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THE QUASISPECIES REGIME

FOR THE SIMPLE GENETIC ALGORITHM

WITH RANKING SELECTION

RAPHAËL CERF

Abstract. We study the simple genetic algorithm with a ranking selection
mechanism (linear ranking or tournament). We denote by � the length of the
chromosomes, by m the population size, by pC the crossover probability and by
pM the mutation probability. We introduce a parameter σ, called the strength
of the ranking selection, which measures the selection intensity of the fittest
chromosome. We show that the dynamics of the genetic algorithm depends in
a critical way on the parameter

π = σ(1− pC)(1− pM )� .

If π < 1, then the genetic algorithm operates in a disordered regime: an
advantageous mutant disappears with probability larger than 1−1/mβ, where
β is a positive exponent. If π > 1, then the genetic algorithm operates in a
quasispecies regime: an advantageous mutant invades a positive fraction of the
population with probability larger than a constant p∗ (which does not depend
on m). We estimate next the probability of the occurrence of a catastrophe
(the whole population falls below a fitness level which was previously reached
by a positive fraction of the population). The asymptotic results suggest the
following rules:
• π = σ(1− pC)(1− pM )� should be slightly larger than 1;
• pM should be of order 1/�;
• m should be larger than � ln �;
• the running time should be at most of exponential order in m.

The first condition requires that �pM + pC < lnσ. These conclusions must be
taken with great care: they come from an asymptotic regime, and it is a formi-
dable task to understand the relevance of this regime for a real–world problem.
At least, we hope that these conclusions provide interesting guidelines for the
practical implementation of the simple genetic algorithm.

1. Introduction

Genetic algorithms are search procedures based on the genetic mechanisms which
guide natural evolution: selection, crossover and mutation. The most cited initial
references on genetic algorithms are the beautiful books of Holland [25], who tried
to initiate a theoretical analysis of these processes, and of Goldberg [22], who made
a very attractive exposition of these algorithms. The success of genetic algorithms
over the years has been amazing. They have been used to attack optimization
problems of every possible kind. Numerous variants, extensions and generalizations
of the basic genetic algorithms have been developed. The literature on genetic
algorithms is now so huge that it is beyond my ability to compile a decent reasonable
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review. Unfortunately, the theoretical understanding of the mechanisms at work in
genetic algorithms is still far from satisfactory.

We study here the simple genetic algorithm with a ranking selection mechanism.
Ranking selection means that the selection mechanism depends only on the rank-
ing of the chromosomes according to the fitness function. We consider mainly two
popular selection mechanisms: linear ranking selection and tournament selection.
The simple genetic algorithm operates on binary strings of length �, called the
chromosomes. The population size is denoted by m. We use the standard single
point crossover and the crossover probability is denoted by pC . We use independent
parallel mutation at each bit and the mutation probability is denoted by pM . We
introduce a parameter σ, called the strength of the ranking selection, which mea-
sures the selection intensity of the fittest chromosome. For linear ranking selection
with parameters η−, η+, the strength of the ranking selection σ is equal to η+. For
tournament selection with parameter t, the strength of the ranking selection σ is
equal to t. We show that the dynamics of the simple genetic algorithm depends in
a critical way on the parameter

π = σ(1− pC)(1− pM )� .

Heuristically, the parameter π might be interpreted as the mean number of off-
springs of the fittest chromosome from one generation to the next. We prove the
following results:

• If π < 1, then the genetic algorithm operates in a disordered regime: an advan-
tageous mutant disappears with probability larger than 1 − 1/mβ, where β is a
positive exponent.

• If π > 1, then the genetic algorithm operates in a quasispecies regime: an ad-
vantageous mutant invades a positive fraction of the population with probability
larger than a constant p∗ (which does not depend on m).

These results hold in the limit of large populations, whenm grows to∞. One is nat-
urally led to think that the parameters of the genetic algorithm should be adjusted
so that π is larger than 1. Yet we think that the most interesting regime is when π
is only slightly larger than 1. Indeed, in order to increase π, the mutation and
crossover probabilities pM and pC should be decreased and this would slow down
the exploration of the space. However an efficient search procedure should realize a
delicate balance between the exploration mechanism and the selection mechanism.
This general idea is present in numerous works dealing with random optimization
[38, 47, 53]. Another reason is that we wish to avoid the premature convergence
of the genetic algorithm, i.e., an excessive concentration of the population on the
current best chromosome. This problem has been encountered in practice and it
is discussed in several works on genetic algorithms (see for instance [46,57,58]). It
seems therefore more judicious to choose “large” values of pM and pC compatible
with the condition π > 1. This means that the mutation probability should be of
order 1/�; more precisely, the condition π > 1 implies that

�pM + pC < lnσ .

In particular, the crossover probability cannot be too large in order to avoid the
disordered regime. It has already been observed in the practice of genetic algorithms
that it is sensible to take the mutation probability pM of the same order as 1/�.
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Another outcome of our study concerns the occurrence of catastrophes and the
influence of the population size. Loosely speaking, a catastrophe occurs if the
whole population falls below a fitness level which was previously reached by a
positive fraction of the population. A straightforward strategy to prevent the oc-
currence of catastrophes is to use “elitism”, i.e., to retain automatically the best
chromosome from one generation to another. Yet, in the quasispecies regime, the
simple genetic algorithm is robust enough to avoid catastrophes for a very long
time. We prove that, when π > 1, a catastrophe occurs typically after a number
of generations which is of exponential order in m, in fact of order exp(c∗m), where
c∗ is a constant depending on π only. With a small population size, the danger is
that a catastrophe might occur before the genetic algorithm succeeds in finding an
advantageous mutant. Thus the genetic algorithm will work efficiently only if the
population size is sufficiently large. Suppose that the population is stuck on a local
maximum. The typical time to discover an advantageous mutant is of order p−Δ

M ,
where 0 ≤ Δ ≤ � and Δ depends on the current population (rigorous estimates
were derived in [5]). We wish to ensure that, with high probability, this discovery
will occur before a catastrophe. So we should have

m � Δ

c∗
ln

1

pM
.

A natural strategy would be to take m very large. Yet there is another practical
constraint: we wish to minimize the number of evaluations of the fitness function.
Therefore we aim for the smallest population size compatible with the desired goal.
To take into account these contradictory constraints, we suggest that the parameters
σ, pC , pM , �,m should be adjusted according to the following rules:

• π = σ(1− pC)(1− pM )� should be slightly larger than 1;

• pM should be of order 1/�;

• m should be larger than � ln �;

• the running time should be at most of exponential order in m.

These conclusions must be taken with great care: they come from an asymptotic
regime, and it is a formidable task to understand the relevance of this regime for
a real–world problem. At least, we hope that these conclusions provide interesting
guidelines for the practical implementation of the genetic algorithm.

We also provide sufficient conditions on the fitness function f ensuring that,
starting from any population, the hitting time of the optimal chromosomes is poly-
nomial in �. We close with a condition ensuring the concentration of the invariant
probability measure of the genetic algorithm on populations containing optimal
chromosomes. This condition reads:

π = σ(1− pC)(1− pM )� > 1 , pM ≥ c∗

�
, m ≥ m0 , m ≥ c∗� ln � .

Here c∗ and m0 are constants depending on π only. This result is certainly less rel-
evant in practice than the previous ones, however it demonstrates the asymptotic
validity of the genetic algorithm and it is reassuring to know that the genetic algo-
rithm works in this asymptotic regime. The other good news is that this condition
holds uniformly with respect to the fitness function. Hence a population of size of
order � ln � is enough to search an arbitrary function on the space { 0, 1 }�.
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By the way, the results obtained here vindicate a conjectural picture outlined in
[6]; namely, the genetic algorithm running on a fitness landscape is a finite pop-
ulation model, approximating an infinite population model. This infinite model
presents several phase transitions, depending on the geometry of the fitness land-
scape. In a way, there is a phase transition associated to each local maximum.

The results presented here have been derived with the help of ideas coming
from the quasispecies theory. In 1971, Manfred Eigen analyzed a simple system of
replicating molecules and demonstrated the existence of a critical mutation rate,
called the error threshold [16]. This fundamental result led to the notion of quasispe-
cies developed by Eigen, McCaskill and Schuster [17]. If the mutation rate exceeds
the error threshold, then, at equilibrium, the population is completely random. If
the mutation rate is below the error threshold, then, at equilibrium, the population
contains a positive fraction of the Master sequence (the most fit macromolecule)
and a cloud of mutants which are quite close to the Master sequence. This specific
distribution of individuals is called a quasispecies.

Several researchers have already argued that the notion of error threshold plays
a role in the dynamics of a genetic algorithm. This is far from obvious, because
Eigen’s model is formulated for an infinite population model. However there is
evidence that a similar phenomenon occurs in finite populations as well, and also in
genetic algorithms. In her PhD thesis [38], Ochoa demonstrated the occurrence of
error thresholds in genetic algorithms over a wide range of problems and landscapes.
This very interesting work is published in a series of conference papers [37, 39–44].
One of the most interesting and inspiring works on the theory of genetic algorithms
that I have read over the last years is the series of papers by van Nimwegen, Crutch-
field and Mitchell [51–55]. In these papers, the authors perform a theoretical and
experimental study of a genetic algorithm on a specific class of fitness functions.
Their analysis relies on techniques from mathematical population genetics, molec-
ular evolution theory and statistical physics. Among the fundamental ingredients
guiding the analysis are the quasispecies model, the error threshold and metasta-
bility. In the last work of the series [53], van Nimwegen and Crutchfield describe an
entire search effort surface and they introduce a generalized error threshold in the
space of the population size and the mutation probability delimiting a set of pa-
rameters where the genetic algorithm proceeds efficiently. In a genetic algorithm,
the crossover operator complicates the dynamics and either it shifts the critical
points or it creates new ones. This phenomenon has been observed independently
by Rogers, Prügel–Bennett and Jennings [47] and by Nilsson Jacobi and Nordahl
[26].

A version of the quasispecies theory was recently worked out in the context of a
classical model of population genetics, namely the Wright–Fisher model [7,9]. The
Wright–Fisher model corresponds exactly to a genetic algorithm without crossover.
Let us explain briefly why quasispecies theory is relevant to understand the dynam-
ics of a genetic algorithm. Typically, on a complicated landscape, the evolution of
the genetic algorithm proceeds by jumps. The population stays for a long time
exploring the space around the current best fit chromosome, until it discovers a
better chromosome. If this discovery time is very long, the process reaches a local
equilibrium and the distribution of the population looks like a quasispecies. Our
goal here is to estimate the persistence time of this quasispecies, i.e., the time the
quasispecies stays alive until it is destroyed by a catastrophe. The persistence time
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depends in a complicated way on the structure of the fitness landscape. The per-
sistence time depends also on the population size. If the population size is large,
the genetic algorithm will be able to keep an interesting quasipecies alive for a long
time, long enough until a new advantageous mutant is discovered and creates a new
quasispecies. We shall obtain a simple lower bound on the persistence time of the
fittest chromosomes by comparing the genetic algorithm with a family of simpler
processes, which are amenable to rigorous mathematical analysis.

A very interesting conclusion of [53] is the existence of a critical population size
below which it is practically impossible to reach the global optimum. A similar
conclusion was obtained in the simpler framework of the generalized simulated an-
nealing [8]: within a specific asymptotic regime of low mutations and high selection
pressure, the convergence to the global maximum could be guaranteed only above
a critical population size. The approach presented here confirms this prediction.
The genetic algorithm is very unlikely to reach the global optimum if the popula-
tion size is too small. If the population size is too large, the genetic algorithm will
evolve slowly and will require too many evaluations of the fitness function. The
optimal population size seems to depend strongly on the optimization problem. In
any case a population size of order c∗� ln � should be enough to search the space of
chromosomes of length � (here again c∗ is a constant depending on π only).

Technically, we study the genetic algorithm within the framework of the theory of
Markov chains. It has been noted numerous times in the literature that a genetic
algorithm is conveniently modelled as a Markov chain. Several researchers have
studied genetic algorithms in this context, here is a selection of works belonging
to this line of research: [2, 4, 15, 23, 30–32, 34–36, 48–50, 56, 58]. Unfortunately, the
transition matrix is very complicated and the resulting formulas are intractable.
Our strategy is to consider a specific asymptotic regime. Twenty years ago, in [8],
an asymptotic regime corresponding to the simulated annealing was studied. In
this regime, the space { 0, 1 }� and the population size were kept fixed, while the
mutation probability was sent to 0 and the selection strength to ∞. It was then pos-
sible to analyze precisely the asymptotic dynamics of the population. Several other
interesting results have been obtained in this regime, in particular, the understand-
ing of the asymptotic dynamics helped to design potentially more efficient variants
of the genetic algorithm [10, 19, 20, 45]. Although this regime made it possible to
derive rigorous convergence results, it turned out to be irrelevant in practice, be-
cause it is certainly not the correct regime of parameters to run efficiently a genetic
algorithm. Another interesting approach based on the Feynman–Kac formula was
developed by Del Moral and Miclo [11–13]. Several other works have considered
other asymptotic approximations on specific fitness landscapes [3, 4, 14, 33]. Here
we consider the asymptotic regime corresponding to the quasispecies theory in a
finite population, namely:

• The size m of the population goes to ∞.

• The length � of the chromosomes is large.

• The mutation probability is of order 1/�.

We are able to derive various estimates in this specific asymptotic regime. We
hope that these results will be relevant in practice. The proofs use various tools
from the theory of Markov chains: coupling techniques, Galton–Watson processes,
large deviations estimates, Poisson approximation. The main strategy of the proofs
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is to analyze the evolution of the most fit chromosomes, and more precisely the
number of their descendants which are not altered by mutation and crossover. This
evolution is described by an auxiliary Markov chain which is adequately coupled
with the genetic algorithm. The study of this auxiliary chain rests on several ideas
which were developed in the Freidlin–Wentzell theory and in the analysis of the
simulated annealing.

The main results are stated in the section 2. The simple genetic algorithm is
briefly explained before presenting the main results and it is formally described in
section 3. The remaining sections are devoted to the proofs. In section 4, we build a
coupling for the genetic algorithms starting with different populations. In section 5,
we develop stochastic bounds to study the disordered regime. In section 6, we build
an auxiliary chain and we study its dynamics. This auxiliary chain keeps track of
the evolution of the quasispecies within the genetic algorithm. Section 7 contains
the final proofs of the main theorems. Several classical results from probability
theory are gathered in the appendix.

2. Main results

In this section, we provide a brief description of the simple genetic algorithm
and we present our main results. The goal of the simple genetic algorithm is to
find the global maxima of a fitness function f defined on { 0, 1 }� with values in R.
The genetic algorithm starts with a population of m points of { 0, 1 }�, called the
chromosomes, and it repeats the following fundamental cycle in order to build the
generation n+ 1 from the generation n:

Repeat

• Select two chromosomes from the generation n.

• Perform the crossover.

• Perform the mutation.

• Put the two resulting chromosomes in generation n+ 1.

Until there are m chromosomes in generation n+ 1.

When building the generation n+1 from the generation n, all the random choices are
performed independently. Therefore, the above algorithmic description is equivalent
to the parallel version described in section 3. Let us describe more precisely the
selection, crossover and mutation steps.

Selection. We use ranking selection, meaning that the chromosomes are ordered
according to their fitness, and they are selected with the help of a probability
distribution which depends only on their rank. In case there is a tie between
several chromosomes, we rank them randomly (with the uniform distribution over
all possible choices). We consider mainly two popular selection mechanisms: linear
ranking selection and tournament selection. The linear ranking selection depends
on two parameters η−, η+ satisfying 0 ≤ η− ≤ η+, η− + η+ = 2 and we have

P
(selecting the (m− i+ 1)–th

best chromosome

)
=

1

m

(
η− + (η+ − η−)

i− 1

m− 1

)
.
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The tournament selection depends on an integer parameter t satisfying 2 ≤ t ≤ m
and we have

P
(selecting the (m− i+ 1)–th

best chromosome

)
=

1

mt

(
it − (i− 1)t

)
.

We introduce a parameter σ, called the strength of the ranking selection. In the
cases we consider, the parameter σ is equal to the limit

σ = lim
m→∞

m× P
( the selection operator chooses the best
fit individual present in the population

)
.

For the linear ranking selection, the strength of the ranking selection σ is equal to
η+. For the tournament selection, the strength of the ranking selection σ is equal
to t.

Crossover. We use the standard single point crossover and the crossover proba-
bility is denoted by pC :

P

(
000 011
100 110

011 001
001 111

−→ 000 011
100 110

001 111
011 001

)
=

pC
�− 1

.

Mutation. We use independent parallel mutation at each bit and the mutation
probability is denoted by pM :

P
(
0000000 −→ 0101000

)
= p2M (1− pM )5 .

We state next the main results in the form of six theorems. The first two theorems
show that the dynamics of the genetic algorithm depend in a critical way on the
value of

π = σ(1− pC)(1− pM )� .

If π < 1, the most fit chromosome is very likely to disappear before κ lnm gener-
ations. If π > 1, the most fit chromosome has a positive probability (independent
of m) to invade a positive fraction of the population. Heuristically, the parameter π
can be interpreted as the mean number of offsprings of the fittest chromosome from
one generation to the next.

The disordered regime. We consider the fitness function f defined by

∀u ∈ { 0, 1 }� f(u) =

{
2 if u = 1 · · · 1,
1 otherwise.

This corresponds to the sharp peak landscape. The chromosome 1 · · · 1 is called the
Master sequence. We start the genetic algorithm from the population x0 containing
one Master sequence 1 · · · 1 and m− 1 copies of the chromosome 0 · · · 0, i.e.,

x0 =

⎛⎜⎜⎜⎝
1 · · · 1
0 · · · 0
...

...
0 · · · 0

⎞⎟⎟⎟⎠ .



6024 RAPHAËL CERF

Theorem 2.1. Let π < 1 be fixed. We suppose that the parameters are set so that
� = m and σ(1− pC)(1− pM )� = π. There exist strictly positive constants κ, β,m0,
which depend on π only, such that, for the genetic algorithm starting from x0,

∀m ≥ m0 P

⎛⎝ the Master sequence 1 · · · 1
disappears from the population

before κ lnm generations

⎞⎠ ≥ 1− 1

mβ
.

This theorem furnishes an example where the genetic algorithm performs poorly,
even for large populations. To build this example, we take � = m and we work with
the sharp peak landscape. To prove Theorem 2.1, we shall bound from above the
number of Master sequences present in the population with a subcritical Galton–
Watson process of parameter π.

The quasispecies regime. We consider an arbitrary fitness function f . We start
the genetic algorithm from an arbitrary population x0. Let f∗

0 be the maximal
fitness in x0, i.e.,

f∗
0 = max

1≤i≤m
f
(
x0(i)

)
.

Theorem 2.2. Let π > 1 be fixed. We suppose that the parameters are set so that
σ(1−pC)(1−pM )� = π. There exist strictly positive constants V ∗, p∗, which depend
on π only, such that, for the genetic algorithm starting from x0, for any �,m ≥ 1,

P

⎛⎝ until the generation exp(V ∗m)
the population always contains a chromosome

with fitness larger than or equal to f∗
0

⎞⎠ ≥ p∗ .

To prove Theorem 2.2, we couple the genetic algorithm with an auxiliary chain
on the integers, which bounds from below the evolution of the most fit chromosomes
in the population. When π is strictly larger than 1, this chain can be seen as a
stochastic perturbation of a deterministic map, which has one stable fixed point ρ∗.
Theorems 2.3, 2.4, 2.5 are obtained in the same way, they are consequences of more
refined results on the dynamics of the auxiliary chain.

The catastrophes. We consider next an arbitrary fitness function f and we start
the genetic algorithm from an arbitrary position. For λ ∈ R and a population x,
we define N(x, λ) as the number of chromosomes in x whose fitness is larger than
or equal to λ:

N(x, λ) = card { i ∈ { 1, . . . ,m } : f(x(i)) ≥ λ } .
For i ∈ { 1, . . . ,m } and x ∈ { 0, 1 }�, we define Λ(x, i) as the fitness of the i–th best
chromosome in the population x:

Λ(x, i) = max
{
λ ∈ R : N(x, λ) ≥ i

}
.

We denote by Xn the population of the genetic algorithm after n iterations.

Theorem 2.3. Let π > 1 be fixed. There exist strictly positive constants ρ∗, c∗,m0,
which depend on π only, such that: for any fitness function f , any set of parameters
�, pC , pM satisfying σ(1 − pC)(1 − pM )� = π, for any m ≥ m0, for the genetic
algorithm starting from an arbitrary population, we have

P

(
∀n ≤ exp(c∗m) max

1≤i≤m
f
(
Xn(i)

)
≥ max

0≤s≤n
Λ
(
Xs, 	ρ∗m


))
≥ 1− exp(−c∗m) .
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It might be that ρ∗ is very small, especially if π is close to 1. We point out that
the sequence

max
0≤s≤n

Λ
(
Xs, 	ρ∗m


)
is non–decreasing with respect to the time n. Thus, with very high probability,
until time exp(c∗m), the maximal fitness observed in the population stays above a
non–decreasing sequence. We say that a catastrophe occurs at time n if

max
1≤i≤m

f
(
Xn(i)

)
< max

0≤s≤n
Λ
(
Xs, 	ρ∗m


)
.

This means that the maximal fitness in generation n has fallen below a fitness level
which had been previously reached by a fraction ρ∗ of the chromosomes. In other
words, a quasispecies has been destroyed before a better chromosome has been
found.

Hitting time of optimal chromosomes. We denote byH the Hamming distance
between two chromosomes:

∀u, v ∈ { 0, 1 }� H(u, v) = card
{
j : 1 ≤ j ≤ �, u(j) �= v(j)

}
.

For λ ∈ R, we define L(λ) as the set of the points in { 0, 1 }� having a fitness larger
than or equal to λ:

L(λ) =
{
u ∈ { 0, 1 }� : f(u) ≥ λ

}
.

For λ < γ, we define Δ(λ, γ) as the maximal distance between a point of L(λ) and
the set L(γ), i.e.,

Δ(λ, γ) = max
u∈L(λ)

min
v∈L(γ)

H(u, v) .

Let τ∗ be the hitting time of the set of the populations containing optimal chromo-
somes, i.e.,

τ∗ = min
{
n ≥ 1 : ∃ i ∈ { 1, . . . ,m } f(Xn(i)) = max

{
f(u) : u ∈ { 0, 1 }�

}}
.

We give next a theoretical upper bound on the expected value of τ∗.

Theorem 2.4. Let π > 1 be fixed. There exist constants c∗, κ∗,m0, which depend
only on π, such that: for any set of parameters �, pC , pM ,m satisfying

σ(1− pC)(1− pM )� = π , pM ≥ c∗

�
, m ≥ m0 , m ≥ c∗� ln � ,

for the genetic algorithm starting from an arbitrary population, for any increasing
sequence λ0 < · · · < λr such that

λ0 = min
{
f(u) : u ∈ { 0, 1 }�

}
, λr = max

{
f(u) : u ∈ { 0, 1 }�

}
,

we have

E(τ∗) ≤ 2 + κ∗(lnm)m2
r−1∑
k=0

(pM )−Δ(λk,λk+1) .

In the next result, we make a strong structural hypothesis on the fitness land-
scape and we obtain a bound on τ∗ which is polynomial in �.

Theorem 2.5. Let γ,Δ ≥ 1. Suppose that the fitness function is such that there
exists an increasing sequence

λ0 = min
{ 0,1 }�

f < λ1 < · · · < λr−1 < λr = max
{ 0,1 }�

f
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with r ≤ �γ and satisfying

∀k ∈ { 0, . . . , r − 1 } Δ(λk, λk+1) ≤ Δ .

Let π > 1 be fixed. There exist positive constants c∗,m0, which depend only on π,
such that: for any set of parameters �, pC , pM ,m satisfying

π = σ(1− pC)(1− pM )� , pM ≥ c∗

�
, m ≥ m0 , m ≥ c∗Δ ln � ,

for the genetic algorithm starting from an arbitrary population,

E(τ∗) ≤ 2 + (lnm)m2�γ+Δ .

Asymptotic convergence. The bounds on the hitting time of optimal chromo-
somes yield simple estimates for the invariant probability measure of the genetic
algorithm. Let us recall that the invariant probability measure μ is given by

∀x, y ∈
(
{ 0, 1 }�

)m
μ(y) = lim

n→∞
P
(
Xn = y

∣∣X0 = x
)
.

The invariant probability measure μ depends on the fitness function f and the
parameters �, pC , pM ,m, as well as the selection mechanism.

Theorem 2.6. Let π > 1 be fixed. There exist positive constants c∗,m0, which
depend only on π, such that: for any set of parameters �, pC , pM ,m satisfying

π = σ(1− pC)(1− pM )� , pM ≥ c∗

�
, m ≥ m0 , m ≥ c∗� ln � ,

for any fitness function f : { 0, 1 }� → R, the invariant probability measure μ of the
simple genetic algorithm satisfies

μ
({

x : max
1≤i≤m

f
(
x(i)

)
= max

{ 0,1 }�
f
})

≥ 1− exp(−c∗m) .

This result is certainly less relevant in practice than the previous ones, since it is
extremely difficult to understand the speed of convergence of the genetic algorithm
towards its invariant measure, yet it demonstrates that the genetic algorithm is
successful in this asymptotic regime.

3. The model

Let � ≥ 1 be an integer. We work on the space { 0, 1 }� of binary strings of
length �. An element of { 0, 1 }� is called a chromosome. Generic elements of { 0, 1 }�
will be denoted by the letters u, v, w. Let m ≥ 1 be an even integer. A population
is an m–tuple of elements of { 0, 1 }�. Generic populations will be denoted by the
letters x, y, z. Thus a population x is a vector

x =

⎛⎜⎝ x(1)
...

x(m)

⎞⎟⎠
whose components are chromosomes. For i ∈ { 1, . . . ,m }, we denote by

x(i, 1), . . . , x(i, �)
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the digits of the sequence x(i). In this way, a population x can be represented as
an array

x =

⎛⎜⎝ x(1, 1) · · · x(1, �)
...

...
x(m, 1) · · · x(m, �)

⎞⎟⎠
of size m × � of zeroes and ones, the i–th row corresponding to the i–th chromo-
some of the population. Let f : { 0, 1 }� → R be an arbitrary objective function,
traditionally called the fitness function.

Mathematically, a simple genetic algorithm is conveniently modelled by a Markov
chain (Xn)n∈N with state space

(
{ 0, 1 }�

)m
, the space of the populations of m chro-

mosomes. The transition mechanism of the simple genetic algorithm can be decom-
posed into three steps: selection, crossover and mutation. We explain separately
each step.

3.1. Selection. We perform first the selection operation, which consists in selecting
with replacement m chromosomes from the population. To this end, we build a
selection distribution

sel :
(
{ 0, 1 }�

)m × { 1, . . . ,m } → [0, 1] .

The value sel(x, i) is the probability of selecting the i–th chromosome in the popu-
lation x. We consider only ranking selection mechanisms, hence the value sel(x, i)
depends only on the ranking of the chromosomes of the population x according
to their fitness. We first define a ranking function, which gives the rank of a
chromosome in a population. Let x ∈

(
{ 0, 1 }�

)m
be a population. We choose a

permutation σ of { 1, . . . ,m } such that

f(x(σ(1))) ≤ · · · ≤ f(x(σ(m))) .

The choice of σ is not unique in case of ties, when several chromosomes have
the same fitness. It turns out that the way the permutation σ is chosen affects
considerably the behavior of the genetic algorithm. We choose the permutation σ
randomly, according to the uniform distribution over the set of the permutations σ
which satisfy the above condition. The choice of σ is done independently from the
other steps of the algorithm, and it is performed again at each selection step. In
particular, each time the process returns to the population x, a new permutation σ is
drawn independently, and the ordering of the chromosomes will change accordingly.
We define the rank of the i–th chromosome of the population x as

rank(x, i) = σ−1(i) .

Thus if rank(x, i) = m, this implies that x(i) has the largest fitness in the population
x, but the converse is false: when the fitness function f is not one to one, a chromo-
some with maximal fitness might get a ranking smaller than m. Once the ranking
function rank(x, i) is built, we need a selection distribution Fm on { 1, . . . ,m } to
complete the definition of the selection distribution sel(x, i). A selection distribu-
tion Fm on { 1, . . . ,m } is simply a probability distribution on { 1, . . . ,m }. We
define the selection distribution sel(x, i) by setting

∀i ∈ { 1, . . . ,m } sel(x, i) = Fm(rank(x, i)) .

Throughout the paper, we shall make the following hypothesis on Fm.
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Hypothesis on Fm. There exists a cumulative distribution function F on [0, 1]
such that

∀s ∈ [0, 1] lim
m→∞

∑
i≤sm

Fm(i) = F (s) .

We suppose that F is continuous on [0, 1], strictly increasing on [0, 1], convex on
]0, 1[ and left differentiable at 1. The value of its left derivative at 1 is called the
selection drift and is denoted by σ (necessarily σ ≥ 1). We suppose that the discrete
derivative of Fm at 1 converges to σ in the following sense:

∀ε > 0 ∃ δ > 0 ∃m0 ≥ 1 ∀m ≥ m0 ∀i ∈
{
1, . . . , 	δm


}∣∣∣Fm(m− i+ 1) + · · ·+ Fm(m)− σ
i

m

∣∣∣ ≤ εσ
i

m
.

We consider two popular choices for the selection distribution Fm.

Linear ranking selection. This selection scheme depends on two parameters
η−, η+ which satisfy

0 ≤ η− ≤ η+ , η− + η+ = 2 .

We define the linear ranking selection distribution by

∀i ∈ { 1, . . . ,m } Fm(i) =
1

m

(
η− + (η+ − η−)

i− 1

m− 1

)
.

The linear ranking selection distribution satisfies the hypothesis with

F (s) = η−s+
1

2
(η+ − η−)s2 , σ = η+ .

Tournament selection. This selection scheme depends on an integer parameter
t satisfying 2 ≤ t ≤ m. We define the tournament selection distribution by

∀i ∈ { 1, . . . ,m } Fm(i) =
1

mt

(
it − (i− 1)t

)
.

The tournament selection distribution satisfies the hypothesis with

F (s) = st , σ = t .

Finally, we draw independently m chromosomes from the population x according
to the selection distribution sel(x, ·) to obtain the population after selection. The
stochastic matrix PS associated to the selection operator is defined as follows. The
probability to select the population y starting from the population x is

PS(x, y) =

m∏
i=1

( ∑
j:x(j)=y(i)

sel(x, j)
)
.

3.2. Crossover. After having selected m chromosomes, we perform the crossover
operation. The crossover depends on a parameter pC ∈ [0, 1] and it acts on pairs of
chromosomes. Let us explain how the crossover operator acts on two chromosomes
u, v. With probability 1 − pC , there is no crossover and the chromosomes u, v are
not modified. With probability pC , there is a crossover between the chromosomes
u, v. We choose uniformly at random a cutting position k in { 1, . . . , �− 1 }. A new
pair (u′, v′) of chromosomes is formed, where u′ (respectively v′) consists of the
first k digits of u (respectively v) and the last �− k digits of v (respectively u).
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u = 000 011
v = 100 110

011 001
001 111

−→ u′ = 000 011
v′ = 100 110

001 111
011 001

cutting position

Mathematically, this mechanism is encoded in a crossover kernel

C :
(
{ 0, 1 }�

)2 × (
{ 0, 1 }�

)2 → [0, 1] .

The value C
(
(u, v), (u′, v′)

)
is the probability that, by crossover, the pair of chro-

mosomes (u, v) becomes the pair (u′, v′). More precisely, we define, for u, v two
chromosomes and k ∈ { 1, . . . , �− 1 },

switch
(
k, u, v

)
= u(1) · · ·u(k)v(k + 1) · · · v(�) .

The crossover kernel C is then equal to

C
((u

v

)
,
(u′

v′

))
= (1− pC)1(u,v)=(u′,v′)

+
pC
�− 1

card

{
k ∈ { 1, . . . , �− 1 } :

switch
(
k, u, v

)
= u′

switch
(
k, v, u

)
= v′

}
.

We apply simultaneously the crossover operator on the m/2 consecutive pairs of
chromosomes of a population of size m. The stochastic matrix PC associated to the
crossover operator is defined as follows. The probability to obtain the population
z after performing the crossover starting from the population y is

PC(y, z) =

m/2∏
i=1

C
((y(2i− 1)

y(2i)

)
,
(z(2i− 1)

z(2i)

))
.

3.3. Mutation. After having performed the crossover, we perform the mutation.
The mutation depends on one parameter, the mutation probability pM ∈ [0, 1], and
it acts on a single chromosome. Let u be a chromosome. For each k ∈ { 1, . . . , � },
the digit u(k) is kept unchanged with probability 1−pM and it mutates to 1−u(k)
with probability pM . These changes are done simultaneously and independently.
Mathematically, this mechanism is encoded in a mutation kernel

M :
(
{ 0, 1 }�

)2 → [0, 1] .

The value M(u, v) is the probability that, by mutation, the chromosome u becomes
the chromosome v, and it is given by

M(u, v) = (pM )H(u,v)(1− pM )�−H(u,v) ,

where H(u, v) is the Hamming distance between u and v, defined by

H(u, v) = card
{
j : 1 ≤ j ≤ �, u(j) �= v(j)

}
.

The stochastic matrix PM associated to the mutation operator is defined as follows.
The probability to obtain the population x′ after performing the mutation starting
from the population z is

PM (z, x′) =

m∏
i=1

M
(
z(i), x′(i)

)
.
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3.4. Transition matrix of the SGA. The fundamental cycle of the simple ge-
netic algorithm consists in applying successively the selection, the crossover and
the mutation operators on the population. Mathematically, the simple genetic al-
gorithm is conveniently modelled by a Markov chain (Xn)n∈N with state space(
{ 0, 1 }�

)m
, the space of the populations of m chromosomes. The transition matrix

PSGA of the simple genetic algorithm is defined by

∀x, x′ ∈
(
{ 0, 1 }�

)m
PSGA(x, x

′) = P
(
Xn+1 = x′ |Xn = x

)
.

The matrix PSGA is simply the product of the three matrices PM , PC , PS , i.e.,
PSGA = PSPCPM , or equivalently,

∀x, x′ ∈
(
{ 0, 1 }�

)m
PSGA(x, x

′) =
∑
y,z

PS(x, y)PC(y, z)PM (z, x′) .

4. Coupling for the genetic algorithm

Throughout the proofs, we rely on various coupling arguments. We will couple
here the simple genetic algorithm starting from any possible initial population. We
first define separately the maps for coupling the selection, crossover and mutation.

Selection. We define a selection map

S :
(
{ 0, 1 }�

)m × [0, 1] → { 1, . . . ,m }
in order to couple the selection mechanism starting with different populations. We
first build a map I : [0, 1] → { 1, . . . ,m } which gives the rank of the chromosome
to choose. More precisely, for s ∈ [0, 1[, we set I(s) = i where i is the unique index
in { 1, . . . ,m } satisfying

Fm(1) + · · ·+ Fm(i− 1) ≤ s < Fm(1) + · · ·+ Fm(i) .

Next, let x ∈
(
{ 0, 1 }�

)m
and let s ∈ [0, 1[. We define S(x, s) = j where j is the

unique index in { 1, . . . ,m } such that rank(x, j) = I(s). The map S is built in such
a way that, if U is a random variable with uniform law on the interval [0, 1], then,
for any population x, the law of S(x, U) is given by the selection distribution:

∀i ∈ { 1, . . . ,m } P
(
S(x, U) = i

)
= sel(x, i) .

Crossover. We define a map

C :
(
{ 0, 1 }�

)2

× { 0, 1 } × { 1, . . . , �− 1 } → { 0, 1 }�

in order to couple the crossover mechanism starting with different pairs of chromo-
somes. Let u, v ∈ { 0, 1 }� and let ε ∈ { 0, 1 }, k ∈ { 1, . . . , �− 1 }. We define

C
(
u, v, ε, k

)
=

{
switch

(
k, u, v

)
if ε = 1,

u if ε = 0.

The map C is built in such a way that, if V,W are two independent random variables
with respective laws, the Bernoulli law with parameter pC and the uniform law on
{ 1, . . . , �− 1 }, then, for any chromosomes u, v, the law of the pair of chromosomes
C(u, v, V,W ), C(v, u, V,W ) is given by the crossover kernel C:

∀u′, v′ ∈ { 0, 1 }� P

(
C(u, v, V,W ) = u′

C(v, u, V,W ) = v′

)
= C

((u
v

)
,
(u′

v′

))
.
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Mutation. We define a map

M : { 0, 1 }� × { 0, 1 }� → { 0, 1 }�

in order to couple the mutation mechanism starting with different chromosomes.
Let ε1, . . . , ε� ∈ { 0, 1 } and let u1, . . . , u� ∈ { 0, 1 }. The map M is defined by
setting

M(ε1 · · · ε�, u1, · · · , u�) = η1 · · · η� ,
where

∀i ∈ { 1, . . . , � } ηi =

{
εi if ui = 0,

1− εi if ui = 1.

The map M is built in such a way that, if U1, . . . , U � are � independent random
variables with law the Bernoulli law with parameter pM , then, for any chromosome
u, the law of the chromosome M(u, U1, . . . , U �) is given by the line of the mutation
matrix corresponding to u:

∀v ∈ { 0, 1 }� P
(
M(u, U1, . . . , U �) = v

)
= M(u, v) .

Coupling for the genetic algorithm. We will now combine the maps S, C,M
with random inputs in order to couple the genetic algorithm with various initial
conditions. We will build all the processes on a single large probability space.
We consider a probability space (Ω,F , P ) containing the following collection of
independent random variables:

• Uniform on the interval [0, 1]: Si
n , n ≥ 1 , 1 ≤ i ≤ m ;

• Bernoulli with parameter pM : U i,j
n , n ≥ 1 , 1 ≤ i ≤ m, 1 ≤ j ≤ � ;

• Bernoulli with parameter pC : V i
n , n ≥ 1 , 1 ≤ i ≤ m/2 ;

• Uniform on { 1, . . . , �− 1 }: W i
n , n ≥ 1 , 1 ≤ i ≤ m/2 .

The variables having subscript n constitute the random input which is used to
perform the n–th step of the Markov chains. For each n ≥ 1, we build a map

Φn :
(
{ 0, 1 }�

)m →
(
{ 0, 1 }�

)m
in order to realize the coupling between the genetic algorithm with various initial
conditions. The coupling map Φn is defined by

∀x ∈
(
{ 0, 1 }�

)m
Φn(x) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M
(
C
(
S(x, S1

n),S(x, S2
n), V

1
n ,W

1
n

)
, U1,1

n , . . . , U1,�
n

)
M

(
C
(
S(x, S2

n),S(x, S1
n), V

1
n ,W

1
n

)
, U2,1

n , . . . , U2,�
n

)
M

(
C
(
S(x, S3

n),S(x, S4
n), V

2
n ,W

2
n

)
, U3,1

n , . . . , U3,�
n

)
M

(
C
(
S(x, S4

n),S(x, S3
n), V

2
n ,W

2
n

)
, U4,1

n , . . . , U4,�
n

)
...

M
(
C
(
S(x, Sm−1

n ),S(x, Sm
n ), V

m/2
n ,W

m/2
n

)
, Um−1,1

n , . . . , Um−1,�
n

)
M

(
C
(
S(x, Sm

n ),S(x, Sm−1
n ), V

m/2
n ,W

m/2
n

)
, Um,1

n , . . . , Um,�
n

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The coupling is then built in a standard way with the help of the sequence (Φn)n≥1.

Let x ∈
(
{ 0, 1 }�

)m
be the starting point of the process. We build the process

(Xn)n≥0 by setting X0 = x and

∀n ≥ 1 Xn = Φn

(
Xn−1

)
.
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A routine check shows that the process (Xn)n≥0 is a Markov chain starting from
x with the adequate transition matrix. This way we have coupled the genetic
algorithm with all possible initial conditions.

5. The disordered regime

We consider the fitness function f defined by

∀u ∈ { 0, 1 }� f(u) =

{
2 if u = 1 · · · 1,
1 otherwise.

This corresponds to the sharp peak landscape. The chromosome 1 · · · 1 is called the
Master sequence. We start the genetic algorithm with the population

x0 =

⎛⎜⎜⎜⎝
1 · · · 1
0 · · · 0
...

...
0 · · · 0

⎞⎟⎟⎟⎠
and we wish to estimate the probability of survival of the Master sequence. We
denote by (Xn)n∈N the genetic algorithm starting from x0. We shall develop bounds
in the sense of stochastic domination. Let π < 1 be fixed. Throughout the section,
we suppose that �, pC , pM satisfy

σ(1− pC)(1− pM )� = π .

5.1. Genealogy. To build a chromosome in the generation n, we select two parents
in generation n− 1, and we apply the crossover and the mutation operators. Thus
each chromosome has two parents in the previous generation. With the coupling
construction, the parents of the chromosomes Xn(2i − 1), Xn(2i) are the chromo-
somes S(Xn−1, S

2i−1
n ), S(Xn−1, S

2i
n ). The genealogy of a chromosome consists of

all its ancestors until time 0. We define auxiliary random variables in order to
control the progeny of the initial Master sequence. For n ≥ 1, i ∈ { 1, . . . ,m }, we
set Mn(i) = 1 if the initial Master sequence appears in the genealogy of Xn(i) and
0 otherwise. We denote by Mn the vector (Mn(1), . . . ,Mn(m)) and we define also

Tn =
m∑
i=1

Mn(i) .

The variable Tn is the total number of descendants of the initial Master sequence at
time n. Also, let N∗

n be the number of Master sequences present in the population
at time n:

∀n ≥ 1 N∗
n = card

{
i ∈ { 1, . . . ,m } : Xn(i) = 1 · · · 1

}
.

We shall next compute stochastic bounds on (Tn)n∈N and (N∗
n)n∈N. The process

(Tn)n∈N will be controlled by a supercritical branching process, while the process
(N∗

n)n∈N will be controlled by a subcritical branching process.
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5.2. Bound on Tn. By construction, the chromosomes Xn(2i−1) and Xn(2i) have
the same parents; thus, Mn(2i− 1) = Mn(2i) and

∀n ≥ 1 Tn =

m/2∑
i=1

2Mn(2i) .

Conditionally on Xn−1,Mn−1, the random variables Mn(2i), 1 ≤ i ≤ m/2, are
independent and identically distributed. Let us estimate their parameter:

P
(
Mn(2) = 0

∣∣Xn−1,Mn−1

)
= P

⎛⎝ the selection operator selects two parents
in Xn−1 which do not belong to

the progeny of the initial Master sequence

∣∣∣∣∣Xn−1,Mn−1

⎞⎠ .

The number of chromosomes in the progeny of the initial Master sequence at time
n− 1 is Tn−1. The lowest value for the above conditional probability corresponds
to the situation where all these chromosomes are ranked best during the selection
process, therefore

P
(
Mn(2) = 0

∣∣Xn−1,Mn−1

)
≥

(
Fm(1) + · · ·+ Fm(m− Tn−1)

)2

.

To go further, we need a bound on Tn−1. Thus we define

τ1 = inf
{
n ≥ 1 : Tn > m1/4

}
and we will study the random variable Tn1{ τ1≥n }. In order to incorporate the
event { τ1 ≥ n } in the previous inequality, we condition with respect to the whole
history of the process. Noticing that the event{

τ1 ≥ n
}

=
{
T0 ≤ m1/4, . . . , Tn−1 ≤ m1/4

}
is measurable with respect to the variables X0,M0, . . . , Xn−1,Mn−1, we get

P
(
Mn(2) = 1, τ1 ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
= 1{T0≤m1/4,...,Tn−1≤m1/4 }P

(
Mn(2) = 1

∣∣Xn−1,Mn−1, . . . , X0,M0

)
= 1{ τ1≥n }P

(
Mn(2) = 1

∣∣Xn−1,Mn−1

)
≤ 1{ τ1≥n }

(
1−

(
Fm(1) + · · ·+ Fm(m− Tn−1)

)2
)
.

Using the hypothesis on Fm, we obtain that, for m large enough, there exists δ > 0
such that

∀i ∈
{
1, . . . , 	δm


}
Fm(m− i+ 1) + · · ·+ Fm(m) ≤ 2σ

i

m
.

For m large enough, if τ1 ≥ n, then Tn−1 ≤ m1/4 ≤ 	δm
, whence

P
(
Mn(2) = 1, τ1 ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ 1{ τ1≥n }

(
1−

(
1− 2σ

Tn−1

m

)2
)

≤ 1{ τ1≥n }4σ
Tn−1

m
.

Proposition 5.1. Let (Zn)n∈N be a Galton–Watson process starting from Z0 = 1
with reproduction law ν = 2P(4σ), i.e., the law ν is twice the Poisson law of
parameter 4σ. For m large enough, we have

∀n ≥ 0 Tn1{ τ1≥n } 
 Zn .
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Proof. We recall that 
 means stochastic domination (see appendix C). We will
prove the inequality by induction on n. For n = 0, the inequality holds trivially,
since

T01{ τ1≥0 } = Z0 = 1 .

Let n ≥ 1 and suppose that the inequality has been proved at rank n − 1. The
previous computation shows that, conditionally on X0,M0, . . . , Xn−1,Mn−1, the
law of Tn1{ τ1≥n } is stochastically dominated by the law

2B
(m
2
,
4σ

m
Tn−11{ τ1≥n }

)
.

There exists t0 > 0 such that, for 0 < t < t0, we have ln(1 − t) ≥ −2t. Therefore,
for m large enough so that 4σm−3/4 < t0, we have(

1− 4σ

m
Tn−11{ τ1≥n }

)m/2

≥ exp
(
− 4σTn−11{ τ1≥n }

)
.

By Lemma C.1, we conclude from this inequality that

2B
(m
2
,
4σ

m
Tn−11{ τ1≥n }

)

 2P

(
4σTn−11{ τ1≥n }

)
.

Recall also that Tn−11{ τ1≥n } is measurable with respect to the variables X0, M0,
. . . , Xn−1, Mn−1. Therefore, for any non–decreasing function φ, we have

E
(
φ
(
Tn1{ τ1≥n }

) ∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ E

(
φ
( Tn−11{ τ1≥n }∑

k=1

Yk

) ∣∣Xn−1,Mn−1, . . . , X0,M0

)
,

where the random variables (Yk)k≥1 are independent identically distributed with
law ν = 2P

(
4σ

)
, and they are also independent of the processes (Xn)n∈N, (Mn)n∈N.

The last conditional expectation is a non–decreasing function of Tn−11{ τ1≥n }.
From the induction hypothesis, we have

Tn−11{ τ1≥n } ≤ Tn−11{ τ1≥n−1 } 
 Zn−1 .

Taking the expectation with respect to Xn−1,Mn−1, . . . , X0,M0 in the previous
inequalities, we get

E
(
φ
(
Tn1{ τ1≥n }

))
≤ E

(
φ
( Tn−11{ τ1≥n }∑

k=1

Yk

))

≤ E
(
φ
( Zn−1∑

k=1

Yk

))
= E

(
φ
(
Zn

))
.

This completes the induction step. �

In order to exploit Proposition 5.1, we shall need a bound on τ1, which we
compute next.

Proposition 5.2. There exist κ > 0, c1 > 0, m1 ≥ 1, such that

∀m ≥ m1 P
(
τ1 < κ lnm

)
≤ 1

mc1
.
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Proof. Let (Zn)n∈N be a Galton–Watson process as in Proposition 5.1. We have,
for k ≥ 0,

P (τ1 = k) = P
(
τ1 ≥ k, Tk > m1/4

)
= P

(
Tk1{ τ1≥k } > m1/4

)
≤ P

(
Zk > m1/4

)
≤ m−1/4E

(
Zk

)
≤ m−1/4(8σ)k .

We sum this inequality: for n ≥ 1,

P (τ1 < n) ≤ m−1/4
n−1∑
k=0

(8σ)k = m−1/4 (8σ)
n − 1

8σ − 1
.

We choose n = κ lnm, where κ is positive and sufficiently small, and we obtain the
desired conclusion. �

5.3. Bound on N∗
n. By definition, we have

∀n ≥ 1 N∗
n =

m/2∑
i=1

(
1{Xn(2i−1)=1···1 } + 1{Xn(2i)=1···1 }

)
.

Let us define, for 1 ≤ i ≤ m/2,

Bn(i) = 1{Xn(2i−1)=1···1 } + 1{Xn(2i)=1···1 } .

Conditionally on Xn−1, the variables Bn(i), 1 ≤ i ≤ m/2, are independent and
identically distributed. A Master sequence appearing in generation n is either in
the progeny of the initial Master sequence, or it has been created through numerous
mutations and crossover from 0 · · · 0. The probability of the first scenario will be
controlled with the help of Tn−1 (the size of the progeny of the initial Master
sequence in generation n − 1). The second scenario is very unlikely unless n is
large. To control its probability, we introduce the time τ2, when a mutant, not
belonging to the progeny of the initial Master sequence, is at distance less than
� −

√
� from the Master sequence. Let us recall that H(u, v) is the Hamming

distance between the chromosomes u, v. We set

τ2 = inf
{
n ≥ 1 : ∃ i ∈ { 1, . . . ,m } H(Xn(i), 1 · · · 1) ≤ �−

√
�, Mn(i) = 0

}
.

We recall that

τ1 = inf
{
n ≥ 1 : Tn > m1/4

}
.

We also set

τ0 = inf
{
n ≥ 1 : N∗

n = 0
}
.

We shall compute a bound on N∗
n until time τ = min(τ0, τ1, τ2).

Proposition 5.3. Let π < 1. We suppose in addition that � = m. For m large
enough, the process

(N∗
n1{ τ≥n })n∈N

is stochastically dominated by a subcritical Galton–Watson process.

Proof. We shall estimate the law of Bn(1). The proof is tedious because there
are several cases to consider. The chromosomes Xn(1), Xn(2) are obtained after
applying the crossover and the mutation operators on the chromosomes of the
population Xn−1 having indices

I1 = S(Xn−1, S
1
n) , I2 = S(Xn−1, S

2
n) .



6036 RAPHAËL CERF

We denote by Y1, Y2 the chromosomes obtained after crossover from the chromo-
somes Xn−1(I1), Xn−1(I2), i.e.,

Y1 = C
(
Xn−1(I1), Xn−1(I2), V

1
n ,W

1
n

)
,

Y2 = C
(
Xn−1(I2), Xn−1(I1), V

1
n ,W

1
n

)
.

Our goal is to obtain a stochastic bound on N∗
n1{ τ≥n }, so we need only to consider

the case where τ ≥ n. Thus, in the following computations, we suppose that τ2 ≥ n.
Let λ > 0 be such that π/σ ≥ exp(−λ). We then have

(1− pM )� =
π

σ(1− pC)
≥ π

σ
≥ exp(−λ) .

Notice that λ depends only on π/σ, and not on � or pM . By Lemma C.1, the
binomial law B(�, pM ) is then stochastically dominated by the Poisson law P(λ).
We will use repeatedly the bound given in Lemma C.2:

∀t ≥ λ P
(
U1,1
n + · · ·+ U1,�

n ≥ t
)
≤

(λe
t

)t

.

When using this bound, the value of t will be a function of �. We will always take
� large enough, so that the value of t will be larger than λ. We examine several
cases, depending on whether the initial Master sequence belongs to the genealogy
of the chromosomes Xn−1(I1), Xn−1(I2):

• Mn−1(I1) = Mn−1(I2) = 0. Since τ2 ≥ n, then the chromosomes Xn−1(I1)

and Xn−1(I2) have strictly less than
√
� ones, therefore the chromosomes Y1, Y2

obtained after crossover have strictly less than 2
√
� ones. Thus, for � large enough

and ∗ = 1 or ∗ = 2,

P
(
M

(
Y∗, U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

)
≤ P

(
U∗,1
n + · · ·+ U∗,�

n > �− 2
√
�
)
≤

( λe

�− 2
√
�

)�−2
√
�

.

Therefore

P

(
Bn(1) > 0, τ2 ≥ n

Mn−1(I1) = Mn−1(I2) = 0

∣∣∣ Xn−1

Mn−1

)
≤ 2

( λe

�− 2
√
�

)�−2
√
�

.

• Mn−1(I1) = 1, Mn−1(I2) = 0. We estimate first the probability that Bn(1) =

2. Since τ2 ≥ n, then the chromosome Xn−1(I2) has strictly less than
√
� ones,

therefore at least one of the chromosomes Y1, Y2 obtained after crossover has strictly
less than (� +

√
�)/2 ones. Suppose for instance that it is the case for Y1. It is

then very unlikely that a Master sequence is created from Y1 with the help of the
mutations. Indeed, for � large enough, we have

P
(
M

(
Y1, U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1, H(Y1, 1 · · · 1) > (�−

√
�)/2

)
≤ P

(
U1,1
n + · · ·+ U1,�

n > (�−
√
�)/2

)
≤

( 2λe

�−
√
�

)(�−
√
�)/2

.

Therefore

P

(
Bn(1) = 2, τ2 ≥ n

Mn−1(I1) = 1,Mn−1(I2) = 0

∣∣∣ Xn−1

Mn−1

)
≤ 2

( 2λe

�−
√
�

)(�−
√
�)/2

.
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We estimate next the probability that Bn(1) = 1. Suppose that a crossover occurs
between Xn−1(I1), Xn−1(I2), i.e., that V

1
n = 1. Since τ2 ≥ n, then the chromosome

Xn−1(I2) has strictly less than
√
� ones. After crossover, the probability that one

of the two resulting chromosomes Y1, Y2 has at least �−
√
� ones is less than 4/

√
�.

Indeed, this can happen only if, either on the left of the cutting site, or on its
right, there are at most

√
� zeroes. The most favorable situation is when all the

ones in Y2 are at the end or at the beginning of Y2, in which case we have 2
√
�

cutting sites which lead to the desired result. Now, if a chromosome u is such that
H(u, 1 · · · 1) >

√
�, then

P
(
M

(
u, U1,1

n , . . . , U1,�
n

)
= 1 · · · 1

)
≤ P

(
U1,1
n + · · ·+ U1,�

n >
√
�
)
≤

( λe√
�

)√
�

.

From the previous discussion, we conclude that

P

(
Bn(1) = 1, V 1

n = 1, τ2 ≥ n
Mn−1(I1) = 1,Mn−1(I2) = 0

∣∣∣ Xn−1

Mn−1

)
≤

( 4√
�
+ 2

( λe√
�

)√
�)(

Fm(m)− Fm(m− Tn−1)
)
.

We consider now the case where no crossover occurs between the chromosomes
Xn−1(I1), Xn−1(I2), i.e., we have

V 1
n = 0 , Y1 = Xn−1(I1) , Y2 = Xn−1(I2) .

We write

P
(
Bn(1) = 1, Mn−1(I1) = 1,Mn−1(I2) = 0, V 1

n = 0 , τ2 ≥ n
∣∣Xn−1, Mn−1

)
≤ P

(
M

(
Xn−1(I1), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

+P

(
M

(
Xn−1(I2), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Mn−1(I2) = 0, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
.

We estimate the last term. Since τ2 ≥ n, then the chromosome Y2 = Xn−1(I2) has

strictly less than
√
� ones. As before, for � large enough, we have

P

(
M

(
Xn−1(I2), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Mn−1(I2) = 0, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

≤ P
(
U2,1
n + · · ·+ U2,�

n > �−
√
�
)
≤

( λe

�−
√
�

)�−
√
�

.

Thus it is very unlikely that a Master sequence is created from Y2 = Xn−1(I2) with
the help of the mutations. The most likely scenario is that the Master sequence
comes from Y1 = Xn−1(I1). We estimate the probability of this scenario, and to
do so, we distinguish further two cases, according to whether Xn(I1) is a Master
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sequence or not:

P

(
M

(
Xn−1(I1), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

=P

(
M

(
Xn−1(I1), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Xn−1(I1) = 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

+P

(
M

(
Xn−1(I1), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Xn−1(I1) �= 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
.

To estimate these probabilities, we make an intermediate conditioning and we ob-
tain

P

(
M

(
Xn−1(I1), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Xn−1(I1) = 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
≤ P

(
M

(
1 · · · 1, U1,1

n , . . . , U1,�
n

)
= 1 · · · 1

)
×P

(
Xn−1(I1) = 1 · · · 1

Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
≤ (1− pM )�(1− pC)

(
Fm(m)− Fm(m−N∗

n−1)
)
.

Indeed, the number of Master sequences present in Xn−1 is N∗
n−1 and the proba-

bility of selecting a Master sequence in Xn−1 is at most (Fm(m)−Fm(m−N∗
n−1)).

In a similar way,

P

(
M

(
Xn−1(I1), U

1,1
n , . . . , U1,�

n

)
= 1 · · · 1

Xn−1(I1) �= 1 · · · 1, Mn−1(I1) = 1, V 1
n = 0, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)

≤
∑

u 
=1···1
P
(
M

(
u, U1,1

n , . . . , U1,�
n

)
= 1 · · · 1

)
P

⎛⎝Xn−1(I1) = u
Mn−1(I1) = 1

τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

⎞⎠
≤ pMP

(
Xn−1(I1) �= 1 · · · 1

Mn−1(I1) = 1, τ2 ≥ n

∣∣∣∣∣ Xn−1

Mn−1

)
≤ pM

(
Fm(m)− Fm(m− Tn−1)

)
.

Putting together the previous inequalities, we obtain

P
(
Bn(1) = 1, Mn−1(I1) = 1,Mn−1(I2) = 0, τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤

( 4√
�
+ 2

( λe√
�

)√
�)(

Fm(m)− Fm(m− Tn−1)
)
+

( λe

�−
√
�

)�−
√
�

+(1− pM )�(1− pC)
(
Fm(m)− Fm(m−N∗

n−1)
)

+pM

(
Fm(m)− Fm(m− Tn−1)

)
.

• Mn−1(I1) = Mn−1(I2) = 1. In this case, we have

P
(
Mn−1(I1) = 1,Mn−1(I2) = 1 , τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤

(
Fm(m)− Fm(m− Tn−1)

)2

.
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In conclusion, we obtain the following inequalities:

P
(
Bn(1) = 2 , τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤ 2

( λe

�− 2
√
�

)�−2
√
�

+ 4
( 2λe

�−
√
�

)(�−
√
�)/2

+
(
Fm(m)− Fm(m− Tn−1)

)2

,

P
(
Bn(1) = 1 , τ2 ≥ n

∣∣Xn−1, Mn−1

)
≤ 2

( λe

�− 2
√
�

)�−2
√
�

+
( 8√

�
+ 4

( λe√
�

)√
�)(

Fm(m)− Fm(m− Tn−1)
)

+2
( λe

�−
√
�

)�−
√
�

+ 2(1− pM )�(1− pC)
(
Fm(m)− Fm(m−N∗

n−1)
)

+2pM

(
Fm(m)− Fm(m− Tn−1)

)
+

(
Fm(m)− Fm(m− Tn−1)

)2

.

In order to incorporate the event { τ ≥ n } in these inequalities, we condition with
respect to the whole history of the process as follows: for ∗ = 1 or ∗ = 2,

P
(
Bn(1) = ∗, τ ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ 1{ τ≥n }P

(
Bn(1) = ∗

∣∣Xn−1,Mn−1

)
.

Let ε > 0 be such that (1 + 5ε)π < 1. Next we use the hypothesis on the selection
function: there exists c > 0 such that, for m large enough,

1{ τ≥n }

(
Fm(m)− Fm(m− Tn−1)

)
≤ 1{ τ≥n }

c

m
Tn−1 ≤ c

m3/4
.

Moreover, for m large enough,

1{ τ≥n }

(
Fm(m)− Fm(m−N∗

n−1)
)

≤ 1{ τ≥n }
σ(1 + ε)

m
N∗

n−1 .

Thus there exists a constant c > 0 such that, for m, � large enough,

1{ τ≥n }P
(
Bn(1) = 2

∣∣Xn−1, Mn−1

)
≤ 1

�2
+

c2

m3/2
,

1{ τ≥n }P
(
Bn(1) = 1

∣∣Xn−1, Mn−1

)
≤ 1

�2
+

8√
�

c

m3/4

+
2

m
σ(1 + ε)1{ τ≥n }N

∗
n−1(1− pM )�(1− pC) + 2pM

c

m3/4
+

c2

m3/2
.

We rewrite the previous inequalities in the case � = m. First, we have, for a positive
constant c,

P
(
Bn(1) = 2 , τ ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ c

m3/2
.

Moreover σ(1− pM )m ≥ π, whence

pM ≤ − 1

m
ln(π/σ) .

For m large enough, we have therefore

1

m2
+

8√
m

c

m3/4
+ 2pM

c

m3/4
+

c2

m3/2
≤ 2

m
πε ,

and it follows that

P
(
Bn(1) = 1 , τ ≥ n

∣∣Xn−1,Mn−1, . . . , X0,M0

)
≤ 2

m
π(1 + 2ε)1{ τ≥n }N

∗
n−1 .



6040 RAPHAËL CERF

Coming back to the initial equality for N∗
n, we conclude that, for m large enough,

the law of N∗
n1{ τ≥n } is stochastically dominated by the sum of two independent

binomial random variables as follows:

N∗
n1{ τ≥n } 
 B

(m
2
,
2

m
π(1 + 2ε)1{ τ≥n }N

∗
n−1

)
+ 2B

(m
2
,

c

m3/2

)
.

For m large, these two binomial laws are in turn stochastically dominated by two
Poisson laws. More precisely, for m large enough,(

1− 2

m
π(1 + 2ε)1{ τ≥n }N

∗
n−1

)m/2

≥ exp
(
− π(1 + 3ε)1{ τ≥n }N

∗
n−1

)
,(

1− cm−3/2
)m/2 ≥ exp(−ε) .

Lemma C.1 then yields that

N∗
n1{ τ≥n } 
 P

(
π(1 + 3ε)N∗

n−11{ τ≥n }
)
+ 2P(ε) .

The point is that we got rid of the variable m in the upper bound, so we are now in
a position to compare N∗

n1{ τ≥n } with a Galton–Watson process. Let (Y ′
n)n≥1 be a

sequence of i.i.d. random variables with law P(π(1+3ε)), let (Y ′′
n )n≥1 be a sequence

of i.i.d. random variables with law P(ε), both sequences being independent. The
previous stochastic inequality can be rewritten as

N∗
n1{ τ≥n } 


(N∗
n−11{ τ≥n }∑

k≥1

Y ′
k

)
+ 2Y ′′

1 .

This implies further that

(�) N∗
n1{ τ≥n } 


N∗
n−11{ τ≥n−1 }∑

k≥1

(
Y ′
k + 2Y ′′

k

)
.

Let ν∗ be the law of Y ′
1+2Y ′′

1 and let (Z∗
n)n≥0 be a Galton–Watson process starting

from Z0 = 1 with reproduction law ν∗. We prove finally that, for m large enough,

∀n ≥ 0 N∗
n1{ τ≥n } 
 Z∗

n .

We suppose that m is large enough so that the stochastic inequality (�) holds and
we proceed by induction on n. For n = 0, we have

N∗
0 1{ τ≥0 } = 1 ≤ Z∗

0 = 1 .

Let n ≥ 1 and suppose that the inequality holds at rank n−1. Inequality (�) yields

N∗
n1{ τ≥n } 


N∗
n−11{ τ≥n−1 }∑

k≥1

(
Y ′
k + 2Y ′′

k

)



Z∗
n−1∑
k≥1

(
Y ′
k + 2Y ′′

k

)
= Z∗

n .

Thus the inequality holds at rank n and the induction is completed. Moreover we
have

E(ν∗) = E
(
Y ′
1 + 2Y ′′

1

)
= π(1 + 5ε) < 1 .

Thus the Galton–Watson process (Z∗
n)n≥0 is subcritical and this completes the

proof of Proposition 5.3. �

We close this section with a bound on τ2, which will be useful when applying
Proposition 5.3.
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Lemma 5.4. For m ≥ 2 and for � large enough, we have

P
(
τ2 ≤ 1

5
ln �

)
≤ 1− exp

(
−m� exp

(
− �1/4

))
.

Proof. If τ2 < n, then, before time n, a chromosome has been created with at least√
� ones, and whose genealogy does not contain the initial Master sequence. We

shall compute an upper bound on the number of ones appearing in the genealogy
of such a chromosome at generation n. Let us define

∀n ≥ 1 Dn = max
{
�−H(Xn(i), 1 · · · 1) : 1 ≤ i ≤ m, Mn(i) = 0

}
.

The quantity Dn is the maximum number of ones in a chromosome of the gen-
eration n, which does not belong to the progeny of the initial Master sequence.
These ones must have been created by mutation. Let us consider a chromosome of
the generation n + 1, which does not belong to the progeny of the initial Master
sequence. The number of ones in each of its two parents was at most Dn. After
crossover between these two parents, the number of ones was at most 2Dn. After
mutation, the number of ones was at most

Dn+1 ≤ 2Dn +max
{ �∑

j=1

U i,j
n : 1 ≤ i ≤ m

}
.

We first control the last term. Let n ≥ 1 and let us define the event E(n) by

E(n) =
{
∀i ∈ { 1, . . . ,m } ∀k ∈ { 1, . . . , n }

�∑
j=1

U i,j
k ≤ �1/4

}
.

We have

P
(
E(n)

)
=

(
1− P

( �∑
j=1

U1,j
1 > �1/4

))mn

.

The law of the sum
∑�

j=1 U
1,j
1 is the binomial law B(�, pM ). Let λ > 0 be such

that π/σ ≥ exp(−λ). We then have

(1− pM )� =
π

σ(1− pC)
≥ π

σ
≥ exp(−λ) .

By Lemma C.1, the binomial law B(�, pM ) is stochastically dominated by the Pois-
son law P(λ). Using the bound given in Lemma C.2, we obtain that, for �1/4 > λ,

P
(
E(n)

)
≥

(
1−

( λe

�1/4

)�1/4)mn

,

whence, for � large enough,

P
(
E(n)

)
≥ exp

(
−mn exp

(
− �1/4

))
.

Suppose that the event E(n) occurs. We then have

∀k ∈ { 0, . . . , n− 1 } Dk+1 ≤ 2Dk + �1/4 .

Dividing by 2k+1 and summing from k = 0 to n− 1, we get

Dn ≤ 2n
n−1∑
k=0

�1/4

2k+1
≤ 2n�1/4 .
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Therefore, if 2n < �1/4 and if the event E(n) occurs, then τ2 > n. Taking n =
(ln �)/5, we obtain the estimate stated in the lemma. �

5.4. Proof of Theorem 2.1. We complete here the proof of Theorem 2.1. The
hypothesis of Theorem 2.1 allows to apply Proposition 5.3. Thus there exists a
subcritical Galton–Watson process (Z∗

n)n≥0, with reproduction law ν∗, which dom-
inates stochastically the process (N∗

n1{ τ≥n })n≥0. A standard result on Galton–
Watson processes (see for instance [1]) ensures the existence of a positive constant
c∗, which depends only on the law ν∗, such that

∀n ≥ 1 P
(
Z∗
n > 0

)
≤ exp(−cn) .

Let κ, c1 be as in Proposition 5.2. We suppose that κ < 1/5, so that we can use
the estimate of Lemma 5.4. We have then

P
(
τ0 > κ lnm

)
≤ P

(
τ0 > κ lnm, τ < κ lnm

)
+ P

(
N∗

�κ lnm� > 0, τ ≥ κ lnm
)

≤ P
(
τ1 < κ lnm

)
+ P

(
τ2 < κ lnm

)
+ P

(
Z∗
�κ lnm� > 0

)
≤ 1

mc1
+ 1− exp

(
−m2 exp

(
−m1/4

))
+ exp(−c∗	κ lnm
) .

This inequality yields the estimate stated in Theorem 2.1.

6. The quasispecies regime

For λ ∈ R and a population x, we define N(x, λ) as the number of chromosomes
in x whose fitness is larger than or equal to λ:

N(x, λ) = card { i ∈ { 1, . . . ,m } : f(x(i)) ≥ λ } .
We shall couple the processes (N(Xn, λ))n∈N, λ ∈ R, with a family of Markov
chains

(
Nn(t, i)

)
n≥t

, t ∈ N. We then study dynamics of these Markov chains.

6.1. The auxiliary chain. Here we couple the genetic algorithm with an auxiliary
chain. For n ≥ 1, let Γn : { 1, . . . ,m }2 → { 0, 1 } be the map defined by

∀i, j ∈ { 1, . . . ,m } Γn(i, j) =

{
1 if I(Sj

n) ≥ m− i+ 1,

0 otherwise.

Recall that the map I is defined together with the selection map S. In fact, the
map Γn(i, j) is equal to one if the j–th chromosome chosen during the selection at
time n is among the best i chromosomes of generation n. For each n ≥ 1, we define
also a map Ψn : { 0, . . . ,m } → { 0, . . . ,m } by setting

∀i ∈ { 0, . . . ,m } Ψn(i) =

m∑
j=1

(
Γn(i, j) (1− V 
j/2�

n )

�∏
k=1

(1− U j,k
n )

)
.

The map Ψn(i) counts the number of chromosomes in generation n + 1 which
have been obtained by selecting a chromosome among the best i chromosomes of
generation n, and for which there was no crossover and no subsequent mutation.
For any j ∈ { 1, . . . ,m }, the map i �→ Γn(i, j) is non–decreasing, therefore the map
i �→ Ψn(i) is also non–decreasing. For t ∈ N and i ∈ { 1, . . . ,m }, let(

Nn(t, i)
)
n≥t
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be the Markov chain starting from i at time t and defined by

∀n ≥ t Nn+1(t, i) = Ψn

(
Nn(t, i)

)
.

Since the map Ψn is non–decreasing, then the coupling defined above between the
chains

(
Nn(t, i)

)
n≥t

, i ∈ { 1, . . . ,m }, is monotone, i.e., we have

∀n ≥ t ∀i ≤ j Nn(t, i) ≤ Nn(t, j) .

This implies in particular that the Markov chain (Nn(t, i))n≥t is monotone (see
Appendix B for the precise definitions).

Proposition 6.1. For any t ∈ N and λ ∈ R, we have

∀n ≥ t N(Xn, λ) ≥ Nn

(
t, N(Xt, λ)

)
.

Proof. Let us fix λ ∈ R. At time t, there is equality. We prove the inequality
by induction over n. Suppose that the inequality holds at time n ≥ t. The value
Ψn(N(Xn, λ)) is a lower bound on the number of chromosomes in generation n+1
which are an exact copy of one of the chromosomes of generation n which have a
fitness larger than or equal to λ. Therefore

N(Xn+1, λ) ≥ Ψn

(
N(Xn, λ)

)
.

Using the inequality at time n and the monotonicity of Ψn, we get

Ψn

(
N(Xn, λ)

)
≥ Ψn

(
Nn(t, N(Xt, λ))

)
= Nn+1

(
t, N(Xt, λ)

)
.

The induction step is completed. �

6.2. Transition probabilities of Nn. To alleviate the notation, we suppose that
the Markov chain

(
Nn(t, i)

)
n≥t

starts at time 0, we remove t, i from the notation and
we write simply (Nn)n≥0. Let us compute the transition probabilities of (Nn)n≥0.
The null state is absorbing for the Markov chain (Nn)n≥0. By definition, we have

∀n ≥ 1 Nn+1 =

m∑
j=1

(
Γn(Nn, j) (1− V 
j/2�

n )

�∏
k=1

(1− U j,k
n )

)
.

The random variable Nn+1 is a sum of m identically distributed Bernoulli random
variables, whose parameter depends on the value of Nn. Yet these random vari-
ables are not independent, because the crossover creates a correlation between two
consecutive chromosomes (through the variable V


j/2�
n ). In order to get rid of this

correlation, we first count the number of crossovers occurring in generation n, and
then we sum over the indices where no crossover has taken place. Let Bn be the
random variable defined by

Bn =
m

2
−

m/2∑
j=1

V j
n .

The law of Bn is the binomial law B(m/2, 1 − pC). Conditionally on Nn = i, the
law of Nn+1 is the same as the law of the random variable

2Bn∑
k=1

Y i
k ,
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where the variables Y i
k , k ∈ N, i ∈ { 1, . . . ,m }, are Bernoulli i.i.d. random variables

(independent of Bn as well) with parameter

εm(i) =
(
Fm(m− i+ 1) + · · ·+ Fm(m)

)
(1− pM )� .

Finally, we have for i ∈ { 1, . . . ,m } and j ∈ { 0, . . . ,m },
P
(
Nn+1 = j |Nn = i

)
=

∑
j/2≤b≤m/2

(
m/2
b

)
(1− pC)

b(pC)
m/2−b

(
2b
j

)
εm(i)j(1− εm(i))2b−j .

6.3. Large deviations upper bound. The formula for the transition probabil-
ities is very complicated, so we will study its asymptotics as m goes to ∞. The
goal of this section is to prove the large deviations upper bound stated in Proposi-
tion 6.4. We do not have a genuine large deviations principle for the chain (Nn)n≥0,
because there is some freedom left for the parameters pC , pM , �. In order to derive
a corresponding lower bound, we would have to fix the limiting value of pC and
(1 − pM )�. However we wish to focus on the role of the parameter π, and for our
purpose, we need only a large deviations upper bound under the constraint

π = σ(1− pC)(1− pM )� .

For p ∈ [0, 1] and t ≥ 0, we define

I(p, t) =

⎧⎪⎪⎨⎪⎪⎩
t ln

t

p
+ (1− t) ln

1− t

1− p
0 < p < 1, 0 ≤ t ≤ 1,

0 t = p = 0 or t = p = 1,

+∞ (p ∈ {0, 1}, t �= p) or t > 1 or p > 1.

The function I(p, ·) is the rate function governing the large deviations of the bino-
mial distribution B(n, p) with parameters n and p. It is standard that I is lower
semicontinuous with respect to t, yet we will need a little more, as stated in the
next lemma.

Lemma 6.2. The map I(p, t) is sequentially lower semicontinuous in p, t, i.e., for
any p ∈ [0, 1], t ∈ R

+, any sequences (pn)n≥1, (tn)n≥1 converging towards p, t, we
have

lim inf
n→∞

I(pn, tn) ≥ I(p, t) .

Proof. We need only to distinguish a few cases. For 0 < p < 1, the result is
straightforward. If p = 0 and t > 0, or if p = 1 and t < 1, we check that

lim inf
n→∞

I(pn, tn) = +∞ .

If p = t = 0 or if p = t = 1, the inequality holds since I(0, 0) = I(1, 1) = 0. �

We define, for s ∈]0, 1], t ∈ [0, 1],

V1(s, t) = inf
{ 1

2
I
(
1− p, β

)
+ βI

((
1− F (1− s)

)
π

σ(1− p)
,
t

β

)
:

0 ≤ p ≤ 1− π

σ
, t ≤ β ≤ 1

}
.

We set also V1(0, 0) = 0 and V1(0, t) = +∞ for t > 0.
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Lemma 6.3. The map V1(s, t) is sequentially lower semicontinuous in s, t, i.e., for
any s, t ∈ [0, 1], any sequences (sn)n≥1, (tn)n≥1 converging towards s, t, we have

lim inf
n→∞

V1(sn, tn) ≥ V1(s, t) .

Proof. Let s, t ∈ [0, 1]. Let (sn)n≥1, (tn)n≥1 be two sequences in [0, 1] which con-
verge towards s, t. For each n ≥ 1, let pn and βn be such that

0 ≤ pn ≤ 1− π/σ , tn ≤ βn ≤ 1 ,

1

2
I
(
1− pn, βn

)
+ βnI

((
1− F (1− sn)

)
π

σ(1− pn)
,
tn
βn

)
≤ V1(sn, tn) +

1

n
.

By compactness, up to the extraction of a subsequence, we can suppose that there

exist p̃, β̃, γ̃ such that

0 ≤ p̃ ≤ 1− π/σ , t ≤ β̃ ≤ 1 ,

lim
n→∞

pn = p̃ , lim
n→∞

βn = β̃ , lim
n→∞

tn
βn

= γ̃ .

Using the continuity of F and the lower semicontinuity of I, we obtain

lim inf
n→∞

V1(sn, tn) ≥ 1

2
I
(
1− p̃, β̃

)
+ β̃I

((
1− F (1− s)

)
π

σ(1− p̃)
, γ̃

)
.

Let us denote by Δ the righthand quantity. We distinguish several cases:

• t > 0. We then have γ̃ = t/β̃, whence Δ ≥ V1(s, t).

• t = 0, β̃ > 0. We then have γ̃ = 0, whence Δ ≥ V1(s, 0).

• t = 0, β̃ = 0, s > 0. We then have Δ ≥ 1
2I

(
1− p̃, 0

)
≥ V1(s, 0).

• t = 0, β̃ = 0, s = 0. Obviously, Δ ≥ V1(0, 0) = 0.

In each case, we conclude that Δ ≥ V1(s, t). This shows that V1 is lower semicon-
tinuous. �

Proposition 6.4. For any s ∈ [0, 1], any subset U of [0, 1], we have, for any n ≥ 1,

lim sup
m→∞

1

m
lnP

(
Nn+1 ∈ mU |Nn = 	sm


)
≤ − inf

t∈U
V1(s, t) .

Proof. Let n ≥ 1, let i ∈ { 1, . . . ,m } and j ∈ { 0, . . . ,m }. From Lemma D.1, we
obtain that, for any b such that j/2 ≤ b ≤ m/2,(
m/2
b

)
(1− pC)

bp
m/2−b
C

(
2b
j

)
εm(i)j(1− εm(i))2b−j

≤ exp

(
−m

{1

2
I
(
1− pC ,

2b

m

)
+

2b

m
I
(
εm(i),

j

2b

)}
+ 4 lnm+ 6

)
.

We take the maximum with respect to b, we sum and we get

P
(
Nn+1 = j |Nn = i

)
≤ (m+ 1)

× exp

(
−m min

j/2≤b≤m/2

{1

2
I
(
1− pC ,

2b

m

)
+

2b

m
I
(
εm(i),

j

2b

)}
+ 4 lnm+ 6

)
.
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Next we seek a large deviations upper bound for the transition probabilities. Let
s ∈ [0, 1] and let us take i = 	ms
. We first consider the cases s = 0 and s = 1.
For s = 0, we have εm(0) = 0 and

P
(
Nn+1 ∈ mU |Nn = 0

)
=

{
0 if 0 �∈ mU,

1 if 0 ∈ mU,

and the inequality stated in the lemma holds. Suppose that s = 1. We then have

εm(m) = (1− pM )� =
π

σ(1− pC)
.

It follows that

P
(
Nn+1 ∈ mU |Nn = m

)
≤ (m+ 1)2 exp

(
4 lnm+ 6

)
× exp

(
−m min

0≤b≤m/2
min
j∈mU

{1

2
I
(
1− pC ,

2b

m

)
+

2b

m
I
( π

σ(1− pC)
,
j

2b

)})
≤ (m+ 1)2 exp

(
4 lnm+ 6

)
exp

(
−m min

t∈U
V1(1, t)

)
.

Taking ln, dividing bym and sendingm to∞, we obtain the desired large deviations
upper bound. From now on, we suppose that 0 < s < 1. We have

lim
m→+∞

Fm(m− 	sm
+ 1) + · · ·+ Fm(m) = 1− F (1− s)

whence

εm(	sm
) ∼
(
1− F (1− s)

)
(1− pM )� as m → ∞ .

Let us set

ε(s) =
(
1− F (1− s)

)
(1− pM )� .

For any u ∈ [0, 1], we have∣∣∣I(εm(	sm
), u
)
− I

(
ε(s), u

)∣∣∣ ≤
∣∣∣ ln ε(s)

εm(	sm
)

∣∣∣ + ∣∣∣ ln 1− ε(s)

1− εm(	sm
)

∣∣∣ .
In order to bound these terms, we suppose in addition that 0 < s < 1. Since F is
strictly increasing on [0, 1] by hypothesis, then 0 < F (1 − s) < 1. It follows that
there exist γ and m0(s) such that for m ≥ m0(s),

0 < γ < Fm(m− 	sm
+ 1) + · · ·+ Fm(m) < 1− γ < 1 .

Let us set

Δ(s,m) =
∣∣1− F (1− s)−

(
Fm(m− 	sm
+ 1) + · · ·+ Fm(m)

)∣∣ .
Since, for any a ≤ 1, any x ∈]0, 1[,∣∣∣ ∂

∂x
ln(1− xa)

∣∣∣ =
∣∣∣ a

1− xa

∣∣∣ ≤ 1

1− x
,

we have, for m ≥ m0(s), ∣∣∣ ln 1− ε(s)

1− εm(	sm
)

∣∣∣ ≤ 1

γ
Δ(s,m) .

Similarly, we have ∣∣∣ ln ε(s)

εm(	sm
)

∣∣∣ ≤ 1

γ
Δ(s,m) .
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These inequalities hold uniformly with respect to the value of (1− pM )�. Now let
s ∈]0, 1[ and let U be a subset of [0, 1]. Collecting together the previous inequalities,
we have, for any m ≥ m0(s),

P
(
Nn+1 ∈ mU |Nn = 	sm


)
≤ (m+ 1)2

× exp

(
−m min

0≤b≤m/2
min
j∈mU

{1

2
I
(
1− pC ,

2b

m

)
+

2b

m
I
((

1− F (1− s)
)
π

σ(1− pC)
,
j

2b

)}
+4 lnm+ 6 +

2m

γ
Δ(s,m)

)
.

We are now in position to replace the discrete variational problem appearing in
this inequality by a continuous one. Let V1(s, t) be the function defined before
Lemma 6.3. The previous inequality implies that, for any m ≥ m0(s),

P
(
Nn+1 ∈ mU |Nn = 	sm


)
≤ (m+ 1)2 exp

(
−m min

t∈U
V1(s, t) + 4 lnm+ 6 +

2m

γ
Δ(s,m)

)
.

Taking ln, dividing bym and sendingm to∞, we obtain the desired large deviations
upper bound. �

Proceeding in the same way, we can prove a similar large deviations upper bound
for the l–step transition probabilities. For l ≥ 1, we define a function Vl on [0, 1]×
[0, 1] by

Vl(s, t) = inf
{ l−1∑

k=0

V1

(
ρk, ρk+1

)
: ρ0 = s, ρl = t, ρk ∈ [0, 1] for 0 ≤ k < l

}
.

Corollary 6.5. For l ≥ 1, the l–step transition probabilities of (Nn)n≥0 satisfy the
following large deviations upper bound: for any s ∈ [0, 1], any subset U of [0, 1], we
have

lim sup
m→∞

1

m
lnP

(
Nn+l ∈ mU |Nn = 	sm


)
≤ − inf

t∈U
Vl(s, t) .

6.4. Dynamics of Nn. Let us examine when the rate function V1(s, t) vanishes.
Let π > 1 and let s, t ∈ [0, 1]. By Lemma 6.3, the variational problem defining
V1(s, t) is well posed, i.e., there exists p∗, β∗ ∈ [0, 1] such that 0 ≤ p∗ ≤ 1 − π/σ,
t ≤ β∗ ≤ 1 and

V1(s, t) =
1

2
I
(
1− p∗, β∗)+ β∗I

((
1− F (1− s)

)
π

σ(1− p∗)
,
t

β∗

)
.

Thus V1(s, t) vanishes if and only if

β∗ = 1− p∗ ,

(
1− F (1− s)

)
π

σ(1− p∗)
=

t

β∗ ,

or equivalently

t =
(
1− F (1− s)

)π
σ
.

We define a function φ : [0, 1] → [0, 1] by

∀r ∈ [0, 1] φ(r) =
(
1− F (1− r)

)π
σ
.
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The Markov chain (Nn)n≥0 can be seen as a random perturbation of the dynamical
system associated to the map φ:

z0 ∈ [0, 1] , ∀n ≥ 1 zn = φ(zn−1) .

Since φ is non–decreasing, the sequence (zn)n∈N is monotonous and it converges
to a fixed point of φ. We have supposed that F is convex, so that φ is concave.
Moreover we have φ(0) = 0, φ(1) = π/σ < 1 and φ′(0) = π, therefore:
• If π < 1, then the function φ admits only one fixed point, 0, and (zn)n∈N converges
to 0;
• If π > 1, then the function φ admits two fixed points, 0 and ρ∗(π), and (zn)n∈N

converges to ρ∗(π) whenever z0 > 0.
We can even compute ρ∗(π) for linear ranking and tournament selection:

Linear ranking selection. In this case, we have

ρ∗(π) =
2η+

η+ − η−

(
1− 1

π

)
.

Tournament selection. The non–null fixed point is the solution of

1 + ρ∗(π) + · · ·+ ρ∗(π)t−1 =
σ

π
.

In the case where t = 2, we obtain

ρ∗(π) =
σ

π
− 1 .

The natural strategy to study the Markov chain (Nn)n≥0 is to use the Freidlin–
Wentzell theory [21]. The crucial quantity to analyze the dynamics is the following
cost function V . We define, for s, t ∈ [0, 1],

V (s, t) = inf
l≥1

Vl(s, t)

= inf
l≥1

inf
{ l−1∑

k=0

V1

(
ρk, ρk+1

)
: ρ0 = s, ρl = t, ρk ∈ [0, 1] for 0 ≤ k < l

}
.

Lemma 6.6. Suppose that π > 1. For s, t ∈ [0, 1], we have V (s, t) = 0 if and only
if:
• either s = t = 0,
• or s > 0, t = ρ∗(π),
• or there exists l ≥ 1 such that t = φl(s).

Proof. Throughout the proof, we write simply ρ∗ instead of ρ∗(π). Let s, t ∈ [0, 1]
be such that V (s, t) = 0. For each n ≥ 1, let (ρn0 , . . . , ρ

n
l(n)) be a sequence of length

l(n) in [0, 1] such that

ρn0 = s, ρnl(n) = t,

l(n)−1∑
k=0

V1

(
ρnk , ρ

n
k+1

)
≤ 1

n
.

If s = 0, then necessarily ρn1 = · · · = ρnl(n) = 0 and t = 0. From now on, we suppose
that s > 0. We consider two cases. If the sequence (l(n))n≥1 is bounded, then we
can extract a subsequence (

ρ
φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)
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such that l(φ(n)) = l does not depend on n and for any k ∈ { 0, . . . , l − 1 }, the
following limit exists:

lim
n→∞

ρ
φ(n)
k = ρk .

The map V1 being lower semicontinuous, we then have

∀k ∈ { 0, . . . , l − 1 } V1

(
ρk, ρk+1

)
= 0 ,

whence
∀k ∈ { 0, . . . , l } ρk = φk(ρ0) .

Since in addition ρ0 = s and ρl = t, we conclude that t = φl(s). Suppose next that
the sequence (l(n))n≥1 is not bounded. Our goal is to show that t = ρ∗. Using
Cantor’s diagonal procedure, we can extract a subsequence(

ρ
φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)
such that, for any k ≥ 0, the following limit exists:

lim
n→∞

ρ
φ(n)
k = ρk .

The map V1 being lower semicontinuous, we then have

∀k ≥ 0 V1

(
ρk, ρk+1

)
= 0 ,

whence
∀k ≥ 0 ρk = φk(ρ0) .

We also have V1

(
ρ∗, ρ∗

)
= 0. By Lemma 6.3, there exist p∗, β∗ such that 0 ≤ p∗ ≤

1− π/σ, ρ∗ ≤ β∗ ≤ 1 and

V1(ρ
∗, ρ∗) =

1

2
I
(
1− p∗, β∗)+ β∗I

((
1− F (1− ρ∗)

)
π

σ(1− p∗)
,
ρ∗

β∗

)
.

Since ρ∗ is in ]0, 1[, certainly we have β∗ > 0. Let ε > 0. The map

t �→ β∗I
((

1− F (1− ρ∗)
)
π

σ(1− p∗)
,
t

β∗

)
is continuous at ρ∗, thus there exists a neighborhood U of ρ∗ such that

∀ρ ∈ U V1(ρ
∗, ρ) ≤ ε .

Since s > 0, the sequence (φn(s))n∈N converges towards ρ∗ and φh(s) ∈ U for some
h ≥ 1. In particular,

lim
n→∞

ρ
φ(n)
h = φh(s) ∈ U ,

so that, for n large enough, ρ
φ(n)
h is in U and

V (ρ∗, t) ≤ V1

(
ρ∗, ρ

φ(n)
h

)
+ V

(
ρ
φ(n)
h , t

)
≤ ε+

1

n
.

Letting successively n go to ∞ and ε go to 0, we obtain that V (ρ∗, t) = 0. Let
δ ∈ ]0, ρ∗/2[ and let U = ]ρ∗ − δ, ρ∗ + δ[. Let α be the infimum

α = inf
{
V1

(
ρ0, ρ1

)
: ρ0 ∈ U, ρ1 �∈ U

}
.

Since V1 is lower semicontinuous on the compact set U ×
(
[0, 1] \ U

)
, then

∃(ρ∗0, ρ∗1
)
∈ U ×

(
[0, 1] \ U

)
α = V1

(
ρ∗0, ρ

∗
1

)
.

The function φ is non–decreasing and continuous, therefore

φ
(
U
)
= φ

(
[ρ∗ − δ, ρ∗ + δ]

)
=

[
φ(ρ∗ − δ), φ(ρ∗ + δ)

]
.
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Since ρ∗ is the unique fixed point of φ in ]0, 1], then φ(ρ) > ρ for ρ ∈]0, ρ∗[ and
φ(ρ) < ρ for ρ ∈]ρ∗, 1[. Therefore we have

ρ∗ − δ < φ(ρ∗ − δ) ≤ φ(ρ∗ + δ) < ρ∗ + δ .

Thus φ(U) ⊂ U and necessarily ρ∗1 �= φ(ρ∗0) and α > 0. It follows that any sequence
(ρ0, . . . , ρl) such that

ρ0 ∈ U ,
l−1∑
k=0

V1

(
ρk, ρk+1

)
< α

is trapped in U . As a consequence, a point t satisfying V (ρ∗, t) = 0 must belong to
U =]ρ∗ − δ, ρ∗ + δ[. This is true for any δ > 0, hence for any neighborhood of ρ∗;
thus t = ρ∗. �

6.5. Creation of a quasispecies. Our goal in this section is to prove a lower
bound for the probability of the creation of a quasispecies around the current best
fit chromosome in the population. The delicate situation is when there is only one
chromosome in the population which has the best fitness. This chromosome might
be destroyed or it might invade a positive fraction of the population. We will obtain
a lower bound on the fixation probability by estimating the probability that the
progeny of the best fit chromosome grows geometrically. The key estimate is stated
in the next proposition.

Proposition 6.7. Let π > 1 be fixed. There exist

δ0 > 0 , ρ > 1 , c0 > 0 , m0 ≥ 1 ,

which depend on π only, such that: for any set of parameters �, pC , pM satisfying
π = σ(1− pC)(1− pM )�, we have

∀m ≥ m0 ∀i ∈
{
1, . . . , 	δ0m


}
P
(
Nn+1 ≤ ρi

∣∣Nn = i
)
≤ exp(−c0i) .

Proof. We recall that, conditionally on Nn = i, the law of Nn+1 is the same as the
law of the random variable

2Bn∑
k=1

Y i
k ,

where the law of Bn is the binomial law B(m/2, 1 − pC), the variables Y i
k , k ∈ N,

i ∈ { 1, . . . ,m }, are Bernoulli i.i.d. random variables with parameter

εm(i) =
(
Fm(m− i+ 1) + · · ·+ Fm(m)

)
(1− pM )� .

Let ε > 0 be such that π(1− ε)2 > 1 and let

l(m, ε) =
⌊m
2
(1− pC)(1− ε)

⌋
+ 1 +

m

4
(1− pC)ε .

For m large enough, we have

l(m, ε) <
m

2
(1− pC) .
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Let ρ > 1. We write

P
(
Nn+1 < ρi

∣∣Nn = i
)
= P

( 2Bn∑
k=1

Y i
k < ρi

)

≤ P
(
Bn ≤ l(m, ε)

)
+ P

( 2l(m,ε)∑
k=1

Y i
k < ρi

)
.

We control the first probability with the help of Hoeffding’s inequality (see Appen-
dix E). The expected value of Bn is m(1− pC)/2 > l(m, ε); thus

P
(
Bn ≤ l(m, ε)

)
≤ exp

(
− 4

m

(m
2
(1− pC)− l(m, ε)

)2)
.

Recall that 1− pC > 1/σ. For m large enough, we have

m

2
(1− pC)− l(m, ε) ≥ m

2
(1− pC)

ε

2
− 1 ≥ mε

4σ
− 1 ≥ mε

8σ
.

It follows that

P
(
Bn ≤ l(m, ε)

)
≤ exp

(
− m

16

ε2

σ2

)
.

To control the second probability, we decompose the sum into i blocks and we use
the Tchebytcheff exponential inequality. Each block follows a binomial law, and we
bound the Cramér transform of each block by the Cramér transform of a Poisson
law having the same mean. More precisely, we choose for the block size

b =
⌊2l(m, ε)− m

4
(1− pC)ε

i
+ 1

⌋
,

and we define the sum associated to each block of size b:

∀j ∈ { 1, . . . , i } Y ′
j =

bj∑
k=b(j−1)+1

Y i
k .

Notice that Y ′
1 follows the binomial law with parameters b, εm(i). We will next

estimate from below the product bεm(i). By the choice of b and l, we have

b ≥ 1

i

(
2l(m, ε)− m

4
(1− pC)ε

)
,

l(m, ε) ≥ m

2
(1− pC)

(
1− ε

2

)
,

whence

b ≥ m

i
(1− pC)

(
1− ε

)
.

Let δ0 > 0 be such that

δ0 <
1

4
(1− pC)ε .

Let m0 ≥ 1 be associated to ε as in the hypothesis on Fm (see section 3.1). We
have, for m ≥ m0 and i ∈

{
1, . . . , 	δ0m


}
,

εm(i) ≥ σ(1− ε)
i

m
(1− pM )� ,

and we conclude from the previous inequalities that

bεm(i) ≥ (1− pC)(1− ε)2σ(1− pM )� = π(1− ε)2 .
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We choose ρ such that 1 < ρ < π(1− ε)2, this implies in particular that

ρ < E(Y ′
1) = bεm(i) .

We also have that

bi ≤ 2l(m, ε)− m

4
(1− pC)ε+ i

≤ 2l(m, ε)− m

4
(1− pC)ε+ δ0m ≤ 2l(m, ε) .

We then have, using the Tchebytcheff exponential inequality (see Appendix E):

P
( 2l(m,ε)∑

k=1

Y i
k ≤ ρi

)
≤ P

( bi∑
k=1

Y i
k ≤ ρi

)

≤ P
( i∑

j=1

Y ′
j ≤ ρi

)
≤ P

( i∑
j=1

−Y ′
j ≥ −ρi

)
≤ exp

(
− iΛ∗

−Y ′
1
(−ρ)

)
,

where Λ∗
−Y ′

1
is the Cramér transform of −Y ′

1 . Let Y
′′
1 be a random variable following

the Poisson law of parameter bεm(i). By Lemma C.3, we have

Λ∗
−Y ′

1
(−ρ) ≥ Λ∗

−Y ′′
1
(−ρ) = ρ ln

( ρ

bεm(i)

)
− ρ+ bεm(i) .

The map

λ �→ ρ ln
( ρ

λ

)
− ρ+ λ

is non–decreasing on [ρ,+∞[; thus

Λ∗
−Y ′′

1
(−ρ) ≥ ρ ln

( ρ

π(1− ε)2

)
− ρ+ π(1− ε)2 .

Let us denote by c0 the righthand quantity. Then c0 is positive and it depends only
on ρ, π and ε. Finally, we have for m ≥ m0, i ∈

{
1, . . . , 	δ0m


}
,

P
( 2l(m,ε)∑

k=1

Y i
k ≤ ρi

)
≤ exp(−c0i)

whence

P
(
Nn+1 ≤ ρi

∣∣Nn = i
)
≤ exp

(
− m

16

ε2

σ2

)
+ exp(−c0i) .

Let η ∈]0, 1[ be small enough so that

η
c0
2

<
ε2

16σ2
.

For such an η, the following holds:

∃m1 ∀m ≥ m1 exp
(
− m

16

ε2

σ2

)
≤ exp

(
− η

mc0
2

)(
1− exp

(
− η

c0
2

))
.

For m ≥ max(m0,m1) and i ∈
{
1, . . . , 	δ0m


}
, we have

P
(
Nn+1 ≤ ρi

∣∣Nn = i
)

≤ exp
(
− η

ic0
2

)(
1− exp

(
− η

c0
2

))
+ exp

(
− ηic0

)
≤ exp

(
− η

ic0
2

)
and this inequality yields the claim of the proposition. �
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We define
τ0 = inf

{
n ≥ 1 : Nn = 0

}
.

For δ > 0, let T (δ) be the first time the process (Nn)n≥0 becomes larger than δm:

T (δ) = inf {n ≥ 0 : Nn ≥ δm } .

Proposition 6.8. Let π > 1 be fixed. There exist δ0 > 0, κ > 0, p0 > 0 which
depend only on π such that

∀m ≥ 1 P
(
T (δ0) ≤ κ lnm, τ0 > T (δ0) |N0 = 1

)
≥ p0 .

Proof. Let Tk be the first time the process (Nn)n≥0 hits k:

Tk = inf {n ≥ 0 : Nn = k } .
Let δ0, ρ > 1, c0, m0 be as given in Proposition 6.7. We suppose that the process
(Nn)n≥0 starts from N0 = 1. Let E be the event:

E =
{
∀k ∈

{
1, . . . , 	δ0m


}
NTk+1 > ρNTk

}
.

We claim that, on the event E , we have

∀n ≤ T (δ0) Nn+1 > ρNn .

Let us prove this inequality by induction on n. We have T0 = 0 and N1 > ρN0, so
that the inequality is true for n = 0. Suppose that the inequality has been proved
until rank n < T (δ0), so that

∀k ≤ n Nk+1 > ρNk .

This implies in particular that

N0 < N1 < · · · < Nn < mδ0 .

Suppose that Nn = i. The above inequalities imply that Ti = n. The occurrence
of the event E yields that

NTi+1 = Nn+1 > ρNn ,

so that the inequality still holds at rank n+ 1. Iterating the inequality until time
T (δ0)− 1, we see that

NT (δ0)−1 > ρT (δ0)−1 .

Moreover NT (δ0)−1 ≤ mδ0, thus

T (δ0) ≤ 1 +
ln(mδ0)

ln ρ
.

Let m1 ≥ 1 and κ > 0 be such that

∀m ≥ m1 1 +
ln(mδ0)

ln ρ
≤ κ lnm.

The constants m1, κ depend only on δ0 and ρ, and we have

P
(
T (δ0) ≤ κ lnm, τ0 > T (δ0) |N0 = 1

)
≥ P (E) .

By Lemma A.2, the random variables NTk+1, k ≤ δ0m, are independent. To be
precise, we cannot directly apply Lemma A.2, because the Markov chain (Nn)n≥0

has an absorbing state at 0 and therefore it is not irreducible. So we consider
the modified Markov chain (Ñn)n≥0 which has the same transition probabilities as
(Nn)n≥0, except that we set the transition probability from 0 to 1 to be 1. The
event we wish to estimate in the lemma has the same probability for both processes.
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Indeed, we require that T (δ0) ≤ κ lnm and τ0 > T (δ0), so that the processes do
not visit 0 before T (δ0). Using Proposition 6.7, we obtain, for m larger than m0

and m1,

P (E) ≥
�δ0m�∏
k=1

P
(
NTk+1 > ρNTk

)

=

�δ0m�∏
k=1

(
1− P

(
N1 ≤ ρk

∣∣N0 = k
))

≥
�δ0m�∏
k=1

(
1− exp(−c0k)

)
≥

∞∏
k=1

(
1− exp(−c0k)

)
.

The last infinite product is converging. Let us denote its value by p1. Also let

p2 = min
{
P
(
T (δ0) ≤ κ lnm, τ0 > T (δ0) |N0 = 1

)
: m ≤ max(m0,m1)

}
.

The value p2 is positive and the inequality stated in the proposition holds with
p0 = min(p1, p2). �

Lemma 6.9. Let π > 1 be fixed. For any δ > 0, there exist h ≥ 1, c > 0, m0 ≥ 1,
which depend only on δ and π, such that: for any set of parameters �, pC , pM
satisfying π = σ(1− pC)(1− pM )�, we have, for any m ≥ m0,

P
(
N1 > 0, . . . , Nh−1 > 0, Nh > m(ρ∗ − δ) |N0 = 	mδ


)
≥ 1− exp(−cm) .

Proof. Let δ > 0. The sequence (φn(δ))n∈N converges to ρ∗, thus there exists h ≥ 1
such that φh(δ) > ρ∗− δ. By continuity of the map φ, there exist ρ0, ρ1, . . . , ρh > 0
such that ρ0 = δ, ρh > ρ∗ − δ and

∀k ∈ { 1, . . . , h } φ(ρk−1) > ρk .

Now,

P
(
N1 > 0, . . . , Nh−1 > 0, Nh > m(ρ∗ − δ) |N0 = 	mδ


)
≥ P

(
∀k ∈ { 1, . . . , h } Nk ≥ mρk |N0 = 	mδ


)
.

Passing to the complementary event, we have

P
(
∃k ∈ { 1, . . . , h− 1 } Nk = 0 or Nh ≤ m(ρ∗ − δ) |N0 = 	mδ


)
≤ P

(
∃k ∈ { 1, . . . , h } Nk < mρk |N0 = 	mδ


)
≤

∑
1≤k≤h

P
(
N1 ≥ mρ1, . . . , Nk−1 ≥ mρk−1, Nk < mρk |N0 = 	mδ


)
≤

∑
1≤k≤h

∑
i≥mρk−1

P
(
Nk−1 = i, Nk < mρk |N0 = 	mδ


)
≤

∑
1≤k≤h

∑
i≥mρk−1

P
(
Nk < mρk |Nk−1 = i

)
P
(
Nk−1 = i |N0 = 	mδ


)
≤

∑
1≤k≤h

P
(
N1 < mρk |N0 = 	mρk−1


)
.
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The large deviations upper bound for the transition probabilities of the Markov
chain (Nn)n≥0 stated in Proposition 6.4 implies that

∀k ∈ { 1, . . . , h } lim sup
m→∞

1

m
lnP

(
N1 < mρk |N0 = 	mρk−1


)
≤ − inf

{
V1

(
ρk−1, t

)
: t ≤ ρk

}
< 0 .

Since h is fixed, we conclude that

lim sup
m→∞

1

m
lnP

(
∃k ∈ { 1, . . . , h− 1 } Nk = 0

or Nh ≤ m(ρ∗ − δ)

∣∣∣N0 = 	mδ

)

< 0

and this yields the desired estimate. �

With the estimate of Lemma 6.9, we show that the process is very unlikely to
stay a long time in [mδ,m(ρ∗ − δ)].

Corollary 6.10. Let π > 1 be fixed. For any δ > 0, there exist h ≥ 1, c > 0,
m0 ≥ 1, which depend only on δ and π, such that: for any set of parameters
�, pC , pM satisfying π = σ(1− pC)(1− pM )�, we have, for any m ≥ m0,

∀k ∈ [mδ,m(ρ∗ − δ)] ∀n ≥ 0

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ n |N0 = k

)
≤ exp

(
− cm

⌊n
h

⌋)
.

Proof. Let k ∈ [mδ,m(ρ∗ − δ)]. Let δ > 0 and let h ≥ 1 and c > 0 be associated to
δ as in Lemma 6.9. We divide the interval { 0, . . . , n } into subintervals of length h
and we use repeatedly the estimate of Lemma 6.9. Let i ≥ 0. We write

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ (i+ 1)h |N0 = k

)
=

∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Nt ≤ m(ρ∗−δ) for 0 ≤ t ≤ (i+1)h, Nih = j |N0 = k

)
=

∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih, Nih = j |N0 = k

)
× P

(
mδ ≤ Nt ≤ m(ρ∗ − δ) for ih ≤ t ≤ (i+ 1)h |Nih = j

)
≤

∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih, Nih = j |N0 = k

)
× P

(
Nh ≤ m(ρ∗ − δ) |N0 = 	mδ


)
≤ P

(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih |N0 = k

)
exp(−cm) .

Iterating this inequality, we obtain

∀i ≥ 0 P
(
mδ ≤ Nt ≤ m(ρ∗ − δ) for 0 ≤ t ≤ ih |N0 = k

)
≤ exp(−cmi) .

The claim of the corollary follows by applying this inequality with i equal to the
integer part of n/h. �
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6.6. The catastrophe. We have computed the relevant estimates to reach the
neighborhood of ρ∗. Our next goal is to study the hitting time τ0 starting from a
neighborhood of ρ∗. Since we need only a lower bound, we shall study the hitting
time of a neighborhood of 0. For δ > 0, we define

τδ = inf
{
n ≥ 0 : Nn < mδ

}
.

Proposition 6.11. Let π > 1 be fixed. For any δ > 0, there exists m0 ≥ 1, which
depend only on δ and π, such that: for any set of parameters �, pC , pM satisfying
π = σ(1− pC)(1− pM )�, we have

∀m ≥ m0 ∀i ≥ 	(ρ∗ − δ)m
 ∀n ≥ 1

P
(
τδ ≤ n |N0 = i

)
≤ n exp

(
−mV (ρ∗ − δ, δ) +mδ

)
.

Proof. Let i ≥ 	(ρ∗ − δ)m
. The strategy consists in looking at the portion of the
trajectory starting at the last visit to the neighborhood of ρ∗ before reaching the
neighborhood of 0. Accordingly, we define

S = max
{
n ≤ τδ : Nn > (ρ∗ − δ)m

}
.

Notice that S is not a Markov time. We write, for n, k ≥ 1,

P
(
τδ ≤ n |N0 = i

)
=

∑
1≤s<t≤n

P
(
τδ = t, S = s |N0 = i

)
=

∑
1≤s<t≤n
s<t≤s+k

P
(
τδ = t, S = s |N0 = i

)
+

∑
1≤s<n

s+k<t≤n

P
(
τδ = t, S = s |N0 = i

)
.

Let h ≥ 1 and c > 0 be associated to δ as in Corollary 6.10. For 1 ≤ s < n and
t > s+ k,

P
(
τδ = t, S = s |N0 = i

)
=

∑
mδ≤j≤(ρ∗−δ)m

P
(
τδ = t, S = s, Ns+1 = j |N0 = i

)
≤

∑
mδ≤j≤(ρ∗−δ)m

P
(δm ≤ Nr ≤ (ρ∗ − δ)m

for s+ 1 ≤ r ≤ t− 1

∣∣∣∣Ns+1 = j
)

≤ m exp
(
− cm

⌊ t− s− 2

h

⌋)
,

whence ∑
1≤s<n

s+k<t≤n

P
(
τδ = t, S = s |N0 = i

)
≤ n

∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋)
.

For 1 ≤ s < t ≤ n and t ≤ s+ k,

P
(
τδ = t, S = s |N0 = i

)
≤

∑
j>(ρ∗−δ)m

P
(
τδ = t, S = s, Ns = j |N0 = i

)
≤

∑
j>(ρ∗−δ)m

P
(
Nt < δm |Ns = j

)
≤ mP

(
Nt−s < δm |N0 = 	(ρ∗ − δ)m


)
,
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whence∑
1≤s<n

s<t≤s+k

P
(
τδ = t, S = s |N0 = i

)
≤ n

∑
1≤t≤k

mP
(
Nt < δm |N0 = 	(ρ∗ − δ)m


)
.

Putting together the previous inequalities, we obtain

P
(
τδ ≤ n |N0 = i

)
≤ n

∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋)
+ n

∑
1≤t≤k

mP
(
Nt < δm |N0 = 	(ρ∗ − δ)m


)
.

We choose k large enough so that

lim sup
m→∞

1

m
ln

(∑
t≥k

m exp
(
− cm

⌊ t− 1

h

⌋))
< −V (ρ∗ − δ, δ) ,

and we use the large deviations upper bound stated in Corollary 6.5 to estimate
the second sum:

lim sup
m→∞

1

m
ln

( ∑
1≤t≤k

mP
(
Nt < δm |N0 = 	(ρ∗ − δ)m


))
≤ − min

1≤t≤k
Vt(ρ

∗ − δ, δ) ≤ −V (ρ∗ − δ, δ) .

Therefore there exists m0 ≥ 1 such that

∀m ≥ m0 ∀n ≥ 1 P
(
τδ ≤ n |N0 = i

)
≤ n exp

(
−mV (ρ∗ − δ, δ) +mδ

)
.

This proves the proposition. �

Lemma 6.12. Let V ∗ < V (ρ∗, 0). There exists δ > 0 such that

V (ρ∗ − δ, δ)− 2δ ≥ V ∗ .

Proof. Let V ∗ < V (ρ∗, 0). Let ε > 0 be such that V (ρ∗, 0) − 4ε > V ∗. For δ > 0,
we have

V (ρ∗, 0) ≤ V (ρ∗, ρ∗ − δ) + V (ρ∗ − δ, δ) + V (δ, 0) .

Next we bound V (ρ∗, ρ∗ − δ) and V (δ, 0):

V (ρ∗, ρ∗ − δ) ≤ I
((

1− F (1− ρ∗)
)
π

σ
, ρ∗ − δ

)
= I

(
ρ∗, ρ∗ − δ

)
,

V (δ, 0) ≤ I
((

1− F (1− δ)
)

σ
, 0

)
≤ − ln

(
1−

(
1− F (1− δ)

)
σ

)
,

and the righthand terms go to 0 when δ goes to 0. Thus we can choose δ > 0 such
that

δ < ε , V (δ, 0) < ε , V (ρ∗, ρ∗ − δ) < ε .

We then have

V (ρ∗ − δ, δ)− 2δ ≥ V (ρ∗, 0)− 2δ − 2ε ≥ V ∗ ,

and the lemma is proved. �

Corollary 6.13. For any V ∗ < V (ρ∗, 0), there exist δ > 0 and m0 ≥ 1 such that

∀m ≥ m0 P
(
τδ > exp(mV ∗) |N0 = 	(ρ∗ − δ)m


)
≥ 1− exp(−mδ) .
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Proof. Let δ > 0 be associated to V ∗ as in Lemma 6.12. We apply Proposition 6.11
with δ and n = exp(mV ∗): there exists m0 ≥ 1 such that

∀m ≥ m0 P
(
τδ ≤ exp(mV ∗) |N0 = 	(ρ∗ − δ)m


)
≤ exp(−mδ) .

This is the desired inequality. �

For δ > 0, let T (ρ∗ − δ) be the first time the process (Nn)n≥0 becomes larger
than (ρ∗ − δ)m:

T (ρ∗ − δ) = inf {n ≥ 0 : Nn ≥ (ρ∗ − δ)m } .

Proposition 6.14. Let π > 1 be fixed. For any δ > 0, there exist κ > 0 and
p1 > 0, which depend only on π and δ, such that: for any set of parameters �, pC , pM
satisfying π = σ(1− pC)(1− pM )�, we have

∀m ≥ 1 P
(
T (ρ∗ − δ) ≤ κ lnm

∣∣N0 = 1
)
≥ p1 .

Proof. Let κ, δ0 be given by Proposition 6.8. Let δ > 0 be associated to V ∗ as in
Corollary 6.13. We suppose in addition that δ < δ0. Then we have

P
(
T (ρ∗ − δ) ≤ 2κ lnm

∣∣N0 = 1
)

≥
κ lnm∑
k=1

∑
i≥mδ

P
(
T (ρ∗ − δ) ≤ 2κ lnm, T (δ) = k, Nk = i

∣∣N0 = 1
)

=
κ lnm∑
k=1

∑
i≥mδ

P
(
T (ρ∗ − δ) ≤ 2κ lnm

∣∣T (δ) = k, Nk = i
)

× P
(
T (δ) = k, Nk = i

∣∣N0 = 1
)

=
κ lnm∑
k=1

∑
i≥mδ

P
(
T (ρ∗ − δ) ≤ 2κ lnm− k

∣∣N0 = i
)
× P

(
T (δ) = k, Nk = i

∣∣N0 = 1
)

≥ P
(
T (ρ∗ − δ) ≤ κ lnm

∣∣N0 = 	mδ

)
P
(
T (δ) ≤ κ lnm

∣∣N0 = 1
)
.

Let h ≥ 1, c > 0 as in Lemma 6.9. We suppose that m is large enough so that
κ lnm ≥ h. Using again the Markov property, we obtain

P
(
T (ρ∗ − δ) ≤ κ lnm

∣∣N0 = 	mδ

)

≥ P
(
N1 > 0, . . . , Nh−1 > 0, Nh > m(ρ∗ − δ)

∣∣N0 = 	mδ

)

≥ 1− exp(−cm) .

Putting together the previous inequalities, and using the inequality of Proposi-
tion 6.8, we conclude that for m large enough,

P
(
T (ρ∗ − δ) ≤ 2κ lnm

∣∣N0 = 1
)
≥

(
1− exp(−cm)

)
p0 .

This implies the result stated in the proposition. �

Corollary 6.15. Let π > 1 be fixed. For any V ∗ < V (ρ∗, 0), there exists p∗ > 0,
which depends only on V ∗ and π, such that: for any set of parameters �, pC , pM
satisfying π = σ(1− pC)(1− pM )�, we have

∀m ≥ 1 P
(
τ0 ≥ exp(mV ∗)

∣∣N0 = 1
)
≥ p∗ .
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Proof. Let V ∗ < V (ρ∗, 0). Let δ > 0 and m0 ≥ 1 be associated to V ∗ as in
Corollary 6.13. Let κ > 0 and p1 > 0 be associated to δ as in Proposition 6.14. We
write

P
(
τ0 ≥ exp(mV ∗)

∣∣N0 = 1
)

≥ P
(
τ0 ≥ exp(mV ∗), T (ρ∗ − δ) ≤ κ lnm |N0 = 1

)
≥

∑
i>(ρ∗−δ)m

P
(
τ0 ≥ exp(mV ∗), T (ρ∗ − δ) ≤ κ lnm, NT (ρ∗−δ) = i |N0 = 1

)
≥

∑
i>(ρ∗−δ)m

P
(
τ0 ≥ exp(mV ∗)

∣∣NT (ρ∗−δ) = i, τ0 > T (ρ∗ − δ)
)

P
(
NT (ρ∗−δ) = i, τ0 > T (ρ∗ − δ), T (ρ∗ − δ) ≤ κ lnm |N0 = 1

)
≥ P

(
τ0 ≥ exp(mV ∗)

∣∣N0 = 	(ρ∗ − δ)m

)

×P
(
τ0 > T (ρ∗ − δ), T (ρ∗ − δ) ≤ κ lnm |N0 = 1

)
.

Since τ0 ≥ τδ, we have by Corollary 6.13 that for m ≥ m0,

P
(
τ0 ≥ exp(mV ∗) |N0 = 	(ρ∗ − δ)m


)
≥ 1− exp(−mδ) ,

whence, by Proposition 6.14,

P
(
τ0 ≥ exp(mV ∗)

∣∣N0 = 1
)
≥ (1− exp(−mδ)) p1 .

For m < m0, the above probability is still positive, and we obtain the desired
conclusion. �

7. Proof of Theorems 2.2, 2.3, 2.4, 2.5, 2.6

7.1. Proof of Theorem 2.2. Let f∗
0 be as in Theorem 2.2. By Proposition 6.1,

we have

∀n ≥ 0 N(Xn, f
∗
0 ) ≥ Nn

(
0, 1) .

Let V ∗ > 0 be such that V ∗ < V (ρ∗, 0). By Corollary 6.15, there exists p∗ > 0,
which depends on π and V ∗ only, such that

∀m ≥ 1 P
(
∀n ≤ exp(mV ∗) Nn(0, 1) ≥ 1

)
≥ p∗ .

This yields the conclusion of Theorem 2.2.

7.2. Proof of Theorem 2.3. We apply Proposition 6.1 with n = t, starting time s,
λ = Λ

(
Xs, 	ρ∗m


)
. By definition of Λ,

N
(
Xs,Λ

(
Xs, 	ρ∗m


))
≥ 	ρ∗m
 ,

therefore

∀t ≥ s N
(
Xt,Λ

(
Xs, 	ρ∗m


))
≥ Nt

(
s, 	ρ∗m


)
.

If for some time t > s, we have

max
1≤i≤m

f
(
Xt(i)

)
< Λ

(
Xs, 	ρ∗m


)
,

then

N
(
Xt,Λ

(
Xs, 	ρ∗m


))
= 0 ,

and from the previous inequality, we conclude that Nt

(
s, 	ρ∗m


)
= 0. Yet

P
(
Nt

(
s, 	ρ∗m


)
= 0

)
≤ P

(
τ0 ≤ t− s

∣∣N0 = 	ρ∗m

)
.
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Let V ∗ > 0 be such that V ∗ < V (ρ∗, 0). Let δ > 0 as in Lemma 6.12. By
Proposition 6.11, there exists m0 ≥ 1 such that, for m ≥ m0,

P
(
τ0 ≤ t− s

∣∣N0 = 	ρ∗m

)
≤ (t− s) exp(−V ∗m) .

We sum this inequality over s, t such that s < t ≤ exp(V ∗m/4) to obtain

P
(
∃ t ≤ exp(V ∗m/4) max

1≤i≤m
f
(
Xt(i)

)
< max

0≤s≤t
Λ
(
Xs, 	ρ∗m


))
≤

∑
0≤s<t≤exp(V ∗m/4)

(t− s) exp(−V ∗m) ≤ exp(−V ∗m/4) .

This proves Theorem 2.3.

7.3. Proof of Theorems 2.4 and 2.5. For E a subset of
(
{ 0, 1 }�

)m
, we define

the entrance time of the genetic algorithm in E as

τ (E) = inf
{
n ≥ 0 : Xn ∈ E

}
.

For λ ∈ R and k ≥ 1, we define L(λ, k) as the set of the populations containing at
least k chromosomes with a fitness larger than or equal to λ:

L(λ, k) =
{
x ∈

(
{ 0, 1 }�

)m
: Λ(x, k) ≥ λ

}
.

Recall that the quantity Δ(λ, γ) is defined just before Theorem 2.4.

Lemma 7.1. Let π > 1. Let V ∗ < V (ρ∗, 0). There exist positive constants δ, κ∗,m0

which depend only on π and V ∗ such that

∀λ < γ ∀x0 ∈ L
(
λ, 	(ρ∗ − δ)m


)
∀m ≥ m0

P
(
τ
(
L
(
γ, 	(ρ∗ − δ)m


))
>

κ∗

2
(lnm)m2(pM )−Δ(λ,γ)

∣∣X0 = x0

)
≤ κ∗(lnm)m2(pM )−Δ(λ,γ) exp

(
−mV ∗) .

Proof. Let π > 1. Let V ∗ < V (ρ∗, 0). Let δ > 0 and m0 ≥ 1 be associated to V ∗

as in Corollary 6.13. Let p1 > 0 be associated to δ as in Proposition 6.14. Let us
fix λ < γ ∈ R. By the very definition of Δ(λ, γ), any chromosome in L(λ) can be
transformed with at most Δ(λ, γ) mutations into a chromosome of L(γ), and the
corresponding probability is bounded from below by

(pM )Δ(λ,γ)(1− pM )�−Δ(λ,γ) .

Let x0 belong to L
(
λ, 1

)
. The population x0 contains at least one chromosome

belonging to L(λ). By estimating the probability that this chromosome is selected,
that there is no crossover on it, and that it is transformed by mutation into a
chromosome in L(γ), we obtain that

P
(
X1 ∈ L(γ, 1)

∣∣X0 = x0

)
≥ Fm(m)(1− pC)(pM )Δ(λ,γ)(1− pM )�−Δ(λ,γ) .

The hypothesis on Fm (see section 3.1) implies that, for m large enough, Fm(m) ≥
σ/(2m). Since we have also π > 1, then

P
(
X1 ∈ L(γ, 1)

∣∣X0 = x0

)
≥ 1

2m
(pM )Δ(λ,γ) .

Suppose next that X1 belongs to L
(
γ, 1

)
. Then the population X1 contains at least

one chromosome in L(γ), hence N(X1, γ) ≥ 1, and by Proposition 6.1, we have

∀n ≥ 1 N(Xn, γ) ≥ Nn

(
1, 1) .
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Thus, by Proposition 6.14, there exist κ > 0 and p1 > 0 such that, for any x1 ∈
L
(
γ, 1

)
, and any m ≥ 1,

P
(
τ
(
L
(
γ, 	(ρ∗ − δ)m


))
≤ κ lnm+ 1

∣∣X1 = x1

)
≥ P

(
T (ρ∗ − δ) ≤ κ lnm+ 1

∣∣N1 = 1
)
≥ p1 .

Combining the previous bounds, we get

∀x0 ∈ L
(
λ, 1

)
P
(
τ
(
L
(
γ, 	(ρ∗ − δ)m


))
≤ κ lnm+ 1

∣∣X0 = x0

)
≥ p1

1

2m
(pM )Δ(λ,γ) .

We decompose { 1, . . . , n } into subintervals of length 	κ lnm + 1
 and we use the
previous estimate: we obtain that for any x0 ∈ L(λ, 1) and n ≥ 1,

P
(
τ
(
L(λ, 1)c

)
> n, τ

(
L
(
γ, 	(ρ∗ − δ)m


))
> n

∣∣X0 = x0

)
≤

(
1− p1

1

2m
(pM )Δ(λ,γ)

)⌊ n

	κ lnm+ 1

⌋
.

Next let x0 ∈ L
(
λ, 	(ρ∗−δ)m


)
. We use Proposition 6.11 and the previous estimate:

there exists m0 ≥ 1 such that, for n ≥ 1,

P
(
τ
(
L
(
γ, 	(ρ∗ − δ)m


))
> n

∣∣X0 = x0

)
≤ P

(
τ
(
L(λ, 1)c

)
≤ n

∣∣X0 = x0

)
+P

(
τ
(
L(λ, 1)c

)
> n, τ

(
L
(
γ, 	(ρ∗ − δ)m


))
> n

∣∣X0 = x0

)
≤ n exp

(
−mV ∗)+ exp

(
− p1

1

2m
(pM )Δ(λ,γ)

⌊ n

	κ lnm+ 1

⌋)

.

We choose

κ∗ =
8κV ∗

p1
, n =

1

2
κ∗(lnm)m2(pM )−Δ(λ,γ) ,

and for m large enough, we obtain the estimate stated in the lemma. �

Now let λ0 < · · · < λr be an increasing sequence such that

λ0 = min
{
f(u) : u ∈ { 0, 1 }�

}
, λr = max

{
f(u) : u ∈ { 0, 1 }�

}
.

Let π > 1, V ∗ < V (ρ∗, 0) and let δ, κ∗,m0 be as given by Lemma 7.1. We write

τ∗ ≤
r∑

k=1

(
τ
(
L
(
λk, 	(ρ∗ − δ)m


))
− τ

(
L
(
λk−1, 	(ρ∗ − δ)m


)))
.

Thus, for any starting population x0, we have

P
(
τ∗ ≤ κ∗

2
(lnm)m2

r∑
k=1

(pM )−Δ(λk−1,λk)
∣∣X0 = x0

)
≥ P

(
∀k ∈ { 1, . . . , r } τ

(
L
(
λk, 	(ρ∗ − δ)m


))
− τ

(
L
(
λk−1, 	(ρ∗ − δ)m


))
≤ κ∗

2
(lnm)m2(pM )−Δ(λk−1,λk)

∣∣X0 = x0

)
.
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To control this last probability, we use repeatedly the Markov property and the
estimate of Lemma 7.1. Finally, we obtain

P
(
τ∗ ≤ κ∗

2
(lnm)m2

r∑
k=1

(pM )−Δ(λk−1,λk)
∣∣X0 = x0

)
≥

r∏
k=1

(
1− κ∗(lnm)m2(pM )−Δ(λk−1,λk) exp

(
−mV ∗)) .

We now complete the proof of Theorem 2.4. We suppose that m ≥ c∗� ln � and that
pM ≥ c∗/�. Since Δ(λk−1, λk) ≤ � for any k, we have for m large enough

∀k ∈ { 1, . . . , r } κ∗(lnm)m2(pM )−Δ(λk−1,λk) ≤ exp
(
2m/c∗

)
.

We take c∗ such that 2/c∗ < V ∗/2 and we obtain, for m large enough,

P
(
τ∗ ≤ κ∗

2
(lnm)m2

r∑
k=1

(pM )−Δ(λk−1,λk)
∣∣X0 = x0

)
≥

(
1− exp

(
−mV ∗/2

))2�
≥ 1

2
.

The bound on the expectation of τ∗ is a consequence of this estimate and Lemma A.3.
This completes the proof of Theorem 2.4.

We complete next the proof of Theorem 2.5. The proof is a variant of the
previous argument. We take c∗ such that

c∗ > κ∗ , c∗ >
4

V ∗ , c∗ >
2γ

V ∗Δ
.

We suppose that m ≥ c∗Δ ln � and that pM ≥ c∗/�. Let k ∈ { 1, . . . , r }. Since
Δ(λk−1, λk) ≤ Δ, we have for m large enough,

κ∗(lnm)m2(pM )−Δ(λk−1,λk) ≤ (lnm)m2�Δ ≤ exp
(
2m/c∗

)
.

It follows that

P
(
τ∗ ≤ 1

2
(lnm)m2�γ+Δ

∣∣X0 = x0

)
≥

(
1− exp

(
−mV ∗/2

))�γ
≥ 1

2
.

We conclude as before with the help of Lemma A.3.

7.4. Proof of Theorem 2.6. Let V ∗ < V (ρ∗, 0) and let δ > 0 as in Lemma 6.12.
Let

λ∗ = max
{
f(u) : u ∈ { 0, 1 }�

}
.

We apply the estimate on the invariant measure given in Lemma A.1 with the
following sets:

V = Λ
(
λ∗, 	(ρ∗ − δ)m


)
, G = Λ

(
λ∗, 1

)c
.

We obtain

μ(G) ≤ sup
x∈V

P
(
τG < τV

∣∣X0 = x
)
sup
y∈G

E
(
τV

∣∣X0 = y
)
.

Let x ∈ V and n ≥ 1. We have

P
(
τG < τV

∣∣X0 = x
)
≤ P

(
τG ≤ n

∣∣X0 = x
)
+ P

(
n < τG < τV

∣∣X0 = x
)
.

We estimate separately each term. Let i = N
(
x, λ∗). Then i ≥ 	(ρ∗ − δ)m
 and

P
(
τG ≤ n

∣∣X0 = x
)
= P

(
∃ k ≤ n N

(
Xk, λ

∗) = 0
∣∣X0 = x

)
.
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From Proposition 6.1, if X0 = x, we have

∀k ≥ 0 N
(
Xk, λ

∗) ≥ Nk(0, i) .

Applying Proposition 6.11, we obtain, for m large enough,

P
(
τG ≤ n

∣∣X0 = x
)
≤ P

(
τ0 ≤ n

∣∣N0 = i
)
≤ n exp(−mV ∗) .

For the second term, we remark that, on the event {n < τG < τV }, we have that

∀k ∈ { 1, . . . , n } 1 ≤ Nk(0, 1) < 	(ρ∗ − δ)m
 .

We use Proposition 6.14 and we decompose { 1, . . . , n } into subintervals of length
κ lnm+ 1 to conclude that

P
(
n < τG < τV

∣∣X0 = x
)
≤ (1− p1)

⌊
n

κ lnm+1

⌋
.

Putting together the previous inequalities, we have, for n ≥ 1,

P
(
τG < τV

∣∣X0 = x
)
≤ n exp(−mV ∗) + (1− p1)

⌊
n

κ lnm+1

⌋
.

We take n = m2 and we conclude that, for m large enough,

P
(
τG < τV

∣∣X0 = x
)
≤ 2m2 exp(−mV ∗) .

Next let y ∈ G. Using the bounds obtained in Theorem 2.4 with r = 1 and Δ = �,
we have

∀y ∈ G E(τ∗
∣∣X0 = y

)
≤ 2 + κ∗(lnm)m2 (pM )−� .

Inspecting the proof of Theorem 2.4, we see that we have in fact proved this estimate
for τV (this is a little stronger since τV ≥ τ∗). Thus, for pM ≥ c∗/�, m ≥ c∗� ln �
and m large enough, we have

μ(G) ≤ 2m2 exp(−mV ∗)×
(
2 + κ∗(lnm)m2 (pM )−�

)
≤ m5 exp

(
− � ln pM −mV ∗) .

We choose c∗ large enough in order to obtain the conclusion of Theorem 2.6.

Appendix A. Markov chains

We state here some results on Markov chains with finite state space which we use
in the main proofs. In the sequel, we consider a discrete time Markov chain (Xt)t≥0

with values in a finite state space E and with transition matrix (p(x, y))x,y∈E .

Invariant probability measure. If the Markov chain is irreducible and aperiodic,
then it admits a unique invariant probability measure μ, i.e., the set of equations

μ(y) =
∑
x∈E

μ(x) p(x, y) , y ∈ E ,

admits a unique solution.
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Representation formula. Let us suppose that the Markov chain (Xt)t≥0 is irre-
ducible and aperiodic. Let μ be the invariant probability measure of (Xt)t≥0. Let
V be a non–empty subset of E . We define

τV = min
{
n ≥ 1 : Xn ∈ V

}
.

We then have, for any subset G of E ,

μ(G) =
1

μ(V )

∫
V

dμ(x)E
( τV −1∑

k=0

1G(Xk)
∣∣∣X0 = x

)
.

This formula can be found in the book of Freidlin and Wentzell (see chapter 6,
section 4 of [21]), where it is attributed to Khas’minskii, and in the books of Kifer
[27, 28].

Lemma A.1. For any subsets V,G of E , we have

μ(G) ≤ sup
x∈V

P
(
τG < τV

∣∣X0 = x
)
sup
y∈G

E
(
τV

∣∣X0 = y
)
.

Proof. From the representation formula for the invariant measure, we obtain that

μ(G) ≤ sup
x∈V

E
( τV −1∑

k=0

1G(Xk)
∣∣∣X0 = x

)
.

Let us try to bound the last expectation. We denote by Ex the expectation for the
Markov chain starting from x. We have

Ex

( τV −1∑
k=0

1G(Xk)
)

= Ex

( ∑
y∈G

1τG<τV 1XτG
=y

τV −1∑
k=0

1G(Xk)
)

=
∑
y∈G

Ey

( τV −1∑
k=0

1G(Xk)
)
Px

(
τG < τV , XτG = y

)
≤

∑
y∈G

Ey

(
τV

)
Px

(
τG < τV , XτG = y

)
≤ sup

y∈G
Ey

(
τV

)
Px

(
τG < τV

)
.

Taking the supremum over x ∈ V , we obtain the inequality stated in the lemma. �

For x ∈ E , we define

T (x) = inf
{
n ≥ 0 : Xn = x

}
.

Lemma A.2. Let k ≥ 1 and let x1, . . . , xk be k distinct points of E . The random
variables XT (x1)+1, . . . , XT (xk)+1 are independent.

Proof. We do the proof by induction over k. For k = 1, there is nothing to prove.
Let k ≥ 2 and suppose that the result has been proved until rank k − 1. Let
x1, . . . , xk be k distinct points of E . Let y1, . . . , yk be k points of E . Let us set

T = min
{
T (xi) : 1 ≤ i ≤ k

}
.
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Let us compute

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk

)
=

∑
1≤i≤k

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk, T = T (xi)

)
=

∑
1≤i≤k

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk |T = T (xi)

)
P
(
T = T (xi)

)
=

∑
1≤i≤k

P
(
∀j �= i XT (xj)+1 = yj , X1 = yi |X0 = xi

)
P
(
T = T (xi)

)
=

∑
1≤i≤k

p(xi, yi)P
(
∀j �= i XT (xj)+1 = yj |X0 = yi

)
P
(
T = T (xi)

)
.

We use the induction hypothesis:

P
(
∀j �= i XT (xj)+1 = yj |X0 = yi

)
=

∏
j 
=i

p(xj , yj) .

Reporting in the sum, we get

P
(
XT (x1)+1 = y1, . . . , XT (xk)+1 = yk

)
=

∑
1≤i≤k

∏
1≤j≤k

p(xj , yj)P
(
T = T (xi)

)
=

∏
1≤j≤k

p(xj , yj) .

This completes the induction step and the proof. �

Lemma A.3. Let τ be a stopping time associated to the Markov chain (Xt)t≥0. If
there exists an integer k and β positive such that

∀x ∈ E P
(
τ ≤ k |X0 = x

)
≥ β ,

then we have

∀x ∈ E E
(
τ |X0 = x

)
≤ k

β
.

Proof. Reversing the inequality, we have

∀x ∈ E P
(
τ > k |X0 = x

)
≤ 1− β .

Since the bound is uniform with respect to x, we prove by induction on n that

∀x ∈ E ∀n ≥ 1 P
(
τ > nk |X0 = x

)
≤ (1− β)n .

We compute next the expectation of τ as follows: for x ∈ E ,

E
(
τ |X0 = x

)
=

∞∑
n=0

P
(
τ > n |X0 = x

)
≤

∞∑
i=0

k−1∑
l=0

P
(
τ > ik + l |X0 = x

)
≤

∞∑
i=0

kP
(
τ > ik |X0 = x

)
≤

∞∑
i=0

k(1− β)i ≤ k

β
,

as requested. �
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Appendix B. Monotonicity

We first recall some standard definitions concerning monotonicity and coupling
for stochastic processes. A classical reference is Liggett’s book [29], especially for
applications to particle systems. In the next two definitions, we consider a discrete
time Markov chain (Xn)n≥0 with values in a space E . We suppose that the state
space E is finite and that it is equipped with a partial order ≤. A function f : E → R

is non–decreasing if

∀x, y ∈ E x ≤ y ⇒ f(x) ≤ f(y) .

Definition B.1. The Markov chain (Xn)n≥0 is said to be monotone if, for any
non–decreasing function f , the function

x ∈ E �→ E
(
f(Xn) |X0 = x

)
is non–decreasing.

A natural way to prove monotonicity is to construct an adequate coupling.

Definition B.2. A coupling for the Markov chain (Xn)n≥0 is a family of processes
(Xx

n)n≥0 indexed by x ∈ E , which are all defined on the same probability space, and
such that, for x ∈ E , the process (Xx

n)n≥0 is the Markov chain (Xn)n≥0 starting
from X0 = x. The coupling is said to be monotone if

∀x, y ∈ E x ≤ y ⇒ ∀n ≥ 1 Xx
n ≤ Xy

n .

If there exists a monotone coupling, then the Markov chain is monotone.

Appendix C. Stochastic domination

Let μ, ν be two probability measures on R. We say that ν stochastically domi-
nates μ, which we denote by μ 
 ν, if for any non–decreasing positive function f ,
we have μ(f) ≤ ν(f).

Lemma C.1. Let n ≥ 1, p ∈ [0, 1], λ > 0 be such that (1 − p)n ≥ exp(−λ).
Then the binomial law B(n, p) of parameters n, p is stochastically dominated by the
Poisson law P(λ) of parameter λ.

Proof. LetX1, . . . , Xn be independent random variables with common law the Pois-
son law of parameter − ln(1−p). Let Y be a further random variable, independent
of X1, . . . , Xn, with law the Poisson law of parameter λ + n ln(1 − p). Obviously,
we have

Y +X1 + · · ·+Xn ≥ min(X1, 1) + · · ·+min(Xn, 1) .

Moreover, the law of the lefthand side is the Poisson law of parameter λ, while the
law of the righthand side is the binomial law B(n, p). �

Lemma C.2. Let λ > 0 and let Y be a random variable with law the Poisson law
P(λ) of parameter λ. For any t ≥ λ, we have

P (Y ≥ t) ≤
(λe

t

)t

.
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Proof. We write

P (Y ≥ t) =
∑
k≥t

λk

k!
exp(−λ) =

∑
k≥t

λk−t

k!
exp(−λ)λt

≤
∑
k≥t

tk−t

k!
exp(−λ)λt ≤

(λe
t

)t

. �

Let Y be a random variable following the Poisson law P(λ). For any t ∈ R, we
have

ΛY (t) = lnE
(
exp(tY )

)
= ln

( ∞∑
k=0

λk

k!
exp(−λ+ kt)

)
= λ

(
exp(t)− 1

)
.

For any α, t ∈ R,

ΛαY (t) = ΛY (αt) = λ
(
exp(αt)− 1

)
.

Let us compute the Fenchel–Legendre transform Λ∗
αY . By definition, for x ∈ R,

Λ∗
αY (x) = sup

t∈R

(
tx− λ

(
exp(αt)− 1

))
.

The maximum is attained at t = (1/α) ln(x/(λα)), hence

Λ∗
αY (x) =

x

α
ln

( x

λα

)
− x

α
+ λ .

Lemma C.3. Let p ∈ [0, 1] and let n ≥ 1. Let X be a random variable following
the binomial law B(n, p). Let Y be a random variable following the Poisson law
P(np). For any α ∈ R, we have Λ∗

αX ≥ Λ∗
αY .

Proof. For any t ∈ R, we have

ΛX(t) = lnE
(
exp(tX)

)
= n ln

(
1− p+ p exp(t)

)
≤ np

(
exp(t)− 1

)
.

For any α, t ∈ R,

ΛαX(t) = ΛX(αt) ≤ np
(
exp(αt)− 1

)
.

It follows that

∀t ∈ R ΛαX(t) ≤ ΛαY (t) .

Taking the Fenchel–Legendre transform, we obtain

∀x ∈ R Λ∗
αX(x) ≥ Λ∗

αY (x)

as required. �

Appendix D. Binomial estimate

We recall a basic estimate for the binomial coefficients.

Lemma D.1. For any n ≥ 1, any k ∈ { 0, . . . , n }, we have∣∣∣ ln n!

k!(n− k)!
+ k ln

k

n
+ (n− k) ln

n− k

n

∣∣∣ ≤ 2 lnn+ 3 .
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Proof. The proof is standard (see for instance [18]). Setting φ(n) = lnn!−n lnn+n,
for n ∈ N, we have

ln
n!

k!(n− k)!
= lnn!− ln k!− ln(n− k)!

= n lnn−n+φ(n)−
(
k ln k− k+φ(k)

)
−

(
(n− k) ln(n− k)− (n− k) +φ(n− k)

)
= −k ln

k

n
− (n− k) ln

n− k

n
+ φ(n)− φ(k)− φ(n− k) .

Comparing the discrete sum lnn! =
∑

1≤k≤n ln k to the integral
∫ n

1
lnx dx, we see

that 1 ≤ φ(n) ≤ lnn+ 2 for all n ≥ 1. On one hand,

φ(n)− φ(k)− φ(n− k) ≤ lnn ,

on the other hand,

φ(n)− φ(k)− φ(n− k) ≥ 1− (ln k + 2)− (ln(n− k) + 2) ≥ −3− 2 lnn ,

and we have the desired inequalities. �

Appendix E. Exponential inequalities

Hoeffding’s inequality. We state Hoeffding’s inequality for Bernoulli random
variables [24]. Suppose that X is a random variable with law the binomial law
B(n, p). We have

∀t < np P (X < t) ≤ exp
(
− 2

n

(
np− t)2

)
.

Tchebytcheff exponential inequality. Let X1, . . . , Xn be i.i.d. random vari-
ables with common law μ. Let Λ be the Log–Laplace of μ, defined by

∀t ∈ R Λ(t) = ln
(∫

R

exp(ts) dμ(s)
)
.

Let Λ∗ be the Cramér transform of μ, defined by

∀x ∈ R Λ∗(x) = sup
t∈R

(
tx− Λ(t)

)
.

We suppose that μ is integrable and we denote by m its mean, i.e., m =
∫
R
x dμ(x).

We then have

∀x ≥ m P
( 1

n

(
X1 + · · ·+Xn

)
≥ x

)
≤ exp

(
− nΛ∗(x)

)
.
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[8] Raphaël Cerf, Une théorie asymptotique des algorithmes génétiques, Ph.D. thesis, Université
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[22] David Goldberg, Genetic algorithms in search, optimization and machine learning, Addison–

Wesley, 1989.
[23] David Greenhalgh and Stephen Marshall, Convergence criteria for genetic algorithms, SIAM

J. Comput. 30 (2000), no. 1, 269–282, DOI 10.1137/S009753979732565X. MR1762714
[24] Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer.

Statist. Assoc. 58 (1963), 13–30. MR0144363
[25] John H. Holland, Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence, University of Michigan Press, Ann
Arbor, Mich., 1975. MR0441393

[26] Martin Nilsson Jacobi and Mats Nordahl, Quasispecies and recombination, Theoretical Pop-
ulation Biology 70 (2006), no. 4, 479–485.

[27] Yuri Kifer, Random perturbations of dynamical systems, Progress in Probability and Statis-
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