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ON NORMAL APPROXIMATIONS
TO SYMMETRIC HYPERGEOMETRIC LAWS

LUTZ MATTNER AND JONA SCHULZ

Abstract. The Kolmogorov distances between a symmetric hypergeometric
law with standard deviation σ and its usual normal approximations are com-
puted and shown to be less than 1/(

√
8π σ), with the order 1/σ and the

constant 1/
√

8π being optimal. The results of Hipp and Mattner (2007) for
symmetric binomial laws are obtained as special cases.

Connections to Berry-Esseen type results in more general situations con-
cerning sums of simple random samples or Bernoulli convolutions are ex-
plained.

Auxiliary results of independent interest include rather sharp normal distri-
bution function inequalities, a simple identifiability result for hypergeometric
laws, and some remarks related to Lévy’s concentration-variance inequality.
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1. Introduction and main result

1.1. Aim. This paper generalizes the error bound in the central limit theorem
for symmetric binomial laws of Hipp and Mattner [11], which up to now was the
only nontrivial example of a Berry-Esseen type inequality with an optimal constant
known to the present authors, to a still optimal bound covering also symmetric
hypergeometric laws. These solutions of special cases of the Berry-Esseen problem
are of some particular interest for more general situations, as we attempt to explain
in subsection 1.2 below, and are also remarkable in view of the apparent difficulty
of determining merely close to optimal Berry-Esseen type inequalities in related
special situations, as witnessed by the recent investigations of arbitrary binomial
laws by Nagaev et al. [21,22] and of arbitrary Bernoulli convolutions, which include
in particular all hypergeometric laws as is known from [31], by Neammanee [23].
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1.2. Background: Berry-Esseen for sampling with or without replace-
ment. Throughout this paper, let Φ denote the distribution function of the stan-
dard normal law. In this subsection, let g : [1,∞[ → ]0,∞] denote the pointwise
smallest function such that

‖F − Φ‖∞ ≤
g
(

β
σ3

)
√
n

(1)

holds whenever n ∈ N := {1, 2, 3, . . .} and F is the distribution function of the
standardized sum of n i.i.d. random variables with law P on the real line R with
mean μ, variance σ2 > 0, and finite third centred absolute moment β =∫
|x − μ|3 dP (x). Further let C ∈ ]0,∞] denote the smallest constant such that

g(�) ≤ C� holds for every � ∈ [1,∞[. Then the classical Berry-Esseen theorem
for sums of i.i.d. random variables states that C < ∞. More recent investigations
aim, among other goals, to obtain rather sharp upper bounds on the function g,
and here the best result announced so far appears to be Shevtsova’s [30] bound
min{0.4690�, 0.3322(� + 0.429), 0.3031(� + 0.646)} for each �, which, when com-
bined with a classical lower bound for C due to Esseen [5], yields in particular
0.4097 < (

√
10 + 3)/(6

√
2π ) ≤ C < 0.4690, and g(1) < 0.4690. However, as, by a

discussion of equality in Lyapunov’s moment inequality, β/σ3 = 1 iff P is a uniform
law on two points, without loss of generality 0 and 1, the special Berry-Esseen theo-
rem for symmetric binomial laws [11, Corollary 1.2] yields g(1) = 1/

√
2π < 0.3990.

Although, unfortunately, we do not yet know whether g is continuous at 1, the cited
special result suggests the possibility of an improvement of Shevtsova’s bound for
� close to 1.

Analogously, the Berry-Esseen type theorem for sampling without replacement
from a finite population due to Höglund [12] can be stated as follows: Let h :
[1,∞[ → ]0,∞] denote the pointwise smallest function such that

‖F − Φ‖∞ ≤
h
(

β
σ3

)
√
n (1 − n

N )
(2)

holds whenever N ∈ N and x ∈ R
N are such that the law P := 1

N

∑N
i=1 δxi

has
mean μ = 1

N

∑N
i=1 xi, variance σ2 = 1

N

∑N
i=1(xi − μ)2 > 0, and the third centred

absolute moment β = 1
N

∑N
i=1 |xi −μ|3, and whenever n ∈ {1, . . . , N − 1} and F is

the distribution function of

S − nμ√
n (1 − n

N ) σ
(3)

with S being the sum of a simple random sample of size n from x. Further let
D ∈ ]0,∞] denote the smallest constant such that h(�) ≤ D� holds for every
� ∈ [1,∞[. Then Höglund’s theorem states that D < ∞. With g and C as in the
previous paragraph, we have the simple Lemma 1.1 below, and hence C ≤ D, but
we are not aware of any published explicit upper bounds for h or D. However, using
again that β/σ3 = 1 iff P is a uniform law on two points, we see that the special
Berry-Esseen theorem for symmetric hypergeometric laws Theorem 1.3 below and
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the formula for σ0 in (37) (where F and σ have different meanings) yield

h(1) = sup
{√

n
(
1 − n

N

)
d : d, n,N as in Theorem 1.3(a)

}

= sup {2σ0d : d, σ0 as in Theorem 1.3(a)} = 1√
2π

by Remark 1.4(b) with τ = σ0, and by using the optimality of 1√
8π from Theo-

rem 1.3(a), or by using g(1) = 1√
2π and Lemma 1.1. Hence h(1) = g(1), suggesting

that any effective upper bounds for h(�) which might become available in the future
should be close to 1/

√
2π for � close to one, and perhaps even close to g(�) in any

case. Again, unfortunately, we do not yet know whether h is continuous at 1.

Lemma 1.1. The functions g and h introduced above satisfy g ≤ h.

Proof. Given � ∈ [1,∞[ and any γ ∈ R with γ < g(�), the definition of g(�) as
a supremum yields an n ∈ N and a law P on R with third standardized absolute
moment β/σ3 = � and, using a reflection argument if necessary, an s ∈ R with
Δ :=

√
n
(
P ∗n (]0, s[) − Φ

(
s−nμ√

n σ

))
> γ. Using the denseness with respect to weak

convergence of the laws with finite support and rational point masses following
from [1, Theorem 15.10] together with a simple truncation argument, we can take
xN ∈ R

N for N > n such that PN := 1
N

∑N
i=1 δxN,i

converges to P weakly and
together with its moments and absolute moments up to the third order, for N → ∞.
Since the law QN of the sum of a simple random sample of size n from PN differs
from P ∗n

N in the supremum distance by at most n(n−1)
2N (see [9]), and since P ∗n

N

tends weakly to P ∗n for N → ∞, we get
h(�)√
n

= lim
N→∞

h(�)√
n
(
1 − n

N

)

≥ lim
N→∞

⎛
⎝QN (]−∞, s[) − Φ

⎛
⎝ s− nμ√

n
(
1 − n

N

)
σ

⎞
⎠
⎞
⎠ ≥ Δ√

n

and hence h(�) > γ. �

1.3. Hypergeometric laws. Let us formally define hypergeometric and a few
related laws on R and collect some standard properties of them. For a ∈ R, we
write δa for the Dirac measure concentrated at a. For α ∈ R, we write αk :=∏k

j=1(α− j +1) and
(
α
k

)
:= αk/k! for k ∈ N0 := N∪{0}, and, with the exception of

the proof of Lemma 2.3, we put in this paper
(
α
k

)
:= 0 if k /∈ N0. Then, for n ∈ N0

and p ∈ [0, 1], the binomial law Bn,p can be defined by Bn,p({k}) := bn,p(k) :=(
n
k

)
pk(1− p)n−k for k ∈ Z, and a law P is Bernoulli if P = B1,p for some p ∈ [0, 1].

For r, b ∈ N0 and n ∈ {0, . . . , r + b}, we let Hn,r,b denote the hypergeometric law
of the number of red balls drawn in a simple random sample of size n from an urn
containing r red and b blue balls (red and blue, and not for example black and
white, since the present choice of the colours leads to the same initial letters in
several languages the authors happen to know), so that we have

Hn,r,b({k}) =: hn,r,b(k) =
(
r
k

)(
b

n−k

)
(
r+b
n

) for k ∈ Z,(4)
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which may also be used to define Hn,r,b to avoid reference to a sampling model.
No confusion of the notation hn,r,b with the letter h used for various objects in
this paper seems likely. We write x+ := x ∨ 0 := max{x, 0} for the positive part
of x ∈ R, and we use the convention 0

0 := 0, relevant for example in (6) below if
r + b ∈ {0, 1, 2}. Except for the trivial cases of n = 0 or p = 0, a binomial law
Bn,p uniquely determines its parameters n and p and is symmetric about its mean
iff p = 1

2 , in which case the mean is n
2 . The following lemma collects analogous or

related simple facts for hypergeometric laws used below but apparently not easily
available from the literature.

Lemma 1.2. Let r, b ∈ N0 and n ∈ {0, . . . , r + b}.
(a) Some basic descriptive properties. Hn,r,b has the support

{k ∈ Z : hn,r,b (k) > 0} = {(n− b)+, . . . , n ∧ r}(5)

and the first three cumulants (mean, variance, third centred moment)
(6)

μ = nr

r + b
, σ2 = nrb(r + b− n)

(r + b)2(r + b− 1)
, κ3 = nrb(b− r)(r + b− n)(r + b− 2n)

(r + b)3(r + b− 1)(r + b− 2)
.

(b) (Non-)identifiability of parameters. We have

Hn,r,b = Hr,n,r+b−n(7)

so that Hn,r,b is already determined by {n, r} together with r + b. Conversely and
more precisely, we have:

(i) Hn,r,b = δa for some a iff n ∧ r ∧ b ∧ (r + b− n) = 0 and n ∧ r = a;
(ii) Hn,r,b = B1,p for some p ∈ ]0, 1] iff n ∧ r = 1 and n∨r

r+b = p;
(iii) in all other cases, Hn,r,b is not a binomial law and determines {n, r} and

r+b; that is, Hn,r,b = Hn′,r′,b′ for some r′, b′ ∈ N0 and n′ ∈ {0, . . . , r′+b′}
holds iff {n, r} = {n′, r′} and r + b = r′ + b′.

(c) Reflections. hn,r,b(k) = hn,b,r(n− k) for k ∈ Z.
(d) Symmetries. Hn,r,b is symmetric about its mean μ iff n∧r∧b∧(r+b−n) = 0

or r+b
2 ∈ {n, r}, which is the case iff κ3 = 0, and which implies that μ ∈ {n

2 ,
r
2}.

Proof. (a) Claim (5) is obvious from (4). The formulas for μ and σ2 in (6) are proved
in several textbooks as in [3] by considering a sum of indicator variables indicating
“red” at each of the n draws, and this method works for κ3 as well. Alternatively
one may use (4) and the differential equation for hypergeometric functions as in
[13, §5.14].

(b) With α := n∧ r, β := n∨ r, and N := r+ b, a computation starting from (4)
yields

hn,r,b(k) = nkrkbn−k

k!(r + b)n
= αkβk(N − β)α−k

k!Nα
for k ∈ {0, . . . , n},(8)

hence (7).
(i) follows from (5) and the formula for σ2 in (6).
(ii) The “if” claim is clear by (8) with k ∈ {0, 1}. Conversely, if Hn,r,b = B1,p

with p ∈ ]0, 1], then n ∧ r = 1 by (5), and p = μ = n∨r
r+b in view of (6).

(iii) Assume that Hn,r,b is not as in (i) or (ii) and, without loss of generality in
view of (7), that n ≤ r. Then r ∧ b > 0 and n > 1, hence also 0 < μ < n, and (6)
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yields

σ2 = μ
(
1 − μ

n

) r + b− n

r + b− 1
< μ

(
1 − μ

n

)
.(9)

The identity in (9) yields r+b as a function of the mean μ, the variance σ2, and the
right endpoint n = n ∧ r of Hn,r,b, and then r = (r + b)μ/n and hence {n, r} as a
function of quantities already determined by Hn,r,b. The inequality σ2 < μ

(
1 − μ

n

)
,

as a relation between the mean, the variance, and the right endpoint of a law, would
instead be an equality if Hn,r,b were binomial.

(c) Trivial using (4).
(d) If Hn,r,b is symmetric about its mean, then κ3 = 0, as for any law with existing

third moment. If κ3 = 0, then (6) yields the stated condition for the parameters.
If the latter holds, then σ2 = 0 and symmetry is trivial, or r+b

2 ∈ {n, r} and then
(c) yields for k ∈ Z either r = b and hence

hn,r,b(k) = hn,b,r(n− k) = hn,r,b(n− k),

or n = r + b − n and hence, using also (7) at the first and at the last step below,
hn,r,b(k) = hr,n,r+b−n(k) = hr,r+b−n,n(r − k) = hr,n,r+b−n(r − k) = hn,r,b(r − k),
and hence in either case the symmetry of Hn,r,b, necessarily about its mean. The
final claim about μ is obvious using (6). �

Let P be a binomial or a hypergeometric law. We then call N ∈ N ∪ {∞} a
population size parameter of P if N = ∞ and P is binomial or if P = Hn,r,b

for some r, b ∈ N0 and n ∈ {0, . . . , r + b} with r + b = N . By Lemma 1.2(b),
N is uniquely determined by P unless P is a Dirac or a Bernoulli law. Given a
population size parameter N of P , we let σ2

0 denote the usual approximate variance
of P , with respect to N , namely, with σ2 denoting the true variance of P ,

σ2
0 :=

⎧⎪⎨
⎪⎩

0 if N = 0,
N−1
N σ2 if N ∈ N,

σ2 if N = ∞,

(10)

which is uniquely determined by P , and hence may then be denoted by σ2
0(P ),

unless P = B1,p with p ∈ ]0, 1[. The customary but somewhat illogical dependence
of σ2

0 not only on P in this last case is a source of the slightly awkward “except”
proviso at the end of Theorem 1.3(a) below.

1.4. The main result.

Theorem 1.3. (a) Let F and f be the distribution function and the density of
a symmetric hypergeometric or symmetric binomial law, with mean n

2 , standard
deviation σ > 0, population size parameter N , and the usual approximate standard
deviation σ0. Let G be the distribution function of a normal law with mean n

2
and standard deviation τ ∈ [σ0, σ]. Then, for s ∈ R,

(11) |F (s) −G(s)| < d if s �=
⌊
n
2
⌋

and |F (s−) −G(s−)| < d if s �=
⌈
n
2
⌉
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holds with

d := F
(⌊

n
2
⌋)

−G
(⌊

n
2
⌋)

= G
(⌈

n
2
⌉
−
)
− F

(⌈
n
2
⌉
−
)

= ‖F −G‖∞(12)

=

{
Φ
( 1

2τ
)
− 1

2 if n is odd,
1
2f

(
n
2
)

if n is even

}
(13)

∈ 1
σ
·
[Φ(1) − 1

2
2

,
1√
8π

[
=

[
0.17. . .

σ
,

0.19 . . .
σ

[
(14)

except that the upper bound claim d < 1
σ
√

8π in (14) is false if we have both N = 2
and τ/σ ≤ c = 0.78 . . ., with c defined by

√
2π

(
Φ
(1
c

)
− 1

2
)

= 1.
(b) The interval

[
Φ(1)− 1

2
2 , 1√

8π

[
in part (a) is the least possible, even if we

assume there in addition that N = ∞ (binomial case) and hence τ = σ = σ0 =
1
2
√
n .

Theorem 1.3 and the supplements stated in the following Remark 1.4 are proved
at the end of this paper.

Remark 1.4. (a) If τ is restricted to be σ in Theorem 1.3, then the formulation
obviously simplifies a bit, and in particular the “except” proviso concerning (14)
becomes redundant.

(b) Under the assumptions of Theorem 1.3(a) as stated, and if N
N−1 is read as 1

in case of N = ∞, we have without any exception

Φ
(√

2
)
− 1

2√
8 τ

≤

√
N−1
N

(
Φ
(√

N
N−1

)
− 1

2

)
2τ

≤ d <
1

τ
√

8π
.(15)

(c) In the special case of τ = σ0, the upper bound for d in (15) can be refined to

d ≤ Φ
(

1
2σ0

)
− 1

2
<

1√
8π σ0

,(16)

with equality in the first inequality iff n is odd.

Theorem 1.3 specialized to symmetric binomial laws with N = ∞ reduces to
[11, Theorem 1.1 and Corollaries 1.1 and 1.2]. All other results in the literature
related to Theorem 1.3 and known to us yield weaker or incomparable conclusions
under more general hypotheses. Let us mention a few of these:

The central limit theorem for hypergeometric laws, namely “‖F −G‖∞ → 0 if
σ → ∞” with the notation of Theorem 1.3 extended to not necessarily symmetric
laws, is proved by Rényi in [27, pp. 465–466] as a corollary to [4]. Rényi names
S.N. Bernstein as the originator under the additional assumption “ r

r+b constant”
in the notation of subsection 1.2. He also states that a direct proof of the general
case “leads to tiresome calculations”, which is refuted by Morgenstern’s treatment
in [19, pp. 62–63], where the appropriate local central limit theorem is elegantly
derived from the corresponding one for binomial laws by writing

hn,r,b(k) = br,p(k)bb,p(n− k)/br+b(n)

with p := n
r+b in the notation of subsection 1.3.
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Now let C denote the optimal Berry-Esseen constant in the non-i.i.d. case, so that
0.4097 < (3 +

√
10 )/(6

√
2π ) ≤ C < 0.5583 with the upper bound as announced

in [30]. Further let F be the distribution function of a Bernoulli convolution P =
∗n

j=1 Bpj
with p ∈ [0, 1]n, and let G be the distribution function of a normal law

with the same mean μ =
∑n

j=1 pj and variance σ2 =
∑n

j=1 pj (1 − pj). Then, since
βj := pj(1 − pj)(p2

j + (1 − pj)2) ≤ pj (1 − pj) is the third absolute moment of Bpj
,

we have ‖F −G‖∞ ≤ Cσ−3 ∑n
j=1 βj and hence

1
2
√

1 + 12σ2
≤ ‖F −G‖∞ <

0.5583
σ

,(17)

where the lower bound follows from the continuity of G and from the lower bound
for the maximal jump size of F obtained from (18) below with h = 1. Now it
is well known from [31, Corollary 5 with n = 2, hence F2 generating function of
Hs1,s2,N−s2 = Hs2,s1,N−s1 ] that every hypergeometric law is a Bernoulli convolution
as above, with certain in general not explicitly available pj , but of course μ and σ2

computable from (6). Thus, as already known from [31, Theorem 1 with n = 2,
rewritten in terms of μ0 + s1 + s2 − N ] in case of the upper bound, (17) directly
applies to F and G as in the previous paragraph, and thus yields a result more
explicit than the two theorems in [14] and with a simpler proof, but (17) is in the
symmetric case of course weaker than (14) applied to ‖F −G‖∞.

Höglund’s theorem already mentioned in subsection 1.2 yields the upper bound
in (17), in the general hypergeometric case, with an unspecified constant in place
of 0.5583.

Some further related results and references can be found in the papers [18] con-
cerning in particular sums of simple random samples, [23] concerning Bernoulli
convolutions, and [15] concerning hypergeometric laws.

1.5. On concentration-variance inequalities. In deriving the lower bound in
(17) above, we have used inequality (18) below, which is due to Paul Lévy in a
sharper version.

Lemma 1.5. Let P be a law on R with variance σ2. Then we have

sup
x∈R

P (]x, x + h[) ≥ h√
h2 + 12σ2

for h ∈ ]0,∞[,(18)

ess sup
x∈R

f(x) ≥ 1√
12σ2

if f is a Lebesgue density of P.(19)

Proof. For (19) we may assume that P has mean zero and M := L.H.S.(19) < ∞.
With c := 1

2M , we then have α :=
∫
|x|>c

f(x) dx =
∫
|x|≤c

(M − f(x)) dx, hence∫
|x|>c

x2f(x) dx ≥ c2α ≥
∫
|x|≤c

x2 (M − f(x)) dx, and thus σ2 =
∫
x2f(x) dx ≥∫

|x|≤c
x2 (f(x) + M − f(x)) dx = 2

3c
3M = 1

12M2 .
To prove now (18), we apply (19) to the density x �→ g(x) := 1

hP (]x− h, x[) and
the variance σ2 + h2/12 of the convolution of P with the uniform law on ]0, h[ to
get

�(20) L.H.S.(18) = h sup
x∈R

g(x) ≥ h ess sup
x∈R

g(x) ≥ h
1√

12
(
σ2 + h2

12
) .
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Lévy [16, p. 149, Lemme 48,1] proved under the assumption of Lemma 1.5: If
p ∈ N and λ ∈ [0, 1] are such that c := L.H.S.(18) = λ

p + 1−λ
p+1 , then

12σ
2

h2 ≥ λp2 + (1 − λ)(p + 1)2 − 1,(21)

with equality for P = λ
p

∑p−1
j=0 δjh + 1−λ

p+1
∑p

j=0 δ(j− 1
2 )h. Writing p2 =

(
1
p

)−2
and

(p + 1)2 =
(

1
p+1

)−2
, and using convexity, (21) yields 12σ2

h2 ≥
(

λ
p + 1−λ

p+1

)−2
− 1 =

c−2 − 1, hence (18), and (19) follows easily using 1
hP (]x, x + h[) ≤ ess sup f . We

refer to [10, p. 27] for a proof of (21) more formal than Lévy’s and to [8] for
generalizations.

The present proof of first (19) and then (18) is a slightly simplified and corrected
version of an argument given by Bobkov and Chistyakov: Our first part is simpler,
or at least more elementary, than [2, first 5 lines of Proof of Proposition 2.1]. To see
the correction in the second part, let us first observe that we actually have equality
at the second step in (20), since our g is lower semicontinuous, but that this could
be wrong if we had closed intervals [x, x + h] on the left in (18) and analogously
also in the definition of g, as for example if P = 1

2 (δ0 + δ1) and h = 1, contrary
to [2, (2.1)], where hence Q(X;λ) should be replaced by Q(X;λ−).

Finally we have to mention that (19) also follows by letting p → ∞ in Moriguti’s
sharp inequality [20, (3.4)] for Lp-norms, valid under the hypothesis of (19), namely

‖f‖p ≥
(

2p
3p−1

) 1
p
(√

p−1
3p−1 /

(
B
(

p
p−1 ,

1
2

)
σ
))1− 1

p

for p ∈ ]1,∞[.

1.6. The method of proof. The proof of Theorem 1.3 near the end of section 4
below rests on the following simple lemma, which was implicitly used also in [11].

Lemma 1.6. Let F and G be distribution functions of laws P and Q on R with
P (Z) = 1, G continuous and strictly increasing, P and Q symmetric about n

2 ∈ R,
and d defined by the first equality in (12). Then we have n ∈ Z, the second equality
in (12), and

d =

{
G
(
n+1

2
)
− 1

2 if n is odd,
1
2P

({
n
2
})

if n is even.
(22)

Further, (11) holds for every s ∈ R iff the following two conditions are satisfied:

F (s) −G(s) < d for s ∈ Z with s >
⌊
n
2
⌋
,(23)

G(s) − F (s− 1) < d for s ∈ Z with s >
⌈
n
2
⌉
.(24)

Proof. The symmetry assumptions can be written as

F (s) = 1 − F ((n− s)−) and G(s) = 1 −G((n− s)−) for s ∈ R.(25)

The assumption P (Z) = 1 then yields 0 < P ({k}) = F (k)−F (k− 1) = P ({n−k})
for some k ∈ Z, and hence n ∈ Z. Next, (25) for s =

⌊
n
2
⌋

yields

F
(⌊

n
2
⌋)

+ F
(⌈

n
2
⌉
−
)

= 1 = G
(⌊

n
2
⌋)

+ G
(⌈

n
2
⌉
−
)
,

and we get the second equality in (12), and also G
(⌈

n
2
⌉
−
)
−F

(⌈
n
2
⌉
−
)

= G
(
n+1

2
)
−

1
2 if n is odd, and F

(⌊
n
2
⌋)

−G
(⌊

n
2
⌋)

= 1
2 + 1

2P
({

n
2
})

− 1
2 if n is even, and thus (22).
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Trivially, (11) implies (23) and (24). Conversely, let us assume (23) and (24). If
s ∈ R \Z, then F (s)−G(s) = F (�s�)−G(s) < F (�s�)−G(�s�) and G(s)−F (s) =
G(s) − F (�s�−) < G(�s�−) − F (�s�−); hence it is enough to prove (11) for s ∈ Z.
If s ∈ Z with s >

⌊
n
2
⌋
, then F (s)−G(s) < d by (23), and G(s)−F (s) ≤ G(s+1)−

F (s) < d by (24) as s + 1 >
⌈
n
2
⌉
; hence |F (s) −G(s)| < d. If s ∈ Z with s <

⌊
n
2
⌋
,

then t := n− s >
⌈
n
2
⌉
, and (25), (23), (24) yield F (s)−G(s) = G(t)−F (t− 1) < d

and G(s)−F (s) = F (t−1)−G(t) ≤ F (t)−G(t) < d; hence again |F (s)−G(s)| < d.
Thus the first part of (11) holds for s ∈ Z, and the second follows by applying, for
a given s �=

⌈
n
2
⌉
, the first one to t := n− s �=

⌊
n
2
⌋
. �

In the situation of Theorem 1.3, assumption (23) and part of assumption (24) are
proved below in Lemmas 4.4 and 4.5 by monotonicity considerations, and the part
of (24) not thus covered is proved by using lower bounds for d from Lemma 4.2 to-
gether with Lemma 4.6. The proofs of the lemmas of section 4 use various auxiliary
inequalities from sections 2 and 3.

We do not know whether Theorem 1.3 could alternatively and perhaps even more
efficiently be proved using, say, characteristic functions or Stein’s method, and we
are in fact as ignorant already for the earlier special case from [11].

2. Some standard analytic inequalities

Very elementary inequalities like 1+x < ex for x ∈ R\{0} and x
1+x < log(1+x) <

x for x > −1 will often be used without comment.

Lemma 2.1. If x, y ∈ R satisfy 0 ≤ y ≤ |x| or x ≤ y ≤ 0 or x − 2
3x

2 ≥ −y ≥ 0,
then

(1 + x)e−x ≤ (1 + y)e−y,(26)

and equality holds iff x = y. The constant 2
3 in the assumption cannot be lowered.

Proof. See [11, Lemma 2.1]. �

Lemma 2.2. Let x ∈ R \ {0}. Then exp(x
2

2 − x4

12 ) < cosh(x) < (1 + x2

3 ) exp(x
2

6 ).

Proof. Analogously to [25, Part I, Problem 154 and solution, pp. 35, 212], the
partial fraction expansion of the hyperbolic tangent function

tanh(x)
x

=
∞∑
k=1

2
((k + 1

2 )π)2 + x2

proved for example in [26, pp. 199, 294] implies that tanh(x)/x is enveloped by its
power series around zero, namely

(−)n
(

tanh(x)
x

−
n∑

k=0

(−)kαkx
2k

)
> 0 for x ∈ R \ {0}, n ∈ N0,

where α0 = 1, α1 = 1
3 , α2 = 2

15 , . . ., and using log(cosh(x)) =
∫ x

0 tanh(t) dt then
yields

(27) (−)n
(

log(cosh(x)) −
n∑

k=0

(−)k αk

2k + 2
x2k+2

)
< 0 for x ∈ R \ {0}, n ∈ N0.

Taking n = 1 yields the first inequality claimed.
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To prove the second one, which improves the case n = 0 of (27), we observe
that the coefficients of x2k in the power series of the two functions involved, namely
ak := 1

(2k)! and bk := 2k+1
6kk! for k ∈ N0, are all > 0, and their quotients ck := ak/bk

satisfy c0 = c1 = 1 and ck+1/ck = 3/(2k + 3) < 1 for k ∈ N. �

Lemma 2.3. With w(x) := Γ(2x+1)
Γ2(x+1)2

−2x = Γ(x+ 1
2 )√

π Γ(x+1) , we have

− 1
8x

< log
(√

πx w(x)
)

< − 1
8x

+ 1
192x3 for x ∈ ]0,∞[(28)

≤ − 23
192x

for x ∈ [1,∞[.(29)

Two proofs. Inequality (29) is of course trivial in view of 1
x3 ≤ 1

x . Concerning (28):
For integer x, and only this case will be needed in this paper, (28) is proved by

Everett in [6, (10), with Wn there being the present (
√
πn w(n))2] .

For general x, Sasvári [28] presents the inequalities in (28) as special cases of a
more general corollary to a theorem yielding the monotonicity in x of the error of
each of the asymptotic expansions

∑N
j=1 cr,jx

1−2j of log
(√

2π r−1
r

(
(r−1)r−1

rr

)x(
rx
x

))
for ]0,∞[ � x → ∞, with r ∈ ]1,∞[ and N ∈ N0 fixed and here

(
rx
x

)
:=

Γ(rx + 1)/ (Γ(x + 1)Γ((r − 1)x)). Sasvári’s proof is short and elegant, but to get
just (28) and its analogues in Sasvári’s corollary can even be shortened a bit by
using in his formula (2) and in his notation just “Qs < 0” rather than “Qs increas-
ing”. �

Although not needed here, let us remark that numerical calculations suggest that
we have in fact supx∈[1,∞[ x log (

√
πx w(x)) = log( 1

2
√
π ) = −0.1207 . . . < − 23

192 =
−0.1197 . . . .

3. Normal distribution function inequalities

For comparing normal distribution function increments with their midpoint de-
rivative approximations, we will need the rather sharp inequalities (30) below, which
improve the ones in [7, p. 322, Lemma 1] and in [24, pp. 475–476, Lemma 1] in an
optimal way.
Lemma 3.1. For x, h ∈ R with h �= 0, we have
(30)

exp
(

(x2−1)h2

24 − x4h4

960

)
<

Φ(x + h
2 ) − Φ(x− h

2 )
hϕ(x)

< exp
(

(x2−1)h2

24 + h4

1440

)
,

and these inequalities are optimal for small h in the sense that we have
(31)

log
(

Φ(x+h
2 )−Φ(x−h

2 )
hϕ(x)

)
= (x2−1)h2

24 + (−x4−4x2+2)h4

2880 + O(h6) for x, h bounded,

with maxx∈R(−x4 − 4x2 + 2) = 2 and minx∈R(−x4 − 4x2 + 2)/x4 = −3.
Proof. For x, y ∈ R, let

ε1(x, y) := −x4y4

60
and ε2(x, y) := y4

90
and, for i ∈ {1, 2},

fi(x, y) :=
√

2π
2 (Φ(x + y) − Φ(x− y)) − y exp

(
−x2

2 + (x2−1)y2

6 + εi(x, y)
)
.
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Noting that (30) is unaffected by sign changes of x or h, and writing y in place of
h/2, we have to prove for x ≥ 0 and y > 0 the inequalities

f1(x, y) > 0 > f2(x, y).(32)

Now fi(x, 0) = 0 and, with a subscript y denoting the partial derivative with respect
to that variable,

fi,y(x, y)

exp
(

x2y2

6 − x2+y2

2

)
= cosh(xy)

exp
(

x2y2

6

) −
(
1 − y2

3 + yεi,y(x, y) + x2y2

3

)
exp

(
y2

3 + εi(x, y)
)

=: gi(x, y).

For i = 1, we use the first inequality in Lemma 2.2 and 1 + t < et for 0 �= t ∈ R

to get

g1(x, y) > exp
(
x2y2

3
− x4y4

12

)
− exp

(
yε1,y(x, y) + x2y2

3
+ ε1(x, y)

)
= 0,

considering the cases x �= 0 and x = 0 separately to check the strict inequality, and
hence the first half of (32).

For i = 2, the second inequality in Lemma 2.2 and x2y2

3 exp( y
2

3 + y4

90 ) ≥ x2y2

3
yield

g2(x, y) ≤ 1 + x2y2

3 −
(
1 − y2

3 + 2y4

45

)
exp

(
y2

3 + y4

90

)
− x2y2

3 = 1 − exp(g(y2))

where, for t ∈ R,

g(t) := t
3 + t2

90 + log
(
1 − t

3 + 2t2
45

)
is well-defined with g(0) = 0 and, for t > 0, satisfies

g′(t) = 1
3 + t

45 + − 1
3+ 4t

45

1− t
3+ 2t2

45
=

t2
135+ 2t3

2025

1− t
3+ 2t2

45
> 0

and hence g(t) > 0, yielding g2(x, y) < 0 and hence the second half of (32).
With the Hermite polynomials Hn given by Hn(x) = (−)nex2/2∂n

x e−x2/2, in
particular H0(x) = 1,H2(x) = x2 − 1,H4(x) = x4 − 6x2 + 3, a Taylor expansion
around h = 0 shows that, for x, h bounded, we have

Φ(x + h
2 ) − Φ(x− h

2 )
hϕ(x)

=
∞∑
j=0

H2j(x)h2j

22j(2j + 1)!

= 1 + H2(x)h
2

24
+ H4(x) h4

1920
+ O(h6),

and hence an application of log(1 + y) = y − y2/2 + O(y3) for y near zero and a
short computation yield (31). �

Lemma 3.2. Let x > 0. Then

xe− x2
6 <

√
2π

(
Φ(x) − 1

2
)

< xe−x2
6 +x4

90 .(33)

Proof. The claim results if we apply (30) to (0, 2x) in place of (x, h). �
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The following lemma often improves on [11, Lemma 2.2], which yields (34) with
α = 1 but with the upper bound replaced by exp

(
−y2−x2

2 + |h|
2 (|y| − |x|)

)
, and it

always improves on [29], where (34) with α = 1 is only obtained for h = y − x and
with β = 1 − h2

2 < 1 − h2

12 .

Lemma 3.3. Let h ∈ R \ {0}. Then
(34)

exp
(
−α y2−x2

2

)
<

Φ
(
y + h

2
)
− Φ

(
y − h

2
)

Φ
(
x + h

2
)
− Φ

(
x− h

2
) < exp(−β y2−x2

2 ) if |x| < |y|

holds with the optimal constants

(35) α := 1 and β :=
h
2 exp

(
−h2

8

)
√

2π
(
Φ(h2 ) − 1

2
) > exp

(
−h2

12 − h4

1440

)
> 1 − h2

12 .

Proof. Since (34) and (35) are unaffected by sign changes of x or y or h, we may
and do always assume that 0 ≤ x < y and h > 0 in this proof. For γ ∈ R, let

fγ(x) := eγ
x2

2
(
Φ
(
x + h

2
)
− Φ

(
x− h

2
))

for x ∈ [0,∞[.
If α, β ∈ R are arbitrary, then (34) holds iff fα is strictly increasing and fβ is strictly
decreasing. Now for x ∈ ]0,∞[, the derivative f ′

γ(x) has the same sign as γ − g(x)
where

g(x) :=
ϕ
(
x− h

2
)
− ϕ

(
x + h

2
)

x
(
Φ(x + h

2 ) − Φ(x− h
2 )
) = e−h2

8 ·
sinh

(
xh
2
)

xh
2

· hϕ(x)
Φ(x + h

2 ) − Φ(x− h
2 )

= e−h2
8

2
h

∫ h
2

0 cosh(xt) dt
2
h

∫ h
2

0 cosh(xt) exp(− t2

2 ) dt
,

and the unattained supremum and infimum of g(x) over x ∈ ]0,∞[ are α and β

as defined in (35), by exp(− t2

2 ) > exp(−h2

8 ) and by considering x → ∞, and by
“Chebyshev’s other inequality” [17, Chapter IX] for the integral of a product of two
monotone functions applied to yield

2
h

∫ h
2

0
cosh(xt) exp(− t2

2
) dt <

2
h

∫ h
2

0
cosh(xt) dt · 2

h

∫ h
2

0
exp(− t2

2
) dt

and by considering x = 0. This proves our claim except for the inequalities in (35),
of which the first one follows from (33) and the second one is trivial if u := h2

12 ≥ 1
and follows from log(1 − u) < −u− u2

2 < −u− u2

10 otherwise. �

4. Lemmas on symmetric hypergeometric laws,

proof of the main result

To avoid pedantic repetitions of assumptions below, let us agree that in this
section F, f, n, σ,N, σ0, τ, G are in principle fixed and as postulated in Theorem 1.3,
but that we may nevertheless use reduction arguments as in the proof of Lemma 4.4,
where the case of N = ∞ is reduced to the case of N < ∞. We have or put

G(s) = Φ
(
s− n

2
τ

)
and g(s) := G(s) −G(s− 1) for s ∈ R,

and we note the following corollary to Lemma 3.3.
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Lemma 4.1. Let s ∈ ]n2 ,∞[. Then

(36) exp
(
−
s− n

2
τ2

)
<

g(s + 1)
g(s) < exp

(
−
(

1 − 1
12τ2

)
s− n

2
τ2

)
.

Proof. Lemma 3.3 applied to h := 1
τ , x := (s− n

2 − 1
2 )/τ , y := (s− n

2 + 1
2 )/τ . �

Let us note that g(s+ 1)/g(s) in (36) may alternatively be bounded from above
by exp

(
−(s− n

2 − 1
2 )/τ2), as in [11, Proof of Lemma 3.1], which however appears

to be insufficient for proving Lemma 4.5 below.
Let r := N

2 . If N < ∞, then N is even by Lemma 1.2(d), f = hn,r,r by
Lemma 1.2(b) and (d); hence

σ2 = n (N − n)
4 (N − 1)

and σ2
0 = n (N − n)

4N
(37)

by (6) and (10), so that in particular σ2 > 0 yields n ∈ {1, . . . , N − 1} and thus
N ≥ 2 and r ≥ 1, and we further have

(38) σ2
0 ≥ 3

16
if n ∈ {1, . . . , N − 1}, σ2

0 ≥ 1
4

if n ∈ {2, . . . , N − 2},

by considering n extremal and N minimal. If N = ∞, then f = bn,1/2 and n ≥ 1.

Lemma 4.2. Assume N < ∞ and n even. Then
√

2
4

<

√
(N − 2)N2

8(N − 1)3
≤ σ f

(
n
2
)

(39)

with equality in the second inequality iff n = 2 or n = N − 2.

Proof. We have n ≥ 2 and hence N ≥ 4. Let ak := σ2 (H2k,r,r) · (h2k,r,r(k))2 for
k ∈ {1, . . . , r − 1}. Then, for k ≤ r − 2, we have

ak+1

ak
= (k + 1)(r − k − 1)

k(r − k)

( (r − k)2(k + 1
2 )(k + 1)

(k + 1)2(r − k)(r − k + 1
2 )

)2

=
1 + 1

4k(k+1)

1 + 1
4(r−k)(r−k+1)

and hence ak ≤ ak+1 iff k(k+1) ≤ (r−k)(r−k+1) iff k ≤ r−1
2 . Hence the sequence

(ak) can attain its minimal value only at k = 1 or at k = r − 1, and we have in
fact σ2 (H2,r,r) = σ2 (HN−2,r,r) = N−2

2(N−1) and h2,r,r(1) = hN−2,r,r(r − 1) = N
2(N−1)

and thus a1 = ar−1 = (N−2)N2

8(N−1)3 , and the latter expression is strictly decreasing in

N ∈ [4,∞[, as
(
log (x−2)x2

(x−1)3

)′
= ((x − 2)(x− 1)x)−1(4 − x) < 0 for x ∈ ]4,∞[ and

hence a1 ≥ 4
27 ≥ 2

16 . �

Lemma 4.3. If n is even and N < ∞, then n = 2k with k ∈ {1, . . . , r−1}, r ≥ 2,

1
4

≤ σ2
0 = k (r − k)

2r
≤ r

8
,(40)
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σ =
√

2r
2r−1 σ0, and

f(k) >
1

σ0
√

2π
exp

(
23

192r
− 1

16σ2
0

)
>

1
σ0

√
2π

exp
(
− 1

16σ2
0

)
,(41)

f(k) <
1

σ0
√

2π
exp

(
1
8r

− 23
384σ2

0

)
<

1
σ0

√
2π

e
− 1

24σ2
0 <

1
σ
√

2π
.(42)

Proof. Only the claims in (41) and (42) are not obvious. Writing the binomial
coefficient occurring in f(k) in terms of gamma functions and using the definition
of the function w from Lemma 2.3 shows that

h(k) := log
(
σ0

√
2π f(k)

)
admits the representation

h(k) = − log
(√

πr w(r)
)

+ log
(√

πk w(k)
)

+ log
(√

π(r − k) w(r − k)
)
,

so that Lemma 2.3 yields

h(k) >
23

192r
− 1

8k
− 1

8(r − k)
= 23

192r
− 1

16σ2
0

> − 1
16σ2

0

and hence (41), and, also using (40),

h(k) <
1
8r

− 23
192

(
1
k

+ 1
r − k

)
= 1

8r
− 23

384σ2
0

≤
(

1
64

− 23
384

)
1
σ2

0

= − 17
384σ2

0
< − 1

24σ2
0

≤ − 1
3r

,

and since log 2r
2r−1 < 1

2r−1 ≤ 2
3r due to r ≥ 2, we also get

1
8r

− 23
384σ2

0
+ log σ

σ0
< − 1

3r
+ 1

3r
= 0

and hence (42). �
Lemma 4.4. (a) f/g is strictly decreasing on {s ∈ Z : n

2 ≤ s ≤ (n ∧ r) + 1}.
(b) We have f(s) < g(s) for s ∈ Z with s > �n/2�.
(c) We have 0 < F (s)−G(s) < F (�n/2�)−G(�n/2�) for s ∈ Z with s > �n/2�.

Proof. (a) Let s ∈ Z with n
2 ≤ s ≤ n ∧ r. Then we have

(43) f(s + 1)
f(s) ≤ Θ exp

(
−
s− n

2
σ2

0

)
with Θ := 1−y

1+y e2y < 1, y := 2s−n+1
n+1 ,

where Θ < 1 holds by Lemma 2.1 with x := −y using y > 0. The other inequality
claimed holds first in the case of r < ∞, as then Lemma 2.1 applied to ỹ :=
2s−n+1
2r−n+1 > 0 and x̃ := −ỹ yields, using s ≥ n− r due to n− r < n

2 in the first step,
f(s + 1)
f(s)

= (r − s)(n− s)
(s + 1)(r − n + s + 1)

= 1 − y

1 + y
· 1 − ỹ

1 + ỹ
< Θe−2(y+ỹ)

with 2(y + ỹ) = 8(r+1)
(n+1)(2r−n+1)(s−

n−1
2 ), and as we have

s− n
2

σ2
0

/(
2(y + ỹ)

)
= r(n + 1)(2r − n + 1)

(r + 1)n(2r − n)
· 2s− n

2s− n + 1
≤ 1

by using (2s− n)/(2s− n+ 1) ≤ (2(n ∧ r)− n)/(2(n ∧ r)− n+ 1) and considering
separately the cases n ∧ r = r and n ∧ r = n, and then also for r = ∞, by taking
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the limit for r → ∞ in (43). Now (43) yields, using τ ≥ σ0 and then Lemma 4.1 in
case of s > n

2 ,

f(s + 1)
f(s)

< exp
(
−
s− n

2
σ2

0

)
≤ exp

(
−
s− n

2
τ2

)
≤ g(s + 1)

g(s)

and hence f(s + 1)/g(s + 1) < f(s)/g(s).
(b) By part (a) and since h(s) = 0 for s > n ∧ r, we can and do assume that

s = �n/2� + 1. Let us first assume that r < ∞.
If n is even, then n = 2k with k ∈ {1, . . . , r − 1} and s = k + 1, and we get

g(s) = g(k + 1) − g(k) = Φ
( 1
τ

)
− 1

2 ≥ Φ
( 1
σ

)
− 1

2 > 1
σ
√

2π exp
(
− 1

6σ2

)
by τ ≤ σ and Lemma 3.2, and, using below several parts of Lemma 4.3, we have

f(k + 1)
f(k) = k (r − k)

(k + 1)(r − k + 1) = k (r − k)
1 + r + k (r − k)

≤ k (r − k)
3
2r + k (r − k)

= 1
1 + 3

4σ2
0

since r ≥ 2, and hence

log f(k + 1)
f(k)

≤ − log
(

1 + 3
4σ2

0

)
<

− 3
4σ2

0

1 + 3
4σ2

0

≤ −3
16σ2

0

by using σ2
0 ≥ 1

4 in the last step, so that

log f(s)
g(s)

= log f(k + 1)
f(k)

− log g(s) + log f(k)(44)

<
−3

16σ2
0

+ 1
6σ2 + log

(
σ
√

2π f(k)
)

< − 1
48σ2

using in the final step σ0 ≤ σ for the first two terms and (42) for the last one.
Now let n be odd. Then n = 2k − 1 with k ∈ {1, . . . , r} and s = k, and we get

g(s) = 2
(
Φ
( 1

2τ
)
− 1

2
)

≥ 2
(
Φ
( 1

2σ
)
− 1

2
)

> 1
σ
√

2π exp
(
− 1

24σ2

)
(45)

using τ ≤ σ and Lemma 3.2. If k ∈ {1, r}, then in either case σ2 = 1
4 and h(s) = 1

2 ,
and (45) yields

g(s) ≥ 2Φ(1) − 1 = 0.6827 . . . >
1
2

= f(s),(46)

and we now assume that 2 ≤ k ≤ r − 1. We have

f(s) = f(k) =
r − k + 1

2
r − k + 1

h2k,r,r(k)(47)

and, using (k − 1
2 )/k ≥ 3/4 due to k ≥ 2 for the lower bound and writing σ0,2k :=

σ0(H2k,r,r), we get

σ2

σ2
0,2k

=
r(k − 1

2 )(r − k + 1
2 )

(r − 1
2 )k(r − k)

∈
]
3
4
,
r − k + 1

2
r − k

]
,(48)
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and then

log f(s)
g(s) = log

(
σ0,2k

√
2π h2k,r,r(k)

)
+ log r−k+ 1

2
r−k+1 − log

(
σ
√

2π g(s)
)

+ log σ
σ0,2k

<
1
8r

− 23
384σ2

0,2k
+ log

r − k + 1
2

r − k + 1
+ 1

24σ2 + 1
2

log
r − k + 1

2
r − k + 1

<

(
1
24

− 23
384

· 3
4

)
1
σ2 + 1

8r
+ 1

4
log

r − 1
2

r
+ h(r, k)

< − 5
1536σ2

(49)

by using at the second step (42) with n = 2k, (45), and (48); at the third step (48),
k ≥ 0, and the definition of h(r, k) given below; and at the final step three appli-
cations of log(1 + x) < x, one for log((r − 1

2 )/r) < −1/(2r), and the other two
contained in

h(r, k) := 3
4

log
r − k + 1

2
r − k + 1

+ 1
2

log
r − k + 1

2
r − k

< −3
4
· 1
2(r − k + 1)

+ 1
2
· 1
2(r − k)

= − r − k − 2
8(r − k − 1)(r − k)

,

which yields h(r, k) < 0 always, namely, by the above if k ≤ r−2, and by h(r, r−1) =
3
4 log 3

4 + 1
2 log 3

2 = 1
4 log 3332

4322 = 1
4 log 243

256 < 0 if k = r − 1.
By (44), (46), (49), there is a constant c > 0 not depending on r, n ∈ N with

n < 2r satisfying log(f(s)/g(s)) ≤ −cσ−2, and this remains true also for the limit
case of r = ∞.

(c) By part (b), F −G is strictly decreasing on {s ∈ Z : s ≥ �n/2�}. Hence we
get the second inequality claimed and, since F (s)−G(s) = 1−G(s) > 0 for s ≥ n,
also the first one. �

Lemma 4.5. Let τ ∈ [σ0, σ] and M := n
2 + 1 + 3

2σ.
(a) f(· − 1)/g is strictly increasing on {s ∈ Z : n+1

2 ≤ s ≤ M}.
(b) We have g(s) < f(s− 1) for s ∈ Z with �n/2� < s ≤ M .
(c) We have G(s)−F (s−1) < G(�n/2�)−F (�n/2�−1) for s ∈ Z with �n/2� <

s ≤ M .

Proof. (a) Let s ∈ Z with n+1
2 ≤ s ≤ n

2 + 3
2σ.

If n = 1 or N is finite and n = N −1, then σ = 1
2 and hence s = n+1

2 , and, using
the unimodality of ϕ, we indeed get f(s−1)

g(s) = 1/2
Φ( 1

2τ )−Φ(− 1
2τ ) < 1/2

Φ( 3
2τ )−Φ( 1

2τ ) = f(s)
g(s+1) .

Hence we can assume 1 < n < N − 1 and thus N ≥ 4 and σ2
0 ≥ 1

4 in what follows,
by (38).

First let N < ∞. We have n − r < s ≤ n ∧ r, for else we would have one of
the inequalities n+1

2 ≤ n − r, n + 1 ≤ n
2 + 3

2σ, r + 1 ≤ n
2 + 3

2σ, which are easily
checked to be false. Hence, putting x1 := 2s−n

n , y1 := −2s−n−2
n , x2 := 2s−n

2r−n , and
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y2 := −2s−n−2
2r−n , we have

f(s)
f(s− 1)

= n− s + 1
s

· r − s + 1
r − n + s

= 1 + y1

1 + x1
· 1 + y2

1 + x2
(50)

≥ ey1−x1+y2−x2 = exp
(
−
s− n+1

2
σ2

0

)
,

where the inequality is a trivial equality if s = n+1
2 , and follows otherwise by two

applications of Lemma 2.1, as s ≥ n
2 +1 yields −yi ≥ 0, and we also have xi− 2

3x
2
i ≥

−yi for i ∈ {1, 2}, since y1+x1− 2
3x

2
1 = 2

n−
2
3
( 2s−n

n

)2 ≥ 2
n−

2
3
( 3σ

n

)2 ≥ 2
n−

6
n2 · n4 ≥ 0

and y2+x2− 2
3x

2
2 = 2

2r−n−
2
3

(
2s−n
2r−n

)2
≥ 2

2r−n−
2
3

(
3σ

2r−n

)2
≥ 2

2r−n−
6

(2r−n)2 ·
2r−n

4 ≥
0. On the other hand, putting x := (s − n+1

2 )/τ and applying below Lemma 4.1
at the first inequality, τ ≤ σ and τx ≤ 3

2σ − 1
2 ≤ 9

8σ
2 = 9

8
N

N−1σ
2
0 ≤ 3

2σ
2
0 and

τ2 ≥ σ2
0 ≥ 1

4 at the second, and τ2

N−1 ≤ σ2

N−1 = n(N−n)
4(N−1)2 ≤ N2

16(N−1)2 ≤ 1
9 at the

third, we get

exp
(
s− n+1

2
σ2

0

)
g(s + 1)
g(s)

< exp
(
τx

σ2
0

)
exp

(
−
(

1 − 1
12τ2

)(
x

τ
+ 1

2τ2

))

= exp
((

1
σ2

0
− 1

τ2

)
τx + τx

12τ4 − 1
2τ2 + 1

24τ4

)

≤ exp
((

1
σ2

0
− 1

σ2

)
9
8σ

2 +
3
2σ

2
0

12τ2σ2
0
− 1

2τ2 + 1
6τ2

)

= exp
((

9τ2

8(N − 1)
− 5

24

)
1
τ2

)

≤ exp
(
− 1

12τ2

)
.

Thus (f(s)/g(s + 1))/(f(s− 1)/g(s)) ≥ exp
( 1

12τ2

)
> 1, also if N = ∞, hence the

claim.
(b) By part (a), we can and do assume that s = �n

2 � + 1. First let r < ∞.
If n = 2k is even, then s = k + 1, so that Lemma 3.2, τ ≥ σ0, and σ2

0 ≥ 1
4 from

Lemma 4.3 yield

g(s) = Φ
( 1
τ

)
− 1

2 ≤ Φ
(

1
σ0

)
− 1

2

<
1

σ0
√

2π
exp

(
− 1

6σ2
0

+ 1
90σ4

0

)
≤

exp
(
− 11

90σ2
0

)
σ0

√
2π

,

and hence an application of (41) and finally σ0 ≤ σ yield

log g(s)
f(s− 1)

< − 11
90σ2

0
+ 1

16σ2
0

= − 43
720σ2

0
≤ − 43

720σ2 .(51)

Now let n be odd. Then n = 2k − 1 with k ∈ {1, . . . , r} and s = k + 1. If also
k ≤ r − 1 and thus r ≥ 2, then we have, using Lemma 3.1 with x := h := 1

τ at the



744 LUTZ MATTNER AND JONA SCHULZ

first inequality, τ2 ≥ σ2
0 ≥ 3/16 by (38) at the second, and τ2 ≤ σ2 at the third,

g(s) = Φ
( 3

2τ
)
− Φ

( 1
2τ
)

<
1

τ
√

2π
exp

(
− 13

24τ2 + 61
1440τ4

)

≤ 1
σ0

√
2π

exp
(
− 13

24τ2 + 61
270τ2

)
= 1

σ0
√

2π
exp

(
− 341

1080τ2

)

≤ 1
σ0

√
2π

exp
(
− 341

1080σ2

)
.

Further, using the second equality in (47) and then (41) for h2k,r,r and writing
σ0,2k := σ0(H2k,r,r),

f(s− 1) = f(k) = h2k,r,r(k) ·
r − k + 1

2
r − k + 1

>
exp

(
− 1

16σ2
0,2k

)
σ0,2k

√
2π

·
r − k + 1

2
r − k + 1

,

and together with σ2

σ2
0,2k

≤ r−k+ 1
2

r−k ≤ 3
2 by (48) we get the first two inequalities below

and recall r ≥ 2 for the last:

log g(s)
f(s− 1)

≤ log σ0,2k

σ0
− 341

1080σ2 + 1
16σ2

0,2k
− log

r − k + 1
2

r − k + 1

< − 1
σ2

(
341
1080

− 3
32

)
+ 1

2
log k(r − k)

(k − 1
2 )(r − k + 1

2 )
+ log r − k + 1

r − k + 1
2

= − 959
4320σ2 + 1

2
log

(
1 + 1/2

k − 1/2

)
+ 1

2
log

(
1 + 1/2

r − k + 1
2

)

+1
2

log (r − k) · (r − k + 1)
(r − k + 1

2 )2

≤ − 959
4320σ2 + 1

2

(
1/2
k − 1

2
+ 1/2

r − k + 1
2

)

= − 1
σ2

(
959
4320

− 1
8
· r

r − 1
2

)
≤ − 1

σ2

(
959
4320

− 1
6

)
= − 239

4320σ2 .

If, on the other hand, k = r, then n = 2r − 1, s = r + 1, and hence

g(s) = G(s) −G(s− 1) = Φ
( 3

2τ
)
− Φ

( 1
2τ
)

< 1 − Φ(0) = 1
2

= f(s− 1).

Hence g(s) < f(s− 1) in every case, also if r = ∞.
(c) By part (b), G − F (· − 1) is strictly decreasing on {s ∈ Z : �n/2� ≤ s ≤

M}. �

Lemma 4.6. Let s ∈ Z with s ≥ n
2 + 1 + 3

2σ. Then G(s) − F (s− 1) < 1
σϕ

( 3
2
)

=
0.1295...

σ .

Proof. By Lemma 4.4(c), applicable due to s−1 > �n
2 �, and then since [0,∞[ � x �→

ϕ(x) and [1,∞[ � x �→ xϕ(x) are strictly decreasing and since we have 3σ
2τ ≥ 3

2 ≥ 1,
we get

G(s) − F (s− 1) = G(s− 1) − F (s− 1) + G(s) −G(s− 1)

< G(s) −G(s− 1) < 1
τ ϕ

(
s−n

2 −1
τ

)
≤ 1

τ ϕ
( 3σ

2τ
)

≤ 1
σϕ

(3
2
)
. �
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Proof of Theorem 1.3. Let d be defined by the first equality in (12). Then the
second equality in (12) and the equality in (13) hold by the first part of Lemma 1.6.

Let us now consider the lower bound

d ≥
Φ (1) − 1

2
2σ

(52)

claimed in (14). If n is odd, then, using first τ ≤ σ, and then the concavity of Φ
on [0,∞[ and σ ≥ 1

2 , we get

d = Φ
( 1

2τ
)
− 1

2 ≥
Φ( 1

2σ ) − 1
2

1
2σ

· 1
2σ ≥

Φ(1) − 1
2

2σ
= 0.170672 . . .

σ

with equality throughout if τ = σ and n = 1. If n is even, then Lemma 4.2 yields

d = 1
2
f
(
n
2
)

>

√
2

8σ
= 0.176776 . . .

σ
.

The above implies (52) and half of the optimality claim in part (b) of the theorem.
We now prove (11), using the second part of Lemma 1.6. We have (23) by

Lemma 4.4(c). To prove (24), let s ∈ Z with s >
⌈
n
2
⌉

be given. If s ≤ M from
Lemma 4.5, then G(s) − F (s− 1) < d by part (c) of that lemma. If, on the other
hand, s > M , then G(s)−F (s− 1) < d by Lemma 4.6 combined with (52). Hence
for part (a) of the theorem it only remains to prove the claim involving the upper
bound

d <
1

σ
√

8π
(53)

contained in (14). If n is even, then (53) follows from (42).
If n is odd and N �= 2, then N ≥ 4. If N is finite, then, using τ ≥ σ0 in the first

step, σ2
0 ≤ N

16 by (40) and the concavity of Φ on [0,∞[ and σ
σ0

=
√

N
N−1 in the

second, (33) in the third, x := 1
N ∈ ]0, 1

4 ] and h(x) := −1
2 log(1− x)− 2

3x+ 8
45x

2 in
the fourth, and the convexity of h on [0, 1

4 ] and h(0) = 0 and h
(1

4
)

= −1
2 log

( 3
4
)
−

1
6 + 1

90 < −0.0117145 < 0 in the fifth, we get

√
8π σ

(
Φ
( 1

2τ
)
− 1

2
)

≤ σ

σ0

√
2π

Φ
(

1
2σ0

)
− 1

2
1

2σ0

≤
√

N
N−1

√
2π

Φ
(

2√
N

)
− 1

2
2√
N

<
√

N
N−1 exp

(
−1

6

(
2√
N

)2
+ 1

90

(
2√
N

)4
)

= exp (h(x))
< 1.

If N = ∞, then τ = σ and hence
√

8π σ
(
Φ
( 1

2τ
)
− 1

2
)
< 1 obviously by Φ′(x) < 1√

2π
for 0 �= x ∈ R.

Finally if N = 2, then n = 1, σ = 1
2 , σ0 = 1√

8 , and
√

8π σd =
√

2π
(
Φ
( 1

2τ
)
− 1

2
)

= �(τ ) is, as a function of � ∈ [σ0, σ], strictly decreasing with �(σ0) = 1.05616 . . . >
1, and �(τ ) < 1 iff τ > τ0 with τ0 = 0.391961 . . . , and we have τ0/σ = 0.783923 . . . .
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This proves part (a), and the remaining half of the optimality claim in (b) follows
from limσ→∞ σ

(
Φ
( 1

2σ
)
− 1

2
)

= 1√
8π . �

Proof of Remark 1.4. (a) is trivial.
(b) The first inequality in (15) is trivial by N

N−1 ≥ 2 and the concavity of Φ on

[0,∞[. If n is odd, then (13), concavity again, and τ ≥ σ0 ≥
√

N−1
4N yield the second

inequality through 2τd =
(
Φ
( 1
τ

)
− 1

2
)
/
( 1

2τ
)
≥
(
Φ
(√

N
N−1

)
− 1

2

)
/
(√

N
N−1

)
. If

n is even, and first also 4 < N < ∞, then Lemma 4.2 yields 2τd ≥ 2σ0d =
2
√

N−1
N σd ≥

√
N−1
N

√
(N−2)N2

8(N−1)3 =
√

1
8 (1 − 1

N2−2N+1 ) ≥
√

1
8 (1 − 1

36−12+1 ) =

0.3461 · · · ≥ Φ (1)− 1
2 ≥

√
N−1
N

(
Φ
(√

N
N−1

)
− 1

2

)
. If N = ∞, then again σ = σ0,

and the claim follows from (14). It remains that N = 4, but in this case 2σ0d =
1
3 > 0.3255 · · · =

√
3
4
(
Φ
(√

3
4

)
− 1

2
)
.

If n is even, then N �= 2, and then the third inequality d < 1
τ
√

8π follows trivially
from Theorem 1.3 and τ ≤ σ. If n is odd, then d = Φ

( 1
2τ
)
− 1

2 < 1
τ
√

8π .
(c) The second inequality is again obvious. In the first inequality, we have

equality if n is odd, and if n is even, then Lemma 4.3 and Lemma 3.2 yield

d = 1
2
f
(n

2

)
≤ 1

2σ0
√

2π
· e

− 1
24σ2

0

= 1√
2π

· 1
2σ0

e−
1

6(2σ0)2 < Φ
(

1
2σ0

)
− 1

2
.

�
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tion, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 49–61. Also in Selected papers of
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