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RANK-LEVEL DUALITY OF CONFORMAL BLOCKS

FOR ODD ORTHOGONAL LIE ALGEBRAS IN GENUS 0

SWARNAVA MUKHOPADHYAY

Abstract. Classical invariants for representations of one Lie group can often
be related to invariants of some other Lie group. Physics suggests that the
right objects to consider for these questions are certain refinements of classical
invariants known as conformal blocks. Conformal blocks appear in algebraic
geometry as spaces of global sections of line bundles on moduli stacks of par-
abolic bundles on a smooth curve. Rank-level duality connects a conformal
block associated to one Lie algebra to a conformal block for a different Lie
algebra. In this paper, we prove a rank-level duality for so(2r + 1) conformal
blocks on the pointed projective line which was suggested by T. Nakanishi and
A. Tsuchiya.

1. Introduction

It has been known for a long time that invariant theory of GLr and the in-
tersection theory of Grassmannians are related. This relation gives rise to some
interesting isomorphisms between invariants of SLr and SLs for some positive in-
teger s. To make it precise recall that the irreducible polynomial representations
of GLr are indexed by r tuples of integers λ = (λ1 ≥ · · · ≥ λr ≥ 0) ∈ Zr. Let Vλ

denote the corresponding irreducible GLr-module.
Consider λ = (λ1 ≥ · · · ≥ λr ≥ 0) an r tuple of integers such that λ1 ≤ s. The

set of all such λ’s is in bijection with Yr,s, the set of all Young diagrams with at
most r rows and s columns. For λ, μ, ν in Yr,s such that |λ| + |μ| + |ν| = rs, we
know that

dimC(Vλ ⊗ Vμ ⊗ Vν)
SLr = dimC(VλT ⊗ VμT ⊗ VνT )SLs ,

where |λ| denotes the number of boxes in the Young diagram of λ and λT denotes the
transpose of the Young diagram of λ. The above is not only a numerical “strange”
duality but the vector spaces are canonically dual to each other (see [2, 7]).

Physics suggests that to understand the above kind of relation for other groups,
the correct objects to consider are certain refinements of the co-invariants known
as conformal blocks. Consider a finite dimensional simple complex Lie algebra

g, a Cartan subalgebra h and a non-negative integer � called the level. Let �λ =
(λ1, . . . , λn) be an n tuple of dominant weights of g of level �. To n distinct points
�p = (P1, . . . , Pn) with coordinates �z = (z1, . . . , zn) on P1, one associates a finite
dimensional vector space V�λ(g, �, �z) known as the space of co-vacua. The dual of
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V�λ(g, �, �z) is called a conformal block and is denoted by V†
�λ
(g, �, �z). We refer the

reader to Section 2 for more details. More generally, one can define conformal
blocks associated to n distinct points on curves of arbitrary genus with at most
nodal singularities (see Section 2). Conformal blocks form a vector bundle on
Mg,n, the moduli stack of stable n pointed curves of genus g.

Rank-level duality is a duality between conformal blocks associated to two differ-
ent Lie algebras. In [25], T. Nakanishi and A. Tsuchiya proved that on P

1, certain
conformal blocks of sl(r) at level s are dual to conformal blocks of sl(s) at level
r. In [1], T. Abe proved rank-level duality statements between conformal blocks of
type sp(2r) at level s and sp(2s) at level r. It is important to point out that there
are no known relations between the classical invariants for the Lie algebras sp(2r)
and sp(2s).

The rank-level duality of conformal blocks has a geometric perspective under the
identification of conformal blocks with the space of non-abelian G-theta functions.
This is known as strange duality. The strange duality conjecture for SLn says that
the space of generalized theta functions associated to the pairs (p, q), (q, p) are
naturally dual to each other, the duality being induced from the tensor product
of vector bundles. This conjecture was proved by P. Belkale (see [8, 9]) and also
by A. Marian and D. Oprea [21]. The symplectic strange duality conjecture in [6]
was proved by T. Abe (see [1]). For a survey of these results, we refer the reader
to [22, 27, 29]. Rank-level duality isomorphisms also give relations in the Picard
group of the Grothendieck-Knudsen moduli space M0,n (see [24]).

The paper [25] (Section 6, page 368) suggests that one can try to answer similar
rank-level duality questions for orthogonal Lie algebras on P1. Furthermore, it
is pointed out in [25] that one should only consider the tensor representations,
i.e. representations that lift to representations of the special orthogonal group (see
Section 6 in [25]). In the following, we answer the above question for odd orthogonal
Lie algebras.

Throughout this paper, we assume that r, s ≥ 3. Let P 0
2s+1(so(2r + 1)) denote

the set of tensor representations of so(2r+1) of level 2s+1. We can realize the set
P 0
2s+1(so(2r + 1)) as a disjoint union of Yr,s and σ(Yr,s), where σ is an involution

P 0
2s+1(so(2r+1)) that corresponds to the action of a diagram automorphism of the

affine Lie algebra ŝo(2r + 1) (see Section 5). Our main theorem is the following:

Theorem 1.1. Let �λ = (λ1, . . . , λn) ∈ Yn
r,s be an n tuple of weights in the set

P 0
2s+1(so(2r + 1)).

(1) If
∑n

i=1 |λi| is even, then

V�λ(so(2r + 1), 2s+ 1, �z) � V†
�λT

(so(2s+ 1), 2r + 1, �z),

where �z is a tuple of n distinct points on P1.
(2) If

∑n
i=1 |λi| is odd, then

V�λ,0(so(2r + 1), 2s+ 1, �z) � V†
�λT ,σ(0)

(so(2s+ 1), 2r + 1, �z),

where �z is a tuple of (n+ 1) distinct points on P1.
(3) If

∑n
i=1 |λi| is even, then

V�λ,σ(0)(so(2r + 1), 2s+ 1, �z) � V†
�λT ,σ(0)

(so(2s+ 1), 2r + 1, �z),

where �z is a tuple of (n+ 1) distinct points on P
1.
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The details about formulations of Theorem 1.1 can be found in Section 6.

Remark 1.2. The above statements are independent of each other. The three state-
ments above along with Proposition 3.6 and propagation of vacua (see Section 2.4)
cover all possible rank-level duality maps for the pair (so(2r+1), so(2s+1)). In the
first statement, all of the chosen weights for so(2r+1) lie in Yr,s and for so(2s+1)
lie in Ys,r. In the second statement all weights for so(2r + 1) are in Yr,s and all
except one are in Ys,r for so(2s+ 1).

Finally the third statement, although it has similar conditions as the first state-
ment, is independent of it. Here all but one weight of so(2r + 1) are in Yr,s and
similarly for so(2s + 1). It might appear that one can use propagation of vacua
(see Section 2.4) and diagram automorphisms (see Proposition 3.6) to get the third
statement from the first, but this is not possible. The choice of weights between
the first (the weight 0 at level 2r+1) and the third (the weight σ(0) at level 2r+1)
statements differ only at one (odd number) point, and the diagram automorphism
σ is of order two. So we cannot remove the σ from the third statement keeping all
the other weights in Yr,s.

We briefly discuss the general context of rank-level duality maps. We closely
follow the methods used in [1, 4, 25], but there are significant differences in key
steps.

Let g1, g2 and g be simple Lie algebras and consider an embedding of Lie algebras

φ : g1 ⊕ g2 → g. We extend it to a map of affine Lie algebras φ̂ : ĝ1 ⊕ ĝ2 → ĝ.
Consider a level one integrable highest weight module HΛ(g), and restrict it to
ĝ1⊕ ĝ2. The module HΛ(g) decomposes into irreducible integrable ĝ1⊕ ĝ2-modules
of level � = (�1, �2) in the following way:⊕

(λ,μ)∈B(Λ)

mΛ
λ,μHλ(g1)⊗Hμ(g2) � HΛ(g),

where � = (�1, �2) is the Dynkin multi-index of φ, mΛ
λ,μ is the multiplicity of the

component Hλ(g1) ⊗ Hμ(g2) and B(Λ) is an indexing set for the components. In
general, the number of components |B(Λ)| may be infinite. We only consider those
embeddings such that |B(Λ)| is finite. These embeddings are known as conformal
embeddings (see [17] for more details).

Further assume that mΛ
λ,μ = 1 for any level 1 weight Λ. Thus, for an n tuple

�Λ = (Λ1, . . . ,Λn) of level one dominant weights of g, we have an injective map:

n⊗
i=1

(Hλi
(g1)⊗Hμi

(g2)) →
n⊗

i=1

HΛi
(g).

We consider a tuple of n distinct points �z on P1 and taking “co-invariants”, we get
a map

α : V�λ(g1, �1, �z)⊗ V�μ(g2, �2, �z) → V�Λ(g, 1, �z),

where �λ = (λ1, . . . , λn) and �μ = (μ1, . . . , μn). We refer the reader to Section 2
for a detailed description. If dimC(V�Λ(g, 1, �z)) = 1, we get a map V�λ(g1, �1, �z) →
V†
�μ(g2, �2, �z). This map is known as the rank-level duality map. The above analysis

with the embedding so(2r + 1)⊕ so(2s+ 1) → so((2r + 1)(2s+ 1)) gives the maps
considered in Theorem 1.1. In Section 3, we define rank-level duality for conformal
blocks on n pointed nodal curves of arbitrary genus.
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Remark 1.3. Note that the conformal blocks in Theorem 1.1 can be identified with
the space of global sections of a line bundle on moduli stacks of Spin-bundles over
P
1 with parabolic structures on marked points (see [18]), but we have not been able

to define the rank-level duality map in Theorem 1.1 geometrically.

We now discuss the main body of the proof of Theorem 1.1. This can be broken
up into several steps:

1.0.1. Dimension check. Using the Verlinde formula, we show that the dimensions
of the source and the target of the conformal blocks in Theorem 1.1 are the same.
Unlike the case in [1], we do not have a bijection between P2s+1(so(2r + 1)) and
P2r+1(so(2s+1)). We get around the problem by considering bijection of the orbits
of P2s+1(so(2r+1)) and P2r+1(so(2s+1)) under the involution σ as described in [26].

Let �λ ∈ Yn
r,s and Γ = {1, σ} be the group of diagram automorphisms of ŝo(2r + 1)

acting on P2s+1(so(2r + 1)). The Verlinde formula in this case takes the form∑
μ∈P2s+1(so(2r+1))/Γ

f(μ,�λ)|Orbμ |,

where f(μ,�λ) is a function, constant on the orbit of μ, and |Orbμ | denotes the
cardinality of the orbit of μ under the action of Γ. Using a non-trivial trigono-
metric identity in [26] and a generalization of Lemma A.42 in [10], we show that

f(μ,�λ)|Orbμ | is the same for the corresponding orbit for the Lie algebra so(2s+1)
at level 2r + 1. For details, we refer the reader to Section 7.

1.0.2. Flatness of rank-level duality. The rank-level duality map has constant rank
when �z varies (see [9]). The conformal embedding is important in this case as it en-
sures that the rank-level duality map is flat with respect to theKZ/Hitchin/WZW
connection (see [9]) on sheaves of vacua over any family of smooth curves.

1.0.3. Degeneration of a smooth family. Let C1 ∪ C2 be a nodal curve, where C1

and C2 are isomorphic to P1 intersecting at one point. A conformal block on C1∪C2

is isomorphic to a direct sum of conformal blocks on the normalization of C1 ∪C2.
This property is known as factorization of conformal blocks. A key ingredient in
the proof of rank-level duality in [1] is the compatibility of the rank-level duality
with factorization. T. Abe uses it to conclude that the rank-level duality map is an
isomorphism on certain nodal curves.

This property for nodal curves is no longer true for our present case due to the
presence of “non-classical” components (i.e. components that do not appear in the
branching of finite dimensional irreducible modules) in the branching of highest
weight integrable modules. We refer the reader to Section 3 for more details.

We consider a family of smooth curves degenerating to a nodal curveX0. Instead
of looking at the nature of the rank-level duality map on the nodal curve, we study
the nature of the rank-level duality map on nearby smooth curves of the nodal
curve X0 under any conformal embedding. We use the “sewing procedure” of [30]
to understand the decomposition of the rank-level duality map near the nodal curve
X0. The methods used in this step are similar to [4]. This degeneration technique
and the flatness of the rank-level duality enable us to use induction similar to [1,25]
to reduce to the case for one dimensional conformal blocks on P

1 with three marked
points. As before the presence of non-classical components brings in complications.
A detailed description of the above can be found in Section 9.
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1.0.4. Minimal cases. We are now reduced to showing that rank-level duality maps
for one dimensional conformal blocks on P1 with three marked points are non-zero.
Our proof of this step differs significantly from that in [1] as we were not able to
use any geometry of parabolic vector bundles with a non-degenerate form. This
is again due to the presence of non-classical components. Using [15], we construct
explicit vectors |v1⊗v2⊗v3〉 in the tensor product of three highest weight integrable
modules (see Section 8) and show by using gauge symmetry (see Section 2) that
〈Ψ|v1⊗v2⊗v3〉 �= 0, where 〈Ψ| is a non-zero element of a one dimensional conformal
block at level one for so((2r + 1)(2s + 1)). It will be very interesting if one can
define rank-level duality maps purely using the language of vector bundles with a
non-degenerate form.

2. Basic definitions in the theory of conformal blocks

We recall some basic definitions from [30] in the theory of conformal blocks.
Let g be a simple Lie algebra over C and h a Cartan subalgebra of g. We fix the
decomposition of g into root spaces

g = h⊕
∑
α∈Δ

gα,

where Δ is the set of roots decomposed into a union of Δ+  Δ− of positive and
negative roots. Let (, ) denote the Cartan-Killing form on g normalized such that
(θ, θ) = 2, where θ is the longest root and we identify h with h∗ using the form (, ).

2.1. Affine Lie algebras. We define the affine Lie algebra ĝ to be

ĝ := g⊗ C((ξ))⊕ Cc,

where c belongs to the center of ĝ and the Lie bracket is given as follows:

[X ⊗ f(ξ), Y ⊗ g(ξ)] = [X,Y ]⊗ f(ξ)g(ξ) + (X,Y ) Resξ=0(gdf).c,

where X,Y ∈ g and f(ξ), g(ξ) ∈ C((ξ)).
Let X(n) = X ⊗ ξn and X = X(0) for any X ∈ g and n ∈ Z. The finite dimen-

sional Lie algebra g can be realized as a subalgebra of ĝ under the identification of
X with X(0).

2.2. Representation theory of affine Lie algebras. The finite dimensional ir-
reducible modules of g are parametrized by the set of dominant integral weights
P+ ⊂ h∗. Let Vλ denote the irreducible module of highest weight λ ∈ P+ and vλ
denote the highest weight vector.

We fix a positive integer � which we call the level. The set of dominant integral
weights of level � is defined as follows:

P�(g) := {λ ∈ P+|(λ, θ) ≤ �}.
For each λ ∈ P�(g) there is a unique irreducible integrable highest weight ĝ-module
Hλ(g) which satisfies the following properties:

(1) Vλ ⊂ Hλ(g).
(2) The central element c of ĝ acts by the scalar �.
(3) Let vλ denote a highest weight vector in Vλ. Then

Xθ(−1)�−(θ,λ)+1vλ = 0,
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where Xθ is a non-zero element in the weight space of gθ. Moreover, Hλ(g)
is generated by Vλ over ĝ with the above relation. When λ = 0, the
corresponding ĝ-module H0(g) is known as the vacuum representation.

2.3. Conformal blocks. We fix an n pointed curve C with formal neighborhood
η1, . . . , ηn around the n points �p = (P1, . . . , Pn), which satisfies the following prop-
erties:

(1) The curve C has at most nodal singularities.
(2) The curve C is smooth at the points P1, . . . , Pn.
(3) C − {P1, . . . , Pn} is an affine curve.
(4) A stability condition (equivalent to the finiteness of the automorphisms of

the pointed curve).

(5) Isomorphisms ηi : ÔC,Pi
� C[[ξi]] for i = 1, . . . , n.

We denote by X = (C; �p; η1, . . . , ηn) the above data associated to the curve C. We
define another Lie algebra,

ĝn :=

n⊕
i=1

g⊗C C((ξi))⊕ Cc,

where c belongs to the center of ĝn and the Lie bracket is given as follows:

[

n∑
i=1

Xi ⊗ fi,

n∑
i=1

Yi ⊗ gi] :=

n∑
i=1

[Xi, Yi]⊗ figi +

n∑
i=1

(Xi, Yi) Resξi=0(gidfi)c.

We define the current algebra to be

g(X) := g⊗ Γ(C − {P1, . . . , Pn},OC).

By local expansion of functions using the chosen coordinates ξi, we get the following
embedding:

g(X) ↪→ ĝn.

Consider an n tuple of weights �λ = (λ1, . . . , λn) ∈ Pn
� (g). We set H�λ = Hλ1

(g)⊗
· · · ⊗ Hλn

(g). The algebra ĝn acts on H�λ. For any X ∈ g and f ∈ C((ξi)), the
action of X ⊗ f(ξi) on the i-th component is given by the following:

ρi(X ⊗ f(ξi))|v1 ⊗ · · · ⊗ vn〉 = |v1 ⊗ · · · ⊗ (X ⊗ f(ξi)vi)⊗ · · · ⊗ vn〉,
where |vi〉 ∈ Hλi

(g) for each i.

Definition 2.1. We define the space of conformal blocks

V†
�λ
(X, g) := HomC(H�λ/g(X)H�λ,C).

We define the space of dual conformal blocks, V�λ(X, g) = H�λ/g(X)H�λ. These
are both finite dimensional C-vector spaces which can be defined in families. The
dimensions of these vector spaces are given by the Verlinde formula.

The elements of V†
�λ
(X, g) (or H∗

�λ
) will be denoted by 〈Ψ| and those of the dual

conformal blocks (or H�λ) by |Φ〉. We will denote the natural pairing by 〈Ψ|Φ〉.
Remark 2.2. Let X ∈ g and f ∈ Γ(C − {P1, . . . , Pn},OC). Then every element of

〈Ψ| ∈ V†
�λ
(X, g) satisfies the following gauge symmetry:

n∑
i=1

〈Ψ|ρi(X ⊗ f(ξi))Φ〉 = 0.
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2.4. Propagation of vacua. Let Pn+1 be a new point on the curve C with coor-
dinate ηn+1 and X′ denote the new data. We associate the vacuum representation

H0 to the point Pn+1 and �λ′ = �λ ∪ {λn+1 = 0}. The “propagation of vacuum”
gives an isomorphism

f : V†
�λ
(X′, g) → V†

�λ
(X, g)

by the formula

f(〈Ψ′|)|Φ〉 := 〈Ψ′|Φ⊗ 0〉,
where |0〉 is a highest weight vector of the representation H0, |φ〉 ∈ H�λ and 〈Ψ′| is
an arbitrary element of V†

�λ
(X′, g).

2.5. Conformal blocks in a family. Let g be a simple Lie algebra over C and
�λ ∈ Pn

� (g). Consider a family F = (π : C → B; s1, . . . , sn; ξ1, . . . , ξn) of nodal curves
on a base B with sections si and formal coordinates ξi. In [30], a locally free sheaf

V†
�λ
(F , g) known as the sheaf of conformal blocks is constructed over the base B.

The sheaf V†
�λ
(F , g) commutes with base change. Similarly one can define another

locally free sheaf V�λ(F , g) as a quotient of OB ⊗H�λ.

Moreover, if F is a family of smooth projective curves, then the sheaf V†
�λ
(F , g)

carries a projectively flat connection known as the KZ/Hitchin/WZW connection.
We refer the reader to [30] for more details.

Remark 2.3. When the level � becomes unclear, we also include it in the notation
of conformal blocks. Let X be the data associated to an n pointed curve with

chosen coordinates and �λ be an n tuple of level � weights of the Lie algebra g. The

conformal block is denoted by V†
�λ
(X, g, �), and the dual conformal block is denoted

by V�λ(X, g, �).

3. Conformal subalgebras and rank-level duality map

In this section, we discuss conformal embeddings of Lie algebras and give a
general formulation of rank-level duality maps.

3.1. Conformal embedding. Let s, g be two simple Lie algebras and φ : s → g

an embedding of Lie algebras. Let (, )s and (, )g denote normalized Cartan-Killing
forms such that the length of the longest root is 2. We define the Dynkin index of
φ to be the unique integer dφ satisfying

(φ(x), φ(y))g = dφ(x, y)s

for all x, y ∈ s. When s = g1 ⊕ g2 is semisimple, we define the Dynkin multi-index
of φ = φ1 ⊕ φ2 : g1 ⊕ g2 → g to be dφ = (dφ1

, dφ2
).

If g is simple, for any λ ∈ P�(g), we define the conformal anomaly c(g, �) and the
trace anomaly Δλ(g, �) as follows:

c(g, �) =
� dim g

g∗ + �
and Δλ(g, �) =

(λ, λ+ 2ρ)

2(g∗ + �)
,

where g∗ is the dual Coxeter number of g and ρ denotes the half sum of positive
roots, also known as the Weyl vector. If g = g1 ⊕ g2 is semisimple, we define
the conformal anomaly and trace anomaly by taking the sum of the conformal
anomalies over all simple components.
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Definition 3.1. Let φ = (φ1, φ2) : s = g1⊕g2 → g be an embedding of Lie algebras
with Dynkin multi-index k = (k1, k2). We define φ to be a conformal embedding s

in g at level � if c(g1, k1�) + c(g2, k2�) = c(g, �).

It is shown in [17] that the above equality only holds if � = 1. Many familiar and
important embeddings are conformal. For a complete list of conformal embeddings,
we refer the reader to [3]. Next, we list two important properties which make
conformal embeddings special.

(1) Let s = g1 ⊕ g2 be a semisimple complex Lie algebra. Then an embedding
φ : s → g is a conformal subalgebra if and only if any irreducible ĝ-module
HΛ(g) of level one decomposes into a finite sum of irreducible ŝ-modules of
level � = (�1, �2), where � is the Dynkin multi-index of the embedding φ. A
proof of the above can be found in [16].

(2) If φ : s → g is a conformal embedding, then the action of the Virasoro
operators are the same; i.e. for any integer k, the following equality holds:

Ls
k = Lg

k ∈ End(HΛ(g)),

where Ls
k and Lg

k are k-th Virasoro operators of s and g acting at level �
and one respectively. We refer the reader to [16] for more details.

3.2. General context of rank-level duality. Consider a level one integrable
highest weight ĝ-module HΛ(g) and restrict it to ĝ1 ⊕ ĝ2. The module HΛ(g)
decomposes into irreducible integrable ĝ1⊕ĝ2-modules of level � = (�1, �2) as follows:⊕

(λ,μ)∈B(Λ)

mΛ
λ,μHλ(g1)⊗Hμ(g2) � HΛ(g),

where � is the Dynkin multi-index of φ andmΛ
λ,μ is the multiplicity of the component

Hλ(g1) ⊗ Hμ(g2). Since the embedding is conformal, we know that both |B(Λ)|
and mΛ

λ,μ are finite.

We consider only those conformal embeddings such that for every Λ ∈ P1(g)

and (λ, μ) ∈ B(Λ), the multiplicity mΛ
λ,μ = 1. Let �Λ = (Λ1, . . . ,Λn) be an n tuple

of level one dominant weights of g. We consider H�Λ(g) and restrict it to ĝ1 ⊕ ĝ2.

Choose �λ = (λ1, . . . , λn) and �μ = (μ1, . . . , μn) such that (λi, μi) ∈ B(Λi) for all
1 ≤ i ≤ n. We get an injective map

n⊗
i=1

(Hλi
(g1)⊗Hμi

(g2)) →
n⊗

i=1

HΛi
(g).

Let X denote the data associated to a curve C of genus g with n distinct points
�p = (P1, . . . , Pn) with chosen coordinates ξ1, . . . , ξn. Taking co-invariants with
respect to g(X), we get the following map:

α : V�λ(X, g1, �1)⊗ V�μ(X, g2, �2) → V�Λ(X, g, 1).

If dimC(V�Λ(X, g, 1)) = 1, we get a map well defined up to constants:

α∨ : V�λ(X, g1, �1) → V†
�μ(X, g2, �2).

This map is known as the rank-level duality map.

Definition 3.2. Let �λ ∈ Pn
�1
(g1) and �μ ∈ Pn

�2
(g2). The pair (�λ, �μ) is called admissi-

ble if one can define a rank-level duality map between the corresponding conformal
blocks.
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Let F = (π : C → B; s1, . . . , sn; ξ1, . . . , ξn) be a family of nodal curves on a base
B with sections si and local coordinates ξi. The map α can be easily extended to
a map of sheaves:

α(F) : V�λ(F , g1, �1)⊗ V�μ(F , g2, �2) → V�Λ(F , g, 1).

3.3. Properties of rank-level duality. In this section, we recall some interesting
properties of rank-level duality maps. The following proposition tells us about the
behavior of the rank-level duality map in a smooth family of curves. For a proof,
we refer the reader to [9].

Proposition 3.3. Let F = (π : C → B; s1, . . . , sn; ξ1, . . . , ξn) be a family of smooth
projective curves on a base B with sections si and local coordinates ξi. Then, the
rank-level duality map α is projectively flat with respect to the KZ/Hitchin/WZW
connection.

The rank-level duality map commutes with the propagation of vacua. The fol-
lowing has a direct proof.

Proposition 3.4. Let Q be a point on the curve C distinct from �p = (P1, . . . , Pn)

and let X′ be the data associated to the n + 1 pointed curve. Consider �λ′ =
(λ1, . . . , λn, 0) and �μ′ = (μ1, . . . , μn, 0). The rank-level duality map V�λ(X, g1, �1) →
V†
�μ(X, g2, �2) is an isomorphism if and only if the rank-level duality map

V�λ′(X
′, g1, �1) → V†

�μ′(X′, g2, �2) is an isomorphism.

3.3.1. Diagram automorphisms and rank-level duality. Let G be a complex sim-
ply connected group with Lie algebra g. The center Z(G) acts on the affine Lie
algebra ĝ as diagram automorphisms. The action of the center Z(G) preserves
the Cartan subalgebra of ĝ, and hence it also acts on P�(g). Consider the set

Γ(G) = {(σ1, . . . , σn) ∈ Z(G)n|
∏n

i=1 σi = id}. For �σ ∈ Γ(G), we denote by �σ�λ the
n tuple (σ1.λ1, . . . , σn.λn), where σ.λ is a level � weight of g given by the action of
diagram automorphism σ on a weight λ ∈ P�(g). The following is one of the main
results in [11].

Proposition 3.5. Let X be the data associated to n distinct points on P1 with
chosen coordinates. Then, there is an isomorphism

Θ�σ(X) : V�λ(X, g, �) → V�σ�λ(X, g, �).

Moreover the isomorphism is flat with respect to the KZ/Hitchin/WZW connection.

The isomorphism Θ�σ(X) in [11] depends on the choice of formal coordinates
around the marked points and has the following functorial property under embed-
dings of Lie algebras. Let G1, G2 and G be simply connected Lie groups with
simple Lie algebras g1, g2 and g respectively. Consider a map φ : G1 × G2 → G
and let dφ : g1 ⊕ g2 → g be the map of Lie algebras. For any simply connected,
simple Lie group G, consider

Γ(G) = {(σ1, . . . , σn) ∈ Z(G)n|
n∏

i=1

σi = id}.

We only give an outline of the proof of the following proposition. For a complete
proof, see [23]. We assume that the dimension of V�Λ(X, g, 1) is one.



6750 SWARNAVA MUKHOPADHYAY

Proposition 3.6. Let �Σ ∈ Γ(G), �σ ∈ Γ(G1) be such that φ(�σ) = �Σ. Then the
pairing

V�λ(X, g1, �1)⊗ V�μ(X, g2, �2) → V�Λ(X, g, 1)

is non-degenerate if and only if the following pairing is non-degenerate:

V�σ�λ(X, g1, �1)⊗ V�μ(X, g2, �2) → V�Σ�Λ(X, g, 1).

Proof. For every n tuple �σ = (σ1, . . . , σi, . . . , σn) (respectively �Σ) as in the propo-
sition, n automorphisms of ĝ1 (respectively ĝ) are constructed in [11]. These auto-
morphisms are known as multi-shift automorphisms. We refer the reader to [11,23]

for a definition. Multi-shift automorphisms for �σ (respectively �Σ) have the following
features:

• If σi is non-trivial, then the associated multi-shift automorphism is not an
inner automorphism.

• For �σ (respectively �Σ), it gives an automorphism of
⊕n

i=1 g1⊗C((ξi))⊕Cc
(respectively for

⊕n
i=1 g⊗ C((ξi))⊕ Cc).

• The above automorphism preserves the subalgebra g1(X) (respectively
g(X)).

In [23], with the assumption of Proposition 3.6, it is shown that the multi-shift

automorphisms for �σ commute with multi-shift automorphisms for �Σ for the map
ĝ1 ⊕ ĝ2 → ĝ. This and the proof of Proposition 3.5 (see [11]) give us the following
diagram of conformal blocks which commutes:

V�λ(X, g1, �1)⊗ V�μ(X, g2, �2)

Θ�σ(X)⊗id

��

�� V�Λ(X, g, 1)

Θ�Σ(X)

��
V�σ�λ(X, g1, �1)⊗ V�μ(X, g2, �2) �� V�Σ�Λ(X, g, 1)

Here the vertical arrows are the isomorphisms constructed in [11], and the horizontal
arrows are rank-level duality maps that come from the conformal embedding g1 ⊕
g2 → g. The proof of the proposition now follows easily. �

4. Sewing and compatibility under factorization

In this section, we recall the sewing construction from [30]. We consider a family
of curves degenerating to a curve with one node. We study compatibility of a
rank-level duality map with factorization of a nodal curve following [4]. We will
use Proposition 4.3 to reduce rank-level duality questions on n pointed curves to
rank-level duality for certain one dimensional conformal blocks on P1 with three
marked points. Our strategy is inspired by Proposition 5.2 in [28]. We refer the
reader to Section 9 for more details. First we recall the following lemma from [30].

Lemma 4.1. There exists a bilinear pairing

(, )λ : Hλ ×Hλ† → C

unique up to a multiplicative constant such that

(X(n)u, v)λ + (u,X(−n)v)λ = 0,

for all X ∈ g, n ∈ Z, u ∈ Hλ and v ∈ Hλ† . Moreover, the restriction of the form
(, )λ to Hλ(m)×Hλ†(m′) is zero if m �= m′ and is non-degenerate if m = m′.
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Since the restriction of the bilinear form (, )λ to Hλ(m) × Hλ†(m) is non-
degenerate, we obtain an isomorphism of Hλ†(m) with Hλ(m)∗. Let γλ(m) be the
distinguished element of Hλ(m)⊗Hλ†(m) given by (, )λ. Let t be a formal variable.
Given λ ∈ P�(g), we construct an element γ̃λ =

∑∞
m=0 γλ(m)tm of Hλ ⊗Hλ† [[t]].

We are now ready to describe the sewing procedure in [30]. Throughout the
section, let B = SpecC[[t]]. We consider a family of curves X → B with n marked
points with chosen coordinates such that its special fiber X0 is a curve X0 over C
with exactly one node and its generic fiber Xt is a smooth curve. Consider the sheaf

of conformal blocks V†
�λ
(X , g) for the family of curves X . The sheaf of conformal

blocks commutes with base change, and the fiber over any point t ∈ B coincides

with V†
�λ
(Xt, g), where Xt is the data associated to the curve Xt over the point t ∈ B.

Let X̃0 be the normalization of X0. For λ ∈ P�(g), the following isomorphism is
constructed in [30]:

⊕ιλ :
⊕

λ∈P�(g)

V†
λ,λ†,�λ

(X̃, g) → V†
�λ
(X, g),

where X̃ is the data associated to the (n + 2) points of the smooth pointed curve

X̃0 with chosen coordinates.
In [30], a sheaf version of the above isomorphism is also proved. We briefly recall

the construction. For every λ ∈ P�(g) there exists a map

sλ : V†
λ,λ†,�λ

(X̃, g) → V†
�λ
(X , g),

where sλ(ψ) = ψ̃ and ψ̃(ũ) := ψ(ũ ⊗ γ̃λ) ∈ C[[t]] for any ũ ∈ H�λ[[t]]. This map
extends to a map sλ(t) of coherent sheaves of C[[t]]-modules

sλ(t) : V†
λ,λ†,�λ

(X̃, g)⊗ C[[t]] → V†
�λ
(X , g).

With the above notation, the following is proved in [30]. We also refer the reader
to Theorem 6.1 in [20].

Proposition 4.2. The map

⊕sλ(t) :
⊕

λ∈P�(g)

V†
λ,λ†,�λ

(X̃, g)⊗ C[[t]] → V†
�λ
(X , g)

is an isomorphism of locally free sheaves on B.

4.1. Factorization and compatibility of rank-level duality. Consider a con-
formal embedding s → g. Assume that all level one highest weight integrable
modules of ĝ decompose with multiplicity one as ŝ-modules.

Let �λ = (λ1, . . . , λn) be an n tuple of level one weights of g and �μ ∈ B(�λ). We
get a map H�μ(s) → H�λ(g). As discussed in Section 3, we also get a C[[t]]-linear
map

α(t) : V†
�λ
(X , g) → V†

�μ(X , s).

For μ ∈ B(λ), we denote by αλ,μ the map induced from branching as discussed in
Section 3:

V†
λ,λ†,�λ

(X̃0, g) → V†
μ,μ†,�μ

(X̃0, s),

and the extension of αλ,μ to a C[[t]]-linear map is denoted as follows:

αλ,μ(t) : V†
λ,λ†,�λ

(X̃0, g)⊗ C[[t]] → V†
μ,μ†,�μ

(X̃0, s)⊗ C[[t]].
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The following proposition from [4] describes how α(t) decomposes under factor-
ization.

Proposition 4.3. On B, we have

α(t) ◦ sλ(t) =
∑

μ∈B(λ)

tnμsμ(t) ◦ αλ,μ(t),

where nμ are positive integers given by the formula

nμ = Δμ −Δλ.

Remark 4.4. The integers nμ are non-zero if the finite dimensional s-module Vμ

does not appear in the decomposition of the finite dimensional g-module Vλ.

5. Branching rules for conformal embedding

of orthogonal Lie algebras

In this section, we discuss the branching rule for the conformal embedding
so(2r + 1)⊕ so(2s+ 1) → so((2r + 1)(2s+ 1)).

5.1. Representation of so(2r + 1). Let Ei,j be a matrix whose (i, j)-th entry is
one and all other entries are zero. The Cartan subalgebra h of so(2r+1) is generated
by diagonal matrices of the form Hi = Ei,i − Er+i,r+i for 1 ≤ i ≤ r. Let Li ∈ h∗

be defined by Li(Hj) = δi,j . The normalized Cartan-Killing form on h is given by
(Hi, Hj) = δij . Under the identification of h∗ with h using the Cartan-Killing form,
the image of Li is Hi for all 1 ≤ i ≤ r.

We can choose the simple positive roots of so(2r + 1) to be α1 = L1 − L2, α2 =
L2 − L3, . . . , αr−1 = Lr−1 − Lr, αr = Lr. The highest root is θ = L1 + L2 =
α1 + 2α2 + · · ·+ 2αr. The fundamental weights of Br are ωi = L1 + L2 + · · ·+ Li

for 1 ≤ i < r and ωr = 1
2 (L1 + L2 + · · ·+ Lr).

The dominant integral weights, P+, of so(2r + 1) can be written as

P+ = P 0
+  P 1

+,

where P 0
+ is the set of dominant weights λ =

∑r
i=1 aiωi such that ar is even and

P 1
+ := P 0

+ +ωr. Let Yr be the set of Young diagrams with at most r rows and Yr,s

denote the set of Young diagrams with at most r rows and s columns. Then, the
set P 0

+ is in bijection with Yr.
Combinatorially any dominant weight λ of P+ can be written as Y + tωr, where

t = {0, 1} and Y ∈ Yr. If t = 0, then λ ∈ P 0
+ and if t = 1, then λ ∈ P 1

+.
Let λ =

∑r
i=1 aiωi be a dominant integral weight. Then,

(θ, λ) = a1 + 2(a2 + · · ·+ ar−1) + ar.

The set of level 2s+ 1 dominant weights is described below:

P2s+1(so(2r + 1)) = {λ ∈ P+|a1 + 2(a2 + · · ·+ ar−1) + ar ≤ 2s+ 1}.

5.2. The action of center on weights. An element σ of the center of the group
Spin(2r + 1) acts as an outer automorphism on affine Lie algebra ŝo(2r + 1). For
details, we refer the reader to [15]. The action of σ on P2s+1(so(2r+1)) is given by
σ(λ) = (2s+ 1− (a1 + 2(a2 + · · ·+ ar−1) + ar))ω1 + a2ω2 + · · ·+ arωr. We denote
the intersection P 0

+ ∩P2s+1(so(2r+1)) by P 0
2s+1(so(2r+1)). The following lemma

can be proved by direct calculation.
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Lemma 5.1. The action of σ preserves the set P 0
2s+1(so(2r + 1)). Moreover, we

get P 0
2s+1(so(2r + 1)) = Yr,s  σ(Yr,s).

Following [26], we describe the orbits of P2s+1(so(2r + 1)) under the action of
the center. Let ρ =

∑r
i=1 ωi be the Weyl vector. For λ =

∑r
i=1 aiωi, the weight

λ+ ρ =
∑r

i=1 tiωi, where ti = ai + 1. Put ui =
∑r−1

j=i tj +
tr
2 for 1 ≤ i ≤ r, ur = tr

2

and ur+1 = 0.
The set P2s+1(so(2r+1)) is identified with the collection of sets U = (u1 > u2 >

· · · > ur > 0) such that

• ui ∈ 1
2Z,

• ui − ui+1 ∈ Z,
• u1 + u2 ≤ 2(r + s).

Let P+
2s+1(so(2r + 1)) denote the set of weights in P2s+1(so(2r + 1)) such that

ui ∈ Z.
Let us set k = 2(r+s) and rewrite the action of the center Γ on P2s+1(so(2r+1))

as exchanging t1 with t0 = k− t1−2t2−· · ·−2tr−1− tr or in other words changing
u1 with k − u1. We observe that the action of Γ preserves P+

2s+1(so(2r + 1)) and

P 0
2s+1(so(2r + 1)). Then, we can identify the orbits of the action of Γ as follows:

P2s+1(so(2r + 1))/Γ

= {U = (u1, . . . , ur)|
k

2
≥ u1 > · · · > ur > 0, ui ∈

1

2
Z, ui − ui+1 ∈ Z}

and the lengths of the orbits are given as follows:

• |Γ(U)| = 2 if u1 < k
2 .

• |Γ(U)| = 1 if u1 = k
2 .

For any number a and a set U = (u1 > u2 > · · · > ur), we denote by U − a and
a−U the sets {u1−a > u2−a > · · · > ur−a} and {a−ur > a−ur−1 > · · · > a−u1}
respectively. Further, the set {1, 2, . . . , r + s} is denoted by [r + s]. The following
two lemmas from [26] give a bijection of orbits. We will use this in Section 7 to
show that the source and the target of the rank-level duality maps have the same
dimension.

Lemma 5.2. Let P2r+1(so(2s+1)) denote the weights of so(2s+1) of level 2r+1.
Then, there is a bijection between the orbits of P+

2s+1(so(2s+ 1)) and the orbits of

P+
2r+1(so(2s+ 1)) given by

U = (u1 > u2 > · · · > ur) → Uc = (uc
1 > · · · > uc

s),

where U ⊂ [r + s] of cardinality r and Uc is the complement of U in [r + s].

For λ ∈ P 0
2s+1(so(2r + 1)), we write λ + ρ =

∑r
i=1(u

′
i − 1

2 )Li, where u′
i are all

integers. We identify the orbits of P 0
2s+1(so(2r+1)) under Γ as subsets U ′ = (u′

1 >
u′
2 > · · · > u′

r) of [r + s].

Lemma 5.3. There is a bijection between the orbits of P 0
2s+1(so(2s + 1)) and the

orbits of P 0
2r+1(so(2s+ 1)) given by

U ′ = (u′
1 > u′

2 > · · · > u′
r) → ((r + s) + 1− U ′c) = (u′′

1 > · · · > u′′
s ),

where U ′ ⊂ [r + s] of cardinality r and U ′c is the complement of U ′ in [r + s].
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5.3. Branching rules. We now describe the branching rules for the conformal
embedding so(2r+1)⊕so(2s+1) ⊂ so((2r+1)(2s+1)). Let N = (2r+1)(2s+1) =
2d + 1. The level one highest weights of ŝo(N) are 0, ω1 and ωd. The following
proposition gives the decomposition of level one integrable highest weight modules
of weight 0 and ω1. We refer the reader to [15] for a proof.

Proposition 5.4. Let H0(so(N)) and H1(so(N)) denote the highest weight inte-
grable modules of the affine Lie algebra ŝo(2d + 1) with highest weight 0 and ω1

respectively. Then, the module H := H0(so(N))⊕H1(so(N)) breaks up as a direct
sum of highest weight integrable modules of ŝo(2r + 1)⊕ ŝo(2s+ 1) of the form:

• Hλ(so(2r + 1))⊗HλT (so(2s+ 1)),
• Hλ(so(2r + 1))⊗HσλT (so(2s+ 1)),
• Hσλ(so(2r + 1))⊗HλT (so(2s+ 1)),
• Hσλ(so(2r + 1))⊗HσλT (so(2s+ 1)),

where λ ∈ Yr,s and σ is an automorphism associated to the center of Spin(2r + 1).
Moreover, all of the above factors appear with multiplicity one.

We need to determine which factor in the above decomposition rules comes from
H0(so(N)) and which factor comes from H1(so(N)). The following lemma gives
the trace anomaly of the level one weights 0 and ω1 of ŝo(2d+ 1).

Lemma 5.5.

Δ0(so(N)) = 0, Δω1
(so(N)) =

1

2
.

In order to determine the components, we need to know the trace anomalies for
the weight (λ, λT ).

Lemma 5.6. For λ ∈ Yr,s, we have the equality

Δλ(so(2r + 1)) + ΔλT (so(2s+ 1)) =
1

2
|λ|.

Corollary 5.7. Let H0(so(N)) denote the level one highest weight integrable ŝo(N)-
module of weight 0 and λ ∈ Yr,s. Then, the following factors appear in the decom-
position of H0(so(N)) as ŝo(2r + 1)⊕ ŝo(2s+ 1)-modules.

• Hλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is even.
• Hσλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is even.
• Hσλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is odd.
• Hλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is odd.

Corollary 5.8. Let H1(so(N)) denote the level one highest weight integrable ŝo(N)-
module of weight ω1 and λ ∈ Yr,s. Then, the following factors appear in the decom-
position of H0(so(N)) as ŝo(2r + 1)⊕ ŝo(2s+ 1)-modules.

• Hλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is odd.
• Hσλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is odd.
• Hσλ(so(2r + 1))⊗HλT (so(2s+ 1)), when |λ| is even.
• Hλ(so(2r + 1))⊗HσλT (so(2s+ 1)), when |λ| is even.

Remark 5.9. The only components that appear in the decomposition of standard
and trivial representations of the finite dimensional Lie algebra so(2d + 1) into
so(2r + 1) ⊕ so(2s + 1)-modules are λ = ω1 and λ = 0. Hence most of the com-
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ponents described in the branching rules described above do not come from finite
dimensional branching. This is a major difference in the branching law considered
by T. Abe in [1].

Further, this is also the main obstruction to construct rank-level duality maps
in Theorem 1.1 geometrically. It is important to study this map geometrically to
understand rank-level duality on curves of higher genus. This will be considered in
a subsequent project.

6. Rank-level duality map

In this section, we describe rank-level duality maps using the branching rule. We
consider the following weights:

• �λi = (λi1 , λi2 , . . . , λin1
) and �λT

i = (λT
i1
, λT

i2
, . . . , λT

in1
), where λia ∈ Yr,s such

that |λia | is odd for each 1 ≤ a ≤ n1.

• �λj = (σ(λj1), . . . , σ(λjn2
)) and �λT

j = (σ(λT
j1
), . . . , σ(λT

jn2
)), where λja ∈ Yr,s

such that |λja | is odd for all 1 ≤ a ≤ n2.

• �λk = (σ(λk1
), . . . , σ(λkn3

)) and �λT
k = (λT

k1
, . . . , λT

kn3
), where λja ∈ Yr,s such

that |λka
| is even for all 1 ≤ a ≤ n3.

• �λl = (λl1 , λl2 , . . . , λln4
) and �λT

l = (σ(λT
l1
), . . . , σ(λT

ln4
)), where λla ∈ Yr,s

such that |λla | is even for each 1 ≤ a ≤ n4.

• �βi = (βi1 , . . . , βim1
) and �βT

i = (βT
i1
, βT

i2
, . . . , βT

im1
), where λia ∈ Yr,s such

that |λia | is even for each 1 ≤ a ≤ m1.

• �βj = (σ(βj1), . . . , σ(βjm2
)) and �βT

j = (σ(βT
j1
), . . . , σ(βT

jm2
)), where βja ∈

Yr,s such that |βja | is even for all 1 ≤ a ≤ m2.

• �βk = (σ(βk1
), . . . , σ(βkm3

)) and �βT
k = (βT

k1
, . . . , βT

km3
), where λja ∈ Yr,s

such that |βka
| is odd for all 1 ≤ a ≤ m3.

• �βl = (βl1 , βl2 , . . . , βlm4
) and �βT

l = (σ(βT
l1
), . . . , σ(βT

lm4
)), where βla ∈ Yr,s

such that |βla | is odd for each 1 ≤ a ≤ m4.

Let n =
∑4

i=1(ni + mi) be a positive integer, �λ = �λi ∪ �λj ∪ �λk ∪ �λl, �λ
T =

�λT
i ∪ �λT

j ∪ �λT
k ∪ �λT

l ,
�β = �βi ∪ �βj ∪ �βk ∪ �βl, �β

T = �βT
i ∪ �βT

j ∪ �βT
k ∪ �βT

l and X be the

data associated to n distinct points on P
1 with chosen coordinates. Then, we have

the following map between conformal blocks:

α : V�λ∪�β(X, so(2r+1), 2s+1)⊗V�λT∪�βT (X, so(2s+1), 2r+1) → V�ω1∪�0(X, so(N), 1),

where �ω1 = (ω1, . . . , ω1) is an (n1 + n2 + n3 + n4) tuple of ω1’s and �0 = (0, . . . , 0)
is an (m1 +m2 +m3 +m4) tuple of 0’s.

Assume that (n1 + n2 + n3 + n4) is even; then dimC V�ω1∪�0(X, so(N), 1) = 1 (see

Section 7.1.1). Thus, we have the following map:

(6.1) α∨ : V�λ∪�β(X, so(2r + 1), 2s+ 1) → V†
�λT∪�βT

(X, so(2s+ 1), 2r + 1).

This map α∨ is called the rank-level duality map. The main result of this paper is
the following:

Theorem 6.1. The rank-level duality map defined above is an isomorphism.
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The rest of the paper is devoted to the proof of Theorem 6.1. First, we ob-
serve that by Proposition 3.6 and Proposition 3.4, we can reduce the statement of
Theorem 6.1 to the following non-equivalent statements (see Remark 1.2).

(1) Let
∑n

i=1 |λi| be even:

V�λ(X, so(2r + 1), 2s+ 1) � V†
�λT

(X, so(2s+ 1), 2r + 1).

(2) Let
∑n

i=1 |λi| be odd:

V�λ,0(X, so(2r + 1), 2s+ 1) � V†
�λT ,σ(0)

(X, so(2s+ 1), 2r + 1).

(3) Let
∑n

i=1 |λi| be even:

V�λ,σ(0)(X, so(2r + 1), 2s+ 1) � V†
�λT ,σ(0)

(X, so(2s+ 1), 2r + 1).

We will show that the source and the target of the map α∨ in (6.1) have the same
dimension. Our strategy for that will be to prove it for the above three statements.
This will be done in the next section.

Remark 6.2. The decomposition of the level one highest weight integrable module
Hωd

of ŝo(2d+ 1) is given in [15]. Furthermore, the decomposition of all level one
highest weight integrable modules for the conformal pairs (Br, Ds) and (Dr, Ds) are
given in [15]. In all of the above cases, the rank-level duality map is not canonically
defined due to failure of some uniqueness properties.

7. Verlinde formula and equality of dimensions

In this section, we give a complete proof of the equality of dimensions (see Section
7.3) of the source and the target of rank-level duality maps discussed in Section
6. Our key tool is the Verlinde formula for the dimensions of conformal blocks.
Another key ingredient is a generalization of a lemma from [10].

7.1. Dimensions of some conformal blocks. In this section, we calculate the
dimensions of some conformal blocks which we use later in the proof of the rank-
level duality. Let g be any simple Lie algebra and sθ denote the Lie subalgebra of g
isomorphic to sl2 generated by Hθ, gθ and g−θ. A g-module V of level � decomposes
as a direct sum of sθ-modules as follows:

V �
�⊕

i=1

V i,

where V i is a direct sum of sl2-modules isomorphic to Symi
C2. We recall the

following description of conformal blocks on three pointed P
1 from [5].

Proposition 7.1. Let X be the data associated to a three pointed P1 with chosen

coordinates and λ, μ, ν ∈ P�(g). Then, the conformal block V†
λ,μ,ν(X, g) is canoni-

cally isomorphic to the space of g-invariant forms φ on Vλ ⊗ Vμ ⊗ Vν such that φ
restricted to V p

λ ⊗ V q
μ ⊗ V r

ν is zero whenever p+ q + r > 2�.
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7.1.1. The case g = so(2r + 1) at level 1. Let �p = (P1, P2, P3) be three distinct
points on P1 with chosen coordinates and X be the associated data. The level one

dominant integral weights of so(2r+1) are 0, ω1 and ωr. Let V†
λ1,λ2,λ3

(X, so(2r+1))

denote the conformal block on P1 with three marked points and weights λ1, λ2, λ3

at level one. The following dimensions are calculated in [12]:

• dimC V†
ω1,ω1,0

(X, so(2r + 1), 1) = 1.

• dimC V†
ω1,ω1,ω1

(X, so(2r + 1), 1) = 0.

• dimC V†
ω1,ω1,ωr

(X, so(2r + 1), 1) = 0.

• dimC V†
ω1,ωr,ωr

(X, so(2r + 1), 1) = 1.

Lemma 7.2. Let P1, . . . , Pn be n distinct points on P
1 with chosen coordinates and

X be the associated data. Assume that �λ = (ω1, . . . , ω1). Then,

dimC V†
�λ
(X, so(2r + 1), 1) = 1

if n is even, and zero if n is odd.

Proof. The proof follows from the above and factorization of conformal blocks. �

7.1.2. The case g = so(2r + 1) at level �. We calculate the dimensions of some
special conformal blocks on three pointed P1 at any level �. We first recall the
following tensor product decomposition from [19]:

Proposition 7.3. Let λ =
∑r

i=1 aiωi ∈ P 0
+. Then,

Vλ ⊗ Vω1
�

⊕
γ

Vγ ,

where γ is of the following form:

• If ar �= 0, then γ is either λ or obtained from λ by adding or deleting a box
from the Young diagram of λ.

• If ar = 0, then γ is obtained from λ by adding or deleting a box from the
Young diagram of λ.

We use the above proposition to calculate the dimensions of the following con-
formal blocks.

Proposition 7.4. Let λ =
∑r

i=1 aiωi ∈ P 0
� (so(2r + 1)). Then, the dimension of

the conformal block V†
λ,γ,ω1

(X, so(2r + 1), �) is one if γ ∈ P 0
� (so(2r + 1)) is of the

form in Proposition 7.3 and zero otherwise.

Proof. The otherwise part follows from Proposition 7.3. Assume that ar �= 0 and
γ is either λ or obtained from λ by adding or deleting a box. For an so(2r + 1)-
equivariant form φ on Vλ ⊗ Vω1

⊗ Vγ , its restriction to V 1
ω1

⊗ V �
λ ⊗ V �

γ is zero,

since C2 ⊗ Sym�
C2 does not contain Sym�

C2 as an sl2(C)-submodule. Thus, by

Proposition 7.1 and Proposition 7.3, the dimension of V†
λ,γ,ω1

(X, so(2r + 1), �) is
one. The case when ar = 0 follows similarly. �

7.2. Verlinde formula. In this section, we recall the Verlinde formula that cal-
culates dimensions of conformal blocks. First, we start with the Weyl character
formula.
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7.2.1. Weyl character formula. Here, we first state a basic matrix identity which
is an easy generalization of Lemma A.42 from [10]. Suppose A = (aij) is an
(r+s)× (r+s) matrix and U = (u1, . . . , ur) and T = (t1, . . . , tr) are two sequences
of r distinct integers from {1, 2, . . . , (r + s)}. Let AU,T denote the (r × r) matrix
whose (i, j)-th entry is aui,tj . Similarly define the (s× s) matrix BT c,Uc , where Uc

and T c are the complements of U and T respectively.

Lemma 7.5. Let A and B be two (r + s) × (r + s) matrices whose product is a
diagonal matrix D. Suppose the (i, i)-th entry of D is ai. Let π = (U,Uc) and
(T, T c) be permutations of the sequence (1, . . . , r + s), where |U | = |T | = r. Then,
the following identity of determinants holds:(

aπ(r+1) . . . aπ(r+s)

)
detAU,T = sgn(U,Uc) sgn(T, T c) detA detBT c,Uc .

Proof. Consider the permutation matrices P , Q−1 associated to the permutations
(U,Uc) and (T, T c) respectively. Then,

PAQ =

(
A1 A2

A3 A4

)
, where AU,T = A1

and similarly

Q−1BP−1 =

(
B1 B2

B3 B4

)
, where BT c,Uc = B4.

Now (
A1 A2

A3 A4

)
×
(

Ik B2

0 B4

)
=

(
A1 0
A3 Λ

)
,

where Λ is a diagonal matrix whose (i, i)-th entry is aπ(r+i). Taking the determinant
of both sides of the above matrix equation, we get the desired equality. �

We are now ready to state the Weyl character formula for so(2r+1) following [10].
Let μ ∈ P 0

2s+1(so(2r + 1)) and μ+ ρ =
∑r

i=1 uiLi, where the ui’s are as defined in

Section 5. Let λ =
∑r

i=1 λ
iLi be any dominant integral weight of so(2r + 1) and

Vλ be the irreducible highest weight module of so(2r+ 1) with weight λ. Then, by
the Weyl character formula

(7.1) TrVλ
(expπ

√
−1

μ+ ρ

(r + s)
) =

det
(
ζui(λj+r−j+ 1

2 ) − ζ−ui(λj+r−j+ 1
2 )
)

det
(
ζui(r−j+ 1

2 ) − ζ−ui(r−j+ 1
2 )
) ,

where μ+ ρ is considered an element of h under the identification of h with h∗, exp

is the exponential map from so(2r + 1) to SO2r+1, ζ = exp
(
π
√
−1

r+s

)
.

7.2.2. Verlinde formula. Let us first recall the Verlinde formula in full generality.
Let C be a nodal curve of genus g and P1, . . . , Pn be n distinct smooth points on

C and X be the associated data. We fix a Lie algebra g and �λ = (λ1, . . . , λn) an n
tuple of dominant integral weights of g of level �. We refer the reader to [5, 13, 30]
for a proof of the following:

Theorem 7.6. The dimension of the conformal block V†
�λ
(X, g, �) is

{(�+g∗)rank g|P/Qlong|}g−1
∑

μ∈P�(g)

TrV�λ
(exp 2π

√
−1

μ+ρ

�+g∗
)
∏
α>0

∣∣∣∣2 sinπ (μ+ρ, α)

�+ g∗

∣∣∣∣
2−2g

,

where exp is the exponential map from g to the simply connected Lie group G, Qlong

is the lattice of long roots and g∗ is the dual Coxeter number of g.
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Let us now specialize to the case g = 0, g = so(2r + 1), � = 2s + 1 and �λ =
(λ1, . . . , λn) an n tuple of weights in P 0

2s+1(so(2r + 1)). The dual Coxeter number

of so(2r + 1) is 2r − 1 and {(� + g∗)rank g|P/Qlong|} = 4(k)r, where k = 2(r + s).
Then, by the Weyl character formula (7.1), we can rewrite the Verlinde formula as
follows:

(7.2)
∑

U∈P2s+1(so(2r+1))

n∏
q=1

det
(
ζui(λ

j
q+r−j+ 1

2 ) − ζ−ui(λ
j
q+r−j+ 1

2 )
)

det
(
ζui(r−j+ 1

2 ) − ζ−ui(r−j+ 1
2 )
) (

Φk(U)

4kr

)
,

where μ + ρ =
∑r

i=1 uiLi, the set U = (u1 > u2 > · · · > ur), λq = (λ1
q, λ

2
q, . . . , λ

r
q)

and Φk(U) are as in Section 2 of [26]. We recall the definition of Φk(U) in Section
10.2 for completeness.

7.3. Equality of dimensions.

Lemma 7.7. Let σ be the non-trivial element of the center of Spin(2r + 1). The
element σ acts by diagram automorphism on P 0

2s+1(so(2r + 1)). Then,

TrV�λ
(expπ

√
−1

σμ+ ρ

r + s
) = TrV�λ

(expπ
√
−1

μ+ ρ

r + s
),

where exp is the exponential map form so(2r + 1) to the special orthogonal group
SO(2r + 1).

Proof. Let μ =
∑r

i=1 aiωi ∈ P2s+1(so(2r + 1)). Then, the weight σ(μ) is given by
the formula (2s+ 1− 2(a1 + · · ·+ ar) + a1 + ar)ω1 +

∑r
i=2 aiωi. We calculate the

following weight:

σ(μ) + ρ = (2s+ 2− 2(a1 + · · ·+ ar) + a1 + ar)ω1 +

r∑
i=2

(ai + 1)ωi

= ((2s+ 1)− (a1 + · · ·+ ar−1)−
ar
2

+
2r − 1

2
)L1

+((a2 + a3 + · · ·+ ar−1) + (r − 2) +
ar + 1

2
)L2 + · · ·+ ar + 1

2
Lr.

Let w be an element of the Weyl group of so(2r+1) which sends L1 → −L1. Then,

w.(σμ+ ρ) = (a1 + a2 + · · ·+ ar
2

− (2s+ 1)− (2r − 1) + r − 1

2
)L1

+((a2 + a3 + · · ·+ ar−1) + (r − 2) +
ar + 1

2
)L2 + · · ·+ ar + 1

2
Lr

= μ+ ρ− 2(r + s)L1.

Thus, we get the following identity:

exp(2π
√
−1

w.(σμ+ ρ)

2(r + s)
) = exp(2π

√
−1

μ+ ρ

2(r + s)
).

Now the proof follows directly from the Weyl character formula. �

Remark 7.8. We refer the reader to [6] for a general discussion of the action of the
center of the simply connected group G on P�(g). The action of the center for all
classical Lie algebras can also be found in [26].
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Consider μ ∈ P+
2s+1(so(2r+1)) and μ′ ∈ P 0

2s+1(so(2r+1)). Let μ+ρ =
∑r

i=1 uiLi

and μ′ + ρ′ =
∑r

i=1(u
′
i − 1

2 )Li. Consider the sets U = (u1 > u2 > · · · > ur)
and U ′ = (u′

1 > · · · > u′
r), and let [U ] and [U ′] denote the class of μ, μ′ in

P+
2s+1(so(2r + 1))/Γ and P 0

2s+1(so(2r + 1))/Γ respectively.
Since the function Φk is invariant under the action of center, by Lemma 7.7 we

can rewrite the Verlinde formula in (7.2) as the sum of the following terms:

(1)

∑
[U ]∈P+

2s+1(so(2r+1))/Γ

|OrbU |
n∏

q=1

det
(
ζui(λ

j
q+r−j+ 1

2 ) − ζ−ui(λ
j
q+r−j+ 1

2 )
)

det
(
ζui(r−j+ 1

2 ) − ζ−ui(r−j+ 1
2 )
) (

Φk(U)

4kr

)
,

(2)

∑
[U ′]∈P 0

2s+1(so(2r+1))/Γ

|OrbU ′ |
n∏

q=1

det
(
ζ(u

′
i− 1

2 )(λ
j
q+r−j+ 1

2 ) − ζ−(u′
j− 1

2 )(λ
j
q+r−j+ 1

2 )
)

det
(
ζ(u

′
i− 1

2 )(r−j+ 1
2 ) − ζ−(u′

i− 1
2 )(r−j+ 1

2 )
)

×
(
Φk(U

′ − 1
2 )

4kr

)
,

where |OrbU |, |OrbU ′ | denote the length of the orbits of μ and μ′ under the action
of Γ on P+

2s+1(so(2r+1)) and P 0
2s+1(so(2r+1)). The sets P+

2s+1(so(2r+1))/Γ and

P 0
2s+1(so(2r + 1))/Γ denote the orbits of P+

2s+1(so(2r + 1)) and P 0
2s+1(so(2r + 1))

under the action of Γ respectively.

7.4. Final step of dimension check. Let us recall the following two lemmas
from [26]. We refer the reader to [26], Corollary 1.7 and Corollary 1.8 for a proof.

Lemma 7.9. For a positive integer a, let V and V c be complementary subsets of
{1, . . . , a− 1}. Then,

(2a)|V |

Φ2a(V )
=

2(2a)|V
c∪{a}|

Φ2a(V c ∪ {a}) .

Lemma 7.10. Let V ′ ⊂ S = { 1
2 , . . . , a−

1
2} and V ′c be the complement. Then, we

have

(2a)|V
′|

Φ2a(V ′)
=

(2a)V
′c

Φ2a(a− V ′c)
.

Let λi ∈ Yr,s such that
∑n

i=1 |λi| is even and let X be the data associated to n

distinct points on P1 with chosen coordinates. Denote by �λ an n tuple of weights

(λ1, . . . , λn) and by �λT the n tuple of weights (λT
1 , . . . , λ

T
n ). Consider the conformal

blocks V†
�λ
(X, so(2r + 1), 2s+ 1) and V†

�λT
(X, so(2s+ 1), 2r + 1).

Proposition 7.11. If
∑n

i=1 |λ| is even, then the following equality of dimensions
holds:

dimC V†
�λ
(X, so(2r + 1), 2s+ 1) = dimC V†

�λT
(X, so(2s+ 1), 2r + 1).
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Proof. By Lemma 5.2, it is enough to show that the following equalities hold:

|OrbU |
n∏

q=1

det
(
ζui(λ

j
q+r−j+ 1

2 ) − ζ−ui(λ
j
q+r−j+ 1

2 )
)

det
(
ζui(r−j+ 1

2 ) − ζ−ui(r−j+ 1
2 )
) (

Φk(U)

4kr

)

= |OrbUc |
n∏

q=1

det
(
ζu

c
i ((λ

T
q )j+r−j+ 1

2 ) − ζ−uc
i ((λ

T
q )j+r−j+ 1

2 )
)

det
(
ζu

c
i (r−j+ 1

2 ) − ζ−uc
i (r−j+ 1

2 )
) (

Φk(U
c)

4ks

)
,

where U = {u1 > · · · > ur)} ∈ P+
2s+1(so(2r + 1))/Γ and r + s ∈ U and uc

i is the
same as in Section 5.

|OrbU ′ |
n∏

q=1

det
(
ζ(u

′
i− 1

2 )(λ
j
q+r−j+ 1

2 ) − ζ−(u′
i− 1

2 )(λ
j
q+r−j+ 1

2 )
)

det
(
ζ(u

′
i− 1

2 )(r−j+ 1
2 ) − ζ−(u′

i− 1
2 )(r−j+ 1

2 )
) (

Φk(U
′ − 1

2 )

4kr

)

= |Orb((r+s+1)−U ′c) |

×
n∏

q=1

det
(
ζ(u

′′
i − 1

2 )((λ
T
q )j+r−j+ 1

2 ) − ζ−(u′′
i − 1

2 )((λ
T
q )j+r−j+ 1

2 )
)

det
(
ζ(u

′′
i − 1

2 )(r−j+ 1
2 ) − ζ−(u′′

i − 1
2 )(r−j+ 1

2 )
)

×
(
Φk((r + s+ 1

2 )− U ′c)

4ks

)
,

where U ′ = {u′
1 > u′

2 > · · · > u′
r} ∈ P 0

2s+1(so(2r + 1))/Γ and u′′
i is the same as

defined in Section 5. Now by Lemma 7.9 and Lemma 7.10, we know that

|OrbU |
(
Φk(U)

4kr

)
= |OrbUc |

(
Φk(U

c)

4ks

)
,

(
Φk(U

′ − 1
2 )

4kr

)
=

(
Φk((r + s+ 1

2 )− U ′c)

4ks

)
.

We are reduced to showing the following identity of determinants for the pair
(U,Uc):

n∏
q=1

det
(
ζui(λ

j
q+r−j+ 1

2 ) − ζ−ui(λ
j
q+r−j+ 1

2 )
)

det
(
ζui(r−j+ 1

2 ) − ζ−ui(r−j+ 1
2 )
)

=
n∏

q=1

det
(
ζu

c
i ((λ

T
q )j+r−j+ 1

2 ) − ζ−uc
i ((λ

T
q )j+r−j+ 1

2 )
)

det
(
ζu

c
i (r−j+ 1

2 ) − ζ−uc
i (r−j+ 1

2 )
) .

This follows directly from Lemma 10.2. We also need to show the following equality

of determinants for the pair (U ′, U ′c) and λT
q = ((λT

q )
1 ≥ · · · ≥ (λT

q )
s
):

n∏
q=1

det
(
ζ(u

′
i− 1

2 )(λ
j
q+r−j+ 1

2 ) − ζ−(u′
i− 1

2 )(λ
j
q+r−j+ 1

2 )
)

det
(
ζ(u

′
i− 1

2 )(r−j+ 1
2 ) − ζ−(u′

i− 1
2 )(r−j+ 1

2 )
)

=
n∏

q=1

det
(
ζ(u

′′
i − 1

2 )((λ
T
q )j+r−j+ 1

2 ) − ζ−(u′′
i − 1

2 )((λ
T
q )j+r−j+ 1

2 )
)

det
(
ζ(u

′′
i − 1

2 )(r−j+ 1
2 ) − ζ−(u′′

i − 1
2 )(r−j+ 1

2 )
) .

This follows from Lemma 10.5. �

With the same notation and assumptions as in Proposition 7.11, we have the
following proposition.
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Proposition 7.12. If
∑n

i=1 |λ| is even, then

dimC V†
�λ∪σ(0)

(X, so(2r + 1), 2s+ 1) = dimC V†
�λT∪σ(0)

(X, so(2s+ 1), 2r + 1).

Proof. The proof follows from the proof of Proposition 7.11, Lemma 10.6 and
Lemma 10.7 �

For each 1 ≤ i ≤ n, let λi ∈ Yr,s be such that
∑n

i=1 |λi| is odd. Let X be the

data associated to n distinct points on P1 with chosen coordinates. Denote by �λ

the n tuple of weights (λ1, . . . , λn) and by �λT the n tuple of weights (λT
1 , . . . , λ

T
n ).

Consider the conformal blocks

V†
�λ∪0

(X, so(2r + 1), 2s+ 1) and V†
�λT∪σ(0)

(X, so(2s+ 1), 2r + 1).

Then, we have the following equality of dimensions:

Proposition 7.13.

dimC V†
�λ∪0

(X, so(2r + 1), 2s+ 1) = dimC V†
�λT∪σ(0)

(X, so(2s+ 1), 2r + 1).

Remark 7.14. These equalities of the dimensions of the conformal blocks give rise
to some new interesting relations between the fusion ring of SO(2r + 1) at level
2s+ 1 and the fusion ring of SO(2s+ 1) at level 2r + 1.

8. Highest weight vectors

In this section, we briefly summarize the construction of level one highest weight
integrable modules H0(so(2r + 1)) and H1(so(2r + 1)) using Clifford algebras. We
use this to explicitly describe the highest weight vectors (see Section 8.2) of the
components that appear in the branching. Our discussions closely follow the dis-
cussions in [15].

8.1. Spin modules. We first recall the definition of Clifford algebra. Let W be
a vector space (not necessarily finite dimensional) with a non-degenerate bilinear
form {, }.

Definition 8.1. We define the Clifford algebra associated to W and {, } to be

C(W ) := T (W )/I,

where T (W ) is the tensor algebra of W and I is the two sided ideal generated by
elements of the form v ⊗ w + w ⊗ v − {v, w}.

8.1.1. Spin module of C(W ). Suppose there exists an isotropic decomposition W =
W+⊕W−, i.e. {W±,W±} = 0, and {, } restricted to W+⊕W− is non-degenerate.
Then, the exterior algebra

∧
W− can be viewed as a

∧
W−-module by taking

the wedge product on the left. This gives rise to the structure of an irreducible
C(W )-module on

∧
W− by defining

w+.1 = 0,

for all w+ ∈ W+ and 1 ∈
∧
W−.

Next if W = W ′⊕Ce is an orthogonal direct sum with {e, e} = 1 and W ′ has an
isotropic decomposition of the form W+⊕W−(we refer to this as the quasi-isotropic
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decomposition of W), then, the C(W ′)-module
∧
W− described above becomes an

irreducible C(W )-module by the following action:

√
2e.v := ±(−1)pv for v ∈

p∧
W−.

Any element of W−(respectively W+) is called a creation operator (respectively
annihilation operator).

8.1.2. Root spaces and basis of so(2r + 1). Consider a finite dimensional vector
space Wr of dimension 2r + 1 with a non-degenerate symmetric bilinear form {, }.
Let {ei}ri=−r be an orthonormal basis of Wr. For j > 0, we set

φj =
1√
2
(ej +

√
−1e−j); φ−j =

1√
2
(ej −

√
−1e−j) and φ0 = e0.

Let φ1, . . . , φr, φ0, φ−r, . . . , φ−1 be the chosen ordered basis of Wr. For any i, j, we
define Ei

j(φ
k) := δk,jφ

i.
We identify the Lie algebra so(2r + 1)(Wr) with so(2r + 1) as follows:

so(2r + 1) := {A ∈ sl(2r + 1)|ATJ + JA = 0},

where J is the following (2r + 1)× (2r + 1) matrix:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . r 0 −r . . . −1

1 1
... 0 1
r 1
0 1
−r 1
... 1 0
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We put Bi
j = Ei

j − E−j
−i and take the Cartan subalgebra h to be the subalgebra

of diagonal matrices. Clearly, h =
⊕r

j=1 CB
j
j . The corresponding dual basis of h∗

is Lj , where Lj(B
k
k ) = δj,k. The simple positive roots {αi}ri=1 of so(2r + 1) are

given by L1 − L2, . . . , Lr−1 − Lr, Lr. The root spaces of so(2r+ 1) are of the form
gLi±Lj

= CBi
∓j and gLi

= CBi
0.

Remark 8.2. The basis of the vector space Wr chosen here is different than the
basis in [10]. In this section, we prefer this basis as the branching formulas that we
describe in the next section become simpler to state with this new notation.

8.1.3. Spin module
∧
W

Z+ 1
2 ,−

r of ŝo(2r+1). Consider as before Wr to be a (2r+1)
dimensional complex vector space with a non-degenerate symmetric bilinear form
{, }. Let

W±
r =

r⊕
i=1

Cφ±.

Let a quasi-isotropic decomposition of Wr be given by the following:

Wr = W+
r ⊕W−

r ⊕ Cφ0.
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We define a new vector space W
Z+ 1

2
r with an inner product {, } as follows:

W
Z+ 1

2
r := Wr ⊗ t

1
2C[t, t−1] with {w1(a), w2(b)} = {w1, w2}δa+b,0,

where w1, w2 ∈ Wr, a, b ∈ Z+ 1
2 and w1(a) = w1 ⊗ ta. We choose a quasi-isotropic

decomposition of W
Z+ 1

2
r given as follows:

W
Z+ 1

2
r = W

Z+ 1
2 ,+

r ⊕W
Z+ 1

2 ,−
r ,

where W
Z+ 1

2 ,±
r := Wr ⊗ t±

1
2C[t±1]. We define the normal order o

o
o
o for w1(a),

w2(b) ∈ W
Z+ 1

2
r by the following formula:

o
ow1(a)w2(b)

o
o =

⎧⎨
⎩

−w2(b)w1(a) if a > 0 > b,
1
2 (w1(a)w2(b)− w2(b)w1(a)) if a = b = 0,
w1(a)w2(b) otherwise.

We now describe the action of ŝo(2r + 1) on
∧
W

Z+ 1
2 ,−

r and explicitly describe
the level one ŝo(2r + 1)-modules H0(so(2r + 1)) and H1(so(2r + 1)). For a proof,
we refer the reader to [12].

Proposition 8.3. The following map is a Lie algebra monomorphism:

ŝo(2r + 1) → End(
∧

W
Z+ 1

2 ,−
r ),

Bi
j(m) →

∑
a+b=m

0
0φ

i(a)φ−j(b)00,

c → id .

Proposition 8.4. Suppose r ≥ 1; then the following are isomorphic as level one
ŝo(2r + 1)-modules:

(1)
∧even(W

Z+ 1
2 ,−

r ) � H0(so(2r + 1)),

(2)
∧odd(W

Z+ 1
2 ,−

r ) � H1(so(2r + 1)).

The highest weight vectors are given by 1 and φ1(− 1
2 ).1 respectively.

8.2. Highest weight vectors. Let Ws be a (2s + 1) dimensional vector space
over C with a non-degenerate bilinear form {, }, and let {ep}sp=1 be an orthonormal

basis of Ws. Let φ1, . . . , φs, φ0, φ−s, . . . , φ−1 be an ordered isotropic basis of Ws.
The tensor product of Wd = Wr ⊗Ws carries a non-degenerate symmetric bilinear
form {, } given by the product of the forms on Wr and Ws. Clearly the elements
{ej,p := ej ⊗ ep| − r ≤ j ≤ r and − s ≤ p ≤ s} form an orthonormal basis of Wd.
By (j, p) > 0, we mean j > 0 or j = 0, p > 0 and put

φj,p =
1√
2
(ej,p −

√
−1e−j,−p), φ−j,−p =

1√
2
(ej,p +

√
−1e−j,−p),

for (j, p) > 0. The form {, } on Wd is given by the formula

{φj,p, φ−k,−q} = δj,kδp,q, for − r ≤ j, k ≤ r and − s ≤ p, q ≤ s.

Let as before W±
d =

⊕
(j,p)>0 Cφ

±j,±p and φ0,0 = e0,0. The quasi-isotropic decom-

position of Wd is given as follows:

Wd = W+
d ⊕W−

d ⊕ Cφ0,0.
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We define the operators Ej,p
k,q by Ej,p

k,q(φ
i,l) = δi,kδl,qφ

j,p. We put

Bj,p
k,q = Ej,p

k,q − E−k,−q
−j,−p .

Consider the Cartan subalgebra H of so(2d+ 1) to be the subalgebra generated by

the diagonal matrices. Clearly H =
⊕

(j,p)>0 CB
j,p
j,p . Let {Lj,p} for (j, p) > 0 be a

dual basis. Thus H∗ =
⊕

(j,p)>0 CLj,p.

8.2.1. Highest weight vectors as wedge product. To every Young diagram in Yr,s,
we associate a (2r+1)× (2s+1) matrix as follows. First, to every Young diagram
λ, we associate an (r × s) matrix Y (λ) as follows:

Y (λ)i,j =

{
0 if λ has a box in the (i, j)-th position,
1 otherwise.

Finally to Y (λ) we associate the following matrix:

Ỹ (λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . s 0 −s . . . −1

1 1 1 . . . 1
... Y (λ)

...
... . . .

...
r 1 1 . . . 1
0 1 . . . 1 1 1 . . . 1

−r
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

−1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For λ ∈ Yr,s, let Ỹ (λ) be the image of Y (λ). We define the following operations

on Ỹ (λ) which produce a new matrix:

σL(Ỹ (λ))j,p := Ỹ (λ)j,p − δj,1δỸ1,|p|,1
,(8.1)

σR(Ỹ (λ))j,p := Ỹ (λ)j,p − δp,1δỸ|j|,1,1
.(8.2)

The following proposition in [15] gives the highest weight vectors for the branching
rules described in Section 5.

Proposition 8.5. The vector
(∧

ỹj,p=0 φ
j,p(− 1

2 )
)
.1 well defined up to a sign for

each of the matrices Ỹ (λ), σL(Ỹ (λ)), σR(Ỹ (λ)), σL(σR(Ỹ (λ))) gives a highest
weight vector of the components with highest weight (λ, λT ), (σ(λ), λT ), (λ, σ(λT ))
and (σ(λ), σ(λT )).

Next, we describe the highest vectors for some of the components in the “Kac-
Moody” form. We use these explicit descriptions to prove the basic cases of the
rank-level duality.

8.2.2. Highest weight vectors in Kac-Moody form. Let λ, λ′ ∈ Yr,s and assume that
λ is obtained from λ′ ∈ Yr,s by adding two boxes. In terms of the matrices described
in Section 8.2.1, Y (λ) is obtained from Y (λ′) by changing 1 to 0 in exactly two
places of Y (λ′), say at (a, b) and (c, d). Assume that (a, b) < (c, d) under the
lexicographic ordering.
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Remark 8.6. Let Vλ be the finite dimensional g-module inside Hλ(g), where g is
a finite dimensional semisimple Lie algebra. Every finite dimensional irreducible
representation of g has a lowest weight vector vλ. This vector is a highest weight
vector for the affine Lie algebra ĝ if we had chosen the opposite Borel as the Borel
for g. We call the vector vλ the opposite highest weight vector of Hλ(g).

The following proposition describes highest weight vectors in the “Kac-Moody”
form, i.e. as elements of universal enveloping of ŝo(2d + 1) acting on the highest
weight vectors of H0(so(2d+ 1)) and H1(so(2d+ 1)).

Proposition 8.7. Let λ and λ′ be as before. Then, the following hold:

(1) If vλ′ ∈ End(
∧
W

Z+ 1
2 ,−

d ) is the highest weight vector of the component
Hλ′(so(2r+1))⊗Hλ′T (so(2s+1)), then the highest weight vector vλ of the
component Hλ(so(2r + 1))⊗HλT (so(2s+ 1)) is given by the following:

vλ = Ba,b
−c,−d(−1).vλ′ .

(2) If vλ
′

is the opposite highest weight vector of Hλ′(so(2r + 1))⊗
Hλ′T (so(2s + 1)), then the opposite highest weight vector vλ of the com-
ponent Hλ(so(2r + 1))⊗HλT (so(2s+ 1)) is

vλ = B−a,−b
c,d (−1).vλ

′
.

Proof. The proof of the above easily follows from Proposition 8.5 and Proposi-
tion 8.3. �

Remark 8.8. There is no uniqueness in building a Young diagram λ starting from
the empty Young diagram. So there is no uniqueness in the expressions of the
highest weight vectors described in Proposition 8.7.

9. Proof of Theorem 6.1

In this section, we give a proof of Theorem 6.1. The main steps of the proof are
summarized below.

9.1. Key steps. The strategy of the proof of Theorem 6.1 closely follows [1]
and [25] but has some significant differences in the individual steps.

9.1.1. Step I. We study the degeneration of rank-level duality maps on P1 with n
marked points. We use Proposition 9.10 to reduce to the case for conformal blocks
on P1 with three marked points, and the representation attached to one of the
marked points is ω1. The details of this step are explained in Section 9.4.

9.1.2. Step II. We are now reduced to proving rank-level dualities for admissible
pairs (see Definition 3.2) of the form ((ω1, λ2, λ3), (ω1, β1, β2)). We use Proposition
7.4 to determine which conformal blocks on P1 with three marked points with
representations of the form (ω1, λ2, λ3) are non-zero.
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9.1.3. Step III. We use Proposition 3.6 and further reduce to proving rank-dualities
for three pointed curves and admissible pairs of the following forms:

(1) (ω1, λ2, λ3), (ω1, λ
T
2 , λ

T
3 ), where λ2, λ3 ∈ Yr,s and λ2 is obtained from λ3

either by adding or deleting a box. Rank-level dualities for these cases are
proved in Section 9.2.

(2) (ω1, λ, λ), (ω1, λ
T , σ(λT )), where λ ∈ Yr,s and (λ, Lr) �= 0. These rank-level

dualities are proved in Section 9.3.

9.2. The minimal three point cases. In this section, we prove rank-level dual-
ities for some special one dimensional conformal blocks on P1 with three marked
points. We use these cases to prove the rank-level duality isomorphism in the
general case.

The finite dimensional irreducible so(2d+ 1)-module Vω1
can be realized inside∧odd W

Z+ 1
2 ,−

d as a linear span of vectors of the form φi,j(− 1
2 ). On Vω1

, there is a
canonical so(2d+ 1) invariant bilinear form Q given by the following formula:

Q(φj,p(−1

2
), φ−k,−q(−1

2
)) = δj,kδp,q.

For notational convenience, we write φi,j(− 1
2 ) as v

i,j .
Throughout this section, we will assume that (P1, P2, P3) = (1, 0,∞) with coordi-

nates ξ1 = z−1, ξ2 = z and ξ3 = 1
z , where z is a global coordinate on C. We denote

the associated data by X. Let λ2, λ3 ∈ Yr,s, �λ = (ω1, λ2, λ3), �λ
T = (ω1, λ

T
2 , λ

T
3 ),

�Λ = (ω1, ω1, 0) and λ2 is obtained from λ3 by adding or deleting a box.

Remark 9.1. The following strategy is influenced by the proof of Proposition 6.3
in [1].

Let us summarize our main steps to prove these minimal cases. Let 〈Ψ′| ∈
V†
�Λ
(X, so(2d+1), 1) be a non-zero element. It is enough to produce |Φ1⊗Φ2⊗Φ3〉 ∈

H�λ(so(2r + 1))⊗H�λT (so(2s+ 1)) such that

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉 �= 0.

9.2.1. Step I. We always choose |Φ2〉 (respectively |Φ3〉) to be the highest (respec-
tively opposite highest) weight vector of the integrable module with highest weight
(λ2, λ

T
2 ) (respectively (λ3, λ

T
3 )).

9.2.2. Step II. If λ3 is obtained from λ2 by adding a box in the (a, b)-th coordinate,
then we choose |Φ1〉 to be va,b. If λ2 is obtained from λ3 by adding a box in the
(a, b)-th coordinate, then we choose |Φ1〉 to be v−a,−b. With this choice, it is clear
that the H-weight of |Φ1 ⊗ Φ2 ⊗ Φ3〉 is zero.

9.2.3. Step III. We use induction on max(|λ2|, |λ3|). The base cases of induction
are proved in Section 9.2.5. Assume that |λ2| = |λ3|+1. Let λ′

2 ∈ Yr,s be such that

(1) λ2 is obtained by adding two boxes from λ′
2,

(2) λ3 is obtained by adding a box to λ′
2. (The other case |λ3| = |λ2| + 1 is

handled similarly.)
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9.2.4. Step IV. We use gauge symmetry (see Section 2) to reduce to the case for the
admissible pair ((ω1, λ

′
2, λ3), (ω1, λ

′T
2 , λT

3 )). This is done in Proposition 9.6. Now
max(|λ′

2|, |λ3|) < |λ2|. The other case is handled similarly. Hence, we are done by
induction.

Remark 9.2. The minimal cases here are similar to the minimal cases in [1]. In
the case of symplectic rank-level duality, T. Abe (see [1]) identified the rank-level
duality map with the symplectic strange duality map and used the geometry of
parabolic bundles with a symplectic form to show that rank-level duality maps are
non-zero. As remarked earlier, we were not able to describe the map in Theorem 6.1
geometrically. However, the steps described above can be used to tackle minimal
cases in [1]. Similarly, one can use the same strategy to re-prove the rank-level
duality results in [4, 25].

9.2.5. The base cases for induction. We think of P1 as C∪{∞} and let z be a global
coordinate of C. We will assume that (P1, P2, P3) = (1, 0,∞) with coordinates
ξ1 = z − 1, ξ2 = z and ξ3 = 1

z respectively, and denote the associated data by X.

Further we let �Λ = (ω1, ω1, 0).

Lemma 9.3. Let �λ = (ω1, ω1, 0). Then, the map

V�λ(X, so(2r + 1), 2s+ 1)⊗ V�λT (X, so(2s+ 1), 2r + 1) → V�Λ(X, so(2d+ 1), 1)

is non-zero.

Proof. Let 〈Ψ′| ∈ V†
�Λ
(X, so(2d+ 1), 1) be a non-zero element and 〈Ψ| be the image

of 〈Ψ′| under the propagation of vacua. It is enough to produce |Φ1 ⊗ Φ2 ⊗ Φ3〉 ∈
H�λ(so(2r + 1))⊗H�λT (so(2s+ 1)) such that

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉 �= 0.

We choose |Φ1〉=v−1,−1, |Φ2〉=v1,1 and |Φ3〉=1. By propagation of vacua, we get

〈Ψ′|v−1,−1 ⊗ v1,1 ⊗ 1〉 = 〈Ψ|v−1,−1 ⊗ v1,1〉
= Q(v−1,−1, v1,1)

= 1. �

Lemma 9.4. Let �λ = (ω1, ω1, 2ω1) or (ω1, ω1, ω2). Then, the map

V�λ(X, so(2r + 1), 2s+ 1)⊗ V�λT (X, so(2s+ 1), 2r + 1) → V�Λ(X, so(2d+ 1), 1)

is non-zero.

Proof. First let �λ = (ω1, ω1, 2ω1). We choose |Φ3〉 to be the opposite highest weight
vector of the module H2ω1

(so(2r + 1)) ⊗Hω2
(so(2s + 1)), |Φ2〉 = v1,1. We choose

|Φ1〉 such that the H-weight of |Φ1 ⊗Φ2 ⊗Φ3〉 is zero. In this case, |Φ1〉 = v1,2. By
gauge symmetry, we get the following:

〈Ψ′|v1,2 ⊗ v1,1 ⊗B−1,−1
1,2 (−1).1〉

= 〈Ψ′|v1,2 ⊗ v1,1 ⊗B−1,−1
1,2 (

1

ξ3
).1〉

= −〈Ψ′|B−1,−1
1,2 v1,2 ⊗ v1,1 ⊗ 1〉 − 〈Ψ′|v1,2 ⊗B−1,−1

1,2 (1).v1,1 ⊗ 1〉
= −〈Ψ′|v−1,−1 ⊗ v1,1 ⊗ 1〉 [Since B−1,−1

1,2 (1).v1,1 = 0]

�= 0 (by Lemma 9.3).

The case �λ = (ω1, ω1, ω2) follows similarly. �
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Lemma 9.5. Let �λ = (ω1, ω1 + ω2, 2ω1) or (ω1, ω1 + ω2, ω2). Then, the map

V�λ(X, so(2r + 1), 2s+ 1)⊗ V�λT (X, so(2s+ 1), 2r + 1) → V�Λ(X, so(2d+ 1), 1)

is non-zero.

Proof. Consider λ′
2 = ω1 and λ2 = ω1 + ω2 and let λ2 be obtained from λ′

2 by
adding two boxes in the (1, 2) and (2, 1) coordinate. Thus, by Proposition 8.7, we
get

vλ2
= B1,2

−2,−1(−1)v1,1.

As in Lemma 9.4, the vector |Φ3〉 = B−1,−1
1,2 (−1).1. We choose |Φ2〉 = vλ2

and

|Φ1〉 such that the H-weight of |Φ1 ⊗ Φ2 ⊗ Φ2〉 is zero. In this case, |Φ1〉 = v−2,−1.
By gauge symmetry, we get the following:

〈Ψ′|v−2,−1 ⊗B1,2
−2,−1(−1)v1,1 ⊗B−1,−1

1,2 (−1).1〉
= −〈Ψ′|B1,2

−2,−1v
−2,−1 ⊗ v1,1 ⊗B−1,−1

1,2 (−1).1〉
−〈Ψ′|v−2,−1 ⊗ v1,1 ⊗B1,2

−2,−1(1)B
−1,−1
1,2 (−1).1〉

= −〈Ψ′|B1,2
−2,−1v

−2,−1 ⊗ v1,1 ⊗B−1,−1
1,2 (−1).1〉

−〈Ψ′|v−2,−1 ⊗ v1,1 ⊗B−1,−1
1,2 (−1)B1,2

−2,−1(1).1〉
−〈Ψ′|v−2,−1 ⊗ v1,1 ⊗ [B1,2

−2,−1(1), B
−1,−1
1,2 (−1)].1〉

= −〈Ψ′|v1,2 ⊗ v1,1 ⊗B−1,−1
1,2 (−1).1〉

�= 0 (by Lemma 9.4). �

9.2.6. The inductive step.

Proposition 9.6. Let |λ2| = |λ3|+ 1 and λ2 be obtained from λ3 by adding a box
in the (c, d)-th coordinate. Further, assume that λ3 is obtained from λ′

2 by adding
a box in the (a, b)-th coordinate. Then, the rank-level duality isomorphism for the
admissible pair ((ω1, λ

′
2, λ3), (ω1, λ

′T
2 , λT

3 )) implies rank-level duality isomorphism
for the admissible pair ((ω1, λ2, λ3), (ω1, λ

T
2 , λ

T
3 )).

Proof. Without loss of generality assume that (a, b) < (c, d). Consider a non-zero el-

ement 〈Ψ′| ∈ V†
�Λ
(X, so(2d+1), 1). We choose |Φ1〉 = v−a,−b, |Φ2〉 = Ba,b

−c,−d(−1)vλ′
2

and |Φ3〉 to be the opposite highest weight vector of the component with highest
weight (λ3, λ

T
3 ). Then, we have the following:

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉
= 〈Ψ′|v−a,−b ⊗Ba,b

−c,−d(−1)vλ′
2
⊗ Φ3〉

= −〈Ψ′|Ba,b
−c,−dv

−a,−b ⊗ vλ′
2
⊗ Φ3〉

−〈Ψ′|v−a,−b ⊗ vλ′
2
⊗Ba,b

−c,−d(1)Φ3〉
= 〈Ψ′|vc,d ⊗ vλ′

2
⊗ Φ3〉 (by Lemma 9.7 below).

The last expression is exactly the one that we consider to prove the rank-level
duality for the admissible pair ((ω1, λ

′
2, λ3), (ω1, λ

′T
2 , λT

3 )). Hence we are done. �

Lemma 9.7. With the above notation, we have the following:

Ba,b
−c,−d(1)|Φ3〉 = 0.
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Proof. Since |λ3| is even, the opposite highest weight vector |Φ3〉 can be chosen

to be of the form B−a,−b
e,f (−1)v. Moreover v has the form

∏
α∈I X−α(−1).1 such

that (La,b, α) = 0, where I is a subset of positive root of so(2d+ 1) and X−α is a
non-zero element in the weight space of the negative root −α:

Ba,b
−c,−d(1)|Φ3〉 = Ba,b

−c,−d(1)B
−a,−b
e,f (−1)v

= B−a,−b
e,f (−1)Ba,b

−c,−d(1)v + [Ba,b
−c,−d(1), B

−a,−b
e,f (−1)]v

= B−a,−b
e,f (−1)Ba,b

−c,−d(1)
∏
α∈I

X−α(−1).1

+[Ba,b
−c,−d, B

−a,−b
e,f ]

∏
α∈I

X−α(−1).1

= B−a,−b
e,f (−1)

( ∏
α∈I

X−α(−1)
)
Ba,b

−c,−d(1).1

+
( ∏
α∈I

X−α(−1)
)
[Ba,b

−c,−d, B
−a,−b
e,f ].1

= 0.

Hence the lemma follows. �
The proof of the following proposition is similar to the proof of Proposition 9.6

and tackles the case |λ3| = |λ2|+ 1.

Proposition 9.8. Let |λ3| = |λ2|+ 1 and λ3 be obtained from λ2 by adding a box
in the (c, d)-th coordinate. Further, assume that λ2 is obtained from λ′

3 by adding
a box in the (a, b)-th coordinate. Then, the rank-level duality isomorphism for the
admissible pair ((ω1, λ2, λ

′
3), (ω1, λ

T
2 , λ

′T
3 )) implies rank-level duality isomorphism

for the admissible pair ((ω1, λ2, λ3), (ω1, λ
T
2 , λ

T
3 )).

9.3. The remaining three point cases. As before, we will assume that (P1, P2,
P3) = (1, 0,∞) with coordinates ξ1 = z − 1, ξ2 = z and ξ3 = 1

z . We denote the

associated data by X. Let �λ = (ω1, λ, λ), �Λ = (ω1, ω1, 0), where λ ∈ Yr,s is such
that (λ, Lr) �= 0. The proof of the next proposition follows the same pattern as the
proof of Proposition 9.6. We give a proof of the first part of the proposition for
completeness.

Proposition 9.9. The following maps are non-zero:

(1) V�λ(X, so(2r+1), 2s+1)⊗V�λT (X, so(2s+1), 2r+1) → V�Λ(X, so(2d+1), 1),

where |λ| is odd and �λT = (ω1, λ
T , σ(λT )).

(2) V�λ(X, so(2r+1), 2s+1)⊗V�λT (X, so(2s+1), 2r+1) → V�Λ(X, so(2d+1), 1),

where |λ| is even and �λT = (ω1, σ(λ
T ), λT ).

Proof. Let λ′ ∈ Yr,s be such that σ(λ) is obtained by adding boxes in (0, 1) and
(r, a) to λ′ and λ is obtained by adding a box in the (r, a)-th position. Since
|λ| is odd, the module with highest weight (λ, σ(λT )) appears in the branching of
H0(so(2d + 1)). By Proposition 8.5, the opposite highest weight vector is given

by B0,−1
r,a (−1)vλ

′
, where vλ

′
is the opposite highest weight vector of the irreducible

module with highest weight (λ′, λ′T ).
As before, we choose |Φ3〉 to be the opposite highest weight vector of the module

with highest weight (λ, σ(λT )). We set |Φ2〉 to be the highest weight vector vλ and
|Φ1〉 to be such that the H-weight of |Φ1⊗Φ2⊗Φ3〉 is zero. In this case |Φ1〉 is v0,1.
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Let 〈Ψ′| ∈ V†
�Λ
(X, g, 1) be a non-zero element. We use gauge symmetry as before

to get the following:

〈Ψ′|Φ1 ⊗ Φ2 ⊗ Φ3〉
= 〈Ψ′|v0,1 ⊗ vλ ⊗B0,−1

r,a (−1)vλ
′〉

= −〈Ψ′|B0,−1
r,a (−1)v0,1 ⊗ vλ ⊗ vλ

′〉
−〈Ψ′|v0,1 ⊗B0,−1

r,a (1)vλ ⊗ vλ
′〉

= 〈Ψ′|v−r,−a ⊗ vλ ⊗ vλ
′〉 (by a lemma similar to 9.7).

Now, we know that 〈Ψ′|v−r,−a ⊗ vλ ⊗ vλ
′〉 �= 0, since rank-level duality holds for

the admissible pair ((ω1, λ, λ
′), (ω1, λ

T , λ′T )). This completes the proof. �

9.4. The proof in the general case. In this section, we finish the proof of Theo-
rem 6.1. We now formulate and prove a key degeneration result using the compat-

ibility of rank-level duality and factorization discussed earlier. Let �λ1, �λ2 be n1, n2

tuples of weights in P 0
2s+1(so(2r + 1)). Consider an n = n1 + n2 tuple �λ = (�λ1, �λ2)

of weights in P 0
2s+1(so(2r+ 1)). Similarly, consider �μ = (�μ1, �μ2) an (n1 + n2) tuple

of weights in P 0
2r+1(so(2r + 1)) such that (�λ, �μ) is an admissible pair.

Proposition 9.10. With the above notation, the following statements are equiva-
lent:

(1) The rank-level duality map for the admissible pair (�λ, �μ) is an isomorphism
for conformal blocks on P1 with n marked points.

(2) The following rank-level duality maps are isomorphic:
• Rank-level duality maps are isomorphisms for all admissible pairs of

the form (�λ1 ∪ λ, �μ1 ∪ μ) for conformal blocks on P1 with (n1 + 1)
marked points.

• Rank-level duality maps are isomorphisms for all admissible pairs of

the form (λ ∪ �λ2, μ ∪ �μ2) for conformal blocks on P1 with (n2 + 1)
marked points.

We first start with a lemma. We give a proof of Proposition 9.10 using Lemma
9.11. Let B = SpecC[[t]]. Suppose V and W are vector bundles on B of the same
rank and let L be a line bundle on B. Consider a bilinear map f : V ⊗ W → L.
Assume that on B there are isomorphisms

⊕si : V →
⊕
i∈I

Vi,

⊕tj : W →
⊕
j∈I

Wj .

Further assume that Vi and Wi have the same rank. Let fi,j be maps from Vi ⊗
Wj → L such that fi,j = 0 for i �= j and f =

∑
i∈I t

mi(fi,i◦(si⊗ti)). The following
lemma is easy to prove.

Lemma 9.11. The map f is non-degenerate on B∗ = B \ {t = 0} if and only if for
all i ∈ I the maps fi,i are non-degenerate.
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9.4.1. Proof of Proposition 9.10. We now return to the proof of Proposition 9.10.
Let X → B be a family of curves of genus 0 such that the generic fiber is a smooth
curve and the special fiber X0 is a nodal curve. In our case, we let V , W and L
be locally free sheaves V�λ(X , so(2r + 1), 2s + 1) and V�μ(X , so(2s + 1), 2r + 1) and

V�Λ(X , so(2d + 1), 1) respectively, where �λ and �μ are as in Proposition 9.10 and
�Λ ∈ (P 0

1 (so(2d+ 1))n is such that (�λ, �μ) ∈ B(�Λ).
We consider the Vi’s to be locally free sheaves of the form

V�λ1∪λ(X1, so(2r + 1), 2s+ 1)⊗ Vλ∪�λ2
(X2, so(2r + 1), 2s+ 1)⊗ C[[t]],

where λ ∈ P 0
2s+1(so(2r + 1)), X1, X2 are the data associated to disjoint copies

of P1 (which are obtained from normalization of X0) with n1 + 1, n2 + 1 points
respectively. Similarly, we let the Wj ’s be locally free sheaves of the form

V�μ1∪μ(X1, so(2s+ 1), 2r + 1)⊗ Vμ∪�μ2
(X2, so(2s+ 1), 2r + 1)⊗ C[[t]],

where μ ∈ P 0
2r+1(so(2s+ 1)).

Since there are bijections (the bijections depend on the factorization of
V�Λ(X , so(2d + 1), 1) into n1 and n2 parts) between P 0

2s+1(so(2r + 1)) and

P 0
2r+1(so(2s + 1)), we can choose the indexing set I in Lemma 9.11 to be Yr,s 

σ(Yr,s). It is also important to point out that fi,j = 0 for i �= j is guaranteed by
the fact that given λ ∈ P 0

2s+1(so(2r + 1)), Λ ∈ P 0
1 (so(2d+ 1)), there exists exactly

one μ ∈ P 0
2r+1(so(2s + 1)) such that (λ, μ) ∈ B(Λ). The proof of Proposition 9.10

now follows from Proposition 4.3, Lemma 9.11 and Proposition 3.3.

Remark 9.12. The situation in Proposition 9.10 should be compared to Proposition
5.2 in [28].

An immediate corollary of Proposition 9.10 is the following:

Corollary 9.13. If rank-level duality holds for P1 with three marked points, then
it holds for P1 with an arbitrary number of marked points.

By Proposition 3.6, we can further reduce to prove the rank-level duality for
an admissible pair of the form ((λ1, λ, λ2), (λ

T
1 , β, λ

T
2 )), where λ1, λ2 ∈ Yr,s, λ ∈

P 0
2r+1(so(2r + 1)) and β ∈ P 0

2s+1(so(2s + 1)). Let �λ = (ω1, . . . , ω1, λ, λ2) and �μ =

(ω1, . . . , ω1, β, λ
T
2 ); the number of ω1’s is |λ1|. Clearly the pair (�λ, �μ) is admissible.

The following corollary is a direct consequence of Proposition 9.10 and Lemma 9.15.

Corollary 9.14. Let λ1, λ2 ∈ Yr,s. If the rank-level duality is an isomorphism for

any P
1 with |λ1|+2 marked points for the admissible pair �λ = (ω1, . . . , ω1, λ, λ2) and

�μ = (ω1, . . . , ω1, β, λ
T
2 ), then the rank-level duality on P

1 is also an isomorphism
for the admissible pair ((λ1, λ, λ2), (λ

T
1 , β, λ

T
2 )).

Lemma 9.15. Let λ ∈ Yr,s and �λ = (λ, ω1, . . . , ω1), where the number of ω1 is |λ|.
Then

dimC V†
�λ
(X, so(2r + 1), 2s+ 1) �= 0.

Proof. The proof follows directly by factorization of fusion coefficients and induction
on |λ|. �
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9.4.2. Reduction to the one dimensional cases. In the previous section, we re-

duced Theorem 6.1 for admissible pairs of the form �λ = (ω1, . . . , ω1, λ, λ2) and
�μ = (ω1, . . . , ω1, β, λ

T
2 ), where λ ∈ P 0

2s+1(so(2r + 1)), the number of ω1’s are |λ1|,
λ2 ∈ Yr,s and β ∈ P 0

2r+1(so(2s + 1)). The following lemma shows that we can
further reduce to the case for certain one dimensional conformal blocks on P1 with
three marked points.

Lemma 9.16. Let λ1, λ2 ∈ P 0
2s+1(so(2r+1)) and β1, β2 ∈ P 0

2r+1(so(2s+1)). If the
rank-level duality holds for admissible pairs of the form ((λ1, ω1, λ2), (β1, ω1, β2)),
then the rank-level duality holds for admissible pairs on P1 with an arbitrary number
of marked points.

Proof. The proof follows from Proposition 9.10. �

We use Proposition 3.6 and Proposition 7.3 to further reduce to the following
admissible pairs for certain one dimensional conformal blocks on P

1 with three
marked points:

(1) (ω1, λ2, λ3), (ω, λ
T
2 , λ

T
3 ), where λ2, λ3 ∈ Yr,s and λ2 is obtained by λ3 either

by adding or deleting a box.
(2) (ω1, λ, λ), (ω1, λ

T , σ(λT )), where λ ∈ Yr,s and (λ, Lr) �= 0.

The rank-level duality in these cases has been proved in Section 9.2 and Section
9.3. This completes the proof of Theorem 6.1.

10. Key lemmas

Lemma 10.1. Let ξ = exp( π
√
−1

2(r+s)). Consider the matrix W whose (i, j)-th entry

is the complex number (ξi(2j−1) − ξ−i(2j−1)). Then,

WWT =

⎛
⎜⎜⎜⎝

c
. . .

c
2c

⎞
⎟⎟⎟⎠ ,

where c = −2(r + s).

Let U be a partition of {1, . . . , r+ s} such that r+ s ∈ U and |U | = r. Let P be
the permutation matrix associated to the permutation (U,Uc). Then,

PWWTP−1 =

⎛
⎜⎜⎜⎝

2c
c

. . .

c

⎞
⎟⎟⎟⎠ .

Let A = W and B = WT and U , T as in Lemma 7.5. Then, we have the following:

(10.1) cs detAU,T = sgn(U,Uc) sgn(T, T c) detA detBT c,Uc .

We now state and prove one of the two key lemmas that we used in the proof of
the equality of dimensions of the rank-level duality map in Section 7. Let [r + s]
denote the set {1, 2, . . . , r + s}. We define the following sets:

(1) Consider λ = (λ1 ≥ λ2 ≥ · · · ≥ λr) ∈ Yr,s. We define αi = λi + r + 1 − i
and [α] = {α1 > α2 > · · · > αr}.
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(2) Consider the complement [β] = (β1 > β2 > · · · > βs) of [α] in [r + s].
We define another set [γ] = (γ1 > γ2 > · · · > γs) where γi = ((r + s) −
(β(s+1−i) − 1

2 )).
(3) Let T = (t1 > t2 > · · · > tr) where ti = r+1− i; T ′ = (t′1 > t′2 > · · · > t′s),

where t′i = s+ 1− i and T c = (tc1 > tc2 > · · · > tcs) is the complement of T
in [r + s].

(4) Let U = (u1 > u2 > · · · > ur) be a subset of [r + s] of cardinality r such
that r + s ∈ U and Uc = (uc

1 > uc
2 > · · · > uc

s) be the complement of U in
[r + s].

Then, for λ ∈ Yr,s, we can write, by the Weyl character formula (7.1),

TrVλ
(expπ

√
−1

μ+ ρ

r + s
) =

det(ζui(α
j− 1

2 ) − ζ−ui(α
j− 1

2 ))

det(ζui(tj− 1
2 ) − ζ−ui(tj− 1

2 ))

=
det(ξui(2α

j−1) − ξ−ui(2α
j−1))

det(ξui(2tj−1) − ξ−ui(2tj−1))
,

where μ+ ρ =
∑r

i=1 uiLi and ζ = ξ2 as in Section 7.
For λT ∈ Yr,s, μ

′ + ρ′ =
∑s

i=1 u
c
iLi and ρ′ the Weyl vector of so(2s+1), we can

write

TrV
λT

(expπ
√
−1

μ′ + ρ′

r + s
) =

det(ζu
c
i (γ

j) − ζ−uc
i (γ

j))

det(ζu
c
i (t

′
j− 1

2 ) − ζ−uc
i (t

′
j− 1

2 ))

=
det(ζu

c
i ((r+s)−(βj− 1

2 )) − ζ−uc
i ((r+s)−(βj− 1

2 )))

det(ζu
c
i ((r+s)−(tcj− 1

2 )) − ζ−uc
i ((r+s)−(tcj− 1

2 )))

=
det(ζ−uc

i (r+s)(ζu
c
i (β

j− 1
2 ) − ζ−uc

i (β
j− 1

2 )))

det(ζ−uc
i (r+s)(ζu

c
i (t

c
j− 1

2 ) − ζ−uc
i (t

c
j− 1

2 )))

=
det(ζu

c
i (β

j− 1
2 ) − ζ−uc

i (β
j− 1

2 ))

det(ζu
c
i (t

c
j− 1

2 ) − ζ−uc
i (t

c
j− 1

2 ))

=
det(ξu

c
i (2β

j−1) − ξ−uc
i (2β

j−1))

det(ξu
c
i (2t

c
j−1) − ξ−uc

i (2t
c
j−1))

,

where ξ and ζ are as before. By applying equation (10.1), we get the following.

Lemma 10.2.

TrVλ
(expπ

√
−1

μ+ ρ

r + s
) =

sgn([α], [β])

sgn(T, T c)
TrVλT

(expπ
√
−1

μ′ + ρ′

r + s
).

The following can be checked by a direct calculation.

Lemma 10.3.
sgn([α], [β]) = (−1)

r(r−1)
2 + s(s−1)

2 +|λ|,

sgn(T, T c) = (−1)
r(r−1)

2 + s(s−1)
2 .

Thus, we have the following equality:

TrVλ
(expπ

√
−1

μ+ ρ

r + s
) = (−1)|λ| TrVλT

(expπ
√
−1

μ′ + ρ′

r + s
).

Let ξ = exp π
√
−1

4(r+s) . Then, the following equality holds for any integers a and b:

ξ(2(r+s)−(2a−1))(2(r+s)−(2b−1)) = (−1)(a+b)ξ(2a−1)(2b−1).



RANK-LEVEL DUALITY FOR ODD ORTHOGONAL LIE ALGEBRAS 6775

Lemma 10.4. Let ξ = exp( π
√
−1

4(r+s)). Consider the matrix W whose (i, j)-th entry

is the complex number (ξ(2i−1)(2j−1) − ξ−(2i−1)(2j−1)). Then, the following holds:

WWT =

⎛
⎜⎜⎜⎝

c
. . .

c
c

⎞
⎟⎟⎟⎠ ,

where c = −2(r + s).

Let U be a partition of {1, . . . , r + s} such that |U | = r. Let A = W , B = WT

and U , T be as in Lemma 7.5. Then,

(10.2) cs detAU,T = sgn(U,Uc) sgn(T, T c) detA detBT c,Uc .

Let U ′ = (u′
1 > u′

2 > · · · > u′
r) be a subset of [r + s] of cardinality r, U ′c =

(u′c
1 > · · · > u′c

s ) be the complement of U ′ in [r + s] and μ+ ρ =
∑r

i=1(u
′
i − 1

2 )Li.
Then, by the Weyl character formula (7.1), we can write the following for λ ∈ Yr,s:

TrVλ
(expπ

√
−1

μ+ ρ

r + s
) =

det(ζ(u
′
i− 1

2 )(α
j− 1

2 ) − ζ−(u′
i− 1

2 )(α
j− 1

2 ))

det(ζ(u
′
i− 1

2 )(tj−
1
2 ) − ζ−(u′

i− 1
2 )(tj−

1
2 ))

=
det(ξ(2u

′
i−1)(2αj−1) − ξ−(2u′

i−1)(2αj−1))

det(ξ(2u
′
i−1)(2tj−1) − ξ−(2u′

i−1)(2tj−1))
.

For λT ∈ Yr,s, μ
′ + ρ′ =

∑s
i=1((r + s + 1

2 ) − u′c
i )Li and ρ′ the Weyl vector of

so(2s+ 1), we can write the following:

TrVλT
(expπ

√
−1

μ′ + ρ′

r + s
)

=
det(ζ((r+s)−(u′c

i − 1
2 ))((r+s)−(βj− 1

2 )) − ζ((r+s)−(u′c
i − 1

2 ))((r+s)−(βj− 1
2 )))

det(ζ((r+s)−(u′c
i − 1

2 ))((r+s)−(tcj− 1
2 )) − ζ((r+s)−(u′c

i − 1
2 ))((r+s)−(tcj− 1

2 )))

=
(−1)

∑s
i=1(u

′c
i +βi)

(−1)
∑s

i=1(u
′c
i +tci )

det(ξ(2u
′c
i −1)(2βj−1) − ξ−(2u′c

i −1)(2βj−1))

det(ξ(2u
′c
i −1)(2tcj−1) − ξ−(2u′c

i −1)(2tcj−1))

=
(−1)

∑s
i=1(βi)

(−1)
∑s

i=1(t
c
i )

det(ξ(2u
′c
i −1)(2βj−1) − ξ−(2u′c

i −1)(2βj−1))

det(ξ(2u
′c
i −1)(2tcj−1) − ξ−(2u′c

i −1)(2tcj−1))

= (−1)|λ|
det(ξ(2u

′c
i −1)(2βj−1) − ξ−(2u′c

i −1)(2βj−1))

det(ξ(2u
′c
i −1)(2tcj−1) − ξ−(2u′c

i −1)(2tcj−1))
.

From equation (10.2), we get the following lemma.

Lemma 10.5.

TrVλ
(expπ

√
−1

μ+ ρ

r + s
) = TrVλT

(expπ
√
−1

μ′ + ρ′

r + s
).
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10.1. Some trace calculations. Let ζ = exp(π
√
−1

r+s ) and U = (u1 > u2 > · · · >
ur) be a subset of [r + s] of cardinality r. Then, we have the following:

ζ(ui− 1
2 )((2r+1)+s− 1

2 ) − ζ−(ui− 1
2 )((2r+1)+s− 1

2 )

= ζ(ui− 1
2 )(2(r+s)−(s− 1

2 )) − ζ−(ui− 1
2 )(2(r+s)−(s− 1

2 ))

= −
(
ζ−(ui− 1

2 )(s−
1
2 ) − ζ(ui− 1

2 )(s−
1
2 )
)

= ζ(ui− 1
2 )(s−

1
2 ) − ζ−(ui− 1

2 )(s−
1
2 ).

The above calculation and the Weyl character formula give the following lemma.

Lemma 10.6. Consider the dominant weight λ = (2s + 1)ω1 of so(2r + 1). Let
U = (u1 > u2 > · · · > ur) be a subset of [r + s] of cardinality r and μ + ρ =∑r

i=1(ui − 1
2 )Li. Then,

Trλ(exp(π
√
−1

μ+ ρ

r + s
)) = 1.

Let ζ = exp(π
√
−1

r+s ) and U = (u1 > u2 > · · · > ur) be a subset of [r + s] of
cardinality r. Then, we have the following:

ζui((2r+1)+s− 1
2 ) − ζ−ui((2r+1)+s− 1

2 ) = ζui(2(r+s)−(s− 1
2 )) − ζ−ui(2(r+s)−(s− 1

2 ))

= ζ−ui(s− 1
2 ) − ζui(s− 1

2 )

= −
(
ζui(s− 1

2 ) − ζ−ui(s− 1
2 )
)
.

The proof of the next lemma also follows from the above calculation, and the Weyl
character formula gives us the following lemma.

Lemma 10.7. Consider the dominant weight λ = (2s+1)ω1 of so(2r+1). Let U =
(u1 > u2 > · · · > ur) be a subset of [r + s] of cardinality r and μ+ ρ =

∑r
i=1 uiLi.

Then,

Trλ(exp(π
√
−1

μ+ ρ

r + s
)) = −1.

10.2. Some trigonometric functions. We recall from [26] a family of trigono-
metric functions which has surprising identities. These identities are fundamental
to the reciprocity laws of the Verlinde formula in [26].

Consider a positive integer k and let fk(r) = 4 sin2( rπk ). Given a finite set U =
{u1, . . . , ur} of rational numbers, we consider the following functions defined in
Section 1 of [26] (where an empty product is deemed to be 1):

Pk(U) =
∏

1≤i<j≤r

(
fk(ui − uj)fk(ui + uj)

)
, Nk(U) =

r∏
i=1

fk(ui),

Φk(U) = Pk(U)Nk(U).

We used the function Φk(U) to rewrite the Verlinde formula in Section 7. The
identities of Φk(U) are among the key ingredients in the proof of the equality of
the dimensions as discussed in Section 7.
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No. 994, ix, 363–377 (2010). MR2605328 (2011d:14066)

[28] Christian Pauly, Strange duality revisited, Math. Res. Lett. 21 (2014), no. 6, 1353–1366, DOI
10.4310/MRL.2014.v21.n6.a8. MR3335851

[29] Mihnea Popa, Generalized theta linear series on moduli spaces of vector bundles on curves,
Handbook of moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, Int. Press, Somerville, MA,
2013, pp. 219–255. MR3135438

[30] Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal
family of stable curves with gauge symmetries, Integrable systems in quantum field theory
and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA,
1989, pp. 459–566. MR1048605 (92a:81191)

Department of Mathematics, University of Maryland, College Park, Maryland

20742-4015

E-mail address: swarnava@umd.edu

http://www.ams.org/mathscinet-getitem?mr=1456243
http://www.ams.org/mathscinet-getitem?mr=1456243
http://www.ams.org/mathscinet-getitem?mr=1051307
http://www.ams.org/mathscinet-getitem?mr=1051307
http://www.ams.org/mathscinet-getitem?mr=3184182
http://www.ams.org/mathscinet-getitem?mr=2289865
http://www.ams.org/mathscinet-getitem?mr=2289865
http://www.ams.org/mathscinet-getitem?mr=2457738
http://www.ams.org/mathscinet-getitem?mr=2457738
http://www.ams.org/mathscinet-getitem?mr=3153462
http://www.ams.org/mathscinet-getitem?mr=1152377
http://www.ams.org/mathscinet-getitem?mr=1152377
http://www.ams.org/mathscinet-getitem?mr=1340183
http://www.ams.org/mathscinet-getitem?mr=1340183
http://www.ams.org/mathscinet-getitem?mr=2605328
http://www.ams.org/mathscinet-getitem?mr=2605328
http://www.ams.org/mathscinet-getitem?mr=3335851
http://www.ams.org/mathscinet-getitem?mr=3135438
http://www.ams.org/mathscinet-getitem?mr=1048605
http://www.ams.org/mathscinet-getitem?mr=1048605

	1. Introduction
	2. Basic definitions in the theory of conformal blocks
	2.1. Affine Lie algebras
	2.2. Representation theory of affine Lie algebras
	2.3. Conformal blocks
	2.4. Propagation of vacua
	2.5. Conformal blocks in a family

	3. Conformal subalgebras and rank-level duality map
	3.1. Conformal embedding
	3.2. General context of rank-level duality
	3.3. Properties of rank-level duality

	4. Sewing and compatibility under factorization
	4.1. Factorization and compatibility of rank-level duality

	5. Branching rules for conformal embedding  of orthogonal Lie algebras
	5.1. Representation of 𝔰𝔬(2𝔯+1)
	5.2. The action of center on weights
	5.3. Branching rules

	6. Rank-level duality map
	7. Verlinde formula and equality of dimensions
	7.1. Dimensions of some conformal blocks
	7.2. Verlinde formula
	7.3. Equality of dimensions
	7.4. Final step of dimension check

	8. Highest weight vectors
	8.1. Spin modules
	8.2. Highest weight vectors

	9. Proof of Theorem  6.1
	9.1. Key steps
	9.2. The minimal three point cases
	9.3. The remaining three point cases
	9.4. The proof in the general case

	10. Key lemmas
	10.1. Some trace calculations
	10.2. Some trigonometric functions

	Acknowledgments
	References

