (t, x, y) ∈ (0, T ]×D ×D,

C−1
11 qα/2(t, x, y) ≤ pmD(t, x, y) ≤ C11qα/2(t, x, y).

4.3. Censored stable processes. Fix an open set D in R
d with d ≥ 1. Recall

that A(d,−α) is the constant defined in (4.10). Define a bilinear form E on C∞
c (D)

by
(4.13)

E(u, v) := 1

2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))
A(d,−α)

|x− y|d+α
dxdy, u, v ∈ C∞

c (D).

Using Fatou’s lemma, it is easy to check that the bilinear form (E , C∞
c (D)) is

closable in L2(D, dx). Let F be the closure of C∞
c (D) under the Hilbert inner

product E1 := E + ( · , · )L2(D,dx). As noted in [2], (E ,F) is Markovian and hence a

regular symmetric Dirichlet form on L2(D, dx), and therefore there is an associated
symmetric Hunt process Y = {Yt, t ≥ 0,Px, x ∈ D} taking values inD (cf. Theorem
3.1.1 of [18]). The process Y is the censored α-stable process in D that is studied
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in [2]. By (4.13), the jumping kernel J(x, y) of the censored α-stable process Y is
given by

J(x, y) =
A(d,−α)

|x− y|d+α
for x, y ∈ D.

As a particular case of a more general result established in [8, Theorem 1.1],
when α ∈ (1, 2) and D is a C1,1 open subset of Rd, the censored α-stable process
on D satisfies the assumption of Section 1 with γ = α − 1. Thus as a special case
of Theorem 1.3, we have the following:

Theorem 4.7. Suppose that α ∈ (1, 2) and that Y is a censored stable process in
a C1,1 open set D. Assume μ ∈ Kα,α−1 and F ∈ Jα,α−1. Let qD be the density
of the Feynman-Kac semigroup of Y corresponding to Aμ,F . For any T > 0, there
exists a constant C12 ≥ 1 such that for all (t, x, y) ∈ (0, T ]×D ×D,

C−1
12 qα−1(t, x, y) ≤ qD(t, x, y) ≤ C12qα−1(t, x, y).

Similarly to [2], we can define a censored relativistic α-stable process in D.
Alternatively, with

Kt := exp

⎛⎝ ∑
0<s≤t

ln(ϕ(m1/α(|Ys− − Ys|))

+A(d,−α)

∫ t

0

∫
D

1− ϕ(m1/α|Ys − y|)
|Ys − y|α+d

dyds

)
,

ifD is a bounded C1,1 open set, a censored relativistic stable process Y m can also be
obtained from the censored stable process Y through the Feynman-Kac transform
Kt. That is, Ex[f(Y

m
t )] = Ex[Ktf(Yt)] (see [6,13]). By an argument similar to that

of Subsection 4.2, one can see that Fm := ln(ϕ(m1/α|x − y|)) ∈ Jα,α/2. Moreover,
since

gm(x) :=

∫
D

(1− ϕ(m1/α|x− y|))|x− y|−α−ddy

≤
∫
Rd

(1− ϕ(m1/α|x− y|))|x− y|−α−ddy = m,

gm ∈ Kα,α/2 and N
α,α/2
gm,Fm

(t) goes to zero as t goes to zero uniformly on m ∈ (0,M ].
Thus as a particular case of Theorem 4.7, we have the following.

Theorem 4.8. Suppose that α ∈ (1, 2) and that D is a bounded C1,1 open set in
R

d. For any m > 0, let qmD be the transition density of the censored relativistic
α-stable process with weight m in D. For any M > 0 and T > 0, there exists a
constant C13 ≥ 1 such that for all m ∈ (0,M ] and (t, x, y) ∈ (0, T ]×D ×D,

C−1
13 qα−1(t, x, y) ≤ qmD (t, x, y) ≤ C13qα−1(t, x, y).

In fact, Theorems 4.7 and 4.8 are applicable to certain classes of censored stable-
like processes whose Dirichlet heat kernel estimates are given in [8].

4.4. Stable processes with drifts. Let α ∈ (1, 2) and d ≥ 2. In this subsection,
we apply our main result to a non-symmetric process.
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For b = (b1, . . . , bd) with bi ∈ Kd,α−1, a Feller process Z on R
d with infinitesimal

generator Lb := Δα/2 + b(x) · ∇ is constructed in [3] through the fundamental
solution of Lb. Let ZD be the subprocess of Z killed upon leaving D. The following
result is established in [10].

Theorem 4.9. If α ∈ (1, 2), d ≥ 2 and D is a bounded C1,1 open set, then ZD has
a jointly continuous transition density function pD(t, x, y) that satisfies (1.3) with
γ = α/2.

Thus as a special case of Theorem 1.3, we also have the following.

Theorem 4.10. Suppose that α ∈ (1, 2), d ≥ 2, that D is a bounded C1,1 open
set and that ZD is the subprocess of Z killed upon leaving D. Assume μ ∈ Kα,α/2

and F ∈ Jα,α/2. Let qD be the density of the Feynman-Kac semigroup of ZD

corresponding to Aμ,F . For any T > 0, there exists a constant C14 ≥ 1 such that
for all (t, x, y) ∈ (0, T ]×D ×D,

C−1
14 qα/2(t, x, y) ≤ qD(t, x, y) ≤ C14qα/2(t, x, y).

Acknowledgement

The authors thank the referee for helpful comments on the first version of this
paper.

References

[1] Ph. Blanchard and Zhi Ming Ma, Semigroup of Schrödinger operators with potentials given
by Radon measures, Stochastic processes, physics and geometry (Ascona and Locarno, 1988),
World Sci. Publ., Teaneck, NJ, 1990, pp. 160–195. MR1124210 (93a:35034)

[2] Krzysztof Bogdan, Krzysztof Burdzy, and Zhen-Qing Chen, Censored stable processes,
Probab. Theory Related Fields 127 (2003), no. 1, 89–152, DOI 10.1007/s00440-003-0275-
1. MR2006232 (2004g:60068)

[3] Krzysztof Bogdan and Tomasz Jakubowski, Estimates of heat kernel of fractional Lapla-
cian perturbed by gradient operators, Comm. Math. Phys. 271 (2007), no. 1, 179–198, DOI
10.1007/s00220-006-0178-y. MR2283957 (2007k:47076)

[4] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, Perturbation of symmet-
ric Markov processes, Probab. Theory Related Fields 140 (2008), no. 1-2, 239–275, DOI
10.1007/s00440-007-0065-2. MR2357677 (2008m:60151)

[5] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, On general perturbations of sym-
metric Markov processes (English, with English and French summaries), J. Math. Pures Appl.
(9) 92 (2009), no. 4, 363–374, DOI 10.1016/j.matpur.2009.05.012. MR2569183 (2010m:60263)

[6] Zhen-Qing Chen and Panki Kim, Stability of Martin boundary under non-local Feynman-
Kac perturbations, Probab. Theory Related Fields 128 (2004), no. 4, 525–564, DOI
10.1007/s00440-003-0317-8. MR2045952 (2005d:60125)

[7] Zhen-Qing Chen, Panki Kim, and Renming Song, Heat kernel estimates for the Dirich-
let fractional Laplacian, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1307–1329, DOI
10.4171/JEMS/231. MR2677618 (2012c:58058)

[8] Zhen-Qing Chen, Panki Kim, and Renming Song, Two-sided heat kernel estimates for cen-
sored stable-like processes, Probab. Theory Related Fields 146 (2010), no. 3-4, 361–399, DOI
10.1007/s00440-008-0193-3. MR2574732 (2011a:60279)

[9] Zhen-Qing Chen, Panki Kim, and Renming Song, Sharp heat kernel estimates for relativistic
stable processes in open sets, Ann. Probab. 40 (2012), no. 1, 213–244, DOI 10.1214/10-
AOP611. MR2917772 (2012m:60183)

[10] Zhen-Qing Chen, Panki Kim, and Renming Song, Dirichlet heat kernel estimates for frac-
tional Laplacian under gradient perturbation, Ann. Probab. 40 (2012), no. 6, 2483–2538.
MR3050510

http://www.ams.org/mathscinet-getitem?mr=1124210
http://www.ams.org/mathscinet-getitem?mr=1124210
http://www.ams.org/mathscinet-getitem?mr=2006232
http://www.ams.org/mathscinet-getitem?mr=2006232
http://www.ams.org/mathscinet-getitem?mr=2283957
http://www.ams.org/mathscinet-getitem?mr=2283957
http://www.ams.org/mathscinet-getitem?mr=2357677
http://www.ams.org/mathscinet-getitem?mr=2357677
http://www.ams.org/mathscinet-getitem?mr=2569183
http://www.ams.org/mathscinet-getitem?mr=2569183
http://www.ams.org/mathscinet-getitem?mr=2045952
http://www.ams.org/mathscinet-getitem?mr=2045952
http://www.ams.org/mathscinet-getitem?mr=2677618
http://www.ams.org/mathscinet-getitem?mr=2677618
http://www.ams.org/mathscinet-getitem?mr=2574732
http://www.ams.org/mathscinet-getitem?mr=2574732
http://www.ams.org/mathscinet-getitem?mr=2917772
http://www.ams.org/mathscinet-getitem?mr=2917772
http://www.ams.org/mathscinet-getitem?mr=3050510


STABILITY OF DIRICHLET HEAT KERNEL ESTIMATES 5269

[11] Zhen-Qing Chen and Takashi Kumagai, Heat kernel estimates for stable-like processes on d-
sets, Stochastic Process. Appl. 108 (2003), no. 1, 27–62, DOI 10.1016/S0304-4149(03)00105-4.
MR2008600 (2005d:60135)

[12] Zhen-Qing Chen and Renming Song, Conditional gauge theorem for non-local Feynman-
Kac transforms, Probab. Theory Related Fields 125 (2003), no. 1, 45–72, DOI
10.1007/s004400200219. MR1952456 (2003m:60213)

[13] Zhen-Qing Chen and Renming Song, Drift transforms and Green function estimates for

discontinuous processes, J. Funct. Anal. 201 (2003), no. 1, 262–281, DOI 10.1016/S0022-
1236(03)00087-9. MR1986161 (2004c:60218)

[14] K. L. Chung, Doubly-Feller process with multiplicative functional, Seminar on stochastic
processes, 1985 (Gainesville, Fla., 1985), Progr. Probab. Statist., vol. 12, Birkhäuser Boston,
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