
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 368, Number 11, November 2016, Pages 7883–7910
http://dx.doi.org/10.1090/tran6658

Article electronically published on November 16, 2015

LEVEL 14 AND 15 ANALOGUES OF RAMANUJAN’S ELLIPTIC

FUNCTIONS TO ALTERNATIVE BASES

SHAUN COOPER AND DONGXI YE

Abstract. We briefly review Ramanujan’s theories of elliptic functions to
alternative bases, describe their analogues for levels 5 and 7, and develop
new theories for levels 14 and 15. This gives rise to a rich interplay between
theta functions, eta-products and Eisenstein series. Transformation formulas
of degrees five and seven for hypergeometric functions are obtained, and the
paper ends with some series for 1/π similar to ones found by Ramanujan.

1. Introduction

One of the fundamental functions studied by Ramanujan in his paper “Modular
equations and approximations to π”, [27], is

(1.1) f(�) =
�P (q�)− P (q)

�− 1
,

where � ≥ 2 is an integer, called the level, |q| < 1, and

P (q) = 1− 24
∞∑
j=1

jqj

1− qj
.

The functions f(�) have rich properties. For example, f(4) is the generating func-
tion for the number of representations of an integer as a sum of four squares, that
is (e.g., see [14, (3.13)]),

(1.2) f(4) =

⎛
⎝ ∞∑

j=−∞
qj

2

⎞
⎠

4

.

Another interesting property is

(1.3) f(4) =
∞∑
j=0

(
2j

j

)3 (
η41η

4
4

η42 f(4)

)2j

,

where ηm is defined for any positive integer m by

ηm = qm/24
∞∏
j=1

(1− qmj).
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By (1.2) and [7, (3.1.6)–(3.1.8), (4.2.1)–(4.2.3) and Theorem 5.7 (a)(i)], the identity
(1.3) is equivalent to

(1.4)

(
2K

π

)2

= 3F2

( 1
2 ,

1
2 ,

1
2

1, 1
; 4k2k′2

)
,

where k, k′ and K are, respectively, the modulus, complementary modulus, and
complete elliptic integral of the first kind, from Jacobi’s theory of elliptic functions.
In [27], Ramanujan showed how (1.4) (equivalently, (1.3)) can be used to produce
some remarkable series that converge to 1/π, for example,

(1.5)
1

π
=

1

16

∞∑
n=0

(
2n

n

)3
(42n+ 5)

212n
.

Ramanujan indicated that similar results hold for levels 1, 2 and 3. Almost no
details of the theories for levels 1, 2 and 3 are given in Ramanujan’s paper [27].
There are some details in his notebooks [28], however, and they have been com-
pletely analyzed by Berndt, Bhargava and Garvan [6]. A different analysis, taking
the function f(�) as the starting point, has been given in [14].

Collectively, the theories for levels 1, 2 and 3 are known as “Ramanujan’s theories
of elliptic functions to alternative bases”. The level 3 analogues of (1.2) and (1.3)
are

(1.6) f(3) =

⎛
⎝ ∞∑

j=−∞

∞∑
k=−∞

qj
2+jk+k2

⎞
⎠

2

and

(1.7) f(3) =
∞∑
j=0

(
2j

j

)2(
3j

j

)(
η21η

2
3

f(3)

)3j

,

and the level 2 analogues are

(1.8) f(2) =
1

2

⎛
⎝( ∞∑

j=−∞
qj

2/2

)4

+

( ∞∑
j=−∞

(−1)jqj
2/2

)4
⎞
⎠

and

(1.9) f(2) =

∞∑
j=0

(
2j

j

)2(
4j

2j

)(
η21η

2
2

f(2)

)4j

.

In connection with the level 2 theory, Ramanujan gave the formula

(1.10)
1

π
=

2
√
2

9801

∞∑
j=0

(
2j

j

)2(
4j

2j

)
(1103 + 26390j)

3964j
.

It converges sufficiently fast—each term adds about 8 decimal digits of accuracy—
so that it was used by R. W. Gosper in 1985 to compute the value of π to 17,526,100
decimal places, then a world record. More information about the formulas (1.5)
and (1.10), including some details of how they may be derived from (1.3) and (1.9),
respectively, has been given in the survey articles [2] and [9]. Further series will be
described in Section 7.
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For level 1, the appropriate function f(1) is not given by (1.1) but instead by

(1.11) (f(1))
2
= 1 + 240

∞∑
j=1

j3qj

1− qj
.

The analogue of (1.3) is

(1.12) f(1) =
∞∑
j=0

(
2j

j

)(
3j

j

)(
6j

3j

)(
η41
f(1)

)6j

.

The identities (1.6)–(1.12) can be found in [6] or [14], or they can be proved by
putting together identities in those references and applying Clausen’s identity in
the form given by [12, (20) with c = 0].

Analogous theories are now also known for levels 5 ≤ � ≤ 13. One of the main
differences in the theories for levels � ≥ 5 is that the coefficients in the analogues of
(1.3), (1.7), (1.9) and (1.12) are no longer given by products of binomial coefficients,
but instead by recurrence relations that involve three or more terms. For details
and further references, see [12] for levels 5 ≤ � ≤ 9, � �= 7; [17] for level 7; and [16]
for level 10. The results for levels 11, 12 and 13 are given in [21], [19] and [20],
respectively. We shall briefly discuss the analogues of the theories for levels 5 and
7, as these are particularly relevant to the present work.

The analogue of (1.3) for level 5 is given by

(1.13) f(5) =
∞∑
j=0

(
2j

j

){
j∑

k=0

(
j

k

)2(
j + k

k

)}(
η21η

2
5

f(5)

)2j

.

If bj denotes the sum in braces, that is,

bj =

j∑
k=0

(
j

k

)2(
j + k

k

)
,

then the bj do not have a simple closed form, but they satisfy a three-term recur-
rence relation given by

(1.14) (j + 1)2bj+1 = (11j2 + 11j + 3)bj + j2bj−1.

The sequence {bj} was studied by R. Apéry and discussed by van der Poorten [33].
The level 5 analogue of (1.2) involves the theta series of a lattice; see, e.g., [30,
A028887]. There is also a close connection with the Rogers-Ramanujan continued
fraction r(q) defined by

r = r(q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

.

For example, the power series variable in the identity (1.13) is related to the Rogers-
Ramanujan continued fraction by(

η21η
2
5

f(5)

)2

=
r5(1− 11r5 − r10)

(1 + r10)2
.
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The level 7 analogue of (1.2) is given by

(1.15) f(7) =

⎛
⎝ ∞∑

j=−∞

∞∑
k=−∞

qj
2+jk+2k2

⎞
⎠

2

,

while the analogue of (1.3) is

(1.16) f(7) =

∞∑
j=0

⎧⎨
⎩

�j/2�∑
k=0

(
j

k

)2(
2j − k

j

)(
2j − 2k

j

)⎫⎬
⎭

(
η21η

2
7

f(7)

)3j/2

.

If the coefficients in braces are denoted by cj , then the following three-term recur-
rence relation holds:

(1.17) (j + 1)3cj+1 = (2j + 1)(13j2 + 13j + 4)cj + 3j(9j2 − 1)cj−1.

The sequence {cj} has been studied in [17], [22], [23] and [32].
The goal of this work is to systematically develop the theories for levels 14 and

15. The theories for these two levels are strikingly similar, and this is largely due
to the seemingly trivial observation∑

d|14
d =

∑
d|15

d = 24.

The theory for level 14 is related to the theories for levels 2 and 7, and the theory
for level 15 has connections with the theories for levels 3 and 5. The reader who
wishes to skim ahead to see the level 14 and 15 analogues of (1.3) may refer to
Theorems 4.3 and 6.3. It may be mentioned that the analogues of the recurrence
relations (1.14) and (1.17) for levels 14 and 15 are four-term recurrence relations.

This work is organized as follows. Section 2 contains some background infor-
mation on modular forms. Sections 3 and 4 contain the results for level 14, and
Sections 5 and 6 contain the analogous results for level 15. The basic interrelation-
ships between theta functions, Eisenstein series and eta-products are analyzed, and
analogues of (1.3) are established. Finally, as is customary in this subject, some
series for 1/π similar to ones given by Ramanujan are presented in Section 7.

2. Background on modular forms

Let τ be any complex number with positive imaginary part and let q = exp(2πiτ ).
The Dedekind eta-function is defined by

η(τ ) = q1/24
∞∏
j=1

(1− qj).

Let P (q) denote Ramanujan’s Eisenstein series of weight 2 defined by

P (q) = 1− 24

∞∑
j=1

jqj

1− qj
.

For any positive integer �, let η� and P� be defined by

η� = η(�τ ) and P� = P (q�).

An eta-product is a function of the form

(2.1) f(τ ) =
∏
δ|�

(η(δτ ))
rδ ,
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where � is a positive integer, the product is taken over the positive divisors of �,
and the rδ are integers.

Let Mk(Γ0(�)) be the space of modular forms of weight k with trivial multiplier
system for the modular subgroup Γ0(�); see, e.g., [25, Chapter 1] for the definitions.
When k is an even integer there is a simple test that can be used to determine if
an eta-product is in Mk(Γ0(�)):

Lemma 2.1. Let � be a positive integer and consider the eta-product f(τ ) defined
by (2.1). Let

k =
1

2

∑
δ|�

rδ and s =
∏
δ|�

δ|rδ|.

Suppose that

(1) k is an even integer;
(2) s is the square of an integer;

(3)
∑
δ|�

δ rδ ≡ 0 (mod 24);

(4)
∑
δ|�

�

δ
rδ ≡ 0 (mod 24);

(5)
∑
δ|�

gcd(d, δ)2
rδ
δ

≥ 0 for all d|�.

Then f ∈ Mk(Γ0(�)).

Proof. This is immediate from [25, Thms. 1.64, 1.65]. The main ideas of the proof
are given in [24, Theorem 1]. �

We will also need the following result about Eisenstein series of weight 2.

Lemma 2.2. Let � ≥ 2 be an integer. Then, �P (q�)− P (q) ∈ M2(Γ0(�)).

Proof. See [29, pp. 177–178]. �

3. Level 14: Basic properties

3.1. Eta-products and Eisenstein series. Let u, v, w, x, z and f be defined by

(3.1) u =

(
η7η14
η1η2

)4

, v =

(
η2η14
η1η7

)3

, w =

(
η1η14
η2η7

)4

,

(3.2) x =
v

(1 + v)(1 + 8v)
=

w

(1 + w)2
,

(3.3) z = η1η2η7η14 and f =
z

x
.

We will not study f again until Section 4; it has been defined here so that all of the
main definitions are in the same place. The two different expressions for x will be
shown to be equivalent in Theorem 3.3, below. We shall encounter the functions
zv, zv−1, zw and zw−1 frequently. Their explicit representations as eta-products
are given by

zv =
η42η

4
14

η21η
2
7

,
z

v
=

η41η
4
7

η22η
2
14

, zw =
η51η

5
14

η32η
3
7

and
z

w
=

η52η
5
7

η31η
3
14

.
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The eta-products

zu =
η57η

5
14

η31η
3
2

and
z

u
=

η51η
5
2

η37η
3
14

will not be featured in our work; see (3.7), below.

Theorem 3.1. The following results hold:
The dimension of the space of modular forms of weight 2 for the modular subgroup

Γ0(14) is given by

(3.4) dimM2(Γ0(14)) = 4.

If c1, c2, c7 and c14 are any constants that satisfy

14c1 + 7c2 + 2c7 + c14 = 0,

then

(3.5) c1P1 + c2P2 + c7P7 + c14P14 ∈ M2(Γ0(14)).

Furthermore,

(3.6) z, zv, zv−1, zw, zw−1 ∈ M2(Γ0(14))

and

(3.7) zu, zu−1 �∈ M2(Γ0(14)).

Proof. The dimension formula (3.4) follows from [31, Prop. 6.1]. The result (3.5)
follows from Lemma 2.2 and the trivial property that

Mk(Γ0(�)) ⊆ Mk(Γ0(m)) if �|m.

The results in (3.6) are immediate consequences of Lemma 2.1.
It remains to prove (3.7). The q-expansions can be used to show that any four

of z, zv, zv−1, zw, zw−1 are linearly independent. By the dimension formula (3.4),
the set

{
zv, zv−1, zw, zw−1

}
is a basis for M2(Γ0(14)). The q-expansions can be

used to show that neither zu nor zu−1 are linear combinations of zv, zv−1, zw and
zw−1. It follows that zu, zu−1 �∈ M2(Γ0(14)). �

The functions zu and zu−1 satisfy all of the conditions in Lemma 2.1 except for
(5); that is, they are not holomorphic at all of the cusps. It turns out that the
weight 6 modular forms z3u and z3u−1 are holomorphic at the cusps. This will be
used in Theorem 3.4 to establish an algebraic equation that relates u to v and w.

It is well known (e.g., [31, p. 83]) that

(3.8) Mk(Γ0(�)) = Ek(Γ0(�))⊕ Sk(Γ0(�)),

where Ek(Γ0(�)) and Sk(Γ0(�)) are the subspaces of Eisenstein series and cusp
forms, respectively, of weight k for Γ0(�). From the dimension formulas in [31, p. 93]
we find that dimE2(Γ0(14)) = 3 and dimS2(Γ0(14)) = 1. In fact,

E2(Γ0(14)) = {c1P1 + c2P2 + c7P7 + c14P14 | 14c1 + 7c2 + 2c7 + c14 = 0}

and

S2(Γ0(14)) = Cz.

The next result gives a representation of each of zv, zv−1, zw and zw−1 as the sum
of an Eisenstein series and a cusp form.
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Theorem 3.2. The following identities hold:

zv =
1

72
(−P1 + P2 + 7P7 − 7P14)−

1

3
z,

z

v
=

1

18
(P1 − 4P2 − 7P7 + 28P14)−

8

3
z,

zw =
1

144
(5P1 − 26P2 + 91P7 − 70P14) +

5

6
z,

z

w
=

1

144
(−13P1 + 10P2 − 35P7 + 182P14) +

5

6
z.

Proof. By (3.5) and (3.6) we have

z, 2P2 − P1, 7P7 − P1, 14P14 − P1 ∈ M2(Γ0(14)).

It is easy to check that the four functions are linearly independent, so by (3.4) they
form a basis for M2(Γ0(14)). The claimed results are just explicit representations
for various functions in terms of this basis. �

The next result gives an algebraic relation between v and w.

Theorem 3.3. The following identity holds:
v

(1 + v)(1 + 8v)
=

w

(1 + w)2
.

Proof. By (3.4) and (3.6) we have that z, zv, zv−1, zw, zw−1 are linearly depen-
dent; in fact, from Theorem 3.2 we have

7z + 8zv +
z

v
− zw − z

w
= 0.

The claimed identity may be obtained by dividing both sides by z and rearranging.
�

Theorem 3.3 is equivalent to the modular equation given by Ramanujan in his
second notebook [28, Ch. 19, Entry 19, (ix)] but with −q in place of q. Other
proofs of this identity have been given by Berndt [3, pp. 314–324], Chan and Lang
[13, (3.6)] and Ramanathan [26].

The next result gives an algebraic relation that connects u to x, and hence relates
u to v and w.

Theorem 3.4. The following identity holds:

u

(1 + 49u)2
=

x3

(1− 11x)2
.

Proof. Consider the set

H =
{
z3u, z3u−1

}
∪
{
z3wj

∣∣− 3 ≤ j ≤ 3
}
∪
{
z3v, z3v2, z3v3, z3vw

}
.

By Lemma 2.1 we may deduce that each of the 13 functions in H are in M6(Γ0(14)).
By [31, pp. 92–93] the dimension of M6(Γ0(14)) is 12, so H is a linearly dependent
set. On equating coefficients of qn for −3 ≤ n ≤ 9 we deduce that

z3
(
2401u+

1

u

)

= z3
(
w3 +

1

w3

)
− 16z3

(
w2 +

1

w2

)
+ 48z3

(
w +

1

w

)
+ 32z3,
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with the coefficients of z3v, z3v2, z3v3 and z3vw in the linear relation being zero. On
dividing by z3, applying (3.2) and simplifying, we obtain the required identity. �

3.2. Theta functions. Ramanujan’s theta functions ϕ and ψ and the septic theta
function σ are defined by

ϕ = ϕ(q) =
∞∑

j=−∞
qj

2

, ψ = ψ(q) =
∞∑
j=0

qj(j+1)/2

and

σ = σ(q) =

∞∑
j=−∞

∞∑
k=−∞

qj
2+jk+2k2

.

The septic theta function is related to Ramanujan’s theta functions by:

Theorem 3.5.

σ(q) = ϕ(−q)ϕ(−q7) + 4qψ(q)ψ(q7)(3.9)

and

σ(q2) = ϕ(−q)ϕ(−q7) + 2qψ(q)ψ(q7).(3.10)

Proof. By a special case of a theorem of Dirichlet (e.g., see [11, Ex. 1]), we have

σ(q) = 1 + 2

∞∑
j=1

(
j

7

)
qj

1− qj
.

Ramanujan [3, p. 302], [28, Ch. 19, Entry 17] gave the identities

ϕ(−q)ϕ(−q7) = 1 + 2

∞∑
j=1

(
j

7

)
(−q)j

1− qj

and

qψ(q)ψ(q7) =
∑
j>0

j odd

(
j

7

)
qj

1− qj
.

Hence,

ϕ(−q)ϕ(−q7) + 4qψ(q)ψ(q7) = 1 + 2
∞∑
j=1

(
j

7

)
(−q)j

1− qj
+ 4

∑
j>0

j odd

(
j

7

)
qj

1− qj

= 1 + 2

∞∑
j=1

(
j

7

)
qj

1− qj
= σ(q)

and

ϕ(−q)ϕ(−q7) + 2qψ(q)ψ(q7) = 1 + 2

∞∑
j=1

(
j

7

)
(−q)j

1− qj
+ 2

∑
j>0

j odd

(
j

7

)
qj

1− qj

= 1 + 2
∑
j>0

j even

(
j

7

)
qj

1− qj
= σ(q2),
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where the last step holds since(
2j

7

)
=

(
2

7

)(
j

7

)
=

(
j

7

)
.

�

By Jacobi’s triple product identity, Ramanujan’s theta functions have the fol-
lowing representations as infinite products (e.g., see [3, pp. 36, 37]):

(3.11) ϕ(−q) =
η21
η2

and q1/8ψ(q) =
η22
η1

.

The septic theta function does not have a simple representation as an infinite prod-
uct. However, certain linear combinations of σ(q) and σ(q2) may be expressed as
simple infinite products:

Theorem 3.6. The following identities hold:

σ(q)− σ(q2) = 2
η22η

2
14

η1η7
and 2σ(q2)− σ(q) =

η21η
2
7

η2η14
.

Proof. These are immediate from Theorem 3.5 and (3.11). �

The next result gives two relations between level 7 and level 14 modular func-
tions.

Theorem 3.7. Let s be the level 7 modular function defined by s = η47/η
4
1 and let

v = (η2η14/η1η7)
3 be the level 14 modular function defined in (3.1). Then

s

1 + 13s+ 49s2
=

v

(1 + 4v)3

and
s

1 + 13s+ 49s2

∣∣∣∣
q→q2

=
v2

(1 + 2v)3
.

Proof. Ramanujan found that σ3(q) may be expressed as a sum of three infinite
products, viz.,

(3.12) σ3(q) =
η71
η7

+ 13η31η
3
7 + 49

η77
η1

.

See [1, p. 404, Entry 18.2.14] and [3, p. 467, Entry 5(i)], or [11, (13)], for proofs
and references. If we cube the identities (3.9) and (3.10) and make use of (3.11)
and (3.12), we find that

η71
η7

+ 13η31η
3
7 + 49

η77
η1

=

(
η21η

2
7

η2η14
+ 4

η22η
2
14

η1η7

)3

and

η72
η14

+ 13η32η
3
14 + 49

η714
η2

=

(
η21η

2
7

η2η14
+ 2

η22η
2
14

η1η7

)3

.

These may be rearranged to give the desired results. �

The next result expresses the squares and product of septic theta functions as
linear combinations of Eisenstein series and the cusp form.
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Theorem 3.8. The following identities hold:

σ2(q) =
1

6
(7P7 − P1) =

z

v
(1 + 4v)2,(3.13)

σ2(q2) =
1

6
(7P14 − P2) =

z

v
(1 + 2v)2,(3.14)

σ(q)σ(q2) =
1

18
(14P14 + 7P7 − 2P2 − P1) +

2

3
z,(3.15)

ϕ2(−q)ϕ2(−q7) =
z

v
=

1

18
(28P14 − 7P7 − 4P2 + P1)−

8

3
z(3.16)

and

q2ψ2(q)ψ2(q7) = zv =
1

72
(−7P14 + 7P7 + P2 − P1)−

1

3
z.(3.17)

Proof. The first equality in (3.13) was known to Ramanujan; see [11, Ex. 3] for
references. The second equality in (3.13) follows directly from Theorem 3.2.

The first equality in (3.14) is the trivial consequence of replacing q with q2 in
the first equality on (3.13). The second equality in (3.14) follows immediately from
Theorem 3.2.

By elementary algebra and Theorem 3.6 we have

σ(q)σ(q2) =
1

3
σ2(q) +

2

3
σ2(q2) +

1

3

(
σ(q)− σ(q2)

) (
2σ(q2)− σ(q)

)
=

1

3
σ2(q) +

2

3
σ2(q2) +

2

3
η1η2η7η14.

Therefore, (3.15) follows from (3.13) and (3.14) and the definition of z. Alterna-
tively, by (3.13) and (3.14) we have

σ(q)σ(q2) =
z

v
(1 + 2v)(1 + 4v),

and (3.15) follows from this by applying Theorem 3.2.
The first equalities in (3.16) and (3.17) are immediate consequences of (3.1) and

(3.11); the second equalities in (3.16) and (3.17) are from Theorem 3.2. �

The next result links the level 2 theta functions ϕ(−q) and ψ(q) to the level 14
functions z and x. It is an analogue of Theorem 3.8.

Theorem 3.9. The following identities hold:

(3.18)
√
ϕ8(−q) + 64qψ8(q) = 2P2 − P1 =

z

x

(
4
√
1− 4x− 3

√
1− 18x+ 49x2

)
and
(3.19)√

ϕ8(−q7) + 64qψ8(q7) = 2P14 − P7 =
z

7x

(
4
√
1− 4x+ 3

√
1− 18x+ 49x2

)
.

Proof. The first equality in (3.18) (and hence, the first equality in (3.19)) is well
known; for example, see [14, (4.7)]. It remains to prove the second equality in each
of (3.18) and (3.19). By Theorem 3.2 we may deduce that

(3.20) 2P2 − P1 = 4z

(
1

w
− w

)
− 3z

(
1

v
− 8v

)
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and

(3.21) 14P14 − 7P7 = 4z

(
1

w
− w

)
+ 3z

(
1

v
− 8v

)
.

From (3.2) it follows that

(3.22)
1

w
− w =

√
1− 4x

x
and

1

v
− 8v =

√
1− 18x+ 49x2

x
.

By using (3.22) in (3.20) and (3.21) we obtain the required results. �

4. Level 14: Differential equations

In this section we will find a third order linear differential equation for f with
respect to x. We begin by computing some derivatives.

Lemma 4.1. Let v, w, x and z be defined by (3.1)–(3.3). The following differen-
tiation formulas hold:

q
d

dq
log v =

z

v

√
(1 + v)(1 + 8v)(1 + 5v + 8v2),(4.1)

q
d

dq
logw =

z

w

√
1− 14w + 19w2 − 14w3 + w4(4.2)

and

q
d

dq
log x =

z

x

√
(1− 4x)(1− 18x+ 49x2).(4.3)

Proof. By direct calculations using the definitions of v and w we find that

q
d

dq
log v =

1

8
(14P14 − 7P7 + 2P2 − P1)

and

q
d

dq
logw =

1

6
(14P14 − 7P7 − 2P2 + P1) .

Hence, by applying Theorem 3.2, we deduce

q
d

dq
log v −

(z
v
+ 7z + 8zv

)
= −2zw,(4.4)

q
d

dq
log v +

(z
v
+ 7z + 8zv

)
=

2z

w
(4.5)

and

q
d

dq
logw −

( z

w
− 7z + zw

)
= −16zv,(4.6)

q
d

dq
logw +

( z

w
− 7z + zw

)
=

2z

v
.(4.7)

The identity (4.1) may be obtained by multiplying (4.4) and (4.5) and simplifying.
Similarly, multiplying (4.6) and (4.7) and simplifying gives (4.2). The identity (4.3)
can be deduced from (4.2) by making the change of variable x = w/(1 + w)2. �

We are now ready to derive a third order linear differential equation for f with
respect to x.
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Theorem 4.2. Let x and f be as defined by (3.2) and (3.3). Then

(4.8) x2(1− 4x)(1− 18x+ 49x2)
d3f

dx3
+ 3x(1− 33x+ 242x2 − 490x3)

d2f

dx2

+(1− 76x+ 867x2 − 2352x3)
df

dx
− (5− 141x+ 588x2)f = 0.

Proof. Let t, g and h be defined by

(4.9) t =
s

1 + 13s+ 49s2
, g =

1

6
(7P7 − P1) and h =

z

v
,

where s = η47/η
4
1 . It is known (e.g., see [17]) that g satisfies the following third

order differential equation with respect to t:

t2(1 + t)(1− 27t)
d3g

dt3
+ 3t(1− 39t− 54t2)

d2g

dt2
(4.10)

+ (1− 86t− 186t2)
dg

dt
= 4(1 + 6t)g.

We change variables from (t, g) to (v, h). By Theorem 3.7 we have

(4.11) t =
v

(1 + 4v)3
.

By the definitions of g and h in (4.9) and Theorem 3.2 we may deduce that

(4.12) g =
1

6
(7P7 − P1) =

z

v
+ 8z + 16zv =

(1 + 4v)2

v
z = (1 + 4v)2h.

By applying the change of variables (4.11) and (4.12) to (4.10) we deduce that

v2(1 + v)(1 + 8v)(1 + 5v + 8v2)
d3h

dv3
(4.13)

+ 3v(1 + 21v + 122v2 + 280v3 + 192v4)
d2h

dv2

+ (1 + 50v + 454v2 + 1408v3 + 1216v4)
dh

dv

+ 4(1 + 22v + 108v2 + 128v3)h = 0.

Now we make another change of variables from (v, h) to (x, f). By (3.2), (3.3)
and (4.9) we have

(4.14) f =
z

x
=

hv

x
= h(1 + v)(1 + 8v) and x =

v

(1 + v)(1 + 8v)
.

By applying this change of variables to (4.13) we obtain the required differential
equation for f with respect to x. �

Let {an} and {cn} be the sequences defined by the recurrence relations

(n+ 1)3an+1 = (2n+ 1)(11n2 + 11n+ 5)an(4.15)

− n(121n2 + 20)an−1 + 98n(n− 1)(2n− 1)an−2, n ≥ 0,

and

(n+ 1)3cn+1 = (2n+ 1)(13n2 + 13n+ 4)cn + 3n(9n2 − 1)cn−1, n ≥ 0,(4.16)
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and initial conditions a0 = 1, c0 = 1. Let the generating functions of {an} and
{cn} be λ(y) and ω(y), respectively, that is,

(4.17) λ(y) =

∞∑
n=0

any
n and ω(y) =

∞∑
n=0

cny
n.

Theorem 4.3. Let x and f be defined by (3.2) and (3.3); equivalently, let

f =
(η31η

3
7 + η32η

3
14)(η

3
1η

3
7 + 8η32η

3
14)

η21η
2
2η

2
7η

2
14

=
(η42η

4
7 + η41η

4
14)

2

η31η
3
2η

3
7η

3
14

and

x =
η1η2η7η14

f
.

Suppose t and g are as in (4.9). Then

f = λ(x) and g = ω(t),

that is,

(4.18) f =

∞∑
n=0

anx
n and g =

∞∑
n=0

cnt
n.

Proof. This is immediate from the differential equations (4.8) and (4.10) and the
properties that f = g = 1 and x = t = 0 when q = 0. �

It is known (e.g., see [17] or [22]) that

(4.19) cn =

�n/2�∑
j=0

(
n

j

)2(
2n− j

n

)(
2n− 2j

n

)
.

The sequence {an} was first studied in [22]. To the best of our knowledge, a
similar formula for an as a single sum of terms involving binomial coefficients that
is analogous to (4.19) has not yet been given.

The functions λ and ω are interrelated by

Theorem 4.4. The following identities hold in a neighborhood of y = 0:

1

(1 + y)(1 + 8y)
λ

(
y

(1 + y)(1 + 8y)

)
=

1

(1 + 4y)2
ω

(
y

(1 + 4y)3

)

=
1

(1 + 2y)2
ω

(
y2

(1 + 2y)3

)
.

Proof. By (4.11), (4.12) and (4.14) we have

(4.20) x =
v

(1 + v)(1 + 8v)
, t =

v

(1 + 4v)3

and

(4.21)
f

(1 + v)(1 + 8v)
= h =

g

(1 + 4v)2
.

By substituting the series expansions (4.18) into (4.21) and using (4.20) we obtain

1

(1 + v)(1 + 8v)

∞∑
n=0

an

(
v

(1 + v)(1 + 8v)

)n

=
1

(1 + 4v)2

∞∑
n=0

cn

(
v

(1 + 4v)3

)n

.

Replacing v with y gives the first equality.
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For the second equality, by Theorem 3.8 we have

1

(1 + 4v)2
× 1

6
(7P7 − P1) =

1

(1 + 2v)2
× 1

6
(7P14 − P2) .

By applying (4.9) and (4.18), this becomes

(4.22)
1

(1 + 4v)2

∞∑
n=0

cn (t(q))
n
=

1

(1 + 2v)2

∞∑
n=0

cn
(
t(q2)

)n
.

By (4.9) and Theorem 3.7 we have

t(q) =
s

1 + 13s+ 49s2
=

v

(1 + 4v)3
(4.23)

and

t(q2) =
s

1 + 13s+ 49s2

∣∣∣∣
q→q2

=
v2

(1 + 2v)3
.(4.24)

Using (4.23) and (4.24) in (4.22) and replacing v with y, we complete the proof. �

The first equality in Theorem 4.4 is due to Guillera and Zudilin [22]. The sec-
ond identity in Theorem 4.4 is a quadratic transformation formula for the level 7
function ω.

The next result expresses the function λ in terms of the hypergeometric function.
It also gives a seventh degree transformation formula for the level 2 hypergeometric
function.

Theorem 4.5. Suppose that x, v and w are related, in a neighborhood of x = 0,
by

x =
v

(1 + v)(1 + 8v)
=

w

(1 + w)2
.

Let λ be the function defined by (4.17). Then,

xλ(x) =
vw

4v(1− w2)− 3w(1− 8v2)
3F2

( 1
4 ,

1
2 ,

3
4

1, 1
;

256v4w3

(w3 + 64v4)2

)

=
7vw

4v(1− w2) + 3w(1− 8v2)
3F2

( 1
4 ,

1
2 ,

3
4

1, 1
;

256v4w3

(1 + 64v4w3)2

)
.

Proof. By (3.18) and (3.19) we have

z =
x

4
√
1− 4x− 3

√
1− 18x+ 49x2

× (2P2 − P1)(4.25)

=
7x

4
√
1− 4x+ 3

√
1− 18x+ 49x2

× (2P14 − P7).

The remainder of the proof consists of expressing each term in (4.25) in terms of v
and w.

By (3.3), (4.17) and (4.18) we have

(4.26) z = xf = x

∞∑
n=0

anx
n = xλ(x).

By (3.22) it follows that

(4.27)
x

4
√
1− 4x− 3

√
1− 18x+ 49x2

=
vw

4v(1− w2)− 3w(1− 8v2)
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and

(4.28)
7x

4
√
1− 4x+ 3

√
1− 18x+ 49x2

=
7vw

4v(1− w2) + 3w(1− 8v2)
.

By (1.9) we have
(4.29)

2P2 − P1 =

∞∑
j=0

(
2j

j

)2(
4j

2j

)(
η21η

2
2

2P2 − P1

)4j

= 3F2

( 1
4 ,

1
2 ,

3
4

1, 1
;

256η81η
8
2

(2P2 − P1)4

)
.

Applying (3.18), (3.11) and then (3.1) gives

(4.30)
256η8

1η
8
2

(2P2 − P1)4
=

256η8
1η

8
2

(ϕ4(−q) + 16qψ4(q))2
=

256η8
1η

8
2

(η16
1 /η8

2 + 64η16
2 /η8

1)
2 =

256v4w3

(w3 + 64v4)2
.

Substituting (4.30) into (4.29) gives

(4.31) 2P2 − P1 = 3F2

( 1
4 ,

1
2 ,

3
4

1, 1
;

256v4w3

(w3 + 64v4)2

)
,

and a similar procedure can be used to give

(4.32) 2P14 − P7 = 3F2

( 1
4 ,

1
2 ,

3
4

1, 1
;

256v4w3

(1 + 64v4w3)2

)
.

The proof may be completed by substituting (4.26), (4.27), (4.28), (4.31) and (4.32)
into (4.25). �

5. Level 15: Basic properties

The theory for level 15 parallels the theory for level 14 in many ways. To
emphasize the analogy, we use capital letters (e.g., V , Z, etc.) for the level 15
analogues of the corresponding level 14 quantities v, z, etc.

5.1. Eta-products and Eisenstein series. Let U , V , W , X, Z and F be defined
by

(5.1) U =

(
η5η15
η1η3

)3

, V =

(
η3η15
η1η5

)2

, W =

(
η1η15
η3η5

)3

,

(5.2) X =
V

(1 + 3V )2
=

W

1 +W −W 2
,

(5.3) Z = η1η3η5η15 and F =
Z

X
.

The two different expressions for X will be shown to be equivalent in Theorem 5.3
below. Eta-products for ZV , ZV −1, ZW and ZW−1 are given by

(5.4) ZV =
η33η

3
15

η1η5
,

Z

V
=

η31η
3
5

η3η15
, ZW =

η41η
4
15

η23η
2
5

, and
Z

W
=

η43η
4
5

η21η
2
15

.

Theorem 5.1. The following results hold:
The dimension of the space of modular forms of weight 2 for the modular subgroup

Γ0(15) is given by

(5.5) dimM2(Γ0(15)) = 4.

If c1, c3, c5 and c15 are any constants that satisfy

15c1 + 5c3 + 3c5 + c15 = 0,
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then

(5.6) c1P1 + c3P3 + c5P5 + c15P15 ∈ M2(Γ0(15)).

Furthermore,

(5.7) Z, ZV, ZV −1, ZW, ZW−1 ∈ M2(Γ0(15))

and

(5.8) ZU, ZU−1 �∈ M2(Γ0(15)).

Proof. The proof is almost identical to the proof of Theorem 3.1, so we omit the
details. �

Analogous to the level 14 case, we have the subspace decomposition

M2(Γ0(15)) = E2(Γ0(15))⊕ S2(Γ0(15)),

where

E2(Γ0(15)) = {c1P1 + c3P3 + c5P5 + c15P15 | 15c1 + 5c3 + 3c5 + c15 = 0}

and

S2(Γ0(15)) = CZ.

By comparing coefficients in the q-expansions, we readily obtain the following rep-
resentations of ZV, ZV −1, ZW and ZW−1 as sums of an Eisenstein series and a
cusp form.

Theorem 5.2. The following identities hold:

ZV =
1

96
(−P1 + P3 + 5P5 − 5P15)−

1

4
Z,

Z

V
=

1

32
(P1 − 9P3 − 5P5 + 45P15)−

9

4
Z,

ZW =
1

96
(−P1 + 21P3 − 35P5 + 15P15)−

1

4
Z,

Z

W
=

1

96
(−7P1 + 3P3 − 5P5 + 105P15) +

1

4
Z.

Proof. The proof is similar to the proof of Theorem 3.2. �

The next result gives an algebraic relation between V and W .

Theorem 5.3. The following identity holds:

(5.9)
V

(1 + 3V )2
=

W

1 +W −W 2
.

Proof. By Theorem 5.2 it follows that

5Z + 9ZV +
Z

V
+ ZW − Z

W
= 0,

and this implies the result. �
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The identity (5.9) is equivalent to one given by Ramanujan at the bottom of one
of the pages in his second notebook [28, 1st ed., p. 324; 2nd ed., p. 333]. Proofs
have been given by Berndt [4, p. 221, Entry 62] and Chan and Lang [13, (3.10)].
The proof given above is different from those proofs.

The result in the next theorem is simpler than the level 14 analogue in Theorem
3.4 because the modular forms in the proof have weight 4 instead of weight 6.

Theorem 5.4. The following identity holds:

U

1− 125U2
=

V 2

(1 + V + 9V 2)(1 + 3V )(1− 3V )
.

Proof. By the dimension formulas in [31, Prop. 6.1], the dimension of M4(Γ0(15))
is 8. By Lemma 2.1 we have

Z2V j ∈ M4(Γ0(15)) for − 2 ≤ j ≤ 2

and

Z2U, Z2U−1, Z2VW, Z2V −1W−1 ∈ M4(Γ0(15)).

It follows that a non-trivial linear relation holds among the 9 functions, and by
comparing coefficients we deduce that

Z2

(
1

U
− 125U

)
= Z2

(
1

V 2
− 81V 2

)
+ Z2

(
1

V
− 9V

)
.

The required identity follows by rearrangement. �

5.2. Theta functions. The Borweins’ theta functions a, b and c and the level 15
theta functions σA and σB are defined by

a = a(q) =
∞∑

j=−∞

∞∑
k=−∞

qj
2+jk+k2

,

b = b(q) =
∞∑

j=−∞

∞∑
k=−∞

qj
2+jk+k2

ωj−k, ω = exp(2πi/3),

c = c(q) =

∞∑
j=−∞

∞∑
k=−∞

q(j+
1
3 )

2+(j+ 1
3 )(k+

1
3 )+(k+ 1

3 )
2

,

σA = σA(q) =

∞∑
j=−∞

∞∑
k=−∞

qj
2+jk+4k2

and

σB = σB(q) =
∞∑

j=−∞

∞∑
k=−∞

q2j
2+jk+2k2

.

One of the fundamental properties of cubic functions is the identity [8]

(5.10) a3(q) = b3(q) + c3(q).

Analogous to (3.11), the functions b and c have simple representations as infinite
products given by [5, p. 109]:

(5.11) b(q) =
η31
η3

, c(q) = 3
η33
η1

.
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Comparing these infinite products with definitions (5.1) and (5.3), it follows imme-
diately that
(5.12)

b(q)b(q5) =
Z

V
, c(q)c(q5) = 9ZV, b(q)c(q5) = 3ZW 2/3, b(q5)c(q) =

3Z

W 2/3

and

(5.13) b(q)b(q5)c(q)c(q5) = 9Z2.

Although a does not have a simple representation as an infinite product, the identi-
ties (5.10) and (5.11) imply that its cube may be expressed as a sum of two infinite
products; this is an analogue of (3.12).

The next result was known to Ramanujan [5, p. 124, Th. 7.6], [28, p. 259].

Theorem 5.5. The following identity holds:

a(q)a(q5) = b(q)b(q5) + c(q)c(q5) + 3
√
b(q)b(q5)c(q)c(q5).

Proof. By (5.10), expanding, and applying (5.12) we have

a3(q)a3(q5) =
(
b3(q) + c3(q)

) (
b3(q5) + c3(q5)

)
= Z3

(
1

V 3
+ 729V 3 +

27

W 2
+ 27W 2

)
.

Now use Theorem 5.3 to eliminate the terms that involve W , to get

a3(q)a3(q5) = Z3

(
1

V 3
+ 729V 3 + 27

(
1

V
+ 5 + 9V

)2

+ 54

)

=

(
Z

V
+ 9ZV + 9Z

)3

.

By taking the cube roots and applying (5.12) we complete the proof. �

An analogue of Theorem 3.6 is given by

Theorem 5.6. The following identities hold:

σA(q)− σB(q) = 2
η21η

2
15

η3η5
and σA(q) + σB(q) = 2

η23η
2
5

η1η15
.

Proof. See [15, Theorem 2.3]. �

The next result expresses various products and squares of theta functions as
sums of Eisenstein series and a cusp form.
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Theorem 5.7. The following identities hold:

a(q)a(q5) =
1

16
(−P1 − 3P3 + 5P5 + 15P15) +

9

2
Z,

b(q)b(q5) =
1

32
(P1 − 9P3 − 5P5 + 45P15)−

9

4
Z,

c(q)c(q5) =
3

32
(−P1 + P3 + 5P5 − 5P15)−

9

4
Z,

a2(q) =
1

2

(
3P (q3)− P (q)

)
,

σ2
A(q) =

1

12
(−P1 + 3P3 − 5P5 + 15P15) + 2Z,

σ2
B(q) =

1

12
(−P1 + 3P3 − 5P5 + 15P15)− 2Z,

σA(q)σB(q) =
1

16
(−P1 − 3P3 + 5P5 + 15P15) +

1

2
Z.

Proof. The results for b(q)b(q5) and c(q)c(q5) are immediate consequences of The-
orem 5.2 and (5.12); the result for a(q)a(q5) then follows by applying Theorem 5.5
and (5.13). The result for a2(q) is well known; e.g., see [11, Ex. 2].

It remains to prove the identities that involve σA and σB. By Theorem 5.6 and
(5.4) we have

σA(q) =
η23η

2
5

η1η15
+

η21η
2
15

η3η5
=

√
Z

W
+
√
ZW(5.14)

and

σB(q) =
η23η

2
5

η1η15
− η21η

2
15

η3η5
=

√
Z

W
−
√
ZW.(5.15)

The claimed results for σ2
A, σ

2
B and σAσB now follow by squaring or multiplying,

and then applying Theorem 5.2. �

Numerous identities can be obtained by making use of the linear relations among
the right-hand sides of the results in Theorem 5.7; we only mention the example

a2(q) + 5a2(q5) = 3σ2
A(q) + 3σ2

B(q).

The next result gives two relations between level 5 and level 15 modular func-
tions. It is an analogue of Theorem 3.7.

Theorem 5.8. Let S be the level 5 modular function defined by S = η65/η
6
1 and let

V = (η3η15/η1η5)
2 be the level 15 modular function defined in (5.1). Then

S

1 + 22S + 125S2
=

V

(1 + 9V + 27V 2)2

and
S

1 + 22S + 125S2

∣∣∣∣
q→q3

=
V 3

(1 + 3V + 3V 2)2
.

Proof. By Theorem 5.2 we have

(5.16)
1

4
(5P5 − P1) = Z

(
1

V
+ 9 + 27V

)
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and it is well known (e.g., [18, (2.8)]) that

(5.17)
1

4
(5P5 − P1) = ζ

√
1 + 22S + 125S2,

where ζ = η51/η5. By combining (5.16) and (5.17) and squaring, we get

Z2

(
1

V
+ 9 + 27V

)2

= ζ2(1 + 22S + 125S2).

Since

Z2

ζ2
=

(η1η3η5η15)
2

(η51/η5)
2

=
η23η

2
15

η21η
2
5

× η65
η61

= V S,

this completes the proof of the first result.
The second result may be proved in a similar way, starting with

(5.18)
1

4
(5P15 − P3) = Z

(
1

V
+ 3 + 3V

)
.

�

The next theorem is an analogue of Theorem 3.9. The results may be compared
with (5.16) and (5.18).

Theorem 5.9. The following identities that link the cubic theta function a(q) to
the level 15 functions X and Z hold:

(5.19) a2(q) =
1

2
(3P3 − P1) =

Z

X

(
3
√
1− 2X + 5X2 − 2

√
1− 12X

)
and

(5.20) a2(q5) =
1

2
(3P15 − P5) =

Z

5X

(
3
√
1− 2X + 5X2 + 2

√
1− 12X

)
.

Proof. The first equality in (5.19) (and hence, the first equality in (5.20)) is well
known; for example, see [14, (3.22)]. It remains to prove the second equality in
each of (5.19) and (5.20). By Theorem 5.2 we may deduce that

(5.21)
1

2
(3P3 − P1) = 3Z

(
1

W
+W

)
− 2Z

(
1

V
− 9V

)

and

(5.22)
1

2
(3P15 − P5) =

3Z

5

(
1

W
+W

)
+

2Z

5

(
1

V
− 9V

)
.

From (5.2) it follows that

(5.23)
1

V
− 9V =

√
1− 12X

X
and

1

W
+W =

√
1− 2X + 5X2

X
.

By using (5.23) in (5.21) and (5.22) we obtain the required results. �
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6. Level 15: Differential equations

In this section we will find a third order linear differential equation for F with
respect to X. We begin by calculating some derivatives.

Lemma 6.1. Let V , W , X and Z be defined by (5.1)–(5.3). The following differ-
entiation formulas hold:

q
d

dq
log V =

Z

V

√
1 + 10V + 47V 2 + 90V 3 + 81V 4,(6.1)

q
d

dq
logW =

Z

W

√
(1 +W −W 2)(1− 11W −W 2)(6.2)

and

q
d

dq
logX =

Z

X

√
(1− 12X)(1− 2X + 5X2).(6.3)

Proof. The proof is similar to the proof of Lemma 4.1. �

Theorem 6.2. The following differential equation holds:

X2(1− 12X)(1− 2X + 5X2)
d3F

dX3
(6.4)

+ 3X(1− 21X + 58X2 − 150X3)
d2F

dX2

+ (1− 48X + 207X2 − 720X3)
dF

dX

− 3(1− 11X + 60X2)F = 0.

Proof. Let T , G and H be defined by

(6.5) T =
S

1 + 22S + 125S2
, G =

1

4
(5P5 − P1) and H =

Z

V
,

where S = η65/η
6
1 . It is known (e.g., see [17, (23), (24), (30)]) that G satisfies the

following third order differential equation with respect to T :

T 2(1− 44T − 16T 2)
d3G

dT 3
+ 3T (1− 66T − 32T 2)

d2G

dT 2
(6.6)

+ (1− 144T − 108T 2)
dG

dT
= 6(1 + 2T )G.

We change variables from (T,G) to (V,H). By Theorem 5.8 we have

(6.7) T =
V

(1 + 9V + 27V 2)2
.

By (5.16) and (6.5) we find that

(6.8) G =
1

4
(5P5 − P1) = Z

(
1

V
+ 9 + 27V

)
= H(1 + 9V + 27V 2).
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Applying the change of variables (6.7) and (6.8) to (6.6) we find that

V 2(1 + 10V + 47V 2 + 90V 3 + 81V 4)
d3H

dV 3
(6.9)

+ 3V (1 + 15V + 94V 2 + 225V 3 + 243V 4)
d2H

dV 2

+ (1 + 36V + 351V 2 + 1134V 3 + 1539V 4)
dH

dV

+ 3(1 + 23V + 117V 2 + 216V 3)H = 0.

Now we make another change of variables from (V,H) to (X,F ). By (5.2), (5.3)
and (6.5) we have

(6.10) F =
Z

X
=

HV

X
= H(1 + 3V )2 and X =

V

(1 + 3V )2
.

By applying this change of variables to (6.9) we obtain the required differential
equation for F with respect to X. �

Let {An} and {Cn} be the sequences defined by the recurrence relations

(n+ 1)3An+1 = (2n+ 1)(7n2 + 7n+ 3)An(6.11)

− n(29n2 + 4)An−1 + 30n(n− 1)(2n− 1)An−2, n ≥ 0,

and

(n+ 1)3Cn+1 = 2(2n+ 1)(11n2 + 11n+ 3)Cn + 4n(4n2 − 1)Cn−1, n ≥ 0,

(6.12)

and initial conditions A0 = 1, C0 = 1. Let the generating functions be Λ(y) and
Ω(y), respectively; that is,

(6.13) Λ(y) =

∞∑
n=0

Any
n and Ω(y) =

∞∑
n=0

Cny
n.

Theorem 6.3. Let X and F be defined by (5.2) and (5.3); equivalently, let

F =
(η21η

2
5 + 3η23η

2
15)

2

η1η3η5η15
=

η63η
6
5 + η31η

3
3η

3
5η

3
15 − η61η

6
15

η21η
2
3η

2
5η

2
15

and

X =
η1η3η5η15

F
.

Suppose T and G are as in (6.5). Then

F = Λ(X) and G = Ω(T ),

that is,

(6.14) F =

∞∑
n=0

AnX
n and G =

∞∑
n=0

CnT
n.

Proof. This is immediate from the differential equations (6.4) and (6.6) and the
properties F = G = 1 and X = T = 0 when q = 0. �
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It is known (e.g., see [17, (1), (7)]) that

Cn =

(
2n

n

) n∑
j=0

(
n

j

)2(
n+ j

j

)
.

A similar formula for An as a single sum of terms involving binomial coefficients
has not yet been given.

The functions Λ and Ω are interrelated by

Theorem 6.4. The following identities hold in a neighborhood of y = 0:

1

(1 + 3y)2
Λ

(
y

(1 + 3y)2

)
=

1

1 + 9y + 27y2
Ω

(
y

(1 + 9y + 27y2)2

)

=
1

1 + 3y + 3y2
Ω

(
y3

(1 + 3y + 3y2)2

)
.

Proof. The proof is similar to the proof to Theorem 4.4, so we omit the details. �
The second equality in Theorem 6.4 gives a cubic transformation for the level 5

function Ω(y).
The next result expresses the function Λ in terms of the hypergeometric function.

It also gives a quintic transformation for the level 3 hypergeometric function.

Theorem 6.5. Suppose that X, V and W are related, in a neighborhood of X = 0,
by

X =
V

(1 + 3V )2
=

W

1 +W −W 2
.

Then

XΛ(X) =
VW

3V (1 +W 2)− 2W (1− 9V 2)
3F2

( 1
3 ,

1
2 ,

2
3

1, 1
;

108V 3W 2

(W 2 + 27V 3)2

)

=
5VW

3V (1 +W 2) + 2W (1− 9V 2)
3F2

( 1
3 ,

1
2 ,

2
3

1, 1
;

108V 3W 2

(1 + 27V 3W 2)2

)
.

Proof. By (5.19) and (5.20) we have

Z =
X

3
√
1− 2X + 5X2 − 2

√
1− 12X

× 3P3 − P1

2
(6.15)

=
5X

3
√
1− 2X + 5X2 + 2

√
1− 12X

× 3P15 − P5

2
.

The remainder of the proof consists of expressing each term in (6.15) in terms of
V and W .

By (5.3), (6.13) and (6.14) we have

(6.16) Z = XF = X
∞∑

n=0

AnX
n = XΛ(X).

By (5.23) it follows that

(6.17)
X

3
√
1− 2X + 5X2 − 2

√
1− 12X

=
VW

3V (1 +W 2)− 2W (1− 9V 2)

and

(6.18)
5X

3
√
1− 2X + 5X2 + 2

√
1− 12X

=
5VW

3V (1 +W 2) + 2W (1− 9V 2)
.
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By (1.6) and (1.7) we have

(6.19)
3P3 − P1

2
=

∞∑
j=0

(
2j

j

)2(
3j

j

)(
η21η

2
3

a2(q)

)3j

= 3F2

( 1
3 ,

1
2 ,

2
3

1, 1
;
108η61η

6
3

a6(q)

)
.

Next, applying (5.10), (5.11) and then (5.1), gives

(6.20)
108η61η

6
3

a6(q)
=

108η61η
6
3

(b3(q) + c3(q))2
=

108η61η
6
3

(η91/η
3
3 + 27η93/η

3
1)

2 =
108V 3W 2

(W 2 + 27V 3)2
.

Substituting (6.20) into (6.19) gives

(6.21)
3P3 − P1

2
= 3F2

( 1
3 ,

1
2 ,

2
3

1, 1
;

108V 3W 2

(W 2 + 27V 3)2

)
,

and a similar procedure can be used to give

(6.22)
3P15 − P5

2
= 3F2

( 1
3 ,

1
2 ,

2
3

1, 1
;

108V 3W 2

(1 + 27V 3W 2)2

)
.

The proof may be completed by substituting (6.16), (6.17), (6.18), (6.21) and (6.22)
into (6.15). �

7. Ramanujan-type series for 1/π

Ramanujan’s paper [27] contains several interesting series for 1/π, of which (1.5)
and (1.10) are representative examples. All of Ramanujan’s series may be classified
according to two parameters, the level � and the degree N ; e.g., see [12]. The
examples (1.5) and (1.10) correspond to the instances (�,N) = (4, 7) and (�,N) =
(2, 29), respectively. The series in Ramanujan’s paper correspond to levels � ∈
{1, 2, 3, 4}. Ramanujan’s series have been studied by many authors, and analogous
series are known for 5 ≤ � ≤ 13.

In this section we will present analogues of (1.5) and (1.10) for levels 14 and 15.
We begin with the results for level 14.

Theorem 7.1. Let x and f be defined by (3.2) and (3.3) and let an satisfy the
four-term recurrence relation (4.15) and initial condition a0 = 1. For any integer
N ≥ 2 let xN and λN be defined by

xN = x
(
exp(−2π

√
N/14)

)
and

λN =
x(q)

2N

d

dx

f(q)

f(qN )

∣∣∣∣
q=exp(−2π/

√
14N)

.

Then

1

2π
=

√
N

14

√
(1− 4xN )(1− 18xN + 49x2

N )

∞∑
n=0

an(n+ λN )xn
N .

A similar result holds with − exp(−π
√
N/7) in place of exp(−2π

√
N/14):

Theorem 7.2. Let x and f be defined by (3.2) and (3.3) and let an satisfy the
four term recurrence relation (4.15) and initial condition a0 = 1. For any integer
N ≥ 7 let xN and λN be defined by

xN = x
(
− exp(−π

√
N/7)

)
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Table 1. Data for Theorems 7.1 and 7.2

q N xN λN

2 1
18

1
7

exp
(
−2π

√
N/14

)
3 1

25
8
45

5 1
49

11
60

3 − 1
3 series does not converge

− exp
(
−π

√
N/7

)
19 − 1

171
73
340

Table 2. Data for Theorems 7.3 and 7.4

q N XN λN

2 1
15

1
4

exp
(
−2π

√
N/15

)
4 1

30
3
13

5 − 1
3 series does not converge

13 − 1
15

11
26

− exp
(
−π

√
N/15

)
29 − 1

75
251
986

37 − 1
135

113
518

53 − 1
363

2327
13250

and

λN =
x(q)

2N

d

dx

f(q)

f(qN )

∣∣∣∣
q=− exp(−π/

√
7N)

.

Then
1

π
=

√
N

7

√
(1− 4xN )(1− 18xN + 49x2

N )

∞∑
n=0

an(n+ λN )xn
N .

The condition N ≥ 7 in Theorem 7.2 is to ensure convergence, for which we
require |xN | < 1/(9 + 4

√
2). Examples of values of xN and λN that appear to be

rational are given in Table 1.
Here are the corresponding results for level 15.
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Theorem 7.3. Let X and F be defined by (5.2) and (5.3) and let An satisfy the
four-term recurrence relation (6.11) and initial condition A0 = 1. For any integer
N ≥ 2 let XN and λN be defined by

XN = X
(
exp(−2π

√
N/15)

)
and

λN =
X(q)

2N

d

dX

F (q)

F (qN )

∣∣∣∣
q=exp(−2π/

√
15N)

.

Then

1

2π
=

√
N

15

√
(1− 12XN )(1− 2XN + 5X2

N )
∞∑

n=0

An(n+ λN )Xn
N .

A similar result holds with − exp(−π
√
N/15) in place of exp(−2π

√
N/15):

Theorem 7.4. Let X and F be defined by (5.2) and (5.3) and let An satisfy the
four-term recurrence relation (6.11) and initial condition A0 = 1. For any integer
N ≥ 12 let XN and λN be defined by

XN = X
(
− exp(−π

√
N/15)

)
and

λN =
X(q)

2N

d

dX

F (q)

F (qN )

∣∣∣∣
q=− exp(−π/

√
15N)

.

Then

1

2π
=

√
N

15

√
(1− 12XN )(1− 2XN + 5X2

N )
∞∑

n=0

An(n+ λN )Xn
N .

The condition N ≥ 12 in Theorem 7.4 has been determined numerically. It is to
ensure convergence, for which we require |XN | < 1/12. Examples of values of XN

and λN that appear to be rational are given in Table 2.

Proof of Theorems 7.1–7.4. All four theorems follow directly from [10, Theorem
2.1]. �

The data in Tables 1 and 2 has been obtained numerically. The parameter values
can be proved rigorously, in principle, using the procedure of Chan et al. [10, pp.
408–409]; or see [12, pp. 370–371] for another example. A different method for
determining the values of xN and λN has been proposed in [22].
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